WO2016063924A1 - Carbon black for fuel cell - Google Patents

Carbon black for fuel cell Download PDF

Info

Publication number
WO2016063924A1
WO2016063924A1 PCT/JP2015/079748 JP2015079748W WO2016063924A1 WO 2016063924 A1 WO2016063924 A1 WO 2016063924A1 JP 2015079748 W JP2015079748 W JP 2015079748W WO 2016063924 A1 WO2016063924 A1 WO 2016063924A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon black
fuel cell
catalyst
surface area
specific surface
Prior art date
Application number
PCT/JP2015/079748
Other languages
French (fr)
Japanese (ja)
Inventor
大貴 池田
祐作 原田
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2016555265A priority Critical patent/JP6563945B2/en
Publication of WO2016063924A1 publication Critical patent/WO2016063924A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to carbon black having high oxidation resistance and excellent catalyst supporting properties, and a fuel cell catalyst using the carbon black.
  • a fuel cell has a structure in which a gas diffusion layer, an electrode catalyst layer, and an electrolyte membrane are sandwiched between separators provided with a gas flow path such as hydrogen or oxygen.
  • the electrode catalyst layer is composed of catalyst metal particles such as platinum and a catalyst carrier, and carbon black having excellent gas diffusibility, electrical conductivity and ion conductivity is used for the catalyst carrier.
  • the electrode catalyst layer is formed by dispersing carbon black or fluorine-based polymer carrying catalyst metal particles such as platinum in a solvent made of water or alcohol, and spraying the dispersion onto a solid electrolyte membrane. .
  • Carbon black is an aggregate of crystallites called “pseudo-graphite structure” in which condensed benzene rings with ⁇ -electrons are stacked in multiple layers.
  • Patent Document 1 When heat treatment is performed at 2000 to 3000 ° C. in an inert atmosphere, Rearrangement develops a graphite structure and improves crystallinity (Patent Document 1). The higher the crystallinity, the less the portion that becomes the starting point of the surface oxidation reaction, so that the oxidation resistance of carbon black is improved.
  • graphitization of carbon black is accompanied by a decrease in specific surface area at the same time.
  • Patent Document 3 In addition, in order to improve the catalytic activity, it has been studied to improve the catalytic reaction efficiency by highly dispersing and supporting catalytic metal particles on carbon black having a specific surface area of 500 m 2 / g or more (Patent Document 3). .
  • An object of the present invention is to provide a carbon black having high oxidation resistance and excellent catalyst supporting properties.
  • the present invention employs the following means in order to solve the above problems.
  • the specific surface area measured by the BET method is 200 to 500 m 2 / g
  • the crystal layer thickness Lc measured by X-ray diffraction is 20 to 30 mm
  • the average primary particle diameter is 15 to 25 nm.
  • Carbon black (2)
  • a fuel cell catalyst comprising catalyst metal particles supported on the carbon black according to (1) or (2).
  • the present invention provides a carbon black capable of highly dispersing and supporting catalyst metal particles and having excellent oxidation resistance.
  • the specific surface area of carbon black is 200 to 500 m 2 / g.
  • the specific surface area can be measured by the BET method in accordance with JIS K6217-2: 2001.
  • the specific surface area exceeds 500 m 2 / g, the number of places where the catalytic metal particles can be supported increases, but this position is the starting point of the surface oxidation reaction.
  • the oxidation resistance of carbon black is reduced.
  • the specific surface area is less than 200 m 2 / g, the places where the catalyst metal particles are supported are greatly reduced, which causes a reduction in catalytic reaction efficiency.
  • the carbon black of the present invention has a specific surface area sufficient to carry the catalyst metal particles in a highly dispersed manner, and can maintain oxidation resistance.
  • the specific surface area of carbon black is preferably 220 to 380 m 2 / g, more preferably 240 to 360 m 2 / g.
  • an activation treatment for making the surface porous which can be roughly classified into a gas activation method and a chemical activation method.
  • gas activation using air or water vapor is preferable in order to prevent impurities from being mixed into the carbon black powder.
  • the activation treatment is generally performed at 500 to 1000 ° C., but when obtaining the carbon black according to the present invention, it is desirable to perform the treatment at a temperature of 500 to 650 ° C. in order to maintain high crystallinity and productivity.
  • the carbon black has a crystal layer thickness Lc of 20 to 30 mm.
  • K is a form factor constant of 0.9
  • is an X-ray wavelength of 1.54 mm
  • is an angle indicating a maximum value in the (002) diffraction line absorption band
  • is a half-value width in the (002) diffraction line absorption band. (Radians).
  • the crystal layer thickness Lc is an index indicating the crystallinity of the carbon black, and if it is less than 20%, the portion that becomes the starting point of the surface oxidation reaction increases, so that the oxidation resistance of the carbon black decreases.
  • the edge (edge) in the pseudo-graphite structure that is, the field where catalyst metal particles are deposited is reduced.
  • the particles cannot be supported in a highly dispersed state.
  • the crystal layer thickness Lc of the carbon black is preferably 22 to 28 mm, more preferably 24 to 26 mm.
  • carbon black is graphitized by heat treatment at 2000 to 3000 ° C. in an inert atmosphere.
  • the graphitization of the carbon black proceeds by treatment at a high temperature for a long time, and the crystal layer thickness Lc can be increased to about 20 to 100 mm, but the specific surface area decreases.
  • the average primary particle size is as small as 15 to 25 nm in order to achieve both oxidation resistance and catalyst supporting properties.
  • the average primary particle diameter can be obtained by measuring the primary particle diameter of 100 carbon blacks from a 50,000-magnification image of a transmission electron microscope (TEM) and calculating the average value.
  • the primary particles of carbon black have a small aspect ratio and a shape close to a true sphere, but are not perfect spheres. Therefore, the largest of the line segments connecting the two outer peripheral points of the primary particles in the TEM image is the primary particle diameter of carbon black.
  • the specific surface area of many powders containing carbon black depends on the particle size and surface roughness.
  • an activation treatment for making the surface porous whereby the specific surface area of the powder is increased by, for example, twice or more.
  • the inventor has found that when the activation treatment is performed under the same conditions, the increase rate of the specific surface area is improved as the average primary particle size is smaller.
  • the rate of increase of the specific surface area can be controlled by changing the activation conditions such as the treatment temperature and time, the crystallinity and productivity decrease as the treatment is performed at a high temperature for a long time.
  • the average primary particle diameter of carbon black is preferably 16 to 24 nm, and more preferably 18 to 22 nm.
  • the surface oxidation reaction of carbon black by the cathode potential proceeds as follows. That is, single-bond surface functional groups such as phenolic hydroxyl groups are generated in the first stage, and they are oxidized to double-bond surface functional groups such as carboxyl groups in the second stage. Desorbs as carbon. Therefore, as the amount of surface functional groups on the carbon black increases, the reaction of the second and third stages proceeds easily without going through the first-stage surface functional group generation process, thus promoting the surface oxidation reaction. End up.
  • One means for evaluating the surface functional group species present on the carbon black is a temperature programmed desorption (TPD) method.
  • the TPD method is a method for measuring the amount of CO, CO 2 and H 2 O that are desorbed when a previously dried sample is heated in an inert atmosphere at a constant heating rate.
  • the surface functional group species can be estimated from the profile of the desorbed gas amount.
  • oxygen-containing functional groups such as phenolic hydroxyl groups, ether groups, carboxyl groups, carbonyl groups, and lactone groups exist on carbon black.
  • the volatile content of carbon black in the present invention is preferably 0.10 to 1.00%.
  • the volatile matter is an index for evaluating the amount of surface functional groups present on the carbon black.
  • the volatile matter can be measured from a weight change when a sample which has been dried at 105 ° C. for 1 hour to remove moisture is heated in vacuum at 950 ° C. for 5 minutes.
  • the present inventors have found that the surface oxidation reaction of carbon black is strongly dependent on the amount of surface functional groups as long as it is an oxygen-containing functional group, regardless of the type of surface functional group.
  • the volatile content exceeds 1.00%, the amount of surface functional groups increases, so that the surface oxidation reaction of carbon black by the cathode potential tends to proceed, and the oxidation resistance tends to decrease.
  • the volatile content is less than 0.10%, the amount of surface functional groups decreases, and thus hydrophilicity tends to be remarkably lowered. For this reason, it is difficult to disperse the catalyst metal particles on the carbon black in the precursor solution, and the catalyst metal particles may not be supported in a highly dispersed state. Volatiles are reduced by the graphitization treatment heated in an inert atmosphere, and increased by the activation treatment heated in an oxygen-containing atmosphere.
  • the volatile content of carbon black is preferably 0.20 to 0.80%, and more preferably 0.30 to 0.70%.
  • the carbon black production method of the present invention is characterized in that the raw material carbon black having a controlled average primary particle size is graphitized at 1600 to 1800 ° C. and then activated at 500 to 650 ° C.
  • the activation treatment after the graphitization treatment it is possible to preferentially burn the amorphous carbon that has not been sufficiently crystallized, as well as to increase the specific surface area, thereby enabling further crystallization.
