WO2016066078A1 - 光源装置 - Google Patents

光源装置 Download PDF

Info

Publication number
WO2016066078A1
WO2016066078A1 PCT/CN2015/092906 CN2015092906W WO2016066078A1 WO 2016066078 A1 WO2016066078 A1 WO 2016066078A1 CN 2015092906 W CN2015092906 W CN 2015092906W WO 2016066078 A1 WO2016066078 A1 WO 2016066078A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
amber
source device
phosphor sheet
Prior art date
Application number
PCT/CN2015/092906
Other languages
English (en)
French (fr)
Inventor
李屹
张权
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Priority to US15/523,653 priority Critical patent/US10704743B2/en
Priority to EP15855034.3A priority patent/EP3214360B1/en
Publication of WO2016066078A1 publication Critical patent/WO2016066078A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/69Details of refractors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/20Dichroic filters, i.e. devices operating on the principle of wave interference to pass specific ranges of wavelengths while cancelling others
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/40Lighting for industrial, commercial, recreational or military use
    • F21W2131/406Lighting for industrial, commercial, recreational or military use for theatres, stages or film studios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes

Definitions

  • the utility model relates to the field of optical technology, in particular to a light source device.
  • LED Light-emitting diode
  • LED Light-emitting diode
  • It has been widely used in various industries and has the advantage of replacing traditional light sources. I believe that in the near future, with The cost of LED light sources is reduced and the light efficiency is improved. LED light sources will completely replace traditional light sources.
  • the present invention is directed to a light source device for increasing the luminous flux of amber light emitted by a light source device.
  • the present invention provides a light source device
  • the light source device comprises: an array of light sources for emitting excitation light; a phosphor sheet disposed along a direction of propagation of the excitation light for receiving excitation light to excite unsaturated amber light; and a cut filter for unsaturated amber light The direction of propagation is used to filter unsaturated amber light to obtain saturated amber light.
  • the light source array includes a blue LED chip.
  • the phosphor sheet is disposed on the light source array, and the cut filter is disposed on the phosphor sheet.
  • a phosphor sheet and an array of light sources are spaced apart.
  • the light source device further includes a cross lens, the light source array is disposed at three light entrance channels of the cross lens, and the cut filter is disposed at Outside the light exiting path of the cross lens, the phosphor sheet is disposed between the light exiting channel of the cross lens and the cut filter, and the excitation light is transmitted through the cross lens and into the phosphor sheet.
  • a gap is provided between the cut filter and the phosphor sheet.
  • the light source device further includes a cross lens, and the light source array is disposed outside the three light entrance channels of the cross lens
  • the phosphor sheet is disposed on the light emitting surface of the light source array
  • the cut filter is disposed outside the light exiting channel of the cross lens, and the unsaturated amber light passes through the cross lens and enters the cut filter.
  • the excitation light has a wavelength range of 440 to 475 nm
  • the unsaturated amber light has a peak wavelength of 520 to 580 nm. .
  • the cutoff wavelength of the cut filter is 550 to 590 nm, and the peak wavelength of the saturated amber light is 590 ⁇ 610nm.
  • the light source device provided by the utility model adopts The excitation light from the array of light sources excites the phosphor sheet to produce unsaturated amber light, and then filters the unsaturated amber light with a cut-off filter to obtain saturated amber light. Since the array of light sources used is not sensitive to temperature, the luminous flux of the excitation light emitted by the light source array at a high temperature is increased, thereby increasing the luminous flux of the amber light emitted by the light source device.
  • Figure 1 is a graph showing the relationship between the luminous flux and temperature of an existing amber LED light
  • FIG. 2 is a cross-sectional structural view showing a light source device according to a preferred embodiment of the present invention
  • FIG. 3 is a cross-sectional structural view showing a light source device according to another preferred embodiment of the present invention.
  • FIG. 4 is a cross-sectional structural view showing a light source device according to still another preferred embodiment of the present invention.
  • FIG. 5 is a view showing the spectrum of unsaturated amber light and saturated amber light generated by the light source device provided by the embodiment of the present invention. .
  • spatial relative terms can be used here, such as 'above..., 'above', 'in'...
  • the upper surface ', 'above', etc. is used to describe the spatial positional relationship of one device or feature as shown in the figures with other devices or features. It will be understood that the spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device described. For example, if the device in the figures is inverted, the device described as 'above other devices or configurations' or 'above other devices or configurations' will be positioned 'below other devices or configurations' or 'in Under other devices or configurations'.
  • the exemplary term ' is ...
  • the top 'can include 'in the 'above' and 'below...' directions.
  • the device can also be positioned in other different ways (rotate 90 Degree or in other orientations, and a corresponding explanation of the relative description of the space used here.
  • the existing LED chip for emitting amber light is very sensitive to temperature, and as the temperature of the LED chip rises, The amber light flux emitted by the LED chip is significantly reduced.
  • the inventors of the present invention have conducted extensive research and proposed a light source device.
  • the light source device includes: an array of light sources 10 for emitting excitation light; a phosphor sheet 20 disposed along a direction of propagation of the excitation light for receiving excitation light to excite unsaturated amber light; and a cut filter 30 Set along the direction of propagation of unsaturated amber light to filter unsaturated amber light to obtain saturated amber light.
