WO2016065600A1 - 氮氧化物无氨低温选择性还原催化剂及其制备方法和应用 - Google Patents

氮氧化物无氨低温选择性还原催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2016065600A1
WO2016065600A1 PCT/CN2014/089995 CN2014089995W WO2016065600A1 WO 2016065600 A1 WO2016065600 A1 WO 2016065600A1 CN 2014089995 W CN2014089995 W CN 2014089995W WO 2016065600 A1 WO2016065600 A1 WO 2016065600A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed bed
catalyst
bed catalytic
catalytic tower
denitration
Prior art date
Application number
PCT/CN2014/089995
Other languages
English (en)
French (fr)
Inventor
涂学炎
俞国昇
杨洸
李世民
刘骁
白云
Original Assignee
云南创森环保科技有限公司
云南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云南创森环保科技有限公司, 云南大学 filed Critical 云南创森环保科技有限公司
Priority to CN201480020618.2A priority Critical patent/CN106029224A/zh
Priority to PCT/CN2014/089995 priority patent/WO2016065600A1/zh
Publication of WO2016065600A1 publication Critical patent/WO2016065600A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium

Definitions

  • the invention belongs to the field of air pollution control, in particular to a nitrogen oxide non-ammonia low-temperature selective reduction catalyst and a preparation method and application thereof.
  • NOx is a major air pollutant. NOx and hydrocarbons can cause photochemical pollution under the action of strong light. NOx emitted into the atmosphere is the main cause of acid rain, which seriously endangers the ecological environment. At present, about 65% of domestic NOx is produced by coal combustion. Therefore, power station boilers and industrial boilers, which are the main coal-fired equipment, have become the focus of future control of NOx emissions. With incomplete statistics, there are more than 5,000 cement manufacturers in the country, producing more than 1.9 billion tons of cement, and NOx emissions account for about 15% of the country, ranging from 3 to 4 million tons. If uncontrolled, NOx emissions Will exceed 30 million tons. During the 12th Five-Year Plan period, the state will gradually increase the control of NOx. For example, the current NOx of coal combustion in Beijing must be less than 250mg.Nm -3 . The entire coal-fired denitration market is about 150 billion, of which the catalyst is 50 billion. Current denitration technologies include:
  • Selective non-catalytic reduction (SNCR) technology selective non-catalytic reduction (SNCR) NOx removal technology is to spray NHx-containing reducing agent (such as ammonia, ammonia or urea) into the furnace temperature of 800 ° C ⁇ In the region of 1000 ° C, the reducing agent rapidly decomposes into NH 3 and other by-products, and then NH 3 reacts with NOx in the flue gas to generate N 2 .
  • NHx-containing reducing agent such as ammonia, ammonia or urea
  • reaction formula is as follows:
  • the reaction is very sensitive to temperature conditions.
  • the choice of the injection point on the furnace, which is the so-called temperature window selection, is the key to the efficiency of SNCR reduction NO.
  • the ideal temperature range is generally considered to be 700 to 1100 ° C and varies with reactor type.
  • the degree of chemical reaction is often lower, and the reaction is less thorough, resulting in a lower reduction rate of NO, and an increase in NH 3 that does not participate in the reaction also causes ammonia gas. leakage.
  • SCR selective catalytic reduction
  • the existing SCR causes large investment: high ash and high temperature, high requirements for catalysts, large equipment investment; ammonia as a reducing agent, ammonia storage, high cost, and corrosive.
  • the object of the present invention is to provide a nitrogen oxide non-ammonia low-temperature selective reduction catalyst and a preparation method and application thereof for the disadvantages of current SCR technology, high temperature and ammonia source, secondary pollution, high investment cost and high operation cost. .
  • the technical scheme adopted by the present invention is: a nitrogen oxide ammonia-free low-temperature selective reduction catalyst comprising an active ingredient and a carrier, the active component comprising manganese oxide and copper oxide, and components of the catalyst
  • the mass percentage is: 1 to 15% of manganese oxide, 1 to 8% of copper oxide, and the balance of the carrier.
  • the active ingredient further comprises iron oxide 1-5 and potassium oxide 1 to 5%, and the carrier is activated carbon or ⁇ -Al 2 O 3 .
  • a second object of the present invention is to provide a method for preparing a nitrogen oxide ammonia-free low temperature selective reduction catalyst comprising the following steps:
  • the carrier for adsorbing the nitrate solution is dried at 70 to 90 ° C;
  • the dried carrier is placed in a quartz crucible, and calcined and decomposed in a nitrogen atmosphere under a nitrogen atmosphere from 150 ° C, 210 ° C, 250 ° C, 300 ° C, and 450 ° C;
  • Step D The catalyst obtained in Step D was naturally cooled to room temperature under a nitrogen atmosphere.
  • a third object of the present invention is to provide a denitration apparatus for denitration of a nitrogen oxide ammonia-free low temperature selective reduction catalyst, comprising a first fixed bed catalytic column, a second fixed bed catalytic column, an exhaust gas detecting device and a control system; a nitrogen oxide-free ammonia-free low-temperature selective reduction catalyst containing copper and manganese on a fixed bed of the first fixed bed catalytic tower and the second fixed bed catalytic tower; the first fixed bed catalytic tower and the second fixed bed catalytic tower are both
  • the intake duct is in communication, the intake duct is provided with an intake control valve, and the intake control valve controls the gas to enter the first fixed bed catalytic tower or the second fixed bed catalytic tower;
  • the exhaust gas detecting device respectively includes the first fixed
  • the bed catalytic tower is connected to the exhaust pipe of the second fixed bed catalytic tower;
  • the control system is respectively connected to the intake control valve and the exhaust gas detecting device.
  • the dust filter medium is an alumina pellet.
  • the catalyst is laid on a fixed bed in the form of small particles, or placed on a fixed bed in a honeycomb shape, or placed on a fixed bed in the form of a whole paper tower.
  • the tower body of the first fixed bed catalytic tower and the second fixed bed catalytic tower is a glass steel tower Body, or stainless steel tower, or anti-corrosion ordinary carbon steel tower.
