WO2016064080A1 - Multiband two-port antenna - Google Patents

Multiband two-port antenna Download PDF

Info

Publication number
WO2016064080A1
WO2016064080A1 PCT/KR2015/008881 KR2015008881W WO2016064080A1 WO 2016064080 A1 WO2016064080 A1 WO 2016064080A1 KR 2015008881 W KR2015008881 W KR 2015008881W WO 2016064080 A1 WO2016064080 A1 WO 2016064080A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating element
parasitic element
parasitic
radiating
ground plate
Prior art date
Application number
PCT/KR2015/008881
Other languages
French (fr)
Korean (ko)
Inventor
오경섭
김영필
김상진
Original Assignee
주식회사 감마누
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 감마누 filed Critical 주식회사 감마누
Publication of WO2016064080A1 publication Critical patent/WO2016064080A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure

Definitions

  • the present invention relates to a multiband antenna, and more particularly, to a multiband two-port antenna having an excellent isolation securing effect.
  • MIMO Multi Input Multi Output
  • a MIMO antenna a plurality of antennas are essentially used to provide services of multiple frequency bands, and thus interference between antennas may occur.
  • the radiation pattern of the antennas may be distorted, or unintentional mutual coupling between the antennas may occur. Therefore, securing isolation between the antennas has emerged as an important problem.
  • antennas have been arranged in such a way that the distance between antennas is kept above a certain distance, but this method is no longer available due to the internal space problem of mobile communication devices. . Therefore, recently, a method of forming a wall by arranging a space between the antenna and the antenna to secure isolation is used, or by changing the ground structure to form a ground wall, such as the MIMO antenna used for 4G LTE.
  • a multi-band antenna two or more antennas must be disposed in a space smaller than half wavelength, so the space constraint is considerably larger than that of other antennas. Therefore, a multi-band antenna 100 having excellent isolation effect is required. do.
  • an object of the present invention is to provide a multiband antenna having an excellent isolation securing effect.
  • the multi-band antenna according to an embodiment of the present invention is a ground plate, the first radiating element of the Inverted-F type formed on the ground plate, formed to be spaced apart at a predetermined interval in a symmetrical form with the first radiating element
  • the device may further include a third parasitic element formed adjacent to the second parasitic element.
  • first radiating element and the second radiating element may include openings.
  • the first parasitic element may be formed in a loop type.
  • the second parasitic element may include a 2-1 parasitic element portion formed at a predetermined angle with the ground plate and a 2-2 parasitic element portion formed at one end of the 2-1 parasitic element.
  • the first parasitic element may include an opening and may be formed at a predetermined angle with the ground plate between the first radiating element and the second radiating element.
  • the first parasitic element may be formed in a slot type on the ground plate between the first radiating element and the second radiating element.
  • the third parasitic element may be formed on a rear surface of the second parasitic element and may be formed at a predetermined angle with the ground plate.
  • the first radiating element may further include a tuning element extending from one surface of the first radiating element.
  • the antenna size can be reduced.
  • FIG. 1 is a view showing a front view of a multi-band antenna according to an embodiment of the present invention.
  • FIG. 2 is a view showing a side view of a multi-band antenna according to an embodiment of the present invention.
  • 3 and 4 are diagrams illustrating a multi-band antenna according to another embodiment of the present invention.
  • 5 is a graph measuring the isolation of the multi-band antenna according to an embodiment of the present invention.
  • FIG. 6 is a graph of measuring a VSWR of a multi-band antenna according to an embodiment of the present invention at a first feeder.
  • FIG. 7 is a graph measuring the VSWR of a multi-band antenna according to an embodiment of the present invention at a second feeder.
  • FIG. 1 is a view showing a front view of the multi-band antenna 100 according to an embodiment of the present invention.
  • the multiband antenna 100 includes a ground plate 10, a first radiating element 20, a second radiating element 30, a first parasitic element 40, and a second parasitic element 50.
  • the ground plate 10 may use a general reflecting plate. Referring to FIG. 1, the ground plate 10 may be identified by the octagonal shape. However, the ground plate 10 may have various shapes depending on the shape and arrangement of the antenna elements formed on the ground plate 10. Can be implemented as: On the other hand, the ground plate 10 preferably minimizes the extra space between one end of the ground plate 10 and the antenna element formed near the one end in order to reduce the size of the entire antenna.
  • a first radiating element 20 is formed at a portion of the ground plate 10, and referring to FIG. 1, the first radiating element 20 of the inverted-F antenna (F) antenna type is the ground plate 10. It can be seen that formed near one side of the.
  • the first radiating element 20 may be formed of a conductive material, and may be formed in various lengths according to a frequency for transmitting and receiving. In addition, the first radiating element 20 may be formed of various types of antennas. When the first radiating element 20 is formed of a planar inverted F antenna type as shown in FIG. 1, the first radiating element 20 may be formed on the ground plate 10. An opening 21 on the radiating element for transmitting / receiving multiple frequency bands with a support such as a plastic rod for fixing and supporting may be formed. Here, the formation position, length, and area of the opening 21 may be adjusted to transmit and receive multiple frequency bands. In the present specification, the first radiating element 20 is used for 4G LTE through adjustment of the opening 21. A description will be made based on satisfying both the first frequency band (698 to 960 MHz) and the second frequency band (1.710 to 2.688 GHz).
  • the first radiating element 20 may further include a tuning element 22 capable of frequency matching.
  • a tuning element 22 capable of frequency matching.
  • a plurality of tuning elements 22 extending from one surface of the first radiating element 20 may be identified, and frequency matching may be performed by adjusting the formation position, number, and length of the tuning elements 22. .
  • the formation method, the formation position, the number and the length of the tuning element 22 can be variously adjusted as necessary.
  • the first radiating element 20 receives the feed signal through the first feed part 24.
  • the first feeder 24 may transmit a feed signal to the first radiating element 20 using a feed cable, and may use various kinds of feed means such as a coaxial cable.
  • a second radiating element 30 may be formed in one portion of the ground plate 10. Specifically, the second radiating element 30 may be formed at a symmetrical position to be spaced apart from each other in a symmetrical form with the first radiating element 20.
  • a second radiating element of the flat plate (patch) inverted-F antenna type having a shape symmetrical with the first radiating element 20 of the flat plate (patch) inverting-F antenna type including the opening 21. It can be seen that 30 is formed at a position symmetrical with the position where the first radiating element 20 is formed.
  • Other features such as openings, supports and tuning elements of the second radiating element 30 are the same as those of the first radiating element 30 described above.
  • the power supply signal is transmitted through the second power supply unit 34 separately from the first power supply unit 24.
  • the first radiating element 20 and the second radiating element 30 having symmetrical shapes are formed at positions symmetrical with each other on the ground plate 10, interference may occur between the two radiating elements. .
  • the radiation pattern of both radiation elements is distorted due to interference, or isolation is required to prevent unintentional mutual coupling.
  • the first parasitic element 40, the second parasitic element 50, and the third parasitic element 60 to ensure isolation are described.
  • FIG. 2 is a view showing a side view of the multi-band antenna 100 according to an embodiment of the present invention
  • Figures 3 and 4 shows a multi-band antenna 100 according to another embodiment of the present invention Drawing.
  • the first parasitic element 40 is formed on a part of the ground plate 10 to secure the isolation between the first radiating element 20 and the second radiating element 30.
  • the first parasitic element 40 may be formed as a wall type between the first radiating element 20 and the second radiating element 30 to secure isolation. It can also be formed by the method. Referring to FIG. 2, it can be seen that the first parasitic element 40 is formed to be spaced apart from one end of the first radiating element 20 by one end of the second radiating element 30.
  • the first parasitic element serves to secure isolation in the first frequency band (698 ⁇ 960 MHz) which is the low frequency band which is in charge of the first and second radiating elements (20, 30).
  • the first frequency band (698 ⁇ 960 MHz) is a low frequency band
  • the length of the antenna is inevitably lengthened, and the upper radiating element is removed based on the opening 21 of the first radiating element 20.
  • the 1-1 radiating element section 22 and the lower radiating element are referred to as the 1-2 radiating element section 23, the opening 21 to secure a sufficient antenna length value in the first frequency band (698 ⁇ 960 MHz).
  • Including the 1-1 radiating element portion 22 and the 1-2 radiating element portion 23 should be used. In this case, the total lengths of the 1-1 radiating element portion 22 and the 1-2 radiating element portion 23 are ⁇ / 4.
  • the first parasitic element 40 due to the H-field coupling, a strong current flows in the first-first radiating element part 22, and such current is prevented from flowing directly to the second radiating element 30 through the ground and affecting it.
  • the first parasitic element 40 In order to form the first parasitic element 40. That is, if a part of the current flowing through the ground flows into the first parasitic element 40, the part of the entire current flowing into the ground may be canceled, and as a result, the isolation may increase.
  • the first parasitic element 40 is formed as shown in FIG. 2, it is possible to efficiently arrange other antenna elements formed in the ground plate 10 by using less space than that formed in the wall type.
  • the first parasitic element 40 may be formed in a loop type.
  • a strong current flowing through the first-first radiating element part 22 of the first radiating element 2 by the H-field coupling described above is passed through the ground.
  • the first parasitic element 40 is required to be formed higher than the height of the first and second radiating elements 20 and 30 so as not to contact each other.
  • the first parasitic element when it is formed in a loop type, it may further include a support for fixing and supporting the ground plate 10.
  • the first parasitic element 40 when the first parasitic element 40 is formed as a wall type between the first radiating element 20 and the second radiating element 30, the first parasitic element 40 may be formed as a wall type including a loop. It may be formed to form a predetermined angle with the ground plate 10 by including an opening instead of a loop, as shown in Figure 4 without having a separate device slot the first parasitic element 40 in the ground plate 10 (Slot) type can also be formed.
  • the second parasitic element 50 is also formed in a part of the ground plate 10 to secure the isolation between the first radiating element 20 and the second radiating element 30.
  • the second parasitic element 50 may be formed to be spaced apart from the other end of the first radiating element 20 and the second radiating element 30 by a predetermined interval. That is, based on the ground plate 10, the second parasitic element 50 may be formed at a position opposite to the position where the first parasitic element 40 is formed.
  • the second parasitic element 50 is preferably formed at 6 o'clock, and the first parasitic element 40 Is formed at the 3 o'clock position of the ground plate 10, the second parasitic element 50 is preferably formed at the 9 o'clock position. The reason for this is described below in detail.
  • the first-first radiating element part 22 and the first-second radiating element part 23 including the opening 21 are secured to secure a sufficient antenna length value. It was discussed above that all should be used.
  • the 1-2 voltage radiating element portion 23 has a high voltage due to the E-field coupling.
  • the second parasitic element 50 is formed. That is, if a part of the voltage is transmitted to the second parasitic element 50 by the coupling effect, the part of the total voltage may be canceled, and as a result, the isolation may increase.
  • the second parasitic element 50 is formed in a bar type rather than a loop type unlike the first parasitic element 40, which is the first and second radiating elements 20 and 30. Is determined by the distance between them. That is, since the distance between one end of the first and second radiating elements 20 and 30 on which the first parasitic element is formed is closer than the distance between the other ends of the first and second radiating elements 20 and 30 on which the second parasitic element is formed.
  • the first parasitic element 40 is formed in a loop type
  • the second parasitic element 50 is formed in a bar type.
  • FIG. 2 is only one embodiment of the arrangement of the radiating elements, and in consideration of the distance between the radiating elements, the second parasitic element 50 may also be formed in a loop type.
  • the second parasitic element 50 has a second angle between the ground plate and the second parasitic element part 51.
  • the second parasitic element portion 52 formed at one end of the second parasitic element portion.
  • the 2-2 parasitic element unit 52 is formed at both ends of the 2-1 parasitic element unit 51.
  • the coupling effect may be better generated.
  • the second parasitic element 50 may be formed using only the second parasitic element portion 51 without forming the second parasitic element portion 52.
  • the first parasitic element 40 and the second parasitic element 50 are responsible for ensuring the isolation of the first frequency band (698 ⁇ 960 MHz) which is a low frequency band.
  • Figure 5 is a graph measuring the isolation of the multi-band antenna according to an embodiment of the present invention. Looking at the isolation measured in the first frequency band (698 ⁇ 960 MHz), it can be seen that -16.4dB at 695MHz, it is continuously increased to -28.3dB at 960MHz. Compared with the general multiband antenna 100 having an isolation of -9 to -10dB, it can be said that a relatively high isolation is ensured.
  • a third parasitic element 60 is formed in one portion of the ground plate 10 to secure isolation. Referring to FIG. 2, it can be seen that the third parasitic element 60 is formed adjacent to the second parasitic element 50.
  • the third parasitic element 60 secures isolation in the second frequency band (1.710 to 2.688 GHz), which is a high frequency band.
  • the second frequency band (1.710 ⁇ 2.688 GHz) uses only the first-first radiating element portion 22 of the first radiating element 20, in this case the length of the first-first radiating element portion 22 (When the tuning element is formed, including the length of the tuning element) is 3 ⁇ / 4. This is because almost all of the radiation is emitted before the current flows into the 1-2 radiating element section 23. Therefore, in the second frequency band (1.710 ⁇ 2.688 GHz), the first parasitic element does not play an important role in ensuring isolation.
  • the second parasitic element 50 secures isolation in some bands of the second frequency band (1.710 to 2.688 GHz) in addition to the first frequency band (698 to 960 MHz).
  • the third parasitic element 60 is formed adjacent to the second parasitic element 50 so that the corresponding frequency component is not transmitted from the first radiating element 20 to the second radiating element 30. Additional isolation is also possible in the frequency band (1.710–2.688 GHz).
  • the third parasitic element 60 is formed at a predetermined angle with the ground plate 10 on the rear surface of the second parasitic element 50, where the third parasitic element 60 is a monopole. It may be a parasitic element of an antenna type.
  • the second parasitic element 50 and the third parasitic element 60 are responsible for ensuring isolation of the second frequency band region (1.710 to 2.688 GHz) which is a high frequency band. Also, referring to FIG. 5, the effect can be confirmed.
  • the isolation rate measured in the second frequency band (1.710 to 2.688 GHz) is examined, it indicates -22.9 dB at 1.710 GHz, and then maintains the isolation at -20 dB or less after 2.688. At GHz, it can be seen that it is -25.4dB. This also can be said to ensure a significantly higher isolation than the isolation of the general multi-band antenna (100).
  • FIG. 6 and 7 are graphs of measuring a VSWR (Voltage Standing Wave Ratio) of the multi-band antenna 100 according to an embodiment of the present invention.
  • FIG. 6 is a diagram of the first feeder 20. 7 is the value measured by the 2nd power supply part 30.
  • the multi-band antenna 100 are spaced apart by a predetermined interval in a symmetrical form, and the first and second radiating elements 20 and 30 formed at symmetrical positions are appropriate based on this. Due to the first to third parasitic elements 40, 50, and 60 formed at the position, high isolation can be ensured. This makes it possible to reduce the overall size of the antenna. In addition, it can be applied to 4G LTE, and may be used as an in-building antenna installed inside a building.