  • the light source device provided by the present invention excites the phosphor sheet by using the excitation light emitted from the light source array 10 To produce unsaturated amber light, then filter the unsaturated amber light with cut-off filter 30 to obtain saturated amber light. Since the array of light sources 10 used is temperature insensitive, the array of light sources is enhanced 10 The luminous flux of the excitation light emitted at a high temperature further increases the luminous flux of the amber light emitted by the light source device.
  • the light source array 10, the phosphor sheet 20, and the cut filter 30 in the above light source device there are several ways to achieve location and connection relationships.
  • the phosphor sheet 20 is disposed on the light source array 10
  • the cut filter 30 is disposed on the phosphor sheet 20. 2 is shown.
  • the phosphor sheet 20 may be in contact with the light emitting surface of the light source array 10, or may be formed between the phosphor sheet 20 and the light source array 10.
  • the cut filter 30 It may be in contact with the surface of the phosphor sheet 20, or a space may be formed between the phosphor sheet 20 and the light source array 10.
  • the light source device further includes a cross lens 40, and the light source array 10 is disposed outside the three light entrance channels of the cross lens 40 (ie, the entrance port of the light entrance).
  • the cut-off filter 30 is disposed outside the light-emitting path of the cross lens 40 (ie, the light-emitting channel port), and the phosphor sheet 20 is disposed between the light-emitting path of the cross lens 40 and the cut-off filter 30.
  • the excitation light is transmitted through the cross lens 40 and projected onto the phosphor sheet 20, and its structure is as shown in FIG.
  • the phosphor sheet 20 may be in contact with the light emitting surface of the light source array 10 or may be in a phosphor sheet. A gap is formed between the 20 and the light source array 10.
  • the cut filter 30 may be in contact with the surface of the phosphor sheet 20, or may be in the phosphor sheet 20 and the light source array 10 A gap is formed between them.
  • the light source device further includes a cross lens 40.
  • the light source array 10 is disposed outside the three light entrance channels of the cross lens 40, and the phosphor sheet 20
  • the light-off surface of the light source array 10 is disposed on the light-emitting surface of the light source array 10, and the cut-off filter 30 is disposed outside the light-emitting path of the cross lens 40, and the unsaturated amber light passes through the cross lens 40 and enters the filter 30.
  • Its structure is shown in Figure 4.
  • the phosphor sheet 20 may be in contact with the light emitting surface of the light source array 10, or may be formed between the phosphor sheet 20 and the light source array 10.
  • the light source array 10 may include a blue LED chip which is common in the art.
  • the light source array 10 The excitation light emitted has a wavelength range of 440 to 475 nm.
  • Phosphor sheet 20 Fluorescent materials commonly used in the art, such as strontium, manganese-activated calcium halophosphate phosphors, rare earth doped phosphors, and the like, can be used. Activating phosphors with excitation light in the wavelength range of 440-475 nm 20 Thereafter, preferably, the peak wavelength of the unsaturated amber light obtained is 520 to 580 nm.
  • the cut-off filter 30 is a filter that can filter out all long waves or short waves from the composite light and expose only the desired wavelength band. Those skilled in the art can select the cut filter 30 according to the desired band. In order to obtain more saturated amber light, preferably, the cutoff wavelength of the cut filter 30 is 550 to 590 nm. . At this time, the peak wave of the saturated amber light obtained is preferably 590 to 610 nm.
  • the light source device provided by the present invention will be further described below with reference to FIG.
  • Figure 5 is a graph showing the spectra of unsaturated amber light and saturated amber light produced by a light source device provided by an embodiment of the present invention. From Figure 5 It can be seen that the unsaturated amber light generated by the light source device provided by the embodiment of the present invention has a peak wavelength of 550 nm and a peak intensity of 6200.
  • the saturated amber light generated by the light source device provided by the embodiment of the present invention has a peak wavelength of 594 nm, a wavelength range of 540 to 700 nm, and a peak intensity of 5000.
  • Amber in the prior art The LED light has a peak wavelength of 600 nm, a wavelength range of 570 to 640 nm, and a peak intensity of 9700.
  • the wavelength range (especially the peak wavelength) of the saturated color amber light generated by the light source device provided by the embodiment of the present invention is similar, but the peak intensity is lower, so The amber light produced by the light source device provided by the embodiment of the present invention looks the same as the color of the amber LED light.
  • the inventors have also analyzed the saturated amber light and existing LEDs produced by the light source device provided by the embodiments of the present invention.
  • the results show that the saturated amber light produced by the light source device provided by the embodiment of the present invention is almost the same as the color coordinate of the amber LED light in the prior art, so The saturated amber light produced by the light source device provided by the embodiment of the present invention looks the same as the amber LED light.
  • the light source device provided by the present invention excites the phosphor sheet by using excitation light emitted from the array of light sources to generate unsaturated amber light, and then adopts cut-off filtering.
  • the light sheet filters the unsaturated amber light to obtain a saturated amber light. Since the array of light sources used is not sensitive to temperature, the luminous flux of the excitation light emitted by the light source array at a high temperature is increased, thereby increasing the luminous flux of the amber light emitted by the light source device.

