WO2016065759A1 - 邻区列表优化方法及装置 - Google Patents

邻区列表优化方法及装置 Download PDF

Info

Publication number
WO2016065759A1
WO2016065759A1 PCT/CN2015/072007 CN2015072007W WO2016065759A1 WO 2016065759 A1 WO2016065759 A1 WO 2016065759A1 CN 2015072007 W CN2015072007 W CN 2015072007W WO 2016065759 A1 WO2016065759 A1 WO 2016065759A1
Authority
WO
WIPO (PCT)
Prior art keywords
neighboring
base station
neighboring cell
cell
data
Prior art date
Application number
PCT/CN2015/072007
Other languages
English (en)
French (fr)
Inventor
宋柏森
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016065759A1 publication Critical patent/WO2016065759A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention relates to the field of communications, and in particular to a neighbor list optimization method and apparatus.
  • the terminal user Due to factors such as the coverage of the cell, when the terminal user leaves the coverage of the serving cell or reaches the edge region where the signal of the serving cell is weak, the terminal user needs to switch to the neighboring area with strong peripheral signals to continue to maintain the service. . If the current serving cell of the terminal user is not configured with a reasonable neighboring cell, the terminal user will generate a call drop behavior due to the handover failure or the weak signal of the serving cell, which will seriously affect the user's service satisfaction.
  • LTE Long Term Evolution
  • the LTE network is not able to provide complete coverage. Therefore, it is necessary to use the original 2G network and the 3G network to ensure the user's communication service. Therefore, when the user leaves the primary serving cell of the LTE, it may be necessary to switch to the 2G network or the 3G network to continue to maintain the network service for the user. Therefore, for the LTE serving cell to be configured with a reasonable inter-frequency different system neighboring cell, the user can complete the neighboring cell handover of the inter-frequency different system to ensure the call quality.
  • Mode 1 uses the LTE inter-frequency system neighboring area planning algorithm to perform pre-planning.
  • the neighboring area planning algorithm uses the LTE inter-frequency system neighboring area planning algorithm to perform pre-planning.
  • the neighboring area switching of the inter-frequency system of the LTE user in the early stage of the network can be ensured, and the communication service of the LTE user is completed.
  • the planning algorithm is carried out under ideal conditions, it does not take into account the influence of factors such as large-scale fading or weak coverage caused by building occlusion in the actual networking.
  • the neighboring area planning algorithm may be unreasonable to use the neighboring area planning algorithm to plan some of the neighboring systems within the system or between the systems.
  • the second method is an automatic optimization method for the LTE automatic neighborhood matching (ANR) neighboring area implemented by the 3GPP through the X2 interface.
  • ANR LTE automatic neighborhood matching
  • This method completes the self-optimization of the neighboring cell by signaling analysis reported by the UE.
  • this solution has the following disadvantages: First, this solution can only implement neighbor cell optimization in the LTE system, and cannot achieve neighbor cell optimization between LTE systems. Secondly, the scheme needs to rely on the physical layer identifier (PCI) of the cell. Only when the PCI of the cell does not conflict or be confused, can the optimization result of the neighboring area be reasonable and correct. Therefore, mode 2 cannot well complete the neighbor cell optimization of the LTE different-frequency system.
  • PCI physical layer identifier
  • this method simply counts the proportion of MRs in all neighboring cells in the grid, and does not divide the data according to the system. The result of this optimization will not consider that the network characteristics of the different-frequency system will miss many neighbors. Moreover, it is only the proportion of pure statistical MR, and does not take into account the direct geographical location and switching relationship of the community. Therefore, the existing method is not applicable to the neighboring area optimization requirement of the current LTE inter-frequency different system.
  • the present invention provides a neighboring list optimization method and apparatus, so as to at least solve the problem that the neighboring area optimization accuracy in the related art is low.
  • a neighboring cell list optimization method including: using, by a base station, handover data of one or more first neighboring cells sent by a terminal, and field strength of one or more first neighboring cells sent by a terminal Data, pre-stored latitude and longitude data of the base station and one or more first neighboring cells, pre-stored relative angle values between the base station and one or more first neighboring cells are determined for performing neighboring ordering a neighboring cell ranking weight; and optimizing a neighboring cell list of the base station according to the neighboring cell ranking weight.
  • optimizing the neighboring cell list of the base station according to the neighboring cell ranking weight value comprises: determining, according to the determined neighbor cell ranking weight, whether the first neighboring cell is in a neighboring cell ranking of the base station Within the threshold; if the determination result is yes, the first neighboring area is added to the neighboring cell list of the base station; and/or, if the determination result is no, the first neighbor is rejected The zone is added to the neighbor list of the base station.
  • the method before determining the neighboring cell ranking weights for performing the neighboring cell ranking, the method further includes: determining, according to the handover data and the field strength data of the first neighboring cell sent by the terminal, the neighboring cell list in the base station
  • the second neighboring area is a redundant neighboring area; the second neighboring area in the neighboring area list is deleted.
  • determining, according to the handover data and the field strength data of the first neighboring cell, the second neighboring cell in the neighboring cell list of the base station is a redundant neighboring cell, including: determining the second neighboring cell Whether it exists in the handover data and the field strength data of the first neighboring cell; if the determination result is no, the second neighboring cell is determined to be a redundant neighboring cell.
  • the method further includes: sorting the first neighboring cells according to the frequency and the system of the first neighboring cell.
  • the switching data, the field strength data, the latitude and longitude data of the base station and the first neighboring area, and the relative angle between the base station and the first neighboring area stored in advance are utilized.
  • the value determining the neighboring ranking weights for performing the neighboring ordering includes: determining the neighboring ranking weights by using the following formula: Wherein, K1, K2, K3, and K4 are weighting coefficients of the terminal, and the value ranges from: [0 to 1], and Cmax is the maximum field strength signal ranking, and the value ranges are: 1 ⁇ Cmax, and Ci is a field.
  • the value range is: [1, C max)
  • R is the number of occurrences of K-field strength samples in the neighboring area
  • the value range is: 1 ⁇ R
  • N is the total number of field strength samples of the base station
  • the value range is: R ⁇ N
  • H max is the maximum switching rank
  • the value range is: 1 ⁇ H max
  • Hi is the switching rank of the neighboring zone K
  • the value range is: [1, H max)
  • T is the number of neighboring K switching occurrences.
  • the value ranges from 1 to T, where M is the total number of samples to be switched by the base station.
  • T ⁇ M is the distance between the base station P and the neighboring area K.
  • the value ranges from Distencepk ⁇ 0 to Angle1.
  • the angle between the base station orientation angle P vector and the PK vector of the base station and the neighboring cell connection, the value range is: [0, 180°]
  • Angle2 is the neighboring direction angle K vector, and the neighboring area is connected with the base station KP.
  • the angle between the vectors is in the range of [0,180°].
  • a neighboring cell list optimization device is provided.
  • the neighboring cell list optimization device is applied to a base station, and includes: a first determining module configured to use one or more first neighbors sent by the terminal Switching data of the zone, field strength data of one or more first neighboring cells transmitted by the terminal, pre-stored latitude and longitude data of the base station and one or more first neighboring cells, the base station and one or more stored in advance
  • the relative angle value between the first neighboring cells determines the neighboring cell ranking weights for performing the neighboring cell ranking
  • the optimization module is configured to optimize the neighboring cell list of the base station according to the neighboring cell ranking weights.
  • the optimization module includes: a first determining unit, configured to determine, according to the determined neighboring ranking weight, whether the first neighboring cell is within a predetermined threshold in a neighboring cell ranking of the base station; And, if the determination result is yes, adding the first neighboring cell to the neighboring cell list of the base station; and/or, the rejecting unit is set to reject the case if the determination result is negative.
  • the first neighboring cell is added to the neighboring cell list of the base station.
  • the second determining module includes: a second determining unit, configured to determine whether the second neighboring cell exists in the switching data and the field strength data of the first neighboring cell; and the determining unit is configured to determine If the result is no, the second neighboring cell is determined to be a redundant neighboring cell.
  • the neighboring list optimization device further includes: a sorting module, configured to sort the first neighboring cells according to a frequency point and a format of the first neighboring cell.
  • a sorting module configured to sort the first neighboring cells according to a frequency point and a format of the first neighboring cell.
  • the neighboring ranking weight is determined in the first determining module by using the following formula: Wherein, K1, K2, K3, and K4 are weighting coefficients of the terminal, and the value ranges from: [0 to 1], and Cmax is the maximum field strength signal ranking, and the value ranges are: 1 ⁇ Cmax, and Ci is a field.
  • the value ranges from Distencepk ⁇ 0 to Angle1.
  • the angle between the base station orientation angle P vector and the PK vector of the base station and the neighboring cell connection, the value range is: [0, 180°]
  • Angle2 is the neighboring direction angle K vector, and the neighboring area is connected with the base station KP.
  • the angle between the vectors is in the range of [0,180°].
