WO2016062138A1 - 一种设备到设备通信的设备发现装置和方法 - Google Patents

一种设备到设备通信的设备发现装置和方法 Download PDF

Info

Publication number
WO2016062138A1
WO2016062138A1 PCT/CN2015/084907 CN2015084907W WO2016062138A1 WO 2016062138 A1 WO2016062138 A1 WO 2016062138A1 CN 2015084907 W CN2015084907 W CN 2015084907W WO 2016062138 A1 WO2016062138 A1 WO 2016062138A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
signal
random number
period
probability
Prior art date
Application number
PCT/CN2015/084907
Other languages
English (en)
French (fr)
Inventor
吴栓栓
袁弋非
卢有雄
黄双红
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016062138A1 publication Critical patent/WO2016062138A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present invention relates to the field of communications, and in particular, to a device discovery apparatus and method for device-to-device communication.
  • D2D device-to-device
  • ProSe Proximity Service
  • the UE In cellular communication, when two UEs communicate, in general, the UE itself does not know the location of the counterpart UE, but establishes a connection between two UEs through a network side device (for example, a base station or a core network device).
  • a network side device for example, a base station or a core network device.
  • the premise of establishing a communication link is mutual discovery between UEs, that is, determining that the user equipment has a neighbor relationship.
  • One way to implement device discovery is through the discovery and detection of device discovery signals.
  • the performance discovered by the device is related to the load of the device discovery resource, for example, when the device discovers When the load of a resource is large, for example, the number of transmitting UEs is too large, and thus, an increase in collision of the discovery signal may result in a decrease in discovery performance.
  • a large load is always assumed to allocate resources for D2D discovery, it may result in waste of resources.
  • Similar problems exist for other D2D signals, such as control signaling or service data.
  • the embodiments of the present invention are directed to providing a device discovery device and method for device-to-device communication, which at least solves the above problems in the prior art.
  • the embodiments of the present invention provide a device discovery method and device for device-to-device communication, so as to improve the performance of the D2D communication device when it is discovered.
  • a device discovery device for device-to-device communication includes:
  • a receiving module configured to receive a resource allocation parameter sent by the network side device, where the resource allocation parameter is configured to send a periodic resource of the device to the device D2D signal; and configured to receive a transmission probability indication parameter sent by the network side;
  • a processing module configured to determine whether to send a D2D signal in a resource period of the D2D signal according to at least the sending probability indication parameter, or configured to determine, according to the sending probability indication parameter, a discovery for sending the D2D signal Resource cycle
  • a sending module configured to send the D2D signal within a discovery resource period that determines to send the D2D signal.
  • the apparatus further includes: a random number generator configured to generate a random number;
  • the processing module is further configured to determine whether to transmit the D2D signal according to the random number and the transmission probability.
  • the processing module is further configured to: according to the random number and the sending profile The rate determines whether or not to send a D2D signal:
  • the sending probability value corresponds to a random number threshold, and compares the random number with the random number threshold. When the random number is less than the random number threshold, the processing module determines to send a D2D signal;
  • the processing module determines to send a D2D signal
  • the random number ranges from 0 to 1, and compares the random number with the size of the sending probability value. When the random number is smaller than the sending probability value, the processing module determines to send a D2D signal.
  • the processing module is further configured to: when determining, according to the sending probability indication parameter, a discovery resource period for transmitting the D2D signal, determining, according to the sending probability, a candidate sending pattern, and Determining a transmission pattern in the candidate transmission pattern; determining a discovery resource period for transmitting the D2D signal according to the determined one of the transmission patterns.
  • each of the sending probabilities corresponds to one set of sending patterns, and each of the sending pattern sets includes one or more sending patterns, where the sending pattern is used to indicate that a discovery resource period packet is used to send the The discovery resource period of the D2D signal; or,
  • Each of the transmission probabilities corresponds to a transmission pattern, and the transmission pattern is used to indicate a discovery resource period for transmitting the D2D signal.
  • the processing module is further configured to: when determining a transmission pattern, group the candidate transmission patterns into a transmission pattern set, and randomly select a transmission pattern in the set, where each of the collections The transmitted pattern has an equal probability of being selected; or,
  • the processing module is further configured to: when determining a sending pattern, group the candidate sending patterns into a sending pattern set, and determine a sending map according to the identification information in the set Like; or,
  • the device further includes a random number generator configured to generate a random number, and in the case of determining a transmission pattern, select a transmission pattern according to the random number or the random number and the transmission probability; or the receiving module And configuring, in the case of determining a sending pattern, the dedicated indication signaling sent by the network side, where the dedicated indication signaling includes a parameter for indicating a sending pattern.
  • the processing module is further configured to: when determining, according to the sending probability indication parameter, a discovery resource period for transmitting the D2D signal, determine a sending period of the D2D signal according to the sending probability; Determining a period offset value in the set of period offset values, the set of candidate period offset values being determined by the transmission probability or the sending period; determining, according to the period offset value and the sending period, The discovery resource period of the D2D signal.
  • the manner of determining the period offset value includes one or more of the following manners:
  • Manner 1 a randomly selected manner to determine the period offset value; wherein each period offset value in the set of candidate offset values has the same selected probability;
  • Manner 2 determining the period offset value according to the manner of selecting the identifier information
  • Manner 3 Generate a random number, and determine the period offset value according to the manner of the random number selection.
  • the random number generator is further configured to generate a random number by using a pseudo random sequence generation algorithm
  • the pseudo-random sequence generation algorithm generates a pseudo-random sequence in each of the resource periods or each of the transmission periods or each of the resource groups; or the pseudo-random sequence generation algorithm initially transmits the Generating a pseudo-random sequence when the D2D signal is used;
  • the initialization parameter of the pseudo-random algorithm includes at least one of the following: an identifier, a periodic index, a system frame number, and a subframe/slot index.
  • the receiving module, the processing module, the sending module, and the random number generator are The processing may be implemented by a central processing unit (CPU), a digital signal processor (DSP), or a field-programmable gate array (FPGA).
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA field-programmable gate array
  • the D2D signal is transmitted during a discovery resource period in which the D2D signal is transmitted.
  • the determining, according to the sending probability indication parameter, whether to send a D2D signal includes:
  • Whether to transmit a D2D signal is determined according to the random number and the transmission probability.
  • the determining, according to the random number and the sending probability, whether to send a D2D signal includes:
  • the sending probability value corresponds to a random number threshold, comparing the random number with the random number threshold, and when the random number is less than the random number threshold, determining to send a D2D signal;
  • the random number ranges from 0 to 1, and compares the random number with the size of the sending probability value, and when the random number is smaller than the sending probability value, determining to send the D2D signal.
  • the determining, according to the sending probability indication parameter, the discovery resource period for sending the D2D signal includes:
  • the method further includes:
  • Each of the transmission probabilities corresponds to one transmission pattern set, and each of the transmission pattern sets includes one or more transmission patterns, and the transmission pattern is used to indicate a discovery for transmitting the D2D signal in a discovery resource period packet. Resource cycle; or,
  • Each of the transmission probabilities corresponds to a transmission pattern, and the transmission pattern is used to indicate a discovery resource period for transmitting the D2D signal.
  • the determining a sending pattern includes:
  • the candidate transmission patterns form a transmission pattern set, and a transmission pattern is randomly selected within the transmission pattern set, wherein each transmission pattern in the transmission pattern set has an equal probability of being selected;
  • the candidate transmission patterns form a transmission pattern set, and the transmission pattern is determined according to the identification information in the transmission pattern set;
  • the dedicated indication signaling includes a parameter for indicating a transmission pattern.
  • the determining, according to the sending probability indication parameter, the discovery resource period for sending the D2D signal includes:
  • the manner of determining the period offset value includes one or more of the following manners:
  • Manner 1 a randomly selected manner to determine the period offset value; wherein each period offset value in the set of candidate offset values has the same selected probability;
  • Manner 2 determining the period offset value according to the manner of selecting the identifier information
  • Manner 3 Generate a random number, and determine the period offset value according to the manner of the random number selection.
  • the method further includes:
  • the pseudo-random sequence generation algorithm generates a pseudo-random sequence in each of the resource periods or each of the transmission periods or each of the resource packets; or the pseudo-random sequence generation algorithm initially transmits the D2D signal Generating a pseudo-random sequence;
  • the initialization parameter of the pseudo-random algorithm includes at least one of the following: an identifier, a periodic index, a system frame number, and a subframe/slot index.
  • the device discovery device for device-to-device communication of the embodiment of the present invention includes: a receiving module configured to receive a resource allocation parameter sent by the network side device, where the resource allocation parameter allocates a periodic resource for transmitting a D2D signal; and, configured to And receiving, by the network side, a sending probability indication parameter, where the processing module is configured to determine whether to send the D2D signal in the resource period of the D2D signal according to the sending probability indication parameter, or configured to indicate the parameter according to at least the sending probability Determining a discovery resource period for transmitting the D2D signal; and transmitting, configured to transmit the D2D signal within a discovery resource period of determining to transmit the D2D signal.
  • the problem of the transmission of the D2D signal during the device-to-device communication can be solved, so as to ensure or improve the performance of the device discovery, and the purpose of controlling the discovery delay can be achieved by using the embodiment of the present invention, and the occurrence of the discovery probability is small. Larger problem of finding delays.
  • FIG. 1 is a schematic diagram of a cellular network deployment in the related art
  • FIG. 2 is a schematic diagram of an implementation process of an embodiment of a method according to the present invention.
  • FIG. 3 is a schematic structural diagram of an embodiment of a device according to the present invention.
  • Common cellular radio communication systems can be based on Code Division Multiplexing (CDMA) technology, Frequency Division Multiplexing (FDMA) technology, Orthogonal Frequency Division Multiple Access (OFDMA) technology.
  • CDMA Code Division Multiplexing
  • FDMA Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier frequency division multiple access
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • LTE-A LTE-Advanced
  • the uplink (or reverse link) is based on SC-FDMA multiple access technology. In the future, it is possible to support hybrid multiple access technology on one link.
  • a radio resource for communication is a form of time-frequency two-dimensional.
  • uplink and downlink communication resources are divided in units of radio frames in the time direction, and each radio frame has a length of 10 ms, including There are 10 sub-frames of length 1 ms, each of which includes two slots of length 0.5 ms, as shown in FIG.
  • each time slot may include 6 or 7 OFDM or SC-FDM symbols.
  • the resources are divided into subcarriers.
  • the smallest unit of frequency domain resource allocation is RB (Resource Block), and one PRB (Physical RB) of the corresponding physical resource. ).