  • a third object of the present invention is to provide a method for denitration of a nitrogen oxide ammonia-free low temperature selective reduction catalyst, the steps comprising:
  • the flue gas to be denitrated is introduced into the first fixed bed catalytic tower, and the reaction temperature is controlled at 80-120 ° C, and the space velocity is 1000-10000 h -1 .
  • the flue gas itself Containing CO or a mixture of CO and H 2 to reduce NOx to N 2 gas while monitoring the concentration of NOx in the exhaust gas discharged from the first fixed bed catalytic column;
  • the flue gas to be denitrated Switching to the second fixed bed catalytic tower for denitration treatment, under the action of nitrogen oxide non-ammonia low temperature denitration catalyst, the flue gas itself contains CO or CO and H 2 mixed gas to reduce NOx to N 2 gas, and at the same time Exhaust gas discharged from the second fixed bed catalytic tower is monitored;
  • the method for denitration of a nitrogen oxide non-ammonia low-temperature selective reduction catalyst is characterized in that the concentration of CO or H 2 and CO mixed gas contained in the flue gas in the step A is not less than 1000 ppm, if the flue gas itself If the concentration of CO or CO+H 2 contained is less than 1000 ppm, CO needs to be supplemented so that the concentration of CO or CO+H 2 contained in the flue gas is not less than 1000 ppm; in step C, CO is introduced into the first fixed bed catalytic tower. Or a mixed gas of H 2 and CO, derived from a water gas generator, or an industrial CO gas.
  • reaction formula includes:
  • the main processes carried out in the first reduction catalyst column are (1), (6), (7);
  • the main reaction in the second reduction catalyst column is (8).
  • the catalyst of the invention can realize the flue gas denitration process under low temperature conditions, and does not require ammonia gas as a reducing agent during denitration, and uses the tail gas itself to reduce CO and H 2 , thereby greatly saving the cost of the reducing agent; No need for a second heating, energy costs can be saved; because the exhaust gas has been treated by dust removal, the damage to the catalyst can be greatly reduced and the life of the catalyst can be prolonged.
  • the first reduction catalyst tower reduces NOx or nitrate or nitrite to N 2 under the action of water gas to achieve the purpose of revitalizing the catalyst;
  • the material of the catalytic tower tower body can be made of glass fiber reinforced plastic, stainless steel or ordinary carbon steel which can be corroded to meet the equipment demand.
  • FIG. 1 is a schematic structural view of a denitration apparatus of the present invention
  • the total metal oxides accounted for 15% of the catalyst, and the balance was accurately weighed Cu(NO 3 ) 2 .5H 2 O, Mn(NO 3 ) 2 , Ce(NO 3 ) 3 ⁇ 6H 2 O , dissolved in an appropriate amount of distilled water, after the solution is completely dissolved, the solution is poured into a beaker containing the carrier, and the solution is continuously absorbed by a glass rod to be completely absorbed, and then dried in a dry box at 80 ° C for 6 hours, dried and placed in a quartz glass tube.
  • the high temperature calcination was carried out under the protection of a nitrogen atmosphere according to the procedure of Table 1; then, it was cooled to room temperature under a nitrogen atmosphere.
  • catalyst activity test was carried out under the following conditions: catalyst 50 g, gas flow rate 250 L/hr, CO concentration 1000 ppm, time 1 hour, temperature 80 ° C, and experimental data are shown in Table 2 below:
  • Catalyst preparation method Example 1 various specific schemes are only different catalyst formulations.
  • the catalyst carrier was selected from granular activated carbon, and the amount of each catalyst was 250 g.
  • the active component contains the influence of Ce.
  • Ce helps with denitrification.
  • the reaction temperature is 80 ° C, CO 1000 ppm; the O 2 inlet concentration is about 7 to 8%.
  • the NO concentration was 1000 ppm, the flow rate was 250 L/hr, and the catalyst was 50 g.
  • the time for detecting the NO concentration in the catalyst tail gas of 1, 2, and 3 groups was 14, 10, and 81 min. The longer the time of monitoring NO, the better the catalytic effect.
  • the catalyst was produced in the same manner as in Example 1, and the various specific solutions were only different in the catalyst formulation.
  • the catalyst carrier was selected from granular activated carbon, and the amount of each catalyst was 250 g.
  • the reaction temperature was 80 ° C, the CO concentration was 1000 ppm, and the O 2 inlet concentration was about 7 to 8%.
  • the NO concentration was 1000 ppm, the flow rate was 250 L/hr, and the catalyst was 50 g.
  • the time for detecting the NO concentration of the catalysts in the 1, 2, and 3 groups was 46, 81, and 70 min. The longer the NO was detected, the better the catalyst effect was.
  • the high temperature reaction catalyst was returned to 80 ° C and oxygen was passed again, and the tail gas NO was detected as 0.
  • the catalyst is produced in the same manner as above, and the catalyst is continuously improved. Based on the above mechanism, the addition of potassium should be beneficial to increase the life of the catalyst.
  • the ratio of Cu:Mn is constant, the molar ratio is 1:3, the percentage of K in parentheses, and the total content of active ingredients does not exceed 15%.
  • the other is the carrier quality, and the evaluation method is the same as in Example 2.
  • the reaction temperature was 80 ° C, the CO concentration was 1000 ppm, and the O 2 inlet concentration was about 7 to 8%.
  • the NO concentration was 1000 ppm, the flow rate was 250 L/hr, and the catalyst was 50 g.
  • the above four catalysts were used for denitration tail gas to detect the concentration of NO in the order of 94, 126, 260, 270 min. The longer the time of monitoring NO, the better the catalyst effect.
  • K is not contained in the catalyst, and the life effect of the best catalyst No. 2 catalyst is 81 min.
  • different ratios of K are added in the catalyst, so that the catalyst life has different degrees. Prolonged, it was demonstrated that the addition of K is advantageous for increasing the life of the catalyst of the present invention.
  • a nitrogen oxide non-ammonia low-temperature selective reduction catalyst consisting of the following mass percentages of raw materials: 7.7% of manganese oxide, 7.5% and 85% of copper oxide; the carrier is granular activated carbon.
