WO2016066464A1 - Waschmittel mit mannosylerythritollipid - Google Patents

Waschmittel mit mannosylerythritollipid Download PDF

Info

Publication number
WO2016066464A1
WO2016066464A1 PCT/EP2015/074143 EP2015074143W WO2016066464A1 WO 2016066464 A1 WO2016066464 A1 WO 2016066464A1 EP 2015074143 W EP2015074143 W EP 2015074143W WO 2016066464 A1 WO2016066464 A1 WO 2016066464A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
weight
branched
linear
range
Prior art date
Application number
PCT/EP2015/074143
Other languages
English (en)
French (fr)
Inventor
Hendrik Hellmuth
Nicole BODE
Michael Dreja
Andreas Buhl
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Publication of WO2016066464A1 publication Critical patent/WO2016066464A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/667Neutral esters, e.g. sorbitan esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile

Definitions

  • the present invention relates to detergents containing mannosylerythritol lipid.
  • Mannosylerythntollipids are compounds in which a mannose unit esterified with at least one fatty acid is glycosidically linked to an erythritol residue.
  • the hydroxyl group at C2 is esterified with octylic acid
  • the hydroxyl group at C3 with a C12-18 carboxylic acid
  • the hydroxyl groups at C4 and C6 with acetic acid
  • R Cn-17-alkyl.
  • They are obtained from so-called brand mushrooms of the genera Pseudozyma and Ustilago, in particular the fungi Pseudozyma antarctica and Ustilago maydis.
  • Special cultivation and processing strategies for the optimized production of mannosylerythritol lipids by Ustilago maydis mutants which do not produce cellobioselipids are known from Chem. Ing. Tech. 82, 2010, 1215-1221.
  • Mannosylerythntollipids belong to the so-called biosurfactants because of their surface-active behavior and their origin.
  • the patent application EP 0 499 434 A1 discloses detergents which contain a micellar phase-forming surfactant and a further lamellar phase-forming surfactant, at least one of these two surfactants comprising a glycolipid biosurfactant, in particular a rhamnolipid, glucoselipid, sophoroselipid, Trehaloselipid and / or Cellobioselipid must be.
  • European patent application EP 1 445 302 A1 relates to detergents containing at least one glycolipid biosurfactant, in particular sophorolipid and / or rhamnolipid, and at least one non-glycolipid surfactant, these being in a micellar phase.
  • International patent application WO 2012/010405 A1 discloses cleaning compositions which contain at least 1% by weight of biosurfactant and an enzyme of bacterial origin.
  • International patent application WO 2012/010407 A1 discloses laundry detergents which comprise glycolipid surfactant and lipase of bacterial origin, the glycolipid surfactant consisting of at least 20% by weight of disaccharide acid glycol-containing glycolipid surfactant.
  • the invention therefore relates to a detergent containing mannosylerythritol lipid of the general formula (I),
  • Ac is an acetyl group and R is a linear or branched-chain hydrocarbon radical having 1 1 to 17 C atoms.
  • the detergent contains 0.01 wt .-% to 23 wt .-%, in particular 3 wt .-% to 6 wt .-% Mannosylerythritollipid.
  • the agent may additionally comprise further surfactants, the combinations of mannosylerythritolollipid with ethersulfates mentioned below, ethoxylation products of linear or branched alcohols having in each case 12 to 18 C atoms in the alkyl moiety and 3 to 20, in particular 4 to 10 ethyl ether groups and / or C9 Ci3 alkyl benzene sulfonates are particularly preferred.
  • the weight ratio of mannosyl erythritol lipid to the further surfactant or surfactants is preferably in the range of 1:18 to 10:18, more preferably 1: 6 to 1: 3.
  • the detergent is liquid and has a water content in the range of 6 wt .-% to 95 wt .-%, in particular from 55 wt .-% to 90 wt .-% to.
  • Mannosylerythritollipid the general formula (I) to enhance the cleaning performance of detergents in the washing provided with greasy and / or oily soils textiles.
  • the use of mannosyl erythritol lipids removes greasy and oily soiling from textiles even at temperatures in the range from 10 ° C. to 30 ° C., in particular from 17 ° C. to 25 ° C.
  • a further subject of the invention is therefore a process for washing textiles provided with greasy and / or oily soiling by contacting the textiles with an aqueous surfactant-containing liquor Temperature range from 10 ° C to 30 ° C, especially from 20 ° C to 25 ° C, which is characterized in that the aqueous liquor Mannosylerythritol- lipid of the general formula (I) contains.
  • the process can be carried out by separate addition of mannosylerythritol lipid to a customary wash liquor or preferably by use of a mannosyl erythrinolipid-containing wash detergent. It can be done manually or using a conventional washing machine.
  • the concentration of mannosylerythritol lipid in the aqueous liquor is preferably in the range from 0.075 g / l to 0.3 g / l, in particular from 0.8 g / l to 0.25 g / l.
  • Detergents which may be in the form of homogeneous solutions or suspensions, in particular in powdered solids, in densified particle form, may in principle contain, in addition to the active ingredient used according to the invention, all known ingredients customary in such agents.
  • the agents according to the invention or used in the process according to the invention may in particular be builders, other surfactants, bleaches based on organic and / or inorganic peroxygen compounds, bleach activators, water, water-miscible organic solvents, enzymes, sequestering agents, electrolytes, pH regulators and other auxiliaries, such as optical Brightener, grayness inhibitors, foam regulators and dyes and fragrances included.
  • the agents preferably contain, in addition to the mannosylerythritol lipid, another surfactant or several other surfactants, in particular anionic surfactants, nonionic surfactants and mixtures thereof, but also cationic, zwitterionic and amphoteric surfactants.
  • Suitable nonionic surfactants are in particular alkyl glycosides and ethoxylation and / or propoxylation of alkyl glycosides or linear or branched alcohols each having 12 to 18 carbon atoms in the alkyl moiety and 3 to 20, preferably 4 to 10 alkyl ether groups. Also suitable are ethoxylation and / or propoxylation products of N-alkylamines, vicinal diols, fatty acid esters and fatty acid amides which correspond to said long-chain alcohol derivatives with respect to the alkyl moiety and of alkylphenols having 5 to 12 C atoms in the alkyl radical.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol residue can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols for example C12-Ci4 alcohols containing 3 EO or 4 EO, C 9 include -CN alcohols containing 7 EO, C 3 -Ci5 alcohols containing 3 EO, 5 EO, 7 EO or 8 EO, CI2 C18-alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 -C 14 -alcohol with 3 EO and C 12 -C 18 -alcohol with 7 EO.
  • the stated degrees of ethoxylation represent statistical averages, which for a particular product may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include (tallow) fatty alcohols with 14 EO, 16 EO, 20 EO, 25 EO, 30 EO or 40 EO.
  • agents for use in mechanical processes usually extremely low-foam compounds are used. These include preferably Ci2-Ci8-alkylpolyethylenglykol-polypropylene glycol ethers each with at 8 mol ethylene oxide and propylene oxide in the molecule.
  • low-foam nonionic surfactants such as, for example, C12-C18-alkylpolyethylene glycol-polybutylene glycol ethers having up to 8 moles of ethylene oxide and butylene oxide units in the molecule as well as end-capped alkylpolyalkylene glycol mixed ethers.
  • hydroxyl-containing alkoxylated alcohols so-called hydroxymic ethers.
  • the nonionic surfactants also include alkyl glycosides of the general formula RO (G) x in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G represents a glycose unit with 5 or 6 C atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number - which, as a variable to be determined analytically, can also be of a fractional value - between 1 and 10; preferably x is 1, 2 to 1, 4.
  • R is CO for an aliphatic acyl radical having 6 to 22 carbon atoms
  • R 2 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms
  • [Z] is a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups
  • the polyhydroxy fatty acid amides are preferably derived from reducing sugars having 5 or 6 carbon atoms, in particular from glucose.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula
  • R 3 -CO-N- [Z] in the R 3 is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 4 is a linear, branched or cyclic alkylene radical or an arylene radical having 2 to 8 carbon atoms
  • R 5 is a linear, branched or cyclic alkyl radical or a Aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, wherein Ci-C4-alkyl or phenyl radicals are preferred
  • [Z] is a linear polyhydroxyalkyl radical whose alkyl chain is substituted with at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated Derivatives of this radical is available.
  • [Z] is also obtained here preferably by reductive amination of a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl ester.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • nonionic surfactants are so-called gemini surfactants. These are generally understood as meaning those compounds which have two hydrophilic groups per molecule. These groups are usually separated by a so-called “spacer.” This spacer is usually a carbon chain that should be long enough for the hydrophilic groups to be spaced sufficiently apart to act independently of one another generally by an unusually low critical micelle concentration and the ability to greatly reduce the surface tension of the water In exceptional cases, the term gemini surfactants not only such "dimer”, but also corresponding to "trimeric” surfactants understood.
  • Surfactants are, for example, sulfated hydroxymix ethers or dimer alcohol bis- and trimer alcohol trisulfates and ether sulfates
  • End-capped dimeric and trimeric mixed ethers are particularly distinguished by their bi- and multifunctionality, for example, the end-capped surfactants mentioned have good wetting properties and are included Low foaming, so that they are particularly suitable for use in machine washing or cleaning processes.
  • Suitable anionic surfactants are in particular soaps and those which contain sulfate or sulfonate groups.
  • surfactants of the sulfonate type are preferably C9-C13 alkylbenzenesulfonates, olefin sulfonates, that is, mixtures of alkene and hydroxyalkanesulfonates As well as disulfonates, as obtained for example from Ci2-Ci8 monoolefins with terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation, into consideration.
  • alkanesulfonates which are obtained from C 12 -alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids esters of ⁇ -sulfo fatty acids (ester sulfonates), for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids obtained by ⁇ -sulfonation of the methyl esters of fatty acids of plant and / or animal origin with 8 to 20 C -Atomen in the fatty acid molecule and subsequent neutralization to water-soluble mono-salts are prepared, into consideration.
  • ⁇ -sulfonated esters of hydrogenated coconut, palm, palm kernel or tallow fatty acids although sulfonated products of unsaturated fatty acids, for example oleic acid, in small amounts, preferably in amounts not above about 2 to 3 wt. %, can be present.
  • ⁇ -sulfofatty acid alkyl esters are preferred which have an alkyl chain with not more than 4 C atoms in the ester group, for example, methyl ester, ethyl ester, propyl ester and butyl ester.
