WO2016061770A1 - 一种数据传输方法及设备 - Google Patents

一种数据传输方法及设备 Download PDF

Info

Publication number
WO2016061770A1
WO2016061770A1 PCT/CN2014/089202 CN2014089202W WO2016061770A1 WO 2016061770 A1 WO2016061770 A1 WO 2016061770A1 CN 2014089202 W CN2014089202 W CN 2014089202W WO 2016061770 A1 WO2016061770 A1 WO 2016061770A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
noise ratio
indication
data
csi
Prior art date
Application number
PCT/CN2014/089202
Other languages
English (en)
French (fr)
Inventor
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US15/521,232 priority Critical patent/US10440583B2/en
Priority to JP2017522132A priority patent/JP2017531968A/ja
Priority to PCT/CN2014/089202 priority patent/WO2016061770A1/zh
Priority to EP14904482.8A priority patent/EP3197079B1/en
Priority to KR1020177013281A priority patent/KR101922040B1/ko
Priority to CN201480080940.4A priority patent/CN106576015B/zh
Publication of WO2016061770A1 publication Critical patent/WO2016061770A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and in particular, to a data transmission method and device.
  • the base station uses channel resources by means of the Listening Before Talk (LBT), where LBT is A carrier sense multiple access (English: Carrier Sense Multiple Access, referred to as: CSMA) technology.
  • LBT is A carrier sense multiple access
  • CSMA Carrier Sense Multiple Access
  • the channel state information (English: Channel State Information, CSI) that the user equipment needs to obtain in the process of transmitting data to the user equipment through the physical downlink control channel (English: Physical Downlink Shared Channel, PDSCH for short) is present.
  • the LTE system uses the licensed spectrum for a long time, and the CSI is mainly fed back in a periodic manner or an aperiodic manner when the licensed spectrum is used.
  • the non-periodic feedback CSI is triggered by the uplink signaling.
  • the base station controls the user equipment to feed back CSI in the uplink signaling through the CSI request report, where the feedback process of the CSI has a delay of at least 10 ms;
  • the feedback CSI is configured by the high layer signaling, which requires the user equipment to initiate a CSI feedback to the base station at regular intervals.
  • the use of the unlicensed spectrum is random. Therefore, if the CSI feedback mechanism of the LTE system is directly adopted, there is at least a delay of 10 ms due to the CSI feedback process when the CSI is fed back periodically. The real-time feedback of the CSI state is not guaranteed.
  • the CSI feedback forms a signaling overhead, which causes waste of resources.
  • the prior art does not provide a CSI state feedback mechanism suitable for the LTE-U system.
  • Embodiments of the present invention provide a data transmission method and device, which can provide a CSI state feedback mechanism suitable for an LTE-U system.
  • a data transmission method including:
  • the first device detects data transmitted by the second device on the unlicensed carrier
  • the first device sends channel state information CSI to the second device on the Nth time resource after starting to receive data transmitted by the second device on the unlicensed carrier, where N is a positive integer less than 4.
  • the N is 1 or 2.
  • the CSI includes: a transmission interruption indication, a modulation mode indication, or a signal to noise ratio interval indication, where the transmission interruption indication is used to indicate that the second device stops at the location Transmitting data to the first device on the unlicensed carrier, the modulation mode indicating a modulation mode used to indicate that the second device transmits data to the first device, where the signal to noise ratio interval indication is used A signal to noise ratio interval in a plurality of signal to noise ratio intervals is indicated.
  • a difference between a maximum value and a minimum value of a signal to noise ratio of each of the plurality of signal to noise ratio intervals equal.
  • the multiple SNR intervals are: [-6dB, 0dB], [1dB, 7dB], [8dB, 14dB] and [15dB, 21dB]; or,
  • the plurality of signal to noise ratio intervals are: [-6dB, 3dB], [3dB, 12dB] and [12dB, 21dB]; or,
  • the plurality of signal to noise ratio intervals are: [-6dB, -3dB], [-3dB, 0dB], [0dB, 3dB], [3dB, 6dB], [6dB, 9dB], [10dB, 13dB], [ 14dB, 17dB] and [18dB, 21dB].
  • the modulation mode indication includes: four-phase phase shift keying QPSK, hexadecimal quadrature amplitude modulation 16QAM, 64-ary quadrature amplitude modulation 64QAM, and 256-ary quadrature amplitude modulation An indication of any of 256QAM.
  • the first device is a base station or a user equipment, or
  • the second device is a base station or a user equipment.
  • a data transmission method including:
  • the second device receives the channel state information CSI sent by the first device on the Nth time resource after the first device starts transmitting data on the unlicensed carrier, where N is a positive integer less than 4;
  • the second device sends data to the first device according to the CSI.
  • the N is 1 or 2.
  • the method before the sending, by the second device, the data to the first device according to the CSI, the method further includes:
  • the second device selects K signal to noise ratios in the target signal to noise ratio interval, and K is a positive integer;
  • the second device sends data to the first device according to the K modulation and coding policies MCS corresponding to the K signal to noise ratios.
  • the CSI includes: a transmission interruption indication, a modulation mode indication, or a signal to noise ratio interval indication, where the transmission interruption indication is used to indicate that the second device stops at the location Transmitting data to the first device on the unlicensed carrier, the modulation mode indicating a modulation mode used to indicate that the second device transmits data to the first device, where the signal to noise ratio interval indication is used A signal to noise ratio interval in a plurality of signal to noise ratio intervals is indicated.
  • the CSI is a signal to noise ratio interval indication
  • the second device And sending, by the second device, the data to the first device according to the CSI, where the second device selects a maximum of the SNR interval according to the signal to noise ratio interval indicated by the signal to noise ratio interval indication.
  • the MCS corresponding to the signal to noise ratio transmits data to the first device.
  • the second device according to the signal to noise ratio interval indicated by the signal to noise ratio interval, selects an MCS corresponding to the largest signal to noise ratio in the signal to noise ratio interval to send data to the first device, including:
  • the second device sends, according to the signal to noise ratio interval indicated by the signal to noise ratio interval, the MCS corresponding to the largest signal to noise ratio in the signal to noise ratio interval to send data to the first device for M times, wherein M is a positive integer.
  • the first device is a base station or a user equipment, or
  • the second device is a base station or a user equipment.
  • a user equipment including:
  • a detecting unit configured to detect data transmitted by the second device on the unlicensed carrier
  • a sending unit configured to send channel state information CSI to the second device on the Nth time resource after the detecting unit detects that the data transmitted by the second device on the unlicensed carrier is started, where A positive integer less than 4.
  • the N is 1 or 2.
  • the CSI includes: a transmission interruption indication, a modulation mode indication, or a signal to noise ratio interval indication, where the transmission interruption indication is used to indicate that the second device stops at the location Transmitting data to the first device on the unlicensed carrier, the modulation mode indicating a modulation mode used to indicate that the second device transmits data to the first device, where the signal to noise ratio interval indication is used A signal to noise ratio interval in a plurality of signal to noise ratio intervals is indicated.
  • a difference between a maximum value and a minimum value of a signal to noise ratio of each of the plurality of signal to noise ratio intervals equal.
  • the multiple SNR intervals are: [-6dB, 0dB], [1dB, 7dB], [8dB, 14dB] and [15dB, 21dB]; or,
  • the plurality of signal to noise ratio intervals are: [-6dB, 3dB], [3dB, 12dB] and [12dB, 21dB]; or,
  • the plurality of signal to noise ratio intervals are: [-6dB, -3dB], [-3dB, 0dB], [0dB, 3dB], [3dB, 6dB], [6dB, 9dB], [10dB, 13dB], [ 14dB, 17dB] and [18dB, 21dB].
  • the modulation mode indication includes: four-phase phase shift keying QPSK, hexadecimal quadrature amplitude modulation 16QAM, and a hexadecimal positive An indication of either one of the amplitude modulation 64QAM and the 256-ary quadrature amplitude modulation 256QAM.
  • the first device is a base station or a user equipment, or
  • the second device is a base station or a user equipment.
  • a base station including:
  • a receiving unit configured to receive channel state information CSI sent by the first device on an Nth time resource after the first device starts transmitting data on the unlicensed carrier, where N is a positive integer less than 4;
  • a sending unit configured to send data to the first device according to the CSI received by the receiving unit.
  • the N is 1 or 2.
  • the sending unit is further configured to: average K SNRs are selected in the target SNR interval, K is a positive integer; and the K modulation and coding strategies MCS corresponding to the K SNRs are A device sends data.
  • the CSI includes: a transmission interruption indication, a modulation mode indication, or a signal to noise ratio interval indication, where the transmission interruption indication is used to indicate that the second device stops at the location Transmitting data to the first device on the unlicensed carrier, the modulation mode indicating a modulation mode used to indicate that the second device transmits data to the first device, where the signal to noise ratio interval indication is used A signal to noise ratio interval in a plurality of signal to noise ratio intervals is indicated.