  • the preparation method comprises the following steps:
  • the manganese oxide and the copper oxide are corresponding to the precursor nitrate, and the corresponding nitrate solution is obtained by adding distilled water in proportion;
  • the dried carrier is placed in a quartz crucible, and calcined and decomposed in a nitrogen atmosphere at 150 ° C, 210 ° C, 250 ° C, 300 ° C, and 450 ° C; the temperature rise and fall time and residence time are the same. Table 1.
  • a nitrogen oxide non-ammonia low-temperature selective reduction catalyst consisting of the following mass percentages of raw materials: 6% manganese oxide, 6% copper oxide, 1.5% iron oxide, 1.5% potassium oxide and 85% carrier, carrier It is ⁇ -Al 2 O 3 .
  • the preparation method comprises the following steps:
  • a denitration device for denitration using a nitrogen oxide non-ammonia low-temperature selective reduction catalyst comprising a first fixed bed catalytic tower 1, a second fixed bed catalytic tower 2, an exhaust gas detecting device 3, and a control system 4; a catalyst containing copper and manganese on the fixed bed of the first fixed bed catalytic column 1 and the second fixed bed catalytic column 2; the first fixed bed catalytic column 1 and the second fixed bed catalytic column 2 are connected to the intake pipe
  • the intake pipe is provided with an intake control valve 5, and the intake control valve 5 controls the gas to enter the first fixed bed catalytic tower 1 or the second fixed bed catalytic tower 2; the exhaust gas detecting device 3 respectively includes the first Fixed bed reminder
  • the chemical tower 1 is connected to the exhaust duct of the second fixed bed catalytic tower 2; the control system 4 is in control connection with the intake control valve 5 and the exhaust gas detecting device 3, respectively.
  • a layer of dust filter medium is placed under the catalyst, and the dust filter medium is alumina pellets.
  • the catalyst is laid on a fixed bed in small particles, or placed on a fixed bed in a honeycomb shape, or placed on a fixed bed in a monolithic form.
  • the tower body of the first fixed bed catalytic tower 1 and the second fixed bed catalytic tower 2 is a glass steel tower body; in actual use, a stainless steel tower body or a tower body made of an anticorrosive ordinary carbon steel tower body material may also be used.
  • a method for denitration using a nitrogen oxide non-ammonia low-temperature selective reduction catalyst comprising:
  • the flue gas to be denitrated is introduced into the first fixed bed catalytic tower, and the concentration of CO in the flue gas to be denitrated is 1200 ppm, the reaction temperature is controlled at 80 ° C, the space velocity is 1000 h -1 , and the nitrogen oxide is ammonia-free.
  • the CO or CO and H 2 mixed gas contained in the flue gas itself reduces NOx to N 2 gas, and simultaneously monitors the concentration of NOx in the exhaust gas discharged from the first fixed bed catalytic tower;
  • the denitration flue gas is switched to the second fixed bed catalytic tower for denitration treatment.
