WO2016065988A1 - 换热器 - Google Patents

换热器 Download PDF

Info

Publication number
WO2016065988A1
WO2016065988A1 PCT/CN2015/089020 CN2015089020W WO2016065988A1 WO 2016065988 A1 WO2016065988 A1 WO 2016065988A1 CN 2015089020 W CN2015089020 W CN 2015089020W WO 2016065988 A1 WO2016065988 A1 WO 2016065988A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
heat exchanger
exchange tubes
heat
exchange tube
Prior art date
Application number
PCT/CN2015/089020
Other languages
English (en)
French (fr)
Inventor
杨静
徐阳
塔克L·杰弗里
陆向迅
李艳星
Original Assignee
丹佛斯微通道换热器(嘉兴)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丹佛斯微通道换热器(嘉兴)有限公司 filed Critical 丹佛斯微通道换热器(嘉兴)有限公司
Publication of WO2016065988A1 publication Critical patent/WO2016065988A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag

Definitions

  • the invention relates to a heat exchanger.
  • the header, the flat tube, and the fin are assembled and processed into a heat exchanger and then bent by a bending device to form a wave heat exchanger.
  • the bend radius of the heat exchanger formed in this way is not too small, and the excessive radius of curvature makes the increased heat exchange area relatively limited.
  • a heat exchanger comprising: a preformed wave-shaped heat exchange tube, and fins disposed between the heat exchange tubes, wherein the heat exchanger
  • the heat exchange tubes in the thickness direction have at least two bent portions to make the heat exchange tubes wavy.
  • a portion between the end face of the heat exchange tube and a position at a predetermined distance from the end face has a linear shape.
  • the bending radii of at least some of the adjacent bends of the heat exchange tubes are substantially equal.
  • At least some of the adjacent curved portions of the heat exchange tubes are connected by a linear transition.
  • the two sides of the fin in the thickness direction of the heat exchanger have a substantially planar shape.
  • the bent portion is substantially tangent, and the distance H is defined as an overall size of the heat exchange tube in the thickness direction of the heat exchanger, and the size of the fin in the thickness direction of the heat exchanger is greater than or equal to the heat exchange tube The overall size of the heat exchanger in the thickness direction.
  • the fins and the heat exchange tubes have a substantially uniform wave shape in the thickness direction of the heat exchanger such that the heat exchanger has a wavy shape.
  • two imaginary planes which are opposite to each other in the thickness direction of the heat exchanger and which are mutually parallel and mutually at a distance H are substantially tangent to the curved portion of the heat exchange tube, and the distance H is defined
  • the overall size of the heat exchange tube in the thickness direction of the heat exchanger, the width of the fin is smaller than the overall size of the heat exchange tube in the thickness direction of the heat exchanger, and is greater than or equal to the heat exchange tube
  • the two imaginary planes are perpendicular and generally pass through the transverse dimension in the plane of the axis of the heat exchange tube.
  • the bent portion of the heat exchange tube forms peaks and troughs, and the peaks or troughs of adjacent heat exchange tubes are staggered in the longitudinal direction of the heat exchanger.
  • the curved portion of the heat exchange tube forms peaks and troughs, and the peaks or troughs of the adjacent first set of heat exchange tubes and the second set of heat exchange tubes in the length direction of the heat exchanger Staggered,
  • the first set of heat exchange tubes comprises at least two heat exchange tubes having peaks and troughs at substantially the same position in the length direction of the heat exchanger and the second set of heat exchange tubes comprising at least two peaks and troughs in the heat exchanger
  • the heat exchange tubes are in substantially the same position in the longitudinal direction.
  • the bent portion of the heat exchange tube forms peaks and troughs, and the peaks and troughs of adjacent heat exchange tubes are alternately arranged in the longitudinal direction of the heat exchanger.
  • the curved portion of the heat exchange tube forms peaks and troughs, and the peaks and troughs of the adjacent first set of heat exchange tubes and the second set of heat exchange tubes in the length direction of the heat exchanger Staggered,
  • the first set of heat exchange tubes comprises at least two heat exchange tubes having peaks and troughs at substantially the same position in the length direction of the heat exchanger and the second set of heat exchange tubes comprising at least two peaks and troughs in the heat exchanger
  • the heat exchange tubes are in substantially the same position in the longitudinal direction.
  • the fin has a width greater than a width of the heat exchange tube.
  • each of the heat exchange tubes is constituted by a plurality of sub heat exchange tubes disposed in a thickness direction of the heat exchanger.
  • adjacent ones of the plurality of sub-heat exchange tubes constituting each of the heat exchange tubes are connected to each other.
  • the heat exchange tube is a flat tube.
  • the sub heat exchange tubes are flat tubes.
  • the width of the fin is greater than the width of the flat tube.
  • the fins and the flat tubes have a substantially uniform wave shape in the thickness direction of the heat exchanger such that the heat exchanger has a wavy shape.
  • a method of assembling a heat exchanger comprising assembling a heat exchanger comprising: providing a preformed wave-shaped heat exchange tube, wherein a thickness direction of the heat exchanger
  • the heat exchange tube has at least two curved portions to make the heat exchange tube undulate; the heat exchange tube and the fin are alternately placed on the heat exchanger assembly table of the assembly stage, and the heat exchange tube and the fin are exchanged
  • the side surface in the thickness direction of the device is in contact with the heat exchanger assembly table of the assembly stage; and the header, the fin and the heat exchange tube are assembled together.
  • the heat exchanger assembly table of the assembly station is a substantially flat surface.
  • the heat exchanger assembly deck of the assembly station is the same wavy surface as the wave shape of the heat exchange tubes.
  • the fins after being placed on the heat exchanger assembly table of the assembly station, form a wave shape identical to the wave shape of the heat exchanger assembly table of the assembly station.
  • a wave heat exchanger is formed by brazing a heat exchanger flat tube in advance along a width direction of the flat tube, by brazing with a header, fins, and other components.
  • the required heat transfer performance and installation size requirements can be achieved by adjusting parameters such as the bending radius of the flat tube or the fin and the fin width.
  • FIG. 1 is a schematic plan view of a heat exchange tube in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of the heat exchange tube of Figure 1 in accordance with an embodiment of the present invention
  • Figure 3 is a schematic plan view of a heat exchanger according to a first embodiment of the present invention.
  • FIG 4 is a schematic perspective view of the heat exchanger shown in Figure 3 in accordance with a first embodiment of the present invention
  • Figure 5 is a schematic perspective view showing the assembly of a heat exchanger according to a first embodiment of the present invention
  • Figure 6 is a schematic front view of a heat exchanger according to a second embodiment of the present invention.
  • Figure 7 is a schematic plan view of the heat exchanger shown in Figure 6 in accordance with a second embodiment of the present invention.
  • FIG 8 is a schematic perspective view of the heat exchanger shown in Figure 6 in accordance with a second embodiment of the present invention.
  • Figure 9 is a schematic front view of a heat exchanger according to a third embodiment of the present invention.
  • Figure 10 is a schematic plan view of the heat exchanger shown in Figure 9 in accordance with a third embodiment of the present invention.
  • FIG 11 is a schematic perspective view of the heat exchanger shown in Figure 9 in accordance with a third embodiment of the present invention.