  • FIG. 1 is a flowchart of a neighbor list optimization method according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a second determining module 42 in a neighbor list optimization apparatus according to an embodiment of the present invention
  • FIG. 6 is a block diagram 2 of a preferred structure of a neighbor list optimization device according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a method for optimizing a neighboring cell of an LTE different-frequency system according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a neighboring list optimization method according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 The base station uses handover data of one or more first neighboring cells sent by the terminal, field strength data of one or more first neighboring cells sent by the terminal, and the foregoing stored base station and one or more first neighboring cells.
  • the latitude and longitude data, the pre-stored relative angle value between the base station and the one or more first neighboring cells determine a neighboring ranking weight value for performing neighboring ordering;
  • Step S104 Optimize the neighbor list of the base station according to the neighboring ranking weight value.
  • the base station uses the handover data of one or more first neighboring cells sent by the terminal, the field strength data of one or more first neighboring cells sent by the terminal, the foregoing stored base station, and one or more first neighbors.
  • the latitude and longitude data of the area, the pre-stored relative angle value between the base station and the one or more first neighboring cells determine a neighboring cell ranking weight for performing neighboring cell ranking; and optimizing the neighboring cell neighboring cell according to the neighboring cell ranking weight
  • the area list realizes the calculation of the ranking weights in the neighboring area, not only considering the field strength data, but also considering the switching data, the latitude and longitude data and the relative angle value, improving the accuracy of the neighboring sorting, and solving the existence of related technologies.
  • the neighborhood list optimization accuracy is low, and the effect of improving the accuracy of the neighbor list optimization is achieved.
  • optimizing the neighboring cell list of the base station according to the neighboring cell ranking weights includes: determining, according to the determined neighboring cell ranking weight, whether the first neighboring cell is within a predetermined threshold in the neighboring cell ranking of the base station; If the result is yes, the first neighboring cell is added to the neighboring cell list of the base station; and/or, if the determining result is no, the first neighboring cell is refused to be added to the neighboring cell list of the base station. . That is, the neighboring cell is added to the neighboring cell list of the base station only when a neighboring cell is in the top N of the neighboring cell of all neighboring cells of the base station. Therefore, it is ensured that the neighboring areas added to the list are neighboring areas where the terminal can be switched and the working performance is high.
  • the method before determining the neighboring ranking weights for performing the neighboring ordering, the method further includes: determining, according to the handover data and the field strength data of the first neighboring cell sent by the terminal, the neighboring cell list in the base station.
  • the second neighboring area is a redundant neighboring area; the second neighboring area in the neighboring area list is deleted.
  • a neighboring cell list is allocated to the base station, and some neighboring cells in the neighboring cell list may be unreasonable.
  • the unreasonable neighboring cell in the neighboring cell list may be deleted, thereby realizing
  • the neighboring cells in the neighboring cell list of the base station are all neighboring cells that can support terminal handover.
  • determining, according to the handover data and the field strength data of the first neighboring cell, the second neighboring cell in the neighboring cell list of the base station is a redundant neighboring cell, including: determining whether the second neighboring cell exists. In the handover data and the field strength data of the first neighboring area; if the judgment result is no, the second neighboring area is determined to be a redundant neighboring area.
  • the redundant neighboring cell is deleted, the neighboring cell in the neighboring cell list of the base station is a neighboring cell that can support the terminal switching, and the neighboring cell list is correct.
  • the method further includes: sorting the first neighboring cells according to the frequency and the system of the first neighboring cell. Thereby, the front N strong neighboring cells of each system corresponding to the base station are obtained.
  • the handover data, the field strength data, the pre-stored base station and the latitude and longitude data of the first neighboring cell, and the relative angle value between the pre-stored base station and the first neighboring cell are used to determine the neighboring zone.
  • the ranked neighboring ranking weights include: determining the neighboring ranking weights using the following formula: Among them, K1, K2, K3, and K4 are the weighting coefficients of the terminal, and the value range is: [0 ⁇ 1], Cmax is the maximum field strength signal ranking, and the value range is: 1 ⁇ C max, Ci is the field strength signal.
  • the value range is: [1, C max), where R is the number of occurrences of the K field strength of the neighboring cell. The value ranges from 1 to R.
  • the angle between the vector and the PK vector of the base station and the neighboring cell is in the range of [0,180°]
  • Angle2 is the angle between the K-vector of the neighboring area and the KP vector of the neighboring area and the base station.
  • the range of values is: [0,180°].
  • a neighboring cell list optimization device is further provided, which is used to implement the foregoing embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus includes a first determining module 22 and an optimization module 24, and the apparatus is applied to a base station, and the apparatus is performed below. Description.
  • FIG. 3 is a structural block diagram of an optimization module 24 in a neighbor list optimization apparatus according to an embodiment of the present invention. As shown in FIG. 3, the optimization module 24 includes a first determining unit 32, an adding unit 34, and/or a rejecting unit 36. The optimization module 24 will be described below.
  • the first determining unit 32 is configured to determine, according to the determined neighboring ranking weight, whether the first neighboring area is within a predetermined threshold in the neighboring cell ranking of the base station; the adding unit 34 is connected to the first determining unit 32, and is set to be If the determination result is yes, the first neighboring cell is added to the neighboring cell list of the base station; and/or the rejecting unit 36 is connected to the first determining unit 32, and is set to be in the case that the determining result is no. The first neighbor is refused to be added to the neighbor list of the base station.
  • FIG. 4 is a block diagram of a preferred structure of a neighbor list optimization apparatus according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes a second determining module 42 and a deleting module 44 in addition to all the modules shown in FIG. . The device will be described below.
  • the second determining module 42 is configured to determine, according to the handover data and the field strength data of the first neighboring cell sent by the terminal, that the second neighboring cell in the neighboring cell list of the base station is a redundant neighboring cell; and the deleting module 44 is connected to the second The determining module 42 and the first determining module 22 are arranged to delete the second neighboring cell in the neighbor list.
  • FIG. 5 is a structural block diagram of a second determining module 42 in the neighboring cell list optimizing apparatus according to an embodiment of the present invention.
  • the second determining module 42 includes a second determining unit 52 and a determining unit 54.
  • the second determination module 42 will be described below.
  • the second determining unit 52 is configured to determine whether the second neighboring zone exists in the switching data and the field strength data of the first neighboring cell; the determining unit 54 is connected to the second determining unit 52, and is set to be in the judgment result of No. In the case, it is determined that the second neighboring area is a redundant neighboring area.
  • FIG. 6 is a block diagram of a preferred structure of a neighbor list optimization apparatus according to an embodiment of the present invention. As shown in FIG. 6, the apparatus includes a sorting module 62 in addition to all the modules shown in FIG. The device will be described below.
  • the sorting module 62 is connected to the first determining module 22 and the optimization module 24, and is configured to sort the first neighboring cells according to the frequency and the system of the first neighboring cell.
  • the first determining module 24 determines the neighboring ranking weight by using the following formula: Among them, K1, K2, K3, and K4 are the weighting coefficients of the terminal, and the value range is: [0 ⁇ 1], Cmax is the maximum field strength signal ranking, and the value range is: 1 ⁇ C max, Ci is the field strength signal.
  • the value range is: [1, C max), where R is the number of occurrences of the K field strength of the neighboring cell. The value ranges from 1 to R. N is the total number of field strength samples of the base station. The value ranges from R to N.
  • H max is the maximum switching rank
  • the value range is: 1 ⁇ H max
  • Hi is the switching rank of the neighboring zone K
  • the value range is: [1, H max)
  • T is the number of neighboring K switching occurrences
  • the value is The range is: 1 ⁇ T
  • M is the total number of base station handover samples
  • the value range is: T ⁇ M
  • Distencepk is the distance between the base station P and the neighboring area K
  • the value range is Distencepk ⁇ 0
  • Angle1 is the base station orientation angle P.
  • the angle between the vector and the PK vector of the base station and the neighboring cell is in the range of [0,180°]
  • Angle2 is the angle between the K-vector of the neighboring area and the KP vector of the neighboring area and the base station.
  • the range of values is: [0,180°].
  • the embodiment of the present invention also proposes a sample based on the UE data.
  • a different-frequency system neighboring area optimization method adopts the following technical solutions:
  • an LTE different-frequency system neighboring area optimization algorithm based on UE field strength data, handover data, base station latitude and longitude data, and cell direction angle data for mean analysis is used.
