WO2024011743A1 - 一种管翅单体、换热器和空调器 - Google Patents
一种管翅单体、换热器和空调器 Download PDFInfo
- Publication number
- WO2024011743A1 WO2024011743A1 PCT/CN2022/118193 CN2022118193W WO2024011743A1 WO 2024011743 A1 WO2024011743 A1 WO 2024011743A1 CN 2022118193 W CN2022118193 W CN 2022118193W WO 2024011743 A1 WO2024011743 A1 WO 2024011743A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tube
- fin
- header
- heat exchanger
- units
- Prior art date
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims description 12
- 238000007639 printing Methods 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 7
- 238000012546 transfer Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000000630 rising effect Effects 0.000 description 6
- 238000010146 3D printing Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
- F24F1/0067—Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/14—Heat exchangers specially adapted for separate outdoor units
- F24F1/18—Heat exchangers specially adapted for separate outdoor units characterised by their shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/14—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
- F28F1/16—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
- F28F1/18—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion the element being built-up from finned sections
Definitions
- This article relates to, but is not limited to, the field of air conditioning equipment, and particularly relates to, but is not limited to, a tube-fin unit, a heat exchanger and an air conditioner.
- the copper tubes and fins of mass-produced fin tube heat exchangers are assembled in the form of expansion joints; the mass-produced micro-channel heat exchangers are produced separately using flat tubes and fins, and are integrally welded after assembly. assembly.
- the expansion joint assembly of the copper tubes and fins of the fin tube heat exchanger has contact thermal resistance, resulting in low heat transfer efficiency; although the microchannel heat exchanger uses welding to reduce the contact thermal resistance, the flat tubes and fins are separated Production, assembly and welding are complex processes, resulting in low production efficiency and high costs.
- a tube-fin unit including: a base sheet, the base sheet being a corrugated sheet, the base sheet including alternately arranged fin portions and flow channel portions, and a refrigerant channel is provided in the flow channel portion;
- the refrigerant channel curves and extends along the first direction, and the angle ⁇ between the corrugation direction of the corrugated sheet and the first direction is: 0° ⁇ 90°.
- a heat exchanger including: a first header, a second header and a plurality of the above-mentioned tube fin units.
- a plurality of the tube fin units are arranged side by side, and two adjacent tube fin units are arranged side by side.
- the wave segments protruding toward each other abut each other, one end of the plurality of tube fin units is connected to the first header, and the other end is connected to the second header.
- An air conditioner includes the above heat exchanger.
- Figure 1 is a schematic structural diagram of a heat exchanger according to an embodiment of the present application.
- FIG. 2 is a schematic structural diagram of multiple tube fin units of the heat exchanger shown in Figure 1;
- Figure 3 is a schematic diagram of the exploded structure of multiple tube-fin monomers shown in Figure 2;
- Figure 4 is a schematic structural diagram of the tube fin unit of the heat exchanger shown in Figure 1;
- Figure 5 is a schematic cross-sectional structural diagram along the line A-A in Figure 4.
- FIG. 6 is a schematic structural diagram of the heat exchanger in use according to an embodiment of the present application.
- 100-heat exchanger 1-tube fin unit, 11-base plate, 111-fin part, 112-flow channel part, 113-refrigerant channel, 12-air duct, 13-rising band, 14-descending band, 2-The first header, 21-the first inlet and outlet, 3-the second header, 31-the second inlet and outlet, 4-fan.
- the embodiment of the present application provides a tube-fin unit 1 , which can be used in a heat exchanger 100 .
- the tube-fin unit 1 is configured to include: a base sheet 11, which is a corrugated sheet, and the base sheet 11 includes alternately arranged fin portions 111 and flow channel portions 112.
- the flow channel The refrigerant passage 113 is provided in the portion 112 .
- the refrigerant channel 113 of the tube-fin unit 1 is used for the flow of refrigerant.
- the fin portions 111 alternately arranged with the flow channel portions 112 increase the contact area between the tube-fin unit 1 and the air, thereby improving the internal flow of the refrigerant channel 113. The heat exchange effect between the refrigerant and the air.
- the base sheet 11 is a corrugated sheet, and the base sheet 11 can be an integrally formed structure.
- the corrugated sheet has a rising wave band 13 and a falling wave band 14 (as shown in Figure 5).
- the rising wave band 13 and the falling wave band 14 are separated by a dividing line between the peak and the trough of the corrugated sheet (shown as a dotted line in Figure 5).
- the rising band is the band on the side where the wave peak is located
- the falling band is the band on the side where the wave trough is located.
- the wave bands protruding toward each other of two adjacent tube-fin units 1 are in contact with each other, that is, the rising wave band 13 of the corrugated sheet of one tube-fin unit 1 can be It is in contact with the descending band 14 of the corrugated sheet of another adjacent tube-fin unit 1 to limit the distance between the tube-fin units 1, that is, the tube-fin unit 1 is a self-supporting unit with a self-supporting function.
- the tube-fin unit avoids setting additional support structures or distance modules on the substrate 11 to limit the distance between the sheets, thereby simplifying the structure of the tube-fin unit 1 and enhancing the structural strength of the tube-fin unit 1, and also It meets the requirements of 3D metal printing manufacturing process and prevents the tube fin from breaking due to the lack of support structure between the individual tubes.
- the arrangement of the corrugated structure increases the degree of disturbance of the air passing between the tube-fin units 1, thereby enhancing the heat exchange capacity of the heat exchanger 100.
- the substrate 11 has an integrated structure, which simplifies the processing technology of the tube fin unit 1 and avoids the thermal resistance between the fin portion 111 and the flow channel portion 112 to improve the heat exchange efficiency of the heat exchanger 100 .
- the refrigerant channel 113 extends curvedly along a first direction (as shown by the double-headed arrow in FIG. 4 ). Since the base sheet 11 is a corrugated sheet, the refrigerant channel 113 extends along the first direction.
- the channel 113 is a curved channel as a whole.
- the first direction may be the direction of the connection line between multiple lowest points (or multiple highest points) of the same flow channel part 112; or, the first direction may also be understood as the direction of the tube-fin unit.
- the end of the body 1 (that is, the end of the flow channel portion 112) is set in the vertical direction when it is on a horizontal plane (or when 3D printing).
- the angle ⁇ between the corrugation direction of the corrugated sheet (the direction shown by arrow D in FIG. 4 ) and the first direction along which the refrigerant channel 113 extends is: 0° ⁇ 90°. In some embodiments, 30° ⁇ 60°, for example, the included angle ⁇ may be 35°, 40°, 45°, 50°, 55°, etc.
- the direction of the ripples is the direction of the straight line that is perpendicular to the straight line of each wave crest and passes through multiple wave crests; or, it is the direction of the straight line that is perpendicular to the straight line of each wave trough and passes through multiple wave troughs.
- the corrugated direction of the corrugated sheet that is, the propagation direction of the corrugated sheet, is perpendicular to the peak line or valley line of the corrugated sheet.