  • the flue gas itself contains CO or CO and H 2 mixed gas to reduce NOx to N 2 gas, while monitoring the tail gas discharged from the second fixed bed catalytic tower;
  • a method for denitration using a nitrogen oxide non-ammonia low-temperature selective reduction catalyst comprising:
  • the flue gas to be denitrated is introduced into the first fixed bed catalytic tower. After detection, the flue gas itself contains a concentration of CO of 800 ppm, and at the same time, CO is introduced, so that the concentration of CO in the flue gas reaches 1100 ppm, and the reaction temperature is controlled at 120. °C, space velocity 10000h -1 , under the action of nitrogen oxide non-ammonia low-temperature denitration catalyst, the flue gas itself contains CO or CO and H 2 mixed gas to reduce NOx to N 2 gas, while monitoring the first fixed bed catalytic tower The concentration of NOx in the exhaust gas discharged;
  • the denitration flue gas is switched to the second fixed bed catalytic tower for denitration treatment.
  • the flue gas itself contains CO or CO and H 2 mixed gas to reduce NOx to N 2 gas, while monitoring the tail gas discharged from the second fixed bed catalytic tower;
  • the H 2 and CO mixed gas generated by the water gas generator is introduced into the second fixed bed catalytic tower, and is controlled.
  • the reaction temperature is 250 ° C
  • the space velocity is 10000 h -1
  • the nitrogen oxide non-ammonia low-temperature denitration catalyst in the second fixed bed catalytic tower is reactivated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

一种氮氧化物无氨低温选择性还原催化剂及其制备方法和应用;包括活性成分和载体,活性成分包括氧化锰和氧化铜,催化剂中各成分的质量百分比为:氧化锰1-15%、氧化铜1-8%和载体余量。催化剂可实现在低温条件下满足烟气脱硝过程,脱硝时不需要氨气作为还原剂,可有效降低企业的处理成本;利用催化剂进行烟气脱硝时,烟气中含有的CO和H2即能满足在脱硝时的还原需求,即便在处理后期,由于催化剂活性降低导致脱硝不完全,采用两个脱硝还原催化塔的切换,使脱硝正常进行,另一脱硝还原催化塔,在通入水煤气的作用下将NOx或硝酸盐或亚硝酸盐还原成N2,同时达到复活催化剂的目的。

Description

氮氧化物无氨低温选择性还原催化剂及其制备方法和应用 技术领域
本发明属于大气污染治理领域,具体来说是一种氮氧化物无氨低温选择性还原催化剂及其制备方法和运用。
背景技术
NOx是一种主要的大气污染物质,NOx与碳氢化合物可以在强光作用下造成光化学污染,排放到大气中的NOx是形成酸雨的主要原因,严重危害生态环境。目前国内65%左右的NOx是由煤燃烧所产生的,因此作为主要燃煤设备的电站锅炉和工业锅炉成为今后控制NOx排放所必须关注的焦点。具不完全统计,全国上规模的水泥厂家有5000余家,生产的水泥达19余亿吨,排放的NOx占全国的15%左右,为300~400万吨,若不加控制,NOx年排放将超3000万吨。国家在十二五期间,将逐步加大NOx的控制,如北京目前燃煤的NOx必须小于250mg.Nm-3。整个燃煤脱硝市场为1500亿左右,其中催化剂为500亿。目前的脱硝技术包括:
1.已经采取诸如低NOx燃烧器、分级配风、OFA(Over Fire Air)、再燃等技术措施来降低NOx的排放,并取得了一定的效果。但随着人们对环保要求的不断提高,今后的NOx排放标准势必也越来越严格。我国目前要求燃煤电站锅炉NOx的排放必须低于400mg.Nm-3的要求,以后会提高到250mg.Nm-3。比现有的国标要求要严格得多,采用上述几种技术措施往往很难达到250mg.Nm-3的排放指标。
2.选择性非催化还原(SNCR)技术,选择性非催化还原(SNCR)脱除NOx技术是把含有NHx基的还原剂(如氨气、氨水或者尿素等)喷入炉膛温度为800℃~1000℃的区域,该还原剂迅速热分解成NH3和其它副产物,随后NH3与烟气中的NOx进行SNCR反应而生成N2,化学反应包括:
4NH3+4NO+O2→4N2+6H2O
4NH3+2NO+2O2→3N2+6H2O
8NH3+6NO→7N2+12H2O
在反应中,需要消耗氨或者尿素,反应式如下:
(NH3)2CO→2NH3+CO
NH3+NO→N2+H2O
CO+NO→N2+CO2
SNCR还原NO时,反应对于温度条件非常敏感,炉膛上喷入点的选择,也就是所谓的温度窗口的选择,是SNCR还原NO效率高低的关键。一般认为理想的温度范围为700~1100℃,并随反应器类型的变化而有所不同。当反应温度低于温度窗口时,由于停留时间的限制,往往使化学反应进行的程度较低反应不够彻底,从而造成NO的还原率较低,同时未参与反应的NH3增加也会造成氨气泄漏。而当反应温度高于温度窗口时,NH3的氧化反应开始起主导作用:4NH3+5O2→4NO+6H2O,从而,NH3的作用成为氧化并生成NO,而不是还原NO为N2
总之,SNCR还原NO的过程是上述两类反应相互竞争、共同作用的结果。如何选取合适的温度条件同时兼顾减少还原剂的泄漏成为SNCR技术成功应用的关键。
3.烟气净化方式的选择性催化还原(SCR)技术。原理同SNCR,但温度260~450℃,NOx可以取得高达90%的NOx脱除率。
