WO2016064171A1 - 배터리의 soc 보정 시스템 및 방법 - Google Patents

배터리의 soc 보정 시스템 및 방법 Download PDF

Info

Publication number
WO2016064171A1
WO2016064171A1 PCT/KR2015/011098 KR2015011098W WO2016064171A1 WO 2016064171 A1 WO2016064171 A1 WO 2016064171A1 KR 2015011098 W KR2015011098 W KR 2015011098W WO 2016064171 A1 WO2016064171 A1 WO 2016064171A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
operating range
battery
value
charging
Prior art date
Application number
PCT/KR2015/011098
Other languages
English (en)
French (fr)
Inventor
박정석
윤성열
조태신
조영보
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140142610A external-priority patent/KR20160046550A/ko
Priority claimed from KR1020140142609A external-priority patent/KR101749383B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580001968.9A priority Critical patent/CN105745811A/zh
Priority to EP15837076.7A priority patent/EP3051656A4/en
Priority to US14/917,346 priority patent/US9882409B2/en
Publication of WO2016064171A1 publication Critical patent/WO2016064171A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a system and method for calibrating an SOC of a battery, and more particularly, to a system and method for maintaining a range of SOC values during a charge / discharge operation of a battery.
  • types of batteries include nickel cadmium batteries, nickel hydrogen batteries, lithium ion batteries and lithium ion polymer batteries.
  • Lithium-based batteries are mainly applied to small products such as digital cameras, P-DVDs, MP3Ps, mobile phones, PDAs, portable game devices, power tools, and e-bikes. It is applied to the large product required.
  • Unbalance of the charge amount may cause some unit cells to be in an overcharged state or an overdischarged state, which causes a problem in that power cannot be stably supplied to a load (for example, an electric motor or an electric grid).
  • a load for example, an electric motor or an electric grid.
  • An object of the present invention is to adjust the dead band in the charging and discharging direction or the charging and discharging power (Power) during the charging and discharging operation of the battery, so that the SOC value can be more efficiently corrected by maintaining the SOC value within a certain range. It provides a calibration system and method.
  • the SOC correction system of the battery for achieving the above object is to determine the SOC measurement unit for measuring the SOC value of the battery, and the operating range of the predetermined operating range of the SOC value of the battery And a SOC corrector for correcting the SOC value of the battery by adjusting a dead band in the charging / discharging direction or adjusting the charging / discharging power according to the result determined by the determining unit.
  • the SOC correction method of a battery comprises the steps of measuring the SOC value of the battery, comparing the SOC value and a predetermined operating range to determine which operating range the SOC value corresponds to; And adjusting the dead band in the charging / discharging direction or adjusting the charging / discharging power with a correction value corresponding to a range corresponding to the SOC value to correct the SOC of the battery.
  • the SOC value of the battery is maintained within a predetermined range by performing the SOC correction by adjusting the dead band section in the charging / discharging direction or adjusting the charging / discharging power during the charging / discharging operation of the battery under various conditions. Can be. In addition, it is possible to reduce the probability that the SOC value of the battery reaches 100% or 0% and to reduce the capacity when designing the battery.
  • FIG. 1 is a block diagram illustrating an SOC correction system of a battery according to an exemplary embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of correcting an SOC of a battery according to an exemplary embodiment of the present invention.
  • FIG 3 is a graph illustrating SOC change according to a charge / discharge interval of a battery according to an embodiment of the present invention.
  • 4A to 4C are graphs illustrating a method of correcting SOC of a battery according to an exemplary embodiment of the present invention.
  • FIG. 5 is a block diagram illustrating an SOC correction system of a battery according to another embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a method of calibrating an SOC of a battery according to another exemplary embodiment of the present invention.
  • FIG. 7 is a graph illustrating SOC change according to a charge / discharge interval of a battery according to another embodiment of the present invention.
  • 8A to 8C, 9A to 9C, and 10A to 10C are graphs illustrating a method for correcting SOC of a secondary preposition according to another exemplary embodiment of the present invention.
  • FIG. 1 is a block diagram illustrating a battery SOC correction system according to the present invention.
  • the SOC correction system 100 of a battery includes an SOC measurement unit 110, a storage unit 120, a determination unit 130, and an SOC correction unit 140.
  • the SOC measuring unit 110 measures an SOC value of a charged battery through power supplied from a power generation device of a battery energy storage system (BESS).
  • BESS battery energy storage system
  • the SOC measuring unit 110 may measure the SOC value of the battery for each preset unit time.
  • the SOC value of the battery measured by the SOC measuring unit 110 is stored in the storage 120.
  • the storage 120 stores a plurality of operating ranges corresponding to SOC values of the battery.
  • the plurality of operating ranges are preset to determine whether the battery is charged or discharged.
  • the operating range corresponding to the SOC value of the battery can be set to an operating range suitable for the life of the battery energy storage system.
  • the operating range in consultation with the customer is 20 to 80% of the SOC value, and the operating range for which the BESS is suitable for life is 40 to 60% of the SOC value
  • the operating range can be set as the reference value.
  • the SOC value of the battery measured by the SOC measuring unit 110 is 70 or more and 100% or less
  • the first operating range, 30 or more and less than 70% will be described as a second operating range and 0 or more and less than 30%. Do it. Since there is a lot of demand to adjust the SOC value of the battery to 50% level, the second operating range can be determined as the normal range.
  • the values of the respective operating ranges are described as above, but the present invention is not limited thereto and may be changed according to the state of the battery or the surrounding environment.
  • the determination unit 130 compares the measured SOC values of the battery with a plurality of operating ranges stored in the storage unit 120 and determines which operating range of the plurality of operating ranges the measured SOC value of the battery corresponds to.
  • the SOC corrector 140 stores correction values corresponding to a plurality of operating ranges.
  • the calibration values are set to different calibration values for each operating range.
  • the first correction value corresponding to the first operating range includes a condition of increasing the dead band in the charging direction or decreasing the dead band in the discharge direction.
  • the second correction value corresponding to the second operating range includes a condition of increasing or maintaining the current state of the dead band in the charging / discharging direction, and the third correction value corresponding to the third operating range indicates the dead band in the charging direction. Conditions that reduce or increase the dead band in the discharge direction.
  • the SOC correction unit 140 corrects the SOC value of the battery by adjusting the dead band section according to the result determined by the determination unit 130.
  • the dead band is increased in the charging direction or the dead band is decreased in the discharge direction. Since the second operating range corresponds to a normal range, it is maintained when the measured SOC value of the battery is determined to be the second operating range. In this case, even in the normal range, the dead band may be increased in the charging direction in consideration of the efficiency of the battery.
  • the dead band is decreased in the charging direction or the dead band is increased in the discharge direction.
  • FIG. 2 is a flowchart illustrating a battery charging and discharging method according to an exemplary embodiment of the present invention.
  • the SOC measuring unit 110 measures an SOC value of a charged battery through power supplied from a power generation device of a battery energy storage system (S100).
  • the SOC value of the battery may be measured at preset unit times.
  • FIG. 3 is a graph showing SOC values of a battery measured every unit time. Referring to FIG. 3, it can be seen that the SOC value of the battery is measured as a value that varies from 0 to 100% from time to time.
  • the determination unit 130 compares the measured SOC value of the battery and the storage unit (the plurality of operating ranges preset in '120' of FIG. 1) and determines which operating range the measured SOC value corresponds to (S110).
  • the storage unit stores a plurality of operating ranges corresponding to the SOC value of the battery, and the plurality of operating ranges are set in advance to determine whether the battery is charged or discharged.
  • the x-axis of the graph represents time
  • the y-axis of the graph represents SOC value of the battery.
  • the SOC value of the battery is 70 or more and 100% or less (first operating range; a), 30 or more and less than 70% (second operating range; b) and 0 or more and less than 30% (third operating range; c) can be set separately.
  • the first operating range (a) is overcharged
  • the second operating range (b) is normal
  • the third operating range (c). Can be determined as an over-discharge state.
  • the value of each operating range is set as described above, but is not limited thereto and may be changed in consideration of a battery capacity, discharge efficiency, discharge resistance, and the like.
  • the SOC correction unit 140 performs SOC correction with a correction value corresponding to an operating range corresponding to the measured SOC value (S120).
  • the SOC correction is performed by adjusting the dead band section in the charging / discharging direction according to the result determined in step S110.
  • the SOC correction value will be described with reference to the graphs of FIGS. 4A to 4C.
  • the SOC value of the battery measured by the SOC measuring unit corresponds to the first operating range (a) of 70 or more and 100% or less.
  • the dead band is increased in the charging direction or the dead band is decreased in the discharge direction.
  • Increasing the dead band in the charging direction expands the range of the dead band in the charging direction and decreases the frequency correction signal range to be coped with. Then, the number of power signals applied to the battery is reduced. In addition, the probability that the SOC value of the battery reaches 100% is reduced.
  • Reducing the dead band in the discharge direction reduces the range of the dead band in the discharge direction and increases the frequency correction signal range to be coped with. Then, the number of power signals applied to the battery increases. In addition, the probability that the SOC value of the battery reaches 100% is reduced.