- the angle ⁇ between the corrugated sheet and the first direction along which the refrigerant channel 113 extends: 0° ⁇ 90°, that is, the corrugated direction of the corrugated sheet can be parallel to the first direction along which the refrigerant channel 113 extends ( ⁇ 0°), or the corrugated direction of the corrugated sheet can be inclined relative to the first direction along which the refrigerant channel 113 extends.
- the corrugations on the corrugated sheet are oblique corrugations, so that the substrate 11 with self-supporting function can be formed using a 3D metal printing process, avoiding the need for trouble during the printing process of the heat exchanger 100.
- Problems such as changes in the distance between the fin units 1 and breakage due to the lack of support between the tube fin units 1 ensure the heat exchange capacity, production efficiency and reliability of the heat exchanger 100.
- the length (maximum length) L of the corrugated sheet and the wavelength of the corrugated sheet (distance between two adjacent wave peaks or troughs) L The relationship between 2 is: 2 ⁇ L 2 ⁇ L 1 ⁇ 5 ⁇ L 2 .
- L 1 3 ⁇ L 2 or 3.5 ⁇ L 2 or 4 ⁇ L 2 or 4.5 ⁇ L 2 .
- L 1 and L 2 are not limited to the above and can be adjusted according to actual needs.
- L 1 is less than 2 ⁇ L 2
- L 1 is greater than 5 ⁇ L 2 .
- the value range of a single wavelength L 2 of the corrugated sheet is: 8mm ⁇ L 2 ⁇ 12mm, for example: the wavelength L 2 can be 8.5mm, 9mm, 9.5mm, 10mm, 10.5mm, 11mm, 11.5 mm etc. Based on 2 ⁇ L 2 ⁇ L 1 ⁇ 5 ⁇ L 2 , the value range of the length L 1 of the corrugated sheet can be: 16mm ⁇ L 1 ⁇ 60mm.
- the wave height (the height difference between the wave peak and the wave trough) H (as shown in Figure 5) of the corrugated sheet is: 0.8mm ⁇ H ⁇ 1.6mm.
- wave height H can be 0.9mm, 1.0mm, 1.1mm, 1.2mm, 1.3mm, 1.4mm, 1.5mm, etc.
- the values of length L 1 , wavelength L 2 , and wave height H are related to the flow cross-sectional area of the air channel 12 formed between two adjacent tube fin units 1 , that is, related to the wind resistance of the heat exchanger 100 . Therefore, The above-mentioned values of length L 1 , wavelength L 2 , and wave height H are beneficial to reducing the wind resistance of the heat exchanger 100 .
- the substrate 11 is an integrated structure formed by a 3D metal printing process.
- the substrate 11 can be made of heat exchange materials such as aluminum alloy and copper alloy.
- the flow channel part 112 and the fin part 111 in the tube-fin unit 1 are made by an integrated molding process. Compared with commonly used fin tube heat exchangers and micro-channel heat exchangers, expansion joints and welding processes are eliminated, and production efficiency is improved. , and avoid thermal resistance and improve heat exchange efficiency.
- the inner diameter (diameter) of the refrigerant channel 113 is no greater than 0.4 mm, and the thickness of the fin portion 111 is no greater than 0.4 mm.
- the thickness of the fin portion 111 of the tube-fin unit 1 can be set to 0.4mm or less. If the thickness is too thick, the wind resistance will be large and the cost will be high.
- the fin portion 111 should be thinner to reduce the wind resistance and ensure replacement. When the amount of heat is the same, the distance between adjacent tube-fin units 1 can be reduced, making the heat exchanger 100 more compact.
- the cross-section of the refrigerant channel 113 of the tube-fin unit 1 is a circular hole, and its inner diameter can be set to 0.4 mm or less. At this time, the refrigerant filling amount in the air conditioning system is reduced, and the inner diameter of the refrigerant channel 113 is small, and the wind resistance of the heat exchanger 100 will also decrease.
- the cross section of the refrigerant channel 113 on the tube fin unit 1 may be a circular hole or a hole in other shapes, such as an oval hole, etc.
- the inner diameter of the refrigerant channel 113 refers to the equivalent diameter of the refrigerant channel 113 .
- there are multiple fin portions 111 (such as five), and the two ends of the base plate 11 are perpendicular to the first direction along which the refrigerant channel 113 extends. They can all be fin portions 111 , and there is at least one (such as four) flow channel portion 112 .
- the fin portions 111 and the flow channel portions 112 are alternately arranged in the first direction perpendicular to the extension of the refrigerant channel 113 , and are adjacent to each other.
- the two fin portions 111 are separated by a channel portion 112 , so that the number of the channel portions 112 is one less than the number of the fin portions 111 .
- the plurality of flow channel portions 112 may be arranged at equal intervals.
- the thickness of the flow channel portion 112 is greater than the thickness of the fin portion 111 , so that the surface of the flow channel portion 112 protrudes from the surface of the fin portion 111 .
- the embodiment of the present application also provides a heat exchanger 100, including: a first header 2, a second header 3 and a plurality of tube-fin units 1.
- the plurality of tube-fin units 1 are arranged side by side, and the bands protruding toward each other of two adjacent tube-fin units 1 are in contact with each other.
- One end of the plurality of tube-fin units 1 is connected to the first header 2, and the other end is connected to the second header 2.
- Flow tube 3 connection is provided.
- the first header 2 is provided with a first inlet and outlet
- the second header 3 is provided with a second inlet and outlet.
- the first header 2 and the second header 3 are arranged oppositely, and a plurality of tube fin units 1 are arranged side by side between the first header 2 and the second header 3, and Both ends of the plurality of tube fin units 1 are connected to the first header 2 and the second header 3 respectively.
- the air conditioner including the heat exchanger 100 When the air conditioner including the heat exchanger 100 is running, the refrigerant enters the first header 2 from the first inlet and outlet 21, and then flows into the refrigerant channel 113 of each tube-fin unit 1 to evaporate or condense. , exchanges heat with the outside air, then flows into the second header 3 , and finally flows out from the second inlet and outlet 31 .
- the refrigerant can also flow in the reverse direction in the heat exchanger 100, that is, the refrigerant enters the second header 3 from the second inlet and outlet 31, and then is distributed and flows into the refrigerant channel 113 of each tube fin unit 1 to interact with the outside air.
- the heat is exchanged, then flows into the first header 2 , and finally flows out from the first inlet and outlet 21 .
- the wave bands protruding toward each other of two adjacent tube-fin monomers 1 are in contact with each other, that is, the rising wave band (such as wave peak or deviation) of the corrugated sheet of one tube-fin monomer 1
- the position of the wave peak is in contact with the descending band (such as the wave trough or the position deviating from the wave trough) of the corrugated sheet of the adjacent tube fin unit 1 to form support for the tube fin unit 1 and ensure that the two adjacent tube fin units
- the plate distance between 1 remains unchanged, improving the heat exchange capacity of the heat exchanger 100.