现有的SCR造成投资大的原因:高灰高温,对催化剂的要求较高,设备投资较大;用氨做还原剂,氨的储存、本身成本均高,并且具有腐蚀性。
发明内容
本发明的目的是针对目前SCR技术的要求高温和氨源,存在二次污染、投资费用高、运行费用大的缺点,提供一种氮氧化物无氨低温选择性还原催化剂及其制备方法和运用。
为实现上述目的,本发明采用的技术方案是:一种氮氧化物无氨低温选择性还原催化剂,包括活性成分和载体,所述活性成分包括氧化锰和氧化铜,所述催化剂中各成分的质量百分比为:氧化锰1~15%、氧化铜1~8%和载体余量。
进一步的,所述活性成分还包括氧化铁1~5和氧化钾1~5%,所述载体为 活性炭或γ-Al2O3
本发明的第二目的是提供一种氮氧化物无氨低温选择性还原催化剂的制备方法,包括如下步骤:
A.将活性成分的金属硝酸盐按设计比例溶解于蒸馏水;
B.称量定量的载体吸附溶解后的硝酸盐混合溶液,使溶液将载体完全浸渍刚好饱和;
C.将吸附硝酸盐溶液的载体置于70~90℃烘干;
D.将烘干的载体置于石英坩埚中,从150℃、210℃、250℃、300℃、450℃程空升温在氮气保护气氛中焙烧分解;
E.将步骤D所得催化剂在氮气保护下自然冷却至室温。
本发明的第三目的是提供一种氮氧化物无氨低温选择性还原催化剂进行脱硝的脱硝设备,包括第一固定床催化塔、第二固定床催化塔、尾气检测装置和控制系统;所述第一固定床催化塔和第二固定床催化塔的固定床上铺设含铜和锰的氮氧化物无氨低温选择性还原催化剂;所述第一固定床催化塔和第二固定床催化塔均与进气管道相连通,所述进气管道设有进气控制阀,进气控制阀控制气体进入第一固定床催化塔或者第二固定床催化塔;所述尾气检测装置分别与包括第一固定床催化塔和第二固定床催化塔的排气管道相连接;所述控制系统分别与进气控制阀和尾气检测装置控制连接。
进一步的,所述催化剂下面铺垫一层粉尘过滤介质。
进一步的,所述粉尘过滤介质为氧化铝小球。
进一步的,所述催化剂为小颗粒状铺设于固定床上,或者为整体蜂窝状放置于固定床上,或者为整体纸塔型放置于固定床上。
进一步的,所述第一固定床催化塔和第二固定床催化塔的塔体为玻璃钢塔 体,或者不锈钢塔体,或者防腐普通碳钢塔体。
本发明的第三目的是提供一种氮氧化物无氨低温选择性还原催化剂进行脱硝的方法,步骤包括:
A.将待脱硝的烟气通入第一固定床催化塔,控制反应温度在80~120℃,空间速度1000~10000h-1,在氮氧化物无氨低温脱硝催化剂的作用下,烟气自身含有的CO或者CO和H2混合气体将NOx还原为N2气体,同时监测第一固定床催化塔排出的尾气中NOx的浓度;
B.当监测到第一固定床催化塔排出的尾气内的NOx含量不超过排放标准即可排放;如果第一固定床催化塔排出的尾气内的NOx含量超过排放标准,则将待脱硝烟气切换通入到第二固定床催化塔进行脱硝处理,在氮氧化物无氨低温脱硝催化剂的作用下,烟气自身含有的CO或者CO和H2混合气体将NOx还原为N2气体,同时对第二固定床催化塔排出的尾气进行监测;
C.当烟气切换通入第二固定床催化塔进行脱硝处理的同时,向第一固定床催化塔中通入CO,或者H2和CO混合气体,控制反应温度在200~250℃,空间速度1000~10000h-1,复活其中的氮氧化物无氨低温脱硝催化剂;
D.当监测到第二固定床催化塔排出的尾气内的NOx含量超过排放标准将待脱硝烟气切换通入到氮氧化物无氨低温脱硝催化剂已被复活的第一固定床催化塔进行脱硝处理;
E.当待脱硝烟气切换通入到催化剂已被复活的第一固定床催化塔进行脱硝处理时,向第二固定床催化塔中通入CO,或者H2和CO混合气体,控制反应温度在200~250℃,空间速度1000~10000h-1,复活第二固定床催化塔中的氮氧化物无氨低温脱硝催化剂。
进一步的,氮氧化物无氨低温选择性还原催化剂进行脱硝的方法,其特征在于,所述步骤A中烟气自身含有的CO或者H2和CO混合气体的浓度不小于1000ppm,如果烟气自身含有的CO或者CO+H2浓度小于1000ppm,则需补充CO使烟气中含有的CO或CO+H2的浓度不小于1000ppm;所述步骤C中向第一固定床催化塔中通入CO或者H2和CO的混合气体,来源于水煤气发生炉,或者工业CO气体。
本发明的原理是这样实现的,反应式包括:
2NO+4H2+O2→N2+4H2O      △H0=-574KJ/molNO        (1)
2NO+3H2+O2→N2O+3H2O     △H0=-412KJ/molNO        (2)
O2+2H2→2H2O            △H0=-412KJ/molH2         (3)
NO+CO→N2O+CO2                                    (4)
N2O+CO→N2+CO2                                    (5)
NO+CO→N2+CO2                                     (6)
NO+O2→NO2                                        (7)
NO2+CO→N2+CO2                                    (8)
在第一还原催化塔主要进行的过程是(1),(6),(7);
在第二还原催化塔主要反应是(8)。
本发明的有益技术效果是:
(1)本发明催化剂可实现在低温条件下满足烟气脱硝过程,脱硝时不需要氨气作为还原剂,利用尾气本身的CO和H2进行还原,大大节省还原剂成本;进行余热利用的尾气无需第二次加热,可节省能源成本;因尾气已经通过脱灰尘处理,可大大降低对催化剂的伤害,延长催化剂的寿命。这三大特点可有效降低企业的运行处理成本;
(2)利用本发明催化剂进行烟气脱硝时,不需要外加NH3作为还原性气体,烟气中含有的CO和H2即能满足在脱硝时的还原需求,即便在处理后期,由于催化剂活性降低导致脱硝不完全,即可切换到第二个还原催化塔。 第一个还原催化塔在通入水煤气的作用下将NOx或硝酸盐或亚硝酸盐还原成N2,达到复活催化剂的目的;
(3)本发明催化剂用于脱硝时,对设备的要求非常低,催化塔塔体的材料可以采用玻璃钢、不锈钢或者防腐蚀的普通碳钢即可满足设备需求。
附图说明
图1是本发明脱硝设备结构示意图;
图中:1、第一固定床催化塔;2、第二固定床催化塔;3、尾气检测装置;4、控制系统;5、进气控制阀。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
按既定配比,总金属氧化物占催化剂的百分比为15%,用天平准确称量Cu(NO3)2.5H2O、Mn(NO3)2、Ce(NO3)3·6H2O,溶解于适量蒸馏水中,待溶解完全后将溶液倾倒入盛有载体的烧杯中,不断用玻璃棒搅拌让溶液吸收完全,再置于干燥箱中80℃干燥6h,干燥后放入石英玻璃管在氮气气氛保护下按表1程序升温进行高温焙烧;然后在氮气保护下冷却到室温。
表1程序升温
Figure PCTCN2014089995-appb-000001
然后进行催化剂活性测试,测试条件为,催化剂50g,气体流量250L/小时,CO浓度为1000ppm,时间1小时,温度80℃,实验数据如下表2所示:
表2三种载体的活性比较
Figure PCTCN2014089995-appb-000002
在80℃条件下反应达到平衡时数据如表2所示,由上表可以看出粒状活性炭的催化活性略高于椰壳活性炭与γ-Al2O3