  • the SOC value of the battery measured by the SOC measuring unit 110 is the second operating range (b) of 30 or more and less than 70%
  • the current state is maintained as shown in FIG. 4B or the battery efficiency is considered. Increases the dead band in the charging and discharging direction.
  • Reducing the dead band in the charging direction reduces the dead band range in the charging direction and increases the frequency correction signal range to be countered.
  • the number of power signals applied to the battery is increased, and the probability that the SOC value reaches 0% is reduced.
  • the present invention measures the SOC value of the battery, determines the operating range to which the measured SOC value corresponds, and then adjusts the dead band section with a correction value corresponding to the operating range, so that the SOC value is within a certain range. It has the effect of being maintained.
  • FIG. 5 is a block diagram illustrating a battery SOC correction system 200 according to another embodiment of the present invention.
  • the SOC correction system of the battery includes an SOC measurement unit 210, a storage unit 220, a determination unit 230, and an SOC correction unit 240.
  • the SOC measuring unit 210 measures an SOC value of a charged battery through power supplied from a power generation device of a battery energy storage system (BESS).
  • BESS battery energy storage system
  • the SOC value of the battery may be measured at preset unit times.
  • the SOC value of the battery measured by the SOC measuring unit 210 is stored in the storage unit 220.
  • the storage 220 stores a plurality of operating ranges corresponding to SOC values of the battery.
  • the plurality of operating ranges are preset to determine whether the battery is charged or discharged.
  • the operating range corresponding to the SOC value of the battery can be set to an operating range suitable for the life of the battery energy storage system.
  • the operating range in consultation with the customer is 20 to 80% of the SOC value, and the operating range for which the BESS is suitable for life is 40 to 60% of the SOC value
  • the operating range can be set as the reference value.
  • the SOC value of the battery measured by the SOC measurement unit 210 is 70 or more and 100% or less
  • the first operating range, 30 or more and less than 70% will be described as a second operating range and 0 or more and less than 30%. Do it. Since there is a lot of demand to adjust the SOC value of the battery to 50% level, the second operating range can be determined as the normal range.
  • the values of the respective operating ranges are described as above, but the present invention is not limited thereto and may be changed according to the state of the battery or the surrounding environment.
  • the determination unit 230 determines which operating range of the plurality of operating ranges stored in the measured SOC value of the battery 220 is stored.
  • the SOC corrector 240 stores correction values corresponding to a plurality of operating ranges, respectively.
  • the SOC correction unit 240 includes a first correction unit 240a, a second correction unit 240b, and a third correction unit 240c, and each correction unit corrects correction values using different charging / discharging power adjustment schemes. It is included.
  • the first corrector 240a includes a condition of increasing or decreasing the charge / discharge power exponentially.
  • the second corrector 240b includes a condition of increasing or decreasing the charge / discharge power in a stepped manner.
  • the third correction unit 240c includes a condition for increasing or decreasing the charge / discharge power at a predetermined ratio of the charge / discharge power.
  • the SOC correction unit 240 corrects the SOC value of the battery by adjusting the charge / discharge power according to the result determined by the determination unit 230.
  • the correction unit corresponding to the first operating range of the selected correction unit is selected by selecting one of the correction units of the SOC correcting unit 240. Perform SOC calibration.
  • the charging power is decreased or the discharge power is increased.
  • the charge / discharge power may be increased or decreased at an exponential, stepped, or constant ratio of the charge / discharge power.
  • the second operating range corresponds to a normal range, it is maintained when the measured SOC value of the battery is determined to be the second operating range.
  • the charging power is increased or the discharge power is decreased.
  • the charge / discharge power may be increased or decreased at an exponential, stepped, or constant ratio of the charge / discharge power.
  • the SOC correction is performed by adjusting the charge / discharge power of the battery under various conditions, an effect of maintaining the SOC value of the battery within a predetermined range may be obtained.
  • FIG. 6 is a flowchart illustrating a method of correcting an SOC of a battery according to another exemplary embodiment of the present invention.
  • a state of charging (SOC) value of a charged battery is measured through power supplied from a power generation device of a battery energy storage system (BESS) (S200).
  • the SOC value of the battery may be measured at preset unit times. 6 is a graph showing SOC values of a battery measured every unit time. Referring to FIG. 6, it can be seen that the SOC value of the battery is measured as a value that varies from 0 to 100% from time to time.
  • the SOC value of the measured battery and the storage unit (compare a plurality of operating ranges set in advance in the '220' of FIG. 5 to determine which operating range the measured SOC value corresponds to (S210).
  • the storage unit stores a plurality of operating ranges corresponding to the SOC value of the battery, and the plurality of operating ranges are set in advance to determine whether the battery is charged or discharged.
  • the x-axis of the graph represents time
  • the y-axis of the graph represents SOC value of the battery.
  • the SOC value of the battery is 70 or more and 100% or less (first operating range (a)), 30 or more and less than 70% (second operating range (b)) and zero or more and less than 30% (third operation) Range (c)). Since there are many demands for adjusting the SOC value of the battery to 50% level, the first operating range can be determined as an overcharge state, the second operating range is a normal range, and the third operating range can be determined as an over discharge state. . In the present specification, the value of each operating range is set as described above, but is not limited thereto and may be changed in consideration of a battery capacity, discharge efficiency, discharge resistance, and the like.
  • the SOC corrector 240 includes a first corrector 240a, a second corrector 240b, and a third corrector 240c, and each corrector includes a different charging / discharging power adjustment scheme.
  • the first corrector 240a includes a condition of increasing or decreasing the charge / discharge power exponentially.
  • the second corrector 240b includes a condition of increasing or decreasing the charge / discharge power in a stepped manner.
  • the third correction unit 240c includes a condition for increasing or decreasing the charge / discharge power at a predetermined ratio of the charge / discharge power.
  • SOC correction is performed with a correction value corresponding to an operating range corresponding to the measured SOC value of the battery (S220). SOC correction is performed by adjusting the charge and discharge power according to the result determined in step S210.
  • the graph of FIGS. 8A to 8C illustrates a method of increasing or decreasing the charge / discharge power exponentially.
  • the SOC value of the battery measured by the SOC measuring unit corresponds to the first operating range (a) of 70 or more and 100% or less. If the measured SOC value of the battery falls within the first operating range, a correction value for reducing the charge power exponentially and increasing the discharge power exponentially is applied. This SOC correction reduces the probability of reaching 100% SOC and reduces the capacity of the battery design.
  • FIG. 8B illustrates a case in which the SOC value of the battery measured by the SOC measuring unit corresponds to the second operating range (b) when the SOC value is 30 or more and less than 70%. In this case, it is determined as a normal range to maintain the current state.
  • FIG. 8C illustrates a case in which the SOC value of the battery measured by the SOC measuring unit corresponds to the third operating range (c) of 0 or more and less than 30%.
  • the charging power is increased exponentially or A correction value is applied to reduce the discharge power exponentially.
  • the graphs of FIGS. 9A-9C illustrate a method of increasing or decreasing the charge / discharge power stepped.
  • 9A illustrates a case where the SOC value of the battery measured by the SOC measuring unit corresponds to the first operating range (a) of 70 or more and 100% or less. If the measured SOC value of the battery falls within the first operating range, a correction value for reducing the charging power stepwise and increasing the discharge power stepwise is applied.
  • FIG. 9B illustrates a case in which the SOC value of the battery measured by the SOC measuring unit corresponds to the second operating range (b) when the SOC value is 30 or more and less than 70%. In this case, it is determined as a normal range to maintain the current state.
  • FIG. 9C illustrates a case in which the SOC value of the battery measured by the SOC measuring unit corresponds to a third operating range (c) of 0 or more and less than 30%, in which case the charging power is increased stepwise or Apply a correction value that reduces the discharge power stepwise.
  • the graphs of FIGS. 10A to 10C illustrate a method of increasing or decreasing the charge / discharge power at a ratio of the charge / discharge power.
  • FIG. 10A illustrates a case where the SOC value of the battery measured by the SOC measuring unit corresponds to the first operating range (a) of 70 or more and 100% or less. If the measured SOC value of the battery falls within the first operating range, a correction value for reducing the charging power by a predetermined rate is applied.
  • FIG. 10B illustrates a case in which the SOC value of the battery measured by the SOC measuring unit corresponds to the second operating range (b) when the SOC value is 30 or more and less than 70%. In this case, it is determined as a normal range to maintain the current state.
  • FIG. 10C illustrates a case in which the SOC value of the battery measured by the SOC measuring unit corresponds to the third operating range (c) of 0 or more and less than 30%.
  • the discharge power is reduced by a predetermined ratio. Apply a correction value.
  • the SOC correction is performed by adjusting the charge / discharge power of the battery under various conditions, an effect of maintaining the SOC value of the battery within a predetermined range may be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 실시예에 따른 배터리의 SOC 보정 시스템은 배터리의 SOC값을 측정하는 SOC 측정부와, 배터리의 SOC값이 기 설정된 운영 범위 중 어느 운영 범위에 해당하는지 판단하는 판단부와, 판단부에서 판단된 결과에 따라 충방전 방향의 데드 밴드를 조절하거나 충방전 파워(Power)를 조절하여 상기 배터리의 SOC값을 보정하는 SOC 보정부를 포함하는 것을 특징으로 한다. 한편, 본 발명의 실시예에 따른 배터리의 SOC 보정 방법은 배터리의 SOC값을 측정하는 단계와, 상기 SOC값과 기 설정된 운영 범위를 비교하여 상기 SOC값이 어느 운영 범위에 해당하는지 판단하는 단계와, 상기 SOC값에 해당되는 범위에 대응하는 보정 값으로 충방전 방향의 데드 밴드를 조절하거나 충방전 파워(Power)를 조절하여 상기 배터리의 SOC를 보정하는 단계를 포함하는 것을 특징으로 한다.