  • the method for producing the raw material carbon black according to the present invention is not particularly limited.
  • a raw material gas such as hydrocarbon is supplied from a nozzle installed at the top of the reactor, and a pyrolysis reaction and / or a partial combustion reaction is performed. Can produce carbon black and collect it from the bag filter directly connected to the bottom of the reactor.
  • the raw material gas to be used is not particularly limited, and gaseous hydrocarbons such as acetylene, methane, ethane, propane, ethylene, propylene, and butadiene, and oils such as toluene, benzene, xylene, gasoline, kerosene, light oil, and heavy oil Gasified hydrocarbons can be used. A plurality of these can also be mixed and used.
  • acetylene gas having a small amount of impurities such as sulfur As one means for controlling the average primary particle size of the raw material carbon black, there is a method of reducing the particle size by adding an oxidizing gas such as air together with the raw material gas into the reaction furnace and causing incomplete combustion. Furthermore, if the carbon black is rapidly cooled immediately after generation by giving a swirling flow in the reactor and greatly shortening the residence time in a high temperature field, it is suitable for reducing the particle size. It is preferable to use water vapor, hydrogen, nitrogen, or the like as the swirling gas, and the water vapor content is 10 to 20 vol%. Although water vapor has a cooling effect and an activation effect, if the content rate of the water vapor in the swirling gas exceeds 20 vol%, the activation effect increases, so that the crystallinity of the generated carbon black is significantly lowered.
  • a crucible such as graphite, alumina, or silicon carbide can be used as a container for filling the raw material carbon black.
  • the packing density can be determined from the weight of the raw material carbon black to be filled and the volume of the crucible.
  • the packing density of the raw material carbon black into the crucible is preferably 0.04 g / ml or less, and more preferably 0.03 g / ml or less. However, if this packing density is too small, the productivity is lowered, so that it is preferably 0.01 g / ml or more. Further, the crystal layer thickness Lc of the raw material carbon black before the graphitization treatment is preferably 15 mm or more, and more preferably 16 mm or more.
  • crystal layer thickness Lc of the raw material carbon black is less than 15 mm, graphitization at a high temperature exceeding 1800 ° C. is required, and the specific surface area is extremely reduced.
  • the crystal layer thickness Lc of the raw material carbon black can be changed depending on the reaction temperature at the time of carbon black synthesis.
  • the temperature of the activation treatment is preferably 500 to 650 ° C. Since the average primary particle diameter of the raw material carbon black is small, there is a sufficient specific surface area increasing effect even if the activation treatment temperature is set at a relatively low temperature. Further, the volatile content of the carbon black after the activation treatment can be reduced to, for example, 1.00% or less.
  • the catalyst for a fuel cell of the present invention is obtained by carrying highly dispersed metal catalyst particles on the surface of the carbon black of the present invention.
  • the catalyst metal it is preferable to use platinum alloy in addition to platinum.
  • the platinum alloy-forming metal include palladium, rhodium, iridium, ruthenium, iron, titanium, nickel, cobalt, gold, silver, copper, chromium, manganese, molybdenum, tungsten, aluminum, silicon, rhenium, zinc, and tin.
  • platinum-ruthenium or a platinum-cobalt alloy is preferable because it is effective in preventing carbon monoxide poisoning.
  • the platinum alloy composition is preferably 30 to 90% by mass of platinum.
  • the size of the catalyst metal particles is preferably 10 to 50 mm for platinum, for example.
  • the manufacturing method of the catalyst for fuel cells is not particularly limited, examples of the case where the catalyst metal particles are platinum include the following methods. First, an aqueous solution of hexachloroplatinic acid (IV) is added to a dispersion in which carbon black is suspended in water to obtain a mixed solution A, to which 10 times equivalent sodium borohydride is added (reduction treatment) to platinum. Then, after depositing platinum particles on the surface of carbon black, a catalyst for a fuel cell can be produced by filtration, washing and drying. When the catalyst metal particles are a platinum alloy, a mixed solution containing platinum and an alloy-forming metal is used.
  • a mixed solution B is prepared by adding a ruthenium (III) trichloride aqueous solution containing a predetermined amount of ruthenium to the mixed solution A.
  • ruthenium (III) trichloride aqueous solution containing a predetermined amount of ruthenium is added to the mixed solution A (reduction treatment), and after the platinum alloy particles are precipitated on the surface of the carbon black, the fuel cell is filtered, washed and dried. Catalysts can be produced.
  • the polymer electrolyte fuel cell using the fuel cell catalyst of the present invention can be produced, for example, as follows. That is, a fuel cell catalyst is mixed with a tetrafluoroethylene resin powder, and a paste obtained by adding alcohol is applied to one side of carbon paper to form a catalyst layer. And a Nafion solution is uniformly apply
  • the electrodes are stacked on both sides of a Nafion membrane (perfluorosulfonic acid electrolyte membrane) so as to be in contact with each other, and are hot-pressed by hot pressing to obtain a membrane electrode assembly (MEA).
  • MEA membrane electrode assembly
  • Example 1 A raw material carbon black having a specific surface area of 392 m 2 / g, a crystal layer thickness Lc of 17 mm, and an average primary particle diameter of 19 nm obtained by pyrolyzing acetylene gas at 2000 ° C. is graphitized at 1700 ° C. for 1 hour in a nitrogen atmosphere. Then, activation treatment was performed at 550 ° C. for 30 minutes. The packing density into the alumina container during the graphitization treatment was 0.03 g / ml. The obtained carbon black was measured for the following physical properties. The evaluation results are shown in Table 1. (1) Specific surface area: Measured according to JIS K 6217-2.
  • K is a form factor constant of 0.9
  • is an X-ray wavelength of 1.54 mm
  • is an angle indicating a maximum value in the (002) diffraction line absorption band
  • is a half-value width in the (002) diffraction line absorption band.
  • the obtained carbon black was mixed with a chloroplatinic acid aqueous solution.
  • the mixture was stirred at 80 ° C. for 30 minutes and then cooled to room temperature.
  • 0.5M sodium borohydride was added in 5 portions to precipitate platinum, filtered, washed and dried to obtain a fuel cell catalyst.
  • the platinum weight contained in the obtained platinum-supported carbon black was quantified using an inductively coupled plasma mass spectrometer (ICP-MS), and the platinum weight ratio (platinum support ratio) per unit weight of the platinum-supported carbon black was calculated. did.
  • the calculated platinum loading is shown in Table 1.
  • a fuel cell single cell was constructed by sandwiching and integrating with a separator and a current collector plate.
  • This fuel cell single cell was introduced at a temperature of 90 ° C., 10 ml / min of nitrogen was introduced into both electrodes, and cyclic voltammetry measurement was performed in a potential range of 1.0 V to 0.1 V (vs. NHE).
  • the effective specific surface area (ECSA) of the platinum catalyst was calculated from the adsorption wave.
  • this fuel cell single cell was introduced at a temperature of 90 ° C. with 4 ml / min of hydrogen and 60 ml / min of air, and a constant potential scan of 1.0 V to 0.6 V (vs. NHE) at 20 mV / s.
  • cyclic voltammetry measurement was performed in a nitrogen atmosphere in the same manner as described above, and the effective specific surface area (ECSA) of the platinum catalyst was calculated from the obtained hydrogen adsorption wave.
  • ECSA effective specific surface area
  • Comparative Example 1 A fuel cell catalyst and a single fuel cell were prepared and evaluated using commercially available carbon black (“VULCAN (registered trademark) XC72” manufactured by CABOT). The evaluation results are shown in Table 2.
  • Comparative Example 2 A fuel cell catalyst and a fuel cell single cell were prepared and evaluated using the steam activated graphitized carbon black described in the examples of paragraphs (0009) to (0010) of Patent Document 2. The evaluation results are shown in Table 2.
  • Examples 2 to 8 and Comparative Examples 3 to 12 Carbon black was obtained in the same manner as in Example 1 except that the raw material carbon black used, the graphitization temperature, and the activation temperature were changed to the conditions shown in Tables 1 and 2.
  • Comparative Example 3 graphitization treatment and activation treatment were performed, in Comparative Example 4, activation treatment was not performed, and in Comparative Example 5, no graphitization treatment was performed.
  • Comparative Example 6 the packing density into the alumina container during the graphitization treatment was 0.08 g / ml, and in Comparative Example 12, porous carbon black having a hollow structure was used as the raw material carbon black. The evaluation results are shown in Tables 1 and 2.
  • the carbon black of the present invention showed a high platinum loading and retained the effective specific surface area (ECSA) of the platinum catalyst for a long time.
  • ECSA effective specific surface area
  • the carbon black of the present invention can be used as a catalyst carrier for various fuel cells. This makes it possible to produce a fuel cell with high power generation performance and excellent long-term durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

 Provided is carbon black on which catalytic metal particles can be supported in a highly dispersed manner, and which exhibits excellent oxidation resistance. The carbon black is characterized in having a specific surface area, as measured by the BET method, of 200-500m2, a crystal layer thickness Lc, as measured by X ray diffraction, of 20-30Å, and an average primary particle diameter of 15-25nm. The content of volatile matter in the carbon black is preferably 0.10-1.00%. A fuel cell catalyst is obtained by supporting catalytic metal particles on the carbon black.

