WO2016062154A1 - 信息采集方法及装置、通信系统 - Google Patents

信息采集方法及装置、通信系统 Download PDF

Info

Publication number
WO2016062154A1
WO2016062154A1 PCT/CN2015/087249 CN2015087249W WO2016062154A1 WO 2016062154 A1 WO2016062154 A1 WO 2016062154A1 CN 2015087249 W CN2015087249 W CN 2015087249W WO 2016062154 A1 WO2016062154 A1 WO 2016062154A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
optical
module
optical port
optical module
Prior art date
Application number
PCT/CN2015/087249
Other languages
English (en)
French (fr)
Inventor
卢祥弘
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016062154A1 publication Critical patent/WO2016062154A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery

Definitions

  • This document relates to, but is not limited to, the field of optical communication technology, and in particular, to an information collection method and device, and a communication system.
  • the optical module is one of the necessary devices for optical transmission.
  • the SFP+ (Small From-Factor Pluggable Plus) optical module is generally used.
  • the most common maintenance method is to directly replace the optical module of the relevant equipment, and repair the replaced module.
  • optical port problem involves many factors on the site, and needs to be judged according to the operating state of the site, such as the operating parameters when the optical module fails, including voltage, bias current, receiving luminous power, operating temperature, etc., as long as one of them appears Problems can cause the optical port of the device to malfunction.
  • the optical port failure may be related to the optical environment and the operating status of the main device. This information is necessary to correctly analyze the cause of the optical port failure.
  • the optical module is directly replaced, and then the repair analysis is performed; however, according to the replaced optical module, the on-site diagnostic information required for analyzing the fault cannot be obtained, and the operation state of the fault site cannot be traced. This caused the failure to correctly analyze the cause of the failure of the optical port.
  • the embodiments of the present invention provide a method and a device for collecting information, and a communication system, to solve the technical problem of how to avoid the failure to correctly analyze the cause of the optical port failure due to the failure to obtain the information required for the analysis optical port failure.
  • An embodiment of the present invention provides an information collection method, including the following steps:
  • the step of storing the information includes:
  • the information is stored inside the device.
  • the step of storing the information inside the optical module connected to the optical port includes:
  • the information is stored in a non-volatile byte segment of the optical module's internal memory.
  • the step of storing the information in a non-volatile byte segment of the optical module internal memory includes:
  • the information is presented to the non-volatile byte segment of the memory through the optical module.
  • the information includes: at least one of an operating parameter of an optical module connected to the optical port, an operating state information of the device, and an optical fiber parameter.
  • the embodiment of the invention further provides an information collecting device, comprising: a detecting module and a storage module;
  • the detecting module is configured to detect information currently used to analyze the optical port fault when the optical port of the device fails;
  • the storage module is configured to store the information.
  • the storage module is configured to:
  • the information is stored inside the device.
  • the storage module is configured to store the information inside the optical module connected to the optical port by storing the information to the internal memory of the optical module. Volatile byte segment.
  • the information includes: at least one of an operating parameter of the optical module connected to the optical port, an operating state information of the device, and an optical fiber parameter.
  • the embodiment of the invention further provides a communication system, comprising: an optical communication device and an optical module;
  • the optical communication device includes: an optical port, a detection module, and a sending module;
  • the optical module includes: an optical module controller and a memory;
  • the optical module is connected to an optical port on the optical communication device
  • the detecting module is configured to detect information currently used to analyze the optical port failure when the optical port fails;
  • the sending module is configured to send the information to the optical module controller
  • the optical module controller is arranged to store the information in the memory.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • the embodiment of the present invention provides an information collection method and device, and a communication system, which can provide information for a later fault analysis or location, so that the user can find out the cause of the optical port failure.
  • the information collection method of the embodiment of the present invention includes When the optical port of the device is faulty, the current information for analyzing the optical port failure is detected; the information is stored for later optical port failure analysis; the method provided by the embodiment of the present invention may fail in the optical port.
  • the information used to analyze the optical port fault is recorded, and information is provided for subsequent fault analysis or positioning. When the fault is subsequently analyzed, the cause of the optical port fault may be accurately or correctly detected according to the information.
  • the fault analysis may be traced back to the site where the fault occurs, and the fault analysis may be further improved. Rate and accuracy.
  • FIG. 1 is an information collection method according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of an available area division of an internal EEPROM (Electrically Erasable Programmable Read Only Memory) of an SFP+ optical module according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic structural diagram of a communication system according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of an information collection apparatus according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic structural diagram of a communication system according to Embodiment 4 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the acquisition method includes the following steps:
  • Step 101 When the optical port of the device fails, detecting information currently used to analyze the optical port failure.
  • the body that performs the detection in step 101 may be a device where the optical port is located, an optical module connected to the optical port, or a third-party detecting device.
  • Step 102 Store the information for later optical port failure analysis.
