WO2016063434A1 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
WO2016063434A1
WO2016063434A1 PCT/JP2015/003362 JP2015003362W WO2016063434A1 WO 2016063434 A1 WO2016063434 A1 WO 2016063434A1 JP 2015003362 W JP2015003362 W JP 2015003362W WO 2016063434 A1 WO2016063434 A1 WO 2016063434A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular ring
power supply
supply device
ring body
battery cells
Prior art date
Application number
PCT/JP2015/003362
Other languages
French (fr)
Japanese (ja)
Inventor
達人 堀内
新吾 越智
橋本 裕之
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2016063434A1 publication Critical patent/WO2016063434A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply device.
  • a power supply device that is used in a power storage system combined with a power generation device such as a solar cell and stores power generated by the power generation device is also known.
  • a chargeable / dischargeable secondary battery such as a lithium ion battery or a nickel metal hydride battery is used.
  • each battery module includes a metal case and a plurality of battery cells housed in the metal case.
  • the metal case is provided with external terminals connected to the output terminals of a plurality of battery cells to be stored.
  • Several battery modules are laminated
  • a battery cell will generate
  • a spacer that forms a gap between adjacent metal cases is provided between the battery modules, and flows into the gap formed between the battery modules.
  • the battery module is cooled by the cooling air.
  • the battery cell accommodated in the metal case is cooled via the metal case.
  • Patent Document 2 There is also known a power supply device including a plurality of unit modules formed by surrounding a pair of battery cells with a metal holding member and a resin case for holding the plurality of unit modules.
  • the resin case includes an upper frame member and a lower frame member.
  • the resin case surrounds the edge of the unit module and has a shape that exposes the metal holding member of the unit module to the outside.
  • the lower frame member is provided with a plurality of partition walls so that a plurality of unit modules can be inserted, and a gap is formed between adjacent unit modules.
  • the upper frame member and the lower frame member are provided with inlets and outlets at positions corresponding to the gaps between the unit modules so that the gaps between the unit modules serve as cooling channels.
  • the power supply device of Patent Document 2 forms a flow path through which cooling air passes through the resin case, and can cool the battery cell by cooling the metal holding member of the unit module. It is like that.
  • any of the above-described power supply devices is configured to indirectly cool the battery cell by cooling a metal member that is in thermal contact with the battery cell.
  • a metal member that is in thermal contact with the battery cell.
  • an air layer is formed between the battery cell and the metal member, which may reduce the cooling efficiency. Since tolerances occur in the dimensions of the members, there is a problem that the production efficiency is remarkably lowered when it is attempted to ensure the adhesion between the battery cells and the metal members.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power supply device having a configuration capable of stably cooling battery cells while having a simple configuration.
  • the power supply device of the present invention is a plurality of unit modules arranged along one direction, and each of the unit modules includes a plurality of battery cells and at least one annular ring body.
  • a holding body that holds the plurality of unit modules and is provided with an inlet and an outlet for flowing the refrigerant.
  • the at least one annular ring body is located on the outer periphery of a unit module including the annular ring body, and a gap is formed between adjacent unit modules depending on the thickness of the annular ring body. The gap is connected to the inlet and the outlet provided in the holding body.
  • the plurality of battery cells are held by the annular ring body, and a gap can be formed between adjacent unit modules depending on the thickness of the annular ring body.
  • a gap can be formed between adjacent unit modules depending on the thickness of the annular ring body.
  • at least a part of one surface of the battery cell can be exposed to a gap formed between adjacent unit modules, and the battery cell is directly connected with the refrigerant flowing through the gap formed between adjacent unit modules. Can be cooled. Therefore, the battery cell can be stably cooled with a simple configuration.
  • FIG. 3 is a side view of the annular ring body shown in FIG. 2. It is a side view which shows the 1st modification of the cyclic
  • FIG. 1 shows a power supply device 1 according to an aspect of the present invention.
  • the power supply device 1 shown in FIG. 1 includes a plurality of unit modules 20 serving as a power source and a holding body 30 in which the plurality of unit modules 20 are accommodated.
  • the holding body 30 is provided with an external terminal 32, and the external terminal 32 is electrically connected to the unit module 20 held by the holding body 30. With this configuration, the power of the power supply device 1 can be output or a plurality of power supply devices 1 can be connected via the external terminal 32.
  • the holding body 30 includes a lower frame body 33 and an upper frame body 31, and a plurality of unit modules 20 are held between the lower frame body 33 and the upper frame body 31.
  • the unit module 20 includes a plurality of battery cells 21 and a plurality of annular ring bodies 24 that hold the plurality of battery cells 21.
  • the plurality of annular ring bodies 24 are band-shaped members having a predetermined thickness and a predetermined width, and are located on the outer periphery of the unit module 20.
  • the unit module 20 can also be configured with a plurality of battery cells 21 and a single annular ring body 24 surrounding the plurality of battery cells 21.
  • the battery cell 21 which comprises the unit module 20 is a secondary battery which can be charged / discharged.
  • a secondary battery such as a lithium ion battery or a nickel metal hydride battery can be used.
  • 4 and 5 are diagrams for explaining a specific configuration of the battery cell 21 described above, and a pouch battery is illustrated as a representative configuration.
  • the battery cell 21 in FIGS. 4 and 5 includes an exterior body 22 formed of a deformable laminate film, a power generation element enclosed in the exterior body 22, and an electrode tab 23 connected to the power generation element.
  • the power generation element includes an electrode body and an electrolytic solution.
  • the electrode tab 23 is an output terminal of the battery cell 21 and is led out from the inside of the exterior body 22 from the outside of the exterior body 22.
  • This type of battery cell 21 is known to have a flat wound electrode body or a laminated electrode body as an electrode body.
  • the wound electrode body is an electrode body formed in a flat shape by winding a positive electrode plate and a negative electrode plate through a separator, and then pressing them.
  • the laminated electrode body is an electrode body formed by laminating a sheet-like positive electrode plate and a negative electrode plate via a separator.
  • the structure of an electrode body should just be able to enclose a power generation element in the exterior body 22, and does not necessarily need to be restricted to the above-mentioned structure.
  • the laminate film is a sheet-like metal / resin composite film having a five-layer structure of resin layer (polypropylene) / adhesive layer / aluminum alloy layer / adhesive layer / resin layer (polypropylene).
  • the exterior body 22 is formed of this laminate film, and has an electrode body storage space therein. Specifically, in the battery cell 21 illustrated in FIGS. 4 and 5, the electrode body is disposed on the exterior body 22 composed of a single laminate film, the exterior body 22 is folded, and the sides other than the folded sides are arranged. On the side, the overlapping outer package 22 is formed by heat welding. 4 has a pair of electrode tabs 23 extending from one side of the outer package 22 when the laminate film is thermally welded. Further, in the battery cell of FIG. 5, one electrode tab 23 of a pair of electrode tabs is extended from two sides located at both ends of the exterior body 22 when the laminate film is heat-welded.
  • the battery cell 21 having the above configuration is formed in a thick rectangular plate shape and includes a deformable exterior body 22. Moreover, since the exterior body 22 is comprised with a laminate film, the exterior body 22 can be insulated with respect to the electric power generation element enclosed inside, forming the exterior body 22 with a metal.
  • the battery cell 21 having this configuration is characterized in that the laminate film is deformed relatively easily by an external force, so that the shape stability is low, and since the number of components constituting the battery cell 21 is small, the outer shape of the battery cell 21 can be reduced. There is.
  • the power supply device 1 of the present invention does not necessarily need to be a pouch battery, and a power generation element is provided in a box-shaped battery case. It is also possible to use a prismatic battery having a configuration in which is enclosed.