Description

燃料電池用カーボンブラックCarbon black for fuel cells
本発明は、耐酸化性が高く、触媒担持特性にも優れたカーボンブラック及び、それを用いた燃料電池用触媒に関する。 The present invention relates to carbon black having high oxidation resistance and excellent catalyst supporting properties, and a fuel cell catalyst using the carbon black.
燃料電池は、水素や酸素といったガスの流路を施したセパレーターの間に、ガス拡散層、電極触媒層、電解質膜を挟んだ構成となっている。電極触媒層の構成については様々あるが、例えば白金等の触媒金属粒子と触媒担体から構成されており、触媒担体にはガス拡散性、電気伝導性及びイオン伝導性に優れたカーボンブラックが使用されている。電極触媒層は、白金等の触媒金属粒子を担持したカーボンブラックやフッ素系高分子を水やアルコールからなる溶媒に分散させて、その分散液を固体電解質膜にスプレー塗布することなどによって形成される。 A fuel cell has a structure in which a gas diffusion layer, an electrode catalyst layer, and an electrolyte membrane are sandwiched between separators provided with a gas flow path such as hydrogen or oxygen. There are various configurations of the electrode catalyst layer. For example, it is composed of catalyst metal particles such as platinum and a catalyst carrier, and carbon black having excellent gas diffusibility, electrical conductivity and ion conductivity is used for the catalyst carrier. ing. The electrode catalyst layer is formed by dispersing carbon black or fluorine-based polymer carrying catalyst metal particles such as platinum in a solvent made of water or alcohol, and spraying the dispersion onto a solid electrolyte membrane. .
近年、燃料電池の更なる特性向上のために、電極性能の長期耐久性や電極触媒層における触媒活性の向上が求められている。
燃料電池の電極性能は長期使用における触媒反応の繰り返しによって低下する。これは、カソード電位が1.0~0.6V(.vs NHE)の範囲でカーボンブラックが電気化学的に酸化されて表面官能基の生成及び脱離が進行し、表面構造が変化し、担持された触媒金属粒子が凝集又は脱落するためである。さらに、カソード電位が1.5~1.0V(.vs NHE)の範囲になると、カーボンブラックの一部が水と反応して一酸化炭素や二酸化炭素となり、腐食してしまう。
カーボンブラックの耐酸化性を向上させるためには、高結晶化(グラファイト化)が有効である。カーボンブラックはπ電子をもった縮合ベンゼン環が複数層に重なった“疑似グラファイト構造”とよばれる結晶子の集合体であるが、不活性雰囲気中2000~3000℃で加熱処理すると、結晶子の再配列によりグラファイト構造が発達して、結晶性が向上する(特許文献1)。結晶性が高いほど表面酸化反応の起点となる部分が減少するため、カーボンブラックの耐酸化性は向上する。しかしながら、カーボンブラックのグラファイト化は、それと同時に比表面積の低下を伴う。つまり耐酸化性だけを重視してグラファイト化し過ぎると、比表面積は50~150m2/g程度にまで低下するため、触媒金属粒子を高分散担持できず、触媒反応効率が低下してしまう(特許文献2)。
In recent years, in order to further improve the characteristics of fuel cells, long-term durability of electrode performance and improvement of catalytic activity in the electrode catalyst layer have been demanded.
The electrode performance of a fuel cell is degraded by repeated catalytic reactions during long-term use. This is because carbon black is electrochemically oxidized in the cathode potential range of 1.0 to 0.6 V (.vs NHE), the generation and elimination of surface functional groups proceeds, the surface structure changes, and the support This is because the formed catalytic metal particles aggregate or fall off. Further, when the cathode potential is in the range of 1.5 to 1.0 V (.vs NHE), part of the carbon black reacts with water to become carbon monoxide or carbon dioxide, which corrodes.
In order to improve the oxidation resistance of carbon black, high crystallization (graphitization) is effective. Carbon black is an aggregate of crystallites called “pseudo-graphite structure” in which condensed benzene rings with π-electrons are stacked in multiple layers. However, when heat treatment is performed at 2000 to 3000 ° C. in an inert atmosphere, Rearrangement develops a graphite structure and improves crystallinity (Patent Document 1). The higher the crystallinity, the less the portion that becomes the starting point of the surface oxidation reaction, so that the oxidation resistance of carbon black is improved. However, graphitization of carbon black is accompanied by a decrease in specific surface area at the same time. In other words, too much graphitization with emphasis on oxidation resistance alone reduces the specific surface area to about 50 to 150 m 2 / g, so that the catalyst metal particles cannot be supported in a highly dispersed state and the catalytic reaction efficiency decreases (patents). Reference 2).
また、触媒活性を向上させるためには、比表面積が500m2/g以上のカーボンブラックに触媒金属粒子を高分散担持し、触媒反応効率を向上させることなどが検討されている(特許文献3)。 In addition, in order to improve the catalytic activity, it has been studied to improve the catalytic reaction efficiency by highly dispersing and supporting catalytic metal particles on carbon black having a specific surface area of 500 m 2 / g or more (Patent Document 3). .
特表2007-505975号公報Special table 2007-505975 特開平6-140047号公報Japanese Patent Laid-Open No. 6-140047 特開2007-112660号公報JP 2007-112660 A
しかしながら、高比表面積のカーボンブラックを担体に用いた場合、表面酸化反応の起点となる部分が増加するため、カーボンブラックの耐酸化性が低下してしまうといった問題があった。本発明の目的は、耐酸化性が高く、触媒担持特性にも優れたカーボンブラックを提供することである。 However, when carbon black having a high specific surface area is used as a support, there is a problem that the oxidation resistance of the carbon black is lowered because the starting point of the surface oxidation reaction is increased. An object of the present invention is to provide a carbon black having high oxidation resistance and excellent catalyst supporting properties.
本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)BET法により測定した比表面積が200~500m2/g、X線回折により測定した結晶層厚みLcが20~30Åであり、平均一次粒子径が15~25nmであることを特徴とするカーボンブラック。
(2)揮発分が0.10~1.00%であることを特徴とする前記(1)に記載のカーボンブラック。
(3)前記(1)または前記(2)に記載のカーボンブラックに触媒金属粒子が担持されてなる燃料電池用触媒。
The present invention employs the following means in order to solve the above problems.
(1) The specific surface area measured by the BET method is 200 to 500 m 2 / g, the crystal layer thickness Lc measured by X-ray diffraction is 20 to 30 mm, and the average primary particle diameter is 15 to 25 nm. Carbon black.
(2) The carbon black as described in (1) above, which has a volatile content of 0.10 to 1.00%.
(3) A fuel cell catalyst comprising catalyst metal particles supported on the carbon black according to (1) or (2).
本発明は、触媒金属粒子の高分散担持が可能で、かつ、耐酸化性に優れたカーボンブラックを提供する。 The present invention provides a carbon black capable of highly dispersing and supporting catalyst metal particles and having excellent oxidation resistance.
本発明の一実施形態におけるカーボンブラックの比表面積は200~500m2/gである。比表面積はJIS K6217-2:2001に従ってBET法により測定することができ、比表面積が500m2/gを超えると触媒金属粒子が担持され得る箇所は増加するが、その箇所は表面酸化反応の起点でもあるため、カーボンブラックの耐酸化性が低下する。また、比表面積が200m2/g未満であると触媒金属粒子が担持される箇所が大幅に減少するため、触媒反応効率を低下させる要因となる。本発明のカーボンブラックは、触媒金属粒子が高分散担持されるのに十分な比表面積を持ち、かつ、耐酸化性を維持することができる。カーボンブラックの比表面積は好ましくは220~380m2/gであり、より好ましくは240~360m2/gである。 In one embodiment of the present invention, the specific surface area of carbon black is 200 to 500 m 2 / g. The specific surface area can be measured by the BET method in accordance with JIS K6217-2: 2001. When the specific surface area exceeds 500 m 2 / g, the number of places where the catalytic metal particles can be supported increases, but this position is the starting point of the surface oxidation reaction. However, the oxidation resistance of carbon black is reduced. Further, when the specific surface area is less than 200 m 2 / g, the places where the catalyst metal particles are supported are greatly reduced, which causes a reduction in catalytic reaction efficiency. The carbon black of the present invention has a specific surface area sufficient to carry the catalyst metal particles in a highly dispersed manner, and can maintain oxidation resistance. The specific surface area of carbon black is preferably 220 to 380 m 2 / g, more preferably 240 to 360 m 2 / g.
カーボンブラックを高比表面積化する手段の一つとして、表面を多孔質化する賦活処理があり、ガス賦活法、薬品賦活法に大別できる。本発明においては、カーボンブラック粉体への不純物の混入を防ぐため、空気または水蒸気を用いて行うガス賦活が好ましい。賦活処理は一般的に500~1000℃で行われるが、本発明に係るカーボンブラックを得るに当たっては、結晶性及び生産性を高く保つために、500~650℃の温度で処理することが望ましい。 As a means for increasing the specific surface area of carbon black, there is an activation treatment for making the surface porous, which can be roughly classified into a gas activation method and a chemical activation method. In the present invention, gas activation using air or water vapor is preferable in order to prevent impurities from being mixed into the carbon black powder. The activation treatment is generally performed at 500 to 1000 ° C., but when obtaining the carbon black according to the present invention, it is desirable to perform the treatment at a temperature of 500 to 650 ° C. in order to maintain high crystallinity and productivity.
本発明の一実施形態におけるカーボンブラックの結晶層厚みLcは20~30Åである。結晶層厚みLcはX線回折により求めることができる。具体的には、CuKα線を用い、測定範囲2θ=10~40゜、スリット幅0.5゜の条件でX線回折を行う。得られた(002)面の回折線を用いて、Scherrerの式:Lc(Å)=(K×λ)/(β×cosθ)により結晶層厚みLcを求めることができる。ここでKは形状因子定数0.9、λはX線の波長1.54Å、θは(002)回折線吸収バンドにおける極大値を示す角度、βは(002)回折線吸収バンドにおける半価幅(ラジアン)である。結晶層厚みLcはカーボンブラックの結晶性を示す指標であり、20Å未満であると表面酸化反応の起点となる部分が増加するため、カーボンブラックの耐酸化性は低下する。また、カーボンブラックの耐酸化性を向上させるために結晶層厚みLcが30Åを超えるまでグラファイト化すると、疑似グラファイト構造における端(エッジ)、すなわち触媒金属粒子が析出する場が減少するため、触媒金属粒子を高分散担持させることができなくなる。カーボンブラックの結晶層厚みLcは好ましくは22~28Åであり、より好ましくは24~26Åである。 In one embodiment of the present invention, the carbon black has a crystal layer thickness Lc of 20 to 30 mm. The crystal layer thickness Lc can be determined by X-ray diffraction. Specifically, X-ray diffraction is performed using CuKα rays under the conditions of a measurement range 2θ = 10 to 40 ° and a slit width of 0.5 °. Using the diffraction line of the (002) plane obtained, the crystal layer thickness Lc can be obtained by Scherrer's formula: Lc (Å) = (K × λ) / (β × cos θ). Here, K is a form factor constant of 0.9, λ is an X-ray wavelength of 1.54 mm, θ is an angle indicating a maximum value in the (002) diffraction line absorption band, and β is a half-value width in the (002) diffraction line absorption band. (Radians). The crystal layer thickness Lc is an index indicating the crystallinity of the carbon black, and if it is less than 20%, the portion that becomes the starting point of the surface oxidation reaction increases, so that the oxidation resistance of the carbon black decreases. Further, when graphitization is performed until the crystal layer thickness Lc exceeds 30% in order to improve the oxidation resistance of the carbon black, the edge (edge) in the pseudo-graphite structure, that is, the field where catalyst metal particles are deposited is reduced. The particles cannot be supported in a highly dispersed state. The crystal layer thickness Lc of the carbon black is preferably 22 to 28 mm, more preferably 24 to 26 mm.