  • Figure 12 is a schematic perspective view showing the assembly of a heat exchanger according to a second embodiment and a third embodiment of the present invention.
  • Figure 13 is a temperature field distribution diagram of a fin according to a first embodiment of the present invention.
  • Figure 14 is a schematic plan view of a heat exchanger in accordance with a fourth embodiment of the present invention, in which fins are omitted;
  • Figure 15 is a schematic perspective view of a heat exchanger according to a fourth embodiment of the present invention.
  • Figure 16 is a schematic plan view of a heat exchanger according to a fifth embodiment of the present invention.
  • Figure 17 is a schematic plan view of a heat exchange tube of a heat exchanger according to a sixth embodiment of the present invention.
  • Figure 18 is a schematic perspective view of a heat exchange tube of the heat exchanger shown in Figure 17 in accordance with a sixth embodiment of the present invention.
  • Figures 1 and 2 show a heat exchange tube in accordance with an embodiment of the present invention
  • Figures 3 and 4 show A heat exchanger according to a first embodiment of the present invention
  • Fig. 5 shows an assembled state of the heat exchanger according to the first embodiment of the present invention.
  • a heat exchanger 10 includes a preformed wave-shaped heat exchange tube 11 and fins 12 disposed between the heat exchange tubes 11.
  • the heat exchange tube 11 has at least two bent portions 111 in the thickness direction A of the heat exchanger 10 to make the heat exchange tubes 11 wavy.
  • the heat exchanger 10 also includes a header 15 .
  • the heat exchange tube 11 may be any suitable heat exchange tube such as a flat tube. Both ends of the heat exchange tube 11 are inserted into the heat transfer tube grooves on the header 15.
  • the heat exchange tube 11 has at least one flow hole.
  • the thickness direction A of the heat exchanger 10 is the width direction of the flat tube.
  • the portion 115 of the heat exchange tube 11 from the end surface 112 to a position spaced apart from the end surface 112 by a predetermined distance has a linear shape.
  • the predetermined distance may be at least 1.5 mm.
  • the bending radii of at least some of the adjacent curved portions 111 of the heat exchange tubes 11 are substantially equal or different. If the bending radii of the adjacent curved portions 111 are substantially equal, the processing is convenient, and the input of the bending device is reduced.
  • At least some of the adjacent curved portions 111 of the heat exchange tubes 11 are connected by a linear transition portion 116. That is, there may be a linear transition portion 116 between the crests and troughs formed in the curved portion 111 of the heat exchange tube 11, whereby the material stress can be improved and the damage of the previous curved portion 111 of the heat exchange tube 11 during bending can be reduced.
  • the two side faces 121 of the fin 12 in the thickness direction A of the heat exchanger 10 have a substantially planar shape.
  • the fins 12 do not change with the change of the heat exchange tubes 11.
  • the distance H is defined as the overall size of the heat exchange tube 11 in the thickness direction A of the heat exchanger 10, and the dimension Wf of the fin 12 in the thickness direction A of the heat exchanger 10 is greater than or equal to the heat exchange
  • the tube 11 is in the thickness direction of the heat exchanger 10
  • the overall dimension H on A, or the width Wf of the fins 12 is greater than or equal to the overall dimension H of the heat exchange tubes 11 in the thickness direction A of the heat exchanger 10.
  • the overall size H can be referred to as the distance between the peak and the trough.
  • the assembly of the heat exchanger 10 is performed on an assembly station 20, and the heat exchanger assembly mesa 21 of the assembly station 20 can be a substantially flat surface.
  • the fins 12 are horizontally formed on the heat exchanger assembly table 21 of the assembly stage 20.
  • the distance b between the edge of the fin 12 and the edge of the heat exchange tube 11 varies in the length of the heat exchange tube 11.
  • the heat exchanger assembly method according to this embodiment is simple, and only a conventional assembly table 20 and a certain tooling are required.
  • FIG. 6 to 8 show a heat exchanger according to a second embodiment of the present invention
  • Figs. 9 to 11 show a heat exchanger according to a third embodiment of the present invention
  • Fig. 12 shows a first embodiment according to the present invention.
  • the fins 12 and the heat exchange tubes 11 of the heat exchanger have a wavy shape, and other aspects are the same as those of the first embodiment.
  • the fins 12 and the heat exchange tubes 11 have a substantially uniform wave shape in the thickness direction A of the heat exchanger 10 such that the heat exchanger 10 has a wavy shape. That is, the fins 12 vary with the change of the heat exchange tubes 11. It is assumed that two imaginary planes which are opposite to each other in the thickness direction A of the heat exchanger 10 and which are parallel to each other and which are mutually distant from each other are substantially tangent to the curved portion 111 of the heat exchange tube 11, and the distance H is defined as heat exchange.
  • the overall dimension H of the tube 11 in the thickness direction A of the heat exchanger 10, the width Wf of the fin 12 is smaller than the overall size H of the heat exchange tube 11 in the thickness direction A of the heat exchanger 10, and is larger than Or equal to the transverse dimension W of the heat exchange tube 11 in a plane perpendicular to the two imaginary planes and substantially passing through the axis of the heat exchange tube 11.
  • the width Wf of the fins 12 is smaller than the overall size H of the flat tubes in the width direction of the heat exchanger 10, and is greater than or equal to the width W of the flat tubes.
  • the width of the fins 12 is equal to the heat exchange
  • the width of the tube 11 is equal to or equal to the width of the flat tube (in the case where the heat exchange tube 11 is a flat tube), and the fins 12 and the heat exchange tubes 11 are on both sides in the thickness direction A of the heat exchanger 10 Align with each other.
  • the width Wf of the fin 12 is larger than the width W of the heat exchange tube 11, or larger than the width W of the flat tube (in the case where the heat exchange tube 11 is a flat tube)
  • the fins 12 and the heat exchange tubes 11 are aligned with each other on one side in the thickness direction A of the heat exchanger 10, and on the other side in the thickness direction A of the heat exchanger 10, in the heat exchanger 10
  • the side of the fin 12 in the thickness direction A extends beyond the side of the heat exchange tube 11 (see Fig. 10).
  • the fins 12 can be bent by the assembly stage, and the heat exchanger assembly table 21 of the assembly table 20 has the same curved shape as the heat exchange tubes 11, that is, the heat exchanger assembly table of the assembly table 20.
  • 21 is a wave-shaped surface identical to the wave shape of the heat exchange tube 11.
  • the heat exchange tube 11 which is previously bent into a wave shape is placed on the assembly table 21 such that the wave shape of the heat exchange tube 11 coincides with the wave shape of the assembly table 21, and the heat exchange tube 11 is inserted into the heat exchange tube groove of the header 15.
  • the fins 12 are placed between the adjacent heat exchange tubes 11, and the fin material may be a very soft aluminum foil.
  • the fins 12 may naturally form waves as the shape of the assembly table 21 changes. shape.
  • a wave heat exchanger is formed by brazing.
  • the assembly sequence of the heat exchange tubes 11, the headers 15 and the fins 12 can also be changed according to different processes.
  • Figure 13 is a view showing the temperature field distribution of the fin of the first embodiment of the present invention.
  • the fins 12 have a distance heat transfer.
  • the tube 11 is located at a relatively remote area 30, in which the temperature of the heat exchange tubes 11 is not well transferred thereto, for which reason the applicant has proposed a more optimized fourth embodiment.