  • a prismatic battery has a structure in which an electrode body such as a wound electrode body or a laminated electrode body and an electrolytic solution are stored in a metal battery case with a bottomed rectangular parallelepiped and the upper surface is opened, and the upper surface is sealed with a sealing plate. It has been known.
  • Such a battery cell 21 also has a thick rectangular plate shape.
  • the exterior body 22 has a potential because the exterior body 22 is formed of a metal battery case, and the exterior body 22 is formed of a strong battery case. Deformation can be suppressed, and there are features such as high shape stability.
  • the annular ring body 24 is a holding member formed in a band shape so as to be able to surround the plurality of battery cells 21.
  • the plurality of battery cells 21 are inserted into the annular ring body 24 in a state of being stacked with their main surfaces facing each other, and the unit module 20 is configured.
  • the annular ring body 24 is preferably formed of a resin, and can also be formed of an elastic member so that the inserted plurality of battery cells 21 can be fixed and held.
  • an elastomer such as rubber can be used.
  • the annular ring body 24 is formed with a predetermined width. However, by changing the width of the annular ring body 24, the binding strength of the unit modules 20 can be changed.
  • the 2 is composed of two battery cells 21 and three annular ring bodies 24 surrounding the two battery cells 21, respectively.
  • the plurality of stacked battery cells 21 are held by the plurality of annular ring bodies 24, and both ends of the plurality of battery cells 21 are held by the annular ring bodies 24. Therefore, the plurality of battery cells 21 can be firmly assembled, and handling properties during assembly can be improved.
  • This configuration has a particularly excellent effect when a pouch battery is employed as the battery cell 21.
  • the pouch battery has a configuration in which the electrode tabs of adjacent pouch batteries are close to each other because the thickness in the width direction of the battery cell 21 is thinner than the battery cell 21 having another shape. Therefore, in combination with the relatively easy deformation of the outer package of the pouch battery, there is a risk of unintentional contact with the electrode tab 23 of the adjacent pouch battery. For example, this problem becomes significant when the unit module 20 is moved in the assembly process of the power supply device 1 and the like.
  • the plurality of battery cells 21 constituting the unit module 20 include a plurality of annular ring bodies. 24, the unit module 20 can be moved in a stable state.
  • FIG. 6 is a cross-sectional view of the unit module 20 of FIG. 2
  • FIG. 7 is a cross-sectional view of the unit module 20 of a modification.
  • the exterior body 22 of the pouch battery needs to be heat-welded in an area of a predetermined range or more so that a certain degree of hermeticity can be secured against an increase in internal pressure.
  • the outer periphery of the exterior body 22 is sealed by thermal welding, but no power generation element is arranged between the exterior bodies 22 to be thermally welded. Therefore, a dead space is generated in the peripheral portion of the pouch battery, which becomes a factor in reducing the energy density with respect to the space occupied by the battery cell 21.
  • a plurality of pouch batteries are stacked in a state where the peripheral edge portion of the heat-welded exterior body 22 is folded.
  • the thickness of the peripheral portion to be heat-welded is thin, so by folding the peripheral portion of the heat-welded exterior body 22, The space occupied by the battery cell 21 can be reduced.
  • the unit module 20 having the above configuration has the pouch battery firmly held by the annular ring body 24, so that the battery can be more stably maintained. Cells can be assembled.
  • adjacent battery cells 21 can be held using a force that the peripheral portion of the folded exterior body 22 tries to restore the original shape.
  • the holding body 30 includes a lower frame body 33 and an upper frame body 31, and a plurality of unit modules are provided between the lower frame body 33 and the upper frame body 31. 20 is arranged.
  • the annular ring body 24 having a predetermined thickness is located on the outer periphery of the unit module 20, and a plurality of unit modules 20 are arranged adjacent to each other. A gap corresponding to at least the thickness of the annular ring body 24 is formed.
  • a through hole 35 is formed on the top surface of the upper frame body 31.
  • a through hole 35 is formed in the bottom surface of the lower frame body 33.
  • the through holes 35 formed in the upper frame body 31 and the lower frame body 33 are an inlet and an outlet for introducing a refrigerant into the holding body 30.
  • the holding body 30 is provided so as to correspond to the gap formed between the unit modules 20 in which each through hole is adjacent. That is, a gap formed between adjacent unit modules is communicated with an inflow port and an outflow port provided in the holding body 30.
  • the battery cell 21 which comprises the unit module 20 can be comprised so that it may be directly exposed to a refrigerant
  • the annular ring body 24 is configured to extend along the flow path direction of the refrigerant flowing through the gap formed between the adjacent unit modules 20, the annular ring body 24 inhibits the flow of the refrigerant. This can be suppressed.
  • the flow path cross-sectional area of the gap formed between adjacent unit modules 20 can be increased, and pressure loss that occurs when the refrigerant flows can be reduced.
  • the end portions of the annular ring body 24 and the partition wall 34 can be chamfered. The annular ring body 24 and the partition wall 34 whose end portions are chamfered can suppress generation of turbulent flow, and can reduce pressure loss generated when the refrigerant flows.
  • the annular ring body 24 can change the binding strength of the unit modules 20 by changing the width of the annular ring body 24, but the width of the annular ring body 24 is large. Then, the area of the battery cell that is directly exposed to the refrigerant is reduced. Accordingly, the width and thickness of the annular ring body 24 are preferably designed in consideration of the binding strength of the unit modules 20 and the cooling efficiency.
  • the lower frame body 33 may be configured such that a plurality of partition walls 34 are provided on the inner wall at the bottom of the lower frame body 33.
  • FIG. 9 illustrates the lower frame body 33 provided with six partition walls.
  • the six partition walls 34 define four spaces V1 for housing the unit modules 20 and three spaces V2 communicating with the through holes 35 provided in the lower frame body 33. is doing.
  • the unit module 20 is inserted into the space V ⁇ b> 1 formed by the partition wall 34. Further, the unit module 20 is guided to the corresponding space V1 by the partition wall 34 when inserted into the space V1.
  • the dimension of the space V1 is prescribed
  • the annular ring body 24 of the unit module is fitted in the space V ⁇ b> 1 formed by the partition wall 34.
  • the surface of the annular ring body 24 can be subjected to coating or surface treatment that reduces the friction coefficient. In this configuration, the annular ring body 24 can be easily inserted, and the workability in the manufacturing process can be further improved.
  • FIG. 10 to 12 are views for explaining another embodiment of the annular ring body 24.
  • FIG. 10 is a side view of the annular ring body 24 illustrated in the unit module of FIG.
  • the annular ring body 24 of FIGS. 11 and 12 is an annular ring body 24 for constituting the unit module 20 with a large number of battery cells, and mainly when the unit module 20 is constituted by three or more battery cells. It is suitable for.
  • the annular ring body 24 shown in FIG. 11 is provided with a plurality of convex portions 25 projecting inward on the inner wall of the annular ring body 24. Each battery cell 21 is held in a state of being spaced apart by a plurality of convex portions 25.
  • a gap can also be formed between the plurality of battery cells 21 constituting the unit module 20.
  • the gaps provided between the battery cells 21 are connected to the plurality of through holes 35 provided in the holding body 30 in the same manner as the gaps formed between the adjacent unit modules 20.
  • the annular ring body 24 shown in FIG. 12 is provided with a concave portion 26 on the outer wall of the annular ring body 24 in addition to the configuration of the convex portion 25.
  • the concave portion 26 is provided corresponding to the convex portion 25, and is configured such that the pair of partition walls 34 of the lower frame body 33 are fitted. Specifically, among the plurality of partition walls 34, a pair of partition walls 34 that divide a space V ⁇ b> 2 that communicates with the outflow port therebetween are fitted into the recess 26 of the annular ring body 24.
  • the concave portion 26 is provided corresponding to the convex portion 25 for forming a gap between the battery cells 21, the partition wall 34 that forms the outflow port or the space V2 that communicates with the outflow port. Is inserted into the recess 26 so that the gap between the battery cells 21 and the through hole 35 can be aligned.