Description

배터리의 SOC 보정 시스템 및 방법
관련출원과의 상호인용
본 출원은 2014년 10월 21일자 한국특허출원 제10-2014-0142609호 및 2014년 10월 21일자 한국특허출원 제10-2014-0142610호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 배터리의 SOC 보정 시스템 및 방법에 관한 것으로, 특히, 배터리의 충방전 운전 중 일정 범위의 SOC값을 유지하는 시스템 및 방법에 관한 것이다.
최근 들어, 화석 에너지의 고갈과 환경오염으로 인해 화석 에너지를 사용하지 않고 전기 에너지를 이용하여 구동할 수 있는 전기 제품에 대한 관심이 높아지고 있다.
이에 따라 모바일 기기, 전기차, 하이브리드 자동차, 전력 저장 장치, 무정전 전원 장치 등에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 배터리의 수요가 급격히 증가하고 있으며 수요의 형태 역시 다양해지고 있다.
따라서 다양한 요구에 부응할 수 있게 배터리에 대한 많은 연구가 진행되고 있다. 일반적으로, 배터리의 종류로는 니켈 카드뮴 전지, 니켈 수소 전지, 리튬 이온 전지 및 리튬 이온 폴리머 전지 등이 있다.
이러한 배터리는 리튬 계열 전지와 니켈 수소 계열의 전지로 분류된다. 리튬 계열 전지는 디지털 카메라, P-DVD, MP3P, 휴대폰, PDA, Portable Game Device, Power Tool 및 E-bike 등의 소형 제품에 주로 적용되며, 니켈 수소 계열 전지는 전기 자동차나 하이브리드 전기 자동차와 같은 고출력이 요구되는 대형 제품에 적용되어 사용되고 있다.
한편, 전기 자동차나 하이브리드 전기 자동차가 주행하기 위해서는 고출력을 요구하는 전동 모터를 구동시켜야 한다. 또한, 건물이나 일정 지역에 전력을 공급하는 전력 저장 장치의 경우 전력 수요를 충족시킬 수 있을 만큼 많은 전력을 공급해야 한다. 이처럼 고출력 또는 대용량 전력을 제공하기 위해 단위 셀 집합체로 이루어진 배터리를 직렬 또는 병렬로 다수 연결하여 원하는 출력 또는 전력이 공급되도록 하고 있다.
그런데, 다수의 단위 셀이 연결된 배터리의 경우, 충방전을 반복하게 되면 각 단위 셀의 충전량에 차이가 발생하게 된다. 이러한 충전량의 불균형이 있는 상태에서 배터리의 방전이 계속되면 충전량이 낮은 특정 단위 셀이 과방전되어 배터리의 안정적인 동작이 어려워 진다. 반대로, 이러한 충전량의 불균형이 있는 상태에서 배터리의 충전이 계속되면 충전량이 높은 특정 단위 셀이 과충전되어 배터리의 안전성을 저해한다.
충전량의 불균형은 일부의 단위 셀을 과충전 상태 또는 과방전 상태가 되도록 할 수 있고, 이러한 문제로 인해 부하(예컨대, 전동 모터, 전력망)에 안정적으로 전력을 공급할 수 없는 문제가 발생하게 된다.
위와 같은 문제를 해결하기 위해 배터리 셀의 충전량을 지속적으로 모니터링 하여 각 배터리 셀의 충전량을 일정한 레벨로 밸런싱하는 다양한 방법이 요구된다.
본 발명의 목적은 배터리의 충방전 운전 중 충방전 방향의 데드 밴드를 조절하거나 충방전 파워(Power)를 조절함으로써, SOC값을 일정 범위 내로 유지하여 더욱 효율적으로 SOC값을 보정할 수 있는 배터리 SOC 보정 시스템 및 방법을 제공하는데 있다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재들로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기한 목적을 달성하기 위한 본 발명의 실시예에 따른 배터리의 SOC 보정 시스템은 배터리의 SOC값을 측정하는 SOC 측정부와, 배터리의 SOC값이 기 설정된 운영 범위 중 어느 운영 범위에 해당하는지 판단하는 판단부와, 판단부에서 판단된 결과에 따라 충방전 방향의 데드 밴드를 조절하거나 충방전 파워(Power)를 조절하여 상기 배터리의 SOC값을 보정하는 SOC 보정부를 포함하는 것을 특징으로 한다.
한편, 본 발명의 실시예에 따른 배터리의 SOC 보정 방법은 배터리의 SOC값을 측정하는 단계와, 상기 SOC값과 기 설정된 운영 범위를 비교하여 상기 SOC값이 어느 운영 범위에 해당하는지 판단하는 단계와, 상기 SOC값에 해당되는 범위에 대응하는 보정 값으로 충방전 방향의 데드 밴드를 조절하거나 충방전 파워(Power)를 조절하여 상기 배터리의 SOC를 보정하는 단계를 포함하는 것을 특징으로 한다.
본 발명은 다양한 조건으로 배터리의 충방전 운전 중 충방전 방향의 데드 밴드 구간을 조절하거나 충방전 파워를 조절하여 SOC 보정을 수행함에 따라, 배터리의 SOC 값이 일정한 범위 내에서 유지되도록 하는 효과를 얻을 수 있다. 또한, 배터리의 SOC 값이 100% 또는 0%에 도달할 확률을 감소시키고 배터리 설계 시 용량을 감소시키는 효과를 얻을 수 있다.
도 1은 본 발명의 실시예에 따른 배터리의 SOC 보정 시스템을 도시한 블록도이다.
도 2는 본 발명의 실시예에 따른 배터리의 SOC 보정 방법을 도시한 순서도이다.
도 3은 본 발명의 실시예에 따른 배터리의 충방전 구간에 따른 SOC 변화를 도시한 그래프이다.
도 4a 내지 도 4c는 본 발명의 실시예에 따른 배터리의 SOC 보정 방법을 도시한 그래프이다.
도 5는 본 발명의 다른 실시예에 따른 배터리의 SOC 보정 시스템을 도시한 블록도이다.
도 6은 본 발명의 다른 실시예에 따른 배터리의 SOC 보정 방법을 도시한 순서도이다.
도 7은 본 발명의 다른 실시예에 따른 배터리의 충방전 구간에 따른 SOC 변화를 도시한 그래프이다.
도 8a 내지 도 8c, 도 9a 내지 도 9c, 도 10a 내지 도 10c는 본 발명의 다른 실시예에 따른 이차 전치의 SOC 보정 방법을 도시한 그래프이다.
본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 하나의 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. 아울러, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우에는 그에 관한 자세한 설명은 생략하기로 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 따른 배터리의 SOC 보정 시스템 및 방법에 관하여 살펴보기로 한다.
도 1은 본 발명에 따른 배터리 SOC 보정 시스템을 도시한 블록도이다.