  • the LTE cell coverage is first divided into several circles. The field strength and switching data of all the modes received by the UE in each small circle are counted. Then, each small circle is divided according to the system, and the former N strong neighboring area of each standard in the small circle is calculated by using the neighboring ranking weighting formula proposed by the present invention. Then count the top N strong neighbors of all the small circle systems and continue to use the patent The neighboring ranking weighting formula is calculated, and finally the former N strong neighboring regions of each standard corresponding to the LTE primary cell are obtained.
  • the invention is based on the result of the mean value analysis performed by the UE reporting data, and the obtained neighboring area optimization result can well reflect the needs of the live network neighboring area.
  • the formula for calculating the ranking weight of the neighboring area is as shown in the formula (1), where K 1 , K 2 , K 3 , and K 4 are end user weighting coefficients, and the value ranges from 0 to 1.
  • the user can perform the actual needs according to the site. Adjustment, which affects the proportion of relevant data.
  • the ranking weight P is the relationship between the neighboring area K and the primary cell, and the relationship value is mainly composed of the following four parts:
  • the second part is the switching sampling mean calculation. First, calculate the ranking Hi of the neighboring zone K in the T time period of the M time period of the primary cell. Then, the maximum switching rank H max in the M samples is obtained, and the product value of the T-sampling 1/(H max -H i ) of the neighboring region K is counted. Finally, divide this product value by M to get the switched sample mean.
  • the third part is the distance value calculation between cells, and calculates the distance Distence between the two cells of the primary cell P and the neighboring zone K.
  • the fourth part calculates the relative angle between the cells, and calculates the relative angle between the primary cell P and the neighboring zone K.
  • K 1 , K 2 , K 3 , and K 4 are end user weighting coefficients, and the value ranges are: [0 ⁇ 1];
  • C max is the maximum field strength signal ranking, and the value range is: 1 ⁇ C max;
  • R is the number of occurrences of K field strength samples in the neighboring area, and the value ranges from 1 to R;
  • N is the total number of field strength samples of the main cell, and the value range is R ⁇ N;
  • H max is the maximum switching rank, and the value range is: 1 ⁇ H max ;
  • H i neighboring area K switching ranking the value range: [1, H max );
  • T is the number of times the neighboring area K is switched, and the value ranges from 1 to T;
  • M is the total number of sampling samples for the primary cell, and the value ranges from T ⁇ M;
  • Distence pk The distance between the primary cell P and the neighboring cell K, the value range is: Distence pk ⁇ 0
  • Angle1 is the angle between the PY vector of the primary cell's orientation angle Pvector and the primary cell and the neighboring cell connection, and the value range is [0,180°];
  • Angle2 is the angle between the K-vector of the neighboring cell and the KP vector of the neighboring cell and the primary cell. The value ranges from [0, 180°].
  • the ranking weighting formula of the neighboring area satisfies the following four principles:
  • Principle 1 In the UE field strength data collected by the primary cell where the base station is located, the neighboring field strength data reported by the UE is ranked higher. The higher the number of reports in different locations within the coverage of the primary cell, the higher the priority of the neighboring cell. .
  • Principle 2 In the UE handover data collected by the primary cell, the number of times the UE switches to the neighboring cell is ranked higher, and the more the different locations in the coverage of the primary cell, the higher the priority of the neighboring cell.
  • Principle 4 The relative angle and the smaller the primary cell and the neighboring cell, the higher the priority of this neighboring cell.
  • the situation of the neighboring area of the serving cell in the case of the real implementation network can be obtained.
  • the situation of the neighboring area of the serving cell in the case of the real implementation network can be obtained.
  • reasonable data can be obtained for each LTE system and frequency.
  • the relationship between the serving cell and its neighboring area can be reasonably obtained.
  • the mean sampling on the circle of the serving cell it is ensured that the analysis of each standard data conforms to the comprehensive and steady state conditions without deviation.
  • the neighbor cell optimization of the LTE inter-frequency system can be well accomplished by the redundant neighbor cell deletion and the missing neighbor cell addition used in this paper.
  • FIG. 7 is a block diagram of a system structure according to an embodiment of the present invention.
  • handover data reported by a UE within its coverage and peripheral neighbor field signal field strength data are collected.
  • the neighboring neighborhood signal field strength data may be data including the signal strength of the neighboring neighboring cells.
  • the handover data may be data reported by the UE in the real case when it is switched.
  • For reporting of heterogeneous system data it can be reported by referring to the standard supported by the UE.
  • the sampling period is as long as possible, and it is better to ensure that most areas in the coverage of the cell have UEs reporting data. It is also possible to use a special terminal to support all the systems, and then report them by the road test vehicle around the base station.
  • the sampled data is analyzed.
  • the sampled data should contain all the data in the LTE system and between the systems that it can receive. Select the required report data according to the actual networking situation.
  • the reported data is first classified according to the system, for example, classified within the LTE system, and each system between the LTE systems is classified into one class.
  • the data in the LTE system is then classified according to the same frequency and different frequency.
  • the data between the systems can be classified into all types without distinguishing the frequency points.
  • FIG. 8 is a flowchart of a method for deleting a redundant neighboring cell in a neighboring cell list of a base station according to an embodiment of the present invention. As shown in FIG. 8, the method includes the following steps:
  • Step S802 Query the signal strength data and handover data of the neighboring neighboring cells reported by the UE for the neighboring cell in the LTE system and the inter-system configured by the current network.
  • step S804 it is checked whether the existing neighbor relationship exists in the field strength data of the neighboring neighboring area reported by the UE. If there is no execution step S806, the process proceeds to step S802.
  • step S806 it is checked whether the existing neighbor relationship exists in the handover data reported by the UE. If there is no execution step S808, the process proceeds to step S802.
  • step S808 the two types of data in the current neighbor relationship do not exist, indicating that the neighbor relationship is redundant and the neighbor relationship may be deleted (ie, the neighbor relationship data in FIG. 8).
  • FIG. 9 is a flowchart of a method for optimizing a neighboring cell of an LTE different-frequency system according to an embodiment of the present invention. As shown in FIG. 9, the method includes the following steps:
  • Step S902 performing mean sampling on the reported data of the UE that has been classified according to the standard.
  • the coverage of the cell is divided into several points. For a certain point, all the UEs in the circle can be classified into one point by drawing a circle or the like. The coverage of such a cell is divided into soft and dry small circles.
  • the data in the LTE system is divided into the same frequency and the different frequency. Then, according to each system, the data is calculated according to the formula of the neighboring ranking weight of formula 1 to calculate the neighboring area of the former N strong. If there are cases where the parallels are equal, the reference switching data is sorted. The more the number of switchings, the higher the ranking.
  • LTE TDD for TDD systems
  • the LTE TDD also takes the top N strong neighboring area between the systems. This way, for this circle, you can get the front N strong neighbors of each real system. Then, the process proceeds to step S904.
  • Step S904 by performing a summary analysis on a plurality of small circles in the cell, taking the neighbor relationship of all the standards of each small circle. For each system, the calculation formula is sorted according to the calculation formula of the neighboring ranking weight of formula 1. The LTE primary cell is obtained corresponding to the pre-N strong neighboring cells of each system. Go to step S906.
  • Step S906 traversing each neighbor relationship calculated by the LTE through the neighboring ranking weight calculation formula. Proceed to step S908.
  • step S908 it is counted whether there is a case where the neighboring ranking weights are juxtaposed. If yes, the process proceeds to step S910, and if not, the process proceeds to step S912.
  • Step S912 For the determination of the bidirectional neighboring cell, if the cell A is the former N strong cell in the cell B, and the cell B is also the former N strong neighboring cell in the cell A, the cell A and the cell B may be configured as a bidirectional neighboring cell. . If the condition is satisfied, the process proceeds to step S916, otherwise the process proceeds to step S914.
  • Step S914 for the determination of the unidirectional neighboring cell, if the cell A is the former N strong cell in the cell B, but the cell B is not the front N strong neighboring cell in the cell A, the cell A and the cell B may be configured as one-way. Neighborhood. If the condition is satisfied, the process proceeds to step S918, otherwise the process proceeds to step S906.
  • step S916 the cell is added as a bidirectional neighbor candidate cell. Go to step S920.
  • step S918 the cell is added as a unidirectional neighbor candidate cell. Go to step S920.
  • step S920 it is determined whether the frequency of the LTE primary cell corresponding to the neighboring cell and the number of neighboring cells that have been configured in the system exceed the maximum number of neighboring cells. If the number of the neighboring cells exceeds the maximum number of neighboring cells, the process step S922 is exceeded, and step S924 is not exceeded.
  • step S922 the frequency and the system of the current LTE primary cell corresponding to the neighboring cell have reached the maximum number of neighboring cells, and the newly added neighboring cell cannot be added, and the neighboring cell addition is cancelled, and the process proceeds to step S906.
  • Step S924 adding the neighboring cell to the neighboring zone corresponding to the standard and frequency of the LTE primary cell according to the format and the frequency of the neighboring cell.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above embodiments and the preferred embodiments solve the problem that the optimization accuracy of the neighbor list optimization in the related art is low, and the effect of improving the accuracy of the neighbor list optimization is achieved.