  • Figure 14 shows a heat exchanger in accordance with a fourth embodiment of the present invention. In the fourth embodiment, the heat exchange tubes 11 of the heat exchanger are arranged in a staggered manner, and other aspects are the same as those of the first embodiment.
  • the curved portion 111 of the heat exchange tube 11 forms peaks and troughs, and in the longitudinal direction of the heat exchanger 10, the peaks and valleys of adjacent heat exchange tubes 11 are alternately arranged.
  • the peaks and troughs of the heat exchange tubes 11 respectively correspond to the troughs and peaks of the heat exchange tubes 11 adjacent to the heat exchange tubes 11, that is, the peaks of the heat exchange tubes 11 and
  • the positions of the troughs are substantially the same as the positions of the troughs and peaks of the heat exchange tubes 11 adjacent to the heat exchange tubes 11, respectively.
  • Fig. 14 is a preferred embodiment, and in practice, this effect can be achieved as long as the heat exchange tubes 11 are arranged in a non-uniform manner, for example, according to some embodiments of the invention, the length of the heat exchanger 10 In the direction, the peaks or troughs of the adjacent heat exchange tubes 11 are staggered (for example, the peaks or troughs of the adjacent heat exchange tubes 11 are at different positions in the longitudinal direction of the heat exchanger 10).
  • the crests or troughs of adjacent first set of heat exchange tubes 11 and second set of heat exchange tubes 11 are staggered in the length direction of heat exchanger 10 (eg, adjacent The peaks or troughs of one set of heat exchange tubes 11 and the second set of heat exchange tubes 11 are at different positions in the longitudinal direction of the heat exchanger 10), and the first set of heat exchange tubes 11 includes at least two (for example, two or three) , four, etc.) the heat transfer tubes 11 having peaks and troughs at substantially the same position in the longitudinal direction of the heat exchanger 10 and the second set of heat exchange tubes 11 including at least two (for example, two, three, four, etc.) The peaks and troughs are in the heat exchange tubes 11 at substantially the same position in the longitudinal direction of the heat exchanger 10.
  • peaks and troughs of adjacent first set of heat exchange tubes 11 and second set of heat exchange tubes 11 are staggered in the length direction of heat exchanger 10 (eg, in a heat exchanger) In the longitudinal direction of 10, the peaks and troughs of the first group of heat exchange tubes 11 respectively correspond to the troughs and peaks of the second group of heat exchange tubes 11 adjacent to the first group of heat exchange tubes 11, that is, the first group of heat exchange tubes
  • the positions of the crests and troughs of 11 are substantially the same as the positions of the troughs and crests of the second group of heat exchange tubes 11 adjacent to the first group of heat exchange tubes 11, respectively, and the first group of heat exchange tubes 11 includes at least two ( For example, two, three, four, etc.) the heat transfer tubes 10 having peaks and troughs at substantially the same position in the longitudinal direction of the heat exchanger 10 and the second set of heat exchange tubes 11 including at least two (for example, two or three)
  • the curved portion 111 of the heat exchange tube 11 forms a crest and a trough, and the crests and troughs of the adjacent heat exchange tubes 11 are staggered or staggered.
  • the peaks and valleys of the adjacent heat exchange tubes 11 are staggered or staggered. Placement can effectively break the thermal boundary layer to achieve better heat transfer.
  • FIG 16 shows a heat exchanger according to a fifth embodiment of the present invention.
  • the heat exchange tubes 11 of the heat exchanger 10 employ a combined heat exchange tube, and other aspects are the same as those of the above embodiments. That is, the heat exchange tubes of the fifth embodiment can be applied to the respective embodiments described above.
  • each of the heat exchange tubes 11 is constituted by a plurality of sub heat exchange tubes 117 provided in the thickness direction A of the heat exchanger 10. Adjacent ones of the plurality of sub-heat exchange tubes 117 constituting each of the heat exchange tubes 11 of the heat exchange tubes 11 may be connected to each other.
  • the sub heat exchange tube 117 may be a flat tube, or the heat exchange tube 11 in this embodiment may itself be a combined flat tube.
  • the heat exchange tube 11 of the heat exchanger 10 is composed of a plurality of flat tubes, and each of the heat exchange tubes 11 may be composed of N flat tubes having a width of W/N (W is a heat exchange tube).
  • W is a heat exchange tube.
  • the width of 11) is simultaneously inserted into the corresponding heat exchange tube groove on the header 15, so that the bending radius of each flat tube can be made as small as possible to form a smaller wave, thereby further increasing the exchange in the same installation space.
  • the heat exchange area of the heat exchanger is composed of a plurality of flat tubes, and each of the heat exchange tubes 11 may be composed of N flat tubes having a width of W/N (W is a heat exchange tube).
  • the width of 11) is simultaneously inserted into the corresponding heat exchange tube groove on the header 15, so that the bending radius of each flat tube can be made as small as possible to form a smaller wave, thereby further increasing the exchange in the same installation space.
  • the heat exchange area of the heat exchanger is composed of a plurality
  • the bending radius of one curved portion 111 of the bottommost flat tube in Fig. 16 is R 1
  • the flat tube of the heat exchanger 10 described above may also be an integral flat tube formed by a plurality of flat tubes connected to adjacent flat tubes by ribs, so that the flat tubes are easier to assemble.
  • the heat exchange tube may be any other suitable heat exchange tube.
  • the method of assembling a heat exchanger comprises: providing a preformed wave-shaped heat exchange tube 11 wherein the heat exchange tube 11 has at least two bends 111 in the thickness direction A of the heat exchanger 10
  • the heat exchange tubes 11 are undulated; the heat exchange tubes 11 and the fins 12 are alternately placed on the assembly stage
  • the heat exchanger of the 20 is assembled on the mesas 21, and the side faces of the heat exchange tubes 11 and the fins 12 in the thickness direction A of the heat exchanger 10 are in contact with the heat exchanger assembly mesa 21 of the assembly stage 20;
  • the tube 15, the fins 12 and the heat exchange tubes 11 are assembled.
  • the heat exchanger assembly mesa 21 of the assembly station 20 is a substantially flat surface.
  • the heat exchanger assembly mesa 21 of the assembly stage 20 is a wave-like surface identical to the wave shape of the heat exchange tube 11, and the fins 12 are placed on the assembly stage 20. After the heat exchanger is assembled on the mesa 21, a wave shape identical to that of the heat exchanger assembly mesa 21 of the assembly stage 21 is formed.
  • Embodiments of the present invention form a wave-shaped heat exchanger by bending a heat exchanger flat tube in advance along a width direction of a flat tube into a wave shape, and assembling and brazing the fins, fins, and other components.
  • Embodiments of the present invention can achieve desired heat transfer performance and installation size requirements by adjusting parameters such as the bend radius and fin width of the flat tube or fin.
  • embodiments of the present invention do not require an increase in heat exchange area by increasing the spatial size of the system.
  • Embodiments of the present invention can increase system energy efficiency (reduced power consumption) by increasing the heat exchange performance of the heat exchanger.
  • embodiments of the present invention can be used to reduce the size of the controls of the system, making the overall system more compact and thus cost effective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种换热器(10),包括:预成形的波浪形的换热管(11),以及设置在换热管(11)之间的翅片(12),其中在换热器(10)的厚度方向上换热管(11)具有至少两个弯曲部(111)使换热管(11)成波浪形。预先将换热器扁管沿着宽度方向弯曲形成波浪形,和集流管(15)、翅片(12)及其他部件组装钎焊后形成波浪形换热器(10)。该换热器(10)可以通过调整扁管或翅片(12)的弯曲半径及翅片(12)宽度等参数实现所需换热性能及安装尺寸的要求。