도 1을 참조하면, 배터리의 SOC 보정 시스템(100)은 SOC 측정부(110), 저장부(120), 판단부(130) 및 SOC 보정부(140)를 포함한다.
먼저, SOC 측정부(110)는 배터리 에너지 저장 시스템(BESS: Battery Energy Storage System)의 전력 생산 장치로부터 공급되는 전력을 통해 충전된 배터리의 SOC 값을 측정한다. SOC 측정부(110)는 배터리의 SOC값을 기 설정된 단위 시간마다 측정할 수 있다.
그리고, SOC 측정부(110)에서 측정된 배터리의 SOC 값은 저장부(120)에 저장된다.
저장부(120)에는 배터리의 SOC 값에 대응되는 다수의 운영 범위가 저장되어 있다. 다수의 운영 범위는 배터리의 충방전 보상 여부를 판단하기 위해 미리 설정되어 있다. 배터리의 SOC 값에 대응하는 운영 범위는 배터리 에너지 저장 시스템의 수명에 적합한 운영 범위로 설정할 수 있다.
예컨대, 고객사와 협의한 운영 범위가 SOC 값의 20 ~ 80%이고, BESS의 수명이 적합한 운영 범위가 SOC 값의 40 ~ 60%라면 이 운영 범위를 기준 값의 운영 범위로 설정할 수 있다. 여기서는, SOC 측정부(110)에서 측정된 배터리의 SOC 값이 70 이상 100% 이하이면 제 1 운영 범위, 30 이상 70% 미만이면 제 2 운영 범위, 0 이상 30% 미만이면 제 3 운영 범위로 설명하도록 한다. 현재 배터리의 SOC 값을 50% 수준으로 맞추고자 하는 요구가 많으므로, 제 2 운영 범위를 정상 범위로 판단할 수 있다. 본 명세서에서는 각각의 운영 범위의 값을 위와 같이 설명하고 있으나, 이에 한정되지 않으며 배터리의 상태나 주변환경에 따라 변경 가능하다.
판단부(130)는 측정된 배터리의 SOC값과 저장부(120)에 저장된 다수의 운영 범위를 비교하여 측정된 배터리의 SOC값이 다수의 운영 범위 중 어느 운영 범위에 해당되는지 판단한다.
SOC 보정부(140)는 다수의 운영 범위에 대응되는 보정 값들이 저장되어 있다.
보정 값은 각각의 운영 범위에 따라 서로 다른 보정 값으로 설정되어 있다. 제 1 운영 범위에 대응하는 제 1 보정 값은 충전 방향으로 데드 밴드를 증가시키거나 방전 방향으로 데드 밴드를 감소시키는 조건을 포함한다.
제 2 운영 범위에 대응하는 제 2 보정 값은 충방전 방향으로 데드 밴드의 증가 또는 현 상태를 유지하는 조건을 포함하며, 제 3 운영 범위에 대응하는 하는 제 3 보정값은 충전 방향으로 데드 밴드를 감소시키거나 방전 방향으로 데드 밴드를 증가시키는 조건을 포함한다.
SOC 보정부(140)는 판단부(130)에서 판단된 결과에 따라 데드 밴드 구간을 조절하여 배터리의 SOC값을 보정한다.
예컨대, 측정된 배터리의 SOC 값이 제 1 운영 범위에 대응되면 충전 방향으로 데드 밴드를 증가시키거나 방전 방향으로 데드 밴드를 감소시킨다. 제 2 운영 범위는 정상 범위에 해당되므로, 측정된 배터리의 SOC 값이 제 2 운영 범위라고 판단되는 경우에는 현 상태를 유지한다. 이때, 정상 범위라고 하더라도 배터리의 효율을 고려하여 충전 방향으로 데드 밴드를 증가시킬 수 있다.
측정된 배터리의 SOC 값이 제 3 운영 범위에 대응하는 하는 경우에는 충전 방향으로 데드 밴드를 감소시키거나 방전 방향으로 데드 밴드를 증가시킨다.
상술한 바와 같이, 충방전 방향의 데드 밴드 구간을 조절하여 배터리를 충방전 SOC 값을 보정함에 따라 SOC 값이 일정한 범위 내에서 유지되도록 하는 효과가 있다.
도 2는 본 발명의 실시예에 따른 배터리 충방전 방법을 나타내는 순서도이다.
도 2를 참조하면, SOC 측정부(110)는 배터리 에너지 저장 시스템의 전력 생산 장치로부터 공급되는 전력을 통해 충전된 배터리의 SOC 값을 측정한다(S100). 배터리의 SOC 값은 기 설정된 단위 시간마다 측정할 수 있다.
도 3은 단위 시간마다 측정된 배터리의 SOC 값을 나타낸 그래프이다. 도 3을 참조하면, 배터리의 SOC 값은 0 ~ 100% 사이에서 수시로 변동된 값으로 측정되는 것을 알 수 있다.
판단부(130)는 측정된 배터리의 SOC 값과 저장부(도 1의 '120'에 미리 설정된 다수의 운영 범위를 비교하여 측정된 SOC 값이 어느 운영 범위에 해당하는지 판단한다(S110).
저장부에는 배터리의 SOC 값에 대응되는 다수의 운영 범위가 저장되어 있으며, 다수의 운영 범위는 배터리의 충방전 보상 여부를 판단하기 위해 미리 설정되어 있다.
도 3의 그래프를 참조하여 다수의 운영 범위를 설명하면 다음과 같다. 여기서, 그래프의 x축은 시간을 나타내며, 그래프의 y축은 배터리의 SOC 값을 나타낸다.
도 3을 참조하면, 배터리의 SOC 값이 70 이상 100% 이하(제 1 운영 범위; a), 30 이상 70% 미만(제 2 운영 범위 ; b) 및 0 이상 30% 미만(제 3 운영 범위 ; c)로 구분하여 설정할 수 있다.
현재 배터리의 SOC 값을 50% 수준으로 맞추고자 하는 요구가 많으므로, 이를 기준으로 제 1 운영 범위(a)를 과충전 상태, 제 2 운영 범위(b)를 정상 범위, 제 3 운영 범위(c)를 과방전 상태로 판단할 수 있다. 본 명세서에서는 각각의 운영 범위의 값을 위와 같이 설정하고 있으나, 이에 한정되지 않으며 배터리의 용량, 방전 효율, 방전 저항 등을 고려하여 변경할 수 있다.
다음으로, SOC 보정부(140)는 상기 측정된 SOC 값에 해당되는 운영 범위에 대응하는 보정 값으로 SOC 보정을 수행한다(S120). SOC 보정은 'S110' 단계에서 판단된 결과에 따라 충방전 방향의 데드 밴드 구간을 조절하여 진행한다.
도 4a 내지 도 4c의 그래프를 참조하여 SOC 보정 값을 설명하면 다음과 같다.
도 4a는 SOC 측정부에서 측정된 배터리의 SOC 값이 70 이상 100% 이하의 제 1 운영 범위(a)에 해당되는 경우를 나타낸다. 측정된 배터리의 SOC 값이 제 1 운영범위에 해당하면 충전 방향으로 데드 밴드를 증가시키거나 방전 방향으로 데드 밴드를 감소시킨다.
충전 방향으로 데드 밴드를 증가시키면 충전 방향의 데드 밴드의 범위가 확장되면서 대응해야할 주파수 보정 신호 범위가 감소한다. 그리고, 배터리에 인가되는 파워 신호의 횟수가 감소한다. 또한, 배터리의 SOC 값이 100%에 도달할 확률이 감소된다.
방전방향의 데드 밴드를 감소시키면 방전 방향의 데드 밴드의 범위가 축소되고, 대응해야할 주파수 보정 신호 범위가 증가한다. 그리고, 배터리에 인가되는 파워 신호의 횟수가 증가한다. 또한, 배터리의 SOC 값이 100%에 도달할 확률이 감소된다.