Abstract

本发明提供了一种邻区列表优化方法及装置,其中,该方法包括:基站利用终端发送的一个或多个第一邻区的切换数据、终端发送的一个或多个第一邻区的场强数据、预先存储的上述基站和一个或多个第一邻区的经纬度数据、预先存储的上述基站和一个或多个第一邻区之间的相对角度值确定用于进行邻区排序的邻区排序权值;根据上述邻区排序权值优化基站的邻区列表,通过本发明,解决了相关技术中存在的邻区列表优化准确度较低问题,进而达到了提高邻区列表优化的准确度的效果。

Description

邻区列表优化方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种邻区列表优化方法及装置。
背景技术
由于受到小区覆盖范围等因素的影响,当终端用户离开其服务小区的覆盖范围时或到达其服务小区信号较弱的边缘区域时,终端用户需要切换到周边信号较强的邻区来继续保持服务。如果终端用户的当前服务小区没有配置合理的邻区,终端用户将会由于切换失败或者服务小区信号较弱而产生掉话行为,这将严重的影响用户的服务满意度。
为了提供更好的通信服务质量,目前国内外的各大运营商都在主推4G长期演进(Long Term Evolution,简称为LTE)的网络建设。但是,由于建设使用初期,LTE的网络并不能够提供完全的覆盖。因此,需要借助原有的2G网络以及3G网络来保证用户的通信服务。所以当用户离开LTE的主服务小区时,有可能需要切换到2G网络或者3G网络来继续保持对此用户的网络服务。因此,对于LTE服务小区需要为其配置合理的异频异系统邻区,才能够使用户完成异频异系统的邻区切换保证其通话质量。
现有的LTE邻区分配主要通过以下两种方式:方式一通过LTE异频异系统邻区规划算法进行前期规划。通过使用邻区规划算法可以保证网络前期LTE用户的异频异系统的邻区切换,完成LTE用户的通信服务。但是由于规划算法是在比较理想的情况下进行的,并没有考虑到实际组网中由于大尺度衰落或者建筑物遮挡引起的弱覆盖等因素的影响。对于LTE服务小区受到上述因素的影响,其使用邻区规划算法所规划出来的部分系统内或系统间的邻区可能很不合理。因此,需要通过对现网中用户设备(User Equipment,简称为UE)上报的数据进行合理的分析,通过分析得到的邻区优化结果来补充规划算法的不足。方式二是由3GPP提出的通过X2接口实现的LTE自动邻区优化关联(Automatic Neighbor Relation,简称为ANR)邻区自动优化方法。此方法通过UE上报的信令分析完成邻区的自优化。但是,此方案有以下不足:首先,此方案只能实现LTE系统内的邻区优化,不能够实现LTE系统间的邻区优化。其次,此方案需要依赖小区的物理层标识(Physical cell Identifier,简称为PCI),只有在小区的PCI不冲突不混淆的情况下,才能保证邻区优化结果的合理和正确性。因此,方式二也不能很好的完成LTE的异频异系统的邻区优化。
现有的其它相关的邻区优化方法,也主要是基于通过对测量报告(Measure Report,简称为MR)数据进行分析来完成邻区的优化。如果只是通过分析MR数据,只能简单得到其它小区对服务小区的场强影响。而这种场强影响可能是周边邻区的合理信号场强,也可能是其它小区的越区覆盖所带来的影响,因此只分析场强数据并不能得到合理的邻区优化结果。现有方案中有通过栅格的方式分析MR数据所占比率得到邻区优化结果。此方式首先有前面所阐述的只分析MR数据的不足。其次此方式只是简单的统计栅格内的所有邻区的MR所占的比例,并没有将数据按照制式进行划分。这样会优化出来的结果没有考虑异频异系统的网络特性会漏掉很多邻区。而且只是单纯的统计MR所占的比重,没有考虑到小区直接的地理位置和切换关系。因此现有方式不适用于当前LTE异频异系统的邻区优化要求。
针对相关技术中存在的邻区优化准确度低的问题,目前尚未提出有效的解决方案。
发明内容
本发明提供了一种邻区列表优化方法及装置,以至少解决相关技术中存在的邻区优化正确性低的问题。
根据本发明的一个方面,提供了一种邻区列表优化方法,包括:基站利用终端发送的一个或多个第一邻区的切换数据、终端发送的一个或多个第一邻区的场强数据、预先存储的所述基站和一个或多个第一邻区的经纬度数据、预先存储的所述基站和一个或多个第一邻区之间的相对角度值确定用于进行邻区排序的邻区排序权值;根据所述邻区排序权值优化所述基站的邻区列表。
优选地,根据所述邻区排序权值优化所述基站的邻区列表包括:根据确定的所述邻区排序权值判断所述第一邻区在所述基站的邻区排名中是否处于预定阈值内;在判断结果为是的情况下,将所述第一邻区添加至所述基站的邻区列表中;和/或,在判断结果为否的情况下,拒绝将所述第一邻区添加至所述基站的邻区列表中。
优选地,在确定用于进行邻区排序的所述邻区排序权值之前,还包括:根据终端发送的所述第一邻区的切换数据和场强数据确定所述基站的邻区列表中的第二邻区为冗余邻区;删除所述邻区列表中的第二邻区。
优选地,根据终端发送的所述第一邻区的切换数据和场强数据确定所述基站的邻区列表中的所述第二邻区为冗余邻区包括:判断所述第二邻区是否存在于所述第一邻区的切换数据和场强数据中;在判断结果为否的情况下,确定所述第二邻区为冗余邻区。
优选地,在利用所述切换数据、所述场强数据、预先存储的所述基站和所述第一邻区的经纬度数据、预先存储的所述基站和所述第一邻区之间的相对角度值确定用于进行邻区排序的邻区排序权值之后,还包括:根据所述第一邻区的频点和制式对所述第一邻区进行排序。
优选地,利用所述切换数据、所述场强数据、预先存储的所述基站和所述第一邻区的经纬度数据、预先存储的所述基站和所述第一邻区之间的相对角度值确定用于进行邻区排序的邻区排序权值包括:利用如下公式确定所述邻区排序权值:
Figure PCTCN2015072007-appb-000001
其中,K1、K2、K3、K4为所述终端的加权系数,取值范围为:[0~1],C max为最大场强信号排名,取值范围为:1<C max,Ci为场强信号排名,取值范围为:[1,C max),R为邻区K场强采样出现次数,取值范围为:1≦R,N为基站场强采样总数,取值范围为:R≦N,H max为最大切换排名,取值范围为:1<H max,Hi为邻区K的切换排名,取值范围为:[1,H max),T为邻区K切换出现次数,取值范围为:1≦T,M为基站切换采样总数,取值范围为:T≦M,Distencepk为所述基站P与邻区K之间的距离,取值范围为Distencepk≧0,Angle1为基站朝向角P矢与所述基站与邻小区连线PK矢所夹的夹角,取值范围为:[0,180°],Angle2为邻区朝向角K矢与邻区与所述基站连线KP矢所夹的夹角,取值范围为:[0,180°]。
根据本发明的另一发明,提供了一种邻区列表优化装置,所述邻区列表优化装置应用于基站中,包括:第一确定模块,设置为利用终端发送的一个或多个第一邻区的切换数据、终端发送的一个或多个第一邻区的场强数据、预先存储的所述基站和一个或多个第一邻区的经纬度数据、预先存储的所述基站和一个或多个第一邻区之间的相对角度值确定用于进行邻区排序的邻区排序权值;优化模块,设置为根据所述邻区排序权值优化所述基站的邻区列表。
优选地,所述优化模块包括:第一判断单元,设置为根据确定的所述邻区排序权值判断所述第一邻区在所述基站的邻区排名中是否处于预定阈值内;添加单元,设置为在判断结果为是的情况下,将所述第一邻区添加至所述基站的邻区列表中;和/或,拒绝单元,设置为在判断结果为否的情况下,拒绝将所述第一邻区添加至所述基站的邻区列表中。
优选地,所述邻区列表优化装置还包括:第二确定模块,设置为根据终端发送的所述第一邻区的切换数据和场强数据确定所述基站的邻区列表中的第二邻区为冗余邻区;删除模块,设置为删除所述邻区列表中的第二邻区。
优选地,所述第二确定模块包括:第二判断单元,设置为判断所述第二邻区是否存在于所述第一邻区的切换数据和场强数据中;确定单元,设置为在判断结果为否的情况下,确定所述第二邻区为冗余邻区。
优选地,所述邻区列表优化装置还包括:排序模块,设置为根据所述第一邻区的频点和制式对所述第一邻区进行排序。
优选地,在所述第一确定模块中利用如下公式确定所述邻区排序权值:
Figure PCTCN2015072007-appb-000002
其中,K1、K2、K3、K4为所述终端的加权系数,取值范围为:[0~1],C max为最大场强信号排名,取值范围为:1<C max,Ci为场强信号排名,取值范围为:[1,C max),R为邻区K场强采样出现次数,取值范围为:1≦R,N为基站场强采样总数,取值范围为:R≦N,H max为最大切换排名,取值范围为:1<H max,Hi为邻区K的切换排名,取值范围为:[1,H max),T为邻区K切换出现次数,取值范围为:1≦T,M为基站切换采样总数,取值范围为:T≦M,Distencepk为所述基站P与邻区K之间的距离,取值范围为Distencepk≧0,Angle1为基站朝向角P矢与所述基站与邻小区连线PK矢所夹的夹角,取值范围为:[0,180°],Angle2为邻区朝向角K矢与邻区与所述基站连线KP矢所夹的夹角,取值范围为:[0,180°]。