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

The present invention relates to a multiband antenna comprising: a ground plate; an inverted-F type first radiating element formed on the ground plate; an inverted-F type second radiating element formed by being spaced at predetermined intervals in a form symmetrical with the first radiating element; a first parasitic element formed by being spaced, at predetermined intervals, from one end of the first radiating element and the second radiating element; and a second parasitic element formed by being spaced, at predetermined intervals, from the other end of the first radiating element and the second radiating element.

Description

다중대역 2포트 안테나Multiband 2-Port Antenna
본 발명은 다중대역 안테나에 관한 것으로서, 보다 상세하게는 격리도 확보 효과가 우수한 다중대역 2포트 안테나에 관한 것이다.The present invention relates to a multiband antenna, and more particularly, to a multiband two-port antenna having an excellent isolation securing effect.
최근에는 안테나에서 다중 주파수 대역의 사용이 일반화되고 있으며, 무선통신 기술의 발달에 따라 국내에서 이용중인 4G LTE(Long Term Evolution)는 다중 주파수 대역의 서비스를 제공하는 MIMO(Multi Input Multi Output) 안테나를 채용하고 있다. 이러한 MIMO 안테나에서는 다중 주파수 대역의 서비스를 제공하기 위해 필수적으로 복수의 안테나를 사용하며, 그로 인해 안테나 상호 간에 간섭이 발생할 수 있다. 안테나 상호 간에 간섭이 발생하면, 안테나의 방사 패턴이 왜곡되거나, 각 안테나의 의도하지 않은 상호 결합 현상이 발생할 수 있으므로, 안테나 상호 간에 격리도를 확보하는 것이 중요한 과제로 떠오르고 있다.Recently, the use of multiple frequency bands in antennas has become commonplace, and 4G Long Term Evolution (LTE), which is being used in Korea, has been developed using MIMO (Multi Input Multi Output) antennas that provide services in multiple frequency bands. I adopt it. In such a MIMO antenna, a plurality of antennas are essentially used to provide services of multiple frequency bands, and thus interference between antennas may occur. When interference occurs between antennas, the radiation pattern of the antennas may be distorted, or unintentional mutual coupling between the antennas may occur. Therefore, securing isolation between the antennas has emerged as an important problem.
기존에는 안테나의 격리도 확보를 위하여 안테나 상호 간 거리를 일정 거리 이상으로 유지하며 안테나를 배치하는 방법을 이용하였으나, 점점 소형화되는 이동통신 기기의 내부 공간상의 문제 때문에 이러한 방법은 더 이상 이용할 수 없게 되었다. 따라서 최근에는 격리도 확보를 위한 이격부를 안테나와 안테나 사이에 배치하여 벽을 형성하거나, 그라운드 구조를 변경하여 그라운드 벽(Wall)을 형성하는 방법을 이용하고 있으나, 4G LTE에 이용되는 MIMO 안테나와 같은 다중대역 안테나를 구현하기 위해서는 반파장보다 작은 공간 내에 두 개 또는 그 이상의 안테나가 배치되어야 하므로 공간상의 제약이 다른 안테나의 경우보다 상당히 큰바, 우수한 격리도 확보 효과를 갖는 다중대역 안테나(100)가 요구된다. Conventionally, in order to secure the isolation of antennas, antennas have been arranged in such a way that the distance between antennas is kept above a certain distance, but this method is no longer available due to the internal space problem of mobile communication devices. . Therefore, recently, a method of forming a wall by arranging a space between the antenna and the antenna to secure isolation is used, or by changing the ground structure to form a ground wall, such as the MIMO antenna used for 4G LTE. In order to implement a multi-band antenna, two or more antennas must be disposed in a space smaller than half wavelength, so the space constraint is considerably larger than that of other antennas. Therefore, a multi-band antenna 100 having excellent isolation effect is required. do.
따라서 본 발명은, 격리도 확보 효과가 우수한 다중대역 안테나를 제공하는 것을 목적으로 한다. Accordingly, an object of the present invention is to provide a multiband antenna having an excellent isolation securing effect.
한편, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 이하에서 설명할 내용으로부터 통상의 기술자에게 자명한 범위 내에서 다양한 기술적 과제가 도출될 수 있다.On the other hand, the technical problem to be achieved by the present invention is not limited to the above-described technical problem, various technical problems can be derived within the scope apparent to those skilled in the art from the following description.
본 발명의 일 실시 예에 따른 다중대역 안테나는 그라운드 판, 상기 그라운드 판에 형성된 역-F (Inverted-F) 타입의 제1 방사소자, 상기 제1 방사소자와 대칭되는 형태로 소정 간격 이격하여 형성된 역-F (Inverted-F)타입의 제2 방사소자, 상기 제1 방사소자와 제2 방사소자의 일단으로부터 소정 간격 이격되어 형성된 제1 기생소자 및 상기 제1 방사소자와 제2 방사소자의 타단으로부터 소정 간격 이격되어 형성된 제2 기생소자를 포함한다.The multi-band antenna according to an embodiment of the present invention is a ground plate, the first radiating element of the Inverted-F type formed on the ground plate, formed to be spaced apart at a predetermined interval in a symmetrical form with the first radiating element A second radiating element of an inverted-F type, a first parasitic element formed at a predetermined distance from one end of the first radiating element and the second radiating element, and the other end of the first radiating element and the second radiating element It includes a second parasitic element formed spaced apart from the predetermined interval.
또한, 상기 제2 기생소자에 인접하여 형성된 제3 기생소자를 더 포함할 수 있다. The device may further include a third parasitic element formed adjacent to the second parasitic element.
또한, 상기 제1 방사소자와 제2 방사소자는, 개구부를 포함할 수 있다.In addition, the first radiating element and the second radiating element may include openings.
또한, 상기 제1 기생소자는, 루프타입으로 형성될 수 있다. In addition, the first parasitic element may be formed in a loop type.
또한, 상기 제2 기생소자는, 상기 그라운드 판과 소정 각도를 이루며 형성된 제2-1 기생소자부 및 상기 제2-1 기생소자의 일단에 형성된 제2-2 기생소자부를 포함할 수 있다. In addition, the second parasitic element may include a 2-1 parasitic element portion formed at a predetermined angle with the ground plate and a 2-2 parasitic element portion formed at one end of the 2-1 parasitic element.
또한, 상기 제1 기생소자는, 개구부를 포함하며, 상기 제1 방사소자와 제2 방사소자 사이에서 상기 그라운드 판과 소정 각도를 이루며 형성될 수 있다. In addition, the first parasitic element may include an opening and may be formed at a predetermined angle with the ground plate between the first radiating element and the second radiating element.
또한, 상기 제1 기생소자는, 상기 제1 방사소자와 제2 방사소자 사이에서 상기 그라운드 판에 슬롯 타입으로 형성될 수 있다. The first parasitic element may be formed in a slot type on the ground plate between the first radiating element and the second radiating element.
또한, 상기 제3 기생소자는, 상기 제2 기생소자의 후면에 형성되며, 상기 그라운드 판과 소정 각도를 이루며 형성될 수 있다.In addition, the third parasitic element may be formed on a rear surface of the second parasitic element and may be formed at a predetermined angle with the ground plate.
또한, 상기 제1 방사소자는, 상기 제1 방사소자의 일면으로부터 연장 형성된 튜닝소자를 더 포함할 수 있다. In addition, the first radiating element may further include a tuning element extending from one surface of the first radiating element.
본 발명에 따르면, 다중대역 안테나에 있어서 우수한 격리도가 확보되므로, 안테나 크기의 소형화가 가능하다. According to the present invention, since excellent isolation is ensured in the multiband antenna, the antenna size can be reduced.
또한, 저주파수 대역과 고주파수 대역을 모두 커버할 수 있으므로, 4G LTE 통신망에 적합한 다중대역 안테나의 제공이 가능하다. In addition, since it can cover both the low frequency band and high frequency band, it is possible to provide a multi-band antenna suitable for 4G LTE communication network.