Description

换热器 技术领域
本发明涉及一种换热器。
背景技术
现有技术中,将集流管,扁管,翅片组装并加工成换热器之后用弯曲装置进行弯曲,形成波浪型换热器。这种方式成型的换热器弯曲半径不易太小,过大的曲率半径使得增加的换热面积比较有限。
发明内容
本发明的实施例的一个目的是提供一种换热器,由此例如使波浪形换热器满足所需换热性能及安装尺寸的要求。
根据本发明的一个方面,本发明提供了一种换热器,该换热器包括:预成形的波浪形的换热管,以及设置在换热管之间的翅片,其中在换热器的厚度方向上换热管具有至少两个弯曲部使换热管成波浪形。
根据本发明的一个方面,所述换热管的从端面到距离该端面预定距离的位置之间的部分具有直线状的形状。
根据本发明的一个方面,所述换热管的至少一些相邻的弯曲部的折弯半径大致相等。
根据本发明的一个方面,所述换热管的至少一些相邻的弯曲部之间通过直线状过渡部连接。
根据本发明的一个方面,所述翅片的在换热器的厚度方向上的两个侧面具有大致平面状的形状。
根据本发明的一个方面,假设在换热器的厚度方向上相互相对、相互平行,并且相互距离为H的两个假想平面分别与所述换热管的 弯曲部大致相切,并且距离H定义为换热管在换热器的厚度方向上的总体尺寸,则所述翅片在换热器的厚度方向上的尺寸大于或等于所述换热管在换热器的厚度方向上的总体尺寸。
根据本发明的一个方面,所述翅片和换热管在换热器的厚度方向上具有大致一致的波浪形使得换热器具有波浪形的形状。
根据本发明的一个方面,假设在换热器的厚度方向上相互相对、相互平行,并且相互距离为H的两个假想平面分别与所述换热管的弯曲部大致相切,并且距离H定义为换热管在换热器的厚度方向上的总体尺寸,则所述翅片的宽度小于所述换热管在换热器的厚度方向上的总体尺寸,并且大于或等于换热管在与两个假想平面垂直并且大致通过换热管的轴线的平面中的横向尺寸。
根据本发明的一个方面,所述换热管的弯曲部形成波峰和波谷,并且在换热器的长度方向上,相邻的换热管的波峰或波谷错开设置。
根据本发明的一个方面,所述换热管的弯曲部形成波峰和波谷,并且在换热器的长度方向上,相邻的第一组换热管和第二组换热管的波峰或波谷错开设置,第一组换热管包括至少两个波峰和波谷在换热器的长度方向上处于大致相同位置的换热管并且第二组换热管包括至少两个波峰和波谷在换热器的长度方向上处于大致相同位置的换热管。
根据本发明的一个方面,所述换热管的弯曲部形成波峰和波谷,并且在换热器的长度方向上,相邻的换热管的波峰和波谷交错设置。
根据本发明的一个方面,所述换热管的弯曲部形成波峰和波谷,并且在换热器的长度方向上,相邻的第一组换热管和第二组换热管的波峰和波谷交错设置,第一组换热管包括至少两个波峰和波谷在换热器的长度方向上处于大致相同位置的换热管并且第二组换热管包括至少两个波峰和波谷在换热器的长度方向上处于大致相同位置的换热管。
根据本发明的一个方面,所述翅片的宽度大于换热管的宽度。
根据本发明的一个方面,所述换热管中的每一个由在换热器的厚度方向上设置的多个子换热管构成。
根据本发明的一个方面,构成所述换热管中的每一个换热管的所述多个子换热管中的相邻的子换热管相互连接。
根据本发明的一个方面,所述换热管是扁管。
根据本发明的一个方面,所述子换热管是扁管。
根据本发明的一个方面,所述翅片的宽度大于扁管的宽度。
根据本发明的一个方面,所述翅片和扁管在换热器的厚度方向上具有大致一致的波浪形使得换热器具有波浪形的形状。
根据本发明的一个方面,本发明提供了一种组装换热器的方法,所述组装换热器的方法包括:提供预成形的波浪形的换热管,其中在换热器的厚度方向上换热管具有至少两个弯曲部使换热管成波浪形;将换热管和翅片交替地放置在组装台的换热器组装台面上,且使换热管和翅片的在换热器的厚度方向上的侧面与组装台的换热器组装台面接触;以及将集流管、翅片和换热管组装在一起。
根据本发明的一个方面,所述组装台的换热器组装台面是大致平坦的表面。
根据本发明的一个方面,所述组装台的换热器组装台面是与换热管的波浪形相同的波浪形的表面。
根据本发明的一个方面,所述翅片在放置在所述组装台的换热器组装台面上之后,形成与所述组装台的换热器组装台面的波浪形相同的波浪形形状。
根据本发明的实施例,通过将换热器扁管预先沿着扁管宽度方向弯曲成波浪形,通过和集流管,翅片及其他部件组装钎焊后形成波浪形换热器。根据本发明的实施例,可以通过调整扁管或翅片的弯曲半径及翅片宽度等参数实现所需换热性能及安装尺寸的要求。
附图说明
图1为根据本发明的实施例的换热管的示意俯视图;
图2为根据本发明的实施例的图1所示的换热管的示意立体图;
图3为根据本发明的第一实施例的换热器的示意俯视图;
图4为根据本发明的第一实施例的图3所示的换热器的示意立体图;
图5为根据本发明的第一实施例的换热器的组装示意立体图;
图6为根据本发明的第二实施例的换热器的示意主视图;
图7为根据本发明的第二实施例的图6所示的换热器的示意俯视图;
图8为根据本发明的第二实施例的图6所示的换热器的示意立体图;
图9为根据本发明的第三实施例的换热器的示意主视图;
图10为根据本发明的第三实施例的图9所示的换热器的示意俯视图;
图11为根据本发明的第三实施例的图9所示的换热器的示意立体图;
图12为根据本发明的第二实施例和第三实施例的换热器的组装示意立体图;
图13为根据本发明的第一实施例的翅片的温度场分布图;
图14为根据本发明的第四实施例的换热器的示意俯视图,其中省去了翅片;