通过本发明,基站利用终端发送的一个或多个第一邻区的切换数据、终端发送的一个或多个第一邻区的场强数据、预先存储的所述基站和一个或多个第一邻区的经纬度数据、预先存储的所述基站和一个或多个第一邻区之间的相对角度值确定用于进行邻区排序的邻区排序权值;根据所述邻区排序权值优化所述基站的邻区列表,解决了相关技术中存在的邻区列表优化准确度较低问题,进而达到了提高邻区列表优化的准确度的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的邻区列表优化方法的流程图;
图2是根据本发明实施例的邻区列表优化装置的结构框图;
图3是根据本发明实施例的邻区列表优化装置中优化模块24的结构框图;
图4是根据本发明实施例的邻区列表优化装置的优选结构框图一;
图5是根据本发明实施例的邻区列表优化装置中第二确定模块42的结构框图;
图6是根据本发明实施例的邻区列表优化装置的优选结构框图二;
图7是根据本发明实施例的系统结构框图;
图8是根据本发明实施例的基站的邻区列表中冗余邻区的删除方法流程图;
图9是根据本发明实施例的LTE异频异系统邻区优化方法流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中提供了一种邻区列表优化方法,图1是根据本发明实施例的邻区列表优化方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,基站利用终端发送的一个或多个第一邻区的切换数据、终端发送的一个或多个第一邻区的场强数据、预先存储的上述基站和一个或多个第一邻区的经纬度数据、预先存储的上述基站和一个或多个第一邻区之间的相对角度值确定用于进行邻区排序的邻区排序权值;
步骤S104,根据上述邻区排序权值优化基站的邻区列表。
通过上述步骤,基站利用终端发送的一个或多个第一邻区的切换数据、终端发送的一个或多个第一邻区的场强数据、预先存储的上述基站和一个或多个第一邻区的经纬度数据、预先存储的上述基站和一个或多个第一邻区之间的相对角度值确定用于进行邻区排序的邻区排序权值;根据上述邻区排序权值优化基站的邻区列表,实现了在进行邻区排序权值计算时,不仅考虑了场强数据,还考虑了切换数据、经纬度数据和相对角度值,提高了邻区排序的准确性,解决了相关技术中存在的邻区列表优化准确度较低问题,进而达到了提高邻区列表优化的准确度的效果。
在一个优选的实施例中,根据邻区排序权值优化基站的邻区列表包括:根据确定的邻区排序权值判断第一邻区在基站的邻区排名中是否处于预定阈值内;在判断结果为是的情况下,将该第一邻区添加至基站的邻区列表中;和/或,在判断结果为否的情况下,拒绝将该第一邻区添加至基站的邻区列表中。即,只有当某一邻区处于基站的所有邻区的邻区排名的前N强时,才会将该邻区添加进基站的邻区列表中。从而保证了添加进列表的邻区都是终端可以进行切换的且工作性能较高的邻区。
在一个优选的实施例中,在确定用于进行邻区排序的邻区排序权值之前,还包括:根据终端发送的第一邻区的切换数据和场强数据确定基站的邻区列表中的第二邻区为冗余邻区;删除该邻区列表中的第二邻区。在基站建站时,都会为基站分配一个邻区列表,而该邻区列表中的某些邻区可能是不合理的,通过该实施例可以将邻区列表中不合理的邻区删除,从而实现了基站的邻区列表中的邻区均为可以支持终端切换的邻区。
在一个优选的实施例中,根据终端发送的第一邻区的切换数据和场强数据确定基站的邻区列表中的第二邻区为冗余邻区包括:判断该第二邻区是否存在于第一邻区的切换数据和场强数据中;在判断结果为否的情况下,确定该第二邻区为冗余邻区。当然也可以采用其他的方法来判断第二邻区是否为冗余邻区。删除冗余邻区后,可以保证基站的邻区列表中的邻区均为能够支持终端切换的邻区,提供了邻区列表的正确性。
在一个优选的实施例中,在利用切换数据、场强数据、预先存储的基站和第一邻区的经纬度数据、预先存储的基站和第一邻区之间的相对角度值确定用于进行邻区排序的邻区排序权值之后,还包括:根据该第一邻区的频点和制式对第一邻区进行排序。从而得到了基站对应的每种制式的前N强邻区。
在一个优选的实施例中,利用切换数据、场强数据、预先存储的基站和第一邻区的经纬度数据、预先存储的基站和第一邻区之间的相对角度值确定用于进行邻区排序的邻区排序权值包括:利用如下公式确定邻区排序权值:
Figure PCTCN2015072007-appb-000003
其中,K1、K2、K3、K4为终端的加权系数,取值范围为:[0~1],C max为最大场强信号排名,取值范围为:1<C max,Ci为场强信号排名,取值范围为:[1,C max),R为邻区K场强采样出现次数,取值范围为:1≦R,N为基站场强采样总数,取值范围为:R≦N,H max为最大切换排名,取值范围为:1<H max,Hi为邻区K的切换排名,取值范围为:[1,H max),T为邻区K切换出现次数,取值范围为:1≦T,M为基站切换 采样总数,取值范围为:T≦M,Distencepk为基站P与邻区K之间的距离,取值范围为Distencepk≧0,Angle1为基站朝向角P矢与基站与邻小区连线PK矢所夹的夹角,取值范围为:[0,180°],Angle2为邻区朝向角K矢与邻区与基站连线KP矢所夹的夹角,取值范围为:[0,180°]。
在本实施例中还提供了一种邻区列表优化装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的邻区列表优化装置的结构框图,如图2所示,该装置包括第一确定模块22和优化模块24,该装置应用于基站中,下面对该装置进行说明。
第一确定模块22,设置为利用终端发送的一个或多个第一邻区的切换数据、终端发送的一个或多个第一邻区的场强数据、预先存储的基站和一个或多个第一邻区的经纬度数据、预先存储的基站和一个或多个第一邻区之间的相对角度值确定用于进行邻区排序的邻区排序权值;优化模块24,连接至上述第一确定模块22,设置为根据邻区排序权值优化基站的邻区列表。
图3是根据本发明实施例的邻区列表优化装置中优化模块24的结构框图,如图3所示,该优化模块24包括第一判断单元32、添加单元34和/或拒绝单元36。下面对该优化模块24进行说明。
第一判断单元32,设置为根据确定的邻区排序权值判断第一邻区在基站的邻区排名中是否处于预定阈值内;添加单元34,连接至上述第一判断单元32,设置为在判断结果为是的情况下,将第一邻区添加至基站的邻区列表中;和/或,拒绝单元36,连接至上述第一判断单元32,设置为在判断结果为否的情况下,拒绝将第一邻区添加至基站的邻区列表中。
图4是根据本发明实施例的邻区列表优化装置的优选结构框图一,如图4所示,该装置除包括图2所示的所有模块外,还包括第二确定模块42和删除模块44。下面对该装置进行说明。
第二确定模块42,设置为根据终端发送的第一邻区的切换数据和场强数据确定基站的邻区列表中的第二邻区为冗余邻区;删除模块44,连接至上述第二确定模块42和第一确定模块22,设置为删除邻区列表中的第二邻区。
图5是根据本发明实施例的邻区列表优化装置中第二确定模块42的结构框图,如图5所示,该第二确定模块42包括第二判断单元52和确定单元54。下面对该第二确定模块42进行说明。
第二判断单元52,设置为判断第二邻区是否存在于第一邻区的切换数据和场强数据中;确定单元54,连接至上述第二判断单元52,设置为在判断结果为否的情况下,确定该第二邻区为冗余邻区。
图6是根据本发明实施例的邻区列表优化装置的优选结构框图二,如图6所示,该装置除包括图2所示的所有模块外,还包括排序模块62。下面对该装置进行说明。
排序模块62,连接至上述第一确定模块22和优化模块24,设置为根据第一邻区的频点和制式对第一邻区进行排序。
其中,在第一确定模块24中利用如下公式确定邻区排序权值:
Figure PCTCN2015072007-appb-000004
其中,K1、K2、K3、K4为终端的加权系数,取值范围为:[0~1],C max为最大场强信号排名,取值范围为:1<C max,Ci为场强信号排名,取值范围为:[1,C max),R为邻区K场强采样出现次数,取值范围为:1≦R,N为基站场强采样总数,取值范围为:R≦N,H max为最大切换排名,取值范围为:1<H max,Hi为邻区K的切换排名,取值范围为:[1,H max),T为邻区K切换出现次数,取值范围为:1≦T,M为基站切换采样总数,取值范围为:T≦M,Distencepk为基站P与邻区K之间的距离,取值范围为Distencepk≧0,Angle1为基站朝向角P矢与基站与邻小区连线PK矢所夹的夹角,取值范围为:[0,180°],Angle2为邻区朝向角K矢与邻区与基站连线KP矢所夹的夹角,取值范围为:[0,180°]。