  • the CSI is a signal to noise ratio interval indication
  • the sending unit is configured to: according to the signal to noise ratio interval indicated by the signal to noise ratio interval indication, select an MCS corresponding to a maximum signal to noise ratio in the signal to noise ratio interval to send data to the first device.
  • the sending unit is configured to: select, according to the signal to noise ratio interval indicated by the signal to noise ratio interval indication,
  • the MCS corresponding to the largest signal to noise ratio in the signal to noise ratio interval transmits data to the first device for M consecutive times, where M is a positive integer.
  • the first device is a base station or a user equipment, or
  • the second device is a base station or a user equipment.
  • a fifth aspect provides a first device, including: a transmitter, a receiver, a processor, and a bus, wherein the transmitter, the receiver, and the processor communicate with each other through the bus connection;
  • a processor configured to detect data transmitted by the second device on the unlicensed carrier
  • a transmitter configured to send channel state information to the second device on the Nth time resource after the processor detects that the receiver starts receiving data transmitted by the second device on an unlicensed carrier CSI.
  • the N is 1 or 2.
  • the CSI includes: a transmission interruption indication, a modulation mode indication, or a signal to noise ratio interval indication, where the transmission interruption indication is used to indicate that the second device stops at the location Transmitting data to the first device on the unlicensed carrier, the modulation mode indicating a modulation mode used to indicate that the second device transmits data to the first device, where the signal to noise ratio interval indication is used A signal to noise ratio interval in a plurality of signal to noise ratio intervals is indicated.
  • a difference between a maximum value and a minimum value of a signal to noise ratio of each of the plurality of signal to noise ratio intervals equal.
  • the multiple SNR intervals are: [-6dB, 0dB], [1dB, 7dB], [8dB, 14dB] and [15dB, 21dB]; or,
  • the plurality of signal to noise ratio intervals are: [-6dB, 3dB], [3dB, 12dB] and [12dB, 21dB]; or,
  • the plurality of signal to noise ratio intervals are: [-6dB, -3dB], [-3dB, 0dB], [0dB, 3dB], [3dB, 6dB], [6dB, 9dB], [10dB, 13dB], [ 14dB, 17dB] and [18dB, 21dB].
  • the modulation mode indication includes: four-phase phase shift keying QPSK, hexadecimal quadrature amplitude modulation 16QAM, and hexadecimal An indication of either of the quadrature amplitude modulation 64QAM and the 256-ary quadrature amplitude modulation 256QAM.
  • the first device is a base station or a user equipment, or
  • the second device is a base station or a user equipment.
  • a sixth aspect provides a second device, including: a transmitter, a receiver, and a bus, wherein the transmitter and the receiver communicate with each other through the bus connection;
  • a receiver configured to receive the channel state information CSI sent by the first device on the Nth time resource after the transmitter starts transmitting data on the unlicensed carrier, where N is a positive integer less than 4 ;
  • a transmitter configured to send data to the first device according to the CSI received by the receiver.
  • the N is 1 or 2.
  • the base station further includes a processor connected to the bus;
  • the processor is configured to select K signal to noise ratios in a target signal to noise ratio interval, where K is a positive integer;
  • the second device sends data to the first device according to the K modulation and coding policies MCS corresponding to the K signal to noise ratios selected by the processor.
  • the CSI includes: a transmission interruption indication, a modulation mode indication, or a signal to noise ratio interval indication, where the transmission interruption refers to The indication is used to indicate that the second device stops transmitting data to the first device on the unlicensed carrier, where the modulation mode indication is used to indicate that the second device uses to transmit data to the first device.
  • the signal to noise ratio interval indication is used to indicate one of a plurality of signal to noise ratio intervals.
  • the CSI is a signal to noise ratio interval indication
  • the transmitter is specifically configured to: according to the signal to noise ratio interval indicated by the signal to noise ratio interval indication, select an MCS corresponding to a maximum signal to noise ratio in the signal to noise ratio interval to send data to the first device.
  • the transmitter is further configured to: select, according to the signal to noise ratio interval indicated by the signal to noise ratio interval indication,
  • the MCS corresponding to the largest signal to noise ratio in the signal to noise ratio interval transmits data to the first device for M consecutive times, where M is a positive integer.
  • the first device is a base station or a user equipment, or
  • the second device is a base station or a user equipment.
  • data transmitted by the second device on the unlicensed carrier is detected by the first device; the first device is on the Nth time resource after receiving the data transmitted by the second device on the unlicensed carrier. Transmitting the channel state information CSI to the second device, so that the second device sends data to the second device according to the CSI fed back by the first device, avoiding the signaling overhead of the CSI being periodically sent by the first device, and realizing the CSI state in real time. Feedback.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a data transmission method according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a frame in a data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a frame in a data transmission method according to another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart diagram of a data transmission method according to still another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a user equipment according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station according to another embodiment of the present invention.
  • the user equipment (English: User Equipment, UE for short) provided by the embodiment of the present invention may be a cellular phone, a cordless telephone, a Session Initiation Protocol (SIP) telephone, and a wireless local loop (English: Wireless Local Loop (WLL) station, personal digital processing (English: Personal Digital Assistant, PDA for short), handheld devices with wireless communication capabilities, in-vehicle devices, wearable devices, computing devices, or other devices connected to wireless modems .
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a base station provided by an embodiment of the present invention may refer to a device in an access network that communicates with user equipment over one or more sectors on an air interface.
  • the base station can be used to convert the received air frame and the Internet Protocol (IP) packet into each other as a router between the user equipment and the rest of the access network, wherein the rest of the access network can be Includes IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a global mobile communication system (English: Global System for Mobile communication, GSM for short) or a code division multiple access (English: Code Division Multiple Access, CDMA) base station (English: Base Transceiver Station, referred to as: BTS) It can also be a base station (English: Base Station, BS for short) in Wideband Code Division Multiple Access (WCDMA), or it can be in Long Term Evolution (LTE).
  • BTS Global System for Mobile communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the evolved base station (English: evolutional Node B, abbreviated as: NodeB or eNB or e-NodeB), and the macro base station and the micro base station in the cellular radio communication system are not limited in the embodiment of the present invention.
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated, thereby defining "first”, “first” A feature of "two” may include one or more of the features, either explicitly or implicitly.
  • the “first” and “second” in the following embodiments are only used for the difference, such as the first device and the second device.
  • the embodiment of the present invention is used in the wireless communication system shown in FIG. 1 , including a first device and a second device, where the first device may be a base station or a user equipment; the second device may be a base station or a user equipment, FIG. 1
  • the second device is described as an example of an evolved base station (English: Evolutional Node B, eNB or eNodeB) in the LTE-U system, and the first device is a UE served by the evolved base station in the LTE-U system.
  • the base station and the user equipment perform information exchange.
  • an embodiment of the present invention provides a data transmission method. As shown in FIG. 2, the first device side includes the following steps:
  • the first device detects data transmitted by the second device on the unlicensed carrier.
  • the first device starts receiving the second device on an unlicensed carrier.
  • the channel state information CSI is transmitted to the second device on the Nth time resource after the transmitted data, where N is a positive integer less than 4.
  • the base station when the first device is a user equipment and the second device is a base station, the base station performs data transmission on the physical downlink shared channel (English: Physical Downlink Shared Channel, PDSCH for short), and is in the physical downlink control channel. : The Physical Downlink Control Channel (referred to as PDCCH) performs control signaling transmission. Therefore, the user equipment detects and receives data transmitted by the base station through the PDSCH.
  • the base station passes the physics.
  • the uplink shared channel (English: Physical Uplink Shared Channel, PUSCH for short) detects and receives data transmitted by the user equipment.
  • the time resource in the foregoing step 102 may be a time slot or a subframe, etc., exemplarily taking a subframe as an example. If the first device starts receiving data sent by the second device in the first subframe, then at the beginning of the first subframe. After the time, the first device sends the channel state information CSI to the second device. To implement the real-time CSI feedback, the first device may specify that the first device sends the feedback information to the received data to the second device at the latest. The second device sends the channel state information CSI.
  • step 102 is specifically The first device transmits channel state information CSI to the second device between a start time of the first subframe and an end time of the second subframe.
  • the CSI in step 102 may specifically be a channel quality indicator (CQI).
  • CQI channel quality indicator
  • the data transmitted by the second device on the unlicensed carrier is detected by the first device; the first device is second to the Nth time resource after starting to receive the data transmitted by the second device on the unlicensed carrier.
  • the device sends the channel state information CSI; so that the second device sends data to the second device according to the CSI fed back by the first device, which avoids the signaling overhead of the CSI being periodically sent by the first device, and can implement real-time feedback of the CSI state.
  • An embodiment of the present invention provides a data transmission method. As shown in FIG. 3, the second device side includes the following steps:
  • the second device receives the channel state information CSI sent by the first device on the Nth time resource after the first device starts transmitting data on the unlicensed carrier, where N is a positive integer less than 4.
  • the time resource in step 201 includes: a time slot or a subframe, and the like.
  • the second device sends data to the first device according to the CSI.