본 발명의 효과는 이상에서 언급한 효과들로 제한되지 않으며, 이하에서 설명할 내용으로부터 통상의 기술자에게 자명한 범위 내에서 다양한 효과들이 포함될 수 있다. The effects of the present invention are not limited to the above-mentioned effects, and various effects may be included within the scope apparent to those skilled in the art from the following description.
도 1은 본 발명의 일 실시 예에 따른 다중대역 안테나를 정면에서 바라본 모습을 나타내는 도면이다.1 is a view showing a front view of a multi-band antenna according to an embodiment of the present invention.
도 2는 본 발명의 일 실시 예에 따른 다중대역 안테나를 측면에서 바라본 모습을 나타내는 도면이다. 2 is a view showing a side view of a multi-band antenna according to an embodiment of the present invention.
도 3과 도 4는 본 발명의 또 다른 실시 예에 따른 다중대역 안테나를 나타내는 도면이다.3 and 4 are diagrams illustrating a multi-band antenna according to another embodiment of the present invention.
도 5는 본 발명의 일 실시 예에 따른 다중 대역 안테나의 격리도를 측정한 그래프이다.5 is a graph measuring the isolation of the multi-band antenna according to an embodiment of the present invention.
도 6은 본 발명의 일 실시 예에 따른 다중대역 안테나의 VSWR를 제1 급전부에서 측정한 그래프이다.FIG. 6 is a graph of measuring a VSWR of a multi-band antenna according to an embodiment of the present invention at a first feeder. FIG.
도 7은 본 발명의 일 실시 예에 따른 다중대역 안테나의 VSWR를 제2 급전부에서 측정한 그래프이다.7 is a graph measuring the VSWR of a multi-band antenna according to an embodiment of the present invention at a second feeder.
한편, 도면에 사용된 도면부호는 다음과 같다.Meanwhile, reference numerals used in the drawings are as follows.
10 : 그라운드 판10: ground plate
20 : 제1 방사소자 21 : 개구부20: first radiating element 21: opening
22 : 제1-1 방사소자부 23 : 제1-2 방사소자부22: 1-1 radiation element portion 23: 1-2 radiation element portion
24 : 제1 급전부24: first feeder
30 : 제2 방사소자30: second radiating element
34 : 제2 급전부34: second feeder
40 : 제1 기생소자 50 : 제2 기생소자 40: first parasitic element 50: second parasitic element
51 : 제2-1 기생소자부 52 : 제2-2 기생소자부51: 2-1 parasitic element portion 52: 2-2 parasitic element portion
60 : 제3 기생소자60: third parasitic element
100 : 다중대역 안테나100: multiband antenna
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 설명하는 실시 예들은 본 발명의 기술 사상을 당업자가 용이하게 이해할 수 있도록 제공되는 것으로 이에 의해 본 발명이 한정되지 않으며, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. Hereinafter, some embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments to be described are provided so that those skilled in the art can easily understand the technical spirit of the present invention, and thus, the present invention is not limited thereto, and it is determined that detailed descriptions of related well-known configurations or functions may obscure the gist of the present invention. In this case, detailed description thereof will be omitted.
또한, 첨부된 도면에 표현된 사항들은 본 발명의 실시 예들을 쉽게 설명하기 위해 도식화된 도면으로 실제로 구현되는 형태와 상이할 수 있으며, 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. In addition, the matters represented in the accompanying drawings may be different from the form actually embodied in the schematic drawings in order to easily explain the embodiments of the present invention. In addition, in addition to the reference numerals to the components of the drawings, the same configuration It is to be noted that the elements are designated by the same reference numerals as much as possible even if they are shown in different drawings.
또한, 어떤 구성요소들을 '포함'한다는 표현은, '개방형의 표현'으로서 해당 구성요소들이 존재하는 것을 단순히 지칭하는 표현이며, 추가적인 구성요소들을 배제하는 것으로 이해되어서는 안 될 것이다. In addition, the expression "comprising" certain elements is merely an expression of an 'open', and simply refers to the existence of the elements, and should not be understood as excluding additional elements.
도 1은 본 발명의 일 실시 예에 따른 다중대역 안테나(100)를 정면에서 바라본 모습을 나타내는 도면이다.1 is a view showing a front view of the multi-band antenna 100 according to an embodiment of the present invention.
다중대역 안테나(100)는 그라운드 판(10), 제1 방사소자(20), 제2 방사소자(30), 제1 기생소자(40) 및 제2 기생소자(50)를 포함한다. The multiband antenna 100 includes a ground plate 10, a first radiating element 20, a second radiating element 30, a first parasitic element 40, and a second parasitic element 50.
그라운드 판(10)은 일반적인 반사판을 이용할 수 있으며, 도 1을 참조하면 팔각형 형태의 그라운드 판(10)을 확인할 수 있으나, 그라운드 판(10)에 형성되는 안테나 소자의 형상 및 배치구조에 따라 다양한 형태로 구현할 수 있다. 한편, 그라운드 판(10)은 전체 안테나 사이즈의 소형화를 위하여 그라운드 판(10)의 일단과 상기 일단의 근방에 형성되는 안테나 소자 사이의 여분 공간이 최소가 되는 것이 바람직하다. The ground plate 10 may use a general reflecting plate. Referring to FIG. 1, the ground plate 10 may be identified by the octagonal shape. However, the ground plate 10 may have various shapes depending on the shape and arrangement of the antenna elements formed on the ground plate 10. Can be implemented as: On the other hand, the ground plate 10 preferably minimizes the extra space between one end of the ground plate 10 and the antenna element formed near the one end in order to reduce the size of the entire antenna.
상기 그라운드 판(10)의 일 부분에는 제1 방사소자(20)가 형성되며, 도 1을 참조하면 역-F (Inverted F Antenna) 안테나 타입의 제1 방사소자(20)가 그라운드 판(10)의 일 변 근방에 형성된 것을 확인할 수 있다.  A first radiating element 20 is formed at a portion of the ground plate 10, and referring to FIG. 1, the first radiating element 20 of the inverted-F antenna (F) antenna type is the ground plate 10. It can be seen that formed near one side of the.
제1 방사소자(20)는 전도성을 띠는 재질로 형성할 수 있으며, 송수신하는 주파수에 따라 다양한 길이로 형성될 수 있다. 또한, 제1 방사소자(20)는 다양한 타입의 안테나로 형성할 수 있으며, 도 1과 같이 평판(패치) 역-F 안테나 타입(Planar Inverted F Antenna)으로 형성할 경우, 그라운드 판(10)에 고정시켜 지지하기 위한 플라스틱 봉과 같은 지지부와 다중 주파수 대역을 송수신하기 위한 방사 소자 상의 개구부(21)가 형성될 수 있다. 여기서 개구부(21)의 형성 위치, 길이 및 면적 등을 조절하여 다중 주파수 대역을 송수신하도록 할 수 있으며, 본 명세서에서는 제1 방사소자(20)가 개구부(21) 조절을 통해 4G LTE에 이용되는 제1 주파수 대역(698~960 MHz)과 제2 주파수 대역(1.710~2.688 GHz)을 모두 만족하는 것을 기준으로 설명하기로 한다.The first radiating element 20 may be formed of a conductive material, and may be formed in various lengths according to a frequency for transmitting and receiving. In addition, the first radiating element 20 may be formed of various types of antennas. When the first radiating element 20 is formed of a planar inverted F antenna type as shown in FIG. 1, the first radiating element 20 may be formed on the ground plate 10. An opening 21 on the radiating element for transmitting / receiving multiple frequency bands with a support such as a plastic rod for fixing and supporting may be formed. Here, the formation position, length, and area of the opening 21 may be adjusted to transmit and receive multiple frequency bands. In the present specification, the first radiating element 20 is used for 4G LTE through adjustment of the opening 21. A description will be made based on satisfying both the first frequency band (698 to 960 MHz) and the second frequency band (1.710 to 2.688 GHz).