图15为根据本发明的第四实施例的换热器的示意立体图;
图16为根据本发明的第五实施例的换热器的示意俯视图;
图17为根据本发明的第六实施例的换热器的换热管的示意俯视图;以及
图18为根据本发明的第六实施例的图17所示的换热器的换热管的示意立体图。
具体实施方式
下面结合附图及具体实施方式对本发明做进一步说明。
实施例1
图1和2示出了根据本发明的实施例的换热管,图3和4示出了 根据本发明的第一实施例的换热器,并且图5示出了根据本发明的第一实施例的换热器的组装状态。
参见图1至5,根据本发明的实施例的换热器10包括:预成形的波浪形的换热管11,以及设置在换热管11之间的翅片12。在换热器10的厚度方向A上换热管11具有至少两个弯曲部111使换热管11成波浪形。换热器10还包括集流管15。换热管11可以是扁管等任何合适的换热管。换热管11的两端插入集流管15上的换热管槽内。换热管11至少有一个流通孔。在换热管11是扁管的情况下,换热器10的厚度方向A是扁管的宽度方向。
如图1和2所示,换热管11的从端面112到距离该端面112预定距离的位置之间的部分115具有直线状的形状。例如该预定距离可以是至少1.5mm。使得换热管11更易插入集流管11的换热管槽内,且与换热管11配合的集流管11上的换热管槽更易加工成型,可以用常规集流管的设计,不需要额外投资或者可以减少集流管模具费用,降低制造成本。
如图1和2所示,所述换热管11的至少一些相邻的弯曲部111的折弯半径大致相等,或也可以不同。如果相邻的弯曲部111的折弯半径大致相等,使得加工方便,减少弯曲设备的投入。
如图1和2所示,所述换热管11的至少一些相邻的弯曲部111之间通过直线状过渡部116连接。即,在换热管11的弯曲部111形成的波峰与波谷之间可以有直线状过渡部116,由此可以改善材料应力,减少弯曲过程中换热管11的前一个弯曲部111受损。
如图3和4所示,所述翅片12的在换热器10的厚度方向A上的两个侧面121具有大致平面状的形状。翅片12不随换热管11的变化而变化。
参见图1、3和4,假设在换热器10的厚度方向A上相互相对、相互平行,并且相互距离为H的两个假想平面分别与所述换热管11的弯曲部111大致相切,并且距离H定义为换热管11在换热器10的厚度方向A上的总体尺寸,则所述翅片12在换热器10的厚度方向A上的尺寸Wf大于或等于所述换热管11在换热器10的厚度方向 A上的总体尺寸H,或者翅片12的宽度Wf大于或等于所述换热管11在换热器10的厚度方向A上的总体尺寸H。总体尺寸H可以称为波峰与波谷间距离。
如图5所示,换热器10的组装在组装台20上进行,所述组装台20的换热器组装台面21可以是大致平坦的表面。换热器10在进行组装时,在组装台20的换热器组装台面21上,翅片12呈水平状。如图3所示,翅片12的边缘与换热管11的边缘的间距b在换热管11的长度上是变化的。当换热器用作蒸发器时,因翅片12超出换热管11的特殊设计,有利于凝结水的排出。
参见图5,根据该实施例的换热器组装方法简单,只需常规的组装台20及一定的工装即可。
实施例2、3
图6至8示出了根据本发明的第二实施例的换热器,图9至11示出了根据本发明的第三实施例的换热器,图12示出了根据本发明的第二实施例和第三实施例的换热器的组装状态。在第二和第三实施例中,换热器的翅片12和换热管11都具有波浪形的形状,其它方面与第一实施例相同。
如图6至12所示,翅片12和换热管11在换热器10的厚度方向A上具有大致一致的波浪形使得换热器10具有波浪形的形状。即翅片12随换热管11的变化而变化。假设在换热器10的厚度方向A上相互相对、相互平行,并且相互距离为H的两个假想平面分别与所述换热管11的弯曲部111大致相切,并且距离H定义为换热管11在换热器10的厚度方向A上的总体尺寸H,则所述翅片12的宽度Wf小于所述换热管11在换热器10的厚度方向A上的总体尺寸H,并且大于或等于换热管11在与两个假想平面垂直并且大致通过换热管11的轴线的平面中的横向尺寸W。例如,在换热管11是扁管的情况下,翅片12的宽度Wf小于扁管在换热器10的宽度方向上的总体尺寸H,并且大于或等于扁管的宽度W。
在图6至8所示的第二实施例中,所述翅片12的宽度等于换热 管11的宽度,或等于扁管的宽度(在换热管11是扁管的情况下),并且所述翅片12和换热管11在换热器10的厚度方向A上的两个侧面相互对齐。
在图9至11所示的第三实施例中,所述翅片12的宽度Wf大于换热管11的宽度W,或大于扁管的宽度W(在换热管11是扁管的情况下),并且所述翅片12和换热管11在换热器10的厚度方向A上的一个侧面相互对齐,而在换热器10的厚度方向A上的另一侧,在换热器10的厚度方向A上所述翅片12的侧面超出换热管11的侧面(参见图10)。
如图12所示,可以通过组装台来实现翅片12的弯曲,组装台20的换热器组装台面21与换热管11具有相同弯曲形状,即所述组装台20的换热器组装台面21是与换热管11的波浪形相同的波浪形的表面。将预先弯曲成波浪形的换热管11放置在组装台面21上,使得换热管11的波浪形和组装台面21的波浪形相吻合,换热管11插入集流管15的换热管槽中,翅片12放置在相邻换热管11之间,翅片材料可以为很软的铝箔,由于组装台面21是波浪形的,使得翅片12可以随组装台面21的形状变化而自然形成波浪形。将换热器捆扎后通过钎焊形成波浪形换热器。根据不同的工艺过程,也可以改变换热管11,集流管15和翅片12的组装顺序。
实施例4