Abstract

In order to provide a structure capable of stably cooling battery cells, this power supply device includes a plurality of unit modules (20), and a holder (30). The plurality of unit modules (20) are arranged along one direction, and each unit module (20) includes a plurality of battery cells, and an annular ring (24) that holds the plurality of battery cells. The holder (30) holds the plurality of unit modules (20), and is provided with an inlet port and an outlet port to allow a coolant to flow therethrough. The annular ring (24) is located around the outer circumference of each unit module (20) that includes the annular ring (24), and forms a gap between the adjacent unit modules (20) by the thickness of the annular ring (24). The gap is in communication with the inlet port and the outlet port provided to the holder (30).

Description

電源装置Power supply
 本発明は、電源装置に関する。 The present invention relates to a power supply device.
 近年、ハイブリッドカーや電気自動車の動力用の電源として、複数の電池セルからなる電源装置が搭載された電動車両が普及している。また、太陽電池等の発電装置と組み合わせた蓄電システムに用いられ、発電装置が発電した電力を蓄えるための電源装置なども知られている。これらの電源装置において、電池セルは、例えばリチウムイオン電池やニッケル水素電池など、充放電可能な二次電池が使用される。 In recent years, electric vehicles equipped with a power supply device composed of a plurality of battery cells have become widespread as power sources for driving hybrid cars and electric vehicles. In addition, a power supply device that is used in a power storage system combined with a power generation device such as a solar cell and stores power generated by the power generation device is also known. In these power supply apparatuses, as the battery cell, a chargeable / dischargeable secondary battery such as a lithium ion battery or a nickel metal hydride battery is used.
 この種の電源装置として、複数の電池モジュールを備える構成の電源装置が知られている(特許文献1)。特許文献1の電源装置において、各々の電池モジュールは、金属製のケースと、金属製のケースに収納される複数の電池セルを有する。金属製のケースは、収納される複数の電池セルの出力端子と接続される外部端子が設けられている。複数の電池モジュールは、同一方向に積層して配置され、各々の外部端子を介して、隣接する電池モジュール同士が接続される。また、電池セルは、充放電に応じて発熱し、高温下で充放電されることで電池性能が劣化することが知られている。特許文献1の電源装置では、各々の電池モジュールの間には、隣接する金属製のケースの間に隙間を形成するスペーサが設けられており、各々の電池モジュールの間に形成された隙間に流れる冷却風によって、電池モジュールが冷却される。この構成では、金属製のケースに収納されている電池セルが、金属製のケースを介して冷却されるようになっている。 As this type of power supply device, a power supply device including a plurality of battery modules is known (Patent Document 1). In the power supply device of Patent Document 1, each battery module includes a metal case and a plurality of battery cells housed in the metal case. The metal case is provided with external terminals connected to the output terminals of a plurality of battery cells to be stored. Several battery modules are laminated | stacked and arrange | positioned in the same direction, and adjacent battery modules are connected via each external terminal. Moreover, it is known that a battery cell will generate | occur | produce according to charging / discharging, and battery performance will deteriorate by being charged / discharged under high temperature. In the power supply device of Patent Document 1, a spacer that forms a gap between adjacent metal cases is provided between the battery modules, and flows into the gap formed between the battery modules. The battery module is cooled by the cooling air. In this structure, the battery cell accommodated in the metal case is cooled via the metal case.
 また、一対の電池セルを金属製の保持部材で囲って形成される複数のユニットモジュールと、複数のユニットモジュールを保持する樹脂ケースとを備える構成の電源装置も知られている(特許文献2)。樹脂ケースは、上部フレーム部材と下部フレーム部材とを含んでおり、樹脂ケースは、ユニットモジュールの縁部を囲繞し、かつユニットモジュールの金属製の保持部材を外部に露出させる形状となっている。具体的には、下部フレーム部材には、複数のユニットモジュールが挿入できるように、複数の仕切壁が設けられており、隣接して配置されるユニットモジュールの間に隙間が形成されるようになっている。ユニットモジュール間の隙間が冷却のための流路となるように、上部フレーム部材および下部フレーム部材には、ユニットモジュールの間の各々の隙間に対応する位置に流入口や流出口が設けられている。特許文献2の電源装置は、この構成により、樹脂ケース内に冷却風が通過する流路を構成するとともに、ユニットモジュールの金属製の保持部材を冷却することで、電池セルを冷却することができるようになっている。 There is also known a power supply device including a plurality of unit modules formed by surrounding a pair of battery cells with a metal holding member and a resin case for holding the plurality of unit modules (Patent Document 2). . The resin case includes an upper frame member and a lower frame member. The resin case surrounds the edge of the unit module and has a shape that exposes the metal holding member of the unit module to the outside. Specifically, the lower frame member is provided with a plurality of partition walls so that a plurality of unit modules can be inserted, and a gap is formed between adjacent unit modules. ing. The upper frame member and the lower frame member are provided with inlets and outlets at positions corresponding to the gaps between the unit modules so that the gaps between the unit modules serve as cooling channels. . With this configuration, the power supply device of Patent Document 2 forms a flow path through which cooling air passes through the resin case, and can cool the battery cell by cooling the metal holding member of the unit module. It is like that.
特開2013-201136号公報JP 2013-2011136 A 特表2009-529216号公報Special table 2009-529216
 上述の電源装置は、いずれも、電池セルが熱的に接触する金属製の部材を冷却することで、間接的に電池セルを冷却する構成となっている。しかしながら、この構成では、電池セルと金属製の部材との密着性が不充分であると、電池セルと金属部材との間に空気層が形成され、冷却効率が低下するおそれがある。部材の寸法には公差が生じるため、電池セルと金属製の部材との密着性を確保しようとすると、著しく生産効率が低下する問題がある。 Any of the above-described power supply devices is configured to indirectly cool the battery cell by cooling a metal member that is in thermal contact with the battery cell. However, in this configuration, if the adhesion between the battery cell and the metal member is insufficient, an air layer is formed between the battery cell and the metal member, which may reduce the cooling efficiency. Since tolerances occur in the dimensions of the members, there is a problem that the production efficiency is remarkably lowered when it is attempted to ensure the adhesion between the battery cells and the metal members.
 本発明は、上記問題の解決を図ろうとなされたものであって、簡単な構成としながら、電池セルを安定して冷却することができる構成の電源装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power supply device having a configuration capable of stably cooling battery cells while having a simple configuration.
 本発明の電源装置は、一方向に沿って配置される複数のユニットモジュールであって、各々のユニットモジュールが、複数の電池セルと、少なくとも一つの環状リング体とを含む前記複数のユニットモジュールと、前記複数のユニットモジュールを保持し、冷媒を流すための流入口および流出口が設けられる保持体と、を備えている。前記少なくとも一つの環状リング体は、該環状リング体が含まれるユニットモジュールの外周に位置するとともに、環状リング体の厚みによって隣接するユニットモジュールの間に隙間を形成している。前記隙間は、前記保持体に設けられた前記流入口および前記流出口と接続されている。 The power supply device of the present invention is a plurality of unit modules arranged along one direction, and each of the unit modules includes a plurality of battery cells and at least one annular ring body. A holding body that holds the plurality of unit modules and is provided with an inlet and an outlet for flowing the refrigerant. The at least one annular ring body is located on the outer periphery of a unit module including the annular ring body, and a gap is formed between adjacent unit modules depending on the thickness of the annular ring body. The gap is connected to the inlet and the outlet provided in the holding body.
 上述の電源装置の構成によると、複数の電池セルは、環状リング体によって保持されるとともに、環状リング体の厚みによって、隣接するユニットモジュールの間に隙間を形成することができる。この構成では、電池セルの一面の少なくとも一部を隣接するユニットモジュールの間に形成された隙間に露出させることができ、隣接するユニットモジュールの間に形成された隙間を流れる冷媒で電池セルを直接冷却することができる。そのため、簡単な構成としながら、電池セルを安定して冷却することができる。 According to the configuration of the power supply device described above, the plurality of battery cells are held by the annular ring body, and a gap can be formed between adjacent unit modules depending on the thickness of the annular ring body. In this configuration, at least a part of one surface of the battery cell can be exposed to a gap formed between adjacent unit modules, and the battery cell is directly connected with the refrigerant flowing through the gap formed between adjacent unit modules. Can be cooled. Therefore, the battery cell can be stably cooled with a simple configuration.