한편, 제1 방사소자(20)는 주파수 매칭(Matching)이 가능한 튜닝소자(22)를 더 포함할 수 있다. 도 1을 참조하면, 제1 방사소자(20)의 일면으로부터 연장 형성된 복수의 튜닝소자(22)를 확인할 수 있으며, 튜닝소자(22)의 형성위치, 개수 및 길이를 조절하여 주파수 매칭이 가능하다. 이러한 튜닝소자(22)의 형성방법, 형성위치, 개수 및 길이는 필요에 따라 다양하게 조정 가능하다. Meanwhile, the first radiating element 20 may further include a tuning element 22 capable of frequency matching. Referring to FIG. 1, a plurality of tuning elements 22 extending from one surface of the first radiating element 20 may be identified, and frequency matching may be performed by adjusting the formation position, number, and length of the tuning elements 22. . The formation method, the formation position, the number and the length of the tuning element 22 can be variously adjusted as necessary.
마지막으로 제1 방사소자(20)는 제1 급전부(24)를 통해 급전신호를 전송 받는다. 제1 급전부(24)는 급전 케이블을 이용하여 제1 방사소자(20)에 급전신호를 전송할 수 있으며, 동축 케이블 등 다양한 종류의 급전수단을 이용할 수 있다. Finally, the first radiating element 20 receives the feed signal through the first feed part 24. The first feeder 24 may transmit a feed signal to the first radiating element 20 using a feed cable, and may use various kinds of feed means such as a coaxial cable.
마찬가지로, 상기 그라운드 판(10)의 일 부분에는 제2 방사소자(30)가 형성될 수 있다. 구체적으로 제1 방사소자(20)와 대칭이 되는 형태로 소정 간격 이격되어, 대칭되는 위치에 제2 방사소자(30)가 형성될 수 있다. 도 1을 참조하면, 개구부(21)를 포함하는 평판(패치) 역-F 안테나 타입의 제1 방사소자(20)와 대칭되는 형태를 갖는 평판(패치) 역-F 안테나 타입의 제2 방사소자(30)가 제1 방사소자(20)가 형성된 위치와 대칭되는 위치에 형성된 것을 확인할 수 있다. 제2 방사소자(30)의 개구부, 지지부 및 튜닝소자와 같은 다른 특징들은 상기 설명한 제1 방사소자(30)의 경우와 같다. 그러나, 급전의 경우는 제1 급전부(24)와 별개로 제2 급전부(34)를 통해 급전신호를 전송 받는다. Similarly, a second radiating element 30 may be formed in one portion of the ground plate 10. Specifically, the second radiating element 30 may be formed at a symmetrical position to be spaced apart from each other in a symmetrical form with the first radiating element 20. Referring to FIG. 1, a second radiating element of the flat plate (patch) inverted-F antenna type having a shape symmetrical with the first radiating element 20 of the flat plate (patch) inverting-F antenna type including the opening 21. It can be seen that 30 is formed at a position symmetrical with the position where the first radiating element 20 is formed. Other features such as openings, supports and tuning elements of the second radiating element 30 are the same as those of the first radiating element 30 described above. However, in the case of power feeding, the power supply signal is transmitted through the second power supply unit 34 separately from the first power supply unit 24.
상기 설명한 것과 같이 서로 대칭되는 형태를 갖는 제1 방사소자(20)와 제2 방사소자(30)가 그라운드 판(10)에서 서로 대칭되는 위치에 형성되는바, 두 방사소자 간에 간섭이 발생할 수 있다. 이 경우, 간섭에 의해 양 방사소자의 방사 패턴이 왜곡되거나, 의도하지 않은 상호 결합 현상을 방지하기 위해 격리도 확보가 필요하다. 이하, 도 2를 참조하여 격리도 확보를 위한 제1 기생소자(40), 제2 기생소자(50) 및 제3 기생소자(60)를 설명하도록 한다.As described above, since the first radiating element 20 and the second radiating element 30 having symmetrical shapes are formed at positions symmetrical with each other on the ground plate 10, interference may occur between the two radiating elements. . In this case, the radiation pattern of both radiation elements is distorted due to interference, or isolation is required to prevent unintentional mutual coupling. Hereinafter, referring to FIG. 2, the first parasitic element 40, the second parasitic element 50, and the third parasitic element 60 to ensure isolation are described.
도 2는 본 발명의 일 실시 예에 따른 다중대역 안테나(100)를 측면에서 바라본 모습을 나타내는 도면이며, 도 3과 도 4는 본 발명의 또 다른 실시 예에 따른 다중대역 안테나(100)를 나타내는 도면이다.2 is a view showing a side view of the multi-band antenna 100 according to an embodiment of the present invention, Figures 3 and 4 shows a multi-band antenna 100 according to another embodiment of the present invention Drawing.
제1 기생소자(40)는 제1 방사소자(20)와 제2 방사소자(30)의 격리도 확보를 위하여 그라운드 판(10)의 일 부분에 형성된다. 이 경우, 도 3과 같이 제1 기생소자(40)를 제1 방사소자(20)와 제2 방사소자(30)의 사이에 벽(Wall)타입으로 형성하여 격리도를 확보할 수 있으나, 이와는 상이한 방법으로도 형성이 가능하다. 도 2를 참조하면, 제1 기생소자(40)가 제1 방사소자(20)의 일단과 제2 방사소자(30)의 일단으로부터 소정 간격 이격되어 형성된 것을 확인할 수 있다. 구체적으로 제1 기생소자는 제1 및 제2 방사소자(20, 30)가 담당하는 저주파수 대역인 제1 주파수 대역(698~960 MHz)에서 격리도를 확보하는 역할을 한다. 구체적으로 설명하면, 제1 주파수 대역(698~960 MHz)은 저주파수 대역이기 때문에 안테나의 길이가 길어질 수 밖에 없으며, 제1 방사소자(20)의 개구부(21)를 기준으로 윗부분의 방사소자를 제1-1 방사소자부(22), 아랫부분의 방사소자를 제1-2 방사소자부(23)라 한다면, 제1 주파수 대역(698~960 MHz)에서는 충분한 안테나 길이값 확보를 위하여 개구부(21)를 포함하여 제1-1 방사소자부(22)와 제1-2 방사소자부(23)를 모두 이용해야 한다. 이 경우, 제1-1 방사소자부(22)와 제1-2 방사소자부(23)의 전체 길이는 λ/4가 된다. 한편, H-field 커플링에 의해 제1-1 방사소자부(22)에는 강한 전류가 흐를 수 밖에 없고, 그러한 전류가 접지를 통해 제2 방사소자(30)에 곧바로 흘러들어가 영향을 주는 것을 방지하기 위하여 제1 기생소자(40)를 형성하는 것이다. 즉, 접지를 통해 흘러들어간 전류의 일부가 제1 기생소자(40)에 흘러들어간다면, 접지에 흘러들어간 전체 전류의 일부를 상쇄시킬 수 있는바, 결과적으로 격리도가 증가할 수 있는 것이다. 또한, 제1 기생소자(40)를 도 2와 같이 형성하면 벽타입으로 형성한 것보다 공간을 적게 사용함으로써, 그라운드 판(10)에 형성되는 다른 안테나 소자들의 효율적인 배치가 가능하다.The first parasitic element 40 is formed on a part of the ground plate 10 to secure the isolation between the first radiating element 20 and the second radiating element 30. In this case, as shown in FIG. 3, the first parasitic element 40 may be formed as a wall type between the first radiating element 20 and the second radiating element 30 to secure isolation. It can also be formed by the method. Referring to FIG. 2, it can be seen that the first parasitic element 40 is formed to be spaced apart from one end of the first radiating element 20 by one end of the second radiating element 30. Specifically, the first parasitic element serves to secure isolation in the first frequency band (698 ~ 960 MHz) which is the low frequency band which is in charge of the first and second radiating elements (20, 30). Specifically, since the first frequency band (698 ~ 960 MHz) is a low frequency band, the length of the antenna is inevitably lengthened, and the upper radiating element is removed based on the opening 21 of the first radiating element 20. If the 1-1 radiating element section 22 and the lower radiating element are referred to as the 1-2 radiating element section 23, the opening 21 to secure a sufficient antenna length value in the first frequency band (698 ~ 960 MHz). ), Including the 1-1 radiating element portion 22 and the 1-2 radiating element portion 23 should be used. In this case, the total lengths of the 1-1 radiating element portion 22 and the 1-2 radiating element portion 23 are λ / 4. On the other hand, due to the H-field coupling, a strong current flows in the first-first radiating element part 22, and such current is prevented from flowing directly to the second radiating element 30 through the ground and affecting it. In order to form the first parasitic element 40. That is, if a part of the current flowing through the ground flows into the first parasitic element 40, the part of the entire current flowing into the ground may be canceled, and as a result, the isolation may increase. In addition, when the first parasitic element 40 is formed as shown in FIG. 2, it is possible to efficiently arrange other antenna elements formed in the ground plate 10 by using less space than that formed in the wall type.