도 4b를 참조하면, SOC 측정부(110)에서 측정된 배터리의 SOC 값이 30 이상 70% 미만의 제 2 운영 범위(b)일 경우 도 4b와 같이 현 상태를 유지하거나 배터리의 효율을 고려하여 충방전 방향의 데드 밴드 증가시킨다.
도 4c를 참조하면, SOC 측정부(110)에서 측정된 배터리의 SOC 값이 0 이상 30% 미만의 제 3 운영 범위(c)일 경우 도 4c와 같이 충전 방향의 데드 밴드 감소 및 방전 방향의 데드 밴드 증가시킨다.
충전 방향의 데드 밴드를 감소시키면 충전 방향의 데드 밴드 범위가 축소되고, 대응해야할 주파수 보정 신호 범위가 증가된다. 또한, 배터리에 인가되는 파워 신호의 횟수가 증가되고, SOC 값이 0%에 도달할 확률이 감소된다.
상술한 바와 같이, 본원 발명은 배터리의 SOC값을 측정하고, 측정된 SOC값이 해당되는 운영 범위를 판단한 후 운영 범위에 대응되는 보정 값으로 데드 밴드 구간을 조절함에 따라 SOC 값이 일정한 범위 내에서 유지되도록 하는 효과가 있다.
도 5는 본 발명의 다른 실시예에 따른 배터리 SOC 보정 시스템(200)을 도시한 블록도이다.
도 5를 참조하면, 배터리의 SOC 보정 시스템은 SOC 측정부(210), 저장부(220), 판단부(230) 및 SOC 보정부(240)를 포함한다.
먼저, SOC 측정부(210)는 배터리 에너지 저장 시스템(BESS: Battery Energy Storage System)의 전력 생산 장치로부터 공급되는 전력을 통해 충전된 배터리의 SOC 값을 측정한다. 배터리의 SOC값은 기 설정된 단위 시간마다 측정할 수 있다.
SOC 측정부(210)에서 측정된 배터리의 SOC 값은 저장부(220)에 저장된다.
저장부(220)에는 배터리의 SOC 값에 대응되는 다수의 운영 범위가 저장되어 있다. 다수의 운영 범위는 배터리의 충방전 보상 여부를 판단하기 위해 미리 설정되어 있다. 배터리의 SOC 값에 대응되는 운영 범위는 배터리 에너지 저장 시스템의 수명에 적합한 운영 범위로 설정할 수 있다.
예컨대, 고객사와 협의한 운영 범위가 SOC 값의 20 ~ 80%이고, BESS의 수명이 적합한 운영 범위가 SOC 값의 40 ~ 60%라면 이 운영 범위를 기준 값의 운영 범위로 설정할 수 있다. 여기서는, SOC 측정부(210)에서 측정된 배터리의 SOC 값이 70 이상 100% 이하이면 제 1 운영 범위, 30 이상 70% 미만이면 제 2 운영 범위, 0 이상 30% 미만이면 제 3 운영 범위로 설명하도록 한다. 현재 배터리의 SOC 값을 50% 수준으로 맞추고자 하는 요구가 많으므로, 제 2 운영 범위를 정상 범위로 판단할 수 있다. 본 명세서에서는 각각의 운영 범위의 값을 위와 같이 설명하고 있으나, 이에 한정되지 않으며 배터리의 상태나 주변환경에 따라 변경 가능하다.
판단부(230)는 측정된 배터리의 SOC값이 저장부(220)에 저장된 다수의 운영 범위 중 어느 운영 범위에 해당되는지 판단한다.
SOC 보정부(240)는 다수의 운영 범위에 대응되는 보정 값들이 각각 저장되어 있다.
SOC 보정부(240)는 제 1 보정부(240a), 제 2 보정부(240b) 및 제 3 보정부(240c)를 포함하며, 각각의 보정부는 서로 다른 충방전 파워 조절 방식을 이용한 보정 값을 포함하고 있다.
제 1 보정부(240a)는 충방전 파워를 지수형(Exponential)으로 증가 또는 감소시키는 조건을 포함한다. 제 2 보정부(240b)는 충방전 파워를 계단형(Stepped)으로 증가 또는 감소시키는 조건을 포함한다. 그리고, 제 3 보정부(240c)는 충방전 파워의 일정 비율(Ratio)로 충방전 파워를 증가 또는 감소시키는 조건을 포함한다.
이러한 SOC 보정부(240)는 판단부(230)에서 판단된 결과에 따라 충방전 파워(Power)를 조절하여 배터리의 SOC값을 보정한다.
예컨대, 판단부(230)에서 배터리의 SOC 값이 제 1 운영 범위에 해당된다고 판단하면, SOC 보정부(240) 중 하나의 보정부를 선택하고, 선택된 보정부의 제 1 운영 범위에 대응되는 보정 값으로 SOC 보정을 수행한다.
측정된 배터리의 SOC 값이 제 1 운영 범위에 대응되면 충전 파워를 감소시키거나 방전 파워를 증가시킨다. 이때, 충방전 파워를 지수형(Exponential), 계단형(Stepped) 또는 충방전 파워의 일정 비율(Ratio)로 충방전 파워를 증가 또는 감소시킬 수 있다.
제 2 운영 범위는 정상 범위에 해당되므로, 측정된 배터리의 SOC 값이 제 2 운영 범위라고 판단되는 경우에는 현 상태를 유지한다.
측정된 배터리의 SOC 값이 제 3 운영 범위에 대응하는 하는 경우에는 충전 파워를 증가시키거나 방전 파워를 감소시킨다. 이때, 충방전 파워를 지수형(Exponential), 계단형(Stepped) 또는 충방전 파워의 일정 비율(Ratio)로 충방전 파워를 증가 또는 감소시킬 수 있다.
상술한 바와 같이, 다양한 조건으로 배터리의 충방전 파워를 조절하여 SOC 보정을 수행함에 따라, 배터리의 SOC 값이 일정한 범위 내에서 유지되도록 하는 효과를 얻을 수 있다. 또한, 배터리의 SOC 값이 100% 또는 0%에 도달할 확률을 감소시키고 배터리 설계 시 용량을 감소시키는 효과를 얻을 수 있다.
도 6은 본 발명의 다른 실시예에 따른 배터리의 SOC 보정 방법을 나타내는 순서도이다.
도 6을 참조하면, 배터리 에너지 저장 시스템(BESS: Battery Energy Storage System)의 전력 생산 장치로부터 공급되는 전력을 통해 충전된 배터리의 SOC(state of charging) 값을 측정한다(S200). 배터리의 SOC 값은 기 설정된 단위 시간마다 측정할 수 있다. 도 6은 단위 시간마다 측정된 배터리의 SOC 값을 나타낸 그래프이다. 도 6을 참조하면, 배터리의 SOC 값은 0 ~ 100% 사이에서 수시로 변동된 값으로 측정되는 것을 알 수 있다.
측정된 배터리의 SOC 값과 저장부(도 5의 '220' 에 미리 설정된 다수의 운영 범위를 비교하여 측정된 SOC 값이 어느 운영 범위에 해당하는지 판단한다(S210).
저장부에는 배터리의 SOC 값에 대응되는 다수의 운영 범위가 저장되어 있으며, 다수의 운영 범위는 배터리의 충방전 보상 여부를 판단하기 위해 미리 설정되어 있다.