实施例2
催化剂制作方式实施例1,各种具体方案只是催化剂配方不一样。催化剂载体选颗粒活性炭,每次催化剂的制作量均为250克。
活性组分含Ce的影响,一般文献介绍,Ce对脱硝有帮助。
表3金属摩尔比
Figure PCTCN2014089995-appb-000003
反应温度80℃,CO 1000ppm;O2入口浓度约7~8%。
通入NO浓度1000ppm,流量250L/小时,催化剂50g。
最后进行尾气中NO浓度监测:1、2、3组催化剂尾气中检测出NO浓度的时间为14、10、81min,监测到NO的时间越长说明催化效果越好。
系列实验表明:在CO或CO+H2作还原剂的条件下,Ce作用不大,或者有负面影响。
实施例3
催化剂制作方式同实施例1,各种具体方案只是催化剂配方不一样。催化剂载体选颗粒活性炭,每次催化剂的制作量均为250克。
主要考察温度的影响
表4金属摩尔比
Figure PCTCN2014089995-appb-000004
Figure PCTCN2014089995-appb-000005
反应温度80℃,CO浓度为1000ppm;O2入口浓度约7~8%。
通入NO浓度1000ppm,流量250L/小时,催化剂50g。
最后进行尾气中NO浓度检测:1、2、3组催化剂尾气检测NO浓度的时间为46、81、70min,监测到NO的时间越长说明催化剂效果越好。
评价结果:2号配方有优势。继续选2号催化剂做进一步评价实验,当催化剂测试时间大于6小时时,催化剂活性NO的转化率低于70%,开始升温,200℃,停止供氧气,直接通CO浓度为0.5%,NO出口浓度降为0。同时通氧气,NO出口浓度比较快升至200ppm,停止氧气,NO再次下降为0。升至300℃,通氧气,活性炭燃烧,不通氧气与CO,NO同样下降为0,说明碳参加还原,若通CO,尾气CO2浓度升高。说明CO优先C参加还原。通CO+H2,有轻微氨产生,低温条件下则没有。
将高温反应的催化剂恢复到80℃再通氧气,尾气NO检测为0。
发现O2、CO在高温、低温两个不同的反应温度有着两个不同的机理中,在上述催化剂作用下,80~170℃,NO主要与O2反应,生成NO2,CO在200~300℃,与NO2及硝酸盐反应,生成N2。下面给出高温、低温两种不同反应条件下的可能发生的机理:
(1)低温条件下:
2NO+O2→2NO2
NO+CO→N2+CO2
2NO2+4CO→N2+4CO2
(2)高温条件下:
2NO+5H2→2NH3+2H2O(少量)
2NO+2CO→N2+2CO2
2NO+2H2→N2+2H2O
2NO2+4CO→N2+4CO2(主要)
2KNO3+5CO→N2+5CO2+K2O(主要)
2KNO3+5H2→N2+5H2O+K2O(主要)
实施例4
催化剂制作方式同上,继续改进催化剂,基于上述机理判断,添加钾元素应有利于提高催化剂寿命。
表5原料摩尔比
Figure PCTCN2014089995-appb-000006
Cu:Mn比例不变,摩尔比为1:3,括号中为K的百分含量,活性成分总含量不超过15%。其他为载体质量,评价方法同实例2。
反应温度80℃,CO浓度为1000ppm;O2入口浓度约7~8%。
通入NO浓度1000ppm,流量250L/小时,催化剂50g。
上述四种配方催化剂用于脱硝尾气检测出NO浓度的时间依次为94、126、260、270min,监测到NO的时间越长说明催化剂效果越好。在实施例3中催化剂中不含K,其中效果最好的2号催化剂配方的寿命为81min,而本实施例中催化剂的配方中分别加入了不同比例的K,使催化剂寿命均有不同程度的延长,证明了加入K有利于提高本发明催化剂的寿命。
实施例5
一种氮氧化物非氨低温选择性还原催化剂,它是由下列质量百分比的原料组成:氧化锰7.5%、氧化铜7.5%和85%的载体组成;载体为粒状活性炭。
制备方法,包括如下步骤:
(1)将氧化锰和氧化铜对应前驱体硝酸盐,按比例加蒸馏水配得相应的硝酸盐溶液;
(2)称量定量的粒状活性炭加入到硝酸盐溶液中,使硝酸盐溶液和活性炭刚好吸附至饱和;
(3)将吸附硝酸盐溶液的粒状活性炭70℃烘干9小时;
(4)将烘干的载体置于石英坩埚中,从150℃、210℃、250℃、300℃、450℃程空升温在氮气保护气氛中焙烧分解;程序升温的升降温时间和停留时间同表1。
(5)在氮气保护下自然冷却到室温。
实施例6
一种氮氧化物非氨低温选择性还原催化剂,它是由下列质量百分比的原料组成:氧化锰6%、氧化铜6%、氧化铁1.5%、氧化钾1.5%和85%的载体组成,载体为γ-Al2O3
制备方法,包括如下步骤:
(1)将氧化锰、氧化铜、氧化铁和氧化钾对应前驱体硝酸盐,按比例加蒸馏水配得相应的硝酸盐溶液;
(2)称量定量的粒状活性炭加入到硝酸盐溶液中,使硝酸盐溶液和活性炭刚好吸附至饱和;
(3)将吸附硝酸盐溶液的粒状活性炭80℃烘干9小时;
(4)将烘干的载体置于石英坩埚中,从150℃、210℃、250℃、300℃、450℃程空升温在氮气保护气氛中焙烧分解;
(5)在氮气保护下自然冷却到室温。
实施例7
如图1所示,利用氮氧化物无氨低温选择性还原催化剂进行脱硝的脱硝设备,包括第一固定床催化塔1、第二固定床催化塔2、尾气检测装置3和控制系统4;所述第一固定床催化塔1和第二固定床催化塔2的固定床上铺设含铜和锰的催化剂;所述第一固定床催化塔1和第二固定床催化塔2均与进气管道相连通,所述进气管道设有进气控制阀5,进气控制阀5控制气体进入第一固定床催化塔1或者第二固定床催化塔2;所述尾气检测装置3分别与包括第一固定床催 化塔1和第二固定床催化塔2的排气管道相连接;所述控制系统4分别与进气控制阀5和尾气检测装置3控制连接。
催化剂下面铺垫一层粉尘过滤介质,粉尘过滤介质为氧化铝小球。
催化剂为小颗粒状铺设于固定床上,或者为整体蜂窝状放置于固定床上,或者为整体纸塔型放置于固定床上。
第一固定床催化塔1和第二固定床催化塔2的塔体为玻璃钢塔体;在实际使用时,不锈钢塔体或者防腐普通碳钢塔体材料制成的塔体也可以。
实施例8
一种利用氮氧化物无氨低温选择性还原催化剂进行脱硝的方法,步骤包括:
A.将待脱硝的烟气通入第一固定床催化塔,经检测待脱硝的烟气中CO的浓度为1200ppm,控制反应温度在80℃,空间速度1000h-1,在氮氧化物无氨低温脱硝催化剂的作用下,烟气自身含有的CO或者CO和H2混合气体将NOx还原为N2气体,同时监测第一固定床催化塔排出的尾气中NOx的浓度;
B.当监测到第一固定床催化塔排出的尾气内的NOx含量不超过200mg.Nm-3即可排放;如果第一固定床催化塔排出的尾气内的NOx含量超过200mg.Nm-3,则将待脱硝烟气切换通入到第二固定床催化塔进行脱硝处理,在氮氧化物无氨低温脱硝催化剂的作用下,烟气自身含有的CO或者CO和H2混合气体将NOx还原为N2气体,同时对第二固定床催化塔排出的尾气进行监测;
C.当烟气切换通入第二固定床催化塔进行脱硝处理的同时,向第一固定床催化塔中通入工业CO气体,控制反应温度在200℃,空间速度1000h-1,复活其中的氮氧化物无氨低温脱硝催化剂;
D.当监测到第二固定床催化塔排出的尾气内的NOx含量超过排放标准将待脱硝烟气切换通入到氮氧化物无氨低温脱硝催化剂已被复活的第一固定床催化塔进行脱硝处理;