또한, 제1 기생소자(40)는 루프타입으로 형성할 수 있다. 제1 기생소자(40)를 루프타입으로 형성하는 경우, 상기 설명한 H-field 커플링에 의한 제1 방사소자(2)의 제1-1 방사소자부(22)에 흐르는 강한 전류가 접지를 통하여 제2 방사소자(30)에 흘러들어가는 것을 방지할 수 있을 뿐만 아니라, 제2 방사소자(30)와 보다 효과적으로 커플링 할 수 있는 효과가 있다. 따라서, 효과적인 커플링을 위해 제1 기생소자(40)는 제1 및 제2 방사소자(20, 30)의 높이보다 높게 형성되어 서로 접촉하지 않게 형성될 것이 요구된다. 한편, 제1 기생소자를 루프타입으로 형성한 경우, 그라운드 판(10)에 고정시켜 지지하기 위한 지지부를 더 포함할 수 있다. In addition, the first parasitic element 40 may be formed in a loop type. When the first parasitic element 40 is formed in a loop type, a strong current flowing through the first-first radiating element part 22 of the first radiating element 2 by the H-field coupling described above is passed through the ground. Not only can it be prevented from flowing into the second radiating element 30, there is an effect that can be coupled more effectively with the second radiating element 30. Therefore, for effective coupling, the first parasitic element 40 is required to be formed higher than the height of the first and second radiating elements 20 and 30 so as not to contact each other. On the other hand, when the first parasitic element is formed in a loop type, it may further include a support for fixing and supporting the ground plate 10.
아울러, 도 3과 같이 제1 기생소자(40)를 제1 방사소자(20)와 제2 방사소자(30)사이에 벽(Wall)타입으로 형성한 경우, 루프를 포함하는 벽 타입으로 형성할 수 있으며, 루프 대신 개구부를 포함하여 그라운드 판(10)과 소정 각도를 이루도록 형성할 수도 있고, 도 4와 같이 별도의 소자를 구비하지 않고 제1 기생소자(40)를 그라운드 판(10)에 슬롯(Slot) 타입으로 형성할 수도 있다.In addition, as shown in FIG. 3, when the first parasitic element 40 is formed as a wall type between the first radiating element 20 and the second radiating element 30, the first parasitic element 40 may be formed as a wall type including a loop. It may be formed to form a predetermined angle with the ground plate 10 by including an opening instead of a loop, as shown in Figure 4 without having a separate device slot the first parasitic element 40 in the ground plate 10 (Slot) type can also be formed.
제2 기생소자(50) 역시 제1 방사소자(20)와 제2 방사소자(30)의 격리도 확보를 위하여 그라운드 판(10)의 일 부분에 형성된다. 도 2를 참조하면, 제2 기생소자(50)는 제1 방사소자(20)와 제2 방사소자(30)의 타단으로부터 소정 간격 이격되어 형성된 것을 확인할 수 있다. 즉, 그라운드 판(10)을 기준으로 하였을 때, 제2 기생소자(50)는 제1 기생소자(40)가 형성된 위치와 반대되는 위치에 형성될 수 있다. 예를 들어, 제1 기생소자(40)가 그라운드 판(10)의 12시 방향에 형성되어 있다면 제2 기생소자(50)는 6시 방향에 형성되는 것이 바람직하고, 제1 기생소자(40)가 그라운드 판(10)의 3시 방향에 형성되어 있다면 제2 기생소자(50)는 9시 방향에 형성되는 것이 바람직하다. 이하, 그 이유를 구체적으로 설명한다.The second parasitic element 50 is also formed in a part of the ground plate 10 to secure the isolation between the first radiating element 20 and the second radiating element 30. Referring to FIG. 2, the second parasitic element 50 may be formed to be spaced apart from the other end of the first radiating element 20 and the second radiating element 30 by a predetermined interval. That is, based on the ground plate 10, the second parasitic element 50 may be formed at a position opposite to the position where the first parasitic element 40 is formed. For example, if the first parasitic element 40 is formed at 12 o'clock of the ground plate 10, the second parasitic element 50 is preferably formed at 6 o'clock, and the first parasitic element 40 Is formed at the 3 o'clock position of the ground plate 10, the second parasitic element 50 is preferably formed at the 9 o'clock position. The reason for this is described below in detail.
저주파수 대역인 제1 주파수 대역(698~960 MHz)에서는 충분한 안테나 길이값 확보를 위하여 개구부(21)를 포함하여 제1-1 방사소자부(22)와 제1-2 방사소자부(23)를 모두 이용해야 한다는 것은 상기 검토하였다. 이 경우 제1-1 방사소자부(22)와는 다르게 제1-2 방사소자부(23)에는 E-field 커플링에 의해 고전압이 형성될 수 밖에 없다. 이러한 전압이 제2 방사소자(30)에 직접적인 영향을 주는 것을 방지하기 위해 제2 기생소자(50)를 형성한다. 즉, 전압의 일부가 커플링 효과에 의해 제2 기생소자(50)에게 전달된다면, 전체 전압의 일부를 상쇄시킬 수 있는바, 결과적으로 격리도가 증가할 수 있는 것이다.  In the first frequency band 698 to 960 MHz, which is a low frequency band, the first-first radiating element part 22 and the first-second radiating element part 23 including the opening 21 are secured to secure a sufficient antenna length value. It was discussed above that all should be used. In this case, unlike the first-first radiating element portion 22, the 1-2 voltage radiating element portion 23 has a high voltage due to the E-field coupling. In order to prevent the voltage from directly affecting the second radiating element 30, the second parasitic element 50 is formed. That is, if a part of the voltage is transmitted to the second parasitic element 50 by the coupling effect, the part of the total voltage may be canceled, and as a result, the isolation may increase.
한편, 도 2를 참조하면 제2 기생소자(50)는 제1 기생소자(40)와 다르게 루프타입이 아닌 바(Bar) 타입으로 형성되어 있는데, 이는 제1 및 제2 방사소자(20, 30) 간의 거리에 따라 결정된 것이다. 즉, 제1 기생소자가 형성된 제1 및 제2 방사소자(20, 30)의 일단 간의 거리가 제2 기생소자가 형성된 제1 및 제2 방사소자(20, 30)의 타단 간의 거리보다 가깝기 때문에, 제1 기생소자(40)는 루프타입으로 형성하고, 제2 기생소자(50)는 바타입으로 형성한 것이다. 하지만, 도 2는 방사소자 배치의 하나의 실시 예일 뿐이며, 방사소자 간의 거리를 고려하여 제2 기생소자(50) 역시 루프타입으로 형성할 수 있음은 물론이다.Meanwhile, referring to FIG. 2, the second parasitic element 50 is formed in a bar type rather than a loop type unlike the first parasitic element 40, which is the first and second radiating elements 20 and 30. Is determined by the distance between them. That is, since the distance between one end of the first and second radiating elements 20 and 30 on which the first parasitic element is formed is closer than the distance between the other ends of the first and second radiating elements 20 and 30 on which the second parasitic element is formed. The first parasitic element 40 is formed in a loop type, and the second parasitic element 50 is formed in a bar type. However, FIG. 2 is only one embodiment of the arrangement of the radiating elements, and in consideration of the distance between the radiating elements, the second parasitic element 50 may also be formed in a loop type.
한편, 제2 기생소자(50)는 제1 방사소자(20)와 제2 방사소자(30)와의 커플링 효과를 고려하여, 그라운드 판과 소정 각도를 이루며 형성된 제2-1 기생소자부(51)와 상기 제2-1 기생소자부의 일단에 형성된 제2-2 기생소자부(52)를 포함할 수 있다. 도 2를 참조하면, 제2-2 기생소자부(52)가 제2-1 기생소자부(51)의 양단에 형성된 것을 확인할 수 있다. 이 경우, 제2-2 기생소자부(52)와 제1 및 제2 방사소자(20, 30) 사이의 거리가 가까워지므로 커플링 효과가 보다 잘 발생할 수 있다. 하지만, 이는 필수적인 것은 아니며, 제2-2 기생소자부(52)를 형성하지 않고 제2-1 기생소자부(51) 하나만으로 제2 기생소자(50)를 형성할 수 있음은 물론이다. Meanwhile, in consideration of the coupling effect between the first radiating element 20 and the second radiating element 30, the second parasitic element 50 has a second angle between the ground plate and the second parasitic element part 51. ) And the second parasitic element portion 52 formed at one end of the second parasitic element portion. Referring to FIG. 2, it can be seen that the 2-2 parasitic element unit 52 is formed at both ends of the 2-1 parasitic element unit 51. In this case, since the distance between the second-second parasitic element unit 52 and the first and second radiating elements 20 and 30 is closer, the coupling effect may be better generated. However, this is not essential, and of course, the second parasitic element 50 may be formed using only the second parasitic element portion 51 without forming the second parasitic element portion 52.