도 7의 그래프를 참조하여 다수의 운영 범위를 설명하면 다음과 같다. 여기서, 그래프의 x축은 시간을 나타내며, 그래프의 y축은 배터리의 SOC 값을 나타낸다.
도 7을 참조하면, 배터리의 SOC 값이 70 이상 100% 이하(제 1 운영 범위(a)), 30 이상 70% 미만(제 2 운영 범위(b)) 및 0 이상 30% 미만(제 3 운영 범위(c))로 구분하여 설정할 수 있다. 현재 배터리의 SOC 값을 50% 수준으로 맞추고자 하는 요구가 많으므로, 이를 기준으로 제 1 운영 범위를 과충전 상태, 제 2 운영 범위를 정상 범위, 제 3 운영 범위를 과방전 상태로 판단할 수 있다. 본 명세서에서는 각각의 운영 범위의 값을 위와 같이 설정하고 있으나, 이에 한정되지 않으며 배터리의 용량, 방전 효율, 방전 저항 등을 고려하여 변경할 수 있다.
다음으로, SOC 보정부 중 하나의 보정부를 선택한다.
SOC 보정부(240)는 제 1 보정부(240a), 제 2 보정부(240b) 및 제 3 보정부(240c)를 포함하며, 각각의 보정부는 서로 다른 충방전 파워 조절 방식을 포함하고 있다.
제 1 보정부(240a)는 충방전 파워를 지수형(Exponential)으로 증가 또는 감소시키는 조건을 포함한다. 제 2 보정부(240b)는 충방전 파워를 계단형(Stepped)으로 증가 또는 감소시키는 조건을 포함한다. 그리고, 제 3 보정부(240c)는 충방전 파워의 일정 비율(Ratio)로 충방전 파워를 증가 또는 감소시키는 조건을 포함한다.
이어서, 측정된 배터리의 SOC 값이 해당하는 운영 범위에 대응하는 보정값으로 SOC 보정을 수행한다(S220). SOC 보정은 S210 단계에서 판단된 결과에 따라 충방전 파워를 조절하여 진행한다.
충방전 파워를 조절하는 방법은 SOC 보정부(240)에 설정된 여러 가지가 있으며 실시예를 들어 설명하면 다음과 같다.
먼저, 도 8a 내지 도 8c의 그래프는 충방전 파워를 지수형으로 증가 또는 감소시키는 방법을 도시하고 있다.
도 8a는 SOC 측정부에서 측정된 배터리의 SOC 값이 70 이상 100% 이하의 제 1 운영 범위(a)에 해당되는 경우를 나타낸다. 측정된 배터리의 SOC 값이 제 1 운영 범위에 해당되면, 충전 파워를 지수형으로 감소시키고, 방전 파워를 지수형으로 증가시키는 보정 값을 적용한다. 이러한 SOC 보정을 통해 SOC 값이 100%에 도달할 확률을 감소시키고 배터리 설계 시 용량을 감소시키는 효과를 얻을 수 있다.
도 8b는 SOC 측정부에서 측정된 배터리의 SOC 값이 30 이상 70% 미만이면 제 2 운영 범위(b)에 해당되는 경우를 나타낸 것으로, 이 경우는 정상 범위로 판단하여 현 상태를 유지하도록 한다.
다음으로, 도 8c는 SOC 측정부에서 측정된 배터리의 SOC 값이 0 이상 30% 미만의 제 3 운영 범위(c)에 해당되는 경우를 나타낸 것으로, 이 경우는 충전 파워를 지수형으로 증가시키거나 방전 파워를 지수형으로 감소시키는 보정 값을 적용한다.
도 9a 내지 도 9c의 그래프는 충방전 파워를 계단형(Stepped)으로 증가 또는 감소시키는 방법을 도시하고 있다.
도 9a는 SOC 측정부에서 측정된 배터리의 SOC 값이 70 이상 100% 이하의 제 1 운영 범위(a)에 해당되는 경우를 나타낸다. 측정된 배터리의 SOC 값이 제 1 운영 범위에 해당되면, 충전 파워를 계단형으로 감소시키고, 방전 파워를 계단형으로 증가시키는 보정 값을 적용한다.
도 9b는 SOC 측정부에서 측정된 배터리의 SOC 값이 30 이상 70% 미만이면 제 2 운영 범위(b)에 해당되는 경우를 나타낸 것으로, 이 경우는 정상 범위로 판단하여 현 상태를 유지하도록 한다.
다음으로, 도 9c는 SOC 측정부에서 측정된 배터리의 SOC 값이 0 이상 30% 미만의 제 3 운영 범위(c)에 해당되는 경우를 나타낸 것으로, 이 경우는 충전 파워를 계단형으로 증가시키거나 방전 파워를 계단형으로 감소시키는 보정 값을 적용한다.
도 10a 내지 도 10c의 그래프는 충방전 파워를 충방전 파워의 일정 비율(Ratio)로 증가 또는 감소시키는 방법을 도시하고 있다.
도 10a는 SOC 측정부에서 측정된 배터리의 SOC 값이 70 이상 100% 이하의 제 1 운영 범위(a)에 해당되는 경우를 나타낸다. 측정된 배터리의 SOC 값이 제 1 운영 범위에 해당되면, 충전 파워를 일정 비율로 감소시키는 보정 값을 적용한다.
도 10b는 SOC 측정부에서 측정된 배터리의 SOC 값이 30 이상 70% 미만이면 제 2 운영 범위(b)에 해당되는 경우를 나타낸 것으로, 이 경우는 정상 범위로 판단하여 현 상태를 유지하도록 한다.
다음으로, 도 10c는 SOC 측정부에서 측정된 배터리의 SOC 값이 0 이상 30% 미만의 제 3 운영 범위(c)에 해당되는 경우를 나타낸 것으로, 이 경우는 방전 파워를 기존 대비 일정 비율로 감소시키는 보정 값을 적용한다.
상술한 바와 같이, 다양한 조건으로 배터리의 충방전 파워를 조절하여 SOC 보정을 수행함에 따라, 배터리의 SOC 값이 일정한 범위 내에서 유지되도록 하는 효과를 얻을 수 있다. 또한, 배터리의 SOC 값이 100% 또는 0%에 도달할 확률을 감소시키고 배터리 설계 시 용량을 감소시키는 효과를 얻을 수 있다.
이상의 설명은 본 출원의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 출원이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 출원의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 출원에 개시된 실시예들은 본 출원의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 출원의 기술 사상의 범위가 한정되는 것은 아니다.
본 출원의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. 배터리의 SOC값을 측정하는 SOC 측정부;
    상기 배터리의 충방전 보상 여부를 판단하기 위해 기 설정된 운영 범위를 저장하는 저장부;
    상기 배터리의 SOC값이 상기 기 설정된 운영 범위 중 어느 운영 범위에 해당하는지 판단하는 판단부; 및
    상기 판단부에서 판단된 결과에 따라 충방전 방향의 데드 밴드를 조절하거나 충방전 파워(Power)를 조절하여 배터리의 SOC값을 보정하는 SOC 보정부
    를 포함하는 것을 특징으로 하는 배터리의 SOC 보정 시스템.