  • a PRB contains 12 sub-carriers in the frequency domain, corresponding to one slot in the time domain.
  • the two PRBs adjacent to each other in the time domain of the subframe are called PRB pairs.
  • a resource corresponding to one subcarrier on each OFDM/SC-FDM symbol is referred to as a Resource Element (RE).
  • RE Resource Element
  • FIG. 1 is a schematic diagram of network deployment of a cellular wireless communication system in the related art.
  • a network device In an access network of a cellular radio communication system, a network device generally includes a certain number of base stations (also referred to as a Node B, a Node B, or an evolved Node B, an evolved Node B, an eNB, or an enhanced Node B ( eNB, enhanced Node B), and other network entities or network elements.
  • base stations also referred to as a Node B, a Node B, or an evolved Node B, an evolved Node B, an eNB, or an enhanced Node B ( eNB, enhanced Node B
  • 3GPP can also be referred to as a network-side evolved universal terrestrial wireless access network ( E-UTRAN, Evolved Universal Terrestrial Radio Access Network.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the base station here also includes a low power node (LPN) in the network, such as a femto cell or a home base station (pico, Relay, femto, HeNB or Home).
  • LPN low power node
  • the eNB, etc., etc. may also be collectively referred to as a small cell.
  • the base station provides a certain wireless signal coverage range, and the terminal within the coverage area (terminal , or user equipment, User Equipment, UE, or device, can communicate wirelessly with the base station.
  • the wireless signal coverage area of a base station may be Certain criteria are divided into one or more cells or cell sectors sector, for example, cells may be three.
  • Device discovery is a key technology in D2D communication. That is, UEs performing D2D communication first need to realize mutual discovery. This is referred to herein as discovery of D2D communication or D2D discovery or device discovery.
  • the device discovery is realized by the transmission and detection of the Discovery Signal between user equipments.
  • the discovery signal includes a message. In part, it may be a data packet of a physical layer, or a MAC (Medium Access Control) PDU (Protocol Data Unit).
  • the number of users participating in device discovery may fluctuate. For example, in some time periods, when the number of users is large, the number of users participating in the device discovery may be more; while in other time periods, the number of users participating in device discovery may be less. When the number of users participating in the device discovery is large, it is found that the conflict of signals may increase, resulting in a decrease in discovery performance.
  • the embodiment of the present invention provides a device discovery method for device-to-device communication, as shown in FIG. 2, including:
  • Step 101 Receive a resource allocation parameter sent by a network side device, where the resource allocation parameter allocates a periodic resource for transmitting a D2D signal.
  • Step 102 Receive a transmission probability indication parameter sent by the network side.
  • Step 103 Determine, according to the sending probability indication parameter, whether to send a D2D signal in a resource period of the D2D signal, or determine a discovery resource period for sending the D2D signal according to at least the sending probability indication parameter;
  • Step 104 Send the D2D signal within a discovery resource period that determines to send the D2D signal.
  • the network side device may be a base station; the resource allocation parameter may be high layer signaling or physical layer signaling, and is sent in the form of broadcast or dedicated signaling; the sending probability is a decimal between 0 and 1. Can be equal to 0 or equal to 1, equal to 0 means no discovery signal is sent, and equal to 1 means that the user equipment sends a discovery signal in each discovery resource period.
  • a transmission probability set of a discovery signal may be predefined, and the network side device selects one transmission probability as a discovery signal in the probability set according to factors such as a discovery resource load. For example, if the transmission probability set includes ⁇ 0.25, 0.5, 0.75, 1 ⁇ , the network side device may select one discovery signal transmission probability configured as its subordinate cell.
  • determining whether to transmit the D2D signal in the resource period of the D2D signal (discovery signal) according to the sending probability indication parameter includes: generating a random number; determining whether to send the discovery signal according to the random number and the sending probability. .
  • the length of the generated random number (when the random number is a binary sequence) or the range of the random number is agreed.
  • the random number can be generated based on a particular random number algorithm.
  • the length of the binary sequence can be agreed. For example, if the length is 10, then the generated binary random number is converted to decimal and its range is 0-1023, which includes 1024 integers. Alternatively, the generated random number may also be a decimal between 0-1. Alternatively, the generated random number can also be other ranges.
  • the transmission threshold is the same as the transmission probability. For example, when the transmission probability is 0.75, if the generated random number is less than 0.75 (or less than or equal to 0.75), the D2D discovery is sent. Signal, otherwise not sent.
  • the transmission threshold of the D2D discovery signal may be determined according to the number of random numbers and the transmission probability.
  • P is the transmission probability
  • Thres is the transmission threshold.
  • the user equipment when determining whether to send the D2D discovery signal, generating a random number and converting it into a decimal number, and then comparing with the sending threshold, when it is smaller than the sending threshold (or less than or equal to the sending threshold), Then send a discovery signal.
  • the transmission probability is ⁇ 0.25, 0.5, 0.75, 1 ⁇
  • the corresponding transmission thresholds are ⁇ 256, 512, 768, 1024 ⁇ .
  • determining, according to the sending probability indication parameter, a discovery resource period for transmitting the D2D signal including: determining a transmission pattern of the candidate according to the transmission probability, and determining, in the candidate transmission pattern a transmission pattern; determining a discovery resource period for transmitting the D2D signal according to the determined one of the transmission patterns.
  • each transmission probability corresponds to one transmission pattern set, and each of the transmission pattern sets includes one or more transmission patterns, and the transmission pattern is used to indicate that one discovery resource period packet is used for Sending a discovery resource period of the D2D signal.
  • the transmission pattern represents a discovery resource period for transmitting a D2D discovery signal in a specific consecutive discovery resource period.
  • the ratio of the resource period in which the discovery signal is sent in the transmission pattern is consistent with (or substantially consistent with) the transmission probability. For example, when the transmission probability is 0.25, 25% of the discovery resource periods in the corresponding transmission pattern are marked as the period for transmitting the discovery signal; when the transmission probability is 0.5, 50% of the corresponding resources in the corresponding transmission pattern are found. The period is marked as the period for transmitting the discovery signal; when the transmission probability is 0.75, 75% of the discovery resource period in its corresponding transmission pattern is marked as the period for transmitting the discovery signal.
  • the transmission pattern included in the corresponding transmission pattern set has ⁇ 1000, 0100, 0010,0001 ⁇ , wherein 1 in the transmission pattern indicates that the discovery signal is transmitted, and 0 indicates no transmission, for example, 1000 indicates that it is in 4
  • the discovery signal is sent in the first discovery resource period, and the discovery signal is not sent in the subsequent three discovery resource periods, so that the user equipment sends the discovery resource of the discovery signal.
  • the percentage of the cycle is 25%, which is the same as the transmission probability.
  • Other sending patterns have similar meanings. Based on this, the transmission pattern can be similarly determined for other transmission probabilities.
  • the transmission pattern ⁇ 10, 01 ⁇ or ⁇ 0011, 0101, 0110, 1001, 1010, 1100 ⁇ can be predefined; when the transmission probability is 0.75, the transmission pattern can be predefined as ⁇ 0111, 1011, 1101, 1110 ⁇ , etc.
  • the start of the specific consecutive discovery resource period may be determined by the user equipment itself, that is, different user equipments have different assumptions about the start of a specific consecutive discovery resource period; or, the specific continuous
  • the start of the discovery resource period is determined in a predefined manner, for example, starting from the configuration signaling of the discovery discovery resource, and determining the start of the specific discovery resource period, for example, starting from the configuration signaling
  • the specific discovery resource period is one group, and the discovery resource period is consecutively grouped, and the transmission pattern corresponds to a discovery resource period in one group of discovery resource periods. Or determining the start according to the system frame number (SFN). For example, starting from the SFN numbered 0, each consecutive specific discovery resource period is one discovery resource period group.
  • SFN system frame number
  • the start of the specific (eg, n) consecutive discovery resource periods is determined by the indication signaling configured by the network side.
  • the network side sends the configuration parameter a_start, and a_start has an agreed value range.
  • the sending pattern is determined according to the identification information (ID) in the candidate transmission pattern set.
  • the candidate transmission pattern includes m transmission patterns.
  • the identifier information may be an identifier of the user equipment, such as an IMSI (International Mobile Subscriber Identity) or a partial field in the IMSI.
  • generating a random number selecting a transmission pattern according to the random number or the random number and the transmission probability, for example, generating a random number RAND according to a random number generation algorithm, where the candidate transmission pattern includes m pieces under the configured transmission probability
  • the dedicated indication signaling includes a parameter for indicating a sending pattern
  • the base station sends a parameter for indicating the used sending pattern to the user equipment, and the user equipment according to the parameter Determine the location of the resource cycle in which the discovery signal is sent.
  • the base station can directly indicate the pattern (such as one of the four patterns mentioned above when the probability is 0.25) or indicate the index of the pattern.
  • each transmission probability corresponds to a transmission pattern, and the transmission pattern is used to indicate a discovery resource period for transmitting the D2D signal in a discovery resource period packet.
  • the transmission pattern represents a discovery resource period for transmitting a D2D discovery signal in a specific consecutive discovery resource period.
  • the ratio of the resource period in which the discovery signal is sent in the transmission pattern is consistent with (or substantially consistent with) the transmission probability. For example, when the transmission probability is 0.25, 25% of the discovery resource periods in the corresponding transmission pattern are marked as the period for transmitting the discovery signal; when the transmission probability is 0.5, 50% of the corresponding resources in the corresponding transmission pattern are found. The period is marked as the period for transmitting the discovery signal; when the transmission probability is 0.75, 75% of the discovery resource period in its corresponding transmission pattern is marked as the period for transmitting the discovery signal.
  • the predefined transmission pattern is 0001, where 1 in the transmission pattern indicates that the discovery signal is transmitted, and 0 indicates no transmission, such as 0001 indicates that the four consecutive discoveries are found.
  • the discovery signal is sent in the fourth discovery resource period, and the discovery signal is not sent in the previous three discovery resource cycles, so that the ratio of the discovery resource period of the discovery signal is sent to the user equipment. It is 1/4, which is the same as the transmission probability.
  • Other sending patterns have similar meanings.
  • the transmission probability may also be 1000, or 0100, or 0010, and the like.
  • the length of the transmission pattern may not be limited to four. Based on this, the transmission pattern can be similarly determined for other transmission probabilities.
  • the transmission pattern when the transmission probability is 0.5, can be predefined as 10 or 01, or 0011, or 0101, or 0110, or 1001, or 1010, or 1100 ⁇ ; when the transmission probability is 0.75, the transmission pattern can be predefined as One of the following four patterns: ⁇ 0111, 1011, 1101, 1110 ⁇ , or other lengths of the transmission pattern, and so on.
  • the start of the specific consecutive discovery resource period may be determined by the user equipment itself, that is, the assumptions of different user equipments for the start of a specific consecutive discovery resource period may be different.
  • the period in which the user equipment starts transmitting the D2D discovery signal is determined as the start of a particular consecutive discovery resource period. For example, if the corresponding discovery signal transmission resource pattern is 0001 when the transmission probability is 0.25, the user equipment starts from the beginning, and does not send the discovery signal in the first three discovery resource periods in units of four consecutive discovery resource periods. The discovery signal is sent in the fourth discovery resource cycle.