  • Step 202 is specifically: the base station sends data to the user equipment on the PDSCH according to the CSI, or the user equipment sends data to the base station according to the CSI on the PUSCH.
  • the second device receives the channel state information CSI sent by the first device on the Nth time resource after the first device starts transmitting data on the unlicensed carrier; and according to the CSI, the second A device sends data, avoiding the signaling overhead of the CSI periodically sent by the first device, and realizing real-time feedback of the CSI state.
  • the N is 1 or 2.
  • the second device is described by using a base station in the LTE-U system
  • the first device is a UE served by the LTE-U base station.
  • the PDSCH sends data to the UE. After receiving the data in the subframe 0, the UE feeds back the CSI in the physical uplink control channel (English: Physical Uplink Control Channel, PUCCH) of the subframe 2 of the third subframe.
  • PUCCH Physical Uplink Control Channel
  • the CSI sent by the second device includes: a transmission interruption indication, a modulation mode indication, or a signal to noise ratio interval indication, where the transmission interruption indication is used to indicate that the second device stops on the unlicensed carrier
  • the first device transmits data, where the modulation mode indicates a modulation mode used by the second device to transmit data to the first device, where the signal to noise ratio interval indication is used to indicate a plurality of signal to noise ratio intervals.
  • a signal to noise ratio interval is used to indicate a plurality of signal to noise ratio intervals.
  • the signal to noise ratio of each of the plurality of signal to noise ratio intervals is the most The difference between the large value and the minimum value is equal.
  • the plurality of signal to noise ratio intervals are obtained by dividing a target signal to noise ratio interval, and the target signal to noise ratio interval is a channel signal to noise ratio range required for data transmission of the first device and the second device.
  • the above multiple SNR intervals include the following four [-6dB, 0dB], [1dB, 7dB], [ 8dB, 14dB] and [15dB, 21dB]; each of the signal-to-noise ratio intervals covers 6dB, which is exactly the signal-to-noise ratio gain of 4 retransmissions.
  • the UE needs to use 2 bits to transmit any of the 4 signal-to-noise ratio states (each signal-to-noise ratio interval represents a signal-to-noise ratio state).
  • Each signal-to-noise ratio state covers exactly the signal-to-noise ratio region of 4 retransmissions;
  • each signal-to-noise ratio interval covers 9dB, which is the signal-to-noise ratio gain of 8 retransmissions.
  • the UE needs to use 2 bits to transmit any of the 3 SNR states (each SNR interval represents a SNR state).
  • Each signal-to-noise ratio state covers exactly the signal-to-noise ratio region of 8 retransmissions;
  • each signal-to-noise ratio interval covers 3dB, is 2 retransmissions Signal to noise ratio gain.
  • the UE needs to use any of the three bits to transmit any of the eight signal to noise ratio states (each signal to noise ratio interval represents one signal to noise ratio state).
  • Each signal-to-noise ratio state covers exactly the signal-to-noise ratio region of 2 retransmissions;
  • the modulation mode indication includes: quadrature phase shift keying QPSK (English, Quadrature Phase Shift Keying, QPSK for short), hexadecimal quadrature amplitude modulation 16QAM (English: 16Quadrature Amplitude Modulation, referred to as: 16QAM) , 64-ary quadrature amplitude modulation 64QAM and 256-ary quadrature amplitude modulation 256QAM indication.
  • QPSK Quadrature Phase Shift Keying
  • 16QAM hexadecimal quadrature amplitude modulation
  • 16QAM 16Quadrature Amplitude Modulation
  • 64-ary quadrature amplitude modulation 64QAM 64-ary quadrature amplitude modulation 64QAM
  • 256-ary quadrature amplitude modulation 256QAM indication In this case, the UE needs to use 2 bits to transmit any of the three SNR states, each of which covers a modulation code. the way.
  • the second device selects the signal to noise ratio interval according to the signal to noise ratio interval indicated by the second signal according to the signal to noise ratio interval indication.
  • the modulation and coding strategy (English: Modulation and Coding Scheme, MCS for short) corresponding to the largest signal to noise ratio transmits data to the first device.
  • the second device may perform data retransmission to the first device according to the MCS corresponding to the signal to noise ratio point with the highest signal to noise ratio in any one of the signal to noise ratio intervals, that is, when the second device is based on the maximum
  • the MCS corresponding to the signal-to-noise ratio point sends the data to the first device for the first time, if the response message of the first device can be received and the response message indicates that the first device correctly receives the data, the second device does not perform the first Secondary data transmission, if the second device does not receive the response message of the first device or the response message indicates that the first device fails to correctly receive the data, the second device according to the maximum signal to noise ratio point or other signal to noise ratio point ( For example, the MCS corresponding to the second largest or second largest signal to noise ratio point initiates a second data transmission to the first device until the first device correctly receives the data; if the channel changes during the retransmission, or the interference changes very much Fast, then too long latency affects the fast response to time
  • the step 202 may be further replaced by: the second device selecting the MCS continuous M times corresponding to the largest signal to noise ratio in the SNR interval according to the signal to noise ratio interval indicated by the signal to noise ratio interval indication.
  • the first device transmits data, where M is a positive integer.
  • the MCS corresponding to the signal to noise ratio point with the largest signal to noise ratio in the signal to noise ratio interval may be selected to encode the data.
  • the feedback information of the first device is the signal to noise ratio interval [0, 6], then the first The two devices can continuously transmit the MCS transmission data packet corresponding to the signal to noise ratio 6, and transmit it twice in succession.
  • the data transmission can be quickly matched to the channel;
  • the specific value of M is not limited, and the value of M can be determined according to the range of the signal to noise ratio interval.
  • the M retransmission can include at least: Retransmission in four or eight times.
  • the transmission interruption indication may be oor, which is used to indicate the first device when Before being in the oor state (English: out of range), wherein the OOR state indicates that the first device is subjected to very serious interference, at which time the second device can interrupt the data transmission and stop the first device on the unlicensed carrier. transfer data.
  • the data transmission performed by the second device to the first device may be referenced without CSI, and thus the implementation of the present invention
  • the example provides the following steps:
  • the second device selects K signal to noise ratios in the target signal to noise ratio interval, where K is a positive integer;
  • the target signal to noise ratio interval is a channel signal to noise ratio range required for data transmission of the first device and the second device.
  • the target signal to noise ratio interval may adopt a maximum signal to noise of the LTE-U system. Ratio interval [-6dB, 21dB].
  • the second device sends data to the first device according to the K modulation and coding policies MCS corresponding to the K signal to noise ratios.
  • the second device carries the data transmitted to the first device through 4 subframes
  • the signal-to-noise ratio is averaged, and the signal-to-noise ratio is evenly distributed in the four signal-to-noise ratios. This ensures that the second device does not receive the CSI data transmission performance of the first device feedback.
  • an embodiment of the present invention provides a first device 70, which is configured to implement a data transmission method performed by a first device in the foregoing embodiment, including: a detecting unit 71 and a sending unit 72;
  • the detecting unit 71 is configured to detect data transmitted by the second device on the unlicensed carrier
  • the sending unit 72 is configured to send the channel state information CSI to the second device on the Nth time resource after the detecting unit 71 detects the start of receiving the data that is transmitted by the second device on the unlicensed carrier, where N is a positive integer less than 4.
  • the data transmitted by the second device on the unlicensed carrier is detected by the first device; the first device starts receiving the number of the second device transmitting on the unlicensed carrier. Transmitting, by the second device, the channel state information CSI to the second device, so that the second device sends the data to the second device according to the CSI fed back by the first device, thereby preventing the first device from periodically transmitting the CSI signaling. Overhead, while realizing real-time feedback on CSI status.
  • the N is 1 or 2.
  • the CSI includes: a transmission interruption indication, a modulation mode indication, or a signal to noise ratio interval indication, where the transmission interruption indication is used to indicate that the second device stops on the unlicensed carrier to the first device.
  • the modulation mode indication is used to indicate a modulation mode used by the second device to transmit data to the first device
  • the signal to noise ratio interval indication is used to indicate one of a plurality of signal to noise ratio intervals Noise ratio interval.
  • a difference between a maximum value and a minimum value of a signal to noise ratio of each of the plurality of signal to noise ratio intervals is equal.
  • the plurality of signal to noise ratio intervals are: [-6dB, 0dB], [1dB, 7dB], [8dB, 14dB], and [15dB, 21dB];
  • the plurality of signal to noise ratio intervals are: [-6dB, 3dB], [3dB, 12dB] and [12dB, 21dB]; or,
  • the plurality of signal to noise ratio intervals are: [-6dB, -3dB], [-3dB, 0dB], [0dB, 3dB], [3dB, 6dB], [6dB, 9dB], [10dB, 13dB], [ 14dB, 17dB] and [18dB, 21dB].
  • the modulation mode indication includes: four-phase phase shift keying QPSK, hexadecimal quadrature amplitude modulation 16QAM, 64-ary quadrature amplitude modulation 64QAM, and 256-ary quadrature amplitude modulation 256QAM. Instructions.