  • the storing the information in the step may include: storing the information in a device where the optical port is located, storing the information in an optical module connected to the optical port, or storing the information in another device or module.
  • the information collection method provided in this embodiment can record information for analyzing the optical port failure when the optical interface fails, and provide information for subsequent fault analysis or positioning. When the fault is analyzed later, the information can be accurately detected based on the information.
  • the information for analyzing the optical port fault in the embodiment may include at least one of an operating parameter of the optical module connected to the optical port, an operating state information of the device, and an optical fiber parameter.
  • the working parameters of the optical module may include one or more of the following: an operating voltage of the optical module, a bias current of the optical module, a receiving power of the optical module, an operating temperature of the optical module, and a logic state indication of each type of the optical module.
  • the optical module AD converts the update status and each type of alarm flag of the optical module.
  • the running status of the device can include one or more of the following: the board type of the device, the temperature of the board, the rate of the optical port, the equalization parameter of the optical port, and the pre-emphasis parameter of the optical port.
  • Alarm information related to each type of optical interface of the device.
  • the fiber parameters can include fiber length information.
  • the device in this embodiment is a device in an optical communication system, including a local device (such as an indoor baseband processing unit BBU, etc.) or a fiber remote device (such as a remote radio module RRU, etc.).
  • a local device such as an indoor baseband processing unit BBU, etc.
  • a fiber remote device such as a remote radio module RRU, etc.
  • the information for analyzing the optical port fault includes: an operating parameter of the optical module connected to the optical port, an operating state information of the device, and an optical fiber parameter
  • applying the method of the embodiment may be faulty.
  • the analysis traces back to the site where the fault occurred, further improving the rate and accuracy of the fault analysis.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the present embodiment provides an information collection method, in which the detected information is stored in an optical module connected to the optical port for later acquisition from the optical module.
  • the information about the optical port fault is correctly analyzed for the cause of the optical port failure.
  • the method of the embodiment may store information for analyzing the optical port failure in a memory inside the optical module.
  • the optical module is an SFP+ optical module, it can be stored in an EEPROM (Electrically Erasable Programmable Read Only Memory).
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • the information for analyzing the optical port failure is stored in the non-volatile memory of the optical module internal memory, in order to prevent the information from being lost.
  • the information for analyzing the optical port failure is stored in the non-volatile memory of the optical module internal memory, in order to prevent the information from being lost.
  • the byte segment In the byte segment.
  • the process of storing the information for analyzing the optical port failure in the non-volatile byte segment of the internal memory of the optical module may be include:
  • the detecting body sends the detected information for analyzing the optical port failure to the optical module
  • the optical module presents the information to a non-volatile byte segment of the memory.
  • the device when the optical port of the device fails, the device detects information currently used to analyze the optical port failure; the device sends the information to the optical module connected to the optical interface, and then the optical module stores the information in the optical module.
  • Internal memory (optionally, can be stored in non-volatile byte segments of the memory).
  • optical module as an SFP+ optical module as an example to describe the process of storing information in the optical module of this embodiment:
  • the internal memory of the SFP+ optical module is EEPROM, and the SFF-8472 protocol specifies that the internal EEPROM space of the SFP+ optical module has a total of 512 bytes. Divided into two areas A0h and A2h. At present, many SFP+ optical modules no longer have a separate EEPROM device, but directly use the Flash inside the Micro Controller in the module, but the function of the storage area and the division of the byte segment still follow the agreement.
  • A0h is a non-editable area for the user to read-only area, where 0-95 bytes are used to store information such as the package, interface, and laser type of the optical module; 96-127 bytes are used to store the product model of the module where the optical module is placed.
  • serial number and other information; 128-255 byte segment is the protocol reserved space.
  • the A2h area is specially set up with a user editable area.
  • the 0-95 byte segment is used to store each type of alarm threshold of the optical module.
  • the 96-119 byte segment is used for the dynamic diagnosis interface of the optical module. The manufacturer generally maps this byte segment.
  • the 127-247 byte segment is an editable area for the user. After the module is powered off, the information stored in the area remains, so the black box information can be stored in the byte segment.
  • the user editable area can be spatially divided, and the information for analyzing the optical port fault is correspondingly stored in the divided space, which is convenient for the user to extract and view.
  • the content of the specific space division and the division space storage is set according to the application requirements.
  • FIG. 2 it is a partition for the SFP+ internal EEPROM user available area (ie, 127-247 byte segment: user editable area).
  • the content labels in the figure are: 1. Divide 2-Byte space, set to store the current working shell temperature of the optical module; 2. Divide 2-Byte space, set to store the current working voltage value of the optical module; 3.
  • Divide 2-Byte Space set to store the current laser bias current of the optical module; 4, divide 2-Byte space, set to store the current transmitted optical power of the optical module; 5, divide 2-Byte space, set to store the received power currently detected by the optical module ; 6, reserved space 4-Byte; 7, divided 1-Byte space, set to store each type of logic state of the optical module; 8, divide 1-Byte space, set to store optical module AD conversion update state; 9, division The 8-byte space is set to store the alarm flag of each type of the optical module. 10.