本発明の実施形態における電源装置の斜視図である。It is a perspective view of the power supply device in the embodiment of the present invention. 図1に示すユニットモジュールの斜視図である。It is a perspective view of the unit module shown in FIG. 図2に示すユニットモジュールの正面図である。It is a front view of the unit module shown in FIG. 本発明の実施形態における電池セルの一実施例を示す正面図である。It is a front view which shows one Example of the battery cell in embodiment of this invention. 本発明の実施形態における電池セルの他の実施例を示す正面図である。It is a front view which shows the other Example of the battery cell in embodiment of this invention. 図2に示すユニットモジュールの断面図である。It is sectional drawing of the unit module shown in FIG. 本発明の実施形態におけるユニットモジュールの変形例を示す断面図である。It is sectional drawing which shows the modification of the unit module in embodiment of this invention. 図1の電源装置の分解斜視図である。It is a disassembled perspective view of the power supply device of FIG. 図8に示す下ケース体の上面図である。It is a top view of the lower case body shown in FIG. 図2に示す環状リング体の側面図である。FIG. 3 is a side view of the annular ring body shown in FIG. 2. 本発明の実施形態における環状リング体の第1の変形例を示す側面図である。It is a side view which shows the 1st modification of the cyclic | annular ring body in embodiment of this invention. 本発明の実施形態における環状リング体の第2の変形例を示す側面図である。It is a side view which shows the 2nd modification of the annular ring body in embodiment of this invention.
 図1は、本発明のある態様の電源装置1を示している。図1に示す電源装置1は、電力源となる複数のユニットモジュール20と、複数のユニットモジュール20が収納される保持体30とで構成される。保持体30には外部端子32が設けられており、外部端子32は、保持体30が保持するユニットモジュール20と電気的に接続される。この構成により、外部端子32を介して、電源装置1の電力を出力したり、複数の電源装置1を接続したりすることができるようになっている。また、保持体30は、下部フレーム体33と上部フレーム体31と、で構成され、下部フレーム体33と上部フレーム体31の間に、複数のユニットモジュール20が保持されている。 FIG. 1 shows a power supply device 1 according to an aspect of the present invention. The power supply device 1 shown in FIG. 1 includes a plurality of unit modules 20 serving as a power source and a holding body 30 in which the plurality of unit modules 20 are accommodated. The holding body 30 is provided with an external terminal 32, and the external terminal 32 is electrically connected to the unit module 20 held by the holding body 30. With this configuration, the power of the power supply device 1 can be output or a plurality of power supply devices 1 can be connected via the external terminal 32. The holding body 30 includes a lower frame body 33 and an upper frame body 31, and a plurality of unit modules 20 are held between the lower frame body 33 and the upper frame body 31.
 図2および図3に示すように、ユニットモジュール20は、複数の電池セル21と、複数の電池セル21を保持する複数の環状リング体24とで構成される。複数の環状リング体24は、所定の厚さおよび所定の幅を有するバンド状の部材であり、ユニットモジュール20の外周に位置している。なお、ユニットモジュール20は、複数の電池セル21と、複数の電池セル21を囲う一つの環状リング体24とで構成することもできる。 2 and 3, the unit module 20 includes a plurality of battery cells 21 and a plurality of annular ring bodies 24 that hold the plurality of battery cells 21. The plurality of annular ring bodies 24 are band-shaped members having a predetermined thickness and a predetermined width, and are located on the outer periphery of the unit module 20. The unit module 20 can also be configured with a plurality of battery cells 21 and a single annular ring body 24 surrounding the plurality of battery cells 21.
 ユニットモジュール20を構成する電池セル21は、充放電可能な二次電池である。具体的には、リチウムイオン電池やニッケル水素電池等の二次電池を用いることができる。図4および図5は、上述の電池セル21の具体的な構成を説明するための図であり、代表的な構成としてパウチ電池を例示している。図4および図5の電池セル21は、変形可能なラミネートフィルムで形成される外装体22と、外装体22に封入される発電要素と、発電要素と接続される電極タブ23と、で構成される。発電要素は、電極体や電解液などが含まれる。電極タブ23は、電池セル21の出力端子であり、外装体22の内部から外装体22の外部から導出される。 The battery cell 21 which comprises the unit module 20 is a secondary battery which can be charged / discharged. Specifically, a secondary battery such as a lithium ion battery or a nickel metal hydride battery can be used. 4 and 5 are diagrams for explaining a specific configuration of the battery cell 21 described above, and a pouch battery is illustrated as a representative configuration. The battery cell 21 in FIGS. 4 and 5 includes an exterior body 22 formed of a deformable laminate film, a power generation element enclosed in the exterior body 22, and an electrode tab 23 connected to the power generation element. The The power generation element includes an electrode body and an electrolytic solution. The electrode tab 23 is an output terminal of the battery cell 21 and is led out from the inside of the exterior body 22 from the outside of the exterior body 22.
 このタイプの電池セル21は、電極体として、偏平状の巻回電極体や積層型電極体を備える構成が知られている。巻回電極体は、正極極板及び負極極板を、セパレータを介して巻回しこの後、プレスして偏平状に形成された電極体である。積層型電極体は、シート状の正極極板及び負極極板を、セパレータを介して積層して形成された電極体である。なお、電極体の構成は、発電要素を外装体22に封入できればよく、必ずしも上述の構成に限る必要はない。 This type of battery cell 21 is known to have a flat wound electrode body or a laminated electrode body as an electrode body. The wound electrode body is an electrode body formed in a flat shape by winding a positive electrode plate and a negative electrode plate through a separator, and then pressing them. The laminated electrode body is an electrode body formed by laminating a sheet-like positive electrode plate and a negative electrode plate via a separator. In addition, the structure of an electrode body should just be able to enclose a power generation element in the exterior body 22, and does not necessarily need to be restricted to the above-mentioned structure.
 また、ラミネートフィルムは、樹脂層(ポリプロピレン)/接着剤層/アルミニウム合金層/接着材層/樹脂層(ポリプロピレン)の5層構造からなるシート状の金属と樹脂の複合フィルムである。外装体22は、このラミネートフィルムで形成され、内部に電極体収納空間を有している。具体的には、図4および図5に例示する電池セル21は、一枚のラミネートフィルムで構成された外装体22の上に電極体を配置し、外装体22を折りたたみ、折り返した辺以外の辺において、重なった外装体22を熱溶着して形成される。なお、図4の電池セルは、ラミネートフィルムを熱溶着する際、外装体22の一辺から、一対の電極タブ23を延出させている。また、図5の電池セルは、ラミネートフィルムを熱溶着する際、外装体22の両端に位置する二辺から、それぞれ、一対の電極タブのうちの一つの電極タブ23を延出させている。 The laminate film is a sheet-like metal / resin composite film having a five-layer structure of resin layer (polypropylene) / adhesive layer / aluminum alloy layer / adhesive layer / resin layer (polypropylene). The exterior body 22 is formed of this laminate film, and has an electrode body storage space therein. Specifically, in the battery cell 21 illustrated in FIGS. 4 and 5, the electrode body is disposed on the exterior body 22 composed of a single laminate film, the exterior body 22 is folded, and the sides other than the folded sides are arranged. On the side, the overlapping outer package 22 is formed by heat welding. 4 has a pair of electrode tabs 23 extending from one side of the outer package 22 when the laminate film is thermally welded. Further, in the battery cell of FIG. 5, one electrode tab 23 of a pair of electrode tabs is extended from two sides located at both ends of the exterior body 22 when the laminate film is heat-welded.
 以上の構成の電池セル21は、厚みのある矩形板状に形成され、変形可能な外装体22を備える。また、外装体22がラミネートフィルムで構成されるため、外装体22を金属で形成しながら、内部に封入される発電要素に対して、外装体22を絶縁することができる。この構成の電池セル21は、ラミネートフィルムが外力によって比較的容易に変形するため形状の安定性が低く、電池セル21を構成する構成部材が少ないため、電池セル21の外形を小さくできるなどの特徴がある。 The battery cell 21 having the above configuration is formed in a thick rectangular plate shape and includes a deformable exterior body 22. Moreover, since the exterior body 22 is comprised with a laminate film, the exterior body 22 can be insulated with respect to the electric power generation element enclosed inside, forming the exterior body 22 with a metal. The battery cell 21 having this configuration is characterized in that the laminate film is deformed relatively easily by an external force, so that the shape stability is low, and since the number of components constituting the battery cell 21 is small, the outer shape of the battery cell 21 can be reduced. There is.
 なお、上述の記載では、図4および図5に基づいてパウチ電池を備える構成について説明したが、本発明の電源装置1は、必ずしもパウチ電池である必要はなく、箱形状の電池ケースに発電要素が封入される構成の角形電池などを用いることもできる。角形電池は、有底直方体で上面を開放した金属製の電池ケースに、巻回電極体や積層型電極体などの電極体と、電解液を収納し、上面を封口板で封止する構造などが知られている。このような電池セル21も、厚みのある矩形板状の形状を備えている。この構成の電池セル21は、外装体22が金属製の電池ケースで形成されるため外装体22が電位を有しており、外装体22が強固な電池ケースで形成されるため外装体22の変形を抑制することができ、形状の安定性が高いなどの特徴がある。 In the above description, the configuration including the pouch battery has been described based on FIGS. 4 and 5. However, the power supply device 1 of the present invention does not necessarily need to be a pouch battery, and a power generation element is provided in a box-shaped battery case. It is also possible to use a prismatic battery having a configuration in which is enclosed. A prismatic battery has a structure in which an electrode body such as a wound electrode body or a laminated electrode body and an electrolytic solution are stored in a metal battery case with a bottomed rectangular parallelepiped and the upper surface is opened, and the upper surface is sealed with a sealing plate. It has been known. Such a battery cell 21 also has a thick rectangular plate shape. In the battery cell 21 having this configuration, the exterior body 22 has a potential because the exterior body 22 is formed of a metal battery case, and the exterior body 22 is formed of a strong battery case. Deformation can be suppressed, and there are features such as high shape stability.