为了更好的实现网络中后期LTE系统的异频异系统邻区优化,保证UE用户在LTE系统内和系统间的切换中通信服务,本发明实施例中还提出了一种基于UE数据均值采样的异频异系统邻区优化方法。该方法采用如下技术方案:
在该实施例中采用一种基于UE场强数据、切换数据、基站经纬度数据,小区方向角数据进行均值分析的LTE异频异系统邻区优化算法。首先将LTE小区覆盖范围划分为若干圆。统计每个小圆内UE接收到的所有制式的场强和切换数据。之后对每个小圆按照制式划分,使用本发明专利所提出的邻区排序权值公式计算得到小圆内每个制式的前N强邻区。之后统计所有小圆各个制式的前N强邻区,继续使用本专利所提 出的邻区排序权值公式进行计算,最终得到LTE主小区对应的各个制式的前N强邻区。本发明是基于UE上报数据进行均值分析所得到的结果,所得到的邻区优化结果可以很好的真实反映现网邻区的需要。
邻区排序权值计算公式,如公式(1)所示,其中K1、K2、K3、K4为终端用户加权系数,其取值范围为0到1,用户可以根据现场实际需要进行调整,从而影响相关数据所占的比重。对于邻区K,其排序权值P为邻区K与主小区的关系值,其关系值主要由以下四个部分组成:
第一部分为场强采样均值计算,首先得到邻区在主小区N次采样中出现的R次场强信号每次排名Ci。之后得到N次采样中的最大场强排名Cmax,统计邻区K的R次采样1/(Cmax-Ci)的乘积值。最后将这个乘积值除以场强信号采样次数N得到场强采样均值。
第二部分为切换采样均值计算,首先计算邻区K在主小区M次时间段中T次时间段切换的每次排名Hi。之后得到M次采样中的最大切换排名Hmax,统计邻区K的T次采样1/(Hmax-Hi)的乘积值。最后将这个乘积值除以M得到切换采样均值。
第三部分为小区之间距离值计算,计算主小区P与邻区K的两个小区之间的距离Distence。
第四部分为小区之间相对角度值计算,计算主小区P与邻区K的相对角度和。
通过将上面这四个关系值分别与对应的加权系数进行相乘得到邻区排序权值。
Figure PCTCN2015072007-appb-000005
公式中各参数解释和取值范围如下:
K1、K2、K3、K4为终端用户加权系数,取值范围:[0~1];
Cmax为最大场强信号排名,取值范围:1<C max;
Ci场强信号排名,取值范围:[1,Cmax);
R为邻区K场强采样出现次数,取值范围:1≦R;
N为主小区场强采样总数,取值范围:R≦N;
Hmax为最大切换排名,取值范围:1<Hmax
Hi邻区K的切换排名,取值范围:[1,Hmax);
T为邻区K切换出现次数,取值范围:1≦T;
M为主小区切换采样总数,取值范围:T≦M;
Distencepk为主小区P与邻小区K之间的距离,取值范围:Distencepk≧0
Angle1为主小区朝向角P矢与主小区与邻小区连线PK矢所夹的夹角,取值范围:[0,180°];
Angle2为邻小区朝向角K矢与邻小区与主小区连线KP矢所夹的夹角,取值范围:[0,180°]。
邻区排序权值计算公式满足如下四条原则:
原则1:基站所在的主小区采集的UE场强数据中,UE上报的邻区场强数据排名越靠前,在主小区覆盖范围内不同地点上报次数越多,这个邻区的优先级越高。
原则2:主小区采集的UE切换数据中,UE切换到邻区的次数排名越靠前,在主小区覆盖范围内不同地点切换越多,这个邻区的优先级越高。
原则3:主小区与邻小区的地理位置越近,这个邻小区的优先级越高。
原则4:主小区与邻小区的相对角度和越小,这个邻小区的优先级越高。
在本发明实施例中,通过分析UE上报的真实数据,可以得到真实现网情况下服务小区周边邻区的情况。其次,通过对LTE服务小区按照频率和制式进行划分来采集数据,能够得到LTE每个制式和频点下的合理数据。再次,通过对场强数据,切换数据,小区经纬度,朝向角度的数据使用本专利提出的邻区排序权值公式进行计算,可以合理的得到服务小区与其邻区的关系。然后,通过对服务小区进行画圆的方式进行均值采样,可以确保对各制式数据的分析符合全面和稳态情况,不会出现偏差。最后,通过本文所使用的冗余邻区删除和漏配邻区的添加,可以很好的完成LTE异频异系统的邻区优化。
下面结合附图对上述实施例进行分析:
首先,图7是根据本发明实施例的系统结构框图,如图7所示,对于每个LTE小区采集其覆盖范围内的UE上报的切换数据和周边邻区信号场强数据。周边邻区信号场强数据可以是包含周边邻区的信号强度的数据。切换数据可以是由UE上报的真实情况下,其发生切换时上报的数据。对于异构系统数据的上报,可以参照UE所支持的制式进行上报。采样周期尽可能长一些,最好保证小区覆盖范围内大部分面积都有UE上报数据。也可以采用特制的终端支持所有制式,之后由路测车绕着基站进行上报。
其次,对采样数据进行分析,原则上采样上报的数据应该包含LTE系统内和系统间的其所能接收到的所有制式的数据。根据实际组网情况选择需要的上报数据。对于上报数据首先按照制式区分,例如LTE系统内的归为一类,LTE系统间的每种制式归为一类。之后对于LTE系统内的数据在按照同频和异频进行分类。系统间的数据可以不区分频点所有数据为一类。
再次,图8是根据本发明实施例的基站的邻区列表中冗余邻区的删除方法流程图,如图8所示,该方法包括如下步骤:
步骤S802,对于现网所配置的LTE系统内和系统间的邻区,查询UE上报的周边邻区信号场强数据和切换数据。
步骤S804,查看现有的邻区关系是否在UE上报的周边邻区的场强数据中是否存在,如果不存在执行步骤S806,存在则继续执行步骤S802。
步骤S806,查看现有的邻区关系是否在UE上报的切换数据中存在,如果不存在执行步骤S808,存在则继续执行步骤S802。
步骤S808,当前邻区关系中这两种数据都不存在,说明此邻区关系为冗余的邻区关系可以删除此邻区关系(即附图8中的邻区关系数据)。
图9是根据本发明实施例的LTE异频异系统邻区优化方法流程图,如图9所示,该方法包括如下步骤:
步骤S902,对于已经按照制式分类好的UE上报数据进行均值采样。将小区覆盖范围划分为若干点,对于某一点可以通过画圆等方式,将这一圆内的所有UE统归为一点。这样小区的覆盖范围就划分为软干个小圆。统计圆内所有UE上报的各种制式的数据。对于LTE系统内的数据区分同频和异频进行划分。之后将数据按照每种制式按照公式1邻区排序权值计算公式计算出前N强的邻区。如果有并列相等的情况,参考切换数据在进行排序。切换次数越多的,排序越靠前。例如LTE TDD对TDD系统 内取前N强的邻区,LTE TDD对TDS也同样取系统间的前N强的邻区。这样对于这个圆就可以得到它真实的每种制式的前N强的邻区。之后进入步骤S904。
步骤S904,通过对小区内的若干个小圆进行汇总分析,取每个小圆的所有制式的邻区关系。对于每种制式再按照公式1邻区排序权值计算公式进行计算排序。得到LTE主小区对应每种制式的前N强邻区。进入步骤S906。
步骤S906,对LTE已经通过邻区排序权值计算公式计算得到的每个邻区关系进行遍历。进入步骤S908。
步骤S908,统计是否有邻区排序权值并列的情况,如果有则进入步骤S910,如果没有进入步骤S912。
步骤S910,如果发生邻区排序权值并列的情况,可以再按照切换次数进行排序,对于切换次数多的排序靠前。
步骤S912,对于双向邻区的确定,如果小区A在小区B中为前N强小区,并且小区B在小区A中也为前N强邻区,则小区A与小区B可以配置为双向邻区。如果满足条件进入步骤S916,否则进入步骤S914。
步骤S914,对于单向邻区的确定,如果小区A在小区B中为前N强小区,但是小区B在小区A中不为前N强邻区,则小区A与小区B可以配置为单向邻区。如果满足条件进入步骤S918,否则进入步骤S906。
步骤S916,添加此小区为双向邻区候选小区。进入步骤S920。
步骤S918,添加此小区为单向邻区候选小区。进入步骤S920。
步骤S920,判断LTE主小区对应此邻区的频点和制式已经配置的邻区数目是否超过最大邻区数目,超过执行步骤S922,没有超过执行步骤S924。
步骤S922,当前LTE主小区对应此邻区的频点和制式已经达到最大邻区数目,新添加邻区无法添加,取消此次邻区添加,进入步骤S906。
步骤S924,按照邻区的制式和频点,添加此邻区为LTE主小区对应的制式和频点的邻区。
通过以上步骤可以得到LTE主小区同频异频的系统内前N强邻区,以及LTE系统间的N强邻区的优化结果。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,通过上述实施例及优选实施方式,解决了相关技术中存在的邻区列表优化准确度较低问题,进而达到了提高邻区列表优化的准确度的效果。