E.当待脱硝烟气切换通入到催化剂已被复活的第一固定床催化塔进行脱硝处理时,向第二固定床催化塔中通入工业CO气体,控制反应温度在200℃,空间速度1000h-1,复活第二固定床催化塔中的氮氧化物无氨低温脱硝催化剂。
实施例9
一种利用氮氧化物无氨低温选择性还原催化剂进行脱硝的方法,步骤包括:
A.将待脱硝的烟气通入第一固定床催化塔,经检测,烟气自身含有CO的浓度为800ppm,同时通入CO,使烟气中CO的浓度达到1100ppm,控制反应温度在120℃,空间速度10000h-1,在氮氧化物无氨低温脱硝催化剂的作用下,烟气自身含有的CO或者CO和H2混合气体将NOx还原为N2气体,同时监测第一固定床催化塔排出的尾气中NOx的浓度;
B.当监测到第一固定床催化塔排出的尾气内的NOx含量不超过250mg.Nm-3即可排放;如果第一固定床催化塔排出的尾气内的NOx含量超过250mg.Nm-3,则将待脱硝烟气切换通入到第二固定床催化塔进行脱硝处理,在氮氧化物无氨低温脱硝催化剂的作用下,烟气自身含有的CO或者CO和H2混合气体将NOx还原为N2气体,同时对第二固定床催化塔排出的尾气进行监测;
C.当烟气切换通入第二固定床催化塔进行脱硝处理的同时,向第一固定床催化塔中通入水煤气发生炉产生的H2和CO混合气体,控制反应温度在250℃,空间速度10000h-1,复活其中的氮氧化物无氨低温脱硝催化剂;
D.当监测到第二固定床催化塔排出的尾气内的NOx含量超过排放标准将待脱硝烟气切换通入到氮氧化物无氨低温脱硝催化剂已被复活的第一固定床催化塔进行脱硝处理;
E.当待脱硝烟气切换通入到催化剂已被复活的第一固定床催化塔进行脱硝处理时,向第二固定床催化塔中通入水煤气发生炉产生的H2和CO混合气体,控制反应温度在250℃,空间速度10000h-1,复活第二固定床催化塔中的氮氧化物无氨低温脱硝催化剂。
实施例10
将上述催化剂、利用上述设备和方法在云南宜良水泥厂尾气做现场实验,下面是宜良环保局现场检测结果:
表6处理效果对照表
Figure PCTCN2014089995-appb-000007
Figure PCTCN2014089995-appb-000008
从上表可知2014年3月1日处理效率达94.5%,2014年3月2日处理效率达78.8%,综合处理效率为86.65%。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种氮氧化物无氨低温选择性还原催化剂,包括活性成分和载体,其特征在于,所述活性成分包括氧化锰和氧化铜,所述催化剂中各成分的质量百分比为:氧化锰1~15%、氧化铜1~8%和载体余量。
  2. 根据权利要求1所述氮氧化物无氨低温选择性还原催化剂,其特征在于,所述活性成分还包括氧化铁1~5和氧化钾1~5%,所述载体为活性炭或γ-Al2O3
  3. 氮氧化物无氨低温选择性还原催化剂的制备方法,其特征在于,包括如下步骤:
    A.将活性成分的金属硝酸盐按设计比例溶解于蒸馏水;
    B.称量定量的载体吸附溶解后的硝酸盐混合溶液,使溶液将载体完全浸渍刚好饱和;
    C.将吸附硝酸盐溶液的载体置于70~90℃烘干;
    D.将烘干的载体置于石英坩埚中,在氮气保护气氛下150℃、210℃、250℃、300℃、450℃程序升温在氮气保护气氛中焙烧分解;
    E.将步骤D所得催化剂在氮气保护下自然冷却至室温。
  4. 使用氮氧化物无氨低温选择性还原催化剂进行脱硝的脱硝设备,其特征在于,包括第一固定床催化塔、第二固定床催化塔、尾气检测装置和控制系统;所述第一固定床催化塔和第二固定床催化塔的固定床上铺设含铜和锰的氮氧化物无氨低温选择性还原催化剂;所述第一固定床催化塔和第二固定床催化塔均与进气管道相连通,所述进气管道设有进气控制阀,进气控制阀控制气体进入第一固定床催化塔或者第二固定床催化塔;所述尾气检测装置分别与包括第一固定床催化塔和第二固定床催化塔的排气管道相连接;所述控制系统分别与进气控制阀和尾气检测装置控制连接。
  5. 根据权利要求4所述脱硝设备,其特征在于,所述催化剂下面铺垫一层 粉尘过滤介质。
  6. 根据权利要求5所述脱硝设备,其特征在于,所述粉尘过滤介质为氧化铝小球。
  7. 根据权利要求4所述脱硝设备,其特征在于,所述催化剂为小颗粒状铺设于固定床上,或者为整体蜂窝状放置于固定床上,或者为整体纸塔型放置于固定床上。
  8. 根据权利要求4所述脱硝设备,其特征在于,所述第一固定床催化塔和第二固定床催化塔的塔体为玻璃钢塔体,或者不锈钢塔体,或者防腐普通碳钢塔体。
  9. 一种利用氮氧化物无氨低温选择性还原催化剂进行脱硝的方法,其特征在于,步骤包括:
    A.将待脱硝的烟气通入第一固定床催化塔,控制反应温度在80~120℃,空间速度1000~10000h-1,在氮氧化物无氨低温脱硝催化剂的作用下,烟气自身含有的CO或者CO和H2混合气体将NOx还原为N2气体,同时监测第一固定床催化塔排出的尾气中NOx的浓度;
    B.当监测到第一固定床催化塔排出的尾气内的NOx含量不超过排放标准即可排放;如果第一固定床催化塔排出的尾气内的NOx含量超过排放标准,则将待脱硝烟气切换通入到第二固定床催化塔进行脱硝处理,在氮氧化物无氨低温脱硝催化剂的作用下,烟气自身含有的CO或者CO和H2混合气体将NOx还原为N2气体,同时对第二固定床催化塔排出的尾气进行监测;
    C.当烟气切换通入第二固定床催化塔进行脱硝处理的同时,向第一固定床催化塔中通入CO,或者H2和CO混合气体,控制反应温度在200~250℃,空间速度1000~10000h-1,复活其中的氮氧化物无氨低温脱硝催化剂;
    D.当监测到第二固定床催化塔排出的尾气内的NOx含量超过排放标准将待脱硝烟气切换通入到氮氧化物无氨低温脱硝催化剂已被复活的第一固定床催化塔进行脱硝处理;
    E.当待脱硝烟气切换通入到催化剂已被复活的第一固定床催化塔进行脱硝处理时,向第二固定床催化塔中通入CO,或者H2和CO混合气体,控制反应温度在200~250℃,空间速度1000~10000h-1,复活第二固定床催化塔中的氮氧化物无氨低温脱硝催化剂。
  10. 根据权利要求9所述氮氧化物无氨低温选择性还原催化剂进行脱硝的方法,其特征在于,所述步骤A中烟气自身含有的CO或者H2和CO混合气体的浓度不小于1000ppm,如果烟气自身含有的CO或者CO+H2浓度小于1000ppm,则需补充CO使烟气中含有的CO或CO+H2的浓度不小于1000ppm;所述步骤C中向第一固定床催化塔中通入CO或者H2和CO的混合气体,来源于水煤气发生炉,或者工业CO气体。
PCT/CN2014/089995 2014-10-31 2014-10-31 氮氧化物无氨低温选择性还原催化剂及其制备方法和应用 WO2016065600A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480020618.2A CN106029224A (zh) 2014-10-31 2014-10-31 氮氧化物无氨低温选择性还原催化剂及其制备方法和应用
PCT/CN2014/089995 WO2016065600A1 (zh) 2014-10-31 2014-10-31 氮氧化物无氨低温选择性还原催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/089995 WO2016065600A1 (zh) 2014-10-31 2014-10-31 氮氧化物无氨低温选择性还原催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2016065600A1 true WO2016065600A1 (zh) 2016-05-06