  • the methyl esters of ⁇ -sulfo fatty acids (MES), but also their saponified disalts are used.
  • Suitable anionic surfactants are sulfated fatty acid glycerol esters, which are mono-, di- and triesters and mixtures thereof, as in the preparation by esterification by a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 Mole of glycerol can be obtained.
  • Alk (en) ylsulfates are the alkali metal salts and in particular the sodium salts of the sulfuric monoesters of C 12-18 fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half esters of secondary alcohols this chain length is preferred. Also preferred are alk (en) ylsulfates of said chain length, which contain a synthetic, produced on a petrochemical basis straight-chain alkyl radical, which have an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • Ci2-Ci6-alkyl sulfates and Ci2-Ci5-alkyl sulfates and Cw-Cis-alkyl sulfates are particularly preferred.
  • ether sulfates the sulfuric acid monoesters of the straight-chain or branched C 7 -C 20 -alcohols ethoxylated with from 1 to 6 mol of ethylene oxide, such as 2-methyl-branched C 9 -C 20 -alcohols having on average 3.5 mol of ethylene oxide (EO) or C 12 -C 18 -alcohol.
  • EO ethylene oxide
  • the preferred anionic surfactants also include the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters, and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain Cs to Cis fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which by themselves are nonionic surfactants.
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are particularly important prefers.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Suitable further anionic surfactants are fatty acid derivatives of amino acids, for example N-methyltaurine (Tauride) and / or N-methylglycine (sarcosides).
  • sarcosides or the sarcosinates and here especially sarcosinates of higher and optionally monounsaturated or polyunsaturated fatty acids such as oleyl sarcosinate.
  • anionic surfactants are particularly soaps into consideration.
  • Particularly suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid and, in particular, soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids. Together with these soaps or as a substitute for soaps, it is also possible to use the known alkenylsuccinic acid salts.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • Surfactants are present in detergents in proportions of normally from 1% by weight to 50% by weight, in particular from 5% by weight to 30% by weight.
  • a detergent preferably contains at least one water-soluble and / or water-insoluble, organic and / or inorganic builder.
  • the water-soluble organic builder substances include polycarboxylic acids, in particular citric acid and sugar acids, monomeric and polymeric aminopolycarboxylic acids, in particular glycinediacetic acid, methylglycine diacetic acid, nitrilotriacetic acid, iminodisuccinates such as ethylenediamine-N, N'-disuccinic acid and hydroxyiminodisuccinates, ethylenediaminetetraacetic acid and polyaspartic acid, polyphosphonic acids, in particular aminotris (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), lysine tetra (methylenephosphonic acid) and 1-hydroxyethane-1, 1-diphosphonic acid, polymeric hydroxy compounds such as dextrin and polymeric (polycarboxylic acids, in particular by
  • a particularly preferred acrylic acid-maleic acid copolymer has a relative average molecular weight of 50,000 to 100,000.
  • Suitable, although less preferred, compounds of this class are copolymers of acrylic acid or methacrylic acid with vinyl ethers, such as vinylmethyl ethers, vinyl esters, ethylene, propylene and styrene, in which the proportion of the acid is at least 50% by weight.
  • vinyl ethers such as vinylmethyl ethers, vinyl esters, ethylene, propylene and styrene
  • water-soluble organic builders can terpolymers are also used which contain as unsaturated monomers two unsaturated acids and / or salts thereof and as the third monomer vinyl alcohol and / or a vinyl alcohol derivative or a carbohydrate.
  • the first acidic monomer or its salt is derived from a monoethylenically unsaturated C3-Cs carboxylic acid and preferably from a C3-C4 monocarboxylic acid, in particular from (meth) acrylic acid.
  • the second acidic monomer or its salt may be a derivative of a C4-Cs-dicarboxylic acid, with maleic acid being particularly preferred.
  • the third monomeric unit is formed in this case of vinyl alcohol and / or preferably an esterified vinyl alcohol. Particularly preferred are vinyl alcohol derivatives which are an ester of short chain carboxylic acids, for example, C1-C4 carboxylic acids, with vinyl alcohol.
  • Preferred polymers contain from 60% by weight to 95% by weight, in particular from 70% by weight to 90% by weight, of (meth) acrylic acid or (meth) acrylate, particularly preferably acrylic acid or acrylate, and maleic acid or Maleinate and 5 wt .-% to 40 wt .-%, preferably 10 wt .-% to 30 wt .-% of vinyl alcohol and / or vinyl acetate.
  • the weight ratio of (meth) acrylic acid or (meth) acrylate to maleic acid or maleate is between 1: 1 and 4: 1, preferably between 2: 1 and 3: 1 and in particular 2: 1 and 2 , 5: 1 lies.
  • the second acidic monomer or its salt may also be a derivative of an allylsulfonic acid substituted in the 2-position with an alkyl radical, preferably with a C 1 -C 4 -alkyl radical, or an aromatic radical which is preferably derived from benzene or benzene derivatives is.
  • Preferred terpolymers contain from 40% by weight to 60% by weight, in particular from 45 to 55% by weight, of (meth) acrylic acid or (meth) acrylate, particularly preferably acrylic acid or acrylate, from 10% by weight to 30% by weight.
  • % preferably 15 wt .-% to 25 wt .-% methallylsulfonic acid or Methallylsulfonat and as the third monomer 15 wt .-% to 40 wt .-%, preferably 20 wt .-% to 40 wt .-% of a carbohydrate.
  • This carbohydrate may be, for example, a mono-, di-, oligo- or polysaccharide, mono-, di- or oligosaccharides being preferred. Particularly preferred is sucrose.
  • the use of the third monomer presumably incorporates predetermined breaking points into the polymer which are responsible for the good biodegradability of the polymer.
  • terpolymers generally have a relative average molecular weight between 1,000 g / mol and 200,000 g / mol, preferably between 200 g / mol and 50,000 g / mol.
  • Further preferred copolymers are those which have acrolein as monomers and acrylic acid / acrylic acid salts or vinyl acetate.
  • the organic builder substances can be used, in particular for the preparation of liquid agents, in the form of aqueous solutions, preferably in the form of 30 to 50 percent by weight aqueous solutions. All of the acids mentioned are generally used in the form of their water-soluble salts, in particular their alkali metal salts.
  • organic builder substances may be present in amounts of up to 40% by weight, in particular up to 25% by weight and preferably from 1% by weight to 8% by weight. Quantities close to the stated upper limit are preferably used in pasty or liquid, in particular hydrous, agents.
  • Suitable water-soluble inorganic builder materials are, in particular, polyphosphates, preferably sodium triphosphate.
  • water-insoluble inorganic builder materials are in particular crystalline or amorphous, water-dispersible alkali metal aluminosilicates, in amounts not exceeding 25 wt .-%, preferably from 3 wt .-% to 20 wt .-% and in particular in amounts of 5 wt .-% to 15 wt. -% used.
  • preference is given to the detergent-grade crystalline sodium aluminosilicates in particular zeolite A, zeolite P and zeolite MAP and optionally zeolite X.
  • Amounts near the above upper limit are preferably used in solid, particulate agents.
  • suitable aluminosilicates have no particles with a particle size greater than 30 ⁇ m, and preferably consist of at least 80% by weight of particles having a size of less than 10 ⁇ m.
  • Their calcium binding inhibitor is usually in the range of 100 to 200 mg CaO per gram.
  • water-soluble inorganic builder materials may be included.
  • polyphosphates such as sodium triphosphate
  • these include in particular the water-soluble crystalline and / or amorphous alkali metal silicate builders.
  • Such water-soluble inorganic builder materials are preferably present in the compositions in amounts of from 1% to 20% by weight, in particular from 5% to 15% by weight.
  • the alkali metal silicates useful as builder materials preferably have a molar ratio of alkali oxide to SiO 2 below 0.95, in particular from 1: 1, 1 to 1: 12, and may be amorphous or crystalline.
  • Preferred alkali metal silicates are the sodium silicates, in particular the amorphous sodium silicates, with a molar ratio of Na 2 O: SiO 2 of from 1: 2 to 1: 2.8.
  • Crystalline silicates which may be present alone or in a mixture with amorphous silicates are preferably crystalline phyllosilicates of the general formula Na.sub.2SixO.sub.2.sup.x + H.sub.2O.sub.2, in which x, the so-called modulus, is a number from 1.9 to 4 and y is a number from 0 is up to 20 and preferred values for x are 2, 3 or 4.
  • Preferred crystalline phyllosilicates are those in which x in the abovementioned general formula assumes the values 2 or 3.
  • both .beta. And .delta.-sodium disilicates (Na.sub.2Si.sub.20.sub.y H.sub.2O) are preferred.
  • Also prepared from amorphous alkali metal silicates practically anhydrous crystalline alkali silicates of the above general formula in which x is a number from 1, 9 to 2.1, can be used in the compositions.
  • a crystalline sodium layer silicate with a modulus of 2 to 3 is used, as can be prepared from sand and soda.
  • Sodium silicates with a modulus in the range of 1.9 to 3.5 are used in another embodiment.
  • a granular compound of alkali silicate and alkali carbonate is used, as it is commercially available, for example, under the name Nabion® 15.
  • the compositions may also contain bleaches, especially those based on peroxygen.
  • Suitable peroxygen compounds are, in particular, organic peracids or pers acid salts of organic acids, such as phthalimidopercaproic acid, perbenzoic acid, monoperoxyphthalic acid and diperdodecanedioic acid and salts thereof such as magnesium monoperoxyphthalate, hydrogen peroxide and inorganic salts which release hydrogen peroxide under the conditions of use, such as perborate, percarbonate and / or persilicate, and Hydrogen peroxide inclusion compounds, such as H 2 O 2 urea adducts. Hydrogen peroxide can also be produced by means of an enzymatic system, ie an oxidase and its substrate.
  • solid peroxygen compounds are to be used, they can be used in the form of powders or granules, which can also be enveloped in a manner known in principle. Particular preference is given to using alkali metal percarbonate, alkali metal perborate monohydrate or hydrogen peroxide in the form of aqueous solutions which contain from 3% by weight to 10% by weight of hydrogen peroxide. If a detergent which can be used in the context of the invention contains peroxygen compounds, these are present in amounts of preferably up to 50% by weight, in particular from 2% by weight to 45% by weight and more preferably from 5% by weight to 20% Wt .-% present.
  • Preferred peroxygen concentrations (calculated as H2O2) in the liquor are in the range from 0.001 g / l to 10 g / l, in particular from 0.02 g / l to 1 g / l and particularly preferably from 0.03 g / l to 0, 5 g / l.