カーボンブラックをグラファイト化する方法は、不活性雰囲気中2000~3000℃で加熱処理するのが一般的である。高温、長時間の処理により、カーボンブラックのグラファイト化は進行し、結晶層厚みLcを20~100Å程度にまで増加させることが可能であるが、比表面積は減少してしまう。本発明におけるカーボンブラックを製造するに当たっては、耐酸化性と触媒担持特性を両立するために、1600~1800℃の温度で処理することが望ましい。 In general, carbon black is graphitized by heat treatment at 2000 to 3000 ° C. in an inert atmosphere. The graphitization of the carbon black proceeds by treatment at a high temperature for a long time, and the crystal layer thickness Lc can be increased to about 20 to 100 mm, but the specific surface area decreases. In producing the carbon black in the present invention, it is desirable to treat at a temperature of 1600 to 1800 ° C. in order to achieve both oxidation resistance and catalyst supporting properties.
本発明の一実施形態におけるカーボンブラックは、耐酸化性と触媒担持特性を両立するために、平均一次粒子径が15~25nmと小粒径であることを特徴の一つとする。平均一次粒子径は、透過型電子顕微鏡(TEM)の5万倍画像から100個のカーボンブラックの一次粒子径を測り、平均値を算出して求めることができる。カーボンブラックの一次粒子はアスペクト比が小さく真球に近い形状をしているが、完全な真球ではない。そこで、TEM画像における一次粒子の外周2点を結ぶ線分のうちで最大のものをカーボンブラックの一次粒子径とした。一般的に、カーボンブラックを含む多くの粉体の比表面積は、粒子径及び表面粗さによって決まる。すなわち、粒子径が小さく、表面が粗い粒子であるほど、比表面積は高くなる。カーボンブラックを高比表面積化する手段の一つとして、表面を多孔質化する賦活処理があり、それにより粉体の比表面積は、例えば2倍以上に増加する。本発明者は、同一条件で賦活処理した際、平均一次粒子径が小さいほど比表面積の増加率が向上するということを見出した。処理温度や時間といった賦活条件を変更することでも比表面積の増加率を制御できるが、高温、長時間で処理するほど結晶性及び生産性が低下してしまう。平均一次粒子径が25nmを超えると結晶性を維持したまま200m2/g以上に高比表面積化することができず、触媒金属粒子を高分散担持できなくなる。中空構造を有する多孔性カーボンブラックの場合、平均一次粒子径が25nmを超えていても200m2/g以上に高比表面積化することができるが、担持される触媒金属粒子の一部が細孔内部に入り込んでしまい、触媒反応効率が低下してしまう。また、平均一次粒子径が15nm未満であると、高比表面積であっても担持された触媒金属粒子同士が互いに接触して凝集しやすくなり、触媒反応効率が低下してしまう。カーボンブラックの平均一次粒子径は好ましくは16~24nmであり、より好ましくは18~22nmである。 One feature of the carbon black in one embodiment of the present invention is that the average primary particle size is as small as 15 to 25 nm in order to achieve both oxidation resistance and catalyst supporting properties. The average primary particle diameter can be obtained by measuring the primary particle diameter of 100 carbon blacks from a 50,000-magnification image of a transmission electron microscope (TEM) and calculating the average value. The primary particles of carbon black have a small aspect ratio and a shape close to a true sphere, but are not perfect spheres. Therefore, the largest of the line segments connecting the two outer peripheral points of the primary particles in the TEM image is the primary particle diameter of carbon black. In general, the specific surface area of many powders containing carbon black depends on the particle size and surface roughness. That is, the smaller the particle diameter and the rougher the surface, the higher the specific surface area. As one of means for increasing the specific surface area of carbon black, there is an activation treatment for making the surface porous, whereby the specific surface area of the powder is increased by, for example, twice or more. The inventor has found that when the activation treatment is performed under the same conditions, the increase rate of the specific surface area is improved as the average primary particle size is smaller. Although the rate of increase of the specific surface area can be controlled by changing the activation conditions such as the treatment temperature and time, the crystallinity and productivity decrease as the treatment is performed at a high temperature for a long time. If the average primary particle diameter exceeds 25 nm, the specific surface area cannot be increased to 200 m 2 / g or more while maintaining the crystallinity, and the catalyst metal particles cannot be supported in a highly dispersed state. In the case of porous carbon black having a hollow structure, even if the average primary particle diameter exceeds 25 nm, the specific surface area can be increased to 200 m 2 / g or more. It will enter the interior and the catalytic reaction efficiency will decrease. On the other hand, if the average primary particle diameter is less than 15 nm, even if the specific surface area is high, the supported catalytic metal particles are likely to come into contact with each other and aggregate, and the catalytic reaction efficiency is lowered. The average primary particle diameter of carbon black is preferably 16 to 24 nm, and more preferably 18 to 22 nm.
カソード電位によるカーボンブラックの表面酸化反応は以下のように進行すると考えられる。すなわち、第一段階でフェノール性水酸基などの単結合性の表面官能基が生成し、第二段階でそれらがカルボキシル基などの二重結合性の表面官能基へと酸化され、第三段階では二酸化炭素となって脱離する。したがって、カーボンブラック上の表面官能基量が多くなると、第一段階の表面官能基生成過程を経ずして容易に第二段階、第三段階の反応が進行するため、表面酸化反応が促進されてしまう。
カーボンブラック上に存在する表面官能基種を評価する手段の一つとして、昇温脱離(TPD)法がある。TPD法は、予め乾燥した試料を不活性雰囲気中で一定の昇温速度で加熱した際に脱離するCO、CO2及びH2Oの量を測定する方法であり、得られる脱離温度と脱離ガス量のプロファイルから表面官能基種を推定することができる。TPD測定の結果、カーボンブラック上にはフェノール性水酸基、エーテル基、カルボキシル基、カルボニル基、ラクトン基などの含酸素官能基が存在することがわかっている。
It is thought that the surface oxidation reaction of carbon black by the cathode potential proceeds as follows. That is, single-bond surface functional groups such as phenolic hydroxyl groups are generated in the first stage, and they are oxidized to double-bond surface functional groups such as carboxyl groups in the second stage. Desorbs as carbon. Therefore, as the amount of surface functional groups on the carbon black increases, the reaction of the second and third stages proceeds easily without going through the first-stage surface functional group generation process, thus promoting the surface oxidation reaction. End up.
One means for evaluating the surface functional group species present on the carbon black is a temperature programmed desorption (TPD) method. The TPD method is a method for measuring the amount of CO, CO 2 and H 2 O that are desorbed when a previously dried sample is heated in an inert atmosphere at a constant heating rate. The surface functional group species can be estimated from the profile of the desorbed gas amount. As a result of TPD measurement, it is known that oxygen-containing functional groups such as phenolic hydroxyl groups, ether groups, carboxyl groups, carbonyl groups, and lactone groups exist on carbon black.
本発明におけるカーボンブラックの揮発分は0.10~1.00%であることが好ましい。ここで揮発分とは、カーボンブラック上に存在する表面官能基の量を評価する指標である。揮発分は、予め105℃で1時間乾燥して水分を除去した試料を、真空中950℃で5分間加熱処理した際の重量変化分から測定できる。本発明者は鋭意検討を行った結果、カーボンブラックの表面酸化反応は、含酸素官能基であれば表面官能基の種類にはよらず、表面官能基量に強く依存することを見出した。揮発分が1.00%を超えると表面官能基量が多くなるため、カソード電位によるカーボンブラックの表面酸化反応が進行しやすくなり、耐酸化性が低下する傾向にある。一方、揮発分が0.10%未満であると表面官能基量が少なくなるため、親水性が著しく低下する傾向にある。そのため、カーボンブラック上に触媒金属粒子を担持させる際の前駆体溶液への分散が困難となり、触媒金属粒子を高分散担持させることができなくなるおそれがある。揮発分は不活性雰囲気中で加熱するグラファイト化処理によって減少し、含酸素雰囲気中で加熱する賦活処理によって増加する。カーボンブラックの揮発分は0.20~0.80%であることが好ましく、0.30~0.70%であることがより好ましい。 The volatile content of carbon black in the present invention is preferably 0.10 to 1.00%. Here, the volatile matter is an index for evaluating the amount of surface functional groups present on the carbon black. The volatile matter can be measured from a weight change when a sample which has been dried at 105 ° C. for 1 hour to remove moisture is heated in vacuum at 950 ° C. for 5 minutes. As a result of intensive studies, the present inventors have found that the surface oxidation reaction of carbon black is strongly dependent on the amount of surface functional groups as long as it is an oxygen-containing functional group, regardless of the type of surface functional group. If the volatile content exceeds 1.00%, the amount of surface functional groups increases, so that the surface oxidation reaction of carbon black by the cathode potential tends to proceed, and the oxidation resistance tends to decrease. On the other hand, if the volatile content is less than 0.10%, the amount of surface functional groups decreases, and thus hydrophilicity tends to be remarkably lowered. For this reason, it is difficult to disperse the catalyst metal particles on the carbon black in the precursor solution, and the catalyst metal particles may not be supported in a highly dispersed state. Volatiles are reduced by the graphitization treatment heated in an inert atmosphere, and increased by the activation treatment heated in an oxygen-containing atmosphere. The volatile content of carbon black is preferably 0.20 to 0.80%, and more preferably 0.30 to 0.70%.