Family

ID=55856418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089995 WO2016065600A1 (zh) 2014-10-31 2014-10-31 氮氧化物无氨低温选择性还原催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN106029224A (zh)
WO (1) WO2016065600A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106838888A (zh) * 2017-01-23 2017-06-13 北京联力源科技有限公司 燃烧系统及其运行方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141852A (ja) * 2002-08-26 2004-05-20 Nippon Soken Inc セラミック担体およびセラミック触媒体
US7030055B2 (en) * 2003-08-18 2006-04-18 W.R. Grace & Co.-Conn. NOx reduction compositions for use in FCC processes
CN101028594A (zh) * 2006-03-01 2007-09-05 中国科学院生态环境研究中心 低温选择性催化还原氮氧化物的复合氧化物催化剂
CN101137439A (zh) * 2005-02-28 2008-03-05 催化溶液公司 用烃或醇还原废气物流内的氮氧化物的催化剂和方法
CN102407073A (zh) * 2011-12-30 2012-04-11 湘潭大学 一种二段微波催化反应床脱硝方法
CN102716753A (zh) * 2012-06-08 2012-10-10 华电电力科学研究院 用于低温选择性催化还原氮氧化物的催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141852A (ja) * 2002-08-26 2004-05-20 Nippon Soken Inc セラミック担体およびセラミック触媒体
US7030055B2 (en) * 2003-08-18 2006-04-18 W.R. Grace & Co.-Conn. NOx reduction compositions for use in FCC processes
CN101137439A (zh) * 2005-02-28 2008-03-05 催化溶液公司 用烃或醇还原废气物流内的氮氧化物的催化剂和方法
CN101028594A (zh) * 2006-03-01 2007-09-05 中国科学院生态环境研究中心 低温选择性催化还原氮氧化物的复合氧化物催化剂
CN102407073A (zh) * 2011-12-30 2012-04-11 湘潭大学 一种二段微波催化反应床脱硝方法
CN102716753A (zh) * 2012-06-08 2012-10-10 华电电力科学研究院 用于低温选择性催化还原氮氧化物的催化剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106838888A (zh) * 2017-01-23 2017-06-13 北京联力源科技有限公司 燃烧系统及其运行方法
CN106838888B (zh) * 2017-01-23 2023-10-13 北京联力源科技有限公司 燃烧系统及其运行方法

Also Published As

Publication number Publication date
CN106029224A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
US10213733B2 (en) Gas denitration process and apparatus
US20200197922A1 (en) METHOD OF PREPARING CATALYST FOR LOW-TEMPERATURE SYNERGISTIC CATALYTIC PURIFICATION OF NOx AND HCN IN FLUE GAS, AND USE THEREOF
CA3038760C (en) A noxious gas purificant and its preparation and purification method thereof
CN102059156B (zh) 脱硝催化剂再生液及其再生方法
CN101507923B (zh) 一种用于烧结烟气同时脱硫脱硝的催化剂的制备方法
CN205019964U (zh) 一种烟气低温联合脱硫脱硝装置系统
CN105327612A (zh) 一种烟气低温联合脱硫脱硝工艺方法
CN107551799B (zh) 一种干法水泥窑烟气脱硫脱硝一体化的方法
CN207680368U (zh) 一种基于温度补偿的烟气脱硝装置
WO2021088525A1 (zh) 一种烟气多污染物协同净化工艺方法及装置
WO2023050699A1 (zh) 用于生物质电厂烟气的低温脱硫脱硝方法和系统
CN102909104A (zh) 一种scr脱硝催化剂的热处理再生方法及装置
CN103768919B (zh) 一种烟气脱硫脱硝工艺方法
CN108654363B (zh) 耦合焦炉烟气余热及硫污染物制酸工艺
CN110180389A (zh) 废氧化铝再生过程中的烟气处理工艺及其装置
CN102989466B (zh) 一种还原法烟气脱硫脱硝催化剂及其应用
CN202590630U (zh) 燃煤锅炉低温scr固定床烟气脱硝装置
WO2016065600A1 (zh) 氮氧化物无氨低温选择性还原催化剂及其制备方法和应用
CN202845023U (zh) 一种scr脱硝催化剂的热处理再生装置
CN102728215A (zh) 一种在脱硫塔中脱除氮氧化物的组合物和方法
CN112023693B (zh) 一种热风炉高效脱硝方法及热风炉装置
CN101664633A (zh) 脱除废气或烟气中氮氧化物的方法
CN103657400A (zh) Lsco(低温选择性催化氧法)净化烟气的一体化工程系统
CN106582646A (zh) 碳基酸酐协同过渡金属脱硝催化剂及其制备方法
CN204544209U (zh) 一种低温脱硝催化剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.10.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14904723

Country of ref document: EP

Kind code of ref document: A1