  • peroxycarboxylic acid-yielding compound in particular compounds which give under perhydrolysis conditions optionally substituted perbenzoic acid and / or aliphatic peroxycarboxylic acids having 1 to 12 C-atoms, in particular 2 to 4 C-atoms, alone or in mixtures, are used.
  • Suitable bleach activators which carry O- and / or N-acyl groups, in particular of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates or carboxylates or the sulfonic or carboxylic acids of these, especially nonanoyl or Isononanoyl- or Lauroyloxybenzolsulfonat (NOBS or iso-NOBS or LOBS) or Decanoyloxybenzoat (DOBA), their formal carbonic ester derivatives such as 4- (2-decanoyloxyethoxycarbonyloxy) benz
  • bleach-activating compounds such as nitriles, from which perimide acids form under perhydrolysis conditions may be present.
  • nitriles include in particular aminoacetonitrile derivatives with quaternized nitrogen atom according to the formula
  • R 3 in the R represents -H, -CH 3 , a C2-24-alkyl or alkenyl radical, a substituted Ci-24-alkyl or C2-24-alkenyl radical having at least one substituent from the group -Cl, -Br , -OH, -NH2, -CN and -N (+) -CH2-CN, an alkyl or alkenylaryl radical having a Ci-24-alkyl group, or for a substituted alkyl or alkenylaryl radical having at least one, preferably two, optionally substituted Ci-24-alkyl group (s) and optionally further substituents on the aromatic ring, R 2 and R 3 are independently selected from -CH 2-CN, -CH 3, -CH 2 -CH 3, -CH 2 -CH 2 -CH 3, -CH ( CH 3) -CH 3, -CH 2 -OH, -CH 2 -CH 2 OH, -CH (OH) -CH3, -CH2-CH2-
  • peroxycarboxylic or perimic acids forming bleach activators are preferably present in amounts above 0 wt .-% up to 10 wt .-%, in particular 1, 5 wt .-% to 5 wt .-% in the invention usable detergents.
  • Acylhydrazones and / or oxygen-transferring sulfonimines may also be used.
  • transition metal complexes are preferably selected from the cobalt, iron, copper, titanium, vanadium, manganese and ruthenium complexes.
  • Suitable ligands in such transition metal complexes are both inorganic and organic compounds, in addition to carboxylates in particular compounds having primary, secondary and / or tertiary amine and / or alcohol functions, such as pyridine, pyridazine, pyrimidine, pyrazine, imidazole, pyrazole , triazole, 2,2 '- bispyridylamine, tris (2-pyridylmethyl) amine, 1, 4,7-triazacyclononane, 1, 4,7-trimethyl-1, 4,7-triazacyclononane, 1, 5,9-trimethyl -1, 5,9-triazacyclododecane, (bis ((1-methylimidazol-2-yl) methyl)) - (2-pyridylmethyl)) - (2-pyridyl
  • the inorganic neutral ligands include in particular ammonia and water. If not all coordination sites of the transition metal central atom are occupied by neutral ligands, the complex contains further, preferably anionic and among these in particular mono- or bidentate ligands. These include in particular the halides such as fluoride, chloride, bromide and iodide, and the (NO 2) - group, that is a nitro ligand or a nitrito ligand.
  • the (NO 2) - group may also be chelated to a transition metal or it may be asymmetric or two transition metal atoms -0-bridging.
  • the transition metal complexes may carry further, generally simpler ligands, in particular mono- or polyvalent anion ligands.
  • ligands for example, nitrate, acetate, trifluoroacetate, formate, carbonate, citrate, oxalate, perchlorate and complex anions such as hexafluorophosphate are suitable.
  • the anion ligands should provide charge balance between the transition metal central atom and the ligand system.
  • the presence of oxo ligands, peroxo ligands and imino ligands is also possible. In particular, such ligands can also act bridging, so that polynuclear complexes arise.
  • both metal atoms in the complex need not be the same.
  • the use of binuclear complexes in which the two transition metal central atoms have different oxidation numbers is also possible. If anion ligands are missing or the presence of anionic ligands does not result in charge balance in the complex, anionic counterions which neutralize the cationic transition metal complex are present in the transition metal complex compounds to be used according to the invention.
  • anionic counterions include in particular nitrate, hydroxide, hexafluorophosphate, sulfate, chlorate, perchlorate, the halides such as chloride or the anions of carboxylic acids such as formate, acetate, oxalate, benzoate or citrate.
  • transition metal complex compounds are , 4,7-trimethyl-1, 4,7-triazacyclononane) -di-hexafluorophosphate, [N, N'-bis [(2-hydroxy-5-vinylphenyl) -methylene] -1, 2-diaminocyclohexane] -manganese (III) chloride, [N, N'-bis [(2-hydroxy-5-nitrophenyl) methylene] -1,2-diaminocyclohexane] manganese (III) acetate, [N, N'-bis [ (2-hydroxyphenyl) methylene] -1, 2-phenylenediamine] manganese (III) acetate, [N, N'-bis [(2-hydroxyphenyl) methylene] -1,2-diaminocyclohexane] manganese (III) chloride, [N, N'-bis [(2-hydroxyphenyl) methylene] -1, 2-diaminocycl
  • Enzymes which can be used in the compositions are those from the class of amylases, proteases, Lipases, cutinases, pullulanases, hemicellulases, cellulases, oxidases, laccases and peroxides, and mixtures thereof. Particularly suitable are enzymatic agents obtained from fungi or bacteria, such as Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes, Pseudomonas cepacia or Coprinus cinereus.
  • the enzymes may be adsorbed to carriers and / or embedded in encapsulants to protect against premature inactivation. They are preferably present in the detergents or cleaners according to the invention in amounts of up to 5% by weight, in particular from 0.2% by weight to 4% by weight. If the agent of the invention contains protease, it preferably has a proteolytic activity in the range of about 100 PE / g to about 10,000 PE / g, in particular 300 PE / g to 8000 PE / g. If several enzymes are to be used in the agent according to the invention, this can be carried out by incorporation of the two or more separate or in a known manner separately prepared enzymes or by two or more enzymes formulated together in a granule.
  • usable organic solvents in addition to water include alcohols having 1 to 4 carbon atoms, in particular methanol, ethanol, isopropanol and tert-butanol, diols having 2 to 4 C Atoms, in particular ethylene glycol and propylene glycol, and mixtures thereof and derived from the said classes of compounds ethers.
  • Such water-miscible solvents are preferably present in the compositions according to the invention in amounts of not more than 30% by weight, in particular from 6% by weight to 20% by weight.
  • compositions of the invention system and environmentally friendly acids especially citric acid, acetic acid, tartaric acid, malic acid, lactic acid, glycolic acid, succinic acid, glutaric acid and / or Adipic acid, but also mineral acids, in particular sulfuric acid, or bases, in particular ammonium or alkali hydroxides.
  • pH regulators are present in the compositions according to the invention in amounts of preferably not more than 20% by weight, in particular from 1.2% by weight to 17% by weight.
  • Graying inhibitors have the task of keeping suspended from the textile fiber dirt suspended in the fleet.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example starch, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or of cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • starch derivatives can be used, for example aldehyde starches.
  • cellulose ethers such as carboxymethylcellulose (sodium salt), methylcellulose, hydroxyalkylcellulose and mixed ethers, such as methylhydroxyethylcellulose, methylhydroxypropyl pylcellulose, methylcarboxymethylcellulose and mixtures thereof, for example in amounts of 0.1 to 5 wt .-%, based on the agents used.
  • Detergents may contain, for example, derivatives of diaminostilbenedisulfonic acid or their alkali metal salts as optical brighteners, although they are preferably free of optical brighteners for use as color washing agents.
  • optical brighteners for use as color washing agents.
  • salts of 4,4'-bis (2-anilino-4-morpholino-1, 3,5-triazinyl-6-amino) stilbene-2,2'-disulphonic acid or similarly constructed compounds which are substituted for the morpholino Group carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • brighteners of the substituted diphenylstyrene type may be present, for example, the alkali salts of 4,4'-bis (2-sulfostyryl) -diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) -diphenyl, or 4 - (4-chlorostyryl) -4 '- (2-sulfostyryl) -diphenyls. Mixtures of the aforementioned optical brightener can be used.
  • Suitable foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of cis-C24 fatty acids.
  • Suitable non-surfactant foam inhibitors are, for example, organopolysiloxanes and mixtures thereof with microfine, optionally silanized silica and paraffins, waxes, microcrystalline waxes and mixtures thereof with silanated silicic acid or bis-fatty acid alkylenediamides. It is also advantageous to use mixtures of various foam inhibitors, for example those of silicones, paraffins or waxes.
  • the foam inhibitors in particular silicone and / or paraffin-containing foam inhibitors, are bound to a granular, water-soluble or dispersible carrier substance.
  • a granular, water-soluble or dispersible carrier substance In particular, mixtures of paraffins and bistearylethylenediamide are preferred.
  • compositions having an increased bulk density in particular in the range from 650 g / l to 950 g / l, a process comprising an extrusion step is preferred.
  • compositions in tablet form which may be monophasic or multiphase, monochromatic or multicolor and in particular consist of one or more layers, in particular two layers
  • the procedure is preferably such that all components - optionally one layer at a time - in a mixer mixed together and the mixture by means of conventional tablet presses, such as eccentric presses or rotary presses, with pressing forces in the range of about 50 to 100 kN, preferably compressed at 60 to 70 kN.
  • a tablet produced in this way has a weight of 10 g to 50 g, in particular 15 g up to 40 g.
  • the spatial form of the tablets is arbitrary and can be round, oval or angular, with intermediate forms are also possible. Corners and edges are advantageously rounded. Round tablets preferably have a diameter of 30 mm to 40 mm.
  • the size of rectangular or cuboid-shaped tablets, which are introduced predominantly via the metering device of the washing machine, is dependent on the geometry and the volume of this metering device.
  • Exemplary preferred embodiments have a base area of (20 to 30 mm) x (34 to 40 mm), in particular of 26x36 mm or 24x38 mm.
  • Liquid or pasty compositions in the form of conventional solvent-containing solutions are usually prepared by simply mixing the ingredients, which can be added in bulk or as a solution in an automatic mixer.
  • liquid detergent M1 according to the invention and, for comparison, the liquid detergent V1 not according to the invention were prepared by simply mixing the ingredients indicated in Table 1 in the amounts indicated there (quantities in% by weight)
  • Cotton textile pieces provided with standardized stains listed in the following Table 2 were washed at 25 ° C. for 1 hour using a detergent (dosage 4.2 g / l) listed in Table 1, rinsed with water, dried and then their remission value spectrophotometrically ( Minolta CR400-1).
  • Table 2 shows the differences in the brightness values (Y values of the remission measurement) between the use of the agent M1 or M2 and the use of the agent V1 as averages of 5-fold determinations, with higher values indicating a better leachability.
  • Table 2 Brightness differences