  • the 2-byte space is divided into the board type of the main device. 11.
  • the 2-byte space is divided and the temperature of the main board is set. 12.
  • Divide 2-Byte space set to store the rate value set by the optical port of the master device; 13. Divide 4-Byte space, set to store the pre-emphasis parameter information of the optical port of the master device; 14. Divide 4-Byte space, set To store the main device The port receives the equalization parameter information; 15. Divides the 8-Byte space, and sets the alarm information related to each type of optical port of the master device; 16. divides the 2-Byte space and sets the fiber length information measured by the master device; Leave space 72-Byte;
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • This embodiment introduces the information collection method of the first embodiment or the second embodiment by using the communication system shown in FIG. 3:
  • the system shown in FIG. 3 includes: an optical communication device 301 (which may include an indoor/outdoor remote device, ie, a BBU/RRU); an SFP+ optical module 302 placed on the optical port of the optical communication device 301; and a controller on the indoor/outdoor device (CPU/FPGA, etc.) 303 and detection module 300; SFP+ module controller (Micro Controller) 304; SFP+ module internal EEPROM 305; indoor/outdoor equipment and SFP+ module data exchange I2C bus clock signal line SCL306; indoor/outdoor
  • the device interacts with the SFP+ module data on the data signal line SDA307 of the I2C bus; the SFP+ module controller 304 and the EEPROM 305 data exchange the clock signal line SCL308 of the I2C bus; the SFP+ module controller 304 and the EEPROM 305 data exchange the data signal line SDA309 of the I2C bus.
  • the optical port failure information is named as diagnostic information, and the diagnosis is performed.
  • the information includes: at least one of an operating parameter of the optical module connected to the optical port, an operating state information of the device, and an optical fiber parameter. For specific information description, refer to the foregoing content);
  • the second step the detection module 300 in the optical communication device 301 sends the detected current diagnostic information to the controller 303, the controller 303 is transmitted to the controller 304 inside the SFP+ optical module 302 through the SCL 306 and the SCL 308;
  • the third step the controller 304 transmits the diagnostic information to the EEPROM 305 inside the SFP+ module 302 via the SCL 308 and the SDA 309 for storage.
  • the diagnostic information is stored in the manner shown in FIG. 2.
  • the parameters in items 1-17 will be updated immediately when the master device detects the optical port alarm, and 15 items will be recorded at this time.
  • the optical port alarm number can be used to query the corresponding alarm information according to the alarm number.
  • the optical communication device 301 can periodically detect the above diagnostic information in a normal working state, and then transmit the information to the controller 304 inside the SFP+ optical module 302 through the SCL 306 and the SCL 308; the controller 304 transmits the diagnostic information through the SCL 308 and the SDA 309.
  • the EEPROM 305 inside the SFP+ module is stored. Specifically, the stored procedure may be stored in the EEPROM of the optical module according to the content and address of the table plan in FIG. 2 above. At this time, 15 items in the table, the host board alarm flag Host Board Warming Info does not store information, indicating that the current form is an optical port. And information when the system is working properly.
  • the optical communication device 301 detects that the optical port is faulty, according to the process of the first step to the third step, the information is recorded to provide more data information for analysis for later fault recurrence and positioning.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the information collecting device 40 includes: a detecting module 401 and a storage module 402;
  • the detecting module 401 is configured to detect information currently used to analyze the optical port fault when the optical port of the device fails;
  • the storage module 402 is configured to store the information for later optical port failure analysis.
  • the device provided in this embodiment can record information for analyzing the optical port fault when the optical port fails, and provide information for subsequent fault analysis or positioning. When the fault is subsequently analyzed, the light can be accurately detected according to the information. The cause of the failure of the port.
  • the storage module 402 is configured to:
  • the information is stored inside the device.
  • the storage module 402 is configured to store the information into the optical module.
  • the non-volatile byte segment of the memory In the non-volatile byte segment of the memory.
  • the working parameters of the optical module and the running state information of the device are recorded in the optical module in real time, and the device is used to correctly determine the cause of the fault.
  • the embodiment further provides a communication system, including: an optical communication device 301 and an optical module 302;
  • the optical communication device 301 includes: an optical port (not shown), a detection module 300, and a controller 303;
  • the optical module 302 includes: an optical module controller 304 and a memory 305;
  • the optical module 302 is connected to an optical port on the optical communication device 301;
  • the detecting module 300 is configured to detect information currently used to analyze the optical port failure when the optical port fails.
  • the controller 303 is configured to send the information to the optical module controller
  • the light module controller 304 is arranged to store the information in the memory 305.
  • the optical communication device 301 in this embodiment may include a local device (such as a BBU or the like), a fiber remote device (such as an RRU, etc.); the optical module may include an SFP+ optical module, and the memory 305 is an EEPROM.
  • a local device such as a BBU or the like
  • a fiber remote device such as an RRU, etc.
  • the optical module may include an SFP+ optical module
  • the memory 305 is an EEPROM.
  • all or part of the steps of the above embodiments may also be implemented using an integrated circuit.
  • the steps may be separately fabricated into individual integrated circuit modules, or a plurality of modules or steps may be fabricated into a single integrated circuit module.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the above technical solution can accurately detect the cause of the failure of the optical port when the optical port is faulty due to the replacement of the optical module.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种信息采集方法及装置、通信系统。所述信息采集方法,包括:在设备的光口发生故障时,检测当前用于分析所述光口故障的信息;存储所述信息,以供后期进行光口故障分析;上述技术方案可以在光口发生故障时记录用于分析所述光口故障的信息,为后续进行故障分析或定位提供信息,在后续分析故障时,可以根据该信息准确地查出光口发生故障的原因。

