WO2016036043A2 - Omnidirectional antenna - Google Patents

Omnidirectional antenna Download PDF

Info

Publication number
WO2016036043A2
WO2016036043A2 PCT/KR2015/008879 KR2015008879W WO2016036043A2 WO 2016036043 A2 WO2016036043 A2 WO 2016036043A2 KR 2015008879 W KR2015008879 W KR 2015008879W WO 2016036043 A2 WO2016036043 A2 WO 2016036043A2
Authority
WO
WIPO (PCT)
Prior art keywords
radiating element
omni antenna
ground plate
horizontally polarized
dielectric substrate
Prior art date
Application number
PCT/KR2015/008879
Other languages
French (fr)
Korean (ko)
Other versions
WO2016036043A3 (en
Inventor
신옐리코프유리
김상기
김상진
Original Assignee
주식회사 감마누
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 감마누 filed Critical 주식회사 감마누
Publication of WO2016036043A2 publication Critical patent/WO2016036043A2/en
Publication of WO2016036043A3 publication Critical patent/WO2016036043A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines

Definitions

  • the present invention relates to an omni antenna, and more particularly, to a multi-band dual polarized omni antenna applicable to 4G LTE communication.
  • Repeater antennas used in wireless communication systems are classified into omnidirectional antennas and directional antennas according to the direction in which electromagnetic waves are radiated.
  • an omni antenna which is a kind of omnidirectional antenna, is used to be attached to a ceiling or a wall to transmit and receive electromagnetic waves in a sound region where a base station signal is weak, such as inside a building.
  • LTE Long Term Evolution
  • MIMO Multi Input Multi Output
  • omni antennas are in charge of both the low frequency band and the high frequency band and are required to be downsized.
  • an object of the present invention is to provide a miniaturized omni antenna that covers both the low frequency band and the high frequency band.
  • Omni antenna is formed on the ground plate, the vertical axis of the ground plate, a vertically polarized radiating element of the monocon type divided into a plurality of blades, spaced apart from the upper surface of the ground plate by a predetermined interval And a dielectric substrate having a penetrating portion through which the vertically polarized radiating element passes, and a plurality of horizontally polarized radiating elements formed on the dielectric substrate.
  • the plurality of horizontally polarized radiating elements may include a loop-type first horizontally polarized radiating element that is formed spaced apart from the penetrating portion by a predetermined interval and a loop type that is formed spaced apart from the first horizontal polarized radiating element by a predetermined interval. And a second horizontally polarized radiating element.
  • loop type first and second horizontally polarized radiating elements may be divided into a plurality of sectors.
  • first horizontal polarization radiating element may transmit and receive a high frequency band
  • second horizontal polarization radiating element may transmit and receive a low frequency band
  • the vertically polarized radiating element may be composed of four blades at a predetermined angle.
  • the apparatus may further include a first feed part connected to the vertical polarization radiating element, a 2-1 feed part connected to the first horizontal polarization radiating element, and a second-2 feed part connected to the second horizontal polarization radiating element.
  • the second feeder may further include a.
  • the second-2 feed part may be a common mode choke coil which is formed perpendicular to a space in which the ground plate and the dielectric substrate are spaced apart from each other.
  • the 2-1 feed unit and the 2-2 feed unit may be connected through a duplexer, and the duplexer may be formed on one surface of the ground plate.
  • the omni antenna may further include a radome inserted therein.
  • the omni antenna size can be miniaturized by forming the first horizontal polarized wave radiating element for the high frequency band and the second horizontal polarized wave radiating element for the low frequency band on one dielectric substrate.
  • the radiation pattern of the antenna has a non-directional characteristic, it is possible to efficiently cover a large space regardless of the direction.
  • FIG. 1 is a view showing a vertically polarized radiating element and a ground plate according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a horizontally polarized radiating element and a dielectric substrate according to an exemplary embodiment.
  • FIG 3 is a view showing a feeder of the horizontally polarized radiating element according to an embodiment of the present invention.
  • FIG 4 is a view showing a bottom surface of the ground plate according to an embodiment of the present invention.
  • FIG. 5 is a view showing the overall appearance of the omni antenna according to an embodiment of the present invention.
  • first horizontally polarized radiating element 32 second horizontally polarized radiating element
  • FIG. 1 is a view showing a vertical polarization radiating element 10 and a ground plate 20 according to an embodiment of the present invention.
  • the vertically polarized radiating element 10 is formed on the vertical axis of the ground plate 20.
  • the vertically polarized radiating element 10 may be a wideband element that covers a wide frequency band of 698Mhz to 2700Mhz, and specifically, may be a monocon type radiating element.
  • the vertically polarized radiating element 10 of the monocon type is divided into a plurality of blades.
  • the vertically polarized radiating element 10 may be divided into four blades having a predetermined angle, and in FIG. 1, the blades are arranged in a square shape having a 90 ° angle with each other.
  • the distance between neighboring blades is the same and the distance between a pair of opposing blades is equal to the distance between another pair of opposing blades.
  • the imaginary line across the pair of opposing blades is orthogonal to the imaginary line across the other pair of opposing blades.
  • the entire vertical polarization can be configured to have a non-directional characteristic, even four blades are not arranged in a square shape, but arranged in a variety of shapes, Of course, you can have a specificity of directivity
  • the aforementioned first feed section 11 provides a feed signal to the vertically polarized radiating element 10 divided into a plurality of blades, it is possible to use a variety of feed means such as coaxial cable.
  • the ground plate 20 may use a reflecting plate, and may be implemented in various forms according to the shape of the omni antenna 100, such as a square or circular flat form, and is not limited to the circular form as shown in FIG.
  • FIG. 2 is a diagram illustrating a horizontally polarized radiating element 30 and a dielectric substrate 40 according to an embodiment of the present invention.
  • the dielectric substrate 40 may be embodied in the same square or circular plane form as the ground plate 20, and may be implemented in various forms in consideration of the shape of the omni antenna as a whole.
  • a through portion 41 through which the vertically polarized radiating element 10 penetrates is formed in the dielectric substrate 40, and a plurality of through portions 41 are formed according to the number of blades forming the vertically polarized radiating element 10. Can be formed.
  • the horizontally polarized radiating element 30 may be formed in a variety of shapes on the dielectric substrate, referring to Figure 2 it can be seen that formed in a loop type.
  • the horizontally polarized radiating element 30 is a loop-type first horizontal polarized radiating element 31 that transmits and receives a high frequency band of 1700 MHz to 2700 MHz and a second horizontal polarized radiation of a loop type that transmits and receives a low frequency band of 698 MHz to 960 MHz.
  • Element 32 may be configured.
  • the first horizontal polarization radiating element 31 may be formed to be spaced apart from the through part 31 formed in the dielectric substrate 40 by a predetermined interval. Specifically, referring to FIG. 2, it can be seen that the first horizontally polarized radiating element 31 is formed to surround the through part 31 through which four blades pass.
  • the second horizontally polarized radiating element 32 is formed to be spaced apart from the outside where the first horizontally polarized radiating element 31 is formed. Specifically, referring to FIG. 2, the second horizontally polarized radiating element 32 is formed to surround the first horizontally polarized radiating element 31 by being spaced apart by a predetermined interval to the outside where the first horizontally polarized radiating element 31 is formed. You can see that. This is because the second horizontally polarized radiating element 32 transmits and receives a low frequency band and thus has a length longer than that of the first horizontal polarized radiating element 31 that transmits and receives a high frequency band. As described above, since the first horizontal polarized wave radiating element 31 and the second horizontal polarized wave radiating element 32 are simultaneously formed on one dielectric substrate 40, the size of the entire omni antenna 100 can be reduced.
  • the loop type horizontally polarized radiating element 30 may be divided into a plurality of sectors.
  • both the first horizontal polarized wave radiating element 31 that transmits and receives a high frequency band and the second horizontal polarized wave radiating element 32 that transmits and receives a low frequency band may be divided into a plurality of sectors.
  • a plurality of sectors in which the first horizontal polarization radiating element 31 is divided and a plurality of sectors in which the second horizontal polarization radiating element 32 is divided are mutually adjacent to each other. Can be connected.
  • the number of divided sectors can be appropriately changed as necessary.
  • the horizontally polarized radiating element 30 is a 2-1 power supply unit for providing a feed signal to the first horizontal polarized radiating element 31 and the second to provide a feed signal to the second horizontal polarized radiating element 32.
  • the entire horizontal polarization may have a non-directional characteristic, which will be described in detail with reference to FIG. 3.
  • FIG 3 is a view showing a power supply unit of the horizontally polarized radiating element 30 according to an embodiment of the present invention.
  • the first horizontally polarized radiating element 31 is supplied with a feed signal through a balanced line connected to the second-first feeding unit 34 and the second horizontally polarized radiating element 32.
  • the feed signal is provided from each balanced line connected to the four second-2 feed units 35 formed at 90 ° to each other.
  • the first horizontal polarized wave radiating element 31 and the second horizontal polarized wave radiating element 32 are balanced lines connected to the second-first feed part 34 and the four second-second feed parts 35, respectively.
  • (Balanced Line) can be divided into four compartments, each of the divided compartments facing each other is provided with a feed signal having a phase difference of 180 °, the entire horizontal polarization has a non-directional characteristic.
  • the power supply unit of the horizontally polarized radiating element 30 will be described in more detail with reference to FIG. 4.
  • the 2-1 feed unit 34 and the 4-2-2 feed units 35 are connected through a duplexer 36 formed on the bottom surface of the ground plate 20.
  • the second feeder 33 is connected to the input terminal of the duplexer 36
  • the 2-1 feeder 34 is connected to the duplexer 36 as one output terminal
  • four second-class 2-2 The whole 35 is tied together by a plurality of power dividers and connected to another output of the duplexer 36.
  • the 2-2 power feeding portion 35 in the 12 o'clock position is referred to as the 2-2-1 power feeding portion 35-1, and the 2-2-2 and the 2-2- clockwise, respectively.
  • 2-2-4 power feeding part 35-2, 35-3, 35-4, the 2-2-1 power feeding part 35-1 and the 2-2-4 power feeding part 35 -4) is grouped together by the first power divider 37-1, and likewise, the second-2-2 feeder 35-2 and the second-2-3 feeder 35-3 are also second-owned. Tied together by a power divider 37-2. Finally, the first power divider and the second power divider are bundled together by the third power divider 37-3 and connected to the output terminal of the duplexer 36.
  • each of the second-2 feeders 35, which are bundled together by the power divider may be bundled in a different combination from that of FIG. 4 according to the arrangement of the duplexer 36.
  • the duplexer 36 may be formed not only on the bottom surface of the ground plate 20 but also on the top surface as shown in FIG. 4. That is, it may be formed on any one surface of the ground plate 20.
  • FIG. 4 illustrates that the first horizontal polarized wave radiating element 31 receives a feed signal through a balanced line connected to the 2-1 power feeding part 34, but the second horizontal polarized wave radiating element 31 is shown.
  • the power supply signal may be provided through four power supply units.
  • both the 2-1 power supply unit 34 and the 2-2 power supply unit 35 may be composed of various numbers of power supply units as necessary, as well as a coaxial cable or a common mode choke coil for power supply (Common It can be configured using various methods such as Mode Choking Coil).
  • FIG 5 is a view showing the overall appearance of the omni antenna 100 according to an embodiment of the present invention.
  • the vertically polarized radiating element 10 formed on the vertical axis of the ground plate 20 penetrates the through part 41 formed in the dielectric substrate 40 and finally forms the omni antenna 100.
  • the second-second feed part 35 may be formed vertically in the form of a common mode choke coil in a space where the ground plate 20 and the dielectric substrate 40 are separated from each other, and support the dielectric substrate 40. A plurality of support pillars may be included.
  • the power supply is connected to the input terminal of the first feeder 11 and the duplexer 36 for providing a feed signal to the vertically polarized radiating device 10, the second feeder for providing a feed signal to the horizontally polarized radiating device 30 Only the two feeders 33 are exposed to the outside.
  • the omni antenna 100 may further include a radome 50 is inserted therein.
  • the radome 50 may have a shape in which the center portion protrudes in order to prevent the vertically polarized radiating element 10 penetrating the dielectric substrate 40 from being exposed to the outside of the omni antenna 100.
  • the diameter of the radome 50 includes both the ground plate 20 and the dielectric substrate 40 and the diameter of the ground plate 20 and the dielectric substrate 40 to minimize the size of the omni antenna 100. It is desirable to form as close as possible.
  • the omni antenna 100 includes a vertical polarization radiating element 10 that covers a wide frequency band from a low frequency band to a high frequency band, a first horizontal polarization radiating element 31 that serves a high frequency band, and a low frequency. Since all of the second horizontally polarized radiating elements 32 in charge of the band are included, a 4G Long Term Evolution (LTE) communication network requiring a MIMO (Multi Input Multi Output) system may be satisfied. In addition, since the first horizontal polarization radiating element 31 and the second horizontal polarization radiating element 32 are formed on one dielectric substrate 40, the size of the omni antenna 100 can be reduced. In addition, since the polarization of the antenna has a non-directional characteristic, it is possible to efficiently cover a large space regardless of the direction.
  • LTE Long Term Evolution
  • MIMO Multi Input Multi Output

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

The present invention relates to an omnidirectional antenna characterized by comprising: a ground plate; a monocone-type vertically polarized radiation element formed on a vertical shaft of the ground plate and split into a plurality of blades; a dielectric substrate formed at a predetermined distance from the upper surface of the ground plate, the dielectric substrate having a penetration portion that penetrates the vertically polarized radiation element; and a plurality of horizontally polarized radiation elements formed on the dielectric substrate.

Description

옴니 안테나Omni antenna
본 발명은 옴니 안테나에 관한 것으로서, 보다 상세하게는 4G LTE 통신방식에 적용 가능한 다중 대역 이중 편파 옴니 안테나에 관한 것이다.The present invention relates to an omni antenna, and more particularly, to a multi-band dual polarized omni antenna applicable to 4G LTE communication.
무선통신 시스템에 사용되는 중계기용 안테나는 전자기파가 방사되는 방향성에 따라 무지향성 안테나와 지향성 안테나로 구분된다. 여기서, 무지향성 안테나의 일종인 옴니 안테나는 건물 내부와 같이 기지국 신호가 미약한 음역지역에서 전자기파를 송수신하기 위해 천장이나 벽 등에 부착되어 사용되고 있다. Repeater antennas used in wireless communication systems are classified into omnidirectional antennas and directional antennas according to the direction in which electromagnetic waves are radiated. Here, an omni antenna, which is a kind of omnidirectional antenna, is used to be attached to a ceiling or a wall to transmit and receive electromagnetic waves in a sound region where a base station signal is weak, such as inside a building.
종래의 옴니 안테나는 단일 주파수 대역만을 중계할 수 있도록 되어 있어, 개별적인 주파수 대역 별로 서로 다른 옴니 안테나가 사용되었다. 이에 따라 저주파수 대역을 담당하는 옴니 안테나의 경우 안테나의 길이를 확보하기 위해 안테나의 크기가 커지고, 그에 따른 제조 비용이 증가하는 문제점이 있었으며, 설치자의 입장에서도, 개별적인 주파수 대역 별로 옴니 안테나를 설치해야 하므로 설치 공간상의 문제와 설치 비용이 증가하는 문제점이 있었다. Conventional omni antennas are capable of relaying only a single frequency band, and thus different omni antennas are used for individual frequency bands. Accordingly, in the case of the omni antenna that is in charge of the low frequency band, there is a problem that the size of the antenna is increased to increase the length of the antenna and the manufacturing cost is increased accordingly, and from the standpoint of the installer, the omni antenna must be installed for each frequency band. There was a problem in the installation space and installation cost increases.
한편, 최근에는 다중 주파수 대역의 사용이 일반화되고 있으며, 무선통신 기술의 발달에 따라 국내에서 이용중인 4세대 이동통신인 4G LTE(Long Term Evolution)는 MIMO(Multi Input Multi Output)시스템을 채용하고 있으므로, 옴니 안테나는 저주파수 대역과 고주파수 대역을 모두 담당함과 동시에, 크기가 소형화될 것이 요구되고 있다. On the other hand, in recent years, the use of multiple frequency bands has become common, and as the development of wireless communication technology, 4G Long Term Evolution (LTE), the fourth generation mobile communication used in Korea, adopts a MIMO (Multi Input Multi Output) system. In addition, omni antennas are in charge of both the low frequency band and the high frequency band and are required to be downsized.
따라서 본 발명은, 저주파수 대역과 고주파수 대역을 모두 담당하는 소형화된 옴니 안테나를 제공하는 것을 목적으로 한다. Accordingly, an object of the present invention is to provide a miniaturized omni antenna that covers both the low frequency band and the high frequency band.
한편, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 이하에서 설명할 내용으로부터 통상의 기술자에게 자명한 범위 내에서 다양한 기술적 과제가 도출될 수 있다.On the other hand, the technical problem to be achieved by the present invention is not limited to the above-described technical problem, various technical problems can be derived within the scope apparent to those skilled in the art from the following description.
본 발명의 일 실시 예에 따른 옴니 안테나는 그라운드 판, 상기 그라운드 판의 수직축 상에 형성되며, 복수의 블레이드로 분할된 모노콘 타입의 수직 편파 방사소자, 상기 그라운드 판의 상면으로부터 소정 간격 이격되어 형성되며, 상기 수직 편파 방사소자가 관통되는 관통부를 갖는 유전체 기판 및 상기 유전체 기판에 형성된 복수의 수평 편파 방사소자를 포함한다.Omni antenna according to an embodiment of the present invention is formed on the ground plate, the vertical axis of the ground plate, a vertically polarized radiating element of the monocon type divided into a plurality of blades, spaced apart from the upper surface of the ground plate by a predetermined interval And a dielectric substrate having a penetrating portion through which the vertically polarized radiating element passes, and a plurality of horizontally polarized radiating elements formed on the dielectric substrate.
또한, 상기 복수의 수평 편파 방사소자는, 상기 관통부로부터 소정 간격 이격되어 형성되는 루프 타입의 제1 수평 편파 방사 소자 및 상기 제1 수평 편파 방사 소자의 외측으로 소정 간격 이격되어 형성되는 루프 타입의 제2 수평 편파 방사 소자를 포함할 수 있다. The plurality of horizontally polarized radiating elements may include a loop-type first horizontally polarized radiating element that is formed spaced apart from the penetrating portion by a predetermined interval and a loop type that is formed spaced apart from the first horizontal polarized radiating element by a predetermined interval. And a second horizontally polarized radiating element.
또한, 상기 루프 타입의 제1 및 제2 수평 편파 방사 소자는, 복수의 섹터로 분할될 수 있다.In addition, the loop type first and second horizontally polarized radiating elements may be divided into a plurality of sectors.
또한, 상기 제1 수평 편파 방사 소자는 고주파수 대역을 송수신하며, 상기 제2 수평 편파 방사 소자는 저주파수 대역을 송수신할 수 있다.In addition, the first horizontal polarization radiating element may transmit and receive a high frequency band, and the second horizontal polarization radiating element may transmit and receive a low frequency band.
또한, 상기 수직 편파 방사 소자는, 소정 각도를 이루는 4개의 블레이드로 이루어질 수 있다.In addition, the vertically polarized radiating element may be composed of four blades at a predetermined angle.
또한, 상기 수직 편파 방사 소자에 연결되는 제1 급전부 및 상기 제1 수평 편파 방사 소자에 연결되는 제2-1 급전부와 상기 제2 수평 편파 방사 소자에 연결되는 제2-2 급전부를 포함하는 제2 급전부를 더 포함할 수 있다.The apparatus may further include a first feed part connected to the vertical polarization radiating element, a 2-1 feed part connected to the first horizontal polarization radiating element, and a second-2 feed part connected to the second horizontal polarization radiating element. The second feeder may further include a.
또한, 상기 제2-2 급전부는, 상기 그라운드 판과 유전체 기판이 이격된 공간에 수직으로 형성되는 커먼 모드 쵸크 코일일 수 있다.The second-2 feed part may be a common mode choke coil which is formed perpendicular to a space in which the ground plate and the dielectric substrate are spaced apart from each other.
또한, 상기 제2-1 급전부와 제2-2 급전부는, 듀플렉서를 통해 연결되며, 상기 듀플렉서는, 상기 그라운드 판의 일면에 형성될 수 있다.The 2-1 feed unit and the 2-2 feed unit may be connected through a duplexer, and the duplexer may be formed on one surface of the ground plate.
또한, 상기 옴니 안테나가 내부에 삽입되는 레이돔을 더 포함할 수 있다.In addition, the omni antenna may further include a radome inserted therein.
본 발명에 따르면, 고주파수 대역을 담당하는 제1 수평 편파 방사 소자와 저주파수 대역을 담당하는 제2 수평 편파 방사 소자를 하나의 유전체 기판에 형성함으로써 옴니 안테나 사이즈의 소형화가 가능하다. According to the present invention, the omni antenna size can be miniaturized by forming the first horizontal polarized wave radiating element for the high frequency band and the second horizontal polarized wave radiating element for the low frequency band on one dielectric substrate.
또한, 저주파수 대역과 고주파수 대역을 모두 커버할 수 있으므로, 4G LTE 통신망에 적합한 옴니 안테나의 제공이 가능하다.In addition, since it can cover both the low frequency band and high frequency band, it is possible to provide an omni antenna suitable for 4G LTE communication network.
또한, 안테나의 방사 패턴이 무지향성의 특성을 갖으므로, 방향에 무관하게 넓은 공간을 효율적으로 커버할 수 있다.In addition, since the radiation pattern of the antenna has a non-directional characteristic, it is possible to efficiently cover a large space regardless of the direction.
본 발명의 효과는 이상에서 언급한 효과들로 제한되지 않으며, 이하에서 설명할 내용으로부터 통상의 기술자에게 자명한 범위 내에서 다양한 효과들이 포함될 수 있다. The effects of the present invention are not limited to the above-mentioned effects, and various effects may be included within the scope apparent to those skilled in the art from the following description.
도 1은 본 발명의 일 실시 예에 따른 수직 편파 방사 소자와 그라운드 판을 나타내는 도면이다. 1 is a view showing a vertically polarized radiating element and a ground plate according to an embodiment of the present invention.
도 2는 본 발명의 일 실시 예에 따른 수평 편파 방사 소자와 유전체 기판을 나타내는 도면이다. 2 is a diagram illustrating a horizontally polarized radiating element and a dielectric substrate according to an exemplary embodiment.
도 3은 본 발명의 일 실시 예에 따른 수평 편파 방사 소자의 급전부를 나타낸 도면이다.3 is a view showing a feeder of the horizontally polarized radiating element according to an embodiment of the present invention.
도 4는 본 발명의 일 실시 예에 따른 그라운드 판의 저면부 모습을 나타낸 도면이다.4 is a view showing a bottom surface of the ground plate according to an embodiment of the present invention.
도 5는 본 발명의 일 실시 예에 따른 옴니 안테나의 전체 모습을 나타내는 도면이다. 5 is a view showing the overall appearance of the omni antenna according to an embodiment of the present invention.
한편, 도면에 사용된 도면 부호는 다음과 같다.Meanwhile, reference numerals used in the drawings are as follows.
10 : 수직 편파 방사 소자10: vertically polarized radiating element
11 : 제1 급전부11: first feeder
20 : 그라운드 판20: ground plate
30 : 수평 편파 방사 소자30: horizontally polarized radiation element
31 : 제1 수평 편파 방사 소자 32 : 제2 수평 편파 방사 소자31: first horizontally polarized radiating element 32: second horizontally polarized radiating element
33 : 제2 급전부33: second feeder
34 : 제2-1 급전부 34: 2-1 feed part
35 : 제2-2 급전부35: 2-2 feed part
35-1: 제2-2-1 급전부 35-2: 제2-2-2 급전부35-1: 2-2-1 Power Feeder 35-2: 2-2-2 Power Feeder
35-3: 제2-2-3 급전부 35-4: 제2-2-4 급전부35-3: 2-2-3 power supply part 35-4: 2-2-4 power supply part
36 : 듀플렉서36: duplexer
37-1: 제1 전력 분배기 37-2: 제2 전력 분배기 37-3: 제3 전력 분배기37-1: First Power Divider 37-2: Second Power Divider 37-3: Third Power Divider
40 : 유전체 기판40: dielectric substrate
41 : 관통부41: through part
50 : 레이돔50: Radom
100 : 옴니 안테나100: omni antenna
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 설명하는 실시 예들은 본 발명의 기술 사상을 당업자가 용이하게 이해할 수 있도록 제공되는 것으로 이에 의해 본 발명이 한정되지 않으며, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. Hereinafter, some embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments to be described are provided so that those skilled in the art can easily understand the technical spirit of the present invention, and thus, the present invention is not limited thereto, and it is determined that detailed descriptions of related well-known configurations or functions may obscure the gist of the present invention. In this case, detailed description thereof will be omitted.
또한, 첨부된 도면에 표현된 사항들은 본 발명의 실시 예들을 쉽게 설명하기 위해 도식화된 도면으로 실제로 구현되는 형태와 상이할 수 있으며, 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. In addition, the matters represented in the accompanying drawings may be different from the form actually embodied in the schematic drawings in order to easily explain the embodiments of the present invention. In addition, in addition to the reference numerals to the components of the drawings, the same configuration It is to be noted that the elements are designated by the same reference numerals as much as possible even if they are shown in different drawings.
또한, 어떤 구성요소들을 '포함'한다는 표현은, '개방형의 표현'으로서 해당 구성요소들이 존재하는 것을 단순히 지칭하는 표현이며, 추가적인 구성요소들을 배제하는 것으로 이해되어서는 안 될 것이다. In addition, the expression "comprising" certain elements is merely an expression of an 'open', and simply refers to the existence of the elements, and should not be understood as excluding additional elements.
도 1은 본 발명의 일 실시 예에 따른 수직 편파 방사 소자(10)와 그라운드 판(20)을 나타내는 도면이다. 1 is a view showing a vertical polarization radiating element 10 and a ground plate 20 according to an embodiment of the present invention.
수직 편파 방사 소자(10)는 그라운드 판(20)의 수직축 상에 형성된다. 여기서 수직 편파 방사 소자(10)는 698Mhz 내지 2700Mhz의 넓은 주파수 대역을 담당하는 광대역 소자일 수 있으며, 구체적으로 모노콘 타입의 방사 소자일 수 있다. 한편, 도 1을 참조하면, 모노콘 타입의 수직 편파 방사 소자(10)가 복수의 블레이드로 분할된 모습을 확인할 수 있다. 예를 들어, 수직 편파 방사 소자(10)는 소정 각도를 이루는 4개의 블레이드로 분할될 수 있으며, 도 1에서는 블레이드가 서로 90° 각도를 이루는 정사각형 꼴로 배치되어 있다. 따라서, 이웃한 블레이드 간의 거리는 동일하며, 한 쌍의 마주보는 블레이드 간의 거리는 다른 쌍의 마주보는 블레이드 간의 거리와 동일하다. 또한, 한 쌍의 마주보는 블레이드를 가로지르는 가상선은 다른 쌍의 마주보는 블레이드를 가로지르는 가상선과 직교한다. 이 경우, 비록 블레이드는 4개로 분할되어 있으나, 제1 급전부(11)로부터 공통의 급전 신호를 제공받음으로써, 서로 마주보는 블레이드와 이웃하는 블레이드가 방사하는 수직 편파가 모두 동위상이 되고, 전체 수직 편파가 무지향성의 특성을 갖게된다. 아울러, 블레이드가 4개가 아니더라도, 복수의 블레이드를 적절하게 배치함으로써 전체 수직 편파가 무지향성의 특성을 갖도록 구성할 수 있으며, 4개의 블레이드라 하여도 정사각형 꼴로 배치하는 것이 아닌, 다양한 형상으로 배치하여 무지향성의 특정을 갖도록 할 수 있음은 물론이다The vertically polarized radiating element 10 is formed on the vertical axis of the ground plate 20. Here, the vertically polarized radiating element 10 may be a wideband element that covers a wide frequency band of 698Mhz to 2700Mhz, and specifically, may be a monocon type radiating element. Meanwhile, referring to FIG. 1, it can be seen that the vertically polarized radiating element 10 of the monocon type is divided into a plurality of blades. For example, the vertically polarized radiating element 10 may be divided into four blades having a predetermined angle, and in FIG. 1, the blades are arranged in a square shape having a 90 ° angle with each other. Thus, the distance between neighboring blades is the same and the distance between a pair of opposing blades is equal to the distance between another pair of opposing blades. In addition, the imaginary line across the pair of opposing blades is orthogonal to the imaginary line across the other pair of opposing blades. In this case, although the blade is divided into four, by receiving a common feed signal from the first feed section 11, both the blades facing each other and the vertical polarization emitted by neighboring blades are in phase, and the whole Vertical polarization is nondirectional. In addition, even if there are not four blades, by arranging a plurality of blades properly, the entire vertical polarization can be configured to have a non-directional characteristic, even four blades are not arranged in a square shape, but arranged in a variety of shapes, Of course, you can have a specificity of directivity
한편, 상기 언급한 제1 급전부(11)는 복수의 블레이드로 분할된 수직 편파 방사 소자(10)에 급전 신호를 제공하며, 동축 케이블 등 다양한 종류의 급전수단을 이용할 수 있다. 또한, 그라운드 판(20)은 반사판을 이용할 수 있으며, 정방형 또는 원형의 평면 형태와 같이 옴니 안테나(100)의 형상에 따라 다양한 형태로 구현할 수 있고, 도 1과 같은 원형 형태에 한정되지 않는다. On the other hand, the aforementioned first feed section 11 provides a feed signal to the vertically polarized radiating element 10 divided into a plurality of blades, it is possible to use a variety of feed means such as coaxial cable. In addition, the ground plate 20 may use a reflecting plate, and may be implemented in various forms according to the shape of the omni antenna 100, such as a square or circular flat form, and is not limited to the circular form as shown in FIG.
도 2는 본 발명의 일 실시 예에 따른 수평 편파 방사 소자(30)와 유전체 기판(40)을 나타내는 도면이다. 2 is a diagram illustrating a horizontally polarized radiating element 30 and a dielectric substrate 40 according to an embodiment of the present invention.
유전체 기판(40)은 그라운드 판(20)과 동일한 정방형 또는 원형의 평면 형태로 구현할 수 있으며, 옴니 안테나 전체의 형상을 고려하여 다양한 형태로 구현할 수 있다. 또한, 유전체 기판(40)에는 수직 편파 방사 소자(10)가 관통되는 관통부(41)가 형성되어 있으며, 수직 편파 방사 소자(10)를 이루는 블레이드의 수에 따라 복수의 관통부(41)가 형성될 수 있다. The dielectric substrate 40 may be embodied in the same square or circular plane form as the ground plate 20, and may be implemented in various forms in consideration of the shape of the omni antenna as a whole. In addition, a through portion 41 through which the vertically polarized radiating element 10 penetrates is formed in the dielectric substrate 40, and a plurality of through portions 41 are formed according to the number of blades forming the vertically polarized radiating element 10. Can be formed.
한편, 수평 편파 방사 소자(30)는 유전체 기판에 다양한 형상으로 형성될 수 있으며, 도 2를 참조하면 루프 타입으로 형성된 것을 확인할 수 있다. On the other hand, the horizontally polarized radiating element 30 may be formed in a variety of shapes on the dielectric substrate, referring to Figure 2 it can be seen that formed in a loop type.
이 경우, 수평 편파 방사 소자(30)는 1700Mhz 내지 2700Mhz의 고주파수 대역을 송수신하는 루프 타입의 제1 수평 편파 방사 소자(31)와 698Mhz 내지 960Mhz의 저주파수 대역을 송수신하는 루프 타입의 제2 수평 편파 방사 소자(32)로 구성될 수 있다. In this case, the horizontally polarized radiating element 30 is a loop-type first horizontal polarized radiating element 31 that transmits and receives a high frequency band of 1700 MHz to 2700 MHz and a second horizontal polarized radiation of a loop type that transmits and receives a low frequency band of 698 MHz to 960 MHz. Element 32 may be configured.
제1 수평 편파 방사 소자(31)는 유전체 기판(40)에 형성된 관통부(31)로부터 소정 간격 이격되어 형성될 수 있다. 구체적으로, 도 2를 참조하면 4개의 블레이드가 관통되는 관통부(31)를 둘러싸는 형태로 제1 수평 편파 방사 소자(31)가 형성된 것을 확인할 수 있다.The first horizontal polarization radiating element 31 may be formed to be spaced apart from the through part 31 formed in the dielectric substrate 40 by a predetermined interval. Specifically, referring to FIG. 2, it can be seen that the first horizontally polarized radiating element 31 is formed to surround the through part 31 through which four blades pass.
또한, 제2 수평 편파 방사 소자(32)는 제1 수평 편파 방사 소자(31)가 형성된 외측으로 소정 간격 이격되어 형성된다. 구체적으로, 도 2를 참조하면 제2 수평 편파 방사 소자(32)는 제1 수평 편파 방사 소자(31)가 형성된 외측으로 소정 간격 이격되어 제1 수평 편파 방사 소자(31)를 둘러싸는 형태로 형성되는 것을 확인할 수 있다. 이는 제2 수평 편파 방사 소자(32)가 저주파수 대역을 송수신하므로 고주파수 대역을 송수신하는 제1 수평 편파 방사 소자(31)보다 길이가 길어질 수밖에 없기 때문이다. 이와 같이 제1 수평 편파 방사 소자(31)와 제2 수평 편파 방사 소자(32)가 하나의 유전체 기판(40)에 동시에 형성되기 때문에, 전체 옴니 안테나(100) 사이즈의 소형화를 도모할 수 있다. In addition, the second horizontally polarized radiating element 32 is formed to be spaced apart from the outside where the first horizontally polarized radiating element 31 is formed. Specifically, referring to FIG. 2, the second horizontally polarized radiating element 32 is formed to surround the first horizontally polarized radiating element 31 by being spaced apart by a predetermined interval to the outside where the first horizontally polarized radiating element 31 is formed. You can see that. This is because the second horizontally polarized radiating element 32 transmits and receives a low frequency band and thus has a length longer than that of the first horizontal polarized radiating element 31 that transmits and receives a high frequency band. As described above, since the first horizontal polarized wave radiating element 31 and the second horizontal polarized wave radiating element 32 are simultaneously formed on one dielectric substrate 40, the size of the entire omni antenna 100 can be reduced.
또한, 루프 타입의 수평 편파 방사 소자(30)는 복수의 섹터로 분할될 수 있다. 구체적으로 고주파수 대역을 송수신하는 제1 수평 편파 방사 소자(31)와 저주파수 대역을 송수신하는 제2 수평 편파 방사 소자(32) 모두 복수의 섹터로 분할될 수 있다. 이 경우, 서로 이웃한 섹터들끼리 커플링 효과에 의해 제1 수평 편파 방사 소자(31)가 분할된 복수의 섹터들과 제2 수평 편파 방사 소자(32)가 분할된 복수의 섹터들 각각은 상호 연결될 수 있다. 아울러, 분할된 섹터의 수는 필요에 따라 적절하게 변경할 수 있음은 물론이다.In addition, the loop type horizontally polarized radiating element 30 may be divided into a plurality of sectors. In detail, both the first horizontal polarized wave radiating element 31 that transmits and receives a high frequency band and the second horizontal polarized wave radiating element 32 that transmits and receives a low frequency band may be divided into a plurality of sectors. In this case, a plurality of sectors in which the first horizontal polarization radiating element 31 is divided and a plurality of sectors in which the second horizontal polarization radiating element 32 is divided are mutually adjacent to each other. Can be connected. In addition, the number of divided sectors can be appropriately changed as necessary.
한편, 수평 편파 방사 소자(30)는 제1 수평 편파 방사 소자(31)에 급전 신호를 제공하는 제2-1 급전부와 제2 수평 편파 방사 소자(32)에 급전 신호를 제공하는 제2-2 급전부를 포함하는 제2 급전부(33)에 의해 급전 신호를 제공받음으로써, 전체 수평 편파가 무지향성의 특성을 갖을 수 있으며, 이에 대해서는 도 3을 참조하여 자세히 설명하도록 한다.On the other hand, the horizontally polarized radiating element 30 is a 2-1 power supply unit for providing a feed signal to the first horizontal polarized radiating element 31 and the second to provide a feed signal to the second horizontal polarized radiating element 32. By receiving the feed signal by the second feeder 33 including the two feeders, the entire horizontal polarization may have a non-directional characteristic, which will be described in detail with reference to FIG. 3.
도 3은 본 발명의 일 실시 예에 따른 수평 편파 방사 소자(30)의 급전부를 나타낸 도면이다.3 is a view showing a power supply unit of the horizontally polarized radiating element 30 according to an embodiment of the present invention.
도 3을 참조하면, 제1 수평 편파 방사 소자(31)는 제2-1 급전부(34)와 연결된 밸런스트 라인(Balanced Line)을 통해 급전 신호를 제공받으며, 제2 수평 편파 방사 소자(32)는 서로 90°각도를 이루는 4개의 제2-2 급전부(35)와 연결된 각각의 밸런스트 라인(Balanced Line)으로부터 급전 신호를 제공받는 것을 확인할 수 있다. 구체적으로, 제1 수평 편파 복사 소자(31)와 제2 수평 편파 방사 소자(32)는 제2-1 급전부(34) 및 4개의 제2-2 급전부(35)와 각각 연결된 밸런스트 라인(Balanced Line)을 기준으로 4개의 구획으로 분할될 수 있으며, 분할된 구획 중 서로 마주보는 구획은 180°의 위상차를 갖는 급전 신호가 제공되어, 전체 수평 편파가 무지향성의 특성을 갖게된다. 이하, 도 4를 참조하여 수평 편파 방사 소자(30)의 급전부에 대해 보다 상세히 설명해보도록 하겠다.Referring to FIG. 3, the first horizontally polarized radiating element 31 is supplied with a feed signal through a balanced line connected to the second-first feeding unit 34 and the second horizontally polarized radiating element 32. ) Can be seen that the feed signal is provided from each balanced line connected to the four second-2 feed units 35 formed at 90 ° to each other. In detail, the first horizontal polarized wave radiating element 31 and the second horizontal polarized wave radiating element 32 are balanced lines connected to the second-first feed part 34 and the four second-second feed parts 35, respectively. (Balanced Line) can be divided into four compartments, each of the divided compartments facing each other is provided with a feed signal having a phase difference of 180 °, the entire horizontal polarization has a non-directional characteristic. Hereinafter, the power supply unit of the horizontally polarized radiating element 30 will be described in more detail with reference to FIG. 4.
도 4를 참조하면, 제2-1 급전부(34)와 4개의 제2-2 급전부(35)는 그라운드 판(20) 저면에 형성된 듀플렉서(36)를 통해 연결되는 것을 확인할 수 있다. 구체적으로, 제2 급전부(33)가 듀플렉서(36)의 입력단으로 연결되며, 제2-1 급전부가(34)가 듀플렉서(36)에 하나의 출력단으로 연결되고, 4개의 제2-2 급전부(35)는 복수의 전력 분배기에 의해 하나로 묶여서 듀플렉서(36)의 또다른 출력단으로 연결된다. 예를 들어, 12시 방향의 제2-2 급전부(35)를 제2-2-1 급전부(35-1)라 하고, 시계방향으로 각각 제2-2-2, 제2-2-3, 제2-2-4 급전부(35-2, 35-3, 35-4)라 한다면, 제2-2-1 급전부(35-1)와 제2-2-4 급전부(35-4)는 제1 전력 분배기(37-1)에 의해 하나로 묶이며, 마찬가지로 제2-2-2 급전부(35-2)와 제2-2-3 급전부(35-3) 역시 제2 전력 분배기(37-2)에 의해 하나로 묶인다. 최종적으로 제1 전력 분배기와 제2 전력 분배기는 제3 전력 분배기(37-3)에 의해 하나로 묶여서 듀플렉서(36)의 출력단으로 연결된다. 여기서, 전력 분배기에 의해 하나로 묶이는 각각의 제2-2 급전부(35)는 듀플렉서(36)의 배치에 따라 도 4와는 다른 조합으로 묶을 수 있음은 물론이다. 한편, 듀플렉서(36)는 도 4와 같이 그라운드 판(20)의 저면뿐만 아니라 상면에도 형성되어도 무방하다. 즉, 그라운드 판(20)의 어느 일면에 형성될 수 있다.  Referring to FIG. 4, it can be seen that the 2-1 feed unit 34 and the 4-2-2 feed units 35 are connected through a duplexer 36 formed on the bottom surface of the ground plate 20. Specifically, the second feeder 33 is connected to the input terminal of the duplexer 36, the 2-1 feeder 34 is connected to the duplexer 36 as one output terminal, four second-class 2-2 The whole 35 is tied together by a plurality of power dividers and connected to another output of the duplexer 36. For example, the 2-2 power feeding portion 35 in the 12 o'clock position is referred to as the 2-2-1 power feeding portion 35-1, and the 2-2-2 and the 2-2- clockwise, respectively. If it is 3, 2-2-4 power feeding part 35-2, 35-3, 35-4, the 2-2-1 power feeding part 35-1 and the 2-2-4 power feeding part 35 -4) is grouped together by the first power divider 37-1, and likewise, the second-2-2 feeder 35-2 and the second-2-3 feeder 35-3 are also second-owned. Tied together by a power divider 37-2. Finally, the first power divider and the second power divider are bundled together by the third power divider 37-3 and connected to the output terminal of the duplexer 36. Here, each of the second-2 feeders 35, which are bundled together by the power divider, may be bundled in a different combination from that of FIG. 4 according to the arrangement of the duplexer 36. Meanwhile, the duplexer 36 may be formed not only on the bottom surface of the ground plate 20 but also on the top surface as shown in FIG. 4. That is, it may be formed on any one surface of the ground plate 20.
한편, 도 4에는 제1 수평 편파 방사 소자(31)가 제2-1 급전부(34)와 연결된 밸런스트 라인(Balanced Line)을 통해 급전 신호를 제공받는 것만 도시되어 있으나, 제2 수평 편파 방사 소자(32)와 마찬가지로 4개의 급전부를 통해 급전 신호를 제공받을 수도 있다. 또한, 제2-1 급전부(34)와 제2-2 급전부(35) 모두 필요에 따라 다양한 개수의 급전부로 구성될 수 있음은 물론이며, 급전용 동축 케이블이나 커먼 모드 초크 코일(Common Mode Choking Coil)등 다양한 방식을 이용하여 구성할 수 있다. Meanwhile, FIG. 4 illustrates that the first horizontal polarized wave radiating element 31 receives a feed signal through a balanced line connected to the 2-1 power feeding part 34, but the second horizontal polarized wave radiating element 31 is shown. Like the element 32, the power supply signal may be provided through four power supply units. In addition, both the 2-1 power supply unit 34 and the 2-2 power supply unit 35 may be composed of various numbers of power supply units as necessary, as well as a coaxial cable or a common mode choke coil for power supply (Common It can be configured using various methods such as Mode Choking Coil).
도 5는 본 발명의 일 실시 예에 따른 옴니 안테나(100)의 전체 모습을 나타내는 도면이다. 5 is a view showing the overall appearance of the omni antenna 100 according to an embodiment of the present invention.
그라운드 판(20)의 수직축 상에 형성된 수직 편파 방사 소자(10)는 유전체 기판(40)에 형성된 관통부(41)를 관통하여 최종적으로 옴니 안테나(100)가 형성된다. 또한, 그라운드 판(20)과 유전체 기판(40)이 이격된 공간에 제2-2 급전부(35)가 커먼 모드 초크 코일의 형태로 수직으로 형성될 수 있으며, 유전체 기판(40)을 받쳐주기 위한 복수의 지지용 기둥이 포함될 수 있다. 한편, 급전과 관련해서는 수직 편파 방사 소자(10)에 급전 신호를 제공하는 제1 급전부(11)와 듀플렉서(36)의 입력단에 연결되어 수평 편파 방사 소자(30)에 급전 신호를 제공하는 제2 급전부(33)만 외부로 노출된다. The vertically polarized radiating element 10 formed on the vertical axis of the ground plate 20 penetrates the through part 41 formed in the dielectric substrate 40 and finally forms the omni antenna 100. In addition, the second-second feed part 35 may be formed vertically in the form of a common mode choke coil in a space where the ground plate 20 and the dielectric substrate 40 are separated from each other, and support the dielectric substrate 40. A plurality of support pillars may be included. On the other hand, with respect to the power supply is connected to the input terminal of the first feeder 11 and the duplexer 36 for providing a feed signal to the vertically polarized radiating device 10, the second feeder for providing a feed signal to the horizontally polarized radiating device 30 Only the two feeders 33 are exposed to the outside.
아울러, 추가적으로 옴니 안테나(100)가 내부에 삽입되는 레이돔(50)이 더 포함할 수 있다. 여기서 레이돔(50)은 유전체 기판(40)을 관통한 수직 편파 방사 소자(10)가 옴니 안테나(100) 외부로 노출되는 것을 방지하기 위하여 중앙부가 돌출된 형태를 띠는 것이 바람직하나, 필요에 따라 다양한 형상으로 구현할 수 있음은 물론이다. 또한, 레이돔(50)의 직경은 그라운드 판(20)과 유전체 기판(40)을 모두 포함함과 동시에 옴니 안테나(100) 사이즈의 최소화를 위해, 그라운드 판(20)과 유전체 기판(40)의 직경과 최대한 근사하게 형성하는 것이 바람직하다. In addition, the omni antenna 100 may further include a radome 50 is inserted therein. In this case, the radome 50 may have a shape in which the center portion protrudes in order to prevent the vertically polarized radiating element 10 penetrating the dielectric substrate 40 from being exposed to the outside of the omni antenna 100. Of course, it can be implemented in a variety of shapes. In addition, the diameter of the radome 50 includes both the ground plate 20 and the dielectric substrate 40 and the diameter of the ground plate 20 and the dielectric substrate 40 to minimize the size of the omni antenna 100. It is desirable to form as close as possible.
본 발명의 일 실시 예에 따른 옴니 안테나(100)는 저주파수 대역에서 고주파수 대역까지 넓은 주파수 대역을 담당하는 수직 편파 방사 소자(10)와 고주파수 대역을 담당하는 제1 수평 편파 방사 소자(31) 및 저주파수 대역을 담당하는 제2 수평 편파 방사 소자(32)를 모두 포함하므로 MIMO(Multi Input Multi Output)시스템을 요구하는 4G LTE(Long Term Evolution) 통신망을 만족할 수 있다. 아울러, 제1 수평 편파 방사 소자(31)와 제2 수평 편파 방사 소자(32)가 하나의 유전체 기판(40)에 형성되므로 옴니 안테나(100)의 사이즈의 소형화가 가능하다. 아울러 안테나의 편파가 무지향성의 특성을 갖으므로, 방향에 무관하게 넓은 공간을 효율적으로 커버할 수 있다.The omni antenna 100 according to an embodiment of the present invention includes a vertical polarization radiating element 10 that covers a wide frequency band from a low frequency band to a high frequency band, a first horizontal polarization radiating element 31 that serves a high frequency band, and a low frequency. Since all of the second horizontally polarized radiating elements 32 in charge of the band are included, a 4G Long Term Evolution (LTE) communication network requiring a MIMO (Multi Input Multi Output) system may be satisfied. In addition, since the first horizontal polarization radiating element 31 and the second horizontal polarization radiating element 32 are formed on one dielectric substrate 40, the size of the omni antenna 100 can be reduced. In addition, since the polarization of the antenna has a non-directional characteristic, it is possible to efficiently cover a large space regardless of the direction.
위에서 설명된 본 발명의 실시 예들은 예시의 목적을 위해 개시된 것이며, 이들에 의하여 본 발명이 한정되는 것은 아니다. 또한, 본 발명에 대한 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 사상과 범위 안에서 다양한 수정 및 변경을 가할 수 있을 것이며, 이러한 수정 및 변경은 본 발명의 범위에 속하는 것으로 보아야 할 것이다.Embodiments of the invention described above are disclosed for purposes of illustration, and the invention is not limited thereto. In addition, one of ordinary skill in the art of the present invention will be able to add various modifications and changes within the spirit and scope of the present invention, these modifications and changes will be considered to be within the scope of the present invention.

Claims (9)

  1. 그라운드 판;Ground plate;
    상기 그라운드 판의 수직축 상에 형성되며, 복수의 블레이드로 분할된 모노콘 타입의 수직 편파 방사소자;A vertically polarized radiating element of a monocon type formed on a vertical axis of the ground plate and divided into a plurality of blades;
    상기 그라운드 판의 상면으로부터 소정 간격 이격되어 형성되며, 상기 수직 편파 방사소자가 관통되는 관통부를 갖는 유전체 기판; 및A dielectric substrate spaced apart from the upper surface of the ground plate by a predetermined interval and having a through portion through which the vertically polarized radiating element penetrates; And
    상기 유전체 기판에 형성된 복수의 수평 편파 방사소자;A plurality of horizontally polarized radiating elements formed on the dielectric substrate;
    를 포함하는 옴니 안테나Omni antenna including
  2. 제1항에 있어서,The method of claim 1,
    상기 복수의 수평 편파 방사소자는,The plurality of horizontal polarization radiating elements,
    상기 관통부로부터 소정 간격 이격되어 형성되는 루프 타입의 제1 수평 편파 방사 소자; 및A first horizontally polarized radiation element of a loop type spaced apart from the through portion by a predetermined distance; And
    상기 제1 수평 편파 방사 소자의 외측으로 소정 간격 이격되어 형성되는 루프 타입의 제2 수평 편파 방사 소자;A second horizontally polarized radiating element of a loop type formed spaced apart from the first horizontally polarized radiating element by a predetermined interval;
    를 포함하는 것을 특징으로 하는 옴니 안테나Omni antenna, characterized in that it comprises a
  3. 제2항에 있어서,The method of claim 2,
    상기 루프 타입의 제1 및 제2 수평 편파 방사 소자는,The loop type first and second horizontally polarized radiating elements,
    복수의 섹터로 분할된 것을 특징으로 하는 옴니 안테나Omni antenna, characterized in that divided into a plurality of sectors
  4. 제2항에 있어서,The method of claim 2,
    상기 제1 수평 편파 방사 소자는 고주파수 대역을 송수신하며,The first horizontal polarization radiating element transmits and receives a high frequency band,
    상기 제2 수평 편파 방사 소자는 저주파수 대역을 송수신하는 것을 특징으로 하는 옴니 안테나The omni antenna, characterized in that the second horizontal polarization radiating element transmits and receives a low frequency band
  5. 제1항에 있어서,The method of claim 1,
    상기 수직 편파 방사 소자는,The vertically polarized radiation device,
    소정 각도를 이루는 4개의 블레이드로 이루어진 것을 특징으로 하는 옴니 안테나Omni antenna, characterized in that consisting of four blades at a predetermined angle
  6. 제2항에 있어서,The method of claim 2,
    상기 수직 편파 방사 소자에 연결되는 제1 급전부; 및A first feeding part connected to the vertically polarized radiating element; And
    상기 제1 수평 편파 방사 소자에 연결되는 제2-1 급전부와 상기 제2 수평 편파 방사 소자에 연결되는 제2-2 급전부를 포함하는 제2 급전부;A second feeder including a 2-1 feeder connected to the first horizontally polarized radiation device and a 2-2 feeder connected to the second horizontally polarized radiation device;
    를 더 포함하는 것을 특징으로 하는 옴니 안테나Omni antenna further comprises a
  7. 제6항에 있어서,The method of claim 6,
    상기 제2-2 급전부는,The second-2 feed section,
    상기 그라운드 판과 유전체 기판이 이격된 공간에 수직으로 형성되는 커먼 모드 쵸크 코일인 것을 특징으로 하는 옴니 안테나An omni antenna, characterized in that the common mode choke coil is formed perpendicular to the space spaced apart from the ground plate and the dielectric substrate
  8. 제6항에 있어서,The method of claim 6,
    상기 제2-1 급전부와 제2-2 급전부는,The 2-1 feed unit and the 2-2 feed unit,
    듀플렉서를 통해 연결되며,Connected through a duplexer,
    상기 듀플렉서는,The duplexer,
    상기 그라운드 판의 일면에 형성된 것을 특징으로 하는 옴니 안테나Omni antenna, characterized in that formed on one surface of the ground plate
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 8,
    상기 옴니 안테나가 내부에 삽입되는 레이돔;A radome into which the omni antenna is inserted;
    을 더 포함하는 것을 특징으로 하는 옴니 안테나 Omni antenna, characterized in that it further comprises
PCT/KR2015/008879 2014-09-05 2015-08-25 Omnidirectional antenna WO2016036043A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140118782A KR101548915B1 (en) 2014-09-05 2014-09-05 Broadband dual polarized omni antenna
KR10-2014-0118782 2014-09-05