상기 설명하였듯이, 제1 기생소자(40)와 제2 기생소자(50)는 저주파수 대역인 제1 주파수 대역(698~960 MHz)의 격리도 확보를 담당한다. 이는 도 5를 참조하면 효과를 확인할 수 있는바, 도 5는 본 발명의 일 실시 예에 따른 다중 대역 안테나의 격리도를 측정한 그래프이다. 제1 주파수 대역(698~960 MHz)에서 측정된 격리도를 살피면, 695MHz에서 -16.4dB을 나타내고, 이후 지속적으로 증가하여 960MHz에서는 -28.3dB인 것을 확인할 수 있다. 일반적인 다중대역 안테나(100)의 격리도가 -9 내지 -10dB인 것에 비교하면, 상당히 높은 격리도를 확보한다고 할 수 있다. As described above, the first parasitic element 40 and the second parasitic element 50 are responsible for ensuring the isolation of the first frequency band (698 ~ 960 MHz) which is a low frequency band. This can be confirmed with reference to Figure 5, Figure 5 is a graph measuring the isolation of the multi-band antenna according to an embodiment of the present invention. Looking at the isolation measured in the first frequency band (698 ~ 960 MHz), it can be seen that -16.4dB at 695MHz, it is continuously increased to -28.3dB at 960MHz. Compared with the general multiband antenna 100 having an isolation of -9 to -10dB, it can be said that a relatively high isolation is ensured.
마지막으로 그라운드 판(10)의 일 부분에는 격리도 확보를 위한 제3 기생소자(60)가 형성된다. 도 2를 참조하면 제3 기생소자(60)가 제2 기생소자(50)에 인접하여 형성된 것을 확인할 수 있다.Finally, a third parasitic element 60 is formed in one portion of the ground plate 10 to secure isolation. Referring to FIG. 2, it can be seen that the third parasitic element 60 is formed adjacent to the second parasitic element 50.
제3 기생소자(60)는 제1 기생소자(40)와 다르게, 고주파수 대역인 제2 주파수 대역(1.710~2.688 GHz)에서의 격리도를 확보한다. 구체적으로, 제2 주파수 대역(1.710~2.688 GHz)은 제1 방사소자(20)의 제1-1 방사소자부(22)만을 이용하며, 이 경우 제1-1 방사소자부(22)의 길이(튜닝소자를 형성한 경우, 튜닝소자의 길이까지 포함하여)는 3λ/4가 된다. 이는 전류가 제1-2 방사소자부(23)로 흘러 들어가기 전에 거의 대부분이 방사되기 때문이다. 따라서, 제2 주파수 대역(1.710~2.688 GHz)에서 제1 기생소자는 격리도 확보에 중요한 역할을 하지 않는다. 따라서, 제2 기생소자(50)가 제1 주파수 대역(698~960 MHz)과 더불어, 제2 주파수 대역(1.710~2.688 GHz)의 일부 대역에서도 격리도를 확보한다. 아울러, 해당 주파수 성분이 제1 방사소자(20)로부터 제2 방사소자(30)에 전달되지 않게 하기 위해 제3 기생소자(60)를 제2 기생소자(50)에 인접하게 형성하여, 제2 주파수 대역(1.710~2.688 GHz)에서 추가적인 격리도 확보가 가능하다. 도 2를 참조하면, 제3 기생소자(60)가 제2 기생소자(50)의 후면에 그라운드 판(10)과 소정 각도를 이루며 형성된 것을 확인할 수 있으며, 여기서 제3 기생소자(60)는 모노폴 안테나 타입의 기생소자일 수 있다. Unlike the first parasitic element 40, the third parasitic element 60 secures isolation in the second frequency band (1.710 to 2.688 GHz), which is a high frequency band. Specifically, the second frequency band (1.710 ~ 2.688 GHz) uses only the first-first radiating element portion 22 of the first radiating element 20, in this case the length of the first-first radiating element portion 22 (When the tuning element is formed, including the length of the tuning element) is 3λ / 4. This is because almost all of the radiation is emitted before the current flows into the 1-2 radiating element section 23. Therefore, in the second frequency band (1.710 ~ 2.688 GHz), the first parasitic element does not play an important role in ensuring isolation. Accordingly, the second parasitic element 50 secures isolation in some bands of the second frequency band (1.710 to 2.688 GHz) in addition to the first frequency band (698 to 960 MHz). In addition, the third parasitic element 60 is formed adjacent to the second parasitic element 50 so that the corresponding frequency component is not transmitted from the first radiating element 20 to the second radiating element 30. Additional isolation is also possible in the frequency band (1.710–2.688 GHz). Referring to FIG. 2, it can be seen that the third parasitic element 60 is formed at a predetermined angle with the ground plate 10 on the rear surface of the second parasitic element 50, where the third parasitic element 60 is a monopole. It may be a parasitic element of an antenna type.
상기 설명하였듯이, 제2 기생소자(50)와 제3 기생소자(60)는 고주파수 대역인 제2 주파수 대역역(1.710~2.688 GHz)의 격리도 확보를 담당한다. 이 역시 도 5를 참조하면 효과를 확인할 수 있는바, 제2 주파수 대역(1.710~2.688 GHz)에서 측정된 격리도를 살피면, 1.710 GHz에서 -22.9dB를 나타내고, 이후 -20dB 이하로 격리도를 유지하다가 2.688 GHz에서는 -25.4dB인 것을 확인할 수 있다. 이 역시 일반적인 다중대역 안테나(100)의 격리도에 비하여 상당히 높은 격리도를 확보한다고 할 수 있다. As described above, the second parasitic element 50 and the third parasitic element 60 are responsible for ensuring isolation of the second frequency band region (1.710 to 2.688 GHz) which is a high frequency band. Also, referring to FIG. 5, the effect can be confirmed. When the isolation rate measured in the second frequency band (1.710 to 2.688 GHz) is examined, it indicates -22.9 dB at 1.710 GHz, and then maintains the isolation at -20 dB or less after 2.688. At GHz, it can be seen that it is -25.4dB. This also can be said to ensure a significantly higher isolation than the isolation of the general multi-band antenna (100).
도 6과 도 7은 본 발명의 일 실시 예에 따른 다중대역 안테나(100)의 VSWR(Voltage Standing Wave Ratio)를 측정한 그래프이며, 구체적으로, 도 6은 제1 급전부(20)에서, 도 7은 제2 급전부(30)에서 측정한 값이다. 이 경우 VSWR은 698 MHz에서 각각 1.57, 1.60, 690 MHz에서 각각 1.61, 1.55, 1.710 GHZ에서 각각 1.26, 1.36, 2.688 GHz에서 각각 1.55, 1.36임을 확인할 수 있다. 이는 상당히 우수한 결과로써, 주파수 매칭(Matching)이 거의 완벽하게 이루어졌다고 볼 수 있다. 6 and 7 are graphs of measuring a VSWR (Voltage Standing Wave Ratio) of the multi-band antenna 100 according to an embodiment of the present invention. Specifically, FIG. 6 is a diagram of the first feeder 20. 7 is the value measured by the 2nd power supply part 30. FIG. In this case, it can be seen that the VSWR is 1.57, 1.60 and 690 MHz respectively at 1.57, 1.55 and 1.710 GHZ at 1.26, 1.36 and 2.688 GHz at 1.55 and 1.36 at 698 MHz, respectively. This is a fairly good result, and the frequency matching is almost perfect.
상기 설명한 본 발명의 일 실시 예에 따른 다중대역 안테나(100)는 서로 대칭이 되는 형태로 소정 간격 이격되어, 대칭되는 위치에 형성된 제1 및 제2 방사소자(20, 30)와 이를 기준으로 적절한 위치에 형성된 제1 내지 제3 기생소자(40, 50, 60)으로 인하여 높은 격리도를 확보할 수 있다. 이를 통해 안테나 전체 크기를 소형화할 수 있다. 또한, 4G LTE에 적용 가능하며, 건물 내부에 설치하는 인빌딩용 안테나로 이용할 수도 있을 것이다. The multi-band antenna 100 according to an embodiment of the present invention described above are spaced apart by a predetermined interval in a symmetrical form, and the first and second radiating elements 20 and 30 formed at symmetrical positions are appropriate based on this. Due to the first to third parasitic elements 40, 50, and 60 formed at the position, high isolation can be ensured. This makes it possible to reduce the overall size of the antenna. In addition, it can be applied to 4G LTE, and may be used as an in-building antenna installed inside a building.
위에서 설명된 본 발명의 실시 예들은 예시의 목적을 위해 개시된 것이며, 이들에 의하여 본 발명이 한정되는 것은 아니다. 또한, 본 발명에 대한 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 사상과 범위 안에서 다양한 수정 및 변경을 가할 수 있을 것이며, 이러한 수정 및 변경은 본 발명의 범위에 속하는 것으로 보아야 할 것이다.Embodiments of the invention described above are disclosed for purposes of illustration, and the invention is not limited thereto. In addition, one of ordinary skill in the art of the present invention will be able to add various modifications and changes within the spirit and scope of the present invention, these modifications and changes will be considered to be within the scope of the present invention.