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Detergent Compositions (AREA)

Abstract

Beim Waschen von mit fettigen und/oder öligen Anschmutzungen versehenen Textilien bei niedrigen Temperaturen sollte die Leistung von Waschmitteln verbessert werden. Dies gelang im Wesentlichen durch den Einsatz von Mannosylerythritollipid.

Description

Waschmittel mit Mannosylerythritollipid
Die vorliegende Erfindung betrifft Waschmittel, die Mannosylerythritollipid enthalten.
Mannosylerythntollipide sind Verbindungen, in denen eine mit mindestens einer Fettsäure verester- ten Mannoseeinheit glycosidisch mit einem Erythritolrest verbunden ist. In der Regel sind in der Mannoseeinheit die Hydroxylgruppe an C2 mit Octylsäure, die Hydroxylgruppe an C3 mit einer C12- 18-Carbonsäure und die Hydroxylgruppen an C4 und C6 mit Essigsäure verestert,
Figure imgf000002_0001
mit R = Cn-17-Alkyl. Man erhält sie aus sogenannten Brandpilzen der Gattungen Pseudozyma und Ustilago, insbesondere den Pilzen Pseudozyma antarctica und Ustilago maydis. Besondere Kulti- vierungs- und Prozessführungsstrategien zur optimierten Herstellung von Mannosylerythritollipiden durch Ustilago maydis Mutanten, welche keine Cellobioselipide produzieren, sind aus Chem. Ing. Tech. 82, 2010, 1215-1221 bekannt. Mannosylerythntollipide gehören wegen ihres oberflächenaktiven Verhaltens und ihrer Herkunft zu den sogenannten Biotensiden.
Aus der Patentanmeldung EP 0 499 434 A1 sind Waschmittel bekannt, die ein eine micellare Phase ausbildendes Tensid und ein weiteres eine lamellare Phase ausbildendes Tensid enthalten, wobei mindestens eines dieser beiden Tenside ein Glykolipid-Biotensid, insbesondere ein Rham- nolipid, Glukoselipid, Sophoroselipid, Trehaloselipid und/oder Cellobioselipid sein muss. Die europäische Patentanmeldung EP 1 445 302 A1 betrifft Waschmittel, die mindestens ein Glykolipid- Biotensid, insbesondere Sophorolipid und/oder Rhamnolipid, und mindestens ein Nicht-Glykolipid- Tensid enthalten, wobei diese sich in einer micellaren Phase befinden. Aus der internationalen Patentanmeldung WO 2012/010405 A1 sind Reinigungsmittel bekannt, die mindestens 1 Gew.-% Biotensid und ein Enzym bakterieller Herkunft enthalten. Aus der internationalen Patentanmeldung WO 2012/010407 A1 sind Waschmittel bekannt, die Glykolipid-Tensid und Lipase bakterieller Herkunft enthalten, wobei das Glykolipid-Tensid zu mindestens 20 Gew.-% aus disaccharidischem säuregruppen-aufweisenden Glykolipid-Tensid besteht. Überraschenderweise wurde gefunden, dass der Einsatz von Mannosylerythritollipiden in Waschmitteln schon bei niedrigen Waschtemperaturen zu einer verbesserten Entfernung von insbesondere fettigen und öligen Anschmutzungen führt.
Gegenstand der Erfindung ist daher ein Waschmittel, enthaltend Mannosylerythritollipid der allgemeinen Formel (I),
Figure imgf000003_0001
in der Ac eine Acetylgruppe und R ein linearer oder verzweigtkettiger Kohlenwasserstoffrest mit 1 1 bis 17 C-Atomen ist.
Vorzugsweise enthält das Waschmittel 0,01 Gew.-% bis 23 Gew.-%, insbesondere 3 Gew.-% bis 6 Gew.-% Mannosylerythritollipid. Das Mittel kann zusätzlich weitere Tenside enthalten, wobei die Kombinationen von Mannosylerythritollipid mit unten genannten Ethersulfaten, Ethoxylierungspro- dukten von linearen oder verzweigten Alkoholen mit jeweils 12 bis 18 C-Atomen im Alkylteil und 3 bis 20, insbesondere 4 bis 10 Ethylethergruppen und/oder C9-Ci3-Alkylbenzolsulfonaten besonders bevorzugt sind. In solchen Kombinationen liegt das Gewichtsverhältnis von Mannosylerythritollipid zu dem weiteren Tensid oder den weiteren Tensiden vorzugsweise im Bereich von 1 :18 bis 10: 18, insbesondere von 1 :6 bis 1 :3. In einer bevorzugten Ausführungsform ist das Waschmittel flüssig und weist einen Wassergehalt im Bereich von 6 Gew.-% bis 95 Gew.-%, insbesondere von 55 Gew.-% bis 90 Gew.-% auf.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von Mannosylerythritollipid der allgemeinen Formel (I) zur Verstärkung der Reinigungsleistung von Waschmitteln beim Waschen von mit fettigen und/oder öligen Anschmutzungen versehenen Textilien. Durch den Einsatz der Manno- sylerythritollipide werden fettige und ölige Anschmutzungen schon bei Temperaturen im Bereich von 10 °C bis 30 °C, insbesondere von 17 °C bis 25 °C von Textilien entfernt. Die erfindungsgemäße Verwendung findet daher vorzugsweise bei Temperaturen in den genannten Bereichen statt, und ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zum Waschen von mit fettigen und/oder öligen Anschmutzungen versehenen Textilien durch In-Kontakt-Bringen der Textilien mit einer wässrigen tensidhaltigen Flotte im Temperaturbereich von 10 °C bis 30 °C, insbesondere von 20 °C bis 25 °C, welches dadurch gekennzeichnet ist, dass die wässrige Flotte Mannosylerythritol- lipid der allgemeinen Formel (I) enthält. Das Verfahren kann durch separate Zugabe von Mannosy- lerythritollipid zu einer üblichen Waschflotte oder vorzugsweise durch Einsatz eines Mannosyleryth- ritollipid enthaltenden Waschmittels durchgeführt werden. Es kann manuell oder unter Einsatz einer üblichen Waschmaschine erfolgen. Die Konzentration von Mannosylerythritollipid in der wäss- rigen Flotte liegt vorzugsweise im Bereich von 0,075 g/l bis 0,3 g/l, insbesondere von 0,8 g/l bis 0,25 g/l.
Waschmittel, die als insbesondere pulverförmige Feststoffe, in nachverdichteter Teilchenform, als homogene Lösungen oder Suspensionen vorliegen können, können außer dem erfindungsgemäß eingesetzten Wirkstoff im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Die erfindungsgemäßen oder im Rahmen des erfindungsgemäßen Verfahrens eingesetzten Mittel können insbesondere Buildersubstanzen, weitere Tenside, Bleichmittel auf Basis organischer und/oder anorganischer Persauerstoffverbindungen, Bleichaktivatoren, Wasser, wassermischbare organische Lösungsmittel, Enzyme, Sequestrierungsmittel, Elektrolyte, pH- Regulatoren und weitere Hilfsstoffe, wie optische Aufheller, Vergrauungsinhibitoren, Schaumregulatoren sowie Färb- und Duftstoffe enthalten.
Die Mittel enthalten neben dem Mannosylerythritollipid vorzugsweise ein weiteres Tensid oder mehrere weitere Tenside, wobei insbesondere anionische Tenside, nichtionische Tenside und deren Gemische, aber auch kationische, zwitterionische und amphotere Tenside in Frage kommen.
Geeignete nichtionische Tenside sind insbesondere Alkylglykoside und Ethoxylierungs- und/oder Propoxylierungsprodukte von Alkylglykosiden oder linearen oder verzweigten Alkoholen mit jeweils 12 bis 18 C-Atomen im Alkylteil und 3 bis 20, vorzugsweise 4 bis 10 Alkylethergruppen. Weiterhin sind entsprechende Ethoxylierungs- und/oder Propoxylierungsprodukte von N-Alkyl-aminen, vicina- len Diolen, Fettsäureestern und Fettsäureamiden, die hinsichtlich des Alkylteils den genannten langkettigen Alkoholderivaten entsprechen, sowie von Alkylphenolen mit 5 bis 12 C-Atomen im Alkylrest brauchbar.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2- Stellung methylverzweigt sein kann beziehungsweise lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C- Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12- Ci4-Alkohole mit 3 EO oder 4 EO, C9-Cn-Alkohole mit 7 EO, Ci3-Ci5-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, Ci2-Ci8-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mi- schungen aus Ci2-Ci4-Alkohol mit 3 EO und Ci2-Ci8-Alkohol mit 7 EO. Die angegebenen Ethoxylie- rungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind (Talg-) Fettalkohole mit 14 EO, 16 EO, 20 EO, 25 EO, 30 EO oder 40 EO. Insbesondere in Mitteln für den Einsatz in maschinellen Verfahren werden üblicherweise extrem schaumarme Verbindungen eingesetzt. Hierzu zählen vorzugsweise Ci2-Ci8-Alkylpolyethylenglykol-polypropylenglykolether mit jeweils bei zu 8 Mol Ethylenoxid- und Propylenoxideinheiten im Molekül. Man kann aber auch andere bekannt schaumarme nichtionische Tenside verwenden, wie zum Beispiel C12-C18- Alkylpolyethylenglykol-polybutylenglykolether mit jeweils bis zu 8 Mol Ethylenoxid- und Butylenoxi- deinheiten im Molekül sowie endgruppenverschlossene Alkylpolyalkylenglykolmischether. Besonders bevorzugt sind auch die hydroxylgruppenhaltigen alkoxylierten Alkohole, sogenannte Hydro- xymischether. Zu den nichtionischen Tensiden zählen auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Gluco- se, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosi- den angibt, ist eine beliebige Zahl - die als analytisch zu bestimmende Größe auch gebrochene Werte annehmen kann - zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4. Ebenfalls geeignet sind Polyhydroxyfettsäureamide der Formel
R2
Figure imgf000005_0001
in der R CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht.
Vorzugsweise leiten sich die Polyhydroxyfettsäureamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel
R4-0-R5
I (IV)