Abstract

一种光源装置,包括:光源阵列(10),用于发出激发光;荧光粉片(20),沿激发光的传播方向设置,用于接收激发光以激发出不饱和琥珀色光;截止滤光片(30),沿不饱和琥珀色光的传播方向设置,用于过滤不饱和琥珀色光以获得饱和琥珀色光。该光源装置通过采用光源阵列(10)发出的激发光激发荧光粉片(20)以产生不饱和琥珀色光,然后采用截止滤光片(30)过滤不饱和琥珀色光以获得饱和琥珀色光。由于所采用光源阵列(10)对温度不敏感,从而提高了光源阵列(10)在高温时所发出激发光的光通量,进而提高了光源装置所发出的琥珀色光的光通量。

Description

光源装置 技术领域
本实用新型涉及光学技术领域,具体而言,涉及一种光源装置。
背景技术
随着近半导体固体光源的飞速发展以及困扰全球的能源紧张, LED (发光二极管)光源具有发光效率高、耗电量少、实用寿命长、节能环保、光亮及色温可控等优点,已在各行各业上已广泛应用,大有取代传统光源的优势。相信在不久的将来,随着 LED 光源的成本的降低及光效率的提高, LED 光源会全面的取代传统光源。
技术问题
目前,三基色( R , G 和 B ) LED 光源已广泛应用在半导体照明领域中,例如用作舞台灯光电脑摇头图案灯。而在舞台演出或比较专业的应用场合,需要饱和琥珀色光以提高混合白光的显色性。但是,现有用于发出琥珀色光的 LED 芯片对温度非常敏感,随着 LED 芯片的温度升高, LED 芯片所发出的琥珀色光光通量显著降低。如图 1 所示, 120 ℃时 LED 芯片的光通量降到了 25 ℃时的 30% 左右。因此,如何提高 LED 光源所发出的琥珀色光的光通量,成为目前亟待解决的技术问题。
技术解决方案
本实用新型旨在提供 一种光源装置,以提高光源装置所发出的琥珀色光的光通量 。
为此,本实用新型提供了一种光源装置 ,该光源装置包括:光源阵列,用于发出激发光;荧光粉片,沿激发光的传播方向设置,用于接收激发光以激发出不饱和琥珀色光;截止滤光片,沿不饱和琥珀色光的传播方向设置,用于过滤不饱和琥珀色光以获得饱和琥珀色光。
进一步地,光源阵列包括蓝光 LED 芯片。
进一步地,荧光粉片设置于光源阵列上,截止滤光片设置于荧光粉片上。
进一步地,荧光粉片和光源阵列之间间隔设置。
进一步地,光源装置还包括十字透镜,光源阵列设置于十字透镜的三个 进光通道处 ,截止滤光片设置于 十字透镜的出光通道外 , 荧光粉片设置于十字透镜的出光通道与截止滤光片之间, 且激发光透过十字透镜后射入荧光粉片中。
进一步地,截止滤光片和荧光粉片之间间隔设置。
进一步地,光源装置还包括十字透镜,光源阵列设置于十字透镜的三个 进光通道外 ,荧光粉片设置于光源阵列的发光面上,截止滤光片设置于 十字透镜的出光通道外 ,且不饱和琥珀色光透过十字透镜后射入截止滤光片中。
进一步地,激发光的波长范围为 440~475nm ,不饱和琥珀色光的峰值波长为 520~580nm 。
进一步地,截止滤光片的截止波长为 550~590nm ,饱和琥珀色光的峰值波长为 590~610nm 。
有益效果
本实用新型提供的光源装置通过采用 光源阵列发出的激发光激发荧光粉片以产生不饱和琥珀色光,然后采用截止滤光片过滤不饱和琥珀色光以获得饱和琥珀色光。由于所采用光源阵列对温度不敏感,从而提高了光源阵列在高温时所发出激发光的光通量,进而提高了光源装置所发出的琥珀色光的光通量。
附图说明
构成本实用新型的一部分的附图用来提供对本实用新型的进一步理解,本实用新型的示意性实施例及其说明用于解释本实用新型,并不构成对本实用新型的不当限定。在附图中:
图 1 示出了现有琥珀色 LED 光的光通量和温度之间变化关系的图谱;
图 2 示出了本实用新型一种优选实施方式所提供的光源装置的剖面结构示意图;