  2. 청구항 1에 있어서,
    상기 저장부는 제 1 운영 범위, 제 2 운영 범위 및 제 3 운영 범위를 포함하는 것을 특징으로 하는 배터리의 SOC 보정 시스템.
  3. 청구항 2에 있어서,
    상기 제 1 운영 범위는 SOC의 70 이상 100% 이하, 상기 제 2 운영 범위는 SOC의 30 이상 70% 미만, 상기 제 3 운영 범위는 SOC의 0 이상 30% 미만인 것을 특징으로 하는 배터리의 SOC 보정 시스템.
  4. 청구항 2에 있어서,
    상기 SOC 보정부는
    상기 운영 범위에 따라 서로 다른 보정 값으로 설정된 것을 특징으로 하는 배터리의 SOC 보정 시스템.
  5. 청구항 4에 있어서,
    상기 판단부에서 상기 제 1 운영 범위로 판단된 경우, 충전 방향으로 데드 밴드를 증가시키는 제 1 보정값을 적용하는 것을 특징으로 하는 배터리의 SOC 보정 시스템.
  6. 청구항 4에 있어서,
    상기 판단부에서 상기 제 2 운영 범위로 판단된 경우, 충전 방향으로 데드 밴드 증가 또는 현 상태를 유지하는 제 2 보정값을 적용하는 것을 특징으로 하는 배터리의 SOC 보정 시스템.
  7. 청구항 4에 있어서,
    상기 판단부에서 상기 제 3 운영 범위로 판단된 경우, 충전 방향으로 데드 밴드 감소시키거나 방전 방향으로 데드 밴드 증가시키는 제 3 보정값을 적용하는 것을 특징으로 하는 배터리의 SOC 보정 시스템.
  8. 청구항 2에 있어서,
    상기 SOC 보정부는 지수형(Exponential), 계단형(Stepped) 또는 충방전 파워의 일정 비율(Ratio)로 충방전 파워를 조절하는 것을 특징으로 하는 배터리 SOC 보정 시스템.
  9. 청구항 8에 있어서,
    상기 판단부에서 상기 제 1 운영 범위로 판단된 경우,
    충전 파워를 감소시키고, 방전 파워를 증가시키는 보정값을 적용하는 것을 특징으로 하는 배터리의 SOC 보정 시스템.
  10. 청구항 8에 있어서,
    상기 판단부에서 상기 제 2 운영 범위로 판단된 경우, 현 상태를 유지하는 보정 값을 적용하는 것을 특징으로 하는 배터리의 SOC 보정 시스템.
  11. 청구항 8에 있어서,
    상기 판단부에서 상기 제 3 운영 범위로 판단된 경우,
    충전 파워를 증가시키고, 방전 파워를 감소시키는 보정값을 적용하는 것을 특징으로 하는 배터리의 SOC 보정 시스템.
  12. 배터리의 SOC값을 측정하는 단계;
    상기 SOC값과 기 설정된 운영 범위를 비교하여 상기 SOC값이 어느 운영 범위에 해당하는지 판단하는 단계; 및
    상기 SOC값에 해당되는 운영 범위에 대응하는 조건으로 충방전 방향의 데드 밴드 또는 충방전 파워를 조절하여 상기 배터리의 SOC값을 보정하는 단계
    를 포함하는 것을 특징으로 하는 배터리의 SOC 보정 방법.
  13. 청구항 12에 있어서,
    상기 기 설정된 운영 범위는
    제 1 운영 범위, 제 2 운영 범위 및 제 3 운영 범위를 포함하며,
    상기 제 1 운영 범위는 SOC의 70 이상 100% 이하, 상기 제 2 운영 범위는 SOC의 30 이상 70% 미만, 상기 제 3 운영 범위는 SOC의 0 이상 30% 미만인 것을 특징으로 하는 배터리의 SOC 보정 방법.
  14. 청구항 13에 있어서,
    상기 제 1 운영 범위로 판단된 경우, 충전 방향 데드 밴드를 증가시키는 제 1 보정값을 적용하는 것을 특징으로 하는 배터리의 SOC 보정 방법.
  15. 청구항 13에 있어서,
    상기 제 2 운영 범위로 판단된 경우, 충방전 방향의 데드 밴드 증가 또는 현 상태를 유지하는 제 2 보정값을 적용하는 것을 특징으로 하는 배터리의 SOC 보정 방법.
  16. 청구항 13에 있어서,
    상기 제 3 운영 범위로 판단된 경우, 충전 방향의 데드 밴드 감소 및 방전 방향의 데드 밴드 증가시키는 제 3 보정값을 적용하는 것을 특징으로 하는 배터리의 SOC 보정 방법.
  17. 청구항 13에 있어서,
    상기 배터리의 SOC를 보정하는 단계는 지수형(Exponential), 계단형(Stepped) 또는 충방전 파워의 일정 비율(Ratio)로 충방전 파워를 조절하는 것을 특징으로 하는 배터리의 SOC 보정 방법.
  18. 청구항 17에 있어서,
    상기 제 1 운영 범위로 판단된 경우, 충전 파워를 감소시키고, 방전 파워를 증가시키는 보정 값을 적용하는 것을 특징으로 하는 배터리의 SOC 보정 방법.
  19. 청구항 17에 있어서,
    상기 제 2 운영 범위로 판단된 경우, 현 상태를 유지하는 보정 값을 적용하는 것을 특징으로 하는 배터리의 충방전 방법.
  20. 청구항 17에 있어서,
    상기 제 3 운영 범위로 판단된 경우, 충전 파워를 증가시키거나 방전 파워를 감소시키는 보정 값을 적용하는 것을 특징으로 하는 배터리의 충방전 방법.
PCT/KR2015/011098 2014-10-21 2015-10-20 배터리의 soc 보정 시스템 및 방법 WO2016064171A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580001968.9A CN105745811A (zh) 2014-10-21 2015-10-20 用于校正电池soc的系统和方法
EP15837076.7A EP3051656A4 (en) 2014-10-21 2015-10-20 System and method for correcting soc of battery
US14/917,346 US9882409B2 (en) 2014-10-21 2015-10-20 System and method for correcting SOC of battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0142610 2014-10-21
KR1020140142610A KR20160046550A (ko) 2014-10-21 2014-10-21 배터리의 soc 보정 시스템 및 방법
KR10-2014-0142609 2014-10-21
KR1020140142609A KR101749383B1 (ko) 2014-10-21 2014-10-21 배터리의 soc 보정 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2016064171A1 true WO2016064171A1 (ko) 2016-04-28