R3-CO-N-[Z] in der R3 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R4 für einen linearen, verzweigten oder cyclischen Alkylenrest oder einen Arylenrest mit 2 bis 8 Kohlenstoffatomen und R5 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei Ci-C4-Alkyl- oder Phenylreste bevorzugt sind, und [Z] für einen linearen Polyhydroxyalkylrest, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes steht. [Z] wird auch hier vorzugsweise durch reduktive Ami- nierung eines Zuckers wie Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose erhalten. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydro- xyfettsäureamide überführt werden. Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Al- kylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester. Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon. Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im Allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten„Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, dass die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich im Allgemeinen durch eine ungewöhnlich geringe kritische Micellkonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Ausnahmefällen werden unter dem Ausdruck Gemini-Tenside nicht nur derartig „dimere", sondern auch entsprechend„trimere" Tenside verstanden. Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether oder Dimeralkohol-bis- und Trimeralkohol-tris- sulfate und -ethersulfate. Endgruppenverschlossene dimere und trimere Mischether zeichnen sich insbesondere durch ihre Bi- und Multifunktionalität aus. So besitzen die genannten endgruppen- verschlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so dass sie sich insbesondere für den Einsatz in maschinellen Wasch- oder Reinigungsverfahren eignen. Eingesetzt werden können aber auch Gemini-Polyhydroxyfettsäureamide oder Poly- Poly hyd roxyfettsä u ream ide .
Geeignete anionische Tenside sind insbesondere Seifen und solche, die Sulfat- oder Sulfonat- Gruppen enthalten. Als Tenside vom Sulfonat-Typ kommen vorzugsweise C9-C13- Alkylbenzolsulfonate, Olefinsulfonate, das heißt Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus Ci2-Ci8-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus Ci2-Cis-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse beziehungsweise Neutralisation gewonnen werden. Geeignet sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), zum Beispiel die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren, die durch α-Sulfonierung der Methylester von Fettsäuren pflanzlichen und/oder tierischen Ursprungs mit 8 bis 20 C-Atomen im Fettsäuremolekül und nachfolgende Neutralisation zu wasserlöslichen Mono-Salzen hergestellt werden, in Betracht. Vorzugsweise handelt es sich hierbei um die α-sulfonierten Ester der hydrierten Kokos-, Palm-, Palmkern- oder Talgfettsäuren, wobei auch Sulfonierungsprodukte von ungesättigten Fettsäuren, beispielsweise Ölsäure, in geringen Mengen, vorzugsweise in Mengen nicht oberhalb etwa 2 bis 3 Gew.-%, vorhanden sein können. Insbesondere sind α-Sulfofettsäurealkylester bevorzugt, die eine Alkylkette mit nicht mehr als 4 C-Atomen in der Estergruppe aufweisen, beispielsweise Methylester, Ethylester, Propylester und Butylester. Mit besonderem Vorteil werden die Methylester der α-Sulfofettsäuren (MES), aber auch deren verseifte Disalze eingesetzt. Weitere geeignete An- iontenside sind sulfierte Fettsäureglycerinester, welche Mono-, Di- und Triester sowie deren Gemische darstellen, wie sie bei der Herstellung durch Veresterung durch ein Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der Ci2-Ci8-Fettalkohole beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der Cio-C2o-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind Ci2-Ci6-Alkylsulfate und Ci2-Ci5-Alkylsulfate sowie Cw-Cis-Alkylsulfate insbesondere bevorzugt. Geeignet sind auch sogenannte Ethersulfate, die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-C2i-Alkohole, wie 2-Methylverzweigte C9-Cn-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder Ci2-Ci8-Fettalkohole mit 1 bis 4 EO. Zu den bevorzugten Aniontensiden gehören auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden, und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten Cs- bis Cis- Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen. Als weitere anionische Tenside kommen Fettsäure-Derivate von Aminosäuren, beispielsweise von N-Methyltaurin (Tauride) und/oder von N-Methylglycin (Sarkoside) in Betracht. Insbesondere bevorzugt sind dabei die Sarkoside beziehungsweise die Sarkosinate und hier vor allem Sarkosinate von höheren und gegebenenfalls einfach oder mehrfach ungesättigten Fettsäuren wie Oleylsarkosinat. Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind insbesondere gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierten Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, zum Beispiel Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische. Zusammen mit diesen Seifen oder als Ersatzmittel für Seifen können auch die bekannten Alkenylbernsteinsäuresalze eingesetzt werden.
Die anionischen Tenside, einschließlich der Seifen, können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor. Tenside sind in Waschmitteln in Mengenanteilen von normalerweise 1 Gew.-% bis 50 Gew.-%, insbesondere von 5 Gew.-% bis 30 Gew.-%, enthalten.
Ein Waschmittel enthält vorzugsweise mindestens einen wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Buil- dersubstanzen gehören Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren, monomere und polymere Aminopolycarbonsäuren, insbesondere Glycindiessigsäure, Methylglycin- diessigsäure, Nitrilotriessigsäure, Iminodisuccinate wie Ethylendiamin-N,N'-dibernsteinsäure und Hydroxyiminodisuccinate, Ethylendiamintetraessigsäure sowie Polyasparaginsäure, Polyphosphonsäuren, insbesondere Aminotris(methylenphosphonsäure), Ethylendiamintetra- kis(methylenphosphonsäure), Lysintetra(methylenphosphonsäure) und 1-Hydroxyethan-1 , 1- diphosphonsäure, polymere Hydroxyverbindungen wie Dextrin sowie polymere (Polycarbonsäuren, insbesondere durch Oxidation von Polysacchariden zugängliche Polycarboxylate, polymere Acrylsäuren, Methacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative mittlere Molekülmasse der Homopolymeren ungesättigter Carbonsäuren liegt im allgemeinen zwischen 5 000 g/mol und 200 000 g/mol, die der Copolymeren zwischen 2 000 g/mol und 200 000 g/mol, vorzugsweise 50 000 g/mol bis 120 000 g/mol, jeweils bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist eine relative mittlere Molekülmasse von 50 000 bis 100 000 auf. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vi- nylethern, wie Vinylmethylethern, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei ungesättigte Säuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/ oder ein Vinylalkohol-Derivat oder ein Kohlenhydrat enthalten. Das erste saure Monomer beziehungsweise dessen Salz leitet sich von einer monoethylenisch ungesättigten C3-Cs-Carbonsäure und vorzugsweise von einer C3-C4- Monocarbonsäue, insbesondere von (Meth)-acrylsäure ab. Das zweite saure Monomer beziehungsweise dessen Salz kann ein Derivat einer C4-Cs-Dicarbonsäure sein, wobei Maleinsäure besonders bevorzugt ist. Die dritte monomere Einheit wird in diesem Fall von Vinylalkohol und/oder vorzugsweise einem veresterten Vinylalkohol gebildet. Insbesondere sind Vinylalkohol-Derivate bevorzugt, welche einen Ester aus kurzkettigen Carbonsäuren, beispielsweise von C1-C4- Carbonsäuren, mit Vinylalkohol darstellen. Bevorzugte Polymere enthalten dabei 60 Gew.-% bis 95 Gew.-%, insbesondere 70 Gew.-% bis 90 Gew.-% (Meth)acrylsäure bzw. (Meth)acrylat, besonders bevorzugt Acrylsäure bzw. Acrylat, und Maleinsäure bzw. Maleinat sowie 5 Gew.-% bis 40 Gew.-%, vorzugsweise 10 Gew.-% bis 30 Gew.-% Vinylalkohol und/oder Vinylacetat. Ganz besonders bevorzugt sind dabei Polymere, in denen das Gewichtsverhältnis von (Meth)acrylsäure beziehungsweise (Meth)acrylat zu Maleinsäure beziehungsweise Maleinat zwischen 1 :1 und 4: 1 , vorzugsweise zwischen 2:1 und 3: 1 und insbesondere 2:1 und 2,5: 1 liegt. Dabei sind sowohl die Mengen als auch die Gewichtsverhältnisse auf die Säuren bezogen. Das zweite saure Monomer beziehungsweise dessen Salz kann auch ein Derivat einer Allylsulfonsäure sein, die in 2-Stellung mit einem Alkylrest, vorzugsweise mit einem Ci-C4-Alkylrest, oder einem aromatischen Rest, der sich vorzugsweise von Benzol oder Benzol-Derivaten ableitet, substituiert ist. Bevorzugte Terpolymere enthalten dabei 40 Gew.-% bis 60 Gew.-%, insbesondere 45 bis 55 Gew.-% (Meth)acrylsäure beziehungsweise (Meth)acrylat, besonders bevorzugt Acrylsäure beziehungsweise Acrylat, 10 Gew.-% bis 30 Gew.-%, vorzugsweise 15 Gew.-% bis 25 Gew.-% Methallylsulfonsäure bzw. Methallylsulfonat und als drittes Monomer 15 Gew.-% bis 40 Gew.-%, vorzugsweise 20 Gew.-% bis 40 Gew.-% eines Kohlenhydrats. Dieses Kohlenhydrat kann dabei beispielsweise ein Mono-, Di-, Oligo- oder Polysaccharid sein, wobei Mono-, Di- oder Oligosaccharide bevorzugt sind. Besonders bevorzugt ist Saccharose. Durch den Einsatz des dritten Monomers werden vermutlich Sollbruchstellen in das Polymer eingebaut, die für die gute biologische Abbaubarkeit des Polymers verantwortlich sind. Diese Terpolymere weisen im Allgemeinen eine relative mittlere Molekülmasse zwischen 1 000 g/mol und 200 000 g/mol, vorzugsweise zwischen 200 g/mol und 50 000 g/mol auf. Weitere bevorzugte Copolymere sind solche, die als Monomere Acrolein und Acrylsäu- re/Acrylsäuresalze beziehungsweise Vinylacetat aufweisen. Die organischen Buildersubstanzen können, insbesondere zur Herstellung flüssiger Mittel, in Form wässriger Lösungen, vorzugsweise in Form 30- bis 50-gewichtsprozentiger wässriger Lösungen eingesetzt werden. Alle genannten Säuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre Alkalisalze, eingesetzt.
Derartige organische Buildersubstanzen können gewünschtenfalls in Mengen bis zu 40 Gew.-%, insbesondere bis zu 25 Gew.-% und vorzugsweise von 1 Gew.-% bis 8 Gew.-% enthalten sein. Mengen nahe der genannten Obergrenze werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen, Mitteln eingesetzt.