  • the first device is a base station or a user equipment
  • the second device is a base station or a user equipment.
  • an embodiment of the present invention provides a second device 80, which is used to implement the data transmission method performed by the base station in the foregoing embodiment, and specifically includes: a receiving unit 81 and a sending unit 82;
  • the receiving unit 81 is configured to receive the channel state information CSI sent by the first device on the Nth time resource after the first device starts transmitting data on the unlicensed carrier, where Where N is a positive integer less than 4;
  • the sending unit 82 is configured to send data to the first device according to the CSI received by the receiving unit 71.
  • the second device receives the channel state information CSI sent by the first device on the Nth time resource after the first device starts transmitting data on the unlicensed carrier; and according to the CSI, the second A device sends data, avoiding the signaling overhead of the CSI periodically sent by the first device, and realizing real-time feedback of the CSI state.
  • the N is 1 or 2.
  • the sending unit 82 is further configured to: average K SNRs in a target SNR interval, where K is a positive integer; and K modulation and coding strategies corresponding to the K SNRs
  • the MCS transmits data to the first device.
  • the CSI includes: a transmission interruption indication, a modulation mode indication, or a signal to noise ratio interval indication, where the transmission interruption indication is used to indicate that the second device stops on the unlicensed carrier to the first device.
  • the modulation mode indication is used to indicate a modulation mode used by the second device to transmit data to the first device
  • the signal to noise ratio interval indication is used to indicate one of a plurality of signal to noise ratio intervals Noise ratio interval.
  • the sending unit 82 is specifically configured to: according to the signal to noise ratio interval indicated by the signal to noise ratio interval indication, select a maximum signal to noise ratio corresponding to the signal to noise ratio interval.
  • the MCS sends data to the first device.
  • the sending unit 82 is further configured to: select, according to the signal to noise ratio interval indicated by the signal to noise ratio interval, the MCS corresponding to the largest signal to noise ratio in the signal to noise ratio interval, to the first A device sends data, where M is a positive integer.
  • the second device sends data to the first device by retransmission for M times, which can achieve fast matching of the data transmission to the channel.
  • the first device is a base station or a user equipment
  • the second device is a base station or a user equipment.
  • an embodiment of the present invention provides a first device 100 for The data transmission method performed by the first device in the foregoing embodiment is implemented, including: a transmitter 1001, a receiver 1002, a processor 1003, and a bus 1004, wherein the transmitter 1001, the receiver 1002, and the processor 1003 pass the bus. 1004 connections enable mutual communication;
  • the bus 1004 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus. Etc., here is not limited.
  • the bus 1004 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 9, but it does not mean that there is only one bus or one type of bus. among them:
  • the processor 1003 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more configured to implement the embodiments of the present invention. integrated circuit.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • a memory 1005 coupled to the bus 1004 for storing data or executable program code, wherein the program code includes computer operating instructions, which may specifically be: an operating system, an application, or the like.
  • the memory 1005 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the processor 1003 is configured to implement the method for transmitting data performed by each unit in the foregoing embodiment by executing the program code in the memory 1005. Specifically, the method includes:
  • the processor 1003 is configured to detect data that is transmitted by the second device on the unlicensed carrier
  • the transmitter 1001 is configured to send, to the second device, the Nth time resource after the processor 1003 detects that the receiver 1002 starts receiving data transmitted by the second device on an unlicensed carrier.
  • Channel state information CSI is configured to send, to the second device, the Nth time resource after the processor 1003 detects that the receiver 1002 starts receiving data transmitted by the second device on an unlicensed carrier.
  • the data transmitted by the second device on the unlicensed carrier is detected by the first device; the first device is second to the Nth time resource after starting to receive the data transmitted by the second device on the unlicensed carrier.
  • the device sends the channel state information CSI; so that the second device sends data to the second device according to the CSI fed back by the first device, thereby avoiding the A device periodically sends CSI signaling overhead and can implement real-time feedback of CSI status.
  • the N is 1 or 2.
  • the CSI includes: a transmission interruption indication, a modulation mode indication, or a signal to noise ratio interval indication, where the transmission interruption indication is used to indicate that the second device stops on the unlicensed carrier to the first device.
  • the modulation mode indication is used to indicate a modulation mode used by the second device to transmit data to the first device
  • the signal to noise ratio interval indication is used to indicate one of a plurality of signal to noise ratio intervals The noise ratio interval. Further, the difference between the maximum value and the minimum value of the signal to noise ratio of each of the plurality of signal to noise ratio intervals is equal.
  • the multiple signal to noise ratio intervals are: [-6dB, 0dB], [1dB, 7dB], [8dB, 14dB], and [15dB, 21dB];
  • the plurality of signal to noise ratio intervals are: [-6dB, 3dB], [3dB, 12dB] and [12dB, 21dB]; or,
  • the plurality of signal to noise ratio intervals are: [-6dB, -3dB], [-3dB, 0dB], [0dB, 3dB], [3dB, 6dB], [6dB, 9dB], [10dB, 13dB], [ 14dB, 17dB] and [18dB, 21dB].
  • the modulation mode indication includes: four-phase phase shift keying QPSK, hexadecimal quadrature amplitude modulation 16QAM, 64-ary quadrature amplitude modulation 64QAM, and 256-ary quadrature amplitude modulation 256QAM. Instructions.
  • the first device is a base station or a user equipment, or
  • the second device is a base station or a user equipment.
  • an embodiment of the present invention provides a second device, which is used to implement the data transmission method performed by the second device in the foregoing embodiment, including: a transmitter 1101, a receiver 1102, and a bus 1103, where the transmitter 1101 and the receiver 1102 are connected to each other through the bus 1103 to implement mutual communication;
  • the bus 1103 can be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard (Extended Industry Standard). Architecture, referred to as EISA bus, etc., is not limited herein.
  • the bus 1103 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 10, but it does not mean that there is only one bus or one type of bus. among them:
  • the receiver 1102 is configured to receive, by the transmitter 1101, channel state information CSI sent by the first device on an Nth time resource after the first device starts transmitting data on the unlicensed carrier, where N is less than 4.
  • the transmitter 1101 is configured to send data to the first device according to the CSI received by the receiver 1102.
  • the second device receives the channel state information CSI sent by the first device on the Nth time resource after the first device starts transmitting data on the unlicensed carrier; and according to the CSI, the second A device sends data, avoiding the signaling overhead of the CSI periodically sent by the first device, and realizing real-time feedback of the CSI state.
  • the N is 1 or 2.
  • the base station further includes a processor 1104 connected to the bus 1103;
  • the processor 1104 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more configured to implement the embodiments of the present invention. integrated circuit.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the memory 1105 connected to the bus 1103 for storing data or executable program code, wherein the program code includes computer operating instructions, specifically: an operating system, an application, and the like.
  • the memory 1005 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the processor 1104 is configured to select K signal to noise ratios in a target signal to noise ratio interval, where K is a positive integer;
  • the transmitter 1101, the second device sends data to the first device according to the K modulation and coding policies MCS corresponding to the K signal to noise ratios selected by the processor 1104.
  • the CSI includes: a transmission interruption indication, a modulation mode indication, or a signal to noise ratio interval indication, where the transmission interruption indication is used to indicate that the second device stops on the unlicensed carrier to the first device.
  • the modulation mode indication is used to indicate a modulation mode used by the second device to transmit data to the first device
  • the signal to noise ratio interval indication is used to indicate one of a plurality of signal to noise ratio intervals Noise ratio interval.
  • the transmitter 1101 is specifically configured to: according to the signal to noise ratio interval indicated by the signal to noise ratio interval indication, select a maximum signal to noise ratio corresponding to the signal to noise ratio interval.
  • the MCS sends data to the first device.
  • the transmitter 1101 is further configured to select, according to the signal to noise ratio interval indicated by the signal to noise ratio interval, the MCS corresponding to the largest signal to noise ratio in the signal to noise ratio interval to the M times consecutively.
  • the first device transmits data, where M is a positive integer.
  • the second device sends data to the first device by retransmission for M times, which can achieve fast matching of the data transmission to the channel.