 図2および図3に示すように、環状リング体24は、複数の電池セル21を囲うことができるようにバンド状に成形された保持部材である。複数の電池セル21は、互いの主面を対向させて積層された状態で環状リング体24に挿入され、ユニットモジュール20が構成される。環状リング体24は、樹脂で形成されることが好ましく、挿入された複数の電池セル21を固定して保持できるように、弾力性を有する部材で形成することもできる。弾力性を有する樹脂部材としては、ゴムなどのエラストマーが利用できる。なお、環状リング体24は、上述の通り、所定の幅で形成されるが、環状リング体24の幅を変えることで、ユニットモジュール20の結束の強度を変えることができる。 2 and 3, the annular ring body 24 is a holding member formed in a band shape so as to be able to surround the plurality of battery cells 21. The plurality of battery cells 21 are inserted into the annular ring body 24 in a state of being stacked with their main surfaces facing each other, and the unit module 20 is configured. The annular ring body 24 is preferably formed of a resin, and can also be formed of an elastic member so that the inserted plurality of battery cells 21 can be fixed and held. As the resin member having elasticity, an elastomer such as rubber can be used. As described above, the annular ring body 24 is formed with a predetermined width. However, by changing the width of the annular ring body 24, the binding strength of the unit modules 20 can be changed.
 図2のユニットモジュール20は、それぞれ、2つの電池セル21と、2つの電池セル21を囲う3つの環状リング体24とで構成されている。この構成では、積層された複数の電池セル21が複数の環状リング体24によって保持され、複数の電池セル21の両端が環状リング体24によって保持される。そのため、複数の電池セル21を強固に集合化でき、組み立ての際のハンドリング性を向上させることができる。この構成は、電池セル21としてパウチ電池を採用する場合に、特に優れた効果を有する。 2 is composed of two battery cells 21 and three annular ring bodies 24 surrounding the two battery cells 21, respectively. In this configuration, the plurality of stacked battery cells 21 are held by the plurality of annular ring bodies 24, and both ends of the plurality of battery cells 21 are held by the annular ring bodies 24. Therefore, the plurality of battery cells 21 can be firmly assembled, and handling properties during assembly can be improved. This configuration has a particularly excellent effect when a pouch battery is employed as the battery cell 21.
 具体的には、パウチ電池は、電池セル21の幅方向の厚さが他の形状の電池セル21と比べて薄いため、隣接するパウチ電池の電極タブが近接する構成となる。そのため、パウチ電池の外装体が比較的変形しやすいことと相まって、隣接するパウチ電池の電極タブ23と意図しない接触をするおそれがある。例えば、電源装置1の組み立て工程などにおいて、ユニットモジュール20を移動させる際に、この問題が顕著となるが、上述の構成では、ユニットモジュール20を構成する複数の電池セル21が複数の環状リング体24によってしっかりと集合化されるため、安定した状態でユニットモジュール20を移動させることができる。 Specifically, the pouch battery has a configuration in which the electrode tabs of adjacent pouch batteries are close to each other because the thickness in the width direction of the battery cell 21 is thinner than the battery cell 21 having another shape. Therefore, in combination with the relatively easy deformation of the outer package of the pouch battery, there is a risk of unintentional contact with the electrode tab 23 of the adjacent pouch battery. For example, this problem becomes significant when the unit module 20 is moved in the assembly process of the power supply device 1 and the like. However, in the above-described configuration, the plurality of battery cells 21 constituting the unit module 20 include a plurality of annular ring bodies. 24, the unit module 20 can be moved in a stable state.
 図6は、図2のユニットモジュール20の断面図であり、図7は、変形例のユニットモジュール20の断面図である。電池セル21は、異常な状態となった際に、電解液等からガスが発生し、外装体22の内圧が上昇することがある。そのため、パウチ電池の外装体22は、内圧が上昇に対して、ある程度の密閉性を確保できるように、所定の範囲以上の面積を熱溶着する必要がある。一方で、パウチ電池は、上述の通り、外装体22の周縁が熱溶着によって封止されるが、熱溶着される外装体22の間には、発電要素は配置されない。そのため、パウチ電池の周縁部分にデッドスペースが生じ、電池セル21が占有する空間に対するエネルギー密度が低下する要因となる。 6 is a cross-sectional view of the unit module 20 of FIG. 2, and FIG. 7 is a cross-sectional view of the unit module 20 of a modification. When the battery cell 21 is in an abnormal state, gas may be generated from the electrolyte or the like, and the internal pressure of the exterior body 22 may increase. Therefore, the exterior body 22 of the pouch battery needs to be heat-welded in an area of a predetermined range or more so that a certain degree of hermeticity can be secured against an increase in internal pressure. On the other hand, as described above, in the pouch battery, the outer periphery of the exterior body 22 is sealed by thermal welding, but no power generation element is arranged between the exterior bodies 22 to be thermally welded. Therefore, a dead space is generated in the peripheral portion of the pouch battery, which becomes a factor in reducing the energy density with respect to the space occupied by the battery cell 21.
 図7のユニットモジュール20において、複数のパウチ電池は、熱溶着された外装体22の周縁部分が折りたたまれた状態で積層される。パウチ電池の構成において、発電要素が収納される電極体収納空間の厚さと比べて、熱溶着される周縁部分の厚さは薄いため、熱溶着された外装体22の周縁部分を折りたたむことで、電池セル21が占有する空間を小さくできる。 In the unit module 20 of FIG. 7, a plurality of pouch batteries are stacked in a state where the peripheral edge portion of the heat-welded exterior body 22 is folded. In the configuration of the pouch battery, compared to the thickness of the electrode body storage space in which the power generation element is stored, the thickness of the peripheral portion to be heat-welded is thin, so by folding the peripheral portion of the heat-welded exterior body 22, The space occupied by the battery cell 21 can be reduced.
 以上の構成のユニットモジュール20は、周縁部分を折りたたまない構成の図6に図示するユニットモジュール20と比較して、環状リング体24にパウチ電池が強固に保持されるので、より安定した状態に電池セルを集合化することができる。 Compared with the unit module 20 illustrated in FIG. 6 in which the peripheral portion is not folded, the unit module 20 having the above configuration has the pouch battery firmly held by the annular ring body 24, so that the battery can be more stably maintained. Cells can be assembled.
 さらに、隣接するパウチ電池の折りたたまれた外装体の周縁部分を当接させる構成とすることもできる。この構成では、折りたたまれた外装体22の周縁部分が元の形状に復元しようとする力を利用して、隣接する電池セル21同士を保持することができる。 Furthermore, it is also possible to adopt a configuration in which the peripheral portion of the folded exterior body of the adjacent pouch battery is brought into contact. In this configuration, adjacent battery cells 21 can be held using a force that the peripheral portion of the folded exterior body 22 tries to restore the original shape.
 図1、図8および図9に示すように、保持体30は、下部フレーム体33と上部フレーム体31と、で構成され、下部フレーム体33と上部フレーム体31の間に、複数のユニットモジュール20が配置される。上述の通り、ユニットモジュール20の外周に所定の厚さを有する環状リング体24が位置しており、複数のユニットモジュール20が隣接して配置されるため、隣接するユニットモジュール20の間には、少なくとも環状リング体24の厚さに対応する隙間が形成される。 As shown in FIGS. 1, 8 and 9, the holding body 30 includes a lower frame body 33 and an upper frame body 31, and a plurality of unit modules are provided between the lower frame body 33 and the upper frame body 31. 20 is arranged. As described above, the annular ring body 24 having a predetermined thickness is located on the outer periphery of the unit module 20, and a plurality of unit modules 20 are arranged adjacent to each other. A gap corresponding to at least the thickness of the annular ring body 24 is formed.
 図1に示すように、上部フレーム体31の天面には、貫通孔35が形成されている。また、図9に示すように、下部フレーム体33の底面には、貫通孔35が形成されている。上部フレーム体31および下部フレーム体33に形成される貫通孔35は、保持体30の内部に冷媒を導入するための流入口と流出口である。保持体30は、それぞれの貫通孔が隣接するユニットモジュール20の間に形成された隙間に対応して設けられている。つまり、隣接するユニットモジュールの間に形成された隙間は、保持体30に設けられた流入口と流出口に連通されるようになっている。 As shown in FIG. 1, a through hole 35 is formed on the top surface of the upper frame body 31. As shown in FIG. 9, a through hole 35 is formed in the bottom surface of the lower frame body 33. The through holes 35 formed in the upper frame body 31 and the lower frame body 33 are an inlet and an outlet for introducing a refrigerant into the holding body 30. The holding body 30 is provided so as to correspond to the gap formed between the unit modules 20 in which each through hole is adjacent. That is, a gap formed between adjacent unit modules is communicated with an inflow port and an outflow port provided in the holding body 30.