Als wasserlösliche anorganische Buildermaterialien kommen insbesondere Polyphosphate, vorzugsweise Natriumtriphosphat, in Betracht. Als wasserunlösliche anorganische Buildermaterialien werden insbesondere kristalline oder amorphe, wasserdispergierbare Alkalialumosilikate, in Mengen nicht über 25 Gew.-%, vorzugsweise von 3 Gew.-% bis 20 Gew.-% und insbesondere in Mengen von 5 Gew.-% bis 15 Gew.-% eingesetzt. Unter diesen sind die kristallinen Natriumalumosilika- te in Waschmittelqualität, insbesondere Zeolith A, Zeolith P sowie Zeolith MAP und gegebenenfalls Zeolith X, bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchenförmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 μιη auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 μιη. Ihr Calciumbindevermogen liegt in der Regel im Bereich von 100 bis 200 mg CaO pro Gramm.
Zusätzlich oder alternativ zum genannten wasserunlöslichen Alumosilikat und Alkalicarbonat können weitere wasserlösliche anorganische Buildermaterialien enthalten sein. Zu diesen gehören neben den Polyphosphaten wie Natriumtriphosphat insbesondere die wasserlöslichen kristallinen und/oder amorphen Alkalisilikat-Builder. Derartige wasserlösliche anorganische Buildermaterialien sind in den Mitteln vorzugsweise in Mengen von 1 Gew.-% bis 20 Gew.-%, insbesondere von 5 Gew.-% bis 15 Gew.-% enthalten. Die als Buildermaterialien brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu S1O2 unter 0,95, insbesondere von 1 : 1 ,1 bis 1 :12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na20:Si02 von 1 :2 bis 1 2,8. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na2Six02x+i y H2O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate (Na2Si20s y H2O) bevorzugt. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1 ,9 bis 2,1 bedeutet, können in den Mitteln eingesetzt werden. In einer weiteren bevorzugten Ausführungsform wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie es aus Sand und Soda hergestellt werden kann. Natriumsilikate mit einem Modul im Bereich von 1 ,9 bis 3,5 werden in einer weiteren Ausführungsform eingesetzt. In einer bevorzugten Ausgestaltung solcher Mittel setzt man ein granuläres Compound aus Alkalisilikat und Alkalicarbonat ein, wie es zum Beispiel unter dem Namen Nabion® 15 im Handel erhältlich ist. Die Mittel können darüber hinaus Bleichmittel, insbesondere solche auf Persauerstoffbasis, enthalten. Als geeignete Persauerstoffverbindungen kommen insbesondere organische Persäuren oder persaure Salze organischer Säuren, wie Phthalimidopercapronsäure, Perbenzoesäure, Monoper- oxyphthalsäure, und Diperdodecandisäure sowie deren Salze wie Magnesiummonoperoxyphthalat, Wasserstoffperoxid und unter den Einsatzbedingungen Wasserstoffperoxid abgebende anorganische Salze, wie Perborat, Percarbonat und/oder Persilikat, und Wasserstoffperoxid- Einschlußverbindungen, wie H202-Harnstoffaddukte, in Betracht. Wasserstoffperoxid kann dabei auch mit Hilfe eines enzymatischen Systems, das heißt einer Oxidase und ihres Substrats, erzeugt werden. Sofern feste Persauerstoffverbindungen eingesetzt werden sollen, können diese in Form von Pulvern oder Granulaten verwendet werden, die auch in im Prinzip bekannter Weise umhüllt sein können. Besonders bevorzugt wird Alkalipercarbonat, Alkaliperborat-Monohydrat oder Wasserstoffperoxid in Form wässriger Lösungen, die 3 Gew.-% bis 10 Gew.-% Wasserstoffperoxid enthalten, eingesetzt. Falls ein in im Rahmen der Erfindung einsetzbares Waschmittel Persauerstoffverbindungen enthält, sind diese in Mengen von vorzugsweise bis zu 50 Gew.-%, insbesondere von 2 Gew.-% bis 45 Gew.-% und besonders bevorzugt von 5 Gew.-% bis 20 Gew.-% vorhanden. Bevorzugte Persauerstoffkonzentrationen (berechnet als H2O2) in der Flotte liegen im Bereich von 0,001 g/l bis 10 g/l, insbesondere von 0,02 g/l bis 1 g/l und besonders bevorzugt von 0,03 g/l bis 0,5 g/l.
Als bleichaktivierende, unter Perhydrolysebedingungen Peroxocarbonsäure-Iiefernde Verbindung können insbesondere Verbindungen, die unter Perhydrolysebedingungen gegebenenfalls substituierte Perbenzoesäure und/oder aliphatische Peroxocarbonsäuren mit 1 bis 12 C-Atomen, insbesondere 2 bis 4 C-Atomen ergeben, allein oder in Mischungen, eingesetzt werden. Geeignet Bleichaktivatoren, die O- und/oder N-Acylgruppen insbesondere der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4- dioxohexahydro-1 ,3,5-triazin (DADHT), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate oder -carboxylate beziehungsweise die Sulfon- oder Carbonsäuren von diesen, insbesondere Nonanoyl- oder Isononanoyl- oder Lauroyloxybenzolsulfonat (NOBS beziehungsweise iso-NOBS beziehungsweise LOBS) oder Decanoyloxybenzoat (DOBA), deren formale Kohlensäureesterderivate wie 4-(2-Decanoyloxyethoxycarbonyloxy)-benzolsulfonat (DECOBS), acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy- 2,5-dihydrofuran sowie acetyliertes Sorbitol und Mannitol und deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxy- lose und Octaacetyllactose, acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolac- ton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Zusätzlich zu den Verbindungen, die unter Perhydrolysebedingungen Peroxocarbonsäuren bilden, können weitere bleichaktivierende Verbindungen, wie beispielsweise Nitrile, aus denen sich unter Perhydrolysebedingungen Perimidsäuren bilden, vorhanden sein. Dazu gehören insbesondere Aminoacetonitrilderivate mit quaterniertem Stickstoffatom gemäß der Formel
R1
I
R2-N(+)-(CR4R5)-CN X(-)
I
R3 in der R für -H, -CH3, einen C2-24-Alkyl- oder -Alkenylrest, einen substituierten Ci-24-Alkyl- oder C2- 24-Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN und -N(+)-CH2-CN, einen Alkyl- oder Alkenylarylrest mit einer Ci-24-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit mindestens einer, vorzugsweise zwei, gegebenenfalls substituierten Ci-24-Alkylgruppe(n) und gegebenenfalls weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, -CH3, -CH2-CH3, -CH2- CH2-CH3, -CH(CH3)-CH3,-CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2- CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-0)nH mit n = 1 , 2, 3, 4, 5 oder 6, R4 und R5 unabhängig voneinander eine voranstehend für R , R2 oder R3 angegebene Bedeutung haben, wobei mindestens 2 der genannten Reste, insbesondere R2 und R3, auch unter Einschluss des Stickstoffatoms und gegebenenfalls weiterer Heteroatome ringschließend miteinander verknüpft sein können und dann vorzugsweise einen Morpholino-Ring ausbilden, und X ein ladungsausgleichendes Anion, vorzugsweise ausgewählt aus Benzolsulfonat, Toluolsulfonat, Cumolsulfonat, den C9-15- Alkylbenzolsulfonaten, den Ci-20-Alkylsulfaten, den C8-22-Carbonsäuremethylestersulfonaten, Sulfat, Hydrogensulfat und deren Gemischen, ist, können eingesetzt werden. Unter Perhydrolysebedingungen Peroxocarbonsäuren oder Perimidsäuren bildende Bleichaktivatoren sind vorzugsweise in Mengen über 0 Gew.-% bis zu 10 Gew.-%, insbesondere 1 ,5 Gew.-% bis 5 Gew.-% in im Rahmen der Erfindung einsetzbaren Waschmitteln vorhanden. Auch Acylhydrazone und/oder sauerstoffübertragende Sulfonimine können eingesetzt werden.
Auch die Anwesenheit von bleichkatalysierenden Übergangsmetallkomplexen ist möglich. Diese werden vorzugsweise unter den Cobalt-, Eisen-, Kupfer-, Titan-, Vanadium-, Mangan- und Rutheniumkomplexen ausgewählt. Als Liganden in derartigen Übergangsmetallkomplexen kommen sowohl anorganische als auch organische Verbindungen in Frage, zu denen neben Carboxylaten insbesondere Verbindungen mit primären, sekundären und/oder tertiären Amin- und/oder Alkohol- Funktionen, wie Pyridin, Pyridazin, Pyrimidin, Pyrazin, Imidazol, Pyrazol, Triazol, 2,2'- Bispyridylamin, Tris-(2-pyridylmethyl)amin, 1 ,4,7-Triazacyclononan, 1 ,4,7-Trimethyl-1 ,4,7- triazacyclononan, 1 ,5,9-Trimethyl-1 ,5,9-triazacyclododecan, (Bis-((1-methylimidazol-2-yl)-methyl))- (2-pyridylmethyl)-amin, N,N'-(Bis-(1-methylimidazol-2-yl)-methyl)-ethylendiamin, N-Bis-(2- benzimidazolylmethyl)-aminoethanol, 2,6-Bis-(bis-(2-benzimidazolylmethyl)aminomethyl)-4- methylphenol, N,N,N',N '-Tetrakis-(2-benzimidazolylmethyl)-2-hydroxy-1 ,3-diaminopropan, 2,6-Bis- (bis-(2-pyridylmethyl)aminomethyl)-4-methylphenol, 1 ,3-Bis-(bis-(2- benzimidazolylmethyl)aminomethyl)-benzol, Sorbitol, Mannitol, Erythritol, Adonitol, Inositol, Lacto- se, und gegebenenfalls substituierte Salene, Porphine und Porphyrine gehören. Zu den anorganischen Neutralliganden gehören insbesondere Ammoniak und Wasser. Falls nicht sämtliche Koordinationsstellen des Übergangsmetallzentralatoms durch Neutralliganden besetzt sind, enthält der Komplex weitere, vorzugsweise anionische und unter diesen insbesondere ein- oder zweizähnige Liganden. Zu diesen gehören insbesondere die Halogenide wie Fluorid, Chlorid, Bromid und lodid, und die (N02)~-Gruppe, das heißt ein Nitro-Ligand oder ein Nitrito-Ligand. Die (N02)~-Gruppe kann an ein Übergangsmetall auch chelatbildend gebunden sein oder sie kann zwei Übergangsmetallatome asymmetrisch oder r| -0-verbrücken. Außer den genannten Liganden können die Übergangsmetallkomplexe noch weitere, in der Regel einfacher aufgebaute Liganden, insbesondere ein- oder mehrwertige Anionliganden, tragen. In Frage kommen beispielsweise Nitrat, Acetat, Trif- luoracetat, Formiat, Carbonat, Citrat, Oxalat, Perchlorat sowie komplexe Anionen wie Hexafluoro- phosphat. Die Anionliganden sollen für den Ladungsausgleich zwischen Übergangsmetall- Zentralatom und dem Ligandensystem sorgen. Auch die Anwesenheit von Oxo-Liganden, Peroxo- Liganden und Imino-Liganden ist möglich. Insbesondere derartige Liganden können auch verbrückend wirken, so dass mehrkernige Komplexe entstehen. Im Falle verbrückter, zweikerniger Komplexe müssen nicht beide Metallatome im Komplex gleich sein. Auch der Einsatz zweikerniger Komplexe, in denen die beiden Übergangsmetallzentralatome unterschiedliche Oxidationszahlen aufweisen, ist möglich. Falls Anionliganden fehlen oder die Anwesenheit von Anionliganden nicht zum Ladungsausgleich im Komplex führt, sind in den gemäß der Erfindung zu verwendenden Übergangsmetallkomplex-Verbindungen anionische Gegenionen anwesend, die den kationischen Übergangsmetall-Komplex neutralisieren. Zu diesen anionischen Gegenionen gehören insbesondere Nitrat, Hydroxid, Hexafluorophosphat, Sulfat, Chlorat, Perchlorat, die Halogenide wie Chlorid oder die Anionen von Carbonsäuren wie Formiat, Acetat, Oxalat, Benzoat oder Citrat. Beispiele für einsetzbare Übergangsmetallkomplex-Verbindungen sind