  • the first device is a base station or a user equipment, or
  • the second device is a base station or a user equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法及设备,涉及通信技术领域,能够提供一种适合LTE-U系统的CSI状态反馈机制。该方法包括:第一设备检测第二设备在非授权载波上传输的数据(101);所述第一设备在开始接收所述第二设备在非授权载波上传输的数据后的第N个时间资源上向所述第二设备发送信道状态信息CSI(102),其中N为小于4的正整数。该方法及设备用于数据传输。

Description

一种数据传输方法及设备 技术领域
本发明的实施例涉及通信技术领域,尤其涉及一种数据传输方法及设备。
背景技术
在长期演进的非授权频谱(英文:Long Term Evolution Unlicensed spectrum,简称:LTE-U)系统中,基站通过说前先听原则(英文:listen before talk,简称LBT)使用信道资源,其中,LBT是一种载波监听多路访问(英文:Carrier Sense Multiple Access,简称:CSMA)技术。其中,基站通过物理下行控制信道(英文:Physical Downlink Shared Channel,简称:PDSCH)向用户设备发送数据过程中需要获取用户设备反馈的信道状态信息(英文:Channel State Information,简称:CSI),在现有技术中LTE系统长期使用授权频谱,在使用授权频谱时主要通过周期性方式或非周期性方式反馈CSI。
其中,非周期性反馈CSI为上行信令触发,在基站的数据发送过程中,基站通过CSI请求报告控制用户设备在上行信令反馈CSI,其中CSI的反馈过程至少存在10ms的延时;周期性反馈CSI由高层信令配置,这要求用户设备每隔一定的时间间隔向基站发起一次CSI反馈。但是,在LTE-U系统中,对于非授权频谱的使用是随机性的,因此如果直接采用LTE系统的CSI反馈机制,通过非周期性反馈CSI时由于CSI的反馈过程至少存在10ms的延时,并不能保证CSI状态的实时反馈,而在通过周期性反馈CSI时,在基站没有数据要发送时,CSI反馈形成了信令开销,造成资源浪费。
总之,现有技术并不能提供一种适合LTE-U系统的CSI状态反馈机制。
发明内容
本发明的实施例提供一种数据传输方法及设备,能够提供一种适合LTE-U系统的CSI状态反馈机制。
第一方面,提供一种数据传输方法,包括:
第一设备检测第二设备在非授权载波上传输的数据;
所述第一设备在开始接收所述第二设备在非授权载波上传输的数据后的第N个时间资源上向所述第二设备发送信道状态信息CSI,其中N为小于4的正整数。
结合第一方面,在第一种可能的实现方式中,所述N为1或2。
结合第一方面,在第二种可能的实现方式中,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述多个信噪比区间中每个信噪比区间的信噪比最大值与最小值的差值相等。
结合第一方面的第二种或第三种可能的实现方式,在第四种可能的实现方式中,所述多个信噪比区间为:[-6dB,0dB],[1dB,7dB],[8dB,14dB]和[15dB,21dB];或,
所述多个信噪比区间为:[-6dB,3dB],[3dB,12dB]和[12dB,21dB];或,
所述多个信噪比区间为:[-6dB,-3dB],[-3dB,0dB],[0dB,3dB],[3dB,6dB],[6dB,9dB],[10dB,13dB],[14dB,17dB]和[18dB,21dB]。
结合第一方面的第二种可能的实现方式,在第五种可能的实现方式中,
所述调制方式指示包括:四相相移键控QPSK、16进制正交幅度调制16QAM、64进制正交幅度调制64QAM和256进制正交幅度调 制256QAM中任意一个的指示。
结合第一方面或第一方面任意一种可能的实现方式,在第六种可能的实现方式中,所述第一设备为基站或用户设备,或
所述第二设备为基站或用户设备。
第二方面,提供一种数据传输方法,包括:
第二设备在非授权载波上向第一设备开始传输数据后的第N个时间资源上接收所述第一设备发送的信道状态信息CSI,其中N为小于4的正整数;
所述第二设备根据所述CSI向所述第一设备发送数据。
结合第二方面,在第一种可能的实现方式中,所述N为1或2。
结合第二方面,在第二种可能的实现方式中,所述第二设备根据所述CSI向所述第一设备发送数据之前,还包括:
所述第二设备在目标信噪比区间内平均选取K个信噪比,K为正整数;
所述第二设备按照所述K个信噪比对应的K个调制与编码策略MCS向所述第一设备发送数据。
结合第二方面,在第三种可能的实现方式中,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
结合第二方面的第三种可能的实现方式,在第四种可能的实现方式中,所述CSI为信噪比区间指示;
所述第二设备根据所述CSI向所述第一设备发送数据,包括:所述第二设备根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS向所述第一设备发送数据。
结合第二方面的第四种可能的实现方式,在第五种可能的实现 方式中,所述第二设备根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS向所述第一设备发送数据包括:
所述第二设备根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS连续M次向所述第一设备发送数据,其中M为正整数。
结合第二方面或第二方面任意一种可能的实现方式,在第六种可能的实现方式中,所述第一设备为基站或用户设备,或
所述第二设备为基站或用户设备。
第三方面,提供一种用户设备,包括:
检测单元,用于检测第二设备在非授权载波上传输的数据;
发送单元,用于在所述检测单元检测到开始接收所述第二设备在非授权载波上传输的数据后的第N个时间资源上向所述第二设备发送信道状态信息CSI,其中N为小于4的正整数。
结合第三方面,在第一种可能的实现方式中,所述N为1或2。
结合第三方面,在第二种可能的实现方式中,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
结合第三方面的第二种可能的实现方式,在第三种可能的实现方式中,所述多个信噪比区间中每个信噪比区间的信噪比最大值与最小值的差值相等。
结合第三方面的第二种或第三种可能的实现方式,在第四种可能的实现方式中,所述多个信噪比区间为:[-6dB,0dB],[1dB,7dB],[8dB,14dB]和[15dB,21dB];或,
所述多个信噪比区间为:[-6dB,3dB],[3dB,12dB]和[12dB,21dB];或,
所述多个信噪比区间为:[-6dB,-3dB],[-3dB,0dB],[0dB,3dB],[3dB,6dB],[6dB,9dB],[10dB,13dB],[14dB,17dB]和[18dB,21dB]。
结合第三方面的第二种可能的实现方式在第五种可能的实现方式中,所述调制方式指示包括:四相相移键控QPSK、16进制正交幅度调制16QAM、64进制正交幅度调制64QAM和256进制正交幅度调制256QAM中任意一个的指示。
结合第三方面或第三方面任意一种可能的实现方式,在第六种可能的实现方式中,所述第一设备为基站或用户设备,或
所述第二设备为基站或用户设备。
第四方面,提供一种基站,包括:
接收单元,用于在非授权载波上向第一设备开始传输数据后的第N个时间资源上接收所述第一设备发送的信道状态信息CSI,其中N为小于4的正整数;
发送单元,用于根据所述接收单元接收的所述CSI向所述第一设备发送数据。
结合第四方面,在第一种可能的实现方式中,所述N为1或2。
结合第四方面,在第二种可能的实现方式中,
所述发送单元还用于,在目标信噪比区间内平均选取K个信噪比,K为正整数;并按照所述K个信噪比对应的K个调制与编码策略MCS向所述第一设备发送数据。
结合第四方面,在第三种可能的实现方式中,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
结合第四方面的第三种可能的实现方式,在第四种可能的实现方式中,所述CSI为信噪比区间指示;
所述发送单元具体用于,根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS向所述第一设备发送数据。
结合第四方面的第四种可能的实现方式,在第五种可能的实现方式中,所述发送单元具体用于,根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS连续M次向所述第一设备发送数据,其中M为正整数。
结合第四方面或第四方面任意一种可能的实现方式,在第六种可能的实现方式中,所述第一设备为基站或用户设备,或
所述第二设备为基站或用户设备。
第五方面,提供一种第一设备,包括:包括:发射机、接收机、处理器及总线,其中发射机、接收机、及所述处理器通过所述总线连接实现相互通信;
处理器,用于检测第二设备在非授权载波上传输的数据;
发射机,用于在所述处理器检测到在所述接收机开始接收所述第二设备在非授权载波上传输的数据后的第N个时间资源上向所述第二设备发送信道状态信息CSI。
结合第五方面,在第一种可能的实现方式中,所述N为1或2。
结合第五方面,在第二种可能的实现方式中,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
结合第五方面的第二种可能的实现方式,在第三种可能的实现方式中,所述多个信噪比区间中每个信噪比区间的信噪比最大值与最小值的差值相等。
结合第五方面的第二种或第三种可能的实现方式,在第四种可能的实现方式中,所述多个信噪比区间为:[-6dB,0dB],[1dB,7dB], [8dB,14dB]和[15dB,21dB];或,
所述多个信噪比区间为:[-6dB,3dB],[3dB,12dB]和[12dB,21dB];或,
所述多个信噪比区间为:[-6dB,-3dB],[-3dB,0dB],[0dB,3dB],[3dB,6dB],[6dB,9dB],[10dB,13dB],[14dB,17dB]和[18dB,21dB]。
结合第五方面的第二种可能的实现方式,在第五种可能的实现方式中,所述调制方式指示包括:四相相移键控QPSK、16进制正交幅度调制16QAM、64进制正交幅度调制64QAM和256进制正交幅度调制256QAM中任意一个的指示。