 以上の構成では、隣接するユニットモジュール20の間に形成された隙間に、電池セル21の一面が露出される構成となる。そのため、ユニットモジュール20を構成する電池セル21は、直接冷媒に曝されるように構成することができ、電池セル21を安定して冷却することができる。加えて、環状リング体24は、隣接するユニットモジュール20の間に形成された隙間を流れる冷媒の流路方向に沿って延在する構成となるため、冷媒の流れを環状リング体24が阻害することを抑制できる。また、隣接するユニットモジュール20において、互いの環状リング体24が対向するように設ける構成とすることが好ましい。この構成では、隣接するユニットモジュール20の間に形成された隙間の流路断面積を大きくすることができ、冷媒が流れる際に生じる圧力損出を低減することができる。加えて、環状リング体24や仕切壁34の端部に面取り加工を施すこともできる。端部が面取りされた環状リング体24や仕切壁34は、乱流の発生を抑制することができ、冷媒が流れる際に生じる圧力損出を低減することができる。 In the above configuration, one surface of the battery cell 21 is exposed in the gap formed between the adjacent unit modules 20. Therefore, the battery cell 21 which comprises the unit module 20 can be comprised so that it may be directly exposed to a refrigerant | coolant, and the battery cell 21 can be cooled stably. In addition, since the annular ring body 24 is configured to extend along the flow path direction of the refrigerant flowing through the gap formed between the adjacent unit modules 20, the annular ring body 24 inhibits the flow of the refrigerant. This can be suppressed. Moreover, it is preferable to set it as the structure provided so that the mutual annular ring body 24 may oppose in the adjacent unit module 20. FIG. In this configuration, the flow path cross-sectional area of the gap formed between adjacent unit modules 20 can be increased, and pressure loss that occurs when the refrigerant flows can be reduced. In addition, the end portions of the annular ring body 24 and the partition wall 34 can be chamfered. The annular ring body 24 and the partition wall 34 whose end portions are chamfered can suppress generation of turbulent flow, and can reduce pressure loss generated when the refrigerant flows.
 なお、環状リング体24は、上述の通り、環状リング体24の幅を変えることで、ユニットモジュール20の結束の強度を変えることができるようになっているが、環状リング体24の幅が大きくなると冷媒に直接曝される電池セルの面積が小さくなる。従って、環状リング体24の幅や厚さは、ユニットモジュール20の結束の強度と、冷却効率を勘案して設計されることが好ましい。 As described above, the annular ring body 24 can change the binding strength of the unit modules 20 by changing the width of the annular ring body 24, but the width of the annular ring body 24 is large. Then, the area of the battery cell that is directly exposed to the refrigerant is reduced. Accordingly, the width and thickness of the annular ring body 24 are preferably designed in consideration of the binding strength of the unit modules 20 and the cooling efficiency.
 また、図8および図9に示すように、下部フレーム体33は、下部フレーム体33の底部の内壁に複数の仕切壁34が設ける構成とすることもできる。図9には、6つの仕切壁が設けられた下部フレーム体33が例示されている。図9の下部フレーム体33において、6つの仕切壁34は、ユニットモジュール20を収容するための4つの空間V1と、下部フレーム体33に設けられる貫通孔35に連通する3つの空間V2とを区画している。この構成によると、仕切壁34によって形成される空間V1にユニットモジュール20が挿入される。また、ユニットモジュール20は、空間V1に挿入される際、仕切壁34によって対応する空間V1に案内される。 Further, as shown in FIGS. 8 and 9, the lower frame body 33 may be configured such that a plurality of partition walls 34 are provided on the inner wall at the bottom of the lower frame body 33. FIG. 9 illustrates the lower frame body 33 provided with six partition walls. In the lower frame body 33 of FIG. 9, the six partition walls 34 define four spaces V1 for housing the unit modules 20 and three spaces V2 communicating with the through holes 35 provided in the lower frame body 33. is doing. According to this configuration, the unit module 20 is inserted into the space V <b> 1 formed by the partition wall 34. Further, the unit module 20 is guided to the corresponding space V1 by the partition wall 34 when inserted into the space V1.
 なお、空間V1の寸法は、仕切壁34が設けられる位置によって規定されるが、ユニットモジュール20が容易に挿入できるように、ユニットモジュール20の幅より、若干大きく形成されることが好ましい。また、ユニットモジュール20の幅とほぼ等しい間隔に形成する構成では、ユニットモジュールの環状リング体24が仕切壁34によって形成される空間V1に嵌合する。この構成では、環状リング体24が下部フレーム体33に固定されるので、組み立ての際、ユニットモジュール20を下部フレーム体33に安定的に保持させることができ、製造工程における作業性を向上させることができる。また、環状リング体24の表面に、摩擦係数を低下させるようなコーティングや表面処理を施すこともできる。この構成では、環状リング体24の挿入が容易となり、製造工程における作業性をさらに向上させることができる。 In addition, although the dimension of the space V1 is prescribed | regulated by the position in which the partition wall 34 is provided, it is preferable to form a little larger than the width | variety of the unit module 20 so that the unit module 20 can be inserted easily. Further, in the configuration in which the unit module 20 is formed at an interval substantially equal to the width of the unit module 20, the annular ring body 24 of the unit module is fitted in the space V <b> 1 formed by the partition wall 34. In this configuration, since the annular ring body 24 is fixed to the lower frame body 33, the unit module 20 can be stably held by the lower frame body 33 during assembly, and workability in the manufacturing process is improved. Can do. Also, the surface of the annular ring body 24 can be subjected to coating or surface treatment that reduces the friction coefficient. In this configuration, the annular ring body 24 can be easily inserted, and the workability in the manufacturing process can be further improved.
 図10乃至図12は、環状リング体24の他の実施例を説明するための図である。図10は、図2のユニットモジュールで図示される環状リング体24の側面図である。図11、図12の環状リング体24は、多数の電池セルでユニットモジュール20を構成するための環状リング体24であり、主に、3つ以上の電池セルでユニットモジュール20を構成する場合などに好適である。図11に示す環状リング体24は、環状リング体24の内壁に内側に向かって突出する複数の凸部25が設けられている。各々の電池セル21は、複数の凸部25によって、間隔をあけた状態で保持される。この構成により、隣接するユニットモジュール20の間に形成される隙間に加えて、ユニットモジュール20を構成する複数の電池セル21の間にも隙間を形成することできる。電池セル21の間に設けられた隙間は、隣接するユニットモジュール20の間に形成される隙間と同様に、保持体30に設けられた複数の貫通孔35と接続される。この構成により、ユニットモジュール20の外側に位置する電池セル21だけでなく、ユニットモジュール20の内側に配置される電池セル21も、冷媒を介して直接冷却することができる。 10 to 12 are views for explaining another embodiment of the annular ring body 24. FIG. 10 is a side view of the annular ring body 24 illustrated in the unit module of FIG. The annular ring body 24 of FIGS. 11 and 12 is an annular ring body 24 for constituting the unit module 20 with a large number of battery cells, and mainly when the unit module 20 is constituted by three or more battery cells. It is suitable for. The annular ring body 24 shown in FIG. 11 is provided with a plurality of convex portions 25 projecting inward on the inner wall of the annular ring body 24. Each battery cell 21 is held in a state of being spaced apart by a plurality of convex portions 25. With this configuration, in addition to the gap formed between adjacent unit modules 20, a gap can also be formed between the plurality of battery cells 21 constituting the unit module 20. The gaps provided between the battery cells 21 are connected to the plurality of through holes 35 provided in the holding body 30 in the same manner as the gaps formed between the adjacent unit modules 20. With this configuration, not only the battery cells 21 located outside the unit module 20 but also the battery cells 21 arranged inside the unit module 20 can be directly cooled via the refrigerant.
 図12に示す環状リング体24は、凸部25の構成に加えて、環状リング体24の外壁に凹部26が設けられている。凹部26は、凸部25に対応して設けられており、下部フレーム体33の一対の仕切壁34が嵌合するように構成される。具体的には、複数の仕切壁34のうち、間に流出口と連通される空間V2を区画する一対の仕切壁34が、環状リング体24の凹部26に嵌合される。上述の通り、凹部26は、電池セル21の間に隙間を形成するための凸部25に対応して設けられているので、流出口あるいは流出口と連通される空間V2を形成する仕切壁34を凹部26に挿入することで、電池セル21の間の隙間と貫通孔35との位置を合わせることができるようになっている。 The annular ring body 24 shown in FIG. 12 is provided with a concave portion 26 on the outer wall of the annular ring body 24 in addition to the configuration of the convex portion 25. The concave portion 26 is provided corresponding to the convex portion 25, and is configured such that the pair of partition walls 34 of the lower frame body 33 are fitted. Specifically, among the plurality of partition walls 34, a pair of partition walls 34 that divide a space V <b> 2 that communicates with the outflow port therebetween are fitted into the recess 26 of the annular ring body 24. As described above, since the concave portion 26 is provided corresponding to the convex portion 25 for forming a gap between the battery cells 21, the partition wall 34 that forms the outflow port or the space V2 that communicates with the outflow port. Is inserted into the recess 26 so that the gap between the battery cells 21 and the through hole 35 can be aligned.
 以上、本発明を実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各々の構成要素や各々の処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. Those skilled in the art will understand that these embodiments are exemplifications, and that various modifications can be made to the combinations of the respective constituent elements and the respective treatment processes, and such modifications are also within the scope of the present invention. It is where it is done.
 1 電源装置、20 ユニットモジュール、21 電池セル、22 外装体、23 電極タブ、24 環状リング体、25 凸部、26 凹部、30 保持体、31 上部フレーム体、32 外部端子、33 下部フレーム体、34 仕切壁、35 貫通孔 1 power supply unit, 20 unit module, 21 battery cell, 22 exterior body, 23 electrode tab, 24 annular ring body, 25 convex part, 26 concave part, 30 holding body, 31 upper frame body, 32 external terminal, 33 lower frame body, 34 partition walls, 35 through holes