Figure imgf000013_0001
,4,7-trimethyl-1 ,4,7- triazacyclononan)-di-hexafluorophosphat, [N,N'-Bis[(2-hydroxy-5-vinylphenyl)-methylen]-1 ,2- diaminocyclohexan]-mangan-(lll)-chlorid, [N,N'-Bis[(2-hydroxy-5-nitrophenyl)-methylen]-1 ,2- diaminocyclohexan]-mangan-(lll)-acetat, [N,N'-Bis[(2-hydroxyphenyl)-methylen]-1 ,2- phenylendiamin]-mangan-(lll)-acetat, [N,N'-Bis[(2-hydroxyphenyl)-methylen]-1 ,2- diaminocyclohexan]-mangan-(lll)-chlorid, [N,N'-Bis[(2-hydroxyphenyl)-methylen]-1 ,2-diaminoethan]- mangan-(lll)-chlorid, [N,N'-Bis[(2-hydroxy-5-sulfonatophenyl)-methylen]-1 ,2-diaminoethan]- mangan-(lll)-chlorid, Mangan-oxalatokomplexe, Nitropentammin-cobalt(lll)-chlorid, Nitritopentam- min-cobalt(lll)-chlorid, Hexammincobalt(lll)-chlorid, Chloropentammin-cobalt(lll)-chlorid sowie der Peroxo-Komplex [(NH3)5Co-0-0-Co(NH3)5]Cl4.
Als in den Mitteln verwendbare Enzyme kommen solche aus der Klasse der Amylasen, Proteasen, Lipasen, Cutinasen, Pullulanasen, Hemicellulasen, Cellulasen, Oxidasen, Laccasen und Peroxi- dasen sowie deren Gemische in Frage. Besonders geeignet sind aus Pilzen oder Bakterien, wie Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes, Pseudomonas cepacia oder Copri- nus cinereus gewonnene enzymatische Wirkstoffe. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in den erfindungsgemäßen Wasch- oder Reinigungsmitteln vorzugsweise in Mengen bis zu 5 Gew.-%, insbesondere von 0,2 Gew.-% bis 4 Gew.-%, enthalten. Falls das erfindungsgemäße Mittel Protease enthält, weist es vorzugsweise eine proteolytische Aktivität im Bereich von etwa 100 PE/g bis etwa 10 000 PE/g, insbesondere 300 PE/g bis 8000 PE/g auf. Falls mehrere Enzyme in dem erfindungsgemäßen Mittel eingesetzt werden sollen, kann dies durch Einarbeitung der zwei oder mehreren separaten beziehungsweise in bekannter Weise separat konfektionierten Enzyme oder durch zwei oder mehrere gemeinsam in einem Granulat konfektionierte Enzyme durchgeführt werden.
Zu den in den Waschmitteln, insbesondere wenn sie in flüssiger oder pastöser Form vorliegen, neben Wasser verwendbaren organischen Lösungsmitteln gehören Alkohole mit 1 bis 4 C-Atomen, insbesondere Methanol, Ethanol, Isopropanol und tert.-Butanol, Diole mit 2 bis 4 C-Atomen, insbesondere Ethylenglykol und Propylenglykol, sowie deren Gemische und die aus den genannten Verbindungsklassen ableitbaren Ether. Derartige wassermischbare Lösungsmittel sind in den erfindungsgemäßen Mitteln vorzugsweise in Mengen nicht über 30 Gew.-%, insbesondere von 6 Gew.-% bis 20 Gew.-%, vorhanden.
Zur Einstellung eines gewünschten, sich durch die Mischung der übrigen Komponenten nicht von selbst ergebenden pH-Werts können die erfindungsgemäßen Mittel System- und umweltverträgliche Säuren, insbesondere Citronensäure, Essigsäure, Weinsäure, Äpfelsäure, Milchsäure, Glykol- säure, Bernsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Mineralsäuren, insbesondere Schwefelsäure, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH-Regulatoren sind in den erfindungsgemäßen Mitteln in Mengen von vorzugsweise nicht über 20 Gew.-%, insbesondere von 1 ,2 Gew.-% bis 17 Gew.-%, enthalten.
Vergrauungsinhibitoren haben die Aufgabe, den von der Textilfaser abgelösten Schmutz in der Flotte suspendiert zu halten. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Stärke, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich andere als die obengenannten Stärkederivate verwenden, zum Beispiel Aldehydstärken. Bevorzugt werden Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcel- lulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypro- pylcellulose, Methylcarboxymethylcellulose und deren Gemische, beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Waschmittel können als optische Aufheller beispielsweise Derivate der Diaminostilbendisulfonsäu- re beziehungsweise deren Alkalimetallsalze enthalten, obgleich sie für den Einsatz als Color- waschmittel vorzugsweise frei von optischen Aufhellern sind. Geeignet sind zum Beispiel Salze der 4,4'-Bis(2-anilino-4-morpholino-1 ,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, zum Beispiel die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4- Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten optischen Aufheller können verwendet werden.
Insbesondere beim Einsatz in maschinellen Verfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an Cis-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bisfettsäurealkylendiamiden. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, zum Beispiel solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granuläre, in Wasser lösliche beziehungsweise dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamid bevorzugt.
Die Herstellung fester Mittel bietet keine Schwierigkeiten und kann auf bekannte Weise, zum Beispiel durch Sprühtrocknen oder Granulation, erfolgen, wobei Enzyme und eventuelle weitere thermisch empfindliche Inhaltsstoffe wie zum Beispiel Bleichmittel gegebenenfalls später separat zugesetzt werden. Zur Herstellung von Mitteln mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/l bis 950 g/l, ist ein einen Extrusionsschritt aufweisendes Verfahren bevorzugt.
Zur Herstellung von Mitteln in Tablettenform, die einphasig oder mehrphasig, einfarbig oder mehrfarbig und insbesondere aus einer Schicht oder aus mehreren, insbesondere aus zwei Schichten bestehen können, geht man vorzugsweise derart vor, dass man alle Bestandteile - gegebenenfalls je einer Schicht - in einem Mischer miteinander vermischt und das Gemisch mittels herkömmlicher Tablettenpressen, beispielsweise Exzenterpressen oder Rundläuferpressen, mit Presskräften im Bereich von etwa 50 bis 100 kN, vorzugsweise bei 60 bis 70 kN verpresst. Insbesondere bei mehrschichtigen Tabletten kann es von Vorteil sein, wenn mindestens eine Schicht vorverpresst wird. Dies wird vorzugsweise bei Presskräften zwischen 5 und 20 kN, insbesondere bei 10 bis 15 kN durchgeführt. Man erhält so problemlos bruchfeste und dennoch unter Anwendungsbedingungen ausreichend schnell lösliche Tabletten mit Bruch- und Biegefestigkeiten von normalerweise 100 bis 200 N, bevorzugt jedoch über 150 N. Vorzugsweise weist eine derart hergestellte Tablette ein Gewicht von 10 g bis 50 g, insbesondere von 15 g bis 40 g auf. Die Raumform der Tabletten ist beliebig und kann rund, oval oder eckig sein, wobei auch Zwischenformen möglich sind. Ecken und Kanten sind vorteilhafterweise abgerundet. Runde Tabletten weisen vorzugsweise einen Durchmesser von 30 mm bis 40 mm auf. Insbesondere die Größe von eckig oder quaderförmig gestalteten Tabletten, welche überwiegend über die Dosiervorrichtung der Waschmaschine eingebracht werden, ist abhängig von der Geometrie und dem Volumen dieser Dosiervorrichtung. Beispielhaft bevorzugte Ausführungsformen weisen eine Grundfläche von (20 bis 30 mm) x (34 bis 40 mm), insbesondere von 26x36 mm oder von 24x38 mm auf.
Flüssige beziehungsweise pastöse Mittel in Form von übliche Lösungsmittel enthaltenden Lösungen werden in der Regel durch einfaches Mischen der Inhaltsstoffe, die in Substanz oder als Lösung in einen automatischen Mischer gegeben werden können, hergestellt.
Beispiele
Durch einfaches Vermischen der in Tabelle 1 angegebenen Inhaltsstoffe in den dort angegebenen Mengen (Mengenangaben in Gew.-%) wurden das erfindungsgemäße Flüssigwaschmittel M1 und zum Vergleich das nicht erfindungsgemäße Flüssigwaschmittel V1 hergestellt
Tabelle 1 : Zusammensetzung
Figure imgf000017_0001
Mit in der nachfolgenden Tabelle 2 aufgeführten standardisierten Anschmutzungen versehene Baumwolltextilstücke wurden bei 25 °C 1 Stunde lang unter Einsatz jeweils eines in Tabelle 1 genannten Waschmittels (Dosierung 4,2 g/l) gewaschen, mit Wasser ausgespült, getrocknet und anschließend ihr Remissionswert spektralphotometrisch (Minolta CR400-1 ) vermessen. In Tabelle 2 sind die Unterschiede der Helligkeitswerte (Y-Werte der Remissionsmessung) zwischen dem Einsatz des Mittels M1 oder M2 und dem Einsatz des Mittels V1 als Mittelwerte von 5-fach Bestimmungen angegeben, wobei höhere Werte eine bessere Auswaschbarkeit anzeigen. Tabelle 2: Helligkeitsdifferenzen
Figure imgf000018_0001
Daraus wird deutlich, dass sich die Waschleistung durch Einsatz eines Mannosylerythntollipids verbessert.