Claims (9)

  1. 그라운드 판;Ground plate;
    상기 그라운드 판에 형성된 역-F (Inverted-F) 타입의 제1 방사소자;An Inverted-F type first radiating element formed on the ground plate;
    상기 제1 방사소자와 대칭되는 형태로 소정 간격 이격하여 형성된 역-F (Inverted-F)타입의 제2 방사소자;A second radiating element of an Inverted-F type formed spaced apart from each other in a symmetrical form with the first radiating element;
    상기 제1 방사소자와 제2 방사소자의 일단으로부터 소정 간격 이격되어 형성된 제1 기생소자; 및A first parasitic element spaced apart from one end of the first radiating element and the second radiating element by a predetermined distance; And
    상기 제1 방사소자와 제2 방사소자의 타단으로부터 소정 간격 이격되어 형성된 제2 기생소자; A second parasitic element spaced apart from the other end of the first radiating element and the second radiating element by a predetermined interval;
    를 포함하는 다중대역 안테나Multiband antenna comprising a
  2. 제1항에 있어서,The method of claim 1,
    상기 제2 기생소자에 인접하여 형성된 제3 기생소자를 더 포함하는 것을 특징으로 하는 다중대역 안테나And a third parasitic element formed adjacent to the second parasitic element.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1 방사소자와 제2 방사소자는,The first radiating element and the second radiating element,
    개구부를 포함하는 것을 특징으로 하는 다중대역 안테나A multiband antenna comprising an opening
  4. 제1항에 있어서,The method of claim 1,
    상기 제1 기생소자는,The first parasitic element,
    루프타입으로 형성된 것을 특징으로 하는 다중대역 안테나Multi-band antenna characterized in that formed in a loop type
  5. 제1항에 있어서,The method of claim 1,
    상기 제2 기생소자는,The second parasitic element,
    상기 그라운드 판과 소정 각도를 이루며 형성된 제2-1 기생소자부; 및A 2-1 parasitic element part formed at a predetermined angle with the ground plate; And
    상기 제2-1 기생소자의 일단에 형성된 제2-2 기생소자부;A second parasitic element part formed at one end of the second parasitic element;
    를 포함하는 것을 특징으로 하는 다중대역 안테나Multi-band antenna, characterized in that it comprises
  6. 제1항에 있어서,The method of claim 1,
    상기 제1 기생소자는,The first parasitic element,
    개구부를 포함하며,Including an opening,
    상기 제1 방사소자와 제2 방사소자 사이에서 상기 그라운드 판과 소정 각도를 이루며 형성된 것을 특징으로 하는 다중대역 안테나A multi-band antenna, formed between the first radiating element and the second radiating element at a predetermined angle with the ground plate
  7. 제1항에 있어서,The method of claim 1,
    상기 제1 기생소자는,The first parasitic element,
    상기 제1 방사소자와 제2 방사소자 사이에서 상기 그라운드 판에 슬롯 타입으로 형성된 것을 특징으로 하는 다중대역 안테나A multi-band antenna, characterized in that formed in the ground plate between the first radiating element and the second radiating element in the slot type
  8. 제2항에 있어서,The method of claim 2,
    상기 제3 기생소자는,The third parasitic element,
    상기 제2 기생소자의 후면에 형성되며,Is formed on the rear of the second parasitic element,
    상기 그라운드 판과 소정 각도를 이루며 형성된 것을 특징으로 하는 다중대역 안테나A multi-band antenna, characterized in that formed at a predetermined angle with the ground plate
  9. 제1항에 있어서,The method of claim 1,
    상기 제1 방사소자는,The first radiating element,
    상기 제1 방사소자의 일면으로부터 연장 형성된 튜닝소자를 더 포함하는 것을 특징으로 하는 다중대역 안테나And a tuning element extending from one surface of the first radiating element.
PCT/KR2015/008881 2014-10-23 2015-08-25 Multiband two-port antenna WO2016064080A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140144144A KR101632275B1 (en) 2014-10-23 2014-10-23 Multiband 2-port antenna
KR10-2014-0144144 2014-10-23