Claims (10)

  1.  一方向に沿って配置される複数のユニットモジュールであって、各々のユニットモジュールが、複数の電池セルと、少なくとも一つの環状リング体とを含む前記複数のユニットモジュールと、
     前記複数のユニットモジュールを保持し、冷媒を流すための流入口および流出口が設けられる保持体と、を備え、
     前記少なくとも一つの環状リング体は、該環状リング体が含まれるユニットモジュールの外周に位置するとともに、環状リング体の厚みによって隣接するユニットモジュールの間に隙間を形成し、該隙間が、前記保持体に設けられた前記流入口および前記流出口と連通されることを特徴とする電源装置。
    A plurality of unit modules arranged along one direction, each unit module including a plurality of battery cells and at least one annular ring body;
    A holding body that holds the plurality of unit modules and is provided with an inlet and an outlet for flowing a refrigerant;
    The at least one annular ring body is located on the outer periphery of the unit module including the annular ring body, and forms a gap between adjacent unit modules depending on the thickness of the annular ring body, and the gap is the holding body. A power supply device that is in communication with the inflow port and the outflow port that are provided in the airflow path.
  2.  請求項1に記載の電源装置において、
     前記複数の電池セルのそれぞれは、厚みのある矩形板状に形成される外装体を含むとともに、隣接する電池セルが互いの前記外装体を対向させた状態で積層される電源装置。
    The power supply device according to claim 1,
    Each of the plurality of battery cells includes an exterior body formed in a thick rectangular plate shape, and adjacent battery cells are stacked in a state where the exterior bodies face each other.
  3.  請求項1または請求項2に記載の電源装置であって、
     前記複数のユニットモジュールは、互いの環状リングが対向して配置される電源装置。
    The power supply device according to claim 1 or 2, wherein
    The plurality of unit modules are power supplies in which annular rings are arranged to face each other.
  4.  請求項1乃至請求項3のいずれかに記載の電源装置であって、
     前記少なくとも一つの環状リング体は、複数の環状リング体であり、該複数の環状リング体が前記隙間を流れる冷媒の流路方向に沿って延在する電源装置。
    The power supply device according to any one of claims 1 to 3,
    The at least one annular ring body is a plurality of annular ring bodies, and the plurality of annular ring bodies extend along a flow path direction of the refrigerant flowing through the gap.
  5.  請求項1乃至請求項4のいずれかに記載の電源装置であって、
     前記少なくとも一つの環状リング体は、該環状リング体が保持する前記複数の電池セルのうち隣接する電池セルの間に位置するように、該環状リング体の内壁に設けられる少なくとも一つの凸部を含む電源装置。
    The power supply device according to any one of claims 1 to 4,
    The at least one annular ring body includes at least one protrusion provided on an inner wall of the annular ring body so as to be positioned between adjacent battery cells among the plurality of battery cells held by the annular ring body. Including power supply.
  6.  請求項1乃至請求項5のいずれかに記載の電源装置であって、
     前記保持体は、複数の仕切壁が設けられる第1のフレーム部材と、該第1のフレーム部材に連結され、前記第1のフレーム部材との間に前記複数のユニットモジュールが位置する第2のフレーム部材と、を含み、
     前記複数の仕切壁は、前記複数のユニットモジュールを所定の位置に案内する電源装置。
    The power supply device according to any one of claims 1 to 5,
    The holding body includes a first frame member provided with a plurality of partition walls, a second frame member connected to the first frame member, and the plurality of unit modules positioned between the first frame member and the second frame member. A frame member,
    The plurality of partition walls are power supply devices that guide the plurality of unit modules to a predetermined position.
  7.  請求項6に記載の電源装置であって、
     前記少なくとも一つの環状リング体は、前記複数の仕切壁に嵌合する電源装置。
    The power supply device according to claim 6,
    The power supply apparatus, wherein the at least one annular ring body is fitted into the plurality of partition walls.
  8.  請求項7に記載の電源装置であって、
     前記少なくとも一つの環状リング体は、該環状リング体の外壁に凹部が設けられ、該凹部に前記複数の仕切壁のうちの一つが挿入される電源装置。
    The power supply device according to claim 7,
    The at least one annular ring body is a power supply device in which a recess is provided in an outer wall of the annular ring body, and one of the plurality of partition walls is inserted into the recess.
  9.  請求項1乃至請求項8のいずれかに記載の電源装置であって、
     前記複数の電池セルは、変形可能な外装体と、該外装体内に封入される発電要素と、該発電要素と接続され、前記外装体から導出される電極タブとを含む複数のパウチ電池であり、
     前記複数のパウチ電池は、前記外装体の周縁の少なくとも一部が折り曲げられた状態で、前記環状リング体に挿入される電源装置。
    The power supply device according to any one of claims 1 to 8,
    The plurality of battery cells are a plurality of pouch batteries including a deformable exterior body, a power generation element enclosed in the exterior body, and an electrode tab connected to the power generation element and led out from the exterior body. ,
    The plurality of pouch batteries are power supply devices that are inserted into the annular ring body in a state in which at least a part of the periphery of the exterior body is bent.
  10.  請求項9に記載の電源装置であって、
     前記複数のパウチ電池は、隣接するパウチ電池の折り曲げられた外装体同士が当接することを特徴とする電源装置。
    The power supply device according to claim 9,
    The power supply apparatus according to claim 1, wherein the plurality of pouch batteries are in contact with each other of the folded exterior bodies of adjacent pouch batteries.
PCT/JP2015/003362 2014-10-21 2015-07-03 Power supply device WO2016063434A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-214110 2014-10-21
JP2014214110 2014-10-21