- two adjacent tube fin units 1 are arranged symmetrically about a symmetry line, which is parallel to the first direction along which the refrigerant channel 113 extends (see Figure 4 ).
- Multiple tube-fin units 1 arranged side by side have the same structure (including the same shape and size), but during assembly, two adjacent tube-fin units 1 are installed in opposite directions.
- the three tube fin units 1a, 1b, and 1c have the same structure and are arranged in sequence (only half of the structure of the upper and lower tube fin units 1a and 1c is shown in Figure 3) .
- the state of the tube fin unit 1b is as shown in Figure 3.
- the tube fin units 1a and 1c adjacent to the tube fin unit 1b can move along the refrigerant from the initial state (the same state as the tube fin unit 1b).
- the first direction along which the channel 113 extends is obtained by flipping it 180 degrees, so that after assembly to form a heat exchanger, the adjacent tube fin units 1a and 1b are about a line of symmetry (parallel to the line along which the refrigerant channel 113 extends).
- the adjacent tube fin units 1 b and 1 c are arranged symmetrically with respect to a symmetry line (parallel to the first direction along which the refrigerant channel 113 extends).
- the heat exchanger can be formed between the adjacent tube-fin units 1a and 1b.
- a contact point (support point) P1 is formed, and a contact point (support point) P2 is formed between the adjacent tube fin unit 1b and the tube fin unit 1c.
- the adjacent tube fin units 1 such as: There are support structures between the tube fin unit 1a and the tube fin unit 1b, and between the tube fin unit 1b and the tube fin unit 1c), which can meet the requirements of 3D metal printing manufacturing.
- the first header 2, the plurality of tube fin units 1 and the second header 3 are an integrated structure formed by a 3D metal printing process, and The fin portion 111 or the flow channel portion 112 of the tube fin unit 1 is provided in contact with the fin portion 111 or the flow channel portion 112 of the adjacent tube fin unit 1 .
- Both ends of the tube fin unit 1 are connected to the first header 2 and the second header 3 respectively, and the first header 2, multiple tube fin units 1 and the second header 3 are integrally 3D printed
- the method forms an integrated structure, which eliminates assembly steps and assembly errors of the heat exchanger 100, and is conducive to improving production efficiency and heat exchange effect.
- the contact point (support point) between two adjacent tube-fin units 1 can be: the fin portion 111 or the flow channel on one tube-fin unit 1
- the contact point between the fin portion 112 and the fin portion 111 or the flow channel portion 112 of another adjacent tube fin unit 1, that is, the contact point on the tube fin unit 1 can be staggered with the flow channel portion 112 or does not need to be staggered with the flow channel portion 112,
- the internal refrigerant channel 113 will not be deformed due to the contact support of the flow channel portion 112, thereby affecting the heat exchange effect of the refrigerant.
- the contact point (support point) P1 between the tube fin unit 1a and the tube fin unit 1b can be offset from the flow channel portion 112 on the tube fin unit 1a and the tube fin unit 1b, or there is no need to offset the tubes.
- the flow channel portion 112 on the fin unit 1a and the tube fin unit 1b; the contact point (support point) P2 between the tube fin unit 1b and the tube fin unit 1c can be offset from the tube fin unit 1b and the tube fin unit
- the flow channel portion 112 on 1c or the flow channel portion 112 on the tube fin unit 1b and the tube fin unit 1c do not need to be staggered, which will not cause the tube fin unit 1a, the tube fin unit 1b and the tube fin unit 1c to
- the refrigerant channel 113 is deformed.
- the first header 2 , the plurality of tube-fin units 1 and the second header 3 are in a split assembly structure, and one end of the plurality of tube-fin units 1 is connected to the first header. 2 is plugged in, the other end is plugged in with the second header 3, and the fin portions 111 of two adjacent tube fin units 1 are in contact.
- the first header 2 , the plurality of tube fin units 1 and the second header 3 may be in a split assembly structure, that is, the first header 2 , the plurality of tube fin units 1 and the second header 3 They can be manufactured and formed separately first (for example, multiple tube-fin units 1 can be formed separately through a 3D metal printing process), and then one end of the multiple tube-fin units 1 can be plugged into the first header 2, and the other end can be connected to the first header 2. It is plugged into the second header 3 to assemble to form the heat exchanger 100 . In the assembled heat exchanger 100, the rising band of the corrugated sheet of one tube-fin unit 1 offsets the falling band of the corrugated sheet of an adjacent tube-fin unit 1 to support the adjacent tube-fin unit 1.
- the contact point (support point) between two adjacent tube-fin units 1 is: the contact point between the fin portions 111 of the two adjacent tube-fin units 1, that is, on the tube-fin unit 1
- the contact points need to be staggered away from the flow channel portion 112 to avoid deformation of the internal refrigerant channel 113 due to the contact support of the flow channel portion 112 and affecting the heat exchange effect of the refrigerant.
- the tube fin unit 1, the first header 2 and the second header 3 can be made of heat exchange materials such as aluminum alloy and copper alloy.
- an air duct 12 is formed between two adjacent tube-fin units 1, and along the flow direction of the wind, the air duct 12 gradually slopes downward.
- An air duct 12 is formed between two adjacent tube-fin units 1.
- the corrugated structure on the tube-fin unit 1 can improve the degree of disturbance of the air flowing through the air duct 12, which is beneficial to improving the heat exchanger 100.
- Thermal capacity for example, compared to a heat exchanger including a flat plate tube-fin unit, the heat exchange efficiency can be increased by about 2%.
- the corrugations on the tube-fin unit 1 are oblique corrugations (i.e. 0° ⁇ 90°), and along the flow direction of the wind, the air duct 12 between two adjacent tube-fin units 1 follows the flow of the wind.
- the direction gradually slopes downward, so that under the action of the negative pressure of the fan 4, the air flow flows obliquely downward along the air duct 12 (the flow direction of the air flow is shown by the curved arrow in Figure 6).
- the heat exchanger 100 is acting as an evaporator. When the heat exchanger is in use, the wind force received by the liquid droplets or defrost water condensed on the surface of the fins has a component force in the direction of gravity, thereby improving the drainage performance of the heat exchanger 100.
- the arrangement of oblique corrugations lengthens the length of the air duct 12, which is beneficial to improving the heat exchange efficiency of the heat exchanger 100.
- the air duct 12 between two adjacent tube-fin units 1 can extend in the horizontal direction.
- the distance S between two adjacent tube-fin units 1 is: 1.2mm ⁇ S ⁇ 1.6mm.
- the film distance S can be: 1.3mm, 1.4mm, 1.5mm, etc.
- one tube-fin unit 1 is rotated 180 degrees along a center line parallel to the first direction (the direction along which the refrigerant channel 113 extends) to form an adjacent fin unit. , therefore, as shown in Figure 2, the two tube fin units 1a and 1c separated by one tube fin unit 1b are symmetrical, and the distance between the tube fin units 1a and 1c remains the same at different locations, so the sheet distance S can be It is set to half the distance between the tube fin units 1a and 1c.