本発明のカーボンブラックの製造方法は、平均一次粒子径を制御した原料カーボンブラックを1600~1800℃でグラファイト化処理した後、500~650℃で賦活処理することを特徴とする。グラファイト化処理の後に賦活処理することによって、高比表面積化とともに、結晶化が十分でなかったアモルファス状カーボンを優先的に燃焼することができ、更なる高結晶化が可能となる。 The carbon black production method of the present invention is characterized in that the raw material carbon black having a controlled average primary particle size is graphitized at 1600 to 1800 ° C. and then activated at 500 to 650 ° C. By performing the activation treatment after the graphitization treatment, it is possible to preferentially burn the amorphous carbon that has not been sufficiently crystallized, as well as to increase the specific surface area, thereby enabling further crystallization.
本発明に係る原料カーボンブラックの製造方法は特に限定されるものではなく、例えば、炭化水素などの原料ガスを反応炉の炉頂に設置されたノズルから供給し、熱分解反応及び又は部分燃焼反応によりカーボンブラックを製造し、反応炉下部に直結されたバグフィルターから捕集することができる。使用する原料ガスは特に限定されるものではなく、アセチレン、メタン、エタン、プロパン、エチレン、プロピレン、ブタジエンなどのガス状炭化水素や、トルエン、ベンゼン、キシレン、ガソリン、灯油、軽油、重油などのオイル状炭化水素をガス化したものを使用することができる。またこれらの複数を混合して使用することもできる。中でも、硫黄分などの不純物が少ないアセチレンガスを使用することが好ましい。原料カーボンブラックの平均一次粒子径を制御する手段の一つとして、反応炉内に原料ガスとともに空気等の酸化性ガスを加えて不完全燃焼させることにより、小粒径化する方法がある。さらに、反応炉内に旋回流を与え、高温場での滞留時間を大幅に短縮させることによりカーボンブラックを生成直後に急冷すると、小粒径化に好適である。旋回ガスには水蒸気や水素、窒素などを用い、水蒸気の含有率を10~20vol%とすることが好ましい。水蒸気は冷却効果と賦活効果を持つが、旋回ガス中の水蒸気の含有率が20vol%を超えると、賦活効果が増大するため、生成するカーボンブラックの結晶性が著しく低下してしまう。 The method for producing the raw material carbon black according to the present invention is not particularly limited. For example, a raw material gas such as hydrocarbon is supplied from a nozzle installed at the top of the reactor, and a pyrolysis reaction and / or a partial combustion reaction is performed. Can produce carbon black and collect it from the bag filter directly connected to the bottom of the reactor. The raw material gas to be used is not particularly limited, and gaseous hydrocarbons such as acetylene, methane, ethane, propane, ethylene, propylene, and butadiene, and oils such as toluene, benzene, xylene, gasoline, kerosene, light oil, and heavy oil Gasified hydrocarbons can be used. A plurality of these can also be mixed and used. Among them, it is preferable to use acetylene gas having a small amount of impurities such as sulfur. As one means for controlling the average primary particle size of the raw material carbon black, there is a method of reducing the particle size by adding an oxidizing gas such as air together with the raw material gas into the reaction furnace and causing incomplete combustion. Furthermore, if the carbon black is rapidly cooled immediately after generation by giving a swirling flow in the reactor and greatly shortening the residence time in a high temperature field, it is suitable for reducing the particle size. It is preferable to use water vapor, hydrogen, nitrogen, or the like as the swirling gas, and the water vapor content is 10 to 20 vol%. Although water vapor has a cooling effect and an activation effect, if the content rate of the water vapor in the swirling gas exceeds 20 vol%, the activation effect increases, so that the crystallinity of the generated carbon black is significantly lowered.
グラファイト化処理を行う際、原料カーボンブラックを充填する容器として黒鉛、アルミナ又は炭化ケイ素などのるつぼを用いることができる。本発明に係るカーボンブラックを製造するに当たっては、るつぼへの原料カーボンブラックの充填密度が0.05g/ml以下の状態でグラファイト化処理することが好ましい。これにより粒子間での結晶化を防ぎ、比表面積の低下を抑制することができる。充填密度は、充填する原料カーボンブラックの重量とるつぼの容積から求めることができる。充填密度が0.05g/mlを超えると、粒子同士の接触度の増大により、粒子内だけでなく、粒子間での結晶化が進行するため、比表面積が著しく低下し、触媒金属粒子が高分散担持できなくなる。るつぼへの原料カーボンブラックの充填密度は0.04g/ml以下であることが好ましく、0.03g/ml以下であることがより好ましい。ただし、この充填密度は小さすぎると生産性が低下することから、0.01g/ml以上であることが好ましい。
また、グラファイト化処理を行う前の原料カーボンブラックの結晶層厚みLcは15Å以上であることが好ましく、16Å以上であることがより好ましい。原料カーボンブラックの結晶層厚みLcが15Å未満であると、1800℃を超える高温でのグラファイト化処理が必要となり、比表面積が極端に低下してしまう。原料カーボンブラックの結晶層厚みLcはカーボンブラック合成時の反応温度によって変化させることが可能である。
When performing the graphitization treatment, a crucible such as graphite, alumina, or silicon carbide can be used as a container for filling the raw material carbon black. In producing the carbon black according to the present invention, it is preferable to perform the graphitization treatment in a state where the filling density of the raw material carbon black into the crucible is 0.05 g / ml or less. Thereby, crystallization between particles can be prevented, and a decrease in specific surface area can be suppressed. The packing density can be determined from the weight of the raw material carbon black to be filled and the volume of the crucible. When the packing density exceeds 0.05 g / ml, the specific surface area is remarkably lowered and the catalytic metal particles are increased because the crystallization between the particles progresses not only within the particles due to the increased degree of contact between the particles. It becomes impossible to carry the dispersion. The packing density of the raw material carbon black into the crucible is preferably 0.04 g / ml or less, and more preferably 0.03 g / ml or less. However, if this packing density is too small, the productivity is lowered, so that it is preferably 0.01 g / ml or more.
Further, the crystal layer thickness Lc of the raw material carbon black before the graphitization treatment is preferably 15 mm or more, and more preferably 16 mm or more. If the crystal layer thickness Lc of the raw material carbon black is less than 15 mm, graphitization at a high temperature exceeding 1800 ° C. is required, and the specific surface area is extremely reduced. The crystal layer thickness Lc of the raw material carbon black can be changed depending on the reaction temperature at the time of carbon black synthesis.
本発明に係るカーボンブラックを製造するに当たっては、賦活処理の温度を500~650℃とすることが望ましい。原料カーボンブラックの平均一次粒子径が小さいため、このように賦活処理温度を比較的低温としても、十分な比表面積増加効果がある。また、賦活処理後のカーボンブラックの揮発分を低く、例えば1.00%以下に抑えることができる。 In producing the carbon black according to the present invention, the temperature of the activation treatment is preferably 500 to 650 ° C. Since the average primary particle diameter of the raw material carbon black is small, there is a sufficient specific surface area increasing effect even if the activation treatment temperature is set at a relatively low temperature. Further, the volatile content of the carbon black after the activation treatment can be reduced to, for example, 1.00% or less.
本発明の燃料電池用触媒は、本発明のカーボンブラックの表面に触媒金属粒子を高分散担持したものである。触媒金属の種類としては白金の他に白金合金などを用いることが好ましい。白金合金形成金属としては、パラジウム、ロジウム、イリジウム、ルテニウム、鉄、チタン、ニッケル、コバルト、金、銀、銅、クロム、マンガン、モリブデン、タングステン、アルミニウム、ケイ素、レニウム、亜鉛、スズ等がある。固体高分子型燃料電池へ用いる場合、一酸化炭素被毒防止に有効であるため白金-ルテニウム又は白金-コバルト合金が好ましい。白金合金組成は白金が30~90質量%であることが好ましい。触媒金属粒子の大きさは、例えば白金であれば10~50Åが好ましい。 The catalyst for a fuel cell of the present invention is obtained by carrying highly dispersed metal catalyst particles on the surface of the carbon black of the present invention. As a kind of the catalyst metal, it is preferable to use platinum alloy in addition to platinum. Examples of the platinum alloy-forming metal include palladium, rhodium, iridium, ruthenium, iron, titanium, nickel, cobalt, gold, silver, copper, chromium, manganese, molybdenum, tungsten, aluminum, silicon, rhenium, zinc, and tin. When used in a polymer electrolyte fuel cell, platinum-ruthenium or a platinum-cobalt alloy is preferable because it is effective in preventing carbon monoxide poisoning. The platinum alloy composition is preferably 30 to 90% by mass of platinum. The size of the catalyst metal particles is preferably 10 to 50 mm for platinum, for example.
燃料電池用触媒の製造方法は特に制限されないが、触媒金属粒子を白金とする場合の一例として以下の方法が挙げられる。まず、カーボンブラックを水に懸濁させた分散液に、ヘキサクロロ白金酸(IV)水溶液を加えて混合液Aとし、これに白金に対し10倍当量の水素化ホウ素ナトリウムを添加(還元処理)し、カーボンブラックの表面に白金粒子を析出させた後、濾過、洗浄、乾燥することによって燃料電池用触媒を製造することができる。
触媒金属粒子を白金合金とする場合には、白金と合金形成金属を含む混合液が用いられる。例えばルテニウムを合金形成金属として使用する場合、所定量のルテニウムを含む三塩化ルテニウム(III)水溶液を上記混合液Aに加えて混合液Bを調製する。ついで、白金合金に対し10倍当量の水素化ホウ素ナトリウムを混合液B に添加(還元処理)し、カーボンブラックの表面に白金合金粒子を析出させた後、濾過、洗浄、乾燥することによって燃料電池用触媒を製造することができる。
Although the manufacturing method of the catalyst for fuel cells is not particularly limited, examples of the case where the catalyst metal particles are platinum include the following methods. First, an aqueous solution of hexachloroplatinic acid (IV) is added to a dispersion in which carbon black is suspended in water to obtain a mixed solution A, to which 10 times equivalent sodium borohydride is added (reduction treatment) to platinum. Then, after depositing platinum particles on the surface of carbon black, a catalyst for a fuel cell can be produced by filtration, washing and drying.
When the catalyst metal particles are a platinum alloy, a mixed solution containing platinum and an alloy-forming metal is used. For example, when ruthenium is used as the alloy-forming metal, a mixed solution B is prepared by adding a ruthenium (III) trichloride aqueous solution containing a predetermined amount of ruthenium to the mixed solution A. Next, 10 times equivalent of sodium borohydride with respect to the platinum alloy is added to the mixed solution B (reduction treatment), and after the platinum alloy particles are precipitated on the surface of the carbon black, the fuel cell is filtered, washed and dried. Catalysts can be produced.