结合第五方面或第五方面任意一种可能的实现方式,在第六种可能的实现方式中,所述第一设备为基站或用户设备,或
所述第二设备为基站或用户设备。
第六方面,提供一种第二设备,包括:发射机、接收机及总线,其中发射机及接收机通过所述总线连接实现相互通信;
接收机,用于所述发射机在非授权载波上向第一设备开始传输数据后的第N个时间资源上接收所述第一设备发送的信道状态信息CSI,其中N为小于4的正整数;
发射机,用于根据所述接收机接收的所述CSI向所述第一设备发送数据。
结合第六方面,在第一种可能的实现方式中,所述N为1或2。
结合第六方面,在第二种可能的实现方式中,所述基站还包括与所述总线连接的处理器;
所述处理器,用于在目标信噪比区间内平均选取K个信噪比,K为正整数;
所述发射机,所述第二设备按照所述处理器选取的所述K个信噪比对应的K个调制与编码策略MCS向所述第一设备发送数据。
结合第六方面,在第三种可能的实现方式中,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指 示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
结合第六方面的第三种可能的实现方式,在第四种可能的实现方式中,所述CSI为信噪比区间指示;
所述发射机具体用于,根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS向所述第一设备发送数据。
结合第六方面第四种可能的实现方式,在第五种可能的实现方式中,所述发射机进一步的具体用于根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS连续M次向所述第一设备发送数据,其中M为正整数。
结合第六方面或第六方面任意一种可能的实现方式,在第六种可能的实现方式中,所述第一设备为基站或用户设备,或
所述第二设备为基站或用户设备。
在本发明的实施例中,通过第一设备检测第二设备在非授权载波上传输的数据;第一设备在开始接收第二设备在非授权载波上传输的数据后的第N个时间资源上向第二设备发送信道状态信息CSI;以便第二设备根据第一设备反馈的CSI向第二设备发送数据,避免了第一设备周期性的发送CSI的信令开销,同时能够实现CSI状态的实时反馈。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的实施例提供的一种无线通信系统的结构示意 图;
图2为本发明的实施例提供的一种数据传输方法的流程示意图;
图3为本发明的另一实施例提供的一种数据传输方法的流程示意图;
图4为本发明的实施例提供的一种数据传输方法中的帧结构示意图;
图5为本发明的另一实施例提供的一种数据传输方法中的帧结构示意图;
图6为本发明的又一实施例提供的一种数据传输方法的流程示意图;
图7为本发明的实施例提供的一种用户设备的结构示意图;
图8为本发明的实施例提供的一种基站的结构示意图;
图9为本发明的另一实施例提供的一种用户设备的结构示意图;
图10为本发明的另一实施例提供的一种基站的结构示意图。
具体实施方式
现在参照附图描述多个实施例,在下面的描述中,为便于解释,给出了大量具体细节,以便提供对一个或多个实施例的全面理解。然而,很明显,也可以不用这些具体细节来实现所述实施例。在其它例子中,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的实施例提供的用户设备(英文:User Equipment,简称:UE)可以是蜂窝电话、无绳电话、会话启动协议(英文:Session Initiation Protocol,简称:SIP)电话、无线本地环路(英文:Wireless Local Loop,简称:WLL)站、个人数字处理(英文:Personal Digital Assistant,简称:PDA)、具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它设备。
本发明的实施例提供的基站可以是指接入网中在空中接口上通过一个或多个扇区与用户设备通信的设备。基站可用于将收到的空中帧与网际协议(英文:Internet Protocol,简称:IP)分组进行相互转换,作为用户设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。基站可以是全球移动通信系统(英文:Global System for Mobile communication,简称:GSM)或码分多址(英文:Code Division Multiple Access,简称:CDMA)中的基站(英文:Base Transceiver Station,简称:BTS),也可以是宽带码分多址(英文:Wideband Code Division Multiple Access,简称WCDMA)中的基站(英文:Base Station,简称,BS),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(英文:evolutional Node B,简称:NodeB或eNB或e-NodeB),又如蜂窝无线通信系统中的宏基站和微基站,本发明实施例中并不限定。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。以下实施例中“第一”和“第二”仅用于区别,如第一设备和第二设备。
本发明的实施例用于如图1所示的无线通信系统,包括第一设备和第二设备,其中第一设备可以为基站或用户设备;第二设备可以为基站或用户设备,附图1中第二设备以LTE-U系统中的演进型基站(英文:Evolutional Node B,简称:eNB或eNodeB),第一设备为LTE-U系统中的演进型基站服务的UE为例进行说明,其中基站和用户设备进行信息交互。
具体的,本发明的实施例提供一种数据传输方法,参照图2所示,在第一设备侧包括以下步骤:
101、第一设备检测第二设备在非授权载波上传输的数据。
102、所述第一设备在开始接收所述第二设备在非授权载波上 传输的数据后的第N个时间资源上向所述第二设备发送信道状态信息CSI,其中N为小于4的正整数。
需要说明的是,第一设备为用户设备并且第二设备为基站时,由于基站在物理下行共享信道(英文:Physical Downlink Shared Channel,简称:PDSCH)进行数据的传输,在物理下行控制信道(英文:Physical Downlink Control Channel,简称:PDCCH)进行控制信令的传输,因此用户设备通过PDSCH检测并接收基站传输的数据;同理,第二设备为用户设备并且第一设备为基站时,基站通过物理上行共享信道(英文:Physical Uplink Shared Channel,简称:PUSCH)检测并接收用户设备传输的数据。
上述步骤102中时间资源可以为时隙或子帧等,示例性的以子帧为例,如果第一设备在第一子帧开始接收第二设备发送的数据;则在第一子帧的开始时刻之后第一设备向所述第二设备发送信道状态信息CSI,为了实现实时的CSI反馈,这里可以规定,第一设备最晚在向第二设备发送对接收的数据的反馈信息之前向所述第二设备发送信道状态信息CSI;例如,若第一设备在第二子帧发送对接收的数据的反馈信息,其中第二子帧的时间在第一子帧的时间之后;则步骤102具体为在第一子帧的开始时刻和第二子帧的结束时刻之间,所述第一设备向所述第二设备发送信道状态信息CSI。
其中,步骤102中CSI具体可以为信道质量指示符(英文:Channel quality indicator,简称:CQI)。
上述实施例中,通过第一设备检测第二设备在非授权载波上传输的数据;第一设备在开始接收第二设备在非授权载波上传输的数据后的第N个时间资源上向第二设备发送信道状态信息CSI;以便第二设备根据第一设备反馈的CSI向第二设备发送数据,避免了第一设备周期性的发送CSI的信令开销,同时能够实现CSI状态的实时反馈。
本发明的实施例提供一种数据传输方法,参照图3所示,在第二设备侧包括以下步骤:
201、第二设备在非授权载波上向第一设备开始传输数据后的第N个时间资源上接收所述第一设备发送的信道状态信息CSI,其中N为小于4的正整数。
其中,步骤201中的时间资源包括:时隙或子帧等。
202、所述第二设备根据所述CSI向所述第一设备发送数据。
步骤202具体为基站根据所述CSI在PDSCH向用户设备发送数据,或用户设备根据所述CSI在PUSCH向基站发送数据。
上述实施例中,第二设备在非授权载波上向第一设备开始传输数据后的第N个时间资源上接收所述第一设备发送的信道状态信息CSI;并根据所述CSI向所述第一设备发送数据,避免了第一设备周期性的发送CSI的信令开销,同时能够实现CSI状态的实时反馈。
示例性的,为了实现CSI状态的实时反馈,在上述步骤102和步骤201中,所述N为1或2。
参照图4所示,第二设备以LTE-U系统中的基站,第一设备为LTE-U的基站服务的UE为例进行说明。N=1时,LTE-U的基站在第一子帧子帧(英文:Subframe)0的PDSCH向UE传输数据,UE在子帧0收到数据后,在第二子帧子帧1的物理上行控制信道(英文:Physical Uplink Control Channel,简称:PUCCH)反馈CSI;或者,参照图5所示,N=2时,LTE-U的基站在第一子帧子帧(英文:Subframe)0的PDSCH向UE发送数据,UE在子帧0收到数据后,在第三子帧子帧2的物理上行控制信道(英文:Physical Uplink Control Channel,简称:PUCCH)反馈CSI。
可选的,第二设备发送的CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
进一步的,所述多个信噪比区间中每个信噪比区间的信噪比最 大值与最小值的差值相等。其中,所述多个信噪比区间为通过对目标信噪比区间进行划分得到,目标信噪比区间为第一设备和第二设备数据传输所需的信道信噪比范围。
例如,LTE-U系统数据传输的信道信噪比范围属于[-6dB,21dB]时,上述的多个信噪比区间为包括以下四个[-6dB,0dB],[1dB,7dB],[8dB,14dB]和[15dB,21dB];其中每个信噪比区间覆盖6dB,正好是4次重传的信噪比增益。这种情况下,UE需要使用2个比特,传输4个信噪比状态中(每个信噪比区间表示一个信噪比状态)的任一一个。每个信噪比状态正好覆盖4次重传的信噪比区域;