图 3 示出了本实用新型另一种优选实施方式所提供的光源装置的剖面结构示意图;
图 4 示出了本实用新型又一种优选实施方式所提供的光源装置的剖面结构示意图;以及
图 5 示出了本实用新型实施方式所提供的光源装置产生的 不饱和琥珀色光和饱和琥珀色光的光谱图 。
本发明的最佳实施方式
需要说明的是,在不冲突的情况下,本实用新型中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本实用新型。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本实用新型的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语 ' 包含 ' 和 / 或 ' 包括 ' 时,其指明存在特征、步骤、操作、器件、组件和 / 或它们的组合。
为了便于描述,在这里可以使用空间相对术语,如'在 …… 之上'、'在 …… 上方'、'在 …… 上表面'、'上面的'等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为'在其他器件或构造上方'或'在其他器件或构造之上'的器件之后将被定位为'在其他器件或构造下方'或'在其他器件或构造之下'。因而,示例性术语'在 …… 上方'可以包括'在 …… 上方'和'在 …… 下方'两种方位。该器件也可以其他不同方式定位(旋转 90 度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
由背景技术可知, 现有用于发出琥珀色光的 LED 芯片对温度非常敏感,随着 LED 芯片的温度升高, LED 芯片所发出的琥珀色光光通量显著降低。 针对上述问题,本实用新型的发明人进行了大量研究,提出了一种 光源装置。如图 2 至图 4 所示,该光源装置包括:光源阵列 10 ,用于发出激发光;荧光粉片 20 ,沿 激发光 的传播方向设置,用于接收激发光以激发出不饱和琥珀色光;截止滤光片 30 ,沿不饱和琥珀色光的传播方向设置,用于过滤不饱和琥珀色光以获得饱和琥珀色光。
本实用新型提供的光源装置通过采用 光源阵列 10 发出的激发光激发荧光粉片 20 以产生不饱和琥珀色光,然后采用截止滤光片 30 过滤不饱和琥珀色光以获得饱和琥珀色光。由于所采用光源阵列 10 对温度不敏感,从而提高了光源阵列 10 在高温时所发出激发光的光通量,进而提高了光源装置所发出的琥珀色光的光通量。
下面将更详细地描述根据本实用新型提供的光源装置的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本实用新型的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员。在附图中,为了清楚起见,扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。
上述 光源装置中的光源阵列 10 、荧光粉片 20 和截止滤光片 30 之间的位置和连接关系有多种实现方式。在一种优选的实施方式中,荧光粉片 20 设置于光源阵列 10 上,截止滤光片 30 设置于荧光粉片 20 上,其结构如图 2 所示。其中,荧光粉片 20 可以与光源阵列 10 的发光面相接触,也可以在荧光粉片 20 和光源阵列 10 之间形成间隔。同样地,截止滤光片 30 可以与荧光粉片 20 的表面接触,也可以在荧光粉片 20 和光源阵列 10 之间形成间隔。