Claims (12)

  1. 一种邻区列表优化方法,包括:
    基站利用终端发送的一个或多个第一邻区的切换数据、终端发送的一个或多个第一邻区的场强数据、预先存储的所述基站和一个或多个第一邻区的经纬度数据、预先存储的所述基站和一个或多个第一邻区之间的相对角度值确定用于进行邻区排序的邻区排序权值;
    根据所述邻区排序权值优化所述基站的邻区列表。
  2. 根据权利要求1所述的方法,其中,根据所述邻区排序权值优化所述基站的邻区列表包括:
    根据确定的所述邻区排序权值判断所述第一邻区在所述基站的邻区排名中是否处于预定阈值内;
    在判断结果为是的情况下,将所述第一邻区添加至所述基站的邻区列表中;和/或,
    在判断结果为否的情况下,拒绝将所述第一邻区添加至所述基站的邻区列表中。
  3. 根据权利要求1所述的方法,其中,在确定用于进行邻区排序的所述邻区排序权值之前,还包括:
    根据终端发送的所述第一邻区的切换数据和场强数据确定所述基站的邻区列表中的第二邻区为冗余邻区;
    删除所述邻区列表中的第二邻区。
  4. 根据权利要求3所述的方法,其中,根据终端发送的所述第一邻区的切换数据和场强数据确定所述基站的邻区列表中的所述第二邻区为冗余邻区包括:
    判断所述第二邻区是否存在于所述第一邻区的切换数据和场强数据中;
    在判断结果为否的情况下,确定所述第二邻区为冗余邻区。
  5. 根据权利要求1所述的方法,其中,在利用所述切换数据、所述场强数据、预先存储的所述基站和所述第一邻区的经纬度数据、预先存储的所述基站和所述 第一邻区之间的相对角度值确定用于进行邻区排序的邻区排序权值之后,还包括:
    根据所述第一邻区的频点和制式对所述第一邻区进行排序。
  6. 根据权利要求1所述的方法,其中,利用所述切换数据、所述场强数据、预先存储的所述基站和所述第一邻区的经纬度数据、预先存储的所述基站和所述第一邻区之间的相对角度值确定用于进行邻区排序的邻区排序权值包括:
    利用如下公式确定所述邻区排序权值:
    Figure PCTCN2015072007-appb-100001
    ,其中,K1、K2、K3、K4为所述终端的加权系数,取值范围为:[0~1],C max为最大场强信号排名,取值范围为:1<C max,Ci为场强信号排名,取值范围为:[1,C max),R为邻区K场强采样出现次数,取值范围为:1≦R,N为基站场强采样总数,取值范围为:R≦N,H max为最大切换排名,取值范围为:1<Hmax,Hi为邻区K的切换排名,取值范围为:[1,H max),T为邻区K切换出现次数,取值范围为:1≦T,M为基站切换采样总数,取值范围为:T≦M,Distencepk为所述基站P与邻区K之间的距离,取值范围为Distencepk≧0,Angle1为基站朝向角P矢与所述基站与邻小区连线PK矢所夹的夹角,取值范围为:[0,180°],Angle2为邻区朝向角K矢与邻区与所述基站连线KP矢所夹的夹角,取值范围为:[0,180°]。
  7. 一种邻区列表优化装置,应用于基站中,包括:
    第一确定模块,设置为利用终端发送的一个或多个第一邻区的切换数据、终端发送的一个或多个第一邻区的场强数据、预先存储的所述基站和一个或多个第一邻区的经纬度数据、预先存储的所述基站和一个或多个第一邻区之间的相对角度值确定用于进行邻区排序的邻区排序权值;
    优化模块,设置为根据所述邻区排序权值优化所述基站的邻区列表。
  8. 根据权利要求7所述的装置,其中,所述优化模块包括:
    第一判断单元,设置为根据确定的所述邻区排序权值判断所述第一邻区在所述基站的邻区排名中是否处于预定阈值内;
    添加单元,设置为在判断结果为是的情况下,将所述第一邻区添加至所述基站的邻区列表中;和/或,
    拒绝单元,设置为在判断结果为否的情况下,拒绝将所述第一邻区添加至所述基站的邻区列表中。
  9. 根据权利要求7所述的装置,其中,还包括:
    第二确定模块,设置为根据终端发送的所述第一邻区的切换数据和场强数据确定所述基站的邻区列表中的第二邻区为冗余邻区;
    删除模块,设置为删除所述邻区列表中的第二邻区。
  10. 根据权利要求9所述的装置,其中,所述第二确定模块包括:
    第二判断单元,设置为判断所述第二邻区是否存在于所述第一邻区的切换数据和场强数据中;
    确定单元,设置为在判断结果为否的情况下,确定所述第二邻区为冗余邻区。
  11. 根据权利要求7所述的装置,其中,还包括:
    排序模块,设置为根据所述第一邻区的频点和制式对所述第一邻区进行排序。
  12. 根据权利要求7所述的装置,其中,在所述第一确定模块中利用如下公式确定所述邻区排序权值:
    Figure PCTCN2015072007-appb-100002
    ,其中,K1、K2、K3、K4为所述终端的加权系数,取值范围为:[0~1],C max为最大场强信号排名,取值范围为:1<C max,Ci为场强信号排名,取值范围为:[1,C max),R为邻区K场强采样出现次数,取值范围为:1≦R,N为基站场强采样总数,取值范围为:R≦N,H max为最大切换排名,取值范围为:1<Hmax,Hi为邻区K的切换排名,取值范围为:[1,H max),T为邻区K切换出现次数,取值范围为:1≦T,M为基站切换采样总数,取值范围为:T≦M,Distencepk为所述基站P与邻区K之间的距离,取值范围为Distencepk≧0,Angle1为基站朝向角P矢与所述基站与邻小区连线PK矢所夹的夹角,取值范围为:[0,180°],Angle2为邻区朝向角K矢与邻区与所述基站连线KP矢所夹的夹角,取值范围为:[0,180°]。
PCT/CN2015/072007 2014-10-27 2015-01-30 邻区列表优化方法及装置 WO2016065759A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410589406.8 2014-10-27
CN201410589406.8A CN105636085A (zh) 2014-10-27 2014-10-27 邻区列表优化方法及装置