图13表示本发明的第一实施例的翅片的温度场分布图,由图13可以看出,当多个换热管11按波峰波谷方向一致的方式布置时,翅片12存在距离换热管11距离相对较远的区域30,在此区域30,换热管11的温度不能很好的传递到此,为此,申请人提出更加优化的第四实施例。图14示出了根据本发明的第四实施例的换热器。在第四实施例中,换热器的换热管11采用了交错布置,其它方面与第一实施例相同。
如图14所示,所述换热管11的弯曲部111形成波峰和波谷,并且在换热器10的长度方向上,相邻的换热管11的波峰和波谷交错设 置(例如,在换热器10的长度方向上,换热管11的波峰和波谷分别对应与该换热管11相邻的换热管11的波谷和波峰,即换热管11的波峰和波谷的位置分别和与该换热管11相邻的换热管11的波谷和波峰的位置大致相同)。
图14所示的实施例为优选实施例,实际上,只要换热管11采用非一致的方式布置,即可达到该效果,例如:根据本发明的一些实施例,在换热器10的长度方向上,相邻的换热管11的波峰或波谷错开设置(例如,相邻的换热管11的波峰或波谷在换热器10的长度方向上处于不同的位置)。
根据本发明的另一些实施例,在换热器10的长度方向上,相邻的第一组换热管11和第二组换热管11的波峰或波谷错开设置(例如,相邻的第一组换热管11和第二组换热管11的波峰或波谷在换热器10的长度方向上处于不同的位置),第一组换热管11包括至少两个(例如两个、三个、四个等)波峰和波谷在换热器10的长度方向上处于大致相同位置的换热管11并且第二组换热管11包括至少两个(例如两个、三个、四个等)波峰和波谷在换热器10的长度方向上处于大致相同位置的换热管11。
根据本发明的又一些实施例,在换热器10的长度方向上,相邻的第一组换热管11和第二组换热管11的波峰和波谷交错设置(例如,在换热器10的长度方向上,第一组换热管11的波峰和波谷分别对应与该第一组换热管11相邻的第二组换热管11的波谷和波峰,即第一组换热管11的波峰和波谷的位置分别和与该第一组换热管11相邻的第二组换热管11的波谷和波峰的位置大致相同),第一组换热管11包括至少两个(例如两个、三个、四个等)波峰和波谷在换热器10的长度方向上处于大致相同位置的换热管10并且第二组换热管11包括至少两个(例如两个、三个、四个等)波峰和波谷在换热器10的长度方向上处于大致相同位置的换热管11。
参见图14,所述换热管11的弯曲部111形成波峰和波谷,并且相邻的换热管11的波峰和波谷交错或错开设置。通过分析沿换热管11厚度方向的温度分布情况,相邻换热管11的波峰波谷交错或错开 放置可以有效的打破热边界层,从而达到更好的传热效果。
实施例5
图16示出了根据本发明的第五实施例的换热器,在第五实施例中,换热器10的换热管11采用了组合式换热管,其它方面与上述各实施例相同,即第五实施例的换热管可以应用于上述各个实施例。
如图16所示,所述换热管11中的每一个由在换热器10的厚度方向A上设置的多个子换热管117构成。构成所述换热管11中的每一个换热管11的所述多个子换热管117中的相邻的子换热管117可以相互连接。所述子换热管117可以是扁管,或者本实施例中的换热管11本身可以是一种组合式扁管。
在图16所示的示例中,换热器10的换热管11由多根扁管组成,每根换热管11可以由N根宽度为W/N的扁管组成(W为换热管11的宽度),同时插入集流管15上相对应的换热管槽,这样可以使每根扁管的弯曲半径尽量小,形成更小的波浪,从而使在相同的安装空间下进一步增加换热器的换热面积。
参见图16,如果图16中的最底部的一根扁管的一个弯曲部111的弯曲半径为R1,则从最底部起的第N根扁管的一个弯曲部111的弯曲半径为RN=R1+(N-1)N/W。
实施例6
如图17和18所示,以上所述换热器10的扁管也可以是一种由多根扁管通过筋连接相邻扁管形成的整体扁管,这样扁管更容易装配。
尽管上述示例以扁管为例进行了描述,但是换热管也可以是任何其它合适的换热管。
下面描述根据本发明的实施例的组装换热器的方法。参见图5和12,该组装换热器的方法包括:提供预成形的波浪形的换热管11,其中在换热器10的厚度方向A上换热管11具有至少两个弯曲部111使换热管11成波浪形;将换热管11和翅片12交替地放置在组装台 20的换热器组装台面21上,且使换热管11和翅片12的在换热器10的厚度方向A上的侧面与组装台20的换热器组装台面21接触;以及将集流管15、翅片12和换热管11组装在一起。
如图5所示,所述组装台20的换热器组装台面21是大致平坦的表面。作为选择,如图12所示,所述组装台20的换热器组装台面21是与换热管11的波浪形相同的波浪形的表面,所述翅片12在放置在所述组装台20的换热器组装台面21上之后,形成与所述组装台21的换热器组装台面21的波浪形相同的波浪形形状。
本发明的实施例通过将换热器扁管预先沿着扁管宽度方向弯曲成波浪形,通过和集流管,翅片及其他部件组装钎焊后形成波浪形换热器。本发明的实施例可以通过调整扁管或翅片的弯曲半径及翅片宽度等参数实现所需换热性能及安装尺寸的要求。
此外,本发明的实施例不需要通过增大系统的空间尺寸便可实现增加换热面积。本发明的实施例可以通过增加换热器的换热性能来增加系统能效(降低消耗功率)。
如果系统不需要更高的能效和更大的换热性能,本发明的实施例可用于减少系统的控件尺寸,使得整个系统更加紧凑从而有效的降低成本。
尽管上述分别描述了本发明的实施例,但是上述实施例中的特征可以进行组合形成新的实施例。