为了使得光源阵列 10 发出的激发光更加均匀、更多地射向荧光粉片 20 ,在本实用新型的另一种优选的实施方式中,光源装置还包括十字透镜 40 , 且 光源阵列 10 设置于十字透镜 40 的三个 进光通道(即进光的通道口)外 ,截止滤光片 30 设置于 十字透镜 40 的出光通道(即出光的通道口)外, 荧光粉片 20 设置于十字透镜 40 的 出光通道与截止滤光片 30 之间 , 且激发光透过十字透镜 40 后投射到荧光粉片 20 上, 其结构如图 3 所示。其中,荧光粉片 20 可以与光源阵列 10 的发光面相接触,也可以在荧光粉片 20 和光源阵列 10 之间形成间隔。同样地,截止滤光片 30 可以与荧光粉片 20 的表面接触,也可以在荧光粉片 20 和光源阵列 10 之间形成间隔。
为了使得不饱和琥珀色光更加均匀、更多地射向截止滤光片 30 ,在本实用新型的又一种优选的实施方式中,光源装置还包括十字透镜 40 ,光源阵列 10 设置于十字透镜 40 的三个 进光通道外 ,荧光粉片 20 设置于光源阵列 10 的发光面上,截止滤光片 30 设置于十字透镜 40 的 出光通道外 ,且不饱和琥珀色光透过十字透镜 40 后射入滤光片 30 ,其结构如图 4 所示。其中,荧光粉片 20 可以与光源阵列 10 的发光面相接触,也可以在荧光粉片 20 和光源阵列 10 之间形成间隔。
上述光源装置 中,光源阵列 10 可以包括本领域常见的蓝光 LED 芯片。优选地,光源阵列 10 发出的激发光的波长范围为 440~475nm 。荧光粉片 20 可以采用本领域中常用的荧光粉材料,例如锑、锰激活的卤磷酸钙荧光粉,稀土掺杂荧光粉等。采用波长范围为 440~475nm 的激发光激活荧光粉片 20 后,优选地,所获得不饱和琥珀色光的峰值波长为 520~580nm 。
上述截止滤光片 30 是指能从复合光中滤掉全部长波或短波而仅暴露所需波段的滤光片 30 ,本领域的技术人员可以根据所需波段选择截止滤光片 30 。为了获得更加饱和的琥珀色光,优选地,截止滤光片 30 的截止波长为 550~590nm 。此时,所获得饱和琥珀色光的峰值波优选为 590~610nm 。
下面将结合图 5 进一步说明本实用新型提供的光源装置。
图 5 示出了本实用新型实施方式所提供的光源装置产生的 不饱和琥珀色光和饱和琥珀色光的光谱图。从图 5 可以看出, 本实用新型实施方式所提供的光源装置产生的 不饱和琥珀色光的峰值波长为 550nm ,峰值强度为 6200 。 本实用新型实施方式所提供的光源装置产生的饱和 琥珀色光的峰值波长为 594nm ,波长范围为 540~700nm ,峰值强度为 5000 。现有技术中琥珀色 LED 光的峰值波长为 600nm ,波长范围为 570~640nm ,峰值强度为 9700 。可见,与琥珀色 LED 光相比, 本实用新型实施方式所提供的光源装置产生的饱和色 琥珀色光的波长范围(特别是峰值波长)很相近,只是其峰值强度会低一些,因此 本实用新型实施方式所提供的光源装置产生的 琥珀色光与琥珀色 LED 光的颜色看起来是一样的。
发明人还对分析了 本实用新型实施方式所提供的光源装置产生的 饱和琥珀色光和 现有 LED 芯片发出的琥珀色光的颜色坐标。结果表明,本实用新型实施方式所提供的光源装置产生的 饱和琥珀色光和 现有技术中 琥珀色 LED 光 的颜色坐标几乎相同, 因此 本实用新型实施方式所提供的光源装置产生的饱和 琥珀色光与琥珀色 LED 光的颜色看起来是一样的。
从以上实施例可以看出,本实用新型上述的实例实现了如下技术效果:本实用新型提供的光源装置通过采用光源阵列发出的激发光激发荧光粉片以产生不饱和琥珀色光,然后采用截止滤光片过滤不饱和琥珀色光以获得饱和琥珀色光。由于所采用光源阵列对温度不敏感,从而提高了光源阵列在高温时所发出激发光的光通量,进而提高了光源装置所发出的琥珀色光的光通量。
以上仅为本实用新型的优选实施例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (9)