本発明の燃料電池用触媒を用いた固体高分子型燃料電池は、例えば以下のようにして作製することができる。つまり、燃料電池用触媒を四フッ化エチレン樹脂粉末と混合し、アルコールを加えてペースト状にしたものをカーボンペーパーの片面に塗布し触媒層を形成する。そして、触媒層の表面にナフィオン溶液を均一に塗布し電極とする。ナフィオン膜(パーフルオロスルホン酸電解質膜)の両面に、各電極を接するように重ね合わせ、ホットプレスで熱圧着させ、膜電極接合体(MEA)を得る。MEAをセパレーター、続いて集電板で挟み込めば燃料電池単セルが完成し、電子負荷装置、ガス供給装置を接続すれば燃料電池の評価を行うことができる。 The polymer electrolyte fuel cell using the fuel cell catalyst of the present invention can be produced, for example, as follows. That is, a fuel cell catalyst is mixed with a tetrafluoroethylene resin powder, and a paste obtained by adding alcohol is applied to one side of carbon paper to form a catalyst layer. And a Nafion solution is uniformly apply | coated to the surface of a catalyst layer, and it is set as an electrode. The electrodes are stacked on both sides of a Nafion membrane (perfluorosulfonic acid electrolyte membrane) so as to be in contact with each other, and are hot-pressed by hot pressing to obtain a membrane electrode assembly (MEA). When the MEA is sandwiched between the separator and the current collector plate, a single fuel cell is completed, and the fuel cell can be evaluated by connecting an electronic load device and a gas supply device.
実施例1
アセチレンガスを2000℃で熱分解して得られた比表面積が392m2/g、結晶層厚みLcが17Å、平均一次粒子径が19nmの原料カーボンブラックを窒素雰囲気中1700℃で1時間グラファイト化処理した後、550℃で30分間賦活処理した。グラファイト化処理時のアルミナ容器への充填密度は0.03g/mlとした。
得られたカーボンブラックについて、以下の物性を測定した。評価結果を表1に示す。
(1)比表面積:JIS K 6217-2に従い測定した。
(2)結晶層厚みLc:X線回折装置(Brucker社製「D8ADVANCE」)により、CuKα線を用いて測定範囲2θ=10~40゜、スリット幅0.5゜の条件でX線回折を行った。測定角度の校正にはX線標準用シリコン(三津和化学薬品社製金属シリコン)を用いた。得られた(002)面の回折線を用いて、Scherrerの式:Lc(Å)=(K×λ)/(β×cosθ)により結晶層厚みLcを求めた。ここでKは形状因子定数0.9、λはX線の波長1.54Å、θは(002)回折線吸収バンドにおける極大値を示す角度、βは(002)回折線吸収バンドにおける半価幅(ラジアン)である。
(3)平均一次粒子径:透過型電子顕微鏡(TEM)の5万倍画像より、100個のカーボンブラック一次粒子径を測り、平均値を算出した。
(4)揮発分:予め105℃で1時間乾燥して水分を除去した試料を、真空中950℃で5分間加熱処理した際の重量変化分から測定した。
Example 1
A raw material carbon black having a specific surface area of 392 m 2 / g, a crystal layer thickness Lc of 17 mm, and an average primary particle diameter of 19 nm obtained by pyrolyzing acetylene gas at 2000 ° C. is graphitized at 1700 ° C. for 1 hour in a nitrogen atmosphere. Then, activation treatment was performed at 550 ° C. for 30 minutes. The packing density into the alumina container during the graphitization treatment was 0.03 g / ml.
The obtained carbon black was measured for the following physical properties. The evaluation results are shown in Table 1.
(1) Specific surface area: Measured according to JIS K 6217-2.
(2) Crystal layer thickness Lc: X-ray diffraction is performed with an X-ray diffractometer (“D8ADVANCE” manufactured by Brucker) using CuKα rays in a measurement range of 2θ = 10 to 40 ° and a slit width of 0.5 °. It was. For calibration of the measurement angle, silicon for X-ray standard (metal silicon manufactured by Mitsuwa Chemicals) was used. Using the diffraction line of the (002) plane obtained, the crystal layer thickness Lc was determined by Scherrer's formula: Lc (Å) = (K × λ) / (β × cos θ). Here, K is a form factor constant of 0.9, λ is an X-ray wavelength of 1.54 mm, θ is an angle indicating a maximum value in the (002) diffraction line absorption band, and β is a half-value width in the (002) diffraction line absorption band. (Radians).
(3) Average primary particle diameter: 100 primary particle diameters of carbon black were measured from a 50,000 times image of a transmission electron microscope (TEM), and an average value was calculated.
(4) Volatile content: A sample obtained by previously drying at 105 ° C. for 1 hour to remove moisture was measured from a change in weight when heat-treated in vacuum at 950 ° C. for 5 minutes.
得られたカーボンブラックを塩化白金酸水溶液に混合した。混合割合は質量比で、カーボンブラック/白金=70/30とした。混合液を80℃で30分間撹拌した後、室温まで冷却した。0.5Mの水素化ホウ素ナトリウムを5回に分けて添加し白金を析出させ、濾過、洗浄後、乾燥して燃料電池用触媒を得た。得られた白金担持カーボンブラックに含有される白金重量を、誘導結合プラズマ質量分析計(ICP-MS)を用いて定量し、白金担持カーボンブラック単位重量あたりの白金重量比(白金担持率)を算出した。算出した白金担持率を表1に示す。 The obtained carbon black was mixed with a chloroplatinic acid aqueous solution. The mixing ratio was mass ratio, and carbon black / platinum = 70/30. The mixture was stirred at 80 ° C. for 30 minutes and then cooled to room temperature. 0.5M sodium borohydride was added in 5 portions to precipitate platinum, filtered, washed and dried to obtain a fuel cell catalyst. The platinum weight contained in the obtained platinum-supported carbon black was quantified using an inductively coupled plasma mass spectrometer (ICP-MS), and the platinum weight ratio (platinum support ratio) per unit weight of the platinum-supported carbon black was calculated. did. The calculated platinum loading is shown in Table 1.
得られた燃料電池用触媒1gにナフィオンを2.5g混合してペーストとし、カーボンペーパーに塗布した後、80℃で乾燥して空気極とした。市販の白金担持カーボンブラック(田中貴金属社製「TEC10E40E」)を燃料極に用い、ナフィオン膜を挟んで空気極と重ね合わせて135℃で10分間、9.8MPaでプレスし、膜電極接合体(MEA)を得た。セパレーター、集電板で挟み込み一体化して、燃料電池単セルを構成した。この燃料電池単セルを90℃の温度条件下、両極に窒素10ml/minを導入し、1.0V~0.1V(vs.NHE)の電位範囲でサイクリックボルタンメトリー測定を行い、得られた水素吸着波から白金触媒の有効比表面積(ECSA)を算出した。 2.5 g of Nafion was mixed with 1 g of the obtained fuel cell catalyst to form a paste, which was applied to carbon paper and then dried at 80 ° C. to form an air electrode. Commercially available platinum-supported carbon black (“TEC10E40E” manufactured by Tanaka Kikinzoku Co., Ltd.) is used as the fuel electrode, and the Nafion membrane is sandwiched between the air electrode and pressed at 135 ° C. for 10 minutes at 9.8 MPa. MEA) was obtained. A fuel cell single cell was constructed by sandwiching and integrating with a separator and a current collector plate. This fuel cell single cell was introduced at a temperature of 90 ° C., 10 ml / min of nitrogen was introduced into both electrodes, and cyclic voltammetry measurement was performed in a potential range of 1.0 V to 0.1 V (vs. NHE). The effective specific surface area (ECSA) of the platinum catalyst was calculated from the adsorption wave.
つぎに、この燃料電池単セルを90℃の温度条件下、水素4ml/min、空気60ml/minを導入し、1.0V~0.6V(vs.NHE)の定電位走査を20mV/sで5000サイクル繰り返し、その後、上記と同様に窒素雰囲気でサイクリックボルタンメトリー測定を行い、得られた水素吸着波から白金触媒の有効比表面積(ECSA)を算出した。触媒耐久性の指標として、定電位走査サイクル前後でのECSA低下率を求めた。ここで、耐酸化性の低いカーボンブラック上では表面酸化や腐食が起こるため、ECSA低下率が大きくなってしまう。評価結果を表1に示す。 Next, this fuel cell single cell was introduced at a temperature of 90 ° C. with 4 ml / min of hydrogen and 60 ml / min of air, and a constant potential scan of 1.0 V to 0.6 V (vs. NHE) at 20 mV / s. After repeating 5000 cycles, cyclic voltammetry measurement was performed in a nitrogen atmosphere in the same manner as described above, and the effective specific surface area (ECSA) of the platinum catalyst was calculated from the obtained hydrogen adsorption wave. As an indicator of catalyst durability, the ECSA reduction rate before and after the constant potential scanning cycle was determined. Here, since surface oxidation and corrosion occur on carbon black having low oxidation resistance, the ECSA reduction rate becomes large. The evaluation results are shown in Table 1.
比較例1
市販のカーボンブラック(CABOT社製「VULCAN(登録商標) XC72」)を用いて燃料電池用触媒及び燃料電池単セルを作製し、評価した。評価結果を表2に示す。
Comparative Example 1
A fuel cell catalyst and a single fuel cell were prepared and evaluated using commercially available carbon black (“VULCAN (registered trademark) XC72” manufactured by CABOT). The evaluation results are shown in Table 2.
比較例2
特許文献2の段落(0009)~(0010)の実施例に記載された水蒸気賦活黒鉛化カーボンブラックを用いて燃料電池用触媒及び燃料電池単セルを作製し、評価した。評価結果を表2に示す。
Comparative Example 2
A fuel cell catalyst and a fuel cell single cell were prepared and evaluated using the steam activated graphitized carbon black described in the examples of paragraphs (0009) to (0010) of Patent Document 2. The evaluation results are shown in Table 2.
実施例2~8、比較例3~12
使用する原料カーボンブラック、グラファイト化温度、賦活温度を表1~2に示す条件に変えたこと以外は実施例1と同様にしてカーボンブラックを得た。なお、比較例3ではグラファイト化処理と賦活処理を、比較例4では賦活処理を、比較例5ではグラファイト化処理を行っていない。また、比較例6ではグラファイト化処理時のアルミナ容器への充填密度を0.08g/mlとし、比較例12では原料カーボンブラックに中空構造を有する多孔性カーボンブラックを用いた。評価結果を表1~2に示す。
Examples 2 to 8 and Comparative Examples 3 to 12
Carbon black was obtained in the same manner as in Example 1 except that the raw material carbon black used, the graphitization temperature, and the activation temperature were changed to the conditions shown in Tables 1 and 2. In Comparative Example 3, graphitization treatment and activation treatment were performed, in Comparative Example 4, activation treatment was not performed, and in Comparative Example 5, no graphitization treatment was performed. In Comparative Example 6, the packing density into the alumina container during the graphitization treatment was 0.08 g / ml, and in Comparative Example 12, porous carbon black having a hollow structure was used as the raw material carbon black. The evaluation results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表1より、本発明のカーボンブラックは高い白金担持率を示し、かつ、白金触媒の有効比表面積(ECSA)を長期的に保持した。 From Table 1, the carbon black of the present invention showed a high platinum loading and retained the effective specific surface area (ECSA) of the platinum catalyst for a long time.
本発明のカーボンブラックは、各種燃料電池用の触媒担体として使用することができる。これにより、発電性能が高く、長期耐久性に優れた燃料電池を生産することが可能となる。 The carbon black of the present invention can be used as a catalyst carrier for various fuel cells. This makes it possible to produce a fuel cell with high power generation performance and excellent long-term durability.