Claims (20)

  1. 一种换热器,包括:
    预成形的波浪形的换热管,以及
    设置在换热管之间的翅片,
    其中在换热器的厚度方向上换热管具有至少两个弯曲部使换热管成波浪形。
  2. 根据权利要求1所述的换热器,其中:
    所述换热管的从端面到距离该端面预定距离的位置之间的部分具有直线状的形状。
  3. 根据权利要求1所述的换热器,其中:
    所述换热管的至少一些相邻的弯曲部的折弯半径大致相等。
  4. 根据权利要求1所述的换热器,其中:
    所述换热管的至少一些相邻的弯曲部之间通过直线状过渡部连接。
  5. 根据权利要求1所述的换热器,其中:
    所述翅片的在换热器的厚度方向上的两个侧面具有大致平面状的形状。
  6. 根据权利要求1或5所述的换热器,其中:
    假设在换热器的厚度方向上相互相对、相互平行,并且相互距离为H的两个假想平面分别与所述换热管的弯曲部大致相切,并且距离H定义为换热管在换热器的宽度方向上的总体尺寸,则
    所述翅片在换热器的厚度方向上的尺寸大于或等于所述换热管在换热器的厚度方向上的总体尺寸。
  7. 根据权利要求1所述的换热器,其中:
    所述翅片和换热管在换热器的厚度方向上具有大致一致的波浪形使得换热器具有波浪形的形状。
  8. 根据权利要求7所述的换热器,其中:
    假设在换热器的厚度方向上相互相对、相互平行,并且相互距离为H的两个假想平面分别与所述换热管的弯曲部大致相切,并且距离H定义为换热管在换热器的厚度方向上的总体尺寸,则
    所述翅片的宽度小于所述换热管在换热器的厚度方向上的总体尺寸,并且大于或等于换热管在与两个假想平面垂直并且大致通过换热管的轴线的平面中的横向尺寸。
  9. 根据权利要求1或6所述的换热器,其中:
    所述换热管的弯曲部形成波峰和波谷,并且
    在换热器的长度方向上,相邻的换热管的波峰或波谷错开设置。
  10. 根据权利要求1或6所述的换热器,其中:
    所述换热管的弯曲部形成波峰和波谷,并且
    在换热器的长度方向上,相邻的第一组换热管和第二组换热管的波峰或波谷错开设置,第一组换热管包括至少两个波峰和波谷在换热器的长度方向上处于大致相同位置的换热管并且第二组换热管包括至少两个波峰和波谷在换热器的长度方向上处于大致相同位置的换热管。
  11. 根据权利要求1或6所述的换热器,其中:
    所述换热管的弯曲部形成波峰和波谷,并且
    在换热器的长度方向上,相邻的换热管的波峰和波谷交错设置。
  12. 根据权利要求1或6所述的换热器,其中:
    所述换热管的弯曲部形成波峰和波谷,并且
    在换热器的长度方向上,相邻的第一组换热管和第二组换热管的波峰和波谷交错设置,第一组换热管包括至少两个波峰和波谷在换热器的长度方向上处于大致相同位置的换热管并且第二组换热管包括至少两个波峰和波谷在换热器的长度方向上处于大致相同位置的换热管。
  13. 根据权利要求1所述的换热器,其中:
    所述翅片的宽度大于换热管的宽度。
  14. 根据权利要求1至5和7至13中的任一项所述的换热器,其中:
    所述换热管中的每一个由在换热器的厚度方向上设置的多个子换热管构成。
  15. 根据权利要求1所述的换热器,其中:
    构成所述换热管中的每一个换热管的所述多个子换热管中的相邻的子换热管相互连接。
  16. 根据权利要求1至5和7至13中的任一项所述的换热器,其中:
    所述换热管是扁管。
  17. 一种组装换热器的方法,包括:
    提供预成形的波浪形的换热管,其中在换热器的厚度方向上换热管具有至少两个弯曲部使换热管成波浪形;
    将换热管和翅片交替地放置在组装台的换热器组装台面上,且使换热管和翅片的在换热器的厚度方向上的侧面与组装台的换热器组装台面接触;以及
    将集流管、翅片和换热管组装在一起。
  18. 根据权利要求17所述的组装换热器的方法,其中:
    所述组装台的换热器组装台面是大致平坦的表面。
  19. 根据权利要求17所述的组装换热器的方法,其中:
    所述组装台的换热器组装台面是与换热管的波浪形相同的波浪形的表面。
  20. 根据权利要求19所述的组装换热器的方法,其中:
    所述翅片在放置在所述组装台的换热器组装台面上之后,形成与所述组装台的换热器组装台面的波浪形相同的波浪形形状。
PCT/CN2015/089020 2014-10-31 2015-09-07 换热器 WO2016065988A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410598588.5A CN105890399A (zh) 2014-10-31 2014-10-31 换热器
CN201410598588.5 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016065988A1 true WO2016065988A1 (zh) 2016-05-06