Publications (1)

Publication Number Publication Date
WO2016064080A1 true WO2016064080A1 (en) 2016-04-28

Family

ID=55761085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008881 WO2016064080A1 (en) 2014-10-23 2015-08-25 Multiband two-port antenna

Country Status (2)

Country Link
KR (1) KR101632275B1 (en)
WO (1) WO2016064080A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102097049B1 (en) * 2019-05-17 2020-04-03 주식회사 이엠따블유 Anttena module and vehicle having the same
KR102206670B1 (en) * 2019-10-11 2021-01-22 (주)휴맥스 Antenna assembly and method of providing frequency adaptive isolation
KR102104907B1 (en) * 2020-01-28 2020-05-29 주식회사 알씨엔 8x8 Integrated Multi User MIMO Antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040004285A (en) * 2003-12-13 2004-01-13 학교법인 한국정보통신학원 Internal Multi-Band Antenna with Multiple Layers
KR20090093120A (en) * 2008-02-28 2009-09-02 한양대학교 산학협력단 MIMO Array Antenna for Adaptive Isolation
KR20130025571A (en) * 2011-09-02 2013-03-12 주식회사 이엠따블유 Multi antenna
KR20130102170A (en) * 2012-03-07 2013-09-17 주식회사 팬택 Mobile communication terminal with improved isolation
KR20140034932A (en) * 2011-07-13 2014-03-20 퀄컴 인코포레이티드 Wideband antenna system with multiple antennas and at least one parasitic element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101372704B1 (en) 2012-01-31 2014-03-13 공기현 Antenna assembly for updating isolation degree

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040004285A (en) * 2003-12-13 2004-01-13 학교법인 한국정보통신학원 Internal Multi-Band Antenna with Multiple Layers
KR20090093120A (en) * 2008-02-28 2009-09-02 한양대학교 산학협력단 MIMO Array Antenna for Adaptive Isolation
KR20140034932A (en) * 2011-07-13 2014-03-20 퀄컴 인코포레이티드 Wideband antenna system with multiple antennas and at least one parasitic element
KR20130025571A (en) * 2011-09-02 2013-03-12 주식회사 이엠따블유 Multi antenna
KR20130102170A (en) * 2012-03-07 2013-09-17 주식회사 팬택 Mobile communication terminal with improved isolation

Also Published As

Publication number Publication date
KR101632275B1 (en) 2016-06-21
KR20160047783A (en) 2016-05-03

Similar Documents

Publication Publication Date Title
WO2016072620A1 (en) Antenna device
WO2016133244A1 (en) Multi-band radiating element
WO2009088231A2 (en) Multi-band internal antenna
WO2009134013A2 (en) Broadband internal antenna using slow-wave structure
WO2016076601A1 (en) Mobile communication base station antenna
WO2010030128A2 (en) Multiband antenna using electromagnetic coupling
WO2015174621A1 (en) Antenna device
WO2015068981A1 (en) Multi-band, multi-polarized wireless communication antenna
WO2012105784A2 (en) Dual polarization antenna for a mobile communication base station, and multiband antenna system using same
WO2016027997A1 (en) Omnidirectional antenna for mobile communication service
WO2010038929A1 (en) Multilayer antenna
TWI521788B (en) Antenna assembly and wireless communication device
WO2015088214A1 (en) Antenna
WO2011090332A2 (en) Apparatus for multiple antennas in wireless communication system
WO2016036043A2 (en) Omnidirectional antenna
WO2010119999A1 (en) Broadband antenna using coupling matching with short-circuited end of radiator
WO2010076982A2 (en) Infinite wavelength antenna device
WO2012026635A1 (en) Antenna having capacitive element
WO2016064080A1 (en) Multiband two-port antenna
US20190334622A1 (en) Fiber integrated radio equipment for network optimization and densification ecosystem (fire-node)
WO2015160200A1 (en) Multiple-antenna
WO2010117177A2 (en) Multiband antenna using a metamaterial, and communication apparatus including same
WO2010101379A2 (en) Multiband and broadband antenna using metamaterials, and communication apparatus comprising same
WO2022225245A1 (en) Low-band radiator and multi-broadband antenna comprising same
WO2010067930A1 (en) Small dual-band radiation element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852447

Country of ref document: EP

Kind code of ref document: A1