Description

信息采集方法及装置、通信系统 技术领域
本文涉及但不限于光通信技术领域,尤其涉及一种信息采集方法及装置、通信系统。
背景技术
本地设备和远程拉远设备间为了增大传输距离,基本都使用光作为通信媒介。光模块是光传输中必要的器件之一,而为了适应设备的小型化及高传输速率的需求,一般都使用SFP+(Small From-Factor Pluggable Plus,小型可插拔)光模块。在通信领域中,对于室内设备和光纤拉远的室外设备,如果设备在工作中出现光口故障,最常见的维护手段是直接更换相关设备的光模块,将更换下的模块返修分析。光口问题涉及现场的因素较多,需要根据现场的运行状态来判断,如光模块出现故障时的工作参数,包括电压,偏置电流、收发光功率、工作温度等,只要其中某一项出现问题都有可能导致设备的光口出现故障。此外光口发生故障还可能与光纤环境和主设备的运行状态相关,这些信息都是正确分析光口发生故障的原因所必需的。
目前光通信中,针对光口发生故障时往往采取直接更换光模块的做法,随后返修分析;但根据换掉的光模块无法获取分析故障所需的现场诊断信息,无法追溯故障现场的运行状态,造成后期无法正确分析出光口发生故障的原因。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种信息采集方法及装置、通信系统,以解决如何避免由于无法获取分析光口故障所需的信息导致后期无法正确分析出光口发生故障的原因的技术问题。
本发明实施例提供一种信息采集方法,包括如下步骤:
在设备的光口发生故障时,检测当前用于分析所述光口故障的信息;
存储所述信息。
可选地,所述存储所述信息的步骤包括:
将所述信息存储在与所述光口连接的光模块内部;
或者
将所述信息存储在所述设备内部。
可选地,所述将所述信息存储在与所述光口连接的光模块内部的步骤包括:
将所述信息存储至所述光模块内部存储器的非易失性字节段中。
可选地,所述将所述信息存储至所述光模块内部存储器的非易失性字节段中的步骤包括:
将所述信息通过所述光模块存在至所述存储器的非易失性字节段。
可选地,所述信息包括:与所述光口连接的光模块的工作参数、所述设备的运行状态信息和光纤参数中的至少一种。
本发明实施例还提供了一种信息采集装置,包括:检测模块和存储模块;
所述检测模块设置为在设备的光口发生故障时,检测当前用于分析所述光口故障的信息;
所述存储模块设置为存储所述信息。
可选地,所述存储模块是设置为:
将所述信息存储在与所述光口连接的光模块内部;
或者
将所述信息存储在所述设备内部。
可选地,所述存储模块是设置为通过如下方式实现将所述信息存储在与所述光口连接的光模块内部:将所述信息存储至所述光模块内部存储器的非 易失性字节段中。
可选地,所述信息包括:与所述光口连接的所述光模块的工作参数、所述设备的运行状态信息和光纤参数中的至少一种。
本发明实施例还提供了一种通信系统,包括:光通信设备和光模块;
所述光通信设备包括:光口、检测模块和发送模块;
所述光模块包括:光模块控制器和存储器;
所述光模块与所述光通信设备上的光口连接;
所述检测模块设置为在所述光口发生故障时,检测当前用于分析所述光口故障的信息;
所述发送模块设置为将所述信息发送给所述光模块控制器;
所述光模块控制器设置为将所述信息存储至所述存储器中。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
本发明实施例的有益效果是:
本发明实施例提供了一种信息采集方法及装置、通信系统,可以为后期的故障分析或定位提供信息,使得用户可以查清光口发生故障的原因;本发明实施例的信息采集方法,包括:在设备的光口发生故障时,检测当前用于分析所述光口故障的信息;存储所述信息,以供后期进行光口故障分析;本发明实施例提供的方法可以在光口发生故障时记录用于分析所述光口故障的信息,为后续进行故障分析或定位提供信息,在后续分析故障时,可以根据该信息准确地或者正确地查出光口发生故障的原因。
另外,当信息包括:与所述光口连接的光模块的工作参数、所述设备的运行状态信息和光纤参数时,在故障分析时可以追溯到故障发生的现场,可以进一步地提高故障分析的速率和精确性。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例一提供的一种信息采集方法;
图2为本发明实施例二提供的SFP+光模块内部EEPROM(带电可擦可编程只读存储器)可用区域划分示意图;
图3为本发明实施例三提供的一种通信系统的结构示意图;
图4为本发明实施例四提供的一种信息采集装置的结构示意图;
图5为本发明实施例四提供的一种通信系统的结构示意图。
本发明的较佳实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一:
考虑到在目前光通信系统中,在光口发生故障之后,技术人员或者用户无法获取分析光口故障所需的信息导致后期无法正确分析出光口发生故障的原因;本实施例提供了一种信息采集方法,如图1所示,包括如下步骤:
步骤101:在设备的光口发生故障时,检测当前用于分析所述光口故障的信息。
可选地,步骤101中执行检测的主体可以为光口所在的设备、与光口连接的光模块、或者第三方检测设备。
步骤102:存储所述信息,以供后期进行光口故障分析。