Publications (1)

Publication Number Publication Date
WO2016065759A1 true WO2016065759A1 (zh) 2016-05-06

Family

ID=55856484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072007 WO2016065759A1 (zh) 2014-10-27 2015-01-30 邻区列表优化方法及装置

Country Status (2)

Country Link
CN (1) CN105636085A (zh)
WO (1) WO2016065759A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109996297B (zh) * 2017-12-29 2021-04-20 中国移动通信集团上海有限公司 一种异系统邻区快速配置方法及装置
CN110505615B (zh) * 2018-05-19 2022-04-15 北京融信数联科技有限公司 一种基于移动信令切换链的工参数据更新方法
CN112989124B (zh) * 2019-12-02 2023-04-07 中国移动通信集团浙江有限公司 多网联动数据协同配置方法、装置、计算设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959227A (zh) * 2009-07-21 2011-01-26 中国移动通信集团设计院有限公司 一种异系统间相邻小区的生成方法及装置
CN101959226A (zh) * 2009-07-21 2011-01-26 中国移动通信集团设计院有限公司 一种异系统间相邻小区的生成方法及装置
US20130244718A1 (en) * 2012-03-15 2013-09-19 Jung Seung Lee Neighbor cell list automatic configuration apparatus and method for self-organizing network and mobile telecommunication system for the same
CN103906106A (zh) * 2014-03-07 2014-07-02 华南理工大学 一种基于权重模型的自动邻区关系产生优化方法与系统
CN103916873A (zh) * 2014-04-03 2014-07-09 电信科学技术研究院 一种现网补站的邻区配置方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007027033A1 (en) * 2005-08-29 2007-03-08 Ktfreetel Co., Ltd. Method and apparatus for optimizing neighbor list automatically in synchronous cdma network
CN101778412B (zh) * 2010-02-25 2012-08-08 华为技术有限公司 邻区关系优化处理方法及装置
CN103188741B (zh) * 2011-12-29 2018-03-02 中兴通讯股份有限公司 一种移动通信网络中的邻区优化方法及基站
CN103354647B (zh) * 2013-07-17 2017-04-12 深圳市网信联动通信技术股份有限公司 移动通信系统中的邻区优化方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959227A (zh) * 2009-07-21 2011-01-26 中国移动通信集团设计院有限公司 一种异系统间相邻小区的生成方法及装置
CN101959226A (zh) * 2009-07-21 2011-01-26 中国移动通信集团设计院有限公司 一种异系统间相邻小区的生成方法及装置
US20130244718A1 (en) * 2012-03-15 2013-09-19 Jung Seung Lee Neighbor cell list automatic configuration apparatus and method for self-organizing network and mobile telecommunication system for the same
CN103906106A (zh) * 2014-03-07 2014-07-02 华南理工大学 一种基于权重模型的自动邻区关系产生优化方法与系统
CN103916873A (zh) * 2014-04-03 2014-07-09 电信科学技术研究院 一种现网补站的邻区配置方法和装置

Also Published As

Publication number Publication date
CN105636085A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
CN104618937B (zh) 一种邻区自动优化的方法及装置
US9036602B2 (en) Method, device, and system for optimizing radio network
CN102883386B (zh) 一种lte网络中的小区切换方法和装置
CN106792752B (zh) 基站信号覆盖自优化方法和系统
EP2536197A1 (en) Method and system for reporting neighbor cell information
CN109151881B (zh) 一种基于用户数据的网络负荷均衡优化方法
CN105959976B (zh) 基于测量报告的VoLTE分析方法
CN109982352B (zh) Tdd-lte网络中的异频切换方法及装置
CN108462966B (zh) 一种基于2g网络高铁小区rru定位识别方法及系统
WO2016090770A1 (zh) 一种频点测量消息的发送方法及装置
CN101873612B (zh) 一种家庭基站小区实现测量的方法及系统
CN103313316B (zh) 一种异系统乒乓切换的检测处理方法及装置
CN102264085B (zh) 天线接反的确定方法及装置
CN102340815B (zh) 一种td-scdma网络覆盖性能的测试方法、装置及系统
CN102075902B (zh) 一种确定服务小区的新邻区的方法及装置
CN105578496A (zh) 一种邻区优化方法及装置
CN106034311B (zh) 一种信息处理方法及装置
CN101695173A (zh) 一种越区评估方法及装置
CN102685783B (zh) 用于在移动通信网络中查找网络覆盖盲区的方法及设备
CN105578443A (zh) 邻区维护方法及装置
CN105120492A (zh) 基于测量报告数据优化csfb频点优化配置的方法
CN103118382A (zh) 一种数据业务小区乒乓重选的分析方法
WO2016065759A1 (zh) 邻区列表优化方法及装置
CN105933923B (zh) 一种超密集组网小区分簇方法
CN104427531B (zh) 一种邻区优化方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855562

Country of ref document: EP

Kind code of ref document: A1