或者,LTE-U系统数据传输的信噪比范围属于[-6dB,21dB]时,上述的多个信噪比区间为包括以下三个[-6dB,3dB],[3dB,12dB]和[12dB,21dB];每个信噪比区间覆盖9dB,是8次重传的信噪比增益。这种情况下,UE需要使用2个比特,传输3个信噪比状态中(每个信噪比区间表示一个信噪比状态)的任一一个。每个信噪比状态正好覆盖8次重传的信噪比区域;
或者,
LTE-U系统数据传输的信道信噪比范围属于[-6dB,21dB]时,上述的多个信噪比区间为包括以下八个[-6dB,-3dB],[-3dB,0dB],[0dB,3dB],[3dB,6dB],[6dB,9dB],[10dB,13dB],[14dB,17dB]和[18dB,21dB];每个信噪比区间覆盖3dB,是2次重传的信噪比增益。这种情况下,UE需要使用3个比特,传输8个信噪比状态中(每个信噪比区间表示一个信噪比状态)的任一一个。每个信噪比状态正好覆盖2次重传的信噪比区域;
可选的,所述调制方式指示包括:四相相移键控QPSK(英文,Quadrature Phase Shift Keying,简称:QPSK)、16进制正交幅度调制16QAM(英文:16Quadrature Amplitude Modulation,简称:16QAM)、64进制正交幅度调制64QAM和256进制正交幅度调制256QAM中任意一个的指示。这种情况下,UE需要使用2个比特,传输3个信噪比状态中的任一一个,每个信噪比状态分别覆盖一种调制编码 方式。
其中,所述CSI为信噪比区间指示时,对于第二设备,步骤202具体为所述第二设备根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的调制与编码策略(英文:Modulation and Coding Scheme,简称:MCS)向所述第一设备发送数据。
其中,第二设备可以根据所述任一一个信噪比区间中信噪比最大的信噪比点对应的MCS采用应答的方式向第一设备进行数据重传,即当第二设备根据最大的信噪比点对应的MCS第一次发送数据至第一设备后,如果能够收到第一设备的应答消息并且该应答消息指示第一设备正确接收数据时,则第二设备不再进行第二次数据发送,如果第二设备没有收到第一设备的应答消息或者应答消息指示第一设备未能正确接收数据时,则第二设备根据最大的信噪比点或其他信噪比点(如,次大或第二大的信噪比点)对应的MCS向第一设备发起第二次数据发送,直至第一设备正确接收数据;在该重传过程中如果信道变化,或者干扰变化很快,那么过长的时延影响对时变信道的快速响应。
因此,步骤202还可以替换为:所述第二设备根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS连续M次向所述第一设备发送数据,其中M为正整数。其中,此时可以选取信噪比区间中信噪比最大的信噪比点对应的MCS对数据进行编码,例如,第一设备反馈信道状态信息为信噪比区间[0,6],那么第二设备可以连续传输信噪比6对应的MCS传输数据包,并且连续传输两次。从而实现数据传输对信道的快速匹配;这里M的具体数值不做限制,M的取值可根据信噪比区间的范围取值,具体的参照上述实施例M次重传至少可以包括:两次、四次或八次重传。
此外可选的,传输中断指示可以为oor,用于指示第一设备当 前处于oor状态(英文:out of range),其中OOR状态,指示第一设备受到非常严重的干扰,这时候第二设备可以中断数据传输,停止在所述非授权载波上向所述第一设备传输数据。
进一步可选的,对于第二设备,在第二设备根据所述CSI向所述第一设备发送数据之前,第二设备对第一设备进行的数据传输并没有CSI可以参考,因此本发明的实施例提供了如下步骤:
301、所述第二设备在目标信噪比区间内平均选取K个信噪比,K为正整数;
其中,该目标信噪比区间为第一设备和第二设备数据传输所需的信道信噪比范围,例如,在LTE-U系统该目标信噪比区间可以采用LTE-U系统的最大信噪比区间[-6dB,21dB]。
302、所述第二设备按照所述K个信噪比对应的K个调制与编码策略MCS向所述第一设备发送数据。
例如:第二设备通过4个子帧承载向第一设备传输的数据,则K=4,此时可以取SINR(英文:Signal to Interference plus Noise Ratio,信号加干扰噪声比,简称信噪比)=0dB,SINR=6dB,SINR=12dB和SINR=18dB的四个信噪比点,并用这四个信噪比点对应的4个MCS依次对4个子帧承载的数据进行编码,当然也可以取其他信噪比点,而平均选取4个信噪比时信噪比成等差数列分布,这样保证了第二设备在没有收到第一设备反馈的CSI的数据传输性能。
参照图7所示,本发明的实施例提供一种第一设备70,用于实施上述实施例中第一设备执行的数据传输方法,包括:检测单元71、发送单元72;
检测单元71,用于检测第二设备在非授权载波上传输的数据;
发送单元72,用于在所述检测单元71检测到开始接收所述第二设备在非授权载波上传输的数据后的第N个时间资源上向所述第二设备发送信道状态信息CSI,其中N为小于4的正整数。
上述实施例中,通过第一设备检测第二设备在非授权载波上传输的数据;第一设备在开始接收第二设备在非授权载波上传输的数 据后的第N个时间资源上向第二设备发送信道状态信息CSI;以便第二设备根据第一设备反馈的CSI向第二设备发送数据,避免了第一设备周期性的发送CSI的信令开销,同时能够实现CSI状态的实时反馈。
可选的,所述N为1或2。
可选的,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
可选的,所述多个信噪比区间中每个信噪比区间的信噪比最大值与最小值的差值相等。
进一步的,所述多个信噪比区间为:[-6dB,0dB],[1dB,7dB],[8dB,14dB]和[15dB,21dB];或,
所述多个信噪比区间为:[-6dB,3dB],[3dB,12dB]和[12dB,21dB];或,
所述多个信噪比区间为:[-6dB,-3dB],[-3dB,0dB],[0dB,3dB],[3dB,6dB],[6dB,9dB],[10dB,13dB],[14dB,17dB]和[18dB,21dB]。
或者,可选的,所述调制方式指示包括:四相相移键控QPSK、16进制正交幅度调制16QAM、64进制正交幅度调制64QAM和256进制正交幅度调制256QAM中任意一个的指示。
进一步的,上述的第一设备为基站或用户设备,或上述的第二设备为基站或用户设备。
参照图8所示,本发明的实施例提供一种第二设备80,用于实施上述实施例基站所执行的数据传输方法,具体包括:接收单元81、发送单元82;
接收单元81,用于在非授权载波上向第一设备开始传输数据后的第N个时间资源上接收所述第一设备发送的信道状态信息CSI, 其中N为小于4的正整数;
发送单元82,用于根据所述接收单元71接收的所述CSI向所述第一设备发送数据。
上述实施例中,第二设备在非授权载波上向第一设备开始传输数据后的第N个时间资源上接收所述第一设备发送的信道状态信息CSI;并根据所述CSI向所述第一设备发送数据,避免了第一设备周期性的发送CSI的信令开销,同时能够实现CSI状态的实时反馈。
可选的,所述N为1或2。
可选的,所述发送单元82还用于,在目标信噪比区间内平均选取K个信噪比,K为正整数;并按照所述K个信噪比对应的K个调制与编码策略MCS向所述第一设备发送数据。
这样保证了第二设备在没有收到第一设备反馈的CSI时的数据传输性能。
可选的,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
所述CSI为信噪比区间指示时,所述发送单元82具体用于,根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS向所述第一设备发送数据。
所述发送单元82进一步的具体用于,根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS连续M次向所述第一设备发送数据,其中M为正整数。
这里第二设备通过连续M次重传向第一设备发送数据,可以实现数据传输对信道的快速匹配。
进一步的,所述第一设备为基站或用户设备,或所述第二设备为基站或用户设备。
参照图9所示,本发明的实施例提供一种第一设备100,用于 实施上述实施例中第一设备执行的数据传输方法,包括:发射机1001、接收机1002、处理器1003及总线1004,其中发射机1001、接收机1002、及所述处理器1003通过所述总线1004连接实现相互通信;
该总线1004可以是工业标准体系结构(Industry Standard Architecture,简称为ISA)总线、外部设备互连(Peripheral Component,简称为PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,简称为EISA)总线等,此处并不限定。该总线1004可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中:
处理器1003可能是一个中央处理器(Central Processing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
图9中还示出了与总线1004连接的存储器1005用于存储数据或可执行程序代码,其中程序代码包括计算机操作指令,具体可以为:操作系统、应用程序等。存储器1005可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
处理器1003用于通过执行存储器1005中的程序代码实现上述实施例中各个单元所执行的传输数据的方法;具体包括:
处理器1003,用于检测第二设备在非授权载波上传输的数据;
发射机1001,用于在所述处理器1003检测到在所述接收机1002开始接收所述第二设备在非授权载波上传输的数据后的第N个时间资源上向所述第二设备发送信道状态信息CSI。
上述实施例中,通过第一设备检测第二设备在非授权载波上传输的数据;第一设备在开始接收第二设备在非授权载波上传输的数据后的第N个时间资源上向第二设备发送信道状态信息CSI;以便第二设备根据第一设备反馈的CSI向第二设备发送数据,避免了第 一设备周期性的发送CSI的信令开销,同时能够实现CSI状态的实时反馈。
可选的,所述N为1或2。
可选的,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间.进一步的,所述多个信噪比区间中每个信噪比区间的信噪比最大值与最小值的差值相等。
可选的,所述多个信噪比区间为:[-6dB,0dB],[1dB,7dB],[8dB,14dB]和[15dB,21dB];或,
所述多个信噪比区间为:[-6dB,3dB],[3dB,12dB]和[12dB,21dB];或,