  • determining, according to the sending probability indication parameter, a discovery resource period for transmitting the D2D signal including: determining a sending period of the D2D signal according to the sending probability; determining in the candidate period offset value set a period offset value, where the candidate period offset value set is determined by the sending probability or the sending period; determining a discovery resource period for transmitting the D2D signal according to the period offset value and the sending period;
  • the method for determining a period offset value includes at least one of: a random selection, wherein each period offset value in the set of candidate offset values has the same selected probability; selecting according to identification information; generating random And determining the period offset value according to the random number.
  • the resource period of the specific transmission discovery signal is further determined. For example, when the UE has a request for signal transmission, the discovery signal is sent from the first resource period. If the probability is 0.25, the discovery signal is sent after 3 resource cycles. If the probability is 0.5, then one resource period is separated. Then send the discovery signal.
  • the offset value may be randomly selected by the UE, or selected according to the identification information (the description of the identification information is as described above), or the offset value is selected according to the generated random number.
  • a method for generating a random number comprising: generating a random number using a pseudo-random sequence generation algorithm; the pseudo-random sequence generation algorithm is in each of the resource periods or each of the transmission periods or each The resource grouping generates a pseudo-random sequence; or the pseudo-random sequence generating algorithm generates a pseudo-random sequence when initially transmitting the D2D signal.
  • the pseudo-random algorithm may adopt a pseudo-random sequence generation method defined in the LTE protocol, or other pseudo-random sequence generation methods.
  • the initialization parameter for generating the pseudo random sequence includes at least one of the following: identifier information, a period index, a system frame number, and a subframe/slot index.
  • the identifier information may be a user equipment identifier as described above;
  • the period index is an index of a discovery resource period or a transmission period of the discovery signal.
  • the periodic index may be counted from when the user equipment starts to send the discovery signal, starting from 0; or, the periodic index may be cyclic, for example, including K numbers, the index is from 0 to K-1, and the user equipment starts to send the discovery signal. Count from 0, then return to 0 after K-1; or Alternatively, the periodic index may be cyclic, for example, including K numbers, the index is from 0 to K-1, and the index value is configured by a network side device such as a base station, and the user equipment receives configuration signaling for indicating the index value. After that, the cycle index is counted according to the value.
  • An embodiment of the present invention further provides a device discovery device for device-to-device communication, as shown in FIG. 3, including:
  • a receiving module configured to receive a resource allocation parameter sent by the network side device, where the resource allocation parameter is configured to send a periodic resource of the device to the device D2D signal; and configured to receive a transmission probability indication parameter sent by the network side;
  • a processing module configured to determine whether to send a D2D signal in a resource period of the D2D signal according to at least the sending probability indication parameter, or configured to determine, according to the sending probability indication parameter, a discovery for sending the D2D signal Resource cycle
  • a sending module configured to send the D2D signal within a discovery resource period that determines to send the D2D signal.
  • the apparatus further includes: a random number generator configured to generate a random number;
  • the processing module is further configured to determine whether to transmit the D2D signal according to the random number and the transmission probability.
  • the processing module is further configured to determine, according to the random number and the sending probability, whether the D2D signal is sent, where the sending probability value corresponds to a random number threshold; Determining a random number and a size of the random number threshold, when the random number is less than the random number threshold, the processing module determines to transmit a D2D signal; or, compares a ratio of the random number to a maximum value of the random number The magnitude of the probability value, when the ratio is less than the probability value, the processing module determines to transmit the D2D signal.
  • the processing module is further configured to determine, according to the sending probability indication parameter, a condition of a discovery resource period for transmitting the D2D signal. And determining a transmission pattern of the candidate according to the transmission probability, and determining a transmission pattern in the candidate transmission pattern; determining a discovery resource period for transmitting the D2D signal according to the determined one of the transmission patterns.
  • each of the transmission probabilities corresponds to one transmission pattern set, and each of the transmission pattern sets includes one or more transmission patterns, where the transmission pattern is used to represent a discovery resource period grouping. a discovery resource period for transmitting the D2D signal; or
  • Each of the transmission probabilities corresponds to a transmission pattern, and the transmission pattern is used to indicate a discovery resource period for transmitting the D2D signal.
  • the processing module is further configured to: when determining a sending pattern, group the candidate sending patterns into a set of sending patterns, and randomly select a sending pattern in the set, where Each of the transmission patterns in the set has an equal probability of being selected; or,
  • the processing module is further configured to: when determining a sending pattern, group the candidate sending patterns into a sending pattern set, and determine a sending pattern according to the identification information in the set; or
  • the device further includes a random number generator configured to generate a random number, and in the case of determining a transmission pattern, select a transmission pattern according to the random number or the random number and the transmission probability; or the receiving module And configuring, in the case of determining a sending pattern, the dedicated indication signaling sent by the network side, where the dedicated indication signaling includes a parameter for indicating a sending pattern.
  • the processing module is further configured to determine, according to the transmission probability indication parameter, a D2D signal according to the transmission probability, where the discovery resource period for transmitting the D2D signal is determined. a transmission period; determining a period offset value in the set of candidate period offset values, the set of candidate period offset values being sent by the transmission probability or the a period determining; determining a discovery resource period for transmitting the D2D signal according to the period offset value and the sending period.
  • the manner of determining the period offset value includes one or more of the following manners:
  • Manner 1 a randomly selected manner to determine the period offset value; wherein each period offset value in the set of candidate offset values has the same selected probability;
  • Manner 2 determining the period offset value according to the manner of selecting the identifier information
  • Manner 3 Generate a random number, and determine the period offset value according to the manner of the random number selection.
  • the random number generator is further configured to generate a random number by using a pseudo random sequence generation algorithm
  • the pseudo-random sequence generation algorithm generates a pseudo-random sequence in each of the resource periods or each of the transmission periods or each of the resource groups; or the pseudo-random sequence generation algorithm initially transmits the Generating a pseudo-random sequence when the D2D signal is used;
  • the initialization parameter of the pseudo-random algorithm includes at least one of the following: an identifier, a periodic index, a system frame number, and a subframe/slot index.
  • the related art relates to a scheme for probabilistically transmitting a discovery signal, where the probability transmission refers to determining whether to send a discovery signal based on a transmission probability when the UE sends a discovery signal.
  • the candidate transmission probability discussed includes ⁇ 0.25, 0.5, 0.75, 1 ⁇ .
  • a transmission probability of less than one means that the UE may not send a discovery signal in each discovery period.
  • a random number generation algorithm generates a random number, and determines whether to transmit a discovery signal based on the random number and the configured probability.
  • the generated random number range is 0-1023.
  • the probability points corresponding to 0.25, 0.5, and 0.75, that is, 255, 511, and 767 are taken in 0-1023. If the configured transmission probability is 0.25, the generated random number is compared with 255. If it is not greater than 255, the D2D signal is transmitted; otherwise, it is not sent. Similarly, if the configured transmission probability is 0.75, the generated random number is compared with 767. If it is not greater than 767, the discovery signal is sent; otherwise, it is not sent.
  • the scheme also includes the generation and use of random numbers.
  • the number of times the discovery signal is transmitted is strictly controlled according to the transmission probability. For example, if the configured transmission probability is 0.75, the UE selects 3 discovery cycles in every 4 discovery cycles and sends 3 discovery signals.
  • grouping the discovery cycles It can be grouped according to the configured probability. For example, when the probability is 0.25 and 0.75, the four consecutive discovery cycles are divided into one group; when the probability is 0.5, the two consecutive discovery cycles are divided into one group. Alternatively, the grouping may be grouped uniformly regardless of the probability, for example, four consecutive discovery cycles are divided into one group.
  • four consecutive discovery cycles are grouped, which may be common, for example, according to the discovery cycle size, the start of the SFN0 to determine the packet; or, the packet may be UE-specific, that is, the UE starts from the cycle of starting to send the discovery signal. Perform a discovery cycle grouping.
  • Determining which cycles to send the discovery signal can be a prescribed transmission pattern. For example, when the probability is 0.25, the period in which the UE sends the discovery signal is [0231], that is, the four consecutive discovery resource periods are one packet, and in the consecutive four resource groups, respectively, at 0, 2, 3, and 1. The discovery signal is sent during the discovery period.
  • the send pattern For example, the transmission pattern when the probability of transmission is 0.25 is 1000, 0100, 0010 and 0001, in each resource group (4 cycles), the UE randomly selects a transmission pattern. For example, when the selected transmission resource pattern is 0010, the UE sends a discovery signal in the third resource period in the resource group.
  • the transmission pattern when the transmission probability is 0.5 includes 1100, 1010, 1001, 0110, 0101, and 0011; and the transmission patterns when the transmission probability is 0.75 are 1110, 1101, 1011, and 0111.
  • the number of times the discovery signal is transmitted is strictly controlled according to the transmission probability. For example, if the configured transmission probability is 0.75, the UE selects 3 discovery cycles in every 4 discovery cycles and sends 3 discovery signals.
  • the transmission period is 0.25, then the transmission period is 4 times of the resource period; when the transmission probability is 0.5, the transmission period is 4 times of the resource period; when the transmission probability is 0.75, the transmission period calculated directly according to the above method is not an integer. , that is, the transmission cycle that strictly follows the number of transmissions cannot be obtained. If this scheme is adopted alone, the probability value of 0.75 cannot be supported.
  • the offset can be randomly selected to determine the resource cycle position of the specific transmission discovery signal.
  • the integrated modules described in the embodiments of the present invention may also be stored in a computer readable storage medium if they are implemented in the form of software functional modules and sold or used as separate products. Based on such understanding, the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
  • the embodiment of the present invention is not limited Made from any specific combination of hardware and software.
  • an embodiment of the present invention further provides a computer storage medium, wherein a computer program is stored, and the computer program is used to perform a device-to-device communication device discovery method according to an embodiment of the present invention.
  • the problem of the transmission of the D2D signal during the device-to-device communication can be solved, so as to ensure or improve the performance of the device discovery, and the purpose of controlling the discovery delay can be achieved by using the embodiment of the present invention, and the occurrence of the discovery probability is small. Larger problem of finding delays.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种设备到设备通信的设备发现装置及方法,其中,所述装置包括:接收模块,配置为接收网络侧设备发送的资源分配参数,所述资源分配参数分配用于发送D2D信号的周期性资源;以及,配置为接收网络侧发送的发送概率指示参数;处理模块,配置为至少根据所述发送概率指示参数确定在所述D2D信号的资源周期内是否发送D2D信号,或者,配置为至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期;发送模块,在确定发送所述D2D信号的发现资源周期内发送所述D2D信号。