- the spacing between the tube-fin units 1 can be determined based on the thickness of the fin portion 111, the number of refrigerant channels 113, the inner diameter of the refrigerant channels 113, etc.
- the appropriate spacing S can be selected without increasing wind resistance. For example, setting the distance S between adjacent tube-fin units 1 to 1.2mm-1.6mm can ensure that the heat exchange capacity of the heat exchanger 100 is improved and the wind resistance can be reduced.
- the distance between two adjacent abutment points (contact points) of two adjacent tube fin units 1 is no more than 7 cm (ie: the distance between two adjacent tube fin units 1 The distance between two adjacent contact points of 1 along the first direction is not greater than 7cm); and along the first direction, among the multiple contact points of two adjacent tube fin units 1, the one closest to the first header 2
- the distance between the contact point and the first header 2 is not more than 7cm
- the distance between the contact point close to the second header 3 and the second header 3 is not more than 7cm (that is: close to the first header 3
- the distance between the contact point of the tube 2 and the first header 2 along the first direction is no more than 7 cm
- the distance between the contact point close to the second header 3 and the second header 3 is no more than 7 cm).
- the tube fin unit 1 When 3D printing the heat exchanger 100, if the tube fin unit 1 is printed to a predetermined height and is still not in contact with the adjacent tube fin unit 1 for support, the tube fin unit 1 may fall over.
- the distance between two adjacent contact points of two adjacent tube fin units 1 along the first direction (that is, the vertical direction when 3D printing the heat exchanger), the distance between two adjacent contact points of two adjacent tube fin units 1 is not greater than 7cm, and the distance between them is not greater than 7cm.
- the distance between the contact point close to the first header 2 and the first header 2 is not more than 7cm
- the contact point close to the second header 3 is not more than 7cm.
- the distance to the second header 3 is not greater than 7cm, that is, the height difference between two adjacent contact points of two adjacent tube fin units 1 is not greater than 7cm.
- the height difference between the contact point near the first header 2 and the first header 2 is not more than 7cm, and the contact point between the two adjacent tube fin units 1 near the second header 3 and the second header 2 are not more than 7cm.
- the height difference between the headers 3 is not greater than 7cm.
- the wavelength L 2 and corrugation direction of the corrugated sheet of the tube-fin unit 1 can be limited to ensure that the height difference between two adjacent contact points of two adjacent tube-fin units 1 and the height difference between two adjacent tube-fin units 1
- the height difference between the contact point of the fin unit 1 close to the first header 2 and the first header 2, the contact point of the two adjacent tube fin units 1 close to the second header 3 and the height difference between The height difference between the two headers 3 is no more than 7cm, for example, it can be no more than 1cm, 2cm, 3cm, 4cm, 5cm, 6cm, etc.
- the wavelength L 2 of the corrugated sheet of the tube fin unit 1 is: 8 mm ⁇ L 2 ⁇ 12 mm
- the angle ⁇ between the corrugation direction of the corrugated sheet of the tube fin unit 1 and the first direction is: 0° ⁇ ⁇
- the thickness of the fin portion 111 is about 0.2mm
- the inner diameter of the refrigerant channel 113 is about 0.35mm
- the number of the refrigerant channels 113 is 4, and the distance S between the tube-fin units 1 is about 1.4mm.
- the heat exchanger 100 in the embodiment of the present application has a heat exchange efficiency increased by about 12% and a wind resistance reduced by about 8%.
- first header 2 and the second header 3 may be square tubes or other forms, such as round tubes.
- the heat exchange heat of the heat exchanger is proportional to the total heat transfer coefficient and the external heat exchange area of the tube (ie, the flow channel portion 112) under a constant heat exchange temperature difference.
- the heat transfer theory is as follows :
- Air side heat transfer coefficient h 0 (A p + ⁇ A f )/A 0 ⁇ h a (3)
- a 0 air side heat transfer area
- h w tube inner side (refrigerant side) heat transfer coefficient
- a p tube heat exchange area
- h a uncorrected tube outer heat transfer coefficient
- a pi refrigerant side heat exchange Area
- a f heat exchange area of fin part
- a co contact area between fin and tube
- eta fin efficiency
- h c contact conductivity between fin and tube
- ⁇ T temperature difference.
- An embodiment of the present application also provides an air conditioner, including the heat exchanger 100 of any of the above embodiments.
- the air conditioner includes an indoor unit and an outdoor unit, and the heat exchanger 100 can be installed in the indoor unit or the outdoor unit, or the heat exchanger 100 can be installed in both the indoor unit and the outdoor unit.
- connection can be a fixed connection, or it can be a removable connection.
- Detachable connection, or integral connection it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be internal communication between two elements.
- connection can be a fixed connection, or it can be a removable connection.