Claims (6)

  1. BET法により測定した比表面積が200~500m2/g、X線回折により測定した結晶層厚みLcが20~30Åであり、平均一次粒子径が15~25nmであることを特徴とするカーボンブラック。 Carbon black having a specific surface area measured by BET method of 200 to 500 m 2 / g, a crystal layer thickness Lc measured by X-ray diffraction of 20 to 30 mm, and an average primary particle diameter of 15 to 25 nm.
  2. 揮発分が0.10~1.00%であることを特徴とする請求項1に記載のカーボンブラック。 2. The carbon black according to claim 1, wherein the volatile content is 0.10 to 1.00%.
  3. 請求項1に記載のカーボンブラックに触媒金属粒子が担持されてなる燃料電池用触媒。 A fuel cell catalyst comprising catalyst carbon particles supported on the carbon black according to claim 1.
  4. 請求項2に記載のカーボンブラックに触媒金属粒子が担持されてなる燃料電池用触媒。 A fuel cell catalyst comprising catalyst metal particles supported on the carbon black according to claim 2.
  5. 請求項3に記載の燃料電池用触媒を備えた燃料電池。 A fuel cell comprising the fuel cell catalyst according to claim 3.
  6. 請求項4に記載の燃料電池用触媒を備えた燃料電池。 A fuel cell comprising the fuel cell catalyst according to claim 4.
PCT/JP2015/079748 2014-10-21 2015-10-21 Carbon black for fuel cell WO2016063924A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016555265A JP6563945B2 (en) 2014-10-21 2015-10-21 Carbon black for fuel cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-214464 2014-10-21
JP2014214464 2014-10-21