1. 一种光源装置,其特征在于,所述光源装置包括:
光源阵列(10),用于发出激发光;
荧光粉片(20),沿所述激发光的传播方向设置,用于接收所述激发光以激发出不饱和琥珀色光;
截止滤光片(30),沿所述不饱和琥珀色光的传播方向设置,用于过滤所述不饱和琥珀色光以获得饱和琥珀色光。
2. 根据权利要求1所述的光源装置,其特征在于,所述光源阵列(10)包括蓝光LED芯片。
3. 根据权利要求1所述的光源装置,其特征在于,所述光源装置中,所述荧光粉片(20)设置于所述光源阵列(10)上,所述截止滤光片(30)设置于所述荧光粉片(20)上。
4. 根据权利要求3所述的光源装置,其特征在于,所述荧光粉片(20)和所述光源阵列(10)之间间隔设置。
5. 根据权利要求1所述的光源装置,其特征在于,所述光源装置还包括十字透镜(40),所述光源阵列(10)设置于所述十字透镜(40)的三个进光通道处,所述截止滤光片(30)设置于所述十字透镜(40)的出光通道外,所述荧光粉片(20)设置于所述十字透镜(40)的出光通道与所述截止滤光片(30)之间,且所述激发光透过所述十字透镜(40)后投射到荧光粉片(20)上。
6. 根据权利要求5所述的光源装置,其特征在于,所述截止滤光片(30)和所述荧光粉片(20)之间间隔设置。
7. 根据权利要求1所述的光源装置,其特征在于,所述光源装置还包括十字透镜(40),所述光源阵列(10)设置于所述十字透镜(40)的三个进光通道外,所述荧光粉片(20)设置于所述光源阵列(10)的发光面上,所述截止滤光片(30)设置于所述十字透镜(40)的出光通道外,且所述不饱和琥珀色光透过所述十字透镜(40)后投射到截止滤光片(30)上。
8. 根据权利要求1至7中任一项所述的光源装置,其特征在于,所述激发光的波长范围为440~475nm,所述不饱和琥珀色光的峰值波长为520~580nm。
9. 根据权利要求1至7中任一项所述的光源装置,其特征在于,所述截止滤光片(30)的截止波长为550~590nm,饱和琥珀色光的峰值波长为590~610nm。
PCT/CN2015/092906 2014-10-29 2015-10-27 光源装置 WO2016066078A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/523,653 US10704743B2 (en) 2014-10-29 2015-10-27 Saturated amber light source device
EP15855034.3A EP3214360B1 (en) 2014-10-29 2015-10-27 Light source apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420638606.3U CN204176387U (zh) 2014-10-29 2014-10-29 光源装置
CN201420638606.3 2014-10-29