Description

一种设备到设备通信的设备发现装置和方法 技术领域
本发明涉及通信领域,尤其涉及一种设备到设备通信的设备发现装置和方法。
背景技术
本申请发明人在实现本申请实施例技术方案的过程中,至少发现相关技术中存在如下技术问题:
在蜂窝通信系统中,如果用户设备1和用户设备2相距较近,那么传统的基于基站接入的蜂窝通信方法显然不是最优的。而实际上,随着移动通信业务的多样化,例如,社交网络、电子支付等应用在无线通信系统中的普及,使得近距离用户之间的业务传输需求日益增长。基于此,设备到设备(D2D,Device-to-Device)的通信模式日益受到广泛关注。D2D是指业务数据不经过基站和核心网的转发,直接由源用户设备通过空口传输给目标用户设备,也可称之为邻近服务(ProSe,Proximity Service)。对于近距离通信的用户来说,D2D不但节省了无线频谱资源,而且降低了核心网的数据传输压力。
在蜂窝通信中,当两个UE进行通信时,一般情况下UE自身不会知道对方UE的位置,而是通过网络侧设备(例如基站或者核心网设备)建立起两个UE的连接。而对于设备到设备通信来说,建立通信链路的前提是UE之间的相互发现,即确定用户设备之间具有邻近的关系。实现设备发现的一种方式是通过设备发现信号的发送和检测完成。
现有技术存在的问题包括如下内容:
由于设备发现的性能与设备发现资源的负载相关,比如,当设备发现 资源的负载较大时,比如发送UE数量太多,因此,可能会导致发现信号的碰撞增加导致发现性能下降。而如果总是假设较大的负载进行D2D发现资源的分配,又可能导致产生资源浪费。换句话说,如何保证或者提高设备发现的性能是目前相关技术中亟待解决的问题。而对于其他的D2D信号,比如控制信令或者业务数据,也存在类似的问题。
发明内容
有鉴于此,本发明实施例希望提供一种设备到设备通信的设备发现装置和方法,至少解决了现有技术存在的上述问题。
本发明实施例的技术方案是这样实现的:
针对相关技术中涉及的基于蜂窝网络的设备到设备通信,本发明实施例提供了一种设备到设备通信的设备发现方法和装置,以提高D2D通信设备发现时的性能。
本发明实施例的一种设备到设备通信的设备发现装置,所述装置包括:
接收模块,配置为接收网络侧设备发送的资源分配参数,所述资源分配参数分配用于发送设备到设备D2D信号的周期性资源;以及,配置为接收网络侧发送的发送概率指示参数;
处理模块,配置为至少根据所述发送概率指示参数确定在所述D2D信号的资源周期内是否发送D2D信号,或者,配置为至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期;
发送模块,配置为在确定发送所述D2D信号的发现资源周期内发送所述D2D信号。
上述方案中,所述装置还包括:随机数生成器,配置为生成随机数;
所述处理模块,还配置为根据所述随机数及所述发送概率确定是否发送D2D信号。
上述方案中,所述处理模块,还配置为根据所述随机数及所述发送概 率确定是否发送D2D信号的情况下:
所述发送概率值对应一个随机数阈值,比较所述随机数与所述随机数阈值的大小,当所述随机数小于所述随机数阈值时,所述处理模块确定发送D2D信号;
或者,计算所述随机数与随机数最大值的比值并比较所述比值与所述概率值的大小,当所述比值小于所述概率值时,所述处理模块确定发送D2D信号;
或者,所述随机数范围为0到1,比较所述随机数与所述发送概率值的大小,当所述随机数小于所述发送概率值时,所述处理模块确定发送D2D信号。
上述方案中,所述处理模块,还配置为至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期的情况下,根据所述发送概率确定候选的发送图样,并在所述候选的发送图样中确定一个发送图样;根据所述确定的一个发送图样确定用于发送所述D2D信号的发现资源周期。
上述方案中,每个所述发送概率对应一个发送图样集合,每个所述发送图样集合中包括一个或者多个发送图样,所述发送图样用于表示一个发现资源周期分组内用于发送所述D2D信号的发现资源周期;或者,
每个所述发送概率对应一个发送图样,所述发送图样用于表示用于发送所述D2D信号的发现资源周期。
上述方案中,所述处理模块,还配置为确定一个发送图样的情况下,将所述候选的发送图样组成一个发送图样集合,在所述集合内随机选择发送图样,其中所述集合内每个发送图样具有相等的被选择的概率;或者,
所述处理模块,还配置为确定一个发送图样的情况下,将所述候选的发送图样组成一个发送图样集合,在所述集合内根据标识信息确定发送图 样;或者,
所述装置还包括随机数生成器,配置为生成随机数,在确定一个发送图样的情况下,根据所述随机数或者所述随机数和所述发送概率选择发送图样;或者,所述接收模块,还配置为在确定一个发送图样的情况下,接收网络侧发送的专用指示信令,所述专用指示信令中包括用于指示发送图样的参数。
上述方案中,所述处理模块,还配置为至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期的情况下,根据所述发送概率确定D2D信号的发送周期;在候选周期偏移值集合中确定周期偏移值,所述候选周期偏移值集合由所述发送概率或所述发送周期确定;根据所述周期偏移值及所述发送周期确定用于发送所述D2D信号的发现资源周期。
上述方案中,所述确定周期偏移值的方式包括以下方式的一种或多种:
方式一:随机选择的方式以确定所述周期偏移值;其中在所述候选偏移值集合中的每个周期偏移值具有相同的被选择概率;
方式二:根据标识信息选择的方式以确定所述周期偏移值;
方式三:生成随机数,根据所述随机数选择的方式以确定所述周期偏移值。
上述方案中,所述随机数生成器,还配置为使用伪随机序列产生算法生成随机数;
其中,所述伪随机序列产生算法在每个所述资源周期或者每个所述发送周期或者每个所述资源分组生成一个伪随机序列;或者,所述伪随机序列产生算法在初始发送所述D2D信号时生成一个伪随机序列;
和/或,所述伪随机算法的初始化参数包括以下至少之一:标识、周期索引、系统帧号、子帧/时隙索引。
所述接收模块、所述处理模块、所述发送模块、所述随机数生成器在 执行处理时,可以采用中央处理器(CPU,Central Processing Unit)、数字信号处理器(DSP,Digital Singnal Processor)或可编程逻辑阵列(FPGA,Field-Programmable Gate Array)实现。
本发明实施例的一种设备到设备通信的设备发现方法,所述方法包括:
接收网络侧设备发送的资源分配参数,所述资源分配参数分配用于发送D2D信号的周期性资源;
接收网络侧发送的发送概率指示参数;
至少根据所述发送概率指示参数确定在所述D2D信号的资源周期内是否发送D2D信号,或者,至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期;
在确定发送所述D2D信号的发现资源周期内发送所述D2D信号。
上述方案中,所述至少根据所述发送概率指示参数确定是否发送D2D信号,包括:
生成随机数;
根据所述随机数及所述发送概率确定是否发送D2D信号。
上述方案中,所述根据所述随机数及所述发送概率确定是否发送D2D信号,包括:
所述发送概率值对应一个随机数阈值,比较所述随机数与所述随机数阈值的大小,当所述随机数小于所述随机数阈值时,确定发送D2D信号;
或者,计算所述随机数与随机数最大值的比值并比较所述比值与所述概率值的大小,当所述比值小于所述概率值时,确定发送D2D信号;
或者,所述随机数范围为0到1,比较所述随机数与所述发送概率值的大小,当所述随机数小于所述发送概率值时,确定发送D2D信号。
上述方案中,所述至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期,包括:
根据所述发送概率确定候选的发送图样,并在所述候选的发送图样中确定一个发送图样;
根据所述确定的一个发送图样确定用于发送所述D2D信号的发现资源周期。
上述方案中,所述方法还包括:
每个所述发送概率对应一个发送图样集合,每个所述发送图样集合中包括一个或者多个发送图样,所述发送图样用于表示一个发现资源周期分组内用于发送所述D2D信号的发现资源周期;或者,
每个所述发送概率对应一个发送图样,所述发送图样用于表示用于发送所述D2D信号的发现资源周期。
上述方案中,所述确定一个发送图样,包括:
所述候选的发送图样组成一个发送图样集合,在所述发送图样集合内随机选择发送图样,其中所述发送图样集合内每个发送图样具有相等的被选择的概率;或者,
所述候选的发送图样组成一个发送图样集合,在所述发送图样集合内根据标识信息确定发送图样;或者,
生成随机数,根据所述随机数或者所述随机数和所述发送概率选择发送图样;或者,
接收网络侧发送的专用指示信令,所述专用指示信令中包括用于指示发送图样的参数。
上述方案中,所述至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期,包括:
根据所述发送概率确定D2D信号的发送周期;
在候选周期偏移值集合中确定周期偏移值,所述候选周期偏移值集合由所述发送概率或所述发送周期确定;
根据所述周期偏移值及所述发送周期确定用于发送所述D2D信号的发现资源周期。
上述方案中,所述确定周期偏移值的方式包括以下方式的一种或多种:
方式一:随机选择的方式以确定所述周期偏移值;其中在所述候选偏移值集合中的每个周期偏移值具有相同的被选择概率;
方式二:根据标识信息选择的方式以确定所述周期偏移值;
方式三:生成随机数,根据所述随机数选择的方式以确定所述周期偏移值。
上述方案中,所述方法还包括:
根据伪随机序列产生算法生成随机数;
所述伪随机序列产生算法在每个所述资源周期或者每个所述发送周期或者每个所述资源分组生成一个伪随机序列;或者,所述伪随机序列产生算法在初始发送所述D2D信号时生成一个伪随机序列;
和/或,所述伪随机算法的初始化参数包括以下至少之一:标识、周期索引、系统帧号、子帧/时隙索引。
本发明实施例的设备到设备通信的设备发现装置包括:接收模块,配置为接收网络侧设备发送的资源分配参数,所述资源分配参数分配用于发送D2D信号的周期性资源;以及,配置为接收网络侧发送的发送概率指示参数;处理模块,配置为至少根据所述发送概率指示参数确定在所述D2D信号的资源周期内是否发送D2D信号,或者,配置为至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期;发送模块,配置为在确定发送所述D2D信号的发现资源周期内发送所述D2D信号。
采用本发明实施例,能解决设备到设备通信时D2D信号的发送问题,从而保证或者提高设备发现的性能,并且采用本发明实施例还能够达到控制发现时延的目的,避免发现概率较小时出现较大的发现时延的问题。
附图说明
图1为相关技术中蜂窝网络部署示意图;
图2为本发明方法实施例的一个实现流程示意图;
图3为本发明装置实施例的一个组成结构示意图。
具体实施方式
下面结合附图对技术方案的实施作进一步的详细描述。
为使本发明的目的、技术方案和优点更加清楚明白,下文将结合附图对本发明技术方案作进一步详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本文所述的技术适用于蜂窝无线通信系统或网络。常见的蜂窝无线通信系统可以基于码分多址(CDMA,Code Division Multiplexing Access)技术、频分多址(FDMA,Frequency Division Multiplexing Access)技术、正交频分多址(OFDMA,Orthogonal-FDMA)技术、单载波频分多址(SC-FDMA,Single Carrier-FDMA)技术等。例如,第三代通信技术(3GPP,3rd Generation Partnership Project)长期演进(LTE,Long Term Evolution)/高级长期演进(LTE-A,LTE-Advanced)、蜂窝通信系统下行链路(或称为前向链路)基于OFDMA技术,上行链路(或称为反向链路)基于SC-FDMA多址技术。未来则有可能在一个链路上支持混合的多址技术。