Family

ID=55856572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089020 WO2016065988A1 (zh) 2014-10-31 2015-09-07 换热器

Country Status (2)

Country Link
CN (1) CN105890399A (zh)
WO (1) WO2016065988A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110230932A (zh) * 2019-05-27 2019-09-13 广东法拉达汽车散热器有限公司 一种曲管汽车散热器
WO2024011743A1 (zh) * 2022-07-14 2024-01-18 芜湖美智空调设备有限公司 一种管翅单体、换热器和空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282490A (ja) * 1987-05-13 1988-11-18 Showa Alum Corp 熱交換器
JPH02189228A (ja) * 1989-02-23 1990-07-25 Marunaka Seisakusho:Kk エアコン用コンデンサ
US6308527B1 (en) * 1998-12-10 2001-10-30 Denso Corporation Refrigerant evaporator with condensed water drain structure
CN203349670U (zh) * 2013-07-08 2013-12-18 郑州大学 一种微通道换热器
JP2013257096A (ja) * 2012-06-13 2013-12-26 Sanden Corp 熱交換器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3473604A (en) * 1966-01-18 1969-10-21 Daimler Benz Ag Recuperative heat exchanger
US6151949A (en) * 1999-08-25 2000-11-28 Visteon Global Technologies, Inc. Method of manufacturing a flat corrugated tube
JP4482991B2 (ja) * 1999-12-14 2010-06-16 株式会社デンソー 複式熱交換器
US7171956B2 (en) * 2002-08-28 2007-02-06 T. Rad Co., Ltd. EGR cooler
JP2004092942A (ja) * 2002-08-29 2004-03-25 Denso Corp 熱交換器
ATE430905T1 (de) * 2005-12-23 2009-05-15 Piflex P S Flexible fluidleitung und verfahren zu ihrer herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282490A (ja) * 1987-05-13 1988-11-18 Showa Alum Corp 熱交換器
JPH02189228A (ja) * 1989-02-23 1990-07-25 Marunaka Seisakusho:Kk エアコン用コンデンサ
US6308527B1 (en) * 1998-12-10 2001-10-30 Denso Corporation Refrigerant evaporator with condensed water drain structure
JP2013257096A (ja) * 2012-06-13 2013-12-26 Sanden Corp 熱交換器
CN203349670U (zh) * 2013-07-08 2013-12-18 郑州大学 一种微通道换热器

Also Published As

Publication number Publication date
CN105890399A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
US7334631B2 (en) Heat exchanger
KR950007282B1 (ko) 세분된 유로를 구비한 콘덴서
US20150083379A1 (en) Plate heat exchanger and refrigeration cycle system including the same
CN103959554A (zh) 水冷式二次电池
EP3370019B1 (en) Heat exchanger
EP2236971A3 (en) Fin for heat exchanger and heat exchanger using the fin
US20150053377A1 (en) Heat exchanger and heat exchanger manufacturing method
JP2020094791A5 (zh)
KR20140020699A (ko) 열교환기 관, 열교환기 관조립체 및 그 제조 방법
WO2016008427A1 (zh) 用于换热器的翅片和具有该翅片的换热器
KR20140020700A (ko) 열교환기 관, 열교환기 관조립체 및 그 제조 방법
WO2016065988A1 (zh) 换热器
WO2020073744A1 (zh) 管组件以及换热器
JP5393388B2 (ja) 熱交換器及びその製造方法
JP2011112331A (ja) 排ガス用熱交換器
US3224503A (en) Heat exchanger
CN103913091A (zh) 一种带倒角的热交换器翅片
EP2977703A1 (en) Heat exchanger with slotted guard fin
JP2009121708A (ja) 熱交換器
CN111829363B (zh) 换热器
KR20140020702A (ko) 열교환기 관, 열교환기 관조립체 및 그 제조 방법
JP2013127341A (ja) 熱交換器
CN212205727U (zh) 换热器
JP5869267B2 (ja) 液冷ヒートシンクの製造方法
CN111829362A (zh) 换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855965

Country of ref document: EP

Kind code of ref document: A1