可选地,本步骤中存储所述信息可以包括:将信息存储至光口所在的设备中,将信息存储在与光口连接的光模块中,或者将信息存储至其他设备或模块中。
根据上述对本实施例信息采集方法的描述可知,本实施例提供的信息采集方法可以在光口发生故障时记录用于分析所述光口故障的信息,为后续进行故障分析或定位提供信息,在后续分析故障时,可以根据该信息准确地查出光口发生故障的原因。
可选地,本实施例中用于分析所述光口故障的信息可以包括与所述光口连接的光模块的工作参数、所述设备的运行状态信息和光纤参数中的至少一种。
其中,光模块的工作参数可以包括以下一种或多种:光模块的工作电压、光模块的偏置电流、光模块的收发光功率、光模块的工作温度、光模块的每类逻辑状态指示、光模块AD转换更新状态和光模块每类告警标志。
设备的运行状态信息可以包括以下一种或多种:设备的单板类型、设备单板温度、设备光口设置的速率值、设备光口接收均衡参数信息、设备光口发送预加重参数信息和设备每类光口相关的告警信息。
光纤参数可以包括光纤长度信息。
本实施例中的设备为光通信系统中的设备,包括本地设备(诸如室内基带处理单元BBU等)或者光纤拉远设备(诸如远端射频模块RRU等)。
可选地,当用于分析所述光口故障的信息包括:与所述光口连接的光模块的工作参数、所述设备的运行状态信息和光纤参数时,应用本实施例方法可以在故障分析时追溯到故障发生的现场,进一步地提高故障分析的速率和精确性
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法。
实施例二:
在实施例一的基础上,本实施例提供了一种信息采集方法,其中将检测到的信息存储在与所述光口连接的光模块内部,以供后期从光模块中获取用于分析所述光口故障的信息正确分析光口发生故障的原因。
可选地,本实施例方法可以将用于分析光口故障的信息存储在光模块内部的存储器中。例如当光模块为SFP+光模块时,可以存储在EEPROM(带电可擦可编程只读存储器)中。
为防止存储的信息丢失导致后续无法读取的情况,在本实施例中,可选地,将所述分析所述光口故障的信息存储至所述光模块内部存储器的非易失 性字节段中。
在本实施例中,当检测信息的主体不是光模块的情况下,上述将所述分析所述光口故障的信息存储至所述光模块内部存储器的非易失性字节段中的过程可以包括:
检测主体将检测到的用于分析光口故障的信息发送给所述光模块;
所述光模块将所述信息存在至所述存储器的非易失性字节段。
例如:在设备的光口发生故障时,设备检测当前用于分析所述光口故障的信息;设备将所述信息发送给与光接口连接的光模块,然后由光模块将该信息存储在其内部的存储器中(可选地,可以存储在存储器的非易失性字节段)。
下面以光模块为SFP+光模块为例,来介绍本实施例光模块存储信息的过程:
参考表1,SFP+光模块内部的存储器为EEPROM,SFF-8472协议规定SFP+光模块内部EEPROM空间总共有512Byte。分成A0h和A2h两个区域。目前许多SFP+光模块已经不再单独放置一个EEPROM器件,而是直接使用模块中Micro Controller内部的Flash,但存储区域的功能和字节段的划分仍然遵循协议的规定。A0h对于用户是只读区域不可编辑区域,其中0-95字节端用于存储光模块的封装、接口、激光器类型等信息;96-127字节段用于存储光模块厂家放置模块的产品型号、序列号等信息;128-255字节段是协议预留空间。A2h区域专门设置了用户可编辑区,0-95字节段用于存储光模块的每类告警门限;96-119字节段用于光模块的动态诊断接口,厂家一般将这个字节段映射到模块的Micro Controller内部的RAM空间,所以光模块实时诊断的信息并没有写到EEPROM中,这些信息在掉电后是丢失的,后续无法读取分析。127-247字节段对于用户是可编辑区域,模块下电后该区域存储的信息仍然保留,所以黑匣子的信息可以存放到该字节段。
Figure PCTCN2015087249-appb-000001
Figure PCTCN2015087249-appb-000002
表1
将信息或数据存储至EEPROM用户可编辑区域时,可以对用户可编辑区域进行空间划分,将用于分析光口故障的信息对应存储在划分的空间中,方便用户提取查看。具体空间划分和和划分空间存储的内容,按照应用需求进行设定。
如图2所示,为一种针对SFP+内部EEPROM用户可用区域(即127-247字节段:用户可编辑区)的划分。图中划分的内容标号为:1、划分2-Byte空间,设置为存放光模块当前工作壳温;2、划分2-Byte空间,设置为存放光模块当前工作电压值;3、划分2-Byte空间,设置为存放光模块当前激光器偏置电流;4、划分2-Byte空间,设置为存放光模块当前发送光功率;5、划分2-Byte空间,设置为存放光模块当前检测到的接收功率;6、预留空间4-Byte;7、划分1-Byte空间,设置为存放光模块每类逻辑状态指示;8、划分1-Byte空间,设置为存放光模块AD转换更新状态;9、划分8-Byte空间,设置为存放光模块每类告警标志;10、划分2-Byte空间,设置为存放主设备的单板类型;11、划分2-Byte空间,设置为存放主设备单板温度;12、划分2-Byte空间,设置为存放主设备光口设置的速率值;13、划分4-Byte空间,设置为存放主设备光口发送预加重参数信息;14、划分4-Byte空间,设置为存放主设备光口接收均衡参数信息;15、划分8-Byte空间,设置为存放主设备每类光口相关的告警信息;16、划分2-Byte空间,设置为存放主设备测量的光纤长度信息;17、预留空间72-Byte;