Family

ID=55761142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011098 WO2016064171A1 (ko) 2014-10-21 2015-10-20 배터리의 soc 보정 시스템 및 방법

Country Status (4)

Country Link
US (1) US9882409B2 (ko)
EP (1) EP3051656A4 (ko)
CN (1) CN105745811A (ko)
WO (1) WO2016064171A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107627872B (zh) * 2017-08-29 2020-01-14 广州小鹏汽车科技有限公司 基于电动汽车出行模式的电池充电控制方法和系统
CN110549900B (zh) * 2018-03-30 2021-06-18 比亚迪股份有限公司 电动汽车及动力电池静置之后的参数更新方法、装置
CN111220919B (zh) * 2018-11-26 2021-04-20 北汽福田汽车股份有限公司 电池电量检测方法、装置及车辆
KR20200085150A (ko) * 2019-01-04 2020-07-14 주식회사 엘지화학 배터리 관리 방법, 배터리 장치, 및 배터리를 포함하는 자동차
KR20200101754A (ko) * 2019-02-20 2020-08-28 삼성에스디아이 주식회사 배터리 제어 장치 및 배터리 제어 방법
KR20200112248A (ko) * 2019-03-21 2020-10-05 주식회사 엘지화학 배터리 뱅크 제어 장치 및 방법
CN110190649B (zh) * 2019-06-01 2020-12-29 深圳市永航新能源技术有限公司 一种电池容量评估校正充放电装置及校正方法
CN113049961B (zh) * 2021-02-26 2022-07-19 佛山职业技术学院 一种磷酸铁锂电池的dzsoc算法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110054135A (ko) * 2009-11-17 2011-05-25 현대자동차주식회사 하이브리드 차량의 배터리 soc 밸런싱 제어 방법
US20120161707A1 (en) * 2010-12-28 2012-06-28 Samsung Sdi Co., Ltd Balancing method and balancing system of battery pack
KR101337576B1 (ko) * 2012-06-14 2013-12-06 이엔테크놀로지 주식회사 Soc 관리를 위한 방법 및 시스템
KR20140073627A (ko) * 2012-11-30 2014-06-17 주식회사 포스코아이씨티 배터리 관리 장치 및 방법
JP2014112980A (ja) * 2011-03-25 2014-06-19 Sanyo Electric Co Ltd バッテリモジュール、バッテリシステム、電源装置、及び、移動体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6868318B1 (en) * 2003-10-14 2005-03-15 General Motors Corporation Method for adjusting battery power limits in a hybrid electric vehicle to provide consistent launch characteristics
US8314595B2 (en) * 2007-01-12 2012-11-20 Ford Global Technologies, Llc Battery equalization using a plug-in charger in a hybrid electric vehicle
JP4183013B1 (ja) * 2007-05-15 2008-11-19 トヨタ自動車株式会社 車両およびその制御方法
US8135532B2 (en) 2007-11-04 2012-03-13 GM Global Technology Operations LLC Method for controlling output power of an energy storage device in a powertrain system
US8471520B2 (en) * 2010-05-04 2013-06-25 Xtreme Power Inc. Managing renewable power generation
DE112011102334T5 (de) * 2010-07-13 2013-04-18 Honda Motor Co., Ltd. Speicherkapazitätsmanagementsystem
DE102011055232A1 (de) * 2011-11-10 2013-05-16 Evonik Industries Ag Verfahren zur Bereitstellung von Regelleistung mit einem Energiespeicher mit variabler Totbandbreite bei der Regelleistungserbringung
CA2908222A1 (en) * 2012-03-28 2013-10-03 Aerovironment, Inc. Frequency responsive charging system and method
DE102012208464B3 (de) 2012-05-21 2013-07-04 Deere & Company Konditioniereinrichtung für einen Feldhäcksler
DE102012208461A1 (de) * 2012-05-21 2013-11-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP2992582B1 (en) * 2013-04-29 2018-01-31 Level Energy Ltd Apparatus and method for managing stored energy
JP6056730B2 (ja) * 2013-10-16 2017-01-11 トヨタ自動車株式会社 蓄電システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110054135A (ko) * 2009-11-17 2011-05-25 현대자동차주식회사 하이브리드 차량의 배터리 soc 밸런싱 제어 방법
US20120161707A1 (en) * 2010-12-28 2012-06-28 Samsung Sdi Co., Ltd Balancing method and balancing system of battery pack
JP2014112980A (ja) * 2011-03-25 2014-06-19 Sanyo Electric Co Ltd バッテリモジュール、バッテリシステム、電源装置、及び、移動体
KR101337576B1 (ko) * 2012-06-14 2013-12-06 이엔테크놀로지 주식회사 Soc 관리를 위한 방법 및 시스템
KR20140073627A (ko) * 2012-11-30 2014-06-17 주식회사 포스코아이씨티 배터리 관리 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3051656A4 *

Also Published As

Publication number Publication date
EP3051656A1 (en) 2016-08-03
US9882409B2 (en) 2018-01-30
EP3051656A4 (en) 2017-01-18
US20160301234A1 (en) 2016-10-13
CN105745811A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
WO2016064171A1 (ko) 배터리의 soc 보정 시스템 및 방법
WO2017030309A1 (ko) 전지 충전 한계 예측 방법과 이를 이용한 전지 급속 충전 방법 및 장치
WO2018190508A1 (ko) 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법
US8203306B2 (en) Battery pack and control method therefor
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2018124511A1 (ko) 배터리의 충전 상태를 캘리브레이션하기 위한 배터리 관리 장치 및 방법
WO2017095066A1 (ko) 언노운 방전 전류에 의한 배터리 셀의 불량 검출 장치 및 방법
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
WO2012091287A1 (ko) 이차전지 셀의 퇴화 정도를 반영한 배터리 팩의 관리 장치와 방법 및 이를 구비한 배터리 팩
WO2019088746A1 (ko) 배터리 soc 추정 장치 및 방법
WO2012091434A2 (ko) 2차 전지의 잔존용량 연산 방법 및 장치
WO2020189998A1 (ko) 배터리 뱅크 제어 장치 및 방법
WO2019212148A1 (ko) 이차 전지 테스트 장치 및 방법
WO2021006566A1 (ko) 배터리 셀 진단 장치 및 방법
WO2022080871A1 (ko) 충방전 테스트 시스템 및 충방전 테스트 방법
WO2019050279A1 (ko) 배터리 재사용 수명 진단 방법
WO2018164346A1 (ko) 배터리 셀 전압 데이터 처리 장치 및 방법
WO2022145830A1 (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 전기 차량
WO2016032131A1 (ko) Dc-dc 전압 변환기의 입력 파워 한도를 조절하기 위한 파워 제어 시스템 및 방법
WO2018135735A1 (ko) 배터리 충전 방법 및 충전 시스템
WO2022065676A1 (ko) 배터리 저항 산출 장치 및 방법
WO2022097931A1 (ko) 배터리 관리 장치 및 방법
WO2021154043A1 (ko) 배터리 충방전 제어 장치 및 방법
WO2019066358A1 (ko) 배터리 셀의 스웰링을 방지하는 방법 및 이를 이용한 배터리 팩
WO2021040306A1 (ko) 배터리 soh 예측 방법 및 이를 적용한 배터리 팩

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015837076

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015837076

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14917346

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE