WO2016063960A1 - ケーブル及びケーブルの製造方法 - Google Patents

ケーブル及びケーブルの製造方法 Download PDF

Info

Publication number
WO2016063960A1
WO2016063960A1 PCT/JP2015/079879 JP2015079879W WO2016063960A1 WO 2016063960 A1 WO2016063960 A1 WO 2016063960A1 JP 2015079879 W JP2015079879 W JP 2015079879W WO 2016063960 A1 WO2016063960 A1 WO 2016063960A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
filler
mixture
socket body
fly ash
Prior art date
Application number
PCT/JP2015/079879
Other languages
English (en)
French (fr)
Inventor
伸介 山崎
幸彦 大井川
ファービニア ヒポリト ロメロ
晋二郎 谷口
康幸 甲斐
Original Assignee
新日鉄住金エンジニアリング株式会社
アルファ工業株式会社
東京製綱株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金エンジニアリング株式会社, アルファ工業株式会社, 東京製綱株式会社 filed Critical 新日鉄住金エンジニアリング株式会社
Priority to US15/520,686 priority Critical patent/US10458063B2/en
Priority to CN201580056748.6A priority patent/CN106852161A/zh
Priority to JP2016555395A priority patent/JP6286578B2/ja
Priority to EP15852062.7A priority patent/EP3211133A4/en
Publication of WO2016063960A1 publication Critical patent/WO2016063960A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/12Anchoring devices
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2046Strands comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2075Fillers
    • D07B2201/2082Fillers characterised by the materials used
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2015Construction industries
    • D07B2501/203Bridges

Definitions

  • the present invention relates to a cable used in the ocean and a method for manufacturing the cable.
  • This application claims priority on October 22, 2014 based on Japanese Patent Application No. 2014-215174 for which it applied to Japan, and uses the content here.
  • a socket with a large outer diameter is provided at the end of the cable to make it easy to attach the cable to a structure or the like.
  • this type of cable for example, those described in Patent Document 1 and Non-Patent Document 1 are known.
  • a FRP cable formed by converging a large number of FRP (Fiber Reinforced Plastics) wires (wires) is formed into a conical shape so that the load end side has a small diameter and the free end side has a large diameter. Is housed inside.
  • the wires are arranged in a radially dispersed state from the load end side to the free end side.
  • the 1st fixing material filler, casting material
  • a second fixing material made of a mixture of a thermosetting resin and a filler is filled on the free end side of the socket.
  • the thermosetting resin include an epoxy resin and an unsaturated epoxy resin.
  • the filler for example, steel balls, glass beads and the like can be used.
  • Non-Patent Document 1 describes that a steel ball, zinc powder, and an epoxy resin are cast and cured as a cable socket structure.
  • the present invention has been made in view of such problems, and an object thereof is to provide a cable having improved creep resistance and corrosion resistance when submerged, and a method for manufacturing the cable.
  • the present invention proposes the following means. (1) In the cable manufacturing method of the present invention, a mixture in which a thermosetting resin is mixed afterwards with a premix obtained by previously mixing ceramic particles and fly ash is formed into a cylindrical shape, and a wire rod is formed in its own cylindrical hole. A filling step of filling the cylindrical hole of the socket main body in which one end of the socket is disposed is performed. (2) Moreover, the cable of the present invention is a ceramic body filled with a socket body formed in a cylindrical shape, a wire rod having one end disposed in a cylinder hole of the socket body, and a cylinder hole of the socket body. And a filler obtained by mixing particles, fly ash, and a thermosetting resin.
  • the curing heat of the thermosetting resin is absorbed and emitted by the preliminary mixture obtained by mixing the ceramic particles and fly ash, so that the curing temperature during casting is lowered.
  • ceramic particles and fly ash are not metal materials, they are not easily corroded by seawater or the like.
  • the one end of the wire rod is inserted into the cylindrical hole of the socket body and the through hole formed in the fixing plate, respectively.
  • the wire rod insertion step to be inserted, and the enlarged diameter portion provided at one end portion of the wire rod are engaged with the edge portion of the through hole of the fixing plate, and the one end portion of the wire rod is separated from the inner peripheral surface of the cylindrical hole. It is more preferable to perform the locking step.
  • the mixture is cured to form a filler, which is closer to the other end of the wire than the filler.
  • a second filler having an elastic modulus smaller than that of the filler is provided.
  • the second filler having a small elastic modulus at a portion where the radius of curvature of the wire becomes small the additional stress of the wire at the portion where the second filler is provided is dispersed.
  • thermosetting resin is an epoxy resin.
  • a ratio of a mass of the ceramic particles to a mass of the fly ash mixed in the filling step Is more preferably 7.0 or more.
  • the fly ash with respect to the mass of the thermosetting resin mixed in the filling step It is more preferable that the ratio of the sum of the mass and the mass of the ceramic particles is 5 or more.
  • the creep resistance and the corrosion resistance when immersed can be improved.
  • the ceramic particles can be uniformly filled between the inner peripheral surface of the cylindrical hole of the socket body and one end of the wire.
  • the fatigue resistance of the wire can be improved by reducing the stress concentration of the wire and reducing the friction (fretting) between the wires.
  • grains, fly ash, and the thermosetting resin can be improved.
  • it can suppress that the mixed ceramic particle, fly ash, and a thermosetting resin isolate
  • FIG. 2 is a photograph showing a main part of a cross section taken along a cutting line AA in FIG. It is a flowchart which shows the manufacturing method of the cable of this embodiment. It is sectional drawing explaining the manufacturing method of the cable of this embodiment. It is sectional drawing explaining the manufacturing method of the cable of this embodiment. It is sectional drawing explaining the manufacturing method of the cable of this embodiment. It is sectional drawing explaining the manufacturing method of the cable of this embodiment. It is a photograph which shows the state when it fills after mixing a ceramic shot and an epoxy resin in a test tube (a), and when a ceramic shot and fly ash are mixed in a test tube, and also an epoxy resin is mixed (b). .
  • the cable 1 of the present embodiment includes a socket body 10 formed in a cylindrical shape, and a plurality of steel wires (wires) 15 in which one end 15 a is disposed in a cylindrical hole 11 of the socket body 10.
  • the inner diameter of the cylindrical hole 11 at the second end portion 10b is larger than the inner diameter of the cylindrical hole 11 at the first end portion 10a. More specifically, the inner diameter of the cylindrical hole 11 increases from the first end 10a of the socket body 10 toward the second end 10b.
  • a constant diameter region 11a having a constant inner diameter is provided at the end of the cylindrical hole 11 on the first end 10a side.
  • a constant diameter region 11b having a constant inner diameter is provided at the end of the cylindrical hole 11 on the second end portion 10b side.
  • a protrusion 12 that protrudes along the edge of the cylindrical hole 11 is provided.
  • a ring-shaped groove 13 is formed on the end surface 10 c of the socket body 10 so as to surround the protrusion 12.
  • a ring-shaped groove portion 14 is formed on the end surface 10 d of the socket main body 10 on the second end portion 10 b side so as to surround the cylindrical hole 11.
  • the outer diameter of the steel wire 15 is, for example, 5 to 7 mm.
  • the plurality of steel wires 15 form a cable body 16 by being bundled together.
  • a parallel wire strand (PWS: Parallel Wire Strand) type is used as the cable body 16.
  • the plurality of steel wires 15 are bundled by a covering tube 22 made of, for example, high density polyethylene.
  • Each steel wire 15 is an elongated wire having a circular cross-sectional shape.
  • a galvanized steel wire which is a steel material whose outer peripheral surface is covered with zinc (Zn) can be employed.
  • a button head (expanded diameter portion) 17 is provided at one end portion 15 a of each steel wire 15.
  • the button head 17 can be formed, for example, by expanding the diameter of the steel wire 15.
  • each steel wire 15 is inserted into a through hole 23a of a fixing plate (fixing plate) 23 formed in a disk shape.
  • the fixing plate 23 is configured by cutting a steel plate into a disk shape, for example.
  • a plurality of through holes 23 a are formed in the fixing plate 23 so as to penetrate in the thickness direction of the fixing plate 23 and be separated from each other along the surface of the fixing plate 23.
  • the button head 17 of the steel wire 15 is engaged with the edge of the through hole 23a of the fixing plate 23.
  • the fixing plate 23 is locked to the socket body 10 at an end portion on the first end portion 10 a side of the constant diameter region 11 b in the cylindrical hole 11 of the socket body 10.
  • a cover plate 24 formed in a circular shape is attached to the end surface 10d on the second end 10b side of the socket body 10 by screwing or the like. A space between the end surface 10 d of the socket body 10 and the cover plate 24 is sealed by a packing 25 disposed in the groove portion 14 of the socket body 10.
  • the first filler 20 is obtained by casting and curing a mixture of ceramic shots (ceramic particles) 27, fly ash (not shown), and epoxy resin (thermosetting resin).
  • the socket body 10 is not shown.
  • the first filler 20 is cut, a part of the ceramic shot 27 on the cut surface is peeled off, and the portion of the first filler 20 where the ceramic shot 27 is dropped is depressed. In FIG. 2, it is less than the content ratio of the ceramic shot 27 in the actual first filler 20.
  • the outer diameter of the ceramic shot 27 is about 1 mm.
  • the ceramic shot 27 is a fiber (shot, non-fibrous particle) that is not in the form of fibers.
  • the HV hardness (Vickers hardness) of the ceramic shot 27 is preferably 1000 HV or more.
  • alumina (aluminum oxide) is used as the ceramic shot 27, but other than this, for example, zirconia (zirconium dioxide) or the like can be appropriately selected and used.
  • Ceramic shots 27 are evenly dispersed in the first filler 20.
  • Fly ash means that the ash produced when coal is burned has a particle size small enough to be blown up with the combustion gas.
  • the first filler 20 surrounds each steel wire 15.
  • a base 29 is attached to the end face 10 c on the first end 10 a side of the socket body 10.
  • the base 29 has a base body 30 formed in a cylindrical shape, and a flange portion 31 provided at an end of the outer peripheral surface of the base body 30.
  • a recess 30 a that engages with the protrusion 12 of the socket body 10 is formed on the inner peripheral surface of the end of the base body 30 on the side where the flange portion 31 is provided.
  • the flange portion 31 of the base 29 is attached to the socket body 10 by welding or screwing.
  • a space between the end face 10 c of the socket body 10 and the flange portion 31 of the base 29 is sealed with a packing 32 disposed in the groove portion 13 of the socket body 10.
  • the second filler 21 is formed of an epoxy resin having an elastic modulus smaller than that of the first filler 20.
  • the elastic modulus of the second filler 21 is preferably about 1/10 of the elastic modulus of the first filler 20.
  • the second filler 21 is disposed between the inner peripheral surface of the base body 30 of the base 29 and the cable body 16.
  • the end of the covering tube 22 in the cable body 16 and the base body 30 of the base 29 are covered with a tube 33 that is shrunk (contracted) by applying heat or the like.
  • the wire 15 of the cable body 16 is disposed in the cylindrical hole 11 of the socket body 20. .
  • a base 29 is installed at one end of the socket body 10 in which the tube hole 11 is formed, and a lid plate 24 is installed at the other end.
  • the cylindrical hole 11 has a tapered portion that is enlarged in diameter from the base 29 side toward the lid plate 24 side, and a constant diameter region 11a and a constant diameter region 11b that have constant diameters provided at both ends of the tapered portion.
  • the wire 15 is fixed using a button head 17 on a fixing plate 23 provided at the end of the tapered portion of the tube hole 11 on the cover plate 24 side.
  • the first filler 20 surrounds each of the wires 15 converged from the fixed plate 23 toward the base 29 at the taper portion sealed by the fixing plate 23 and the button head 17 in the tube hole 11. Filled.
  • the second filler 21 is filled from the constant diameter region 11 a on the base 29 side of the tube hole 11 to the inside of the base 29 so as to surround the converged wire 15.
  • FIG. 3 is a flowchart showing a method for manufacturing the cable 1 of the present embodiment.
  • the cable body 16 is cut to a predetermined length as shown in FIG. 4, and the covering tube 22 at the end of the cable body 16 is removed.
  • the one end 15a of the steel wire 15 of the cable body 16 from which the covering tube 22 has been removed is inserted into the cylindrical hole 11 of the socket body 10 and the through hole 23a formed in the fixing plate 23, respectively.
  • the button head 17 is formed on one end 15a of the steel wire 15 as shown in FIG.
  • the button head 17 of the steel wire 15 is engaged with the edge of the through hole 23 a of the fixing plate 23, and the one end 15 a of the steel wire 15 is separated from the inner peripheral surface of the cylindrical hole 11 of the socket body 10.
  • the ceramic shot 27 and fly ash are mixed by a known mixing device to prepare a premix.
  • the ratio of the mass of the ceramic shot 27 to the mass of fly ash in the pre-mixture is preferably about 7 or more. More preferably, it is 7.2 or more.
  • the ceramic mass ratio is more preferably 7.0 to 9.0, and most preferably 7.2 to 8.5.
  • the epoxy resin before hardening to this preliminary mixture is mixed afterwards, and a mixture (mixture 20A) is created.
  • Ratio of the sum of the mass of fly ash and the mass of ceramic shot 27 to the mass of epoxy resin (the ratio of the total mass of fly ash and ceramic shot 27 when the mass of epoxy resin is 1; hereinafter, aggregate mass ratio Is preferably 5 or more.
  • the aggregate mass ratio is more preferably 5.0 to 6.5, and still more preferably 5.5 to 6.0.
  • the mixture may further contain a silane coupling material in a mass ratio with respect to the total amount of the mixture, preferably 0.07 to 4%, more preferably 0.07 to 0.7%.
  • the mixture 20 ⁇ / b> A is filled into the cylindrical hole 11 of the socket body 10.
  • the ceramic mass ratio is 7.2 or more, the fluidity of the mixture 20 ⁇ / b> A increases, and the mixture 20 ⁇ / b> A is between the inner peripheral surface of the cylindrical hole 11 and the one end 15 a of the steel wire 15, and the adjacent steel wire 15.
  • the mixture 20A easily flows between the one end portions 15a. Since the ceramic shot 27 of the mixture 20A that has flown between them sticks to the inner peripheral surface of the cylindrical hole 11 and the one end 15a of the steel wire 15, the mixture 20A is cured and the first filler as described later. When it becomes 20, it becomes difficult for the steel wire 15 to come off from the first filler 20. Since the fly ash supports the ceramic shot 27, the ceramic shot 27 is evenly dispersed in the first filler 20.
  • the mixture 20 ⁇ / b> A is cast and cured to form the first filler 20. Since the ceramic shot 27 and fly ash dissipate the heat of curing of the epoxy resin when the mixture 20A is cast, the temperature during casting becomes as low as about 40 ° C. to 60 ° C., for example.
  • the packing 32 is disposed in the groove portion 13 of the socket body 10. A base 29 is attached to the socket body 10. At this time, the base 29 is aligned by engaging the recess 30 a of the base 29 with the projection 12 of the socket body 10. The epoxy resin before curing is filled into the base 29. This epoxy resin is cast and cured, and a second filler 21 is provided on the other end 15b side of the steel wire 15 relative to the first filler 20 as shown in FIG.
  • the cable 1 is manufactured by the above process.
  • the cable 1 constructed and manufactured in this manner has a smaller elastic modulus of the second filler 21 than the elastic modulus of the first filler 20, thereby reducing the concentration of additional stress of the steel wire 15, and The fretting of the steel wires 15 is suppressed.
  • Comparative Example 1 An epoxy resin was used as a thermosetting resin, and ceramic shot and fly ash were not added to the mixture. That is, the mixture consisted of only an epoxy resin, and a silane coupling agent having a mass ratio of 2% with respect to the mixture was added to the mixture. Since no ceramic shot and fly ash were added, the aggregate mass ratio was zero.
  • Comparative Example 2 An epoxy resin was used as the thermosetting resin, fly ash was added to the mixture, and ceramic shot was not added. The aggregate mass ratio was 2.6. A silane coupling agent of 2% by weight with respect to the mixture was added to the mixture. Comparative Example 3: Epoxy resin was used as the thermosetting resin, ceramic shot was added to the mixture, and fly ash was not added. The aggregate mass ratio was 5.7. A silane coupling agent of 2% by weight with respect to the mixture was added to the mixture. Comparative Example 4: An epoxy resin was used as the thermosetting resin, ceramic shot was added to the mixture, and fly ash was not added. The aggregate mass ratio was 2.9. A silane coupling agent of 2% by weight with respect to the mixture was added to the mixture.
  • Examples 1 and 2 An epoxy resin was used as a thermosetting resin, ceramic shot and fly ash were mixed in advance, and a mixture obtained by further mixing an epoxy resin was used as a mixture. The ceramic mass ratio was 7.2, and the aggregate mass ratio was 5.5. In Example 1, 2% silane coupling agent was added to the mixture in a mass ratio to the mixture, and in Example 2, 4% silane coupling agent was added to the mixture in a mass ratio to the mixture. Comparative Example 5: A polyester resin was used as the thermosetting resin, and ceramic shot and fly ash were not added to the mixture. That is, the mixture is composed only of a polyester resin. Since no ceramic shot and fly ash were added, the aggregate mass ratio was zero.
  • the evaluation items for evaluating Comparative Examples 1 to 5 and Examples 1 and 2 are slump amount, compressive strength, compression elastic modulus, generated temperature during curing (casting), and shrinkage during curing.
  • Slump amount The slump amount is a diameter after a known slump test is performed and the mixture is deformed by its own weight. Specifically, the mixture was packed into a slump cone having an upper base diameter of 50 mm, a lower base diameter of 50 mm, and a height of 50 mm, and when the slump cone was pulled out, the diameter of the mixture deformed by its own weight was measured using a ruler. The unit is mm, and the condition for passing is that the diameter is 150 mm or more. The greater the amount of slump, the higher the fluidity of the mixture.
  • Compressive strength / elastic modulus The compressive strength was measured using a compression tester after the mixture was cured.
  • the compression modulus was measured using a compression tester and a displacement meter after the mixture was cured.
  • the condition for passing the compressive strength is 100 MPa or more, and the condition for passing the compressive modulus is 8000 MPa or more. If the compressive strength and compressive elastic modulus are not larger than these values, the known effect that the wedge-shaped first filler is gripped by the inner peripheral surface of the cylindrical hole of the socket body will not be exhibited when the cable body is pulled. .
  • Temperature generated during curing The temperature was measured using a thermocouple as the mixture was cured.
  • Various sensors may be arranged in the first filler to use a cable. In this case, the mixture generates heat during curing, but since the sensor is not damaged, the condition for passing the temperature generated during curing is about 80 ° C. or less.
  • Shrinkage during curing The shrinkage at the time of curing was confirmed by filling the inside of the socket with the mixture and measuring the height difference of the filler surface from the upper end of the socket. If the mixture shrinks when the mixture is cured to become the first filler, there is a problem that a gap is formed between the socket body and the steel wire and the first filler, and the steel wire can be easily removed from the first filler. is there. For this reason, the condition for passing is that the mixture does not shrink during curing.
  • Table 1 shows the test result of each evaluation item and the pass / fail result. What passes is indicated by “B” or “A”. “B” means that the conditions for passing are satisfied but the conditions for passing are not significantly exceeded. “A” means a condition that satisfies a passing condition and greatly exceeds the passing condition. What is rejected is indicated by “C”.
  • B means that the conditions for passing are satisfied but the conditions for passing are not significantly exceeded.
  • A means a condition that satisfies a passing condition and greatly exceeds the passing condition.
  • What is rejected is indicated by “C”.
  • In order to improve the creep resistance it is important to lower the temperature generated during curing. However, in order to satisfy the general performance of the cable 1, it is necessary to pass the slump amount, compressive strength, compressive elastic modulus, and shrinkage at the time of curing. In this way, a sample that passes all evaluation items is finally passed.
  • Comparative Example 1 the mixture is composed of an epoxy resin and a silane coupling agent. For this reason, the amount of slump becomes so large that it cannot be measured, and passes “A”. Although the compression strength was acceptable, it was found that the compression elastic modulus, the temperature generated during curing, and the shrinkage during curing failed. In Comparative Example 2, it was found that the amount of slump and the compressive strength passed “A”, and the generation temperature during curing and the shrinkage during curing passed. In Comparative Example 2, it was found that the compression elastic modulus was rejected. In the comparative example 3, it turned out that the generation
  • FIG. 7 shows a state where, as a comparative example, a transparent test tube is filled with a ceramic shot 27 and an epoxy resin 28 and then filled. It was found that the ceramic shot 27 was precipitated and the ceramic shot 27 and the epoxy resin 28 were separated.
  • FIG. 7 shows a state when the ceramic shot 27 and fly ash are mixed in a transparent test tube and an epoxy resin is further mixed as in this embodiment. Since the steel wire is not arranged in the test tube, the configuration is the same as that of the first filler of the present embodiment, although it is different from the cable of the present embodiment. In this case, it was found that the ceramic shot 27 did not settle and the ceramic shot 27 was evenly mixed in the test tube.
  • the heat of curing of the epoxy resin 28 is absorbed and dissipated by the preliminary mixture in which the ceramic shot 27 and fly ash are mixed.
  • the curing temperature of the resin becomes lower.
  • the ceramic shot 27 and fly ash are not metal materials, they are not easily corroded by seawater or the like. Therefore, the corrosion resistance when the cable 1 of the present embodiment and the cable 1 manufactured by the method of manufacturing the cable 1 of the present embodiment is submerged can be improved.
  • the first filler 20 includes the ceramic shot 27, the compression elastic modulus of the first filler 20 is increased and the creep resistance is improved. Thereby, the deformation
  • the ceramic shot 27 is evenly dispersed in the socket body 10, the physical properties of the first filler 20 are stable regardless of the position in the first filler 20, and the inner peripheral surface of the tube hole 11 and the steel wire 15 The ceramic shot 27 sticks to the one end 15a.
  • the silane coupling agent in the first filler 20, the adhesion between the ceramic shot 27 and fly ash, which are inorganic materials, and the epoxy resin can be enhanced.
  • the wire rod insertion step S ⁇ b> 1 and the locking step S ⁇ b> 3 are performed before the filling step S ⁇ b> 5, whereby the one end portion 15 a of the steel wire 15 is separated from the inner peripheral surface of the cylindrical hole 11 of the socket body 10.
  • the ceramic shot 27 can be uniformly filled between the inner peripheral surface of the cylindrical hole 11 of the socket body 10 and the one end portion 15 a of the steel wire 15.
  • a second filler 21 is provided on the other end 15 b side of the steel wire 15 relative to the first filler 20.
  • the second filler 21 having a small elastic modulus at a portion where the radius of curvature of the cable body 16 becomes small when the cable body 16 is bent, the concentration of additional stress is alleviated and fretting is suppressed. Thereby, the fatigue stress characteristic of the steel wire 15 can be improved because the bending stress of the steel wire 15 is equalized.
  • the ceramic mass ratio By setting the ceramic mass ratio to 7.2 or more, the fluidity of the mixture 20 ⁇ / b> A can be increased, and the mixture 20 ⁇ / b> A can be more reliably filled between the socket body 10 and the steel wire 15.
  • the aggregate mass ratio is 5 or more, separation of the mixed ceramic shot 27 from the fly ash and the epoxy resin can be suppressed.
  • the cable 1 may not be provided with the second filler 21. That is, the second filler forming step S9 may not be performed in the cable 1 manufacturing method.
  • the thermosetting resin was an epoxy resin.
  • the thermosetting resin is not limited to the epoxy resin, and may be a polyester resin or the like.
  • the cable 1 of this embodiment can be used for marine use, but can also be used for bridge use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ropes Or Cables (AREA)

Abstract

 このケーブルの製造方法では、セラミック粒子とフライアッシュとを予め混合した予備混合物に熱硬化性樹脂を後から混合した混合物を、筒状に形成されて自身の筒孔内に線材の一端部が配置されたソケット本体の筒孔内に充填する充填工程S5を行う。

Description

ケーブル及びケーブルの製造方法
 本発明は、海洋等で用いられるケーブル及びケーブルの製造方法に関する。
 本願は、2014年10月22日に、日本に出願された特願2014-215174号に基づき優先権を主張し、その内容をここに援用する。
 従来、ケーブルの端部に外径の大きなソケットを設けて、ケーブルを構造物等に取付けやすくすることが行われている。この種のケーブルとしては、例えば特許文献1及び非特許文献1に記載されたものが知られている。
 特許文献1のケーブルでは、多数のFRP(Fiber Reinforced Plastics)ワイヤ(線材)を収束して形成したFRPケーブルを、荷重端側が小径で自由端側が大径となるように円錐形状に形成されたソケット内に収容している。このソケット内では、ワイヤが荷重端側から自由端側に向けて放射状に分散した状態に配置されている。そして、上記ソケット内には、その荷重端側に熱硬化性樹脂のみからなる第一定着材(充填材、鋳込み材)が充填されている。ソケットの自由端側に、熱硬化性樹脂とフィラーとの混合物からなる第二定着材が充填されている。
 熱硬化性樹脂としては、エポキシ樹脂、不飽和エポキシ樹脂等を挙げることができる。
フィラーとしては、例えば鋼球、ガラスビーズ等を用いることができる。
 非特許文献1では、ケーブルのソケット構造として、鋼球、亜鉛粉末、及びエポキシ樹脂を鋳込んで硬化させることが記載されている。
特開平09-209501号公報
「神鋼のセミパラレルワイヤケーブル SPWC(登録商標)」、[online]、[平成26年9月12日検索]、インターネット〈URL:http://www.e-bridge.jp/eb/introacs/pro_80004/summary.php〉
 しかしながら、特許文献1のケーブルにおいて、FRPワイヤを亜鉛メッキが施されたスチールワイヤに適用する場合、定着材とワイヤとの付着性能が低下する恐れがある。また、このために定着材によるワイヤを把持する効果が低下し、結果として耐クリープ特性が低下する可能性がある。
 また、特許文献1及び非特許文献1のケーブルのようにソケット内の充填材に鋼球等のような金属製の材料を用いると、海水や雨水等がソケット内に入った場合に耐食性が低下してしまう。
 本発明は、このような問題点に鑑みてなされたものであって、耐クリープ特性及び浸水した際の耐食性を高めたケーブル、及びケーブルの製造方法を提供することを目的とする。
 上記課題を解決するために、この発明は以下の手段を提案している。
(1) 本発明のケーブルの製造方法は、セラミック粒子とフライアッシュとを予め混合した予備混合物に熱硬化性樹脂を後から混合した混合物を、筒状に形成されて自身の筒孔内に線材の一端部が配置されたソケット本体の前記筒孔内に充填する充填工程を行うことを特徴としている。
(2) また、本発明のケーブルは、筒状に形成されたソケット本体と、前記ソケット本体の筒孔内に一端部が配置された線材と、前記ソケット本体の筒孔内に充填され、セラミック粒子、フライアッシュ及び熱硬化性樹脂を混合して硬化させた充填材と、を備えることを特徴としている。
 この発明によれば、熱硬化性樹脂の硬化熱がセラミック粒子及びフライアッシュを混合して得た予備混合物により吸収、発散されるため、鋳込み時の硬化温度が低くなる。また、セラミック粒子やフライアッシュは金属製の材料ではないため、海水等により腐食されにくい。
(3) また、上記(1)のケーブルの製造方法において、前記充填工程の前に、前記線材の一端部を、前記ソケット本体の前記筒孔、及び、固定板に形成された貫通孔にそれぞれ挿通させる線材挿通工程と、前記線材の一端部に設けられた拡径部を前記固定板の前記貫通孔の縁部に係止させ、前記筒孔の内周面から前記線材の一端部を離間させる係止工程と、を行うことがより好ましい。
(4) また、上記(1)又は(3)のケーブルの製造方法において、前記充填工程の後で、前記混合物を硬化させて充填材とし、前記充填材よりも前記線材の他端部側に、前記充填材の弾性率よりも小さい弾性率を有する第二充填材を設けることがより好ましい。
 この発明によれば、線材の曲率半径が小さくなる部分に弾性率が小さい第二充填材を設けることで、第二充填材が設けられた部分の線材の付加応力が分散する。
(5) また、上記(1)、(3)、(4)の何れか1つに記載のケーブルの製造方法において、前記熱硬化性樹脂はエポキシ樹脂であることがより好ましい。
(6) また、上記(1)、(3)~(5)の何れか1つに記載のケーブルの製造方法において、前記充填工程で混合する前記フライアッシュの質量に対する前記セラミック粒子の質量の比率が7.0以上であることがより好ましい。
(7) また、上記(1)、(3)~(6)の何れか1つに記載のケーブルの製造方法において、前記充填工程で混合する、前記熱硬化性樹脂の質量に対する、前記フライアッシュの質量と前記セラミック粒子の質量の和の比率が、5以上であることがより好ましい。
 本発明において、(1)に記載のケーブルの製造方法、及び(2)に記載のケーブルによれば、耐クリープ特性及び浸水した際の耐食性を高めることができる。
 (3)に記載のケーブルの製造方法によれば、ソケット本体の筒孔の内周面と線材の一端部と間に均一にセラミック粒子を充填することができる。
 (4)に記載のケーブルの製造方法によれば、線材の応力集中を緩和し、かつ、線材どうしの擦れ(フレッチング)を緩和することで、線材の耐疲労特性を高めることができる。
 (6)に記載のケーブルの製造方法によれば、セラミック粒子、フライアッシュ及び熱硬化性樹脂を混合した混合物の流動性を高めることができる。
 (7)に記載のケーブルの製造方法によれば、混合したセラミック粒子と、フライアッシュ及び熱硬化性樹脂とが分離するのを抑制することができる。
本発明の一実施形態のケーブルにおける端部の側面の断面図である。 図1中の切断線A-Aの断面の要部を示す写真である。 本実施形態のケーブルの製造方法を示すフローチャートである。 本実施形態のケーブルの製造方法を説明する断面図である。 本実施形態のケーブルの製造方法を説明する断面図である。 本実施形態のケーブルの製造方法を説明する断面図である。 試験管にセラミックショット及びエポキシ樹脂を混合した後に充填した場合(a)と、試験管内でセラミックショット及びフライアッシュを混合し、さらにエポキシ樹脂を混合した場合(b)との状態を示す写真である。
 以下、本発明に係るケーブルの一実施形態を、図1から図7を参照しながら説明する。
 図1に示すように、本実施形態のケーブル1は、円筒状に形成されたソケット本体10と、ソケット本体10の筒孔11内に一端部15aが配置された複数の鋼線(線材)15と、ソケット本体10の筒孔11内に充填された第一充填材(充填材)20と、第一充填材20よりも鋼線15の他端部15b側に設けられた第二充填材21とを備えている。
 ソケット本体10は、第一端部10aの筒孔11の内径よりも第二端部10bの筒孔11の内径の方が大きい。より詳しくは、筒孔11の内径は、ソケット本体10の第一端部10aから第二端部10bに向かうにしたがって大きくなる。
 筒孔11の第一端部10a側の端には、内径が一定の定径領域11aが設けられている。同様に、筒孔11の第二端部10b側の端には、内径が一定の定径領域11bが設けられている。
 ソケット本体10の第一端部10a側の端面10cには、筒孔11の縁部に沿って突出する突起12が設けられている。ソケット本体10の端面10cには、突起12を囲うようにリング状の溝部13が形成されている。ソケット本体10の第二端部10b側の端面10dには、筒孔11を囲うようにリング状の溝部14が形成されている。
 鋼線15の外径は、例えば5~7mmである。
 複数の鋼線15は、一体に束ねられることでケーブル本体16を構成している。本実施形態では、ケーブル本体16として、パラレルワイヤストランド(PWS:Parallel Wire Strand)タイプのものが用いられている。複数の鋼線15は、例えば高密度ポリエチレンで形成された被覆チューブ22で束ねられている。
 各鋼線15は、円形状の横断面形状を有する細長い線材である。鋼線15として、例えば外周面を亜鉛(Zn)によって被覆した鋼材である亜鉛めっき鋼線等を採用することができる。
 各鋼線15の一端部15aには、ボタンヘッド(拡径部)17が設けられている。ボタンヘッド17は、例えば鋼線15を拡径することで形成することができる。
 各鋼線15の一端部15aは、円板状に形成された定着板(固定板)23の貫通孔23aに挿通されている。定着板23は、例えば鋼板を円板状に切り出して構成されている。
 定着板23には、複数の貫通孔23aが、定着板23の厚さ方向に貫通するとともに定着板23の表面に沿って互に離間するように形成されている。
 定着板23の貫通孔23aの縁部には、鋼線15のボタンヘッド17が係止しいている。定着板23は、ソケット本体10の筒孔11内における定径領域11bの第一端部10a側の端部で、ソケット本体10に係止されている。
 ソケット本体10の第二端部10b側の端面10dには、円形状に形成された蓋板24がネジ止め等により取付けられている。ソケット本体10の端面10dと蓋板24との間は、ソケット本体10の溝部14内に配置されたパッキン25により封止されている。
 第一充填材20は、図2に示すようにセラミックショット(セラミック粒子)27、図示しないフライアッシュ、及びエポキシ樹脂(熱硬化性樹脂)を混合した混合物を鋳込んで硬化させたものである。
 なお、図2ではソケット本体10は示していない。第一充填材20を切断する際に、切断面上のセラミックショット27の一部が剥がれ落ちてしまい、セラミックショット27が落ちた部分の第一充填材20が窪んでいる。図2では、実際の第一充填材20中のセラミックショット27の含有割合よりも少なくなっている。
 図2では例えば、セラミックショット27の外径は約1mmである。セラミックショット27は、セラミックファイバーとは異なり、繊維状にならずに粒子状になったもの(ショット、非繊維状粒子)である。セラミックショット27のHV硬さ(ビッカース硬さ)は、1000HV以上であることが好ましい。
 本実施形態ではセラミックショット27としてアルミナ(酸化アルミニウム)を用いているが、これ以外にも例えばジルコニア(二酸化ジルコニウム)等を適宜選択して用いることができる。第一充填材20内には、セラミックショット27が均等に分散されている。
 フライアッシュは、石炭が燃焼する際に生じる灰のうち、燃焼ガスとともに吹き上げられる程度に粒径が小さいもののことを意味する。
 第一充填材20は、各鋼線15を囲んでいる。
 図1に示すように、ソケット本体10の第一端部10a側の端面10cには、口金29が取付けられている。
 口金29は、円筒状に形成された口金本体30と、口金本体30の外周面の端部に設けられたフランジ部31とを有している。口金本体30におけるフランジ部31が設けられた側の端部の内周面には、ソケット本体10の突起12に係合する凹部30aが形成されている。口金29のフランジ部31は、ソケット本体10に溶接やネジ止め等により取付けられている。ソケット本体10の端面10cと口金29のフランジ部31との間は、ソケット本体10の溝部13内に配置されたパッキン32により封止されている。
 第二充填材21は、第一充填材20の弾性率よりも小さい弾性率を有するエポキシ樹脂で形成されている。第二充填材21の弾性率は、第一充填材20の弾性率の1/10程度であることが好ましい。第二充填材21は、口金29の口金本体30の内周面とケーブル本体16との間に配置されている。
 ケーブル本体16における被覆チューブ22の端部と口金29の口金本体30とは、熱を作用させること等によりシュリンク(収縮)させたチューブ33で覆われている。
 言い換えると、本実施形態では、ケーブル本体16とケーブル本体16の一端に設けられたソケット本体20とを有するケーブル1において、ケーブル本体16の線材15がソケット本体20の筒孔11に配置されている。筒孔11が内部に形成されているソケット本体10の一端には口金29が設置され、他端には蓋板24が設置されている。筒孔11は、口金29側から蓋板24側に向けて拡径しているテーパ部とテーパ部両端に設けられている径が一定である定径領域11a及び定径領域11bとを有している。線材15は筒孔11の蓋板24側のテーパ部端部に設けられた定着板23でボタンヘッド17を用いて固定されている。第一充填材20は、筒穴11の定着板23とボタンヘッド17とで封止されているテーパ部において、固定版23から口金29側に向けて集束している線材15それぞれを囲うようにして充填されている。第二充填材21は、筒穴11の口金29側の定径領域11aから口金29内部にかけて、集束した線材15を囲うようにして充填されている。
 次に、以上のように構成されたケーブル1を製造する本実施形態のケーブル1の製造方法について説明する。図3は、本実施形態のケーブル1の製造方法を示すフローチャートである。
 まず、線材挿通工程S1(図3参照)において、図4に示すようにケーブル本体16を所定の長さに切り、ケーブル本体16の端部の被覆チューブ22を除去する。被覆チューブ22を除去したケーブル本体16の鋼線15の一端部15aを、ソケット本体10の筒孔11、及び、定着板23に形成された貫通孔23aにそれぞれ挿通させる。
 次に、係止工程S3において、図5に示すように鋼線15の一端部15aにボタンヘッド17を形成する。鋼線15のボタンヘッド17を定着板23の貫通孔23aの縁部に係止させ、ソケット本体10の筒孔11の内周面から鋼線15の一端部15aを離間させる。
 次に、充填工程S5において、セラミックショット27とフライアッシュとを公知の混合装置により混合して予備混合物を作成する。
 予備混合物におけるフライアッシュの質量に対するセラミックショット27の質量の比率(フライアッシュの質量を1とした場合のセラミックショット27の質量比。以下、セラミック質量比と称する)が約7以上であることが好ましく、より好ましくは7.2以上である。セラミック質量比は更に好ましくは7.0~9.0であり、最も好ましくは7.2~8.5である。
 そして、この予備混合物に硬化する前のエポキシ樹脂を後から混合して混合物(混合物20A)を作成する。エポキシ樹脂の質量に対する、フライアッシュの質量とセラミックショット27の質量の和の比率(エポキシ樹脂の質量を1とした場合のフライアッシュとセラミックショット27との合計質量の比率。以下、骨材質量比と称する)が、5以上であることが好ましい。骨材質量比は、より好ましくは5.0~6.5であり、更に好ましくは5.5~6.0である。
 なお、セラミック質量比を7、骨材質量比を5.5とすると、セラミックショット27の質量:フライアッシュの質量:エポキシ樹脂の質量の比率は、77:11:16となる。すなわち、セラミックショット27の質量、フライアッシュの質量、エポキシ樹脂の質量の比率のうち、セラミックショット27の質量が最も大きく、フライアッシュの質量とエポキシ樹脂の質量とがほぼ等しい。
 混合物は、更にシランカップリング材を混合物全量に対して質量比で、好ましくは0.07~4%、より好ましくは0.07~0.7%含むことができる。
 図6に示すように、この混合物20Aをソケット本体10の筒孔11内に充填する。セラミック質量比が7.2以上であることで、混合物20Aの流動性が高まり、混合物20Aが筒孔11の内周面と鋼線15の一端部15aとの間、及び、隣り合う鋼線15の一端部15aの間に、混合物20Aが流れ込みやすくなる。これらの間に流れ込んだ混合物20Aのセラミックショット27は、筒孔11の内周面や鋼線15の一端部15aに噛みつくように付くため、後述するように混合物20Aが硬化して第一充填材20となったときに、第一充填材20から鋼線15が抜けにくくなる。
 フライアッシュがセラミックショット27を支持することで、第一充填材20内でセラミックショット27が均等に分散される。
 次に、硬化工程S7において、混合物20Aを鋳込んで硬化させて第一充填材20とする。混合物20Aの鋳込み時にセラミックショット27やフライアッシュがエポキシ樹脂の硬化熱を発散させるため、鋳込み時の温度が、例えば40℃~60℃程度と低くなる。
 次に、第二充填材形成工程S9において、ソケット本体10の溝部13内にパッキン32を配置する。ソケット本体10に口金29を取付ける。このとき、ソケット本体10の突起12に口金29の凹部30aを係合させることで、口金29の位置合わせをする。
 硬化する前のエポキシ樹脂を口金29内に充填する。このエポキシ樹脂を鋳込んで硬化させ、図1に示すように第一充填材20よりも鋼線15の他端部15b側に第二充填材21を設ける。
 この後で、ケーブル本体16における被覆チューブ22の端部と口金29の口金本体30とをチューブ33で覆い、チューブ33を熱でシュリンクさせて取付ける。
 ソケット本体10の溝部14内にパッキン25を配置する。ソケット本体10に蓋板24を取付ける。
 なお、パッキン25及び蓋板24は、係止工程S3以降のいつでもソケット本体10に取付けることがきる。
 以上の工程により、ケーブル1が製造される。
 このように構成、製造されたケーブル1は、第一充填材20の弾性率よりも第二充填材21の弾性率の方が小さいことで、鋼線15の付加応力の集中を緩和し、かつ、鋼線15どうしのフレッチングを抑制する。
 以下では、本発明の実施例及び比較例を具体的に示してより詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 表1中に示す比較例1~5、実施例1及び2のサンプルを作成した。なお、表1中の「―」は、対応する値が無いことを意味する。
・比較例1:熱硬化性樹脂としてエポキシ樹脂を使用し、混合物中にセラミックショット及びフライアッシュを加えなかった。すなわち、混合物はエポキシ樹脂のみからなり、混合物に対して質量比2%のシランカップリング剤を混合物に加えた。セラミックショット及びフライアッシュを加えなかったため、骨材質量比は0となる。
・比較例2:熱硬化性樹脂としてエポキシ樹脂を使用し、混合物中にフライアッシュを加え、セラミックショットを加えなかった。骨材質量比を2.6とした。混合物に対して質量比で2%のシランカップリング剤を混合物に加えた。
・比較例3:熱硬化性樹脂としてエポキシ樹脂を使用し、混合物中にセラミックショットを加え、フライアッシュを加えなかった。骨材質量比を5.7とした。混合物に対して質量比で2%のシランカップリング剤を混合物に加えた。
・比較例4:熱硬化性樹脂としてエポキシ樹脂を使用し、混合物中にセラミックショットを加え、フライアッシュを加えなかった。骨材質量比を2.9とした。混合物に対して質量比で2%のシランカップリング剤を混合物に加えた。
・実施例1及び2:熱硬化性樹脂としてエポキシ樹脂を使用し、セラミックショット及びフライアッシュを予め混合し、さらにエポキシ樹脂を混合したものを混合物とした。セラミック質量比を7.2とし、骨材質量比を5.5とした。実施例1では混合物に対して質量比で2%のシランカップリング剤を混合物に加え、実施例2では混合物に対して質量比で4%のシランカップリング剤を混合物に加えた。
・比較例5:熱硬化性樹脂としてポリエステル樹脂を使用し、混合物中にセラミックショット及びフライアッシュを加えなかった。すなわち、混合物はポリエステル樹脂のみからなる。セラミックショット及びフライアッシュを加えなかったため、骨材質量比は0となる。
 比較例1~5、実施例1及び2を評価する評価項目は、スランプ量、圧縮強度、圧縮弾性率、硬化(鋳込み)時の発生温度、及び、硬化時の収縮である。
 スランプ量:
 スランプ量は、公知のスランプ試験を行い、混合物が自重で変形した後の直径である。具体的には、上底直径50mm、下底直径50mm、高さ50mmのスランプコーンに混合物を詰めて、スランプコーンを引き抜いた際に、自重で変形した混合物の直径を定規を用いて測定した。
 単位はmmで、合格となる条件は、直径が150mm以上となるように変形することである。スランプ量が大きいほど、混合物の流動性が高くなる。
 圧縮強度・圧縮弾性率:
 圧縮強度は、混合物を硬化させた後、圧縮試験機を用いて測定した。圧縮弾性率は混合物を硬化させた後、圧縮試験機と変位計を用いて測定した。
 圧縮強度の合格となる条件は100MPa以上、圧縮弾性率の合格となる条件は8000MPa以上である。圧縮強度、圧縮弾性率がこれらの値以上大きくないと、ケーブル本体が引かれたときに、楔状の第一充填材がソケット本体の筒孔の内周面で把持される公知の効果が発揮されない。
 硬化(鋳込み)時の発生温度:
 温度は、混合物を硬化させる際に熱電対を用いて測定した。
 第一充填材内に各種センサを配置して、ケーブルを用いる場合がある。この場合、混合物は硬化時に発熱するが、センサが損傷しないために硬化時の発生温度の合格となる条件は80℃以下程度である。
 硬化時の収縮:
 硬化時の収縮については、混合物をソケット内部に充填し,ソケット上端から充填材表面の高さの差を計測し確認を行った。
 混合物が硬化して第一充填材となる時に混合物が収縮すると、ソケット本体及び鋼線と第一充填材との間に隙間ができ、第一充填材から鋼線が抜けやすくなる等の問題がある。
 このため、合格となる条件は硬化時に混合物が収縮しないことである。
 各評価項目の試験結果、及び、合格/不合格の結果を表1中に示す。合格であるものを、「B」又は「A」で示す。「B」は合格となる条件を満たしたが合格となる条件を大幅に超えたものではないものを意味する。「A」は合格となる条件を満たし、かつ、合格となる条件を大幅に超えたものを意味する。
 不合格であるものを、「C」で示す。
 耐クリープ特性を高めるには、硬化時の発生温度を下げることが重要である。しかし、ケーブル1の一般的な性能を満足するために、スランプ量、圧縮強度、圧縮弾性率、及び、硬化時の収縮においても合格することが必要とした。
 このように、全ての評価項目で合格であるサンプルが、最終的に合格となる仕様となる。
Figure JPOXMLDOC01-appb-T000001
 比較例1では、混合物はエポキシ樹脂及びシランカップリング剤からなる。このため、スランプ量は、測定できない程大きくなり、「A」の合格となる。圧縮強度は合格となったが、圧縮弾性率、硬化時の発生温度、及び、硬化時の収縮が不合格となることが分かった。
 比較例2では、スランプ量及び圧縮強度が「A」の合格となり、硬化時の発生温度及び硬化時の収縮が合格となることが分かった。比較例2では、圧縮弾性率が不合格となることが分かった。
 比較例3では、硬化時の発生温度及び硬化時の収縮が合格となり、スランプ量、圧縮強度、及び、圧縮弾性率が不合格となることが分かった。
 比較例4では、圧縮強度、圧縮弾性率、硬化時の発生温度、及び、硬化時の収縮が合格となり、スランプ量が不合格となることが分かった。
 実施例1及び2では、圧縮強度及び圧縮弾性率が「A」の合格となり、スランプ量、硬化時の発生温度、及び、硬化時の収縮が合格となることが分かった。
 比較例5では、混合物はポリエステル樹脂からなる。このため、スランプ量は、測定できない程大きくなり、「A」の合格となる。比較例5では、圧縮強度、圧縮弾性率、硬化時の発生温度、及び、硬化時の収縮が不合格となることが分かった。
 以上の結果から、最終的に合格となる仕様は実施例1及び2であることが分かった。
 なお、比較例3、実施例1及び2に関して行った試験結果の写真を図7に示す。
 図7中の(a)は、比較例として、透明の試験管にセラミックショット27と、エポキシ樹脂28とを混合した後に充填した場合の状態を示す。セラミックショット27が沈殿し、セラミックショット27とエポキシ樹脂28とが分離することが分かった。
 図7中の(b)は、本実施形態のように、透明の試験管内でセラミックショット27及びフライアッシュを混合し、さらにエポキシ樹脂を混合した場合の状態を示す。試験管内に鋼線が配置されていないため、本実施形態のケーブルとは異なるが、本実施形態の第一充填材と同一の構成となる。この場合、セラミックショット27が沈殿せず、試験管内でセラミックショット27が均等に混ざり合っていることが分かった。
 以上説明したように、本実施形態のケーブル1及びケーブル1の製造方法によれば、エポキシ樹脂28の硬化熱がセラミックショット27及びフライアッシュを混合した予備混合物により吸収、発散されるため、鋳込み時の硬化温度が低くなる。また、セラミックショット27やフライアッシュは金属製の材料ではないため、海水等により腐食されにくい。したがって、本実施形態のケーブル1、及び、本実施形態のケーブル1の製造方法で製造されたケーブル1が浸水した際の耐食性を高めることができる。
 第一充填材20がセラミックショット27を含むことで、第一充填材20の圧縮弾性率が高くなり、耐クリープ特性が高まる。これにより、ソケット鋳込み材料である第一充填材20の変形を抑制することができる。
 ソケット本体10内にセラミックショット27が均等に分散されるため、第一充填材20の物性が第一充填材20内の位置によらず安定し、筒孔11の内周面や鋼線15の一端部15aにセラミックショット27が噛みつくように付く。
 第一充填材20がシランカップリング剤を含むことで、無機材料であるセラミックショット27及びフライアッシュとエポキシ樹脂との密着性を高めることができる。
 本ケーブル1の製造方法では、充填工程S5の前に線材挿通工程S1と係止工程S3とを行うことで、ソケット本体10の筒孔11の内周面から鋼線15の一端部15aが離間する。これにより、ソケット本体10の筒孔11の内周面と鋼線15の一端部15aと間にセラミックショット27を均一に充填することができる。
 第一充填材20よりも鋼線15の他端部15b側に、第二充填材21を設けている。ケーブル本体16が曲げられたときにケーブル本体16の曲率半径が小さくなる部分に弾性率が小さい第二充填材21を設けることで、付加応力の集中を緩和し、フレッチングを抑制する。これにより、鋼線15の曲げ応力が均一化されることで、鋼線15の耐疲労特性を高めることができる。
 セラミック質量比を7.2以上にすることで混合物20Aの流動性を高め、ソケット本体10と鋼線15との間により確実に混合物20Aを充填することができる。
 骨材質量比が5以上であることで、混合したセラミックショット27と、フライアッシュ及びエポキシ樹脂とが分離するのを抑制することができる。
 以上、本発明の一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。
 例えば、前記実施形態では、ケーブル1に第二充填材21を設けなくてもよい。すなわち、ケーブル1の製造方法において第二充填材形成工程S9を行わなくてもよい。
 熱硬化性樹脂はエポキシ樹脂であるとした。しかし、熱硬化性樹脂はエポキシ樹脂に限定されず、ポリエステル樹脂等でもよい。
 本実施形態のケーブル1は、海洋用として用いることができるが、その他にも橋梁用としても用いることができる。
 1  ケーブル
 10 ソケット本体
 10a 第一端部
 11 筒孔
 15 鋼線(線材)
 17 ボタンヘッド(拡径部)
 20 第一充填材(充填材)
 20A 混合物
 21 第二充填材
 23 定着板(固定板)
 23a 貫通孔
 27 セラミックショット(セラミック粒子)
 S1 線材挿通工程
 S3 係止工程
 S5 充填工程

Claims (7)

  1.  セラミック粒子とフライアッシュとを予め混合した予備混合物に熱硬化性樹脂を後から混合した混合物を、筒状に形成されて自身の筒孔内に線材の一端部が配置されたソケット本体の前記筒孔内に充填する充填工程を行うことを特徴とするケーブルの製造方法。
  2.  前記充填工程の前に、
     前記線材の一端部を、前記ソケット本体の前記筒孔、及び、固定板に形成された貫通孔にそれぞれ挿通させる線材挿通工程と、
     前記線材の一端部に設けられた拡径部を前記固定板の前記貫通孔の縁部に係止させ、前記筒孔の内周面から前記線材の一端部を離間させる係止工程と、
     を行うことを特徴とする請求項1に記載のケーブルの製造方法。
  3.  前記充填工程の後で、
     前記混合物を硬化させて充填材とし、
     前記充填材よりも前記線材の他端部側に、前記充填材の弾性率よりも小さい弾性率を有する第二充填材を設けることを特徴とする請求項1又は2に記載のケーブルの製造方法。
  4.  前記熱硬化性樹脂はエポキシ樹脂であることを特徴とする請求項1から3のいずれか一項に記載のケーブルの製造方法。
  5.  前記充填工程で混合する前記フライアッシュの質量に対する前記セラミック粒子の質量の比率が7.0以上であることを特徴とする請求項1から4のいずれか一項に記載のケーブルの製造方法。
  6.  前記充填工程で混合する、前記熱硬化性樹脂の質量に対する、前記フライアッシュの質量と前記セラミック粒子の質量の和の比率が、5以上であることを特徴とする請求項1から5のいずれか一項に記載のケーブルの製造方法。
  7.  筒状に形成されたソケット本体と、
     前記ソケット本体の筒孔内に一端部が配置された線材と、
     前記ソケット本体の筒孔内に充填され、セラミック粒子、フライアッシュ及び熱硬化性樹脂を混合して硬化させた充填材と、
     を備えることを特徴とするケーブル。
PCT/JP2015/079879 2014-10-22 2015-10-22 ケーブル及びケーブルの製造方法 WO2016063960A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/520,686 US10458063B2 (en) 2014-10-22 2015-10-22 Cable and method for manufacturing cable
CN201580056748.6A CN106852161A (zh) 2014-10-22 2015-10-22 缆线和缆线的制造方法
JP2016555395A JP6286578B2 (ja) 2014-10-22 2015-10-22 ケーブル及びケーブルの製造方法
EP15852062.7A EP3211133A4 (en) 2014-10-22 2015-10-22 Cable, and cable production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014215174 2014-10-22
JP2014-215174 2014-10-22

Publications (1)

Publication Number Publication Date
WO2016063960A1 true WO2016063960A1 (ja) 2016-04-28

Family

ID=55760990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079879 WO2016063960A1 (ja) 2014-10-22 2015-10-22 ケーブル及びケーブルの製造方法

Country Status (5)

Country Link
US (1) US10458063B2 (ja)
EP (1) EP3211133A4 (ja)
JP (1) JP6286578B2 (ja)
CN (1) CN106852161A (ja)
WO (1) WO2016063960A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11486143B2 (en) * 2020-03-26 2022-11-01 Felix Sorkin Intermediate anchor assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399738A (ja) * 1989-09-11 1991-04-24 Shinko Kosen Kogyo Kk ケーブル端部の定着方法及び定着構造
JPH09209501A (ja) * 1996-02-05 1997-08-12 Nippon Steel Corp 繊維強化プラスチック製ケーブルの定着部構造
JP2005239788A (ja) * 2004-02-24 2005-09-08 Jdc Corp エポキシ樹脂接着剤

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB838090A (en) * 1957-06-21 1960-06-22 Span Tendons Ltd Improvements relating to cables for pre-stressing concrete
USRE34350E (en) * 1974-07-09 1993-06-29 Freyssinet International (Stup) Tie formed of stressed high-tensile steel tendons
DE2610915A1 (de) * 1976-03-16 1977-09-22 Artur Rudolf Element zum einleiten von zugkraeften in teile aus faserverstaerktem kunststoff
US4448002A (en) * 1979-08-13 1984-05-15 Restra Patentverwertung Gmbh End-anchoring device for anchoring at least one bar made from a fibrous compound material and being used as tendon in pre-stressed concrete construction
EP0025856B1 (de) * 1979-08-13 1984-07-25 RESTRA-Patentverwertung GmbH Vorrichtung zur Endverankerung mindestens eines als Spannglied im Spannbetonbau eingesetzten Stabes aus Faser-Verbundstoff
AT373015B (de) * 1980-05-24 1983-12-12 Strabag Bau Ag Verankerung fuer ein spanndrahtbuendel
US4442646A (en) * 1980-10-28 1984-04-17 Ponteggi Est S.P.A. Device for anchoring tensioning elements
DE3224702C2 (de) * 1982-07-02 1986-01-16 Dyckerhoff & Widmann AG, 8000 München Vorrichtung zum Verankern und Koppeln eines Bündelspannglieds für Spannbeton
CH662595A5 (de) * 1983-08-22 1987-10-15 Losinger Ag Verankerung von freischwingenden zugelementen aus stahl eines dynamisch beanspruchten bauteiles.
US4501830A (en) * 1984-01-05 1985-02-26 Research One Limited Partnership Rapid set lightweight cement product
GB8407596D0 (en) * 1984-03-23 1984-05-02 Manuf Aceros Caucho Sa Reinforcing tendon
DE3435118A1 (de) * 1984-09-25 1986-04-03 Rudolf Dipl.-Ing. 7000 Stuttgart Bergermann Verfahren und vorrichtung zum verankern von seilen aus hochfestem stahldraht
ES2102632T3 (es) * 1992-03-24 1997-08-01 Vsl Int Ag Cuerpo transmisor de fuerza para un anclaje.
US5415490A (en) * 1993-07-13 1995-05-16 Flory; John F. Rope termination with constant-cross-section, divided-cavity potted socket
US6061879A (en) * 1998-12-23 2000-05-16 Otis Elevator Company Epoxy type termination for flexible flat termination member
FR2798409B1 (fr) * 1999-09-15 2002-01-04 Freyssinet Int Stup Systeme de connection d'un cable a une structure d'ouvrage de construction
JP4244116B2 (ja) * 2001-11-30 2009-03-25 俊昭 太田 繊維強化プラスティックの製造方法
WO2003102331A1 (fr) * 2002-05-30 2003-12-11 Anderson Technology Corporation Structure de partie extremite contrainte de corps a structure de beton precontraint et procede de fabrication de cette partie extremite contrainte
US7942964B2 (en) * 2003-01-09 2011-05-17 James Hardie Technology Limited Fiber cement composite materials using bleached cellulose fibers
US20040159058A1 (en) * 2003-02-19 2004-08-19 Jacques Gulbenkian Unbonded post-tensioning system
WO2013062534A1 (en) * 2011-10-26 2013-05-02 Empire Technology Development Llc Reinforcing element
DK2834418T3 (da) * 2012-04-05 2020-10-19 Soletanche Freyssinet Tætning til kabelforankringsindretning af en kabelkonstruktion
GB2507089A (en) * 2012-10-18 2014-04-23 Ccl Group Ltd An anchor having expanded sections in multi wired tendons
DK2935719T3 (da) * 2012-12-18 2017-11-20 Wobben Properties Gmbh Anker, spændeindretning, vindenergianlæg og fremgangsmåde til trækspænding af trækstrenge på et anker
US8844227B1 (en) * 2013-03-15 2014-09-30 Romeo Ilarian Ciuperca High performance, reinforced insulated precast concrete and tilt-up concrete structures and methods of making same
JP5438870B1 (ja) * 2013-05-28 2014-03-12 株式会社エスイー 炭素繊維筋とその製造方法、および連続製造装置とコンクリート構造体
GB2514621B (en) * 2013-05-31 2020-04-15 Vsl Int Ag Cable anchorage
US10738237B2 (en) * 2015-09-30 2020-08-11 Halliburton Energy Services, Inc. Methods, treatment fluids and systems for differential acidizing of a siliceous material
WO2017074442A1 (en) * 2015-10-30 2017-05-04 Halliburton Energy Services, Inc. Proppant aggregates for use in subterranean formation operations
WO2017074432A1 (en) * 2015-10-30 2017-05-04 Halliburton Energy Services, Inc. Proppant aggregate particulates for use in subterranean formation operations
JP6615802B2 (ja) * 2017-02-06 2019-12-04 日本碍子株式会社 目封止ハニカム構造体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399738A (ja) * 1989-09-11 1991-04-24 Shinko Kosen Kogyo Kk ケーブル端部の定着方法及び定着構造
JPH09209501A (ja) * 1996-02-05 1997-08-12 Nippon Steel Corp 繊維強化プラスチック製ケーブルの定着部構造
JP2005239788A (ja) * 2004-02-24 2005-09-08 Jdc Corp エポキシ樹脂接着剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3211133A4 *

Also Published As

Publication number Publication date
US10458063B2 (en) 2019-10-29
EP3211133A1 (en) 2017-08-30
US20170314195A1 (en) 2017-11-02
CN106852161A (zh) 2017-06-13
JPWO2016063960A1 (ja) 2017-08-17
EP3211133A4 (en) 2018-06-06
JP6286578B2 (ja) 2018-02-28

Similar Documents

Publication Publication Date Title
CA2976622C (en) End fixing structure of composite wire rod
CN102482845B (zh) 用于纤维增强塑料线绳体的端部锚固结构及方法
US10758041B2 (en) Parallel wire cable
US5718532A (en) Device and method for terminating flexible tensile strength members
CN106121134B (zh) 一种内嵌光纤frp筋引出线保护结构及其制备方法
JP6286578B2 (ja) ケーブル及びケーブルの製造方法
JP2007333795A (ja) 光ファイバ心線及びその製造方法
Jarek et al. The examination of the Glass Fiber Reinforced Polymer composite rods in terms of the application for concrete reinforcement
US20180169976A1 (en) Method for selective placement of reinforcing fibers in polymeric components
WO2017163860A1 (ja) コイルばね
CA3122795C (en) Threaded connection for steel pipe
Kychkin et al. Influence of ultrafine silicon carbide powders on the properties of epoxy resin
AU2011238303A1 (en) Composite steel strand coated by epoxy-resin
Park et al. Behavior characteristics of bonded type anchorage for CFRP tendon
Williams et al. Small-scale testing of damaged synthetic fiber mooring ropes
US11519364B2 (en) Rigid thermal protection composition
CN107588087B (zh) 一种离合器拉索及其制备方法
Szust et al. Experimental evaluation of climbing ropes under dynamic load
CN104455803A (zh) 复合丝海洋柔性管及其制备方法
CN109737134A (zh) 破损安全连杆
US11879208B2 (en) Composite control cables and stabilizing tendons for aircraft applications and method for manufacture of same
WO2015105139A1 (ja) 樹脂被覆高張力平型鋼線及びその製造方法
Kanna et al. Assessment of ductile fracture criteria under compressive pre-strain with digital image correlation
Abd Aziz Dynamic Loading on Carbon Fiber Wind to HDPE Composite Pipe (CFWHCP)
CN115062370A (zh) 一种cfrp绞线锚具优化设计的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016555395

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15520686

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015852062

Country of ref document: EP