Publications (1)

Publication Number Publication Date
WO2016066078A1 true WO2016066078A1 (zh) 2016-05-06

Family

ID=52565195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092906 WO2016066078A1 (zh) 2014-10-29 2015-10-27 光源装置

Country Status (4)

Country Link
US (1) US10704743B2 (zh)
EP (1) EP3214360B1 (zh)
CN (1) CN204176387U (zh)
WO (1) WO2016066078A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204176387U (zh) * 2014-10-29 2015-02-25 深圳市绎立锐光科技开发有限公司 光源装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070300B2 (en) * 2004-06-04 2006-07-04 Philips Lumileds Lighting Company, Llc Remote wavelength conversion in an illumination device
CN201344389Y (zh) * 2008-12-31 2009-11-11 楼满娥 低色温发光二极管
US7850335B2 (en) * 2007-05-25 2010-12-14 Young Optics Inc. Light source module
CN102709449A (zh) * 2011-10-25 2012-10-03 深圳市光峰光电技术有限公司 荧光粉片层、荧光粉色轮及使用该荧光粉片层的光源
CN203880619U (zh) * 2014-04-30 2014-10-15 深圳市绎立锐光科技开发有限公司 提高led光源显色指数的装置
CN204176387U (zh) * 2014-10-29 2015-02-25 深圳市绎立锐光科技开发有限公司 光源装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007079423A2 (en) * 2005-12-30 2007-07-12 Dialight Corporation Method and apparatus for providing a light source that combines different color leds
US8998433B2 (en) * 2006-03-08 2015-04-07 Intematix Corporation Light emitting device utilizing remote wavelength conversion with improved color characteristics
CN101680992B (zh) * 2007-06-04 2016-10-19 皇家飞利浦电子股份有限公司 颜色可调的照明系统、灯和照明设备
DE102011118290A1 (de) * 2011-11-10 2013-05-16 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Bauelement
EP2909526A1 (en) * 2012-10-01 2015-08-26 Rambus Delaware LLC Led lamp and led lighting assembly
JP2017502493A (ja) * 2013-10-28 2017-01-19 ジーイー・ライティング・ソルーションズ,エルエルシー 向上された蛍光増白及び色彩選好のためのランプ
US10288233B2 (en) * 2013-12-10 2019-05-14 Gary W. Jones Inverse visible spectrum light and broad spectrum light source for enhanced vision
WO2015185469A1 (en) * 2014-06-05 2015-12-10 Koninklijke Philips N.V. Luminescence concentrator with increased efficiency

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070300B2 (en) * 2004-06-04 2006-07-04 Philips Lumileds Lighting Company, Llc Remote wavelength conversion in an illumination device
US7850335B2 (en) * 2007-05-25 2010-12-14 Young Optics Inc. Light source module
CN201344389Y (zh) * 2008-12-31 2009-11-11 楼满娥 低色温发光二极管
CN102709449A (zh) * 2011-10-25 2012-10-03 深圳市光峰光电技术有限公司 荧光粉片层、荧光粉色轮及使用该荧光粉片层的光源
CN203880619U (zh) * 2014-04-30 2014-10-15 深圳市绎立锐光科技开发有限公司 提高led光源显色指数的装置
CN204176387U (zh) * 2014-10-29 2015-02-25 深圳市绎立锐光科技开发有限公司 光源装置

Also Published As

Publication number Publication date
CN204176387U (zh) 2015-02-25
EP3214360A1 (en) 2017-09-06
EP3214360B1 (en) 2019-11-27
EP3214360A4 (en) 2018-04-11
US10704743B2 (en) 2020-07-07
US20170314744A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
KR102263041B1 (ko) 멀티 컬러를 구현할 수 있는 발광 소자
KR102476137B1 (ko) 발광소자 패키지의 제조 방법
KR102443694B1 (ko) 전류 확산 특성 및 광 추출 효율을 향상시킬 수 있는 발광 소자
US9010961B2 (en) LED integrated packaging light source module
US9353919B2 (en) White LED lamp secondary encapsulation structure capable of reducing blue-light hazards
KR102306671B1 (ko) 발광 소자 패키지
WO2017092668A1 (zh) 一种照明系统
CN102244185A (zh) 一种具有高显色指数、高光效、低色温的白光led及其制备方法
WO2022151824A1 (zh) 一种可见光通信阵列式芯片led灯珠
TW201143160A (en) Light-emitting device
CN204289503U (zh) 基于固态荧光材料的嵌入式白光led封装结构
US9537058B2 (en) Embedded white light LED package structure based on solid-state fluorescence material and manufacturing method thereof
CN107170736A (zh) 光源模组和照明装置
WO2016066078A1 (zh) 光源装置
CN109593526B (zh) 一种光转换材料及其制备方法与应用
KR102503215B1 (ko) 발광 소자 패키지
CN206877994U (zh) 光源模组和照明装置
US20170012182A1 (en) White Light LED Filament Having Blue Light Emitting Units and a Strip-Shaped Fluorescent Wafer
WO2015055135A1 (zh) Led同轴组合光引擎及其照明灯具
CN203406333U (zh) 一种led封装结构
WO2020015428A1 (zh) 半导体发光二极管装置和灯具
CN201717286U (zh) Led光源模块封装结构
WO2013071510A1 (zh) 水平全向出光led
CN107525042A (zh) 磷光板和包括该磷光板的照明装置
CN103915551A (zh) 一种新型白光led封装结构及制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855034

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15523653

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015855034

Country of ref document: EP