可选地,考虑存储空间有限,在保证写入和读出时格式一致情况下,可以无需在表格中明确每个参数名称,以减少存储空间的开支。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
实施例三:
本实施例以图3所示的通信系统来介绍上述实施例一或实施例二的信息采集方法:
图3所示的系统包括:光通信设备301(可以包括室内/室外拉远设备、即BBU/RRU);放置在光通信设备301光口上的SFP+光模块302;室内/室外设备上的控制器(CPU/FPGA等)303和检测模块300;SFP+模块上的控制器(Micro Controller)304;SFP+模块内部的EEPROM305;室内/室外设备与SFP+模块数据交互I2C总线的时钟信号线SCL306;室内/室外设备与SFP+模块数据交互I2C总线的数据信号线SDA307;SFP+模块控制器304与EEPROM 305数据交互I2C总线的时钟信号线SCL308;SFP+模块控制器304与EEPROM305数据交互I2C总线的数据信号线SDA309。
图3所示的系统记录信息的过程如下:
第一步:光通信设备301可以在光口发生故障时,通过检测模块300检测当前用于分析所述光口故障的信息(下述将所述光口故障信息命名为诊断信息,所述诊断信息包括:与所述光口连接的光模块的工作参数、所述设备的运行状态信息和光纤参数中的至少一种。具体的信息描述可以参考上述内容);
第二步:光通信设备301中检测模块300将检测到的当前的诊断信息发送给控制器303,控制器303通过SCL306和SCL308传输给SFP+光模块302内部的控制器304;
第三步:控制器304通过SCL308和SDA309将诊断信息传输至SFP+模块302内部的EEPROM 305进行存储。
具体存储过程可以参考上述实施例二中介绍存储过程,例如采用图2所示的方式存储诊断信息。另外,为了记录光口曾经出现的故障信息,每当主设备检测到光口类告警时将立即更新1-17项中的参数,此时15项中将记录 当时光口告警号,后期可以根据该告警号查询相应的告警信息。
可选地,光通信设备301在正常工作状态下,可以定期检测上述的诊断信息,然后通过SCL306和SCL308传输给SFP+光模块302内部的控制器304;控制器304通过SCL308和SDA309将诊断信息传输至SFP+模块内部的EEPROM305进行存储。具体地存储过程可以按照上述图2表格规划的内容和地址存放到光模块的EEPROM中,此时表格中15项,主板告警标志位Host Board Warming Info不存入信息,标明目前表格中是光口和系统正常工作时候的信息。
当光通信设备301检测到光口发生故障时,按照上述第一步-第三步的过程记录信息,为后期的故障复现和定位提供更多可用于分析的数据信息。
实施例四:
考虑到在目前光通信系统中,在光口发生故障之后,由于获取分析光口故障的信息导致后期无法正确分析出光口发生故障原因的技术问题;如图4所示,本实施例提供了一种信息采集装置40,包括:检测模块401和存储模块402;
所述检测模块401设置为在设备的光口发生故障时,检测当前用于分析所述光口故障的信息;
所述存储模块402设置为存储所述信息,以供后期进行光口故障分析。
本实施例提供的装置可以在光口发生故障时记录用于分析所述光口故障的信息,为后续进行故障分析或定位提供信息,在后续分析故障时,可以根据该信息准确地查出光口发生故障的原因。
可选地,所述存储模块402是设置为:
将所述信息存储在与所述光口连接的光模块内部;
或者
将所述信息存储在所述设备内部。
可选地,所述存储模块402是设置为将所述信息存储至所述光模块内部 存储器的非易失性字节段中。
本实施例装置在光口出现故障时可以实时将光模块的工作参数、所述设备的运行状态信息记录到光模块中,后期用于正确判断故障原因。
如图5所示,本实施例还提供了一种通信系统,包括:光通信设备301和光模块302;
所述光通信设备301包括:光口(图中未示出)、检测模块300和控制器303;
所述光模块302包括:光模块控制器304和存储器305;
所述光模块302与所述光通信设备301上的光口连接;
所述检测模块300设置为在所述光口发生故障时,检测当前用于分析所述光口故障的信息;
所述控制器303设置为将所述信息发送给所述光模块控制器;
所述光模块控制器304设置为将所述信息存储至所述存储器305中。
本实施例中光通信设备301可以包括本地设备(诸如BBU等)、光纤拉远设备(诸如RRU等);光模块可以包括SFP+光模块,此时存储器305即为EEPROM。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这 些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
上述技术方案实现了在根据换掉的光模块分析光口发生故障的原因时,能够准确地查出光口发生故障的原因。