- first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
一种管翅单体、换热器和空调器,管翅单体包括基片,所述基片为波纹片,所述基片包括交替设置的翅片部和流道部,所述流道部内设有冷媒通道;所述冷媒通道沿第一方向弯曲延伸,所述波纹片的波纹方向与所述第一方向之间的夹角α为:0°≤α<90°。
Description
本文涉及但不限于空调设备领域,特别涉及但不限于一种管翅单体、一种换热器和一种空调器。
相关技术中,量产的翅片管换热器的铜管和翅片采用胀接的形式进行装配;量产的微通道换热器是采用扁管和翅片分开生产,组装后整体焊接进行装配。
翅片管换热器的铜管和翅片采用的胀接装配形式存在接触热阻,导致传热效率低;微通道换热器虽然采用焊接形式降低接触热阻,但扁管和翅片分开生产,装配焊接,工艺复杂,导致生产效率低、成本高。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
一种管翅单体,包括:基片,所述基片为波纹片,所述基片包括交替设置的翅片部和流道部,所述流道部内设有冷媒通道;
所述冷媒通道沿第一方向弯曲延伸,所述波纹片的波纹方向与所述第一方向之间的夹角α为:0°≤α<90°。
一种换热器,包括:第一集流管、第二集流管和多个上述管翅单体,多个所述管翅单体并列排布,相邻两个所述管翅单体的朝向彼此凸出的波段相互抵接,多个所述管翅单体的一端与所述第一集流管连接,另一端与所述第二集流管连接。
一种空调器,包括上述换热器。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为本申请一实施例所述的换热器的结构示意图;
图2为图1所示换热器的多个管翅单体的结构示意图;
图3为图2所示多个管翅单体的分解结构示意图;
图4为图1所示换热器的管翅单体的结构示意图;
图5为图4的A-A向剖视结构示意图;
图6为本申请一实施例所述的换热器的使用状态结构示意图。
附图标记为:
100-换热器,1-管翅单体,11-基片,111-翅片部,112-流道部,113-冷媒通道,12-风道,13-上升波段,14-下降波段,2-第一集流管,21-第一进出口,3-第二集流管,31-第二进出口,4-风机。
详述
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
另外,本申请不同实施例之间的技术方案可以相互结合,但是需以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
需要说明,本申请实施例中所有方向性指示(诸如上、下、前、后等)仅用于解释在某一特定姿态下不同部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
如图1所示,本申请实施例提供了一种管翅单体1,该管翅单体1可应用于换热器100中。
如图2-图4所示,该管翅单体1设置成包括:基片11,基片11为波纹片,且基片11包括交替设置的翅片部111和流道部112,流道部112内设有冷媒通道113。
管翅单体1的冷媒通道113用于冷媒流过,通过与流道部112交替设置的翅片部111,增大了管翅单体1与空气的接触面积,可提高冷媒通道113内流经的冷媒与空气的换热效果。
基片11为波纹片,且基片11可为一体成型结构。波纹片具有上升波段13和下降波段14(如图5所示),上升波段13和下降波段14被波纹片的波峰和波谷之间的分隔线(如图5中虚线所示)分隔开,上升波段为波峰所在一侧的波段,下降波段为波谷所在一侧的波段。
使得多个管翅单体1形成换热器100时,相邻两个管翅单体1的朝向彼此凸出的波段相互抵接,即一管翅单体1的波纹片的上升波段13可与相邻的另一管翅单体1的波纹片的下降波段14抵接,以对管翅单体1间的片距进行限定,即该管翅单体1为具有自支撑功能的自支撑管翅单体,避免在基片11上另外设置支撑结构或定距模块来对片距进行限定,简化了管翅单体1的结构,且增强了管翅单体1的结构强度,并且还满足3D金属打印制造工艺要求,防止管翅单体1间无支撑结构而出现折断现象。此外,波纹结构的设置,提高了对管翅单体1间通过的空气的扰流程度,使得换热器100的换热能力得到加强。
基片11为一体式结构,简化了管翅单体1的加工工艺,且避免了翅片部111与流道部112之间的热阻,以提高换热器100的换热效率。
一些示例性实施例中,如图4所示,冷媒通道113沿第一方向(如图4中的双向箭头所示)弯曲延伸,由于基片11为波纹片,因此沿第一方向延伸的冷媒通道113整体为弯曲通道。本申请实施例中,第一方向可以为同一个流道部112的多个最低点(或者多个最高点)之间的连线所在的方向;或者,第一方向也可以理解为管翅单体1的端部(即流道部112的端部)设置在水平面时(或在3D打印时)的竖直方向。
波纹片的波纹方向(如图4中箭头D所示的方向)与冷媒通道113延伸所沿的第一方向之间的夹角α为:0°≤α<90°。一些实施例中,30°≤α≤60°, 如:夹角α可为35°、40°、45°、50°、55°等。本申请实施例中,波纹方向为垂直于每个波峰所在直线,并经过多个波峰的直线所在的方向;或者,为垂直于每个波谷所在直线,并经过多个波谷的直线所在的方向。
波纹片的波纹方向即波纹的传播方向,与波纹片的峰线或谷线垂直,波纹片的波纹方向与冷媒通道113延伸所沿的第一方向之间的夹角α:0°≤α<90°,即波纹片的波纹方向可与冷媒通道113延伸所沿的第一方向平行(α=0°),或者,波纹片的波纹方向可相对于冷媒通道113延伸所沿的第一方向倾斜设置(0°<α<90°),即波纹片上的波纹为斜波纹,使得该具有自支撑功能的基片11可采用3D金属打印工艺成型,避免了在换热器100的打印过程中管翅单体1间的距离发生变化、以及因管翅单体1间无支撑而发生折断等问题,进而确保了换热器100的换热能力、生产效率及可靠性。
一些示例性实施例中,如图5所示,沿着波纹片的波纹方向,波纹片的长度(最大长度)L
1与波纹片的波长(相邻两个波峰或波谷之间的距离)L
2之间的关系为:2×L
2≤L
1≤5×L
2。如:L
1=3×L
2或3.5×L
2或4×L
2或4.5×L
2。
2×L
2≤L
1≤5×L
2,即在基片11上,存在至少2个完整的波形,至多5个完整的波形,兼顾了管翅单体1的3D金属打印制造工艺要求以及自支撑功能。
当然,L
1、L
2之间的关系不限于上述,可以根据实际需要进行调整,如L
1小于2×L
2,或者L
1大于5×L
2。
一些示例性实施例中,波纹片的单个波长L
2的取值范围为:8mm≤L
2≤12mm,如:波长L
2可为8.5mm、9mm、9.5mm、10mm、10.5mm、11mm、11.5mm等。基于2×L
2≤L
1≤5×L
2,波纹片的长度L
1的取值范围可为:16mm≤L
1≤60mm。
一些示例性实施例中,波纹片的波高(波峰与波谷之间的高度差)H(如图5所示)为:0.8mm≤H≤1.6mm。如:波高H可为0.9mm、1.0mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm等。
长度L
1、波长L
2、波高H的取值,与相邻两个管翅单体1之间形成的风道12的通流截面积有关,即与换热器100的风阻有关,因此,长度L
1、波长L
2、波高H的上述取值,有利于降低换热器100的风阻。
当然,长度L
1、波长L
2、波高H的取值范围不限于上述,可以根据实际需要进行调整。
一些示例性实施例中,基片11为3D金属打印工艺成型的一体成型结构。其中,基片11可采用铝合金、铜合金等换热材料制作。
管翅单体1中流道部112和翅片部111采用一体成型工艺制作,与常用的翅片管换热器和微通道换热器相比,免去胀接和焊接工艺流程,生产效率提高,且避免了热阻,提高了换热效率。