Publications (2)

Publication Number Publication Date
WO2016036043A2 true WO2016036043A2 (en) 2016-03-10
WO2016036043A3 WO2016036043A3 (en) 2016-04-21

Family

ID=54246825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008879 WO2016036043A2 (en) 2014-09-05 2015-08-25 Omnidirectional antenna

Country Status (2)

Country Link
KR (1) KR101548915B1 (en)
WO (1) WO2016036043A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020244636A1 (en) * 2019-06-06 2020-12-10 昆山瀚德通信科技有限公司 Dual-polarized antenna

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11101550B2 (en) 2017-02-21 2021-08-24 Ace Technologies Corporation Base station antenna
KR101888824B1 (en) * 2017-02-21 2018-08-16 주식회사 에이스테크놀로지 Base Station Antenna
KR102583963B1 (en) * 2018-02-28 2023-09-27 한국전자통신연구원 Dual band planar antenna and thereof structure in communication system
CN116826380A (en) * 2020-12-31 2023-09-29 Oppo广东移动通信有限公司 Antenna module and customer premises equipment
KR102645541B1 (en) * 2021-12-28 2024-03-08 한국전자통신연구원 Antenna apparatus for suppressing multipath signals

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104371B1 (en) * 2010-06-08 2012-01-16 에스케이 텔레콤주식회사 Omni antenna
JP5444167B2 (en) * 2010-08-27 2014-03-19 電気興業株式会社 Omnidirectional antenna
JP5593278B2 (en) * 2011-01-21 2014-09-17 住友電気工業株式会社 Multi-frequency shared antenna and antenna device
JP2012155969A (en) * 2011-01-25 2012-08-16 Stanley Electric Co Ltd Lamp for vehicle
KR101315546B1 (en) * 2011-09-01 2013-10-08 홍익대학교 산학협력단 Dual-band omnidirectional circularly polarized wave antenna using metamaterial

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020244636A1 (en) * 2019-06-06 2020-12-10 昆山瀚德通信科技有限公司 Dual-polarized antenna
US11539145B2 (en) 2019-06-06 2022-12-27 Kunshan Hamilton Communication Technology Co., Ltd Dual-polarized antenna

Also Published As

Publication number Publication date
KR101548915B1 (en) 2015-09-01
WO2016036043A3 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
WO2016036043A2 (en) Omnidirectional antenna
WO2016027997A1 (en) Omnidirectional antenna for mobile communication service
US7893889B2 (en) Multiple-antenna device having an isolation element
WO2015068981A1 (en) Multi-band, multi-polarized wireless communication antenna
US11894604B2 (en) Communication apparatus
WO2010033004A2 (en) Dual-frequency / polarization antenna for mobile-communications base station
WO2011087177A1 (en) Internal mimo antenna having isolation aid
WO2010098529A1 (en) Mimo antenna having parasitic elements
WO2016133244A1 (en) Multi-band radiating element
CN104145372A (en) Apparatus and method for modular multi-sector active antenna system
CN104868228A (en) Dual-polarized antenna and antenna array
WO2018159988A1 (en) Dual polarized omni-directional antenna and base station including same
WO2018236174A1 (en) High gain antenna
CN108028460A (en) Radiation appliance
WO2015160200A1 (en) Multiple-antenna
EP3570444A1 (en) Fiber integrated radio equipment for network optimization and densification ecosystem (fire-node)
EP3148002A1 (en) Multi-antenna structure with high-isolation effect
WO2022225245A1 (en) Low-band radiator and multi-broadband antenna comprising same
CN104953290B (en) Wireless telecommunications system and its antenna assembly
WO2016064080A1 (en) Multiband two-port antenna
WO2017069358A1 (en) Dipole antenna and dipole antenna array for radiation gain enhancement
WO2015009058A1 (en) Ultra-wide band antenna
CN206098701U (en) Printed dipole oscillator
WO2012005437A1 (en) Antenna for wireless usb dongle device and wireless usb dongle device using same
WO2017155213A1 (en) Multistage antenna system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838801

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838801

Country of ref document: EP

Kind code of ref document: A2