Publications (1)

Publication Number Publication Date
WO2016063434A1 true WO2016063434A1 (en) 2016-04-28

Family

ID=55760498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003362 WO2016063434A1 (en) 2014-10-21 2015-07-03 Power supply device

Country Status (1)

Country Link
WO (1) WO2016063434A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019507469A (en) * 2016-09-28 2019-03-14 エルジー・ケム・リミテッド BATTERY MODULE HAVING COOLING FLOW
CN114914614A (en) * 2022-05-16 2022-08-16 北京科易动力科技有限公司 Battery pack

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151013A (en) * 2009-12-25 2011-08-04 Gs Yuasa Corp Single battery, and battery pack using the single battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151013A (en) * 2009-12-25 2011-08-04 Gs Yuasa Corp Single battery, and battery pack using the single battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019507469A (en) * 2016-09-28 2019-03-14 エルジー・ケム・リミテッド BATTERY MODULE HAVING COOLING FLOW
US10957949B2 (en) 2016-09-28 2021-03-23 Lg Chem, Ltd. Battery module having cooling channel, and assembling method and frame assembly thereof
JP7034411B2 (en) 2016-09-28 2022-03-14 エルジー エナジー ソリューション リミテッド Battery module with cooling flow path, its assembly method and frame assembly
CN114914614A (en) * 2022-05-16 2022-08-16 北京科易动力科技有限公司 Battery pack
CN114914614B (en) * 2022-05-16 2023-09-12 北京科易动力科技有限公司 battery pack

Similar Documents

Publication Publication Date Title
US10446818B2 (en) Power source device
EP2849275B1 (en) Battery module including high-efficiency cooling structure
JP7082665B2 (en) Battery module with improved cooling structure
JP6713547B2 (en) Multi-cavity battery module
KR101608853B1 (en) Frame for secondary battery and battery module including the same
KR20130086018A (en) Battery module with compact structure and excellent heat radiation characteristics and middle or large-sized battery pack employed with the same
KR20100109873A (en) Battery module having flexibility in designing structure of module and battery pack employed with the same
US20120263991A1 (en) Battery pack
JP2015211013A (en) Power storage device
EP2648271B1 (en) Battery pack
KR102113155B1 (en) Battery module and battery pack
TW201304248A (en) Assembled cell
KR102211192B1 (en) Unit battery modue, Battery module and Battery pack And Method for manufacturing the same
KR20150140121A (en) Frame for secondary battery and battery module including the same
US10811744B2 (en) Battery cell, battery module and production method
JP2012129043A (en) Power storage device
KR20180085129A (en) Battery Cell Comprising Electrode Lead Facing Outer Surface of Electrode Assembly
KR20140147979A (en) Frame for secondary battery and battery module including the same
KR101761825B1 (en) Battery module, and battery pack including the same
WO2016067487A1 (en) Power supply device
KR20170098590A (en) The cartridge, Battery module including the cartridge, Battery pack
KR20180071983A (en) Pouch type secondary battery and method of fabricating same
JP2009224227A (en) Battery module and battery pack with the same
WO2016063434A1 (en) Power supply device
CN108391453B (en) Through-wall current collector for soft package battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15851681

Country of ref document: EP

Kind code of ref document: A1