Claims

Patentansprüche
1. Waschmittel, enthaltend Mannosylerythritollipid der allgemeinen Formel (I),
Figure imgf000019_0001
in der Ac eine Acetylgruppe und R ein linearer oder verzweigtkettiger Kohlenwasserstoffrest mit 1 1 bis 17 C-Atomen ist.
2. Mittel nach Anspruch 1 , dadurch gekennzeichnet, dass es 0,01 Gew.-% bis 23 Gew.-%, insbesondere 3 Gew.-% bis 6 Gew.-% Mannosylerythritollipid enthält.
3. Mittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Kombinationen von Mannosylerythritollipid mit Ethersulfaten, Ethoxylierungsprodukten von linearen oder verzweigten Alkoholen mit jeweils 12 bis 18 C-Atomen im Alkylteil und 3 bis 20, insbesondere 4 bis 10 Ethylethergruppen und/oder C9-Ci3-Alkylbenzolsulfonaten enthält.
4. Mittel nach Anspruch 3, dadurch gekennzeichnet, dass Gewichtsverhältnis von Mannosylerythritollipid zu dem weiteren Tensid oder den weiteren Tensiden im Bereich von 1 : 18 bis 10:18, insbesondere von 1 :6 bis 1 :3 liegt.
5. Mittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es flüssig ist und einen Wassergehalt im Bereich von 6 Gew.-% bis 95 Gew.-%, insbesondere von 55 Gew.-% bis 90 Gew.-% aufweist.
6. Verwendung von Mannosylerythritollipid der allgemeinen Formel (I)
Figure imgf000020_0001
in der Ac eine Acetylgruppe und R ein linearer oder verzweigtkettiger Kohlenwasserstoffrest mit 1 1 bis 17 C-Atomen ist, zur Verstärkung der Reinigungsleistung von Waschmitteln beim Waschen von mit fettigen und/oder öligen Anschmutzungen versehenen Textilien.
7. Verwendung nach Anspruch 6, dadurch gekennzeichnet, dass sie bei Temperaturen im Bereich von 10 °C bis 30 °C, insbesondere von 17 °C bis 25 °C stattfindet.
8. Verfahren zum Waschen von mit fettigen und/oder öligen Anschmutzungen versehenen Textilien durch In-Kontakt-Bringen der Textilien mit einer wässrigen tensidhaltigen Flotte im Temperaturbereich von 10 °C bis 30 °C, insbesondere von 17 °C bis 25 °C, dadurch gekennzeichnet, dass die wässrige Flotte Mannosylerythritollipid der allgemeinen Formel (I)
Figure imgf000020_0002
in der Ac eine Acetylgruppe und R ein linearer oder verzweigtkettiger Kohlenwasserstoffrest mit 1 1 bis 17 C-Atomen ist, enthält.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass es unter Einsatz eines Mittels gemäß einem der Ansprüche 1 bis 5 durchgeführt wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Konzentration von Mannosylerythritollipid in der wässrigen Flotte im Bereich von 0,075 g/l bis 0,3 g/l, insbesondere von 0,8 g/l bis 0,25 g/l liegt.
PCT/EP2015/074143 2014-10-28 2015-10-19 Waschmittel mit mannosylerythritollipid WO2016066464A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014221889.6A DE102014221889B4 (de) 2014-10-28 2014-10-28 Waschmittel mit Mannosylerythritollipid, Verstärkung der Reinigungsleistung von Waschmitteln durch Mannosylerythritollipid, und Waschverfahren unter Einsatz von Mannosylerythritollipid
DE102014221889.6 2014-10-28

Publications (1)

Publication Number Publication Date
WO2016066464A1 true WO2016066464A1 (de) 2016-05-06

Family

ID=54329549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/074143 WO2016066464A1 (de) 2014-10-28 2015-10-19 Waschmittel mit mannosylerythritollipid

Country Status (2)

Country Link
DE (1) DE102014221889B4 (de)
WO (1) WO2016066464A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3290500A1 (de) 2016-08-29 2018-03-07 Richli, Remo Wasch-, pflege- und reinigungsmittel mit polyoxyalkylen carboxylat
EP3290501A1 (de) 2016-08-29 2018-03-07 Richli, Remo Wasch- und reinigungsmittel mit alkoxylierten fettsäureamiden
EP3940049A1 (de) 2020-07-13 2022-01-19 Dalli-Werke GmbH & Co. KG Mannosylerythritol-lipid mit flüssigen spülhilfsmitteln
CN114736741A (zh) * 2022-02-28 2022-07-12 温柱 一种环保型高浓缩洗衣液及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017214266A1 (de) * 2017-08-16 2019-02-21 Henkel Ag & Co. Kgaa Entfernung von Lipidanschmutzungen
JP2021523272A (ja) * 2018-05-11 2021-09-02 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se ラムノリピッド及び/又はマンノシルエリスリトールリピッドを含む洗浄剤組成物

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499434A1 (de) 1991-02-12 1992-08-19 Unilever Plc Waschmittelzusammensetzungen
EP1445302A1 (de) 2003-01-28 2004-08-11 Ecover Belgium Reinigungsmittelzusammensetzungen
WO2012010405A1 (en) 2010-07-22 2012-01-26 Unilever Plc Detergent compositions comprising biosurfactant and enzyme
WO2012010407A1 (en) 2010-07-22 2012-01-26 Unilever Plc Detergent compositions comprising biosurfactant and lipase
WO2012010406A1 (en) * 2010-07-22 2012-01-26 Unilever Plc Combinations of rhamnolipids and enzymes for improved cleaning
WO2013037643A1 (en) * 2011-09-15 2013-03-21 Unilever Plc Detergent compositions comprising surfactant and enzyme
WO2014009027A1 (de) * 2012-07-11 2014-01-16 Evonik Industries Ag Lipase stabiler verdicker
WO2014095367A1 (en) * 2012-12-17 2014-06-26 Unilever Plc Personal care compositions
WO2014095617A1 (en) * 2012-12-20 2014-06-26 Unilever Plc Stain removal compositions
WO2015091250A1 (de) * 2013-12-18 2015-06-25 Henkel Ag & Co. Kgaa Mikroemulsionen mit biotensiden

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499434A1 (de) 1991-02-12 1992-08-19 Unilever Plc Waschmittelzusammensetzungen
EP1445302A1 (de) 2003-01-28 2004-08-11 Ecover Belgium Reinigungsmittelzusammensetzungen
WO2012010405A1 (en) 2010-07-22 2012-01-26 Unilever Plc Detergent compositions comprising biosurfactant and enzyme
WO2012010407A1 (en) 2010-07-22 2012-01-26 Unilever Plc Detergent compositions comprising biosurfactant and lipase
WO2012010406A1 (en) * 2010-07-22 2012-01-26 Unilever Plc Combinations of rhamnolipids and enzymes for improved cleaning
WO2013037643A1 (en) * 2011-09-15 2013-03-21 Unilever Plc Detergent compositions comprising surfactant and enzyme
WO2014009027A1 (de) * 2012-07-11 2014-01-16 Evonik Industries Ag Lipase stabiler verdicker
WO2014095367A1 (en) * 2012-12-17 2014-06-26 Unilever Plc Personal care compositions
WO2014095617A1 (en) * 2012-12-20 2014-06-26 Unilever Plc Stain removal compositions
WO2015091250A1 (de) * 2013-12-18 2015-06-25 Henkel Ag & Co. Kgaa Mikroemulsionen mit biotensiden

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEM. ING. TECH., vol. 82, 2010, pages 1215 - 1221
DREJA M ET AL: "Biosurfactants - Exotic Specialties or Ready for Application?", TENSIDE, SURFACTANTS, DETERGENTS, CARL HANSER VERLAG, MUNCHEN, DE, vol. 49, no. 1, 1 January 2012 (2012-01-01), pages 10 - 17, XP001571585, ISSN: 0932-3414 *
JOSEPH IRUDAYARAJ ARUTCHELVI ET AL: "Mannosylerythritol lipids: a review", JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY ; OFFICIAL JOURNAL OF THE SOCIETY FOR INDUSTRIAL MICROBIOLOGY, SPRINGER, BERLIN, DE, vol. 35, no. 12, 21 August 2008 (2008-08-21), pages 1559 - 1570, XP019637554, ISSN: 1476-5535, DOI: 10.1007/S10295-008-0460-4 *
S. RUPP ET AL: "Synthese und Optimierung von Cellobioselipiden und Mannosylerythritollipiden", CHEMIE INGENIEUR TECHNIK., vol. 82, no. 8, 25 June 2010 (2010-06-25), WEINHEIM; DE, pages 1215 - 1221, XP055236476, ISSN: 0009-286X, DOI: 10.1002/cite.201000078 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3290500A1 (de) 2016-08-29 2018-03-07 Richli, Remo Wasch-, pflege- und reinigungsmittel mit polyoxyalkylen carboxylat
EP3290501A1 (de) 2016-08-29 2018-03-07 Richli, Remo Wasch- und reinigungsmittel mit alkoxylierten fettsäureamiden
EP3940049A1 (de) 2020-07-13 2022-01-19 Dalli-Werke GmbH & Co. KG Mannosylerythritol-lipid mit flüssigen spülhilfsmitteln
CN114736741A (zh) * 2022-02-28 2022-07-12 温柱 一种环保型高浓缩洗衣液及其制备方法

Also Published As

Publication number Publication date
DE102014221889B4 (de) 2023-12-21
DE102014221889A1 (de) 2016-04-28

Similar Documents

Publication Publication Date Title
DE102014221889B4 (de) Waschmittel mit Mannosylerythritollipid, Verstärkung der Reinigungsleistung von Waschmitteln durch Mannosylerythritollipid, und Waschverfahren unter Einsatz von Mannosylerythritollipid
EP3497194A1 (de) Neue anionische tenside und wasch- und reinigungsmittel, welche diese enthalten
WO2018041686A1 (de) Waschmittel mit saponin
EP3676269B1 (de) Neue anionische tenside und wasch- und reinigungsmittel, welche diese enthalten
EP3676258B1 (de) Neue anionische tenside und wasch- und reinigungsmittel, welche diese enthalten
EP3497193B1 (de) Wasch- und reinigungsmittel mit anionischen tensiden aus nachwachsenden rohstoffen
WO2018210591A1 (de) Farbschützende waschmittel
EP3942007B1 (de) Neue anionische tenside und wasch- und reinigungsmittel, welche diese enthalten
EP3908646B1 (de) Neue anionische tenside und wasch- und reinigungsmittel, welche diese enthalten
WO2019042804A1 (de) Neue anionische tenside und wasch- und reinigungsmittel, welche diese enthalten
DE102012219403A1 (de) Farbschützende Waschmittel
EP3331855B1 (de) Neue anionische tenside und waschmittel, welche diese enthalten
EP3331856B1 (de) Neue anionische tenside und waschmittel, welche diese enthalten
EP4198112A1 (de) Neue tensidkombination und wasch- und reinigungsmittel, welche diese enthalten
DE102022210879A1 (de) Tensidmischungen
DE102022210849A1 (de) Sophorolipid-Tenside mit oberflächenaktiven Gegenkationen
EP2961820A1 (de) Farbschützende waschmittel
DE102014220662A1 (de) Farbschützende Waschmittel
DE102014218503A1 (de) Proteinhaltiges Waschmittel
EP3009498A2 (de) Farbschützende waschmittel
DE102015205799A1 (de) Waschmittelzusammensetzung mit verbesserter Fleckentfernung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15781372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15781372

Country of ref document: EP

Kind code of ref document: A1