一些示例性实施例中,冷媒通道113的内径(直径)不大于0.4mm,翅片部111的厚度为不大于0.4mm。
管翅单体1的翅片部111的厚度可设置为0.4mm及以下,片厚太厚,风阻较大且成本较高;翅片部111采用较薄的厚度,使风阻降低,在保证换热量相同的情况下,相邻管翅单体1之间的片距可以缩小,使换热器100更加紧凑。管翅单体1的冷媒通道113的截面为圆形孔,其内径可设置为0.4mm及以下,此时空调系统中冷媒灌注量降低,且冷媒通道113的内径小,换热器100的风阻也会降低。
应当理解,管翅单体1上的冷媒通道113的截面可以是圆形孔或者其他形状的孔,如椭圆形孔等。在管翅单体1上的冷媒通道113的截面为非圆形孔的情况下,冷媒通道113的内径指冷媒通道113的等效直径。
一些示例性实施例中,如图2-图4所示,翅片部111设有多个(如五个),且基片11在垂直于冷媒通道113延伸所沿的第一方向的两端可均为翅片部111,流道部112设有至少一个(如四个),翅片部111与流道部112在垂直于冷媒通道113延伸所沿的第一方向上交替布置,相邻两个翅片部111会被一流道部112分隔开,使得流道部112的数量比翅片部111的数量少一个。设有多个流道部112的情况下,多个流道部112可等间隔布置。流道部112的厚度大于翅片部111的厚度,使得流道部112的表面突出翅片部111的表面。
如图1所示,本申请实施例还提供了一种换热器100,包括:第一集流管2、第二集流管3和多个管翅单体1,多个管翅单体1并列排布,且相邻两个管翅单体1的朝向彼此凸出的波段相互抵接,多个管翅单体1的一端与第 一集流管2连接,另一端与第二集流管3连接。其中,第一集流管2设有第一进出口,第二集流管3设有第二进出口。
该换热器100中,第一集流管2和第二集流管3相对设置,多个管翅单体1并列设置在第一集流管2和第二集流管3之间,且多个管翅单体1的两端均分别与第一集流管2和第二集流管3连接。在包括有该换热器100的空调器运行时,冷媒自第一进出口21进入第一集流管2,然后分配流动进每个管翅单体1的冷媒通道113内,进行蒸发或者冷凝,与外部空气进行热量交换,然后流入第二集流管3,最终自第二进出口31流出。冷媒在换热器100中还可反向流动,即冷媒自第二进出口31进入第二集流管3,然后分配流动进每个管翅单体1的冷媒通道113内,与外部空气进行热量交换,然后流入第一集流管2,最终自第一进出口21流出。
并列设置的多个管翅单体1中,相邻两个管翅单体1的朝向彼此凸出的波段相互抵接,即一管翅单体1的波纹片的上升波段(如波峰或偏离波峰的位置)与相邻的管翅单体1的波纹片的下降波段(如波谷或偏离波谷的位置)接触,以形成对管翅单体1的支撑,保证相邻两个管翅单体1之间的片距不变,提升换热器100的换热能力。
一些示例性实施例中,相邻两个管翅单体1关于一对称线对称设置,该对称线平行于冷媒通道113延伸所沿的第一方向(见图4)。
并列设置的多个管翅单体1的结构相同(包括形状相同和尺寸相同),但是在装配时,相邻两个管翅单体1之间反向安装。具体而言,如图3所示,三个管翅单体1a、1b、1c的结构相同,并且依次设置(图3中仅示出了上下两个管翅单体1a和1c的一半结构)。其中,管翅单体1b的状态如图3中所示,与管翅单体1b相邻的管翅单体1a和1c可由初始状态(与管翅单体1b所示的状态相同)沿冷媒通道113延伸所沿的第一方向翻转180度获得,使得装配形成换热器后,相邻的管翅单体1a和管翅单体1b关于一对称线(平行于冷媒通道113延伸所沿的第一方向)对称设置,相邻的管翅单体1b和管翅单体1c之间关于一对称线(平行于冷媒通道113延伸所沿的第一方向)对称设置。
如图2所示(仅示出了上下两个管翅单体1a和1c的一半结构),装配 形成换热器后,可在相邻的管翅单体1a和管翅单体1b之间形成接触点(支撑点)P1,在相邻的管翅单体1b和管翅单体1c之间形成接触点(支撑点)P2,此时,相邻管翅单体1之间(如:管翅单体1a和管翅单体1b之间、管翅单体1b和管翅单体1c之间)均具有支撑结构,能够满足3D金属打印制造要求。
一些示例性实施例中,如图1和图2所示,第一集流管2、多个管翅单体1和第二集流管3为通过3D金属打印工艺成型的一体式结构,且管翅单体1的翅片部111或流道部112设置成与相邻管翅单体1的翅片部111或流道部112接触。
管翅单体1两端分别与第一集流管2和第二集流管3相连,且第一集流管2、多个管翅单体1和第二集流管3采用整体3D打印方式形成一体式结构,省去了换热器100的装配步骤和装配误差,且有利于提高生产效率和换热效果。由于换热器100整体采用3D打印方式成型,因此,相邻两个管翅单体1之间的接触点(支撑点)可为:一个管翅单体1上的翅片部111或流道部112与相邻另一个管翅单体1的翅片部111或流道部112的接触点,即管翅单体1上的接触点可错开流道部112或者无需错开流道部112,不会因流道部112的接触支撑造成内部的冷媒通道113变形,影响冷媒的换热效果。如图2所示,管翅单体1a和管翅单体1b之间的接触点(支撑点)P1可错开管翅单体1a和管翅单体1b上的流道部112或者无需错开管翅单体1a和管翅单体1b上的流道部112;管翅单体1b和管翅单体1c之间的接触点(支撑点)P2可错开管翅单体1b和管翅单体1c上的流道部112或者无需错开管翅单体1b和管翅单体1c上的流道部112,均不会造成管翅单体1a、管翅单体1b和管翅单体1c上的冷媒通道113变形。
另一些示例性实施例中,第一集流管2、多个管翅单体1和第二集流管3为分体式装配结构,多个管翅单体1的一端与第一集流管2插接,另一端与第二集流管3插接,且相邻两个管翅单体1的翅片部111接触。
第一集流管2、多个管翅单体1和第二集流管3可以为分体式装配结构,即第一集流管2、多个管翅单体1和第二集流管3可以先分别制造成型(如:多个管翅单体1可以先分别通过3D金属打印工艺成型),然后再将多个管 翅单体1的一端与第一集流管2插接,另一端与第二集流管3插接,以装配形成换热器100。装配成型的换热器100中,一个管翅单体1的波纹片的上升波段与相邻一个管翅单体1的波纹片的下降波段相抵,以对相邻管翅单体1进行支撑。此时,相邻两个管翅单体1之间的接触点(支撑点)为:相邻两个管翅单体1的翅片部111之间的接触点,即管翅单体1上的接触点需错开流道部112,避免因流道部112的接触支撑造成内部的冷媒通道113变形,影响冷媒的换热效果。
一些示例性实施例中,管翅单体1、第一集流管2和第二集流管3可采用铝合金、铜合金等换热材料制作。
一些示例性实施例中,如图6所示,相邻两个管翅单体1之间形成风道12,且沿着风的流动方向,风道12逐渐向下倾斜。
相邻两个管翅单体1之间形成风道12,管翅单体1上的波纹结构可提高对风道12内流经的空气的扰流程度,有利于提高换热器100的换热能力,如相对于包括平片式的管翅单体的换热器,换热效率能提高约2%。
管翅单体1上的波纹为斜波纹(即0°<α<90°),且沿着风的流动方向,相邻两个管翅单体1之间的风道12沿着风的流动方向逐渐向下倾斜,使得在风机4负压的作用下,气流沿着风道12斜向下流动(气流的流动方向如图6中的曲线箭头所示),该换热器100在作为蒸发器使用时,使在翅片表面凝结的液滴或者化霜水受到的风力在重力方向有个分力,提高换热器100的排水性能。此外,斜波纹的设置,使得风道12的长度加长,有利于提高换热器100的换热效率。
管翅单体1上的波纹为非斜波纹(即α=0°)时,相邻两个管翅单体1之间的风道12可沿水平方向延伸。
一些示例性实施例中,相邻两个管翅单体1之间的片距S为:1.2mm≤S≤1.6mm。如:片距S可为:1.3mm、1.4mm、1.5mm等。
相邻两个管翅单体1之间的关系为:一管翅单体1沿平行于第一方向(冷媒通道113延伸所沿的方向)的中心线旋转180度形成相邻翅片单体,因此,如图2所示,间隔一个管翅单体1b的两个管翅单体1a、1c对称,管翅单体1a、1c之间的距离在不同部位保持相同,因此片距S可设置为管翅单体1a、 1c之间的距离的一半。