Claims (11)

  1. 一种信息采集方法,包括如下步骤:
    在设备的光口发生故障时,检测当前用于分析所述光口故障的信息;
    存储所述信息。
  2. 如权利要求1所述的方法,其中,所述存储所述信息的步骤包括:
    将所述信息存储在与所述光口连接的光模块内部;
    或者
    将所述信息存储在所述设备内部。
  3. 如权利要求2所述的方法,其中,所述将所述信息存储在与所述光口连接的光模块内部的步骤包括:
    将所述信息存储至所述光模块内部存储器的非易失性字节段中。
  4. 如权利要求3所述的方法,其中,所述将所述信息存储至所述光模块内部存储器的非易失性字节段中的步骤包括:
    将所述信息通过所述光模块存在至所述存储器的非易失性字节段。
  5. 如权利要求1-4任一项所述的方法,其中,所述信息包括:
    与所述光口连接的光模块的工作参数、所述设备的运行状态信息和光纤参数中的至少一种。
  6. 一种信息采集装置,包括:检测模块和存储模块;
    所述检测模块,设置为在设备的光口发生故障时,检测当前用于分析所述光口故障的信息;
    所述存储模块,设置为存储所述信息。
  7. 如权利要求6所述的装置,其中,所述存储模块是设置为:
    将所述信息存储在与所述光口连接的光模块内部;
    或者
    将所述信息存储在所述设备内部。
  8. 如权利要求7所述的装置,其中,所述存储模块是设置为通过如下方 式实现将所述信息存储在与所述光口连接的光模块内部:
    将所述信息存储至所述光模块内部存储器的非易失性字节段中。
  9. 如权利要求6-8任一项所述的装置,其中,所述信息包括:
    与所述光口连接的所述光模块的工作参数、所述设备的运行状态信息和光纤参数中的至少一种。
  10. 一种通信系统,包括:光通信设备和光模块;
    所述光通信设备包括:光口、检测模块和发送模块;
    所述光模块包括:光模块控制器和存储器;
    所述光模块与所述光通信设备上的光口连接;
    所述检测模块设置为在所述光口发生故障时,检测当前用于分析所述光口故障的信息;
    所述发送模块设置为将所述信息发送给所述光模块控制器;
    所述光模块控制器设置为将所述信息存储至所述存储器中。
  11. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~5中任一项所述的方法。
PCT/CN2015/087249 2014-10-21 2015-08-17 信息采集方法及装置、通信系统 WO2016062154A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410562260.8A CN105591687A (zh) 2014-10-21 2014-10-21 信息采集方法及装置、通信系统
CN201410562260.8 2014-10-21

Publications (1)