在OFDMA/SC-FDMA系统中,用于通信的无线资源(Radio Resource)是时-频两维的形式。例如,对于LTE/LTE-A系统来说,上行和下行链路的通信资源在时间方向上都是以无线帧(radio frame)为单位划分,每个无线帧(radio frame)长度为10ms,包含10个长度为1ms的子帧(sub-frame),每个子帧包括长度为0.5ms的两个时隙(slot),如图1所示。而根据循环前缀(Cyclic Prefix,CP)的配置不同,每个时隙可以包括6个或7个OFDM或SC-FDM符号。
在频率方向,资源以子载波(subcarrier)为单位划分,具体在通信中,频域资源分配的最小单位是RB(Resource Block,资源块),对应物理资源的一个PRB(Physical RB,物理资源块)。一个PRB在频域包含12个子载波(sub-carrier),对应于时域的一个时隙(slot)。子帧内时域相邻的两个PRB称为PRB对(PRB pair)。每个OFDM/SC-FDM符号上对应一个子载波的资源称为资源元素(Resource Element,RE)。
图1所示为相关技术中蜂窝无线通信系统的网络部署示意图。图1中,可以是3GPP LTE/LTE-A系统,或者其它的蜂窝无线通信技术。在蜂窝无线通信系统的接入网中,网络设备一般包括一定数量的基站(base station,或者称为节点B,Node B,或者演进的节点B,evolved Node B,eNB,或者增强的节点B(eNB,enhanced Node B),以及其它的网络实体(network entity)或网络单元(network element)。或者,概括来说,在3GPP中也可以将其统称为网络侧演进的通用陆地无线接入网络(E-UTRAN,Evolved Universal Terrestrial Radio Access Network)。这里所说的基站也包括网络中的低功率节点(LPN,Low Power Node),例如毫微微小区或家庭基站(pico,Relay,femto,HeNB即Home eNB等)等,也可统称其为小小区(small cell)。为描述简单,图1中只示出了3个基站。基站提供一定的无线信号覆盖范围,在该覆盖范围内的终端(terminal,或者称为用户设备,User Equipment,UE,或者device)可以与该基站进行无线通信。一个基站的无线信号覆盖区域可能会基于某些准则被划分为一个或者多个小区cell或扇区sector,例如可能会是三个小区。
设备发现是D2D通信中的关键技术,即进行D2D通信的UE首先需要实现相互的发现,本文中称其为D2D通信的发现或D2D发现或设备发现。本文中,设备发现通过用户设备之间发现信号(Discovery Signal)的传输和检测实现。在本发明所描述实施方式中,发现信号包括消息(message) 部分,可以是物理层的数据包,或者是一个MAC(Medium Access Control,介质接入控制)PDU(Protocol Data Unit,协议数据单元),等。
在设备到设备通信中,参与设备发现的用户数量可能会发生波动。比如在某些时间段,用户数量较大时,参与设备发现的用户数可能也较多;而在其他一些时间段参与设备发现的用户数可能会比较少。当参与设备发现的用户数较多时,发现信号的冲突有可能会增加,从而导致发现性能下降。
有鉴于此,本发明实施例提出了一种设备到设备通信的设备发现方法,如图2所示,包括:
步骤101、接收网络侧设备发送的资源分配参数,所述资源分配参数分配用于发送D2D信号的周期性资源;
步骤102、接收网络侧发送的发送概率指示参数;
步骤103、至少根据所述发送概率指示参数确定在所述D2D信号的资源周期内是否发送D2D信号,或者,至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期;
步骤104、在确定发送所述D2D信号的发现资源周期内发送所述D2D信号。
其中,所述的网络侧设备可以是基站;所述资源分配参数可以是高层信令或者物理层信令,通过广播或者专用信令的形式发送;发送概率是介于0和1之间的小数,可以等于0或者等于1,等于0意味着不发送发现信号,等于1则意味着用户设备在每个发现资源周期中发送发现信号。具体实现中,可以预定义一个发现信号的发送概率集合,网络侧设备根据发现资源负载等因素,在该概率集合中选择一个作为发现信号的发送概率。比如,发送概率集合中包括{0.25,0.5,0.75,1},网络侧设备可以选择1个配置为其下属小区的发现信号发送概率。
在一个实施方式中,至少根据所述发送概率指示参数确定在所述D2D信号(发现信号)的资源周期内是否发送D2D信号包括:生成随机数;根据该随机数及发送概率确定是否发送发现信号。
进一步的,约定生成的所述随机数的长度(当所述随机数为2进制序列时)或者所述随机数的范围。该随机数可以基于特定的随机数算法生成。当生成的随机数为2进制序列时,可以约定该2进制序列的长度。比如约定其长度为10,那么生成的2进制随机数转化为10进制后其范围为0-1023,即包括1024个整数。或者,生成的随机数也可以是位于0-1之间的小数。或者,生成的随机数也可以是其他的范围。
进一步的,根据该约定的随机数生成方法所生成的随机数的范围,以及发送概率,确定用于判断是否发送D2D发现信号的阈值。比如生成的随机数范围为0-A,A为大于0的实数(比如是正整数),发送概率为P,则该发送阈值可以通过下式计算:Thres=A*P。当生成的随机数小于该发送阈值Thres(或者小于等于该发送阈值Thres)时,用户设备发送发现信号。比如上述的随机数范围为0-1,则确定的D2D发现信号的发送阈值与发送概率相同,比如发送概率为0.75时,如果生成的随机数小于0.75(或者小于等于0.75),则发送D2D发现信号,否则不发送。
当随机数为2进制序列时,可以根据随机数个数及发送概率确定所述D2D发现信号的发送阈值。比如上述例子中,随机数为长度为10的2进制序列,则生成的随机数所有的可能情况有1024个(0000000000,0000000001,0000000010,…,1111111111),则可确定所述发送阈值为Thres=1024*P,其中P为发送概率,Thres为发送阈值。当1024*P不为整数时,可以对运算结果四舍五入,或者向上取整,或者向下取整。对于用户设备来说,当确定是否发送D2D发现信号时,生成随机数并将其转化为10进制,接着与所述发送阈值比较,当其小于发送阈值(或者小于等于发送阈值)时, 则发送发现信号。比如,发送概率为{0.25,0.5,0.75,1}时,其对应的发送阈值分别为{256,512,768,1024}。
在一个实施方式中,至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期,包括:根据所述发送概率确定候选的发送图样,并在所述候选的发送图样中确定一个发送图样;根据所述确定的一个发送图样确定用于发送所述D2D信号的发现资源周期。
在一个实施方式中,进一步的,每个发送概率对应一个发送图样集合,所述每个发送图样集合中包括一个或者多个发送图样,所述发送图样用于表示一个发现资源周期分组内用于发送所述D2D信号的发现资源周期。
进一步的,所述发送图样表示在特定个连续的发现资源周期中,用于发送D2D发现信号的发现资源周期。发送图样中发送发现信号的资源周期所占的比率与发送概率一致(或者基本一致)。比如,发送概率为0.25时,其对应的发送图样中有25%的发现资源周期被标记为用于发送发现信号的周期;发送概率为0.5时,其对应的发送图样中有50%的发现资源周期被标记为用于发送发现信号的周期;发送概率为0.75时,其对应的发送图样中有75%的发现资源周期被标记为用于发送发现信号的周期。
比如对于0.25的发送概率,其对应的发送图样集合中包括的发送图样有{1000,0100,0010,0001},其中发送图样中1表示发送发现信号,0表示不发送,比如1000表示在4个连续的发现资源周期中,在其中的第1个发现资源周期中发送发现信号,在其后的3个发现资源周期中不发送发现信号,这样对于用户设备来说,其发送发现信号的发现资源周期的占比为25%,与发送概率相同。其他发送图样的含义类似。基于此,对于其他的发送概率也可类似确定发送图样。比如,发送概率为0.5时,可以预定义发送图样{10,01}或者{0011,0101,0110,1001,1010,1100};发送概率为0.75时,可以预定义发送图样为{0111,1011,1101,1110},等。
进一步的,所述特定个连续的发现资源周期的起始可以由用户设备自己确定,即不同的用户设备对于特定个连续的发现资源周期的起始的假设不同;或者,所述特定个连续的发现资源周期的起始采用预定义的方式确定,比如从配置所述发现发现资源的配置信令生效开始,确定所述特定个发现资源周期的起始,比如从所述配置信令生效开始,特定个发现资源周期为1组,对所述发现资源周期进行连续分组,所述发送图样对应1组发现资源周期中的发现资源周期。或者根据系统帧号(System Frame Number,SFN)确定起始,比如从编号为0的SFN开始,每连续的特定个发现资源周期为一个发现资源周期组。
或者,通过网络侧配置的指示信令确定所述特定个(比如n个)连续发现资源周期的起始。比如网络侧发送配置参数a_start,a_start具有约定的取值范围。根据该a_start确定所述特定个连续发现资源周期的起始是指,根据mod(a_start,n)的值,确定当前发现资源周期在n个连续发现资源周期中的位置,其中mod表示取模运算。比如n=4且mod(a_start,n)=3,则表示用户设备收到的该配置信令后,紧接着或者具有一定间隔的发现资源周期对应n个(本例中即为4个)连续的发现资源组中的第3个。
进一步的,用户设备根据发送概率及其所对应的发现资源图样,确定一个发送图样。确定发送图样的方式可以是以下方式之一:在发送图样集合内随机选择发送图样,其中所述集合内每个发送图样具有相等的被选择的概率;或者,在所述候选的发送图样集合内根据标识信息确定发送图样;或者,生成随机数,根据该随机数或者该随机数和所述发送概率选择发送图样;或者,接收网络侧发送的专用指示信令,所述专用指示信令中包括用于指示发送图样的参数。
其中,在所述候选的发送图样集合内根据标识信息(ID)确定发送图样,比如在所配置的发送概率下,候选的发送图样中包括m个发送图样, 其索引标识为0,1,…m-1,则所确定的发送图样索引i=mod(ID,m),mod表示取模运算。其中,所述的标识信息可以是用户设备的标识,比如IMSI(International Mobile Subscriber Identity)或者IMSI中的部分字段。
其中,生成随机数,根据该随机数或者该随机数和所述发送概率选择发送图样,比如根据随机数生成算法生成随机数RAND,在所配置的发送概率下,候选的发送图样中包括m个发送图样,其索引标识为0,1,…m-1,则所确定的发送图样索引i=mod(ID,m),mod表示取模运算,m定义与上述相同。
其中,接收网络侧设备发送的专用指示信令,所述专用指示信令中包括用于指示发送图样的参数,比如基站向用户设备发送用于指示所使用发送图样的参数,用户设备根据该参数确定发送发现信号的资源周期位置。基站可以直接指示图样(比如概率是0.25时上述提到的4个图样之一),或者指示图样的索引。
在另一个实施方式中,进一步的,每个发送概率对应一个发送图样,所述发送图样用于表示一个发现资源周期分组内用于发送所述D2D信号的发现资源周期。
进一步的,所述发送图样表示在特定个连续的发现资源周期中,用于发送D2D发现信号的发现资源周期。发送图样中发送发现信号的资源周期所占的比率与发送概率一致(或者基本一致)。比如,发送概率为0.25时,其对应的发送图样中有25%的发现资源周期被标记为用于发送发现信号的周期;发送概率为0.5时,其对应的发送图样中有50%的发现资源周期被标记为用于发送发现信号的周期;发送概率为0.75时,其对应的发送图样中有75%的发现资源周期被标记为用于发送发现信号的周期。
比如,发送概率为0.25时,预定义的发送图样为0001,其中发送图样中1表示发送发现信号,0表示不发送,比如0001表示在4个连续的发现 资源周期中,在其中的第4个发现资源周期中发送发现信号,在之前的3个发现资源周期中不发送发现信号,这样对于用户设备来说,其发送发现信号的发现资源周期的占比为1/4,与发送概率相同。其他发送图样的含义类似。当然,发送概率为0.25时,发送图样也可以是1000,或者0100,或者0010,等等。发送图样的长度也可不限定为4。基于此,对于其他的发送概率也可类似确定发送图样。比如,发送概率为0.5时,可以预定义发送图样为10或01,或者0011,或者0101,或者0110,或者1001,或者1010,或者,1100};发送概率为0.75时,可以预定义发送图样为以下4个图样之一:{0111,1011,1101,1110},或者其他长度的发送图样,等。
进一步的,所述特定个连续的发现资源周期的起始可以由用户设备自己确定,即不同的用户设备对于特定个连续的发现资源周期的起始的假设可能不同。比如,用户设备开始发送D2D发现信号的周期确定为特定个连续的发现资源周期的起始。比如发送概率为0.25时对应的发现信号发送资源图样为0001,则用户设备从起始处开始,以连续的4个发现资源周期为单位,在其中的前3个发现资源周期中不发送发现信号,在第4个发现资源周期中发送发现信号。
在一个实施方式中,至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期,包括:根据所述发送概率确定D2D信号的发送周期;在候选周期偏移值集合中确定周期偏移值,所述候选周期偏移值集合由所述发送概率或所述发送周期确定;根据所述周期偏移值及所述发送周期确定用于发送所述D2D信号的发现资源周期;其中所述确定周期偏移值的方法包括以下至少之一:随机选择,其中在所述候选偏移值集合中的每个周期偏移值具有相同的被选择概率;根据标识信息选择;生成随机数,根据所述随机数确定所述周期偏移值。
进一步的,UE根据发送概率确定发送周期是指,发送周期(Period_Tx) 是资源周期(Period_R)的倍数,Period_Tx=Period_R/P,P是发送概率。比如,配置的发送概率是0.25,那么发送周期是资源周期的4倍,即每4个资源周期中有1个发送周期用于发送发现信号;发送概率是0.5时,发送周期是资源周期的2倍,即每2个资源周期中有1个发送周期用于发送发现信号。
进一步的,确定发送周期后,进一步确定具体的发送发现信号的资源周期。比如UE有发现信号发送的需求时,从第1个资源周期开始发送发现信号,如果概率为0.25,则隔3个资源周期后再发送发现信号,如果概率为0.5时,则隔1个资源周期后再发送发现信号。或者,可以设置一个偏移(offset),偏移的取值范围为0~N-1,N=1/P。该偏移值可以由UE随机选择,或者根据标识信息选择(标识信息的描述如前述),或者根据生成的随机数选择偏移值。
在一个实施方式中,提出一种随机数生成方法,包括:使用伪随机序列产生算法生成随机数;所述伪随机序列产生算法在每个所述资源周期或者每个所述发送周期或者每个所述资源分组生成一个伪随机序列;或者,所述伪随机序列产生算法在初始发送所述D2D信号时生成一个伪随机序列。其中,伪随机算法可以采用LTE协议中定义的伪随机序列生成方法,或者其他的伪随机序列生成方法。
进一步的,生成所述伪随机序列的初始化参数包括以下至少之一:标识信息、周期索引、系统帧号、子帧/时隙索引。其中,标识信息可以是如前述的用户设备标识;周期索引是发现资源周期或者发现信号的发送周期的索引。
进一步的,周期索引可以从用户设备开始发送发现信号时计数,从0开始;或者,周期索引可以是循环的,比如包括K个编号,索引从0到K-1,用户设备开始发送发现信号时从0开始计数,到K-1后再回到0开始;或 者,或者,周期索引可以是循环的,比如包括K个编号,索引从0到K-1,该索引值由网络侧设备比如基站配置,用户设备接收到用于指示该索引值的配置信令后,开始按照该值对周期索引进行计数。
本发明实施例还提出了一种设备到设备通信的设备发现装置,如图3所示,包括:
接收模块,配置为接收网络侧设备发送的资源分配参数,所述资源分配参数分配用于发送设备到设备D2D信号的周期性资源;以及,配置为接收网络侧发送的发送概率指示参数;
处理模块,配置为至少根据所述发送概率指示参数确定在所述D2D信号的资源周期内是否发送D2D信号,或者,配置为至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期;
发送模块,配置为在确定发送所述D2D信号的发现资源周期内发送所述D2D信号。
在本发明实施例一实施方式中,所述装置还包括:随机数生成器,配置为生成随机数;
所述处理模块,还配置为根据所述随机数及所述发送概率确定是否发送D2D信号。
在本发明实施例一实施方式中,所述处理模块,还配置为根据所述随机数及所述发送概率确定是否发送D2D信号的情况下,所述发送概率值对应一个随机数阈值;比较所述随机数与所述随机数阈值的大小,当所述随机数小于所述随机数阈值时,所述处理模块确定发送D2D信号;或者,比较所述随机数与随机数最大值的比值与所述概率值的大小,当所述比值小于所述概率值时,所述处理模块确定发送D2D信号。
在本发明实施例一实施方式中,所述处理模块,还配置为至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期的情况 下,根据所述发送概率确定候选的发送图样,并在所述候选的发送图样中确定一个发送图样;根据所述确定的一个发送图样确定用于发送所述D2D信号的发现资源周期。
在本发明实施例一实施方式中,每个所述发送概率对应一个发送图样集合,每个所述发送图样集合中包括一个或者多个发送图样,所述发送图样用于表示一个发现资源周期分组内用于发送所述D2D信号的发现资源周期;或者,
每个所述发送概率对应一个发送图样,所述发送图样用于表示用于发送所述D2D信号的发现资源周期。
在本发明实施例一实施方式中,所述处理模块,还配置为确定一个发送图样的情况下,将所述候选的发送图样组成一个发送图样集合,在所述集合内随机选择发送图样,其中所述集合内每个发送图样具有相等的被选择的概率;或者,
所述处理模块,还配置为确定一个发送图样的情况下,将所述候选的发送图样组成一个发送图样集合,在所述集合内根据标识信息确定发送图样;或者,
所述装置还包括随机数生成器,配置为生成随机数,在确定一个发送图样的情况下,根据所述随机数或者所述随机数和所述发送概率选择发送图样;或者,所述接收模块,还配置为在确定一个发送图样的情况下,接收网络侧发送的专用指示信令,所述专用指示信令中包括用于指示发送图样的参数。
在本发明实施例一实施方式中,所述处理模块,还配置为至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期的情况下,根据所述发送概率确定D2D信号的发送周期;在候选周期偏移值集合中确定周期偏移值,所述候选周期偏移值集合由所述发送概率或所述发送 周期确定;根据所述周期偏移值及所述发送周期确定用于发送所述D2D信号的发现资源周期。
在本发明实施例一实施方式中,所述确定周期偏移值的方式包括以下方式的一种或多种:
方式一:随机选择的方式以确定所述周期偏移值;其中在所述候选偏移值集合中的每个周期偏移值具有相同的被选择概率;
方式二:根据标识信息选择的方式以确定所述周期偏移值;
方式三:生成随机数,根据所述随机数选择的方式以确定所述周期偏移值。
在本发明实施例一实施方式中,所述随机数生成器,还配置为使用伪随机序列产生算法生成随机数;
其中,所述伪随机序列产生算法在每个所述资源周期或者每个所述发送周期或者每个所述资源分组生成一个伪随机序列;或者,所述伪随机序列产生算法在初始发送所述D2D信号时生成一个伪随机序列;
和/或,所述伪随机算法的初始化参数包括以下至少之一:标识、周期索引、系统帧号、子帧/时隙索引。
针对应用上述本发明实施例的一个具体场景来说,相关技术中涉及一种概率发送发现信号的方案,所述概率发送是指,UE发送发现信号时,基于一个发送概率确定是否发送发现信号。比如讨论的候选发送概率包括{0.25,0.5,0.75,1}。发送概率小于1时,意味着UE可能并不是在每个discovery周期中发送发现信号。
对于基于发送概率发送发现信号来说,方案具体如何实现,比如UE如何基于概率值确定是否发送发现信号一直未被讨论到。应用上述本发明实施例,至少可以提供以下三种具体的基于概率发送发现信号的方案如下:
方案1:
通过随机数生成算法生成随机数,并基于该随机数及所配置的概率确定是否发送发现信号。
假设生成的二进制随机数长度为10,则生成的随机数范围0-1023。按照现在支持的discovery发送概率值(p={0.25,0.5,0.75,1}),在0-1023中取概率0.25、0.5和0.75对应的percentile点,即255、511和767。如果配置的发送概率是0.25,则将生成的随机数与255比较,如果不大于255,则发送D2D信号;否则不发送。同理,如果配置的发送概率是0.75,则将生成的随机数与767比较,如果不大于767,则发送发现信号;否则不发送。
方案中还包括随机数的生成与使用方法。
方案2:
根据发送概率严格控制发现信号的发送次数。比如配置的发送概率是0.75,那么UE就在每4个discovery周期中选择3个discovery周期,发送3次发现信号。
比如对discovery周期进行分组。可以根据配置的概率进行分组,比如概率是0.25和0.75时,将连续的4个discovery周期分为1组;概率是0.5时,将连续的2个discovery周期分为1组。或者,分组也可以是不管概率如何而统一进行分组,比如连续的4个discovery周期分为1组。这里连续的4个discovery周期作为一组,可以是common的,比如根据discovery周期大小、SFN0的起始确定分组;或者,分组也可以是UE-specific的,即UE从开始发送发现信号的周期开始进行discovery周期分组。
确定哪些周期发送发现信号可以是按约定的发送图样。比如概率为0.25时,UE发送发现信号的周期分别为[0231],即以连续的4个discovery资源周期为一个分组,在连续的4个资源分组内,分别在第0、2、3和1个discovery周期内发送发现信号。
或者,定义发送图样。比如,0.25发送概率时的发送图样为1000、0100、 0010和0001,在每个资源分组(4个周期)内,UE随机选择发送图样,比如选择的发送资源图样为0010时,UE在资源分组内的第3个资源周期中发送发现信号。发送概率为0.5时的发送图样包括1100、1010、1001、0110、0101、0011;发送概率为0.75时的发送图样为1110、1101、1011、0111。
方案3:
根据发送概率严格控制发现信号的发送次数。比如配置的发送概率是0.75,那么UE就在每4个discovery周期中选择3个discovery周期,发送3次发现信号。
该方案中,UE根据发送概率确定发送周期,其中发送周期(Period_Tx)是资源周期(Period_R)的倍数,Period_Tx=Period_R/Prob,Prob是发送概率。比如,配置的发送概率是0.25,那么发送周期是资源周期的4倍;发送概率是0.5时,发送周期是资源周期的4倍;发送概率是0.75时,直接按照上述方法计算的发送周期不是整数,即无法获得严格遵循发送次数的发送周期。如果单纯采用这种方案,则无法支持0.75这种概率值。
确定发送周期后,可以随机选择offset以确定具体的发送发现信号的资源周期位置。
本发明实施例所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限 制于任何特定的硬件和软件结合。
相应的,本发明实施例还提供一种计算机存储介质,其中存储有计算机程序,该计算机程序用于执行本发明实施例的一种设备到设备通信的设备发现方法。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
采用本发明实施例,能解决设备到设备通信时D2D信号的发送问题,从而保证或者提高设备发现的性能,并且采用本发明实施例还能够达到控制发现时延的目的,避免发现概率较小时出现较大的发现时延的问题。

Claims (18)

  1. 一种设备到设备通信的设备发现装置,所述装置包括:
    接收模块,配置为接收网络侧设备发送的资源分配参数,所述资源分配参数分配用于发送设备到设备D2D信号的周期性资源;以及,配置为接收网络侧发送的发送概率指示参数;
    处理模块,配置为至少根据所述发送概率指示参数确定在所述D2D信号的资源周期内是否发送D2D信号,或者,配置为至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期;
    发送模块,配置为在确定发送所述D2D信号的发现资源周期内发送所述D2D信号。
  2. 根据权利要求1所述的装置,其中,所述装置还包括:随机数生成器,配置为生成随机数;
    所述处理模块,还配置为根据所述随机数及所述发送概率确定是否发送D2D信号。
  3. 根据权利要求2所述的装置,其中,所述处理模块,还配置为根据所述随机数及所述发送概率确定是否发送D2D信号的情况下:
    所述发送概率值对应一个随机数阈值,比较所述随机数与所述随机数阈值的大小,当所述随机数小于所述随机数阈值时,所述处理模块确定发送D2D信号;
    或者,计算所述随机数与随机数最大值的比值并比较所述比值与所述概率值的大小,当所述比值小于所述概率值时,所述处理模块确定发送D2D信号;
    或者,所述随机数范围为0到1,比较所述随机数与所述发送概率值的大小,当所述随机数小于所述发送概率值时,所述处理模块确定发送D2D信号。
  4. 根据权利要求1所述的装置,其中,所述处理模块,还配置为至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期的情况下,根据所述发送概率确定候选的发送图样,并在所述候选的发送图样中确定一个发送图样;根据所述确定的一个发送图样确定用于发送所述D2D信号的发现资源周期。
  5. 根据权利要求4所述的装置,其中,每个所述发送概率对应一个发送图样集合,每个所述发送图样集合中包括一个或者多个发送图样,所述发送图样用于表示一个发现资源周期分组内用于发送所述D2D信号的发现资源周期;或者,
    每个所述发送概率对应一个发送图样,所述发送图样用于表示用于发送所述D2D信号的发现资源周期。
  6. 根据权利要求4所述的装置,其中,所述处理模块,还配置为确定一个发送图样的情况下,将所述候选的发送图样组成一个发送图样集合,在所述集合内随机选择发送图样,其中所述集合内每个发送图样具有相等的被选择的概率;或者,
    所述处理模块,还配置为确定一个发送图样的情况下,将所述候选的发送图样组成一个发送图样集合,在所述集合内根据标识信息确定发送图样;或者,
    所述装置还包括随机数生成器,配置为生成随机数,在确定一个发送图样的情况下,根据所述随机数或者所述随机数和所述发送概率选择发送图样;或者,所述接收模块,还配置为在确定一个发送图样的情况下,接收网络侧发送的专用指示信令,所述专用指示信令中包括用于指示发送图样的参数。
  7. 根据权利要求1所述的装置,其中,所述处理模块,还配置为至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期的 情况下,根据所述发送概率确定D2D信号的发送周期;在候选周期偏移值集合中确定周期偏移值,所述候选周期偏移值集合由所述发送概率或所述发送周期确定;根据所述周期偏移值及所述发送周期确定用于发送所述D2D信号的发现资源周期。
  8. 根据权利要求7所述的装置,其中,所述确定周期偏移值的方式包括以下方式的一种或多种:
    方式一:随机选择的方式以确定所述周期偏移值;其中在所述候选偏移值集合中的每个周期偏移值具有相同的被选择概率;
    方式二:根据标识信息选择的方式以确定所述周期偏移值;
    方式三:生成随机数,根据所述随机数选择的方式以确定所述周期偏移值。
  9. 根据权利要求2、6、7或8所述的装置,其中,所述随机数生成器,还配置为使用伪随机序列产生算法生成随机数;
    其中,所述伪随机序列产生算法在每个所述资源周期或者每个所述发送周期或者每个所述资源分组生成一个伪随机序列;或者,所述伪随机序列产生算法在初始发送所述D2D信号时生成一个伪随机序列;
    和/或,所述伪随机算法的初始化参数包括以下至少之一:标识、周期索引、系统帧号、子帧/时隙索引。
  10. 一种设备到设备通信的设备发现方法,所述方法包括:
    接收网络侧设备发送的资源分配参数,所述资源分配参数分配用于发送D2D信号的周期性资源;
    接收网络侧发送的发送概率指示参数;
    至少根据所述发送概率指示参数确定在所述D2D信号的资源周期内是否发送D2D信号,或者,至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期;
    在确定发送所述D2D信号的发现资源周期内发送所述D2D信号。
  11. 根据权利要求10所述的方法,其中,所述至少根据所述发送概率指示参数确定是否发送D2D信号,包括:
    生成随机数;
    根据所述随机数及所述发送概率确定是否发送D2D信号。
  12. 根据权利要求11所述的方法,其中,所述根据所述随机数及所述发送概率确定是否发送D2D信号,包括:
    所述发送概率值对应一个随机数阈值,比较所述随机数与所述随机数阈值的大小,当所述随机数小于所述随机数阈值时,确定发送D2D信号;
    或者,计算所述随机数与随机数最大值的比值并比较所述比值与所述概率值的大小,当所述比值小于所述概率值时,确定发送D2D信号;
    或者,所述随机数范围为0到1,比较所述随机数与所述发送概率值的大小,当所述随机数小于所述发送概率值时,确定发送D2D信号。
  13. 根据权利要求10所述的方法,其中,所述至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期,包括:
    根据所述发送概率确定候选的发送图样,并在所述候选的发送图样中确定一个发送图样;
    根据所述确定的一个发送图样确定用于发送所述D2D信号的发现资源周期。
  14. 根据权利要求13所述的方法,其中,所述方法还包括:
    每个所述发送概率对应一个发送图样集合,每个所述发送图样集合中包括一个或者多个发送图样,所述发送图样用于表示一个发现资源周期分组内用于发送所述D2D信号的发现资源周期;或者,
    每个所述发送概率对应一个发送图样,所述发送图样用于表示用于发送所述D2D信号的发现资源周期。
  15. 根据权利要求13所述的方法,其中,所述确定一个发送图样,包括:
    所述候选的发送图样组成一个发送图样集合,在所述发送图样集合内随机选择发送图样,其中所述发送图样集合内每个发送图样具有相等的被选择的概率;或者,
    所述候选的发送图样组成一个发送图样集合,在所述发送图样集合内根据标识信息确定发送图样;或者,
    生成随机数,根据所述随机数或者所述随机数和所述发送概率选择发送图样;或者,
    接收网络侧发送的专用指示信令,所述专用指示信令中包括用于指示发送图样的参数。
  16. 根据权利要求10所述的方法,其中,所述至少根据所述发送概率指示参数确定用于发送所述D2D信号的发现资源周期,包括:
    根据所述发送概率确定D2D信号的发送周期;
    在候选周期偏移值集合中确定周期偏移值,所述候选周期偏移值集合由所述发送概率或所述发送周期确定;
    根据所述周期偏移值及所述发送周期确定用于发送所述D2D信号的发现资源周期。
  17. 根据权利要求16所述的方法,其中,所述确定周期偏移值的方式包括以下方式的一种或多种:
    方式一:随机选择的方式以确定所述周期偏移值;其中在所述候选偏移值集合中的每个周期偏移值具有相同的被选择概率;
    方式二:根据标识信息选择的方式以确定所述周期偏移值;
    方式三:生成随机数,根据所述随机数选择的方式以确定所述周期偏移值。
  18. 根据权利要求11、15、16或17所述的方法,其中,所述方法还包括:
    根据伪随机序列产生算法生成随机数;
    所述伪随机序列产生算法在每个所述资源周期或者每个所述发送周期或者每个所述资源分组生成一个伪随机序列;或者,所述伪随机序列产生算法在初始发送所述D2D信号时生成一个伪随机序列;
    和/或,所述伪随机算法的初始化参数包括以下至少之一:标识、周期索引、系统帧号、子帧/时隙索引。
PCT/CN2015/084907 2014-10-21 2015-07-23 一种设备到设备通信的设备发现装置和方法 WO2016062138A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410564089.4 2014-10-21
CN201410564089.4A CN105592523A (zh) 2014-10-21 2014-10-21 一种设备到设备通信的设备发现装置和方法

Publications (1)

Publication Number Publication Date
WO2016062138A1 true WO2016062138A1 (zh) 2016-04-28

Family

ID=55760249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084907 WO2016062138A1 (zh) 2014-10-21 2015-07-23 一种设备到设备通信的设备发现装置和方法

Country Status (2)

Country Link
CN (1) CN105592523A (zh)
WO (1) WO2016062138A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565313A (zh) * 2016-07-19 2019-04-02 日本电气株式会社 用于执行通信的方法和设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107454574B (zh) * 2016-05-31 2022-04-05 中兴通讯股份有限公司 设备到设备d2d的通信方法、装置和车联网终端
CN107592626A (zh) * 2016-07-08 2018-01-16 中兴通讯股份有限公司 信道接入方法、装置及系统
CN106162737B (zh) * 2016-08-09 2019-05-17 北京交通大学 一种基于自适应拥塞控制的d2d设备自主发现方法
KR20190089961A (ko) 2016-12-27 2019-07-31 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 전송 방법, 단말 기기 및 액세스 네트워크 기기
WO2020223977A1 (zh) * 2019-05-09 2020-11-12 北京小米移动软件有限公司 接入控制方法、装置及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316866A (zh) * 2000-04-04 2001-10-10 索尼国际(欧洲)股份有限公司 用于用户随机接入公共通信信道的优先排序方法
WO2013100834A1 (en) * 2011-12-30 2013-07-04 Telefonaktiebolaget L M Ericsson (Publ) Method and network node for handling beacon signal transmission
CN103338497A (zh) * 2013-06-14 2013-10-02 北京交通大学 一种d2d通信系统中自主设备发现方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229582B (zh) * 2012-12-24 2017-05-24 华为技术有限公司 资源竞争的方法、利用资源竞争的方法及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316866A (zh) * 2000-04-04 2001-10-10 索尼国际(欧洲)股份有限公司 用于用户随机接入公共通信信道的优先排序方法
WO2013100834A1 (en) * 2011-12-30 2013-07-04 Telefonaktiebolaget L M Ericsson (Publ) Method and network node for handling beacon signal transmission
CN103338497A (zh) * 2013-06-14 2013-10-02 北京交通大学 一种d2d通信系统中自主设备发现方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT.: "Further discussion on resource allocation for D2D discovery", 3GPP TSG RAN WG1 MEETING #75 R1-135089, 15 November 2013 (2013-11-15) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565313A (zh) * 2016-07-19 2019-04-02 日本电气株式会社 用于执行通信的方法和设备
US11329783B2 (en) 2016-07-19 2022-05-10 Nec Corporation Method and device for performing communication

Also Published As

Publication number Publication date
CN105592523A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
CN112753274B (zh) 用于支持用于2步随机接入过程的方法和装置
US10271363B2 (en) Device discovery method and user equipment, and network-side device
CN103997788B (zh) 用于设备到设备通信的设备发现方法及用户设备、网络侧设备
WO2016019734A1 (zh) D2d的通信方法及装置
WO2016062138A1 (zh) 一种设备到设备通信的设备发现装置和方法
CN103748942B (zh) 随机接入方法、基站及终端
WO2016045442A1 (zh) 一种设备到设备通信方法、装置及系统
US9338732B2 (en) Systems and methods for fast initial network link setup
US9801199B2 (en) Method and device for device-to-device communication and device for controlling device-to-device communication
EP3884726B1 (en) Random access method, user equipment and base station
WO2018113739A1 (zh) 资源配置方法、信息发送方法、基站及终端
WO2015176517A1 (zh) 设备到设备的资源配置方法、网络设备及用户设备
WO2015109875A1 (zh) 设备发现信号的发送方法、装置及系统
US20160219636A1 (en) User terminal and mobile communication system
US9191977B2 (en) Systems and methods for fast initial network link setup
CN104244449B (zh) 设备到设备的通信方法及用户设备
KR102708566B1 (ko) 단말 장치, 기지국 장치 및 통신 방법
WO2014124610A1 (zh) 一种设备发现方法和装置
Nasraoui et al. Neighbor discovery for ProSe and V2X communications
JP2017539135A (ja) D2d同期信号のための電力制御モード
WO2015046918A1 (ko) D2d 통신에서 발견 신호 송수신 방법 및 이러한 방법을 지원하는 장치
US10097407B2 (en) Method, equipment, device and system for sending device detection signal
Tang et al. D2D neighbor discovery and resource scheduling through demodulation reference signal
JP2016521510A (ja) ネットワーク・カバレッジ・フリーの近隣端末発見のための方法、装置およびユーザ機器
Ren et al. The Hint protocol: Using a broadcast method to enable ID-free data transmission for dense IoT devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852425

Country of ref document: EP

Kind code of ref document: A1