管翅单体1之间的片距可根据翅片部111的厚度、冷媒通道113的数量、冷媒通道113的内径等确定,可在保证风阻不增加的情况下,选择合适的片距S。如:将相邻管翅单体1之间的片距S设置为1.2mm-1.6mm,能够保证提高换热器100的换热能力,还能降低风阻。
一些示例性实施例中,沿第一方向,相邻两个管翅单体1的相邻两个抵接点(接触点)之间的距离不大于7cm(即:相邻两个管翅单体1的相邻两个抵接点之间沿第一方向的距离不大于7cm);且沿第一方向,相邻两个管翅单体1的多个抵接点中,靠近第一集流管2的抵接点与第一集流管2之间的距离不大于7cm,靠近第二集流管3的抵接点与第二集流管3之间的距离不大于7cm(即:靠近第一集流管2的抵接点与第一集流管2之间沿第一方向的距离不大于7cm,靠近第二集流管3的抵接点与第二集流管3之间的距离不大于7cm)。
在3D打印换热器100时,若管翅单体1打印到预定高度时仍没有与相邻管翅单体1接触进行支撑,则管翅单体1可能会发生倾倒。本申请实施例中,沿第一方向(即3D打印换热器时的竖直方向),相邻两个管翅单体1的相邻两个抵接点之间的距离不大于7cm,且相邻两个管翅单体1的多个抵接点中,靠近第一集流管2的抵接点与第一集流管2之间的距离不大于7cm,靠近第二集流管3的抵接点与第二集流管3之间的距离不大于7cm,即相邻两个管翅单体1的相邻两个接触点之间的高度差不大于7cm,相邻两个管翅单体1的靠近第一集流管2的接触点与第一集流管2之间的高度差不大于7cm,相邻两个管翅单体1的靠近第二集流管3的接触点与第二集流管3之间的高度差不大于7cm。如此设置,可保证在3D打印换热器100时,管翅单体1不会发生倾倒,且还可保证换热器100在使用过程中管翅单体1不会发生倾倒。
可通过对管翅单体1的波纹片的波长L
2、波纹方向进行限定,以保证相邻两个管翅单体1的相邻两个接触点之间的高度差、相邻两个管翅单体1的靠近第一集流管2的接触点与第一集流管2之间的高度差、相邻两个管翅单体1的靠近第二集流管3的接触点与第二集流管3之间的高度差不大于7cm, 如可不大于1cm、2cm、3cm、4cm、5cm、6cm等。其中,管翅单体1的波纹片的波长L
2为:8mm≤L
2≤12mm,管翅单体1的波纹片的波纹方向与第一方向之间的夹角α为:0°≤α<90°时,可确保相邻两个管翅单体1的相邻两个接触点之间的高度差、相邻两个管翅单体1的靠近第一集流管2的接触点与第一集流管2之间的高度差、相邻两个管翅单体1的靠近第二集流管3的接触点与第二集流管3之间的高度差不大于7cm。
在一实施例中,翅片部111的厚度约为0.2mm,冷媒通道113的内径约为0.35mm,冷媒通道113的数量为4,管翅单体1之间的片距S约为1.4mm。本申请实施例的换热器100,相比于量产的翅片管换热器,换热效率提升约12%,风阻降低约8%。
一些示例性实施例中,第一集流管2和第二集流管3可采用方管或其他形式,如:圆管等。
本申请实施例的换热器100,换热器的换热量在等换热温差下,与总传热系数和管(即流道部112)外换热面积成正比,传热学理论如下:
换热量Q=K·A
0·ΔT (1)
空气侧换热系数h
0=(A
p+η·A
f)/A
0×h
a (3)
其中,A
0:空气侧换热面积;h
w:管内侧(冷媒侧)换热系数;A
p:管换热面积;h
a:未修正管外侧换热系数;A
pi:冷媒侧换热面积;A
f:翅片部分换热面积;A
co:翅片与管的接触面积;η:翅片效率;h
c:翅片与管的接触传导率;ΔT:温度差。
公式(2)中,
为翅片与管的接触热阻,接触热阻越大,总传热系数K越小,换热量越低;本申请实施例中,管翅单体1中的流道部112与翅片部111是一体成型设计,无接触热阻,因此,总传热系数K增大;公式(3)中,翅片效率η越大,空气侧换热系数h
0越大,总传热系数K越大,换热器的换热量越高,本申请实施例中,翅片部效率η约为1,其它翅片管换热器约为0.8-0.9,因此本申请实施例的换热器100的换热能力得到加强。
本申请实施例还提供了一种空调器,包括上述任一实施例的换热器100。
其中,空调器包括室内机和室外机,换热器100可设置在室内机或室外机中,或者,室内机和室外机中均设有换热器100。
在本文的描述中,需要说明的是,术语“一侧”、“另一侧”、“一端”、“另一端”、“侧边”、“相对”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本文和简化描述,而不是指示或暗示所指的结构具有特定的方位、以特定的方位构造和操作,因此不能理解为对本文的限制。
在本文的描述中,需要说明的是,术语“多个”指两个或更多个。
在本申请实施例的描述中,除非另有明确的规定和限定,术语“连接”、“固定”、“安装”等应做广义理解,例如,“连接”可以是固定连接,或者可以是可拆卸连接,或一体地连接;可以是直接相连,或者可以通过中间媒介间接相连,或者可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本文中的具体含义。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
在本申请的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
虽然本文所揭露的实施方式如上,但所述的内容仅为便于理解本文而采用的实施方式,并非用以限定本文。任何本文所属领域内的技术人员,在不脱离本文所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本文的专利保护范围,仍须以所附的权利要求书所界定为准。
Claims (14)
- 一种管翅单体,包括基片,所述基片为波纹片,所述基片包括交替设置的翅片部和流道部,所述流道部内设有冷媒通道;所述冷媒通道沿第一方向弯曲延伸,所述波纹片的波纹方向与所述第一方向之间的夹角α为:0°≤α<90°。
- 根据权利要求1所述的管翅单体,其中,30°≤α≤60°。
- 根据权利要求1或2所述的管翅单体,其中,沿着所述波纹片的波纹方向,所述波纹片的长度L1与单个波长L2之间的关系为:2×L2≤L1≤5×L2。
- 根据权利要求3所述的管翅单体,其中,8mm≤L2≤12mm。
- 根据权利要求1或2所述的管翅单体,其中,所述波纹片的波高H为:0.8mm≤H≤1.6mm。
- 根据权利要求1或2所述的管翅单体,其中,所述基片为3D金属打印工艺成型的一体成型结构。
- 根据权利要求1或2所述的管翅单体,其中,所述冷媒通道的内径不大于0.4mm,所述翅片部的厚度为不大于0.4mm。
- 一种换热器,包括:第一集流管、第二集流管和多个权利要求1至7中任一项所述的管翅单体,多个所述管翅单体并列排布,相邻两个所述管翅单体的朝向彼此凸出的波段相互抵接,多个所述管翅单体的一端与所述第一集流管连接,另一端与所述第二集流管连接。
- 根据权利要求8所述的换热器,其中,相邻两个所述管翅单体关于一对称线对称设置,所述对称线平行于所述冷媒通道延伸所沿的第一方向。
- 根据权利要求8所述的换热器,其中,所述第一集流管、多个所述管翅单体和所述第二集流管为通过3D金属打印工艺成型的一体式结构,且所述管翅单体的翅片部或流道部设置成与相邻所述管翅单体的翅片部或流道部接触;或者所述第一集流管、多个所述管翅单体和所述第二集流管为分体式装配结构,多个所述管翅单体的一端与所述第一集流管插接,另一端与所述第二集 流管插接,且相邻两个所述管翅单体的翅片部接触。
- 根据权利要求8至10中任一项所述的换热器,其中,相邻两个所述管翅单体之间形成风道,且沿着风的流动方向,所述风道逐渐向下倾斜。
- 根据权利要求8至10中任一项所述的换热器,其中,相邻两个所述管翅单体之间的片距S为:1.2mm≤S≤1.6mm。