Publication Number Publication Date
WO2016062154A1 true WO2016062154A1 (zh) 2016-04-28

Family

ID=55760261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087249 WO2016062154A1 (zh) 2014-10-21 2015-08-17 信息采集方法及装置、通信系统

Country Status (2)

Country Link
CN (1) CN105591687A (zh)
WO (1) WO2016062154A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112954721A (zh) * 2019-11-26 2021-06-11 中兴通讯股份有限公司 回传方法及单元、数据分配方法及控制器、网络系统和介质
CN113852417A (zh) * 2021-11-29 2021-12-28 深圳市飞思卓科技有限公司 光模块故障定位方法、装置、设备及存储介质
CN113904718A (zh) * 2021-12-09 2022-01-07 深圳市飞速创新技术股份有限公司 光模块检测方法、终端设备及计算机可读存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109000889B (zh) * 2018-06-21 2021-03-02 青岛海信宽带多媒体技术有限公司 一种光模块劣化的检测方法及装置
CN110752871B (zh) * 2018-12-05 2022-05-13 中兴通讯股份有限公司 光链路诊断方法、及相应的设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562827A (zh) * 2009-05-22 2009-10-21 中兴通讯股份有限公司 一种故障信息采集方法及系统
CN102238599A (zh) * 2010-05-06 2011-11-09 中兴通讯股份有限公司 远端射频单元管理装置、系统及方法
US20140029934A1 (en) * 2012-07-24 2014-01-30 Verizon Patent And Licensing Inc. Distinguishing light in single fiber transceivers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562827A (zh) * 2009-05-22 2009-10-21 中兴通讯股份有限公司 一种故障信息采集方法及系统
CN102238599A (zh) * 2010-05-06 2011-11-09 中兴通讯股份有限公司 远端射频单元管理装置、系统及方法
US20140029934A1 (en) * 2012-07-24 2014-01-30 Verizon Patent And Licensing Inc. Distinguishing light in single fiber transceivers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112954721A (zh) * 2019-11-26 2021-06-11 中兴通讯股份有限公司 回传方法及单元、数据分配方法及控制器、网络系统和介质
CN112954721B (zh) * 2019-11-26 2023-05-16 中兴通讯股份有限公司 回传方法及单元、数据分配方法及控制器、网络系统和介质
CN113852417A (zh) * 2021-11-29 2021-12-28 深圳市飞思卓科技有限公司 光模块故障定位方法、装置、设备及存储介质
CN113852417B (zh) * 2021-11-29 2022-03-11 深圳市飞思卓科技有限公司 光模块故障定位方法、装置、设备及存储介质
CN113904718A (zh) * 2021-12-09 2022-01-07 深圳市飞速创新技术股份有限公司 光模块检测方法、终端设备及计算机可读存储介质
CN113904718B (zh) * 2021-12-09 2022-04-01 深圳市飞速创新技术股份有限公司 光模块检测方法、终端设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN105591687A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
WO2016062154A1 (zh) 信息采集方法及装置、通信系统
US10845830B2 (en) Intelligent control system and control method for detector, and pet device
CN106383763B (zh) 数据中心智能故障检测报警系统
CN104378260B (zh) Can 总线的负载率测试方法及装置、系统
CN106603265A (zh) 管理方法、服务控制器装置以及非暂态计算机可读介质
CN103500133A (zh) 故障定位方法及装置
CN105261329A (zh) 多led显示模组管理方法
CN106787199A (zh) 一种便携式子站模拟测试系统及方法
CN110932887A (zh) 一种bmc调试方法、系统及装置
CN102223251A (zh) 一种网络运维采集分析方法及业务处理装置
KR102534956B1 (ko) Led 디스플레이 업데이트 컨피규레이션 방법, 수신카드, led 디스플레이 모듈 및 led 디스플레이
CN103106095A (zh) 一种工业照相机远程升级的方法及照相机
TW201514708A (zh) I 2 c匯流排監控裝置
US20170187585A1 (en) Technologies for validating operations of devices
CN107729169A (zh) 一种四子星服务器节点对应盘位的远程定位方法与装置
US20140325285A1 (en) Serial attached scsi expander and method for debugging faults thereof
CN103853680A (zh) 总线信号监测装置及方法
CN104101382A (zh) 桥梁、建筑物健康状况监测装置
TWI576694B (zh) 硬碟運行狀態檢測系統
US9396145B1 (en) In-chip bus tracer
CN104780123A (zh) 一种网络包收发处理装置及其设计方法
CN107844447A (zh) 多通道串行总线高速数据采集处理系统及方法
CN106292610B (zh) 智能家居控制系统
CN204207721U (zh) 手持式牲畜体温采集设备
CN105376117A (zh) 一种fc交换机芯片数据监控测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852273

Country of ref document: EP

Kind code of ref document: A1