Publications (1)

Publication Number Publication Date
WO2016063924A1 true WO2016063924A1 (en) 2016-04-28

Family

ID=55760955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079748 WO2016063924A1 (en) 2014-10-21 2015-10-21 Carbon black for fuel cell

Country Status (2)

Country Link
JP (1) JP6563945B2 (en)
WO (1) WO2016063924A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037910A1 (en) * 2016-08-24 2018-03-01 デンカ株式会社 Carbon black for batteries, conductive composition for electrodes, electrode for batteries, and battery
CN109119643A (en) * 2017-06-23 2019-01-01 丰田自动车株式会社 Electrode catalyst for fuel cell
CN110537275A (en) * 2017-03-31 2019-12-03 日本制铁株式会社 The catalyst carrier carbon material and its manufacturing method of polymer electrolyte fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036859A (en) * 2001-07-24 2003-02-07 Asahi Glass Co Ltd Solid polymer type fuel cell and its fabrication method
JP2008140763A (en) * 2006-11-06 2008-06-19 Toyota Motor Corp Manufacturing method of fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036859A (en) * 2001-07-24 2003-02-07 Asahi Glass Co Ltd Solid polymer type fuel cell and its fabrication method
JP2008140763A (en) * 2006-11-06 2008-06-19 Toyota Motor Corp Manufacturing method of fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037910A1 (en) * 2016-08-24 2018-03-01 デンカ株式会社 Carbon black for batteries, conductive composition for electrodes, electrode for batteries, and battery
JPWO2018037910A1 (en) * 2016-08-24 2019-06-20 デンカ株式会社 CARBON BLACK FOR BATTERY, CONDUCTIVE COMPOSITION FOR ELECTRODE, ELECTRODE FOR BATTERY, AND BATTERY
US11098201B2 (en) 2016-08-24 2021-08-24 Denka Company Limited Carbon black for batteries, conductive composition for electrodes, electrode for batteries, and battery
CN110537275A (en) * 2017-03-31 2019-12-03 日本制铁株式会社 The catalyst carrier carbon material and its manufacturing method of polymer electrolyte fuel cell
CN109119643A (en) * 2017-06-23 2019-01-01 丰田自动车株式会社 Electrode catalyst for fuel cell
JP2019008955A (en) * 2017-06-23 2019-01-17 トヨタ自動車株式会社 Electrode catalyst for fuel cell
US11139498B2 (en) 2017-06-23 2021-10-05 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cells

Also Published As

Publication number Publication date
JPWO2016063924A1 (en) 2017-09-07
JP6563945B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
JP4938165B2 (en) Fuel cell electrode catalyst
Schmies et al. Impact of carbon support functionalization on the electrochemical stability of Pt fuel cell catalysts
Goel et al. Effect of support materials on the performance of direct ethanol fuel cell anode catalyst
Karuppanan et al. Triple phase boundary augmentation in hierarchical, Pt grafted N-doped mesoporous carbon nanofibers for high performance and durable PEM fuel cells
Xu et al. Antimony doped tin oxide modified carbon nanotubes as catalyst supports for methanol oxidation and oxygen reduction reactions
JP2015138780A (en) Electrode catalyst for fuel cell, method of preparing the same, and electrode for fuel cell and fuel cell that including the same
Wang et al. Nanoscale graphite-supported Pt catalysts for oxygen reduction reactions in fuel cells
Novikova et al. Influence of carbon support on catalytic layer performance of proton exchange membrane fuel cells
Maillard et al. Carbon materials as supports for fuel cell electrocatalysts
EP3385336B1 (en) Carbon black, electrode catalyst and fuel cell using same, and method for producing carbon black
US10096841B2 (en) Catalyst carrier, method for producing catalyst carrier, and use of catalyst carrier
JP2008290062A (en) Catalytic carrier, catalyst, method for manufacturing the catalytic carrier and method for manufacturing the catalyst
JP6563945B2 (en) Carbon black for fuel cells
JP4620341B2 (en) Fuel cell electrode catalyst
JP4759507B2 (en) Fuel cell electrode catalyst and fuel cell using the same
Thilaga et al. Multiwalled carbon nanotube supported Pt–Sn–M (M= Ru, Ni, and Ir) catalysts for ethanol electrooxidation
WO2017208742A1 (en) Carbon for supporting catalyst and production process therefor
Gebru et al. Nonthermal Plasma‐Modified Carbon‐Carrying Sn‐Based Ternary Nanocatalyst for High‐Performance Direct Dimethyl Ether Fuel Cells
WO2016152506A1 (en) Carbon powder for fuel cell, catalyst using said carbon powder for fuel cell, electrode catalyst layer, membrane electrode assembly, and fuel cell
JP6403933B1 (en) Oxygen reduction catalyst, electrode, membrane electrode assembly, and fuel cell
JP4892811B2 (en) Electrocatalyst
Kim et al. Acid treatments of carbon nanotubes and their application as Pt-Ru/CNT anode catalysts for proton exchange membrane fuel cell
CN107107032B (en) Catalyst carrier and method for producing same
JP6923371B2 (en) Electrode catalyst for fuel cells
JP2009048826A (en) Electrode material for fuel cell and manufacturing method thereof, electrode for fuel cell, and fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016555265

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853029

Country of ref document: EP

Kind code of ref document: A1