- 根据权利要求8至10中任一项所述的换热器,其中,沿所述第一方向,相邻两个所述管翅单体的相邻两个抵接点之间的距离不大于7cm;沿所述第一方向,相邻两个所述管翅单体的多个抵接点中,靠近所述第一集流管的抵接点与所述第一集流管之间的距离不大于7cm,靠近所述第二集流管的抵接点与所述第二集流管之间的距离不大于7cm。
- 一种空调器,包括权利要求8至13中任一项所述的换热器。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202221826256.4 | 2022-07-14 | ||
CN202210834568.8A CN117433350A (zh) | 2022-07-14 | 2022-07-14 | 一种管翅单体、换热器和空调器 |
CN202210834568.8 | 2022-07-14 | ||
CN202221826256.4U CN217716083U (zh) | 2022-07-14 | 2022-07-14 | 一种管翅单体、换热器和空调器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024011743A1 true WO2024011743A1 (zh) | 2024-01-18 |
Family
ID=89535342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/118193 WO2024011743A1 (zh) | 2022-07-14 | 2022-09-09 | 一种管翅单体、换热器和空调器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024011743A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105890399A (zh) * | 2014-10-31 | 2016-08-24 | 丹佛斯微通道换热器(嘉兴)有限公司 | 换热器 |
US20190049186A1 (en) * | 2016-03-16 | 2019-02-14 | Mitsubishi Electric Corporation | Finless heat exchanger, outdoor unit of an air-conditioning apparatus including the finless heat exchanger, and indoor unit of an air-conditioning apparatus including the finless heat exchanger |
CN109900144A (zh) * | 2017-12-08 | 2019-06-18 | 丹佛斯微通道换热器(嘉兴)有限公司 | 换热器和具有该换热器的换热装置 |
CN110736268A (zh) * | 2019-11-27 | 2020-01-31 | 广东美的制冷设备有限公司 | 换热器和具有其的空调器 |
CN111829362A (zh) * | 2019-10-08 | 2020-10-27 | 浙江三花智能控制股份有限公司 | 换热器 |
CN215984167U (zh) * | 2021-09-28 | 2022-03-08 | 广东美的制冷设备有限公司 | 一种管翅单体、换热器及空调器 |
-
2022
- 2022-09-09 WO PCT/CN2022/118193 patent/WO2024011743A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105890399A (zh) * | 2014-10-31 | 2016-08-24 | 丹佛斯微通道换热器(嘉兴)有限公司 | 换热器 |
US20190049186A1 (en) * | 2016-03-16 | 2019-02-14 | Mitsubishi Electric Corporation | Finless heat exchanger, outdoor unit of an air-conditioning apparatus including the finless heat exchanger, and indoor unit of an air-conditioning apparatus including the finless heat exchanger |
CN109900144A (zh) * | 2017-12-08 | 2019-06-18 | 丹佛斯微通道换热器(嘉兴)有限公司 | 换热器和具有该换热器的换热装置 |
CN111829362A (zh) * | 2019-10-08 | 2020-10-27 | 浙江三花智能控制股份有限公司 | 换热器 |
CN110736268A (zh) * | 2019-11-27 | 2020-01-31 | 广东美的制冷设备有限公司 | 换热器和具有其的空调器 |
CN215984167U (zh) * | 2021-09-28 | 2022-03-08 | 广东美的制冷设备有限公司 | 一种管翅单体、换热器及空调器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6289981B1 (en) | Multi-bored flat tube for use in a heat exchanger and heat exchanger including said tubes | |
WO2019218429A1 (zh) | 换热器及换热设备 | |
JPH04177091A (ja) | 熱交換器 | |
CN211855020U (zh) | 换热管和具有其的换热器 | |
WO2024011743A1 (zh) | 一种管翅单体、换热器和空调器 | |
US12007178B2 (en) | Heat exchanger | |
WO2018041138A1 (zh) | 翅片和具有该翅片的换热器 | |
CN111829363B (zh) | 换热器 | |
WO2023185343A1 (zh) | 换热器 | |
CN217716083U (zh) | 一种管翅单体、换热器和空调器 | |
WO2022262562A1 (zh) | 换热器 | |
CN116294703A (zh) | 一种翅片管式换热器 | |
CN212205727U (zh) | 换热器 | |
JPS59125395A (ja) | 熱交換器用管の製造法 | |
CN210688819U (zh) | 换热器和具有其的空调器 | |
CN117433350A (zh) | 一种管翅单体、换热器和空调器 | |
CN210688818U (zh) | 换热器和具有其的空调器 | |
CN210861814U (zh) | 换热器和具有其的空调器 | |
WO2014029216A1 (zh) | 一种微通道换热器 | |
CN111829362A (zh) | 换热器 | |
CN217716082U (zh) | 一种管翅单体、换热器和空调器 | |
CN110595112A (zh) | 换热器和具有其的空调器 | |
CN111829364A (zh) | 换热器 | |
CN111256393A (zh) | 翅片及换热器 | |
CN111721036A (zh) | 换热器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22950854 Country of ref document: EP Kind code of ref document: A1 |