所述多个信噪比区间为:[-6dB,-3dB],[-3dB,0dB],[0dB,3dB],[3dB,6dB],[6dB,9dB],[10dB,13dB],[14dB,17dB]和[18dB,21dB]。
或者,可选的,所述调制方式指示包括:四相相移键控QPSK、16进制正交幅度调制16QAM、64进制正交幅度调制64QAM和256进制正交幅度调制256QAM中任意一个的指示。
进一步的,所述第一设备为基站或用户设备,或
所述第二设备为基站或用户设备。
参照图10所示,本发明的实施例提供一种第二设备,用于实施上述实施例第二设备所执行的数据传输方法,包括:发射机1101、接收机1102及总线1103,其中发射机1101及接收机1102通过所述总线1103连接实现相互通信;
该总线1103可以是工业标准体系结构(Industry Standard Architecture,简称为ISA)总线、外部设备互连(Peripheral Component,简称为PCI)总线或扩展工业标准体系结构(Extended Industry Standard  Architecture,简称为EISA)总线等,此处并不限定。该总线1103可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中:
接收机1102,用于所述发射机1101在非授权载波上向第一设备开始传输数据后的第N个时间资源上接收所述第一设备发送的信道状态信息CSI,其中N为小于4的正整数;
发射机1101,用于根据所述接收机1102接收的所述CSI向所述第一设备发送数据。
上述实施例中,第二设备在非授权载波上向第一设备开始传输数据后的第N个时间资源上接收所述第一设备发送的信道状态信息CSI;并根据所述CSI向所述第一设备发送数据,避免了第一设备周期性的发送CSI的信令开销,同时能够实现CSI状态的实时反馈。
可选的,所述N为1或2。
参照图10所示,基站还包括与所述总线1103连接的处理器1104;
处理器1104可能是一个中央处理器(Central Processing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
图10中还示出了与总线1103连接的存储器1105用于存储数据或可执行程序代码,其中程序代码包括计算机操作指令,具体可以为:操作系统、应用程序等。存储器1005可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
所述处理器1104,用于在目标信噪比区间内平均选取K个信噪比,K为正整数;
所述发射机1101,所述第二设备按照所述处理器1104选取的所述K个信噪比对应的K个调制与编码策略MCS向所述第一设备发送数据。
这样保证了第二设备在没有收到第一设备反馈的CSI的数据传 输性能。
可选的,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
所述CSI为信噪比区间指示时,所述发射机1101具体用于,根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS向所述第一设备发送数据。
或者,所述发射机1101进一步的具体用于根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS连续M次向所述第一设备发送数据,其中M为正整数。
这里第二设备通过连续M次重传向第一设备发送数据,可以实现数据传输对信道的快速匹配。
进一步的,所述第一设备为基站或用户设备,或
所述第二设备为基站或用户设备。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (42)

  1. 一种数据传输方法,其特征在于,包括:
    第一设备检测第二设备在非授权载波上传输的数据;
    所述第一设备在开始接收所述第二设备在非授权载波上传输的数据后的第N个时间资源上向所述第二设备发送信道状态信息CSI,其中N为小于4的正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
  3. 根据权利要求2所述的方法,其特征在于,所述多个信噪比区间中每个信噪比区间的信噪比最大值与最小值的差值相等。
  4. 根据权利要求2所述的方法,其特征在于,
    所述多个信噪比区间为:[-6dB,0dB],[1dB,7dB],[8dB,14dB]和[15dB,21dB];或,
    所述多个信噪比区间为:[-6dB,3dB],[3dB,12dB]和[12dB,21dB];或,
    所述多个信噪比区间为:[-6dB,-3dB],[-3dB,0dB],[0dB,3dB],[3dB,6dB],[6dB,9dB],[10dB,13dB],[14dB,17dB]和[18dB,21dB]。
  5. 根据权利要求2所述的方法,其特征在于,所述调制方式指示包括:四相相移键控QPSK、16进制正交幅度调制16QAM、64进制正交幅度调制64QAM和256进制正交幅度调制256QAM中任意一个的指示。
  6. 根据权利要求1-5中任意一项所述的方法,其特征在于,所述N为1或2。
  7. 根据权利要求1-6中任意一项所述的方法,其特征在于,
    所述第一设备为基站或用户设备,或
    所述第二设备为基站或用户设备。
  8. 一种数据传输方法,其特征在于,包括:
    第二设备在非授权载波上向第一设备开始传输数据后的第N个时间资源上接收所述第一设备发送的信道状态信息CSI,其中N为小于4的正整数;
    所述第二设备根据所述CSI向所述第一设备发送数据。
  9. 根据权利要求8所述的方法,其特征在于,所述第二设备根据所述CSI向所述第一设备发送数据之前,还包括:
    所述第二设备在目标信噪比区间内平均选取K个信噪比,K为正整数;
    所述第二设备按照所述K个信噪比对应的K个调制与编码策略MCS向所述第一设备发送数据。
  10. 根据权利要求8所述的方法,其特征在于,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
  11. 根据权利要求10所述的方法,其特征在于,所述CSI为信噪比区间指示;
    所述第二设备根据所述CSI向所述第一设备发送数据,包括:所述第二设备根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS向所述第一设备发送数据。
  12. 根据权利要求11所述的方法,其特征在于,所述第二设备根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS向所述第一设备发送数据包括:
    所述第二设备根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS连续M次向所述第一 设备发送数据,其中M为正整数。
  13. 根据权利要求8-12中任意一项所述的方法,其特征在于,所述N为1或2。
  14. 根据权利要求8-13中任意一项所述的方法,其特征在于,
    所述第一设备为基站或用户设备,或
    所述第二设备为基站或用户设备。
  15. 一种第一设备,其特征在于,包括:
    检测单元,用于检测第二设备在非授权载波上传输的数据;
    发送单元,用于在所述检测单元检测到开始接收所述第二设备在非授权载波上传输的数据后的第N个时间资源上向所述第二设备发送信道状态信息CSI,其中N为小于4的正整数。
  16. 根据权利要求15所述的第一设备,其特征在于,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
  17. 根据权利要求16所述的第一设备,其特征在于,所述多个信噪比区间中每个信噪比区间的信噪比最大值与最小值的差值相等。
  18. 根据权利要求16所述的第一设备,其特征在于,
    所述多个信噪比区间为:[-6dB,0dB],[1dB,7dB],[8dB,14dB]和[15dB,21dB];或,
    所述多个信噪比区间为:[-6dB,3dB],[3dB,12dB]和[12dB,21dB];或,
    所述多个信噪比区间为:[-6dB,-3dB],[-3dB,0dB],[0dB,3dB],[3dB,6dB],[6dB,9dB],[10dB,13dB],[14dB,17dB]和[18dB,21dB]。
  19. 根据权利要求16所述的第一设备,其特征在于,所述调制方式指示包括:四相相移键控QPSK、16进制正交幅度调制16QAM、 64进制正交幅度调制64QAM和256进制正交幅度调制256QAM中任意一个的指示。
  20. 根据权利要求15-19中任意一项所述的第一设备,其特征在于,所述N为1或2。
  21. 根据权利要求15-20中任意一项所述的第一设备,其特征在于,
    所述第一设备为基站或用户设备,或
    所述第二设备为基站或用户设备。
  22. 一种第二设备,其特征在于,包括:
    接收单元,用于在非授权载波上向第一设备开始传输数据后的第N个时间资源上接收所述第一设备发送的信道状态信息CSI,其中N为小于4的正整数;
    发送单元,用于根据所述接收单元接收的所述CSI向所述第一设备发送数据。
  23. 根据权利要求22所述的第二设备,其特征在于,
    所述发送单元还用于,在目标信噪比区间内平均选取K个信噪比,K为正整数;并按照所述K个信噪比对应的K个调制与编码策略MCS向所述第一设备发送数据。
  24. 根据权利要求22所述的第二设备,其特征在于,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
  25. 根据权利要求24所述的第二设备,其特征在于,所述CSI为信噪比区间指示;
    所述发送单元具体用于,根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS向所述第一设备发送数据。
  26. 根据权利要求25所述的第二设备,其特征在于,
    所述发送单元具体用于,根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS连续M次向所述第一设备发送数据,其中M为正整数。
  27. 根据权利要求22-26中任意一项所述的第二设备,其特征在于,所述N为1或2。
  28. 根据权利要求22-27中任意一项所述的第二设备,其特征在于,
    所述第一设备为基站或用户设备,或
    所述第二设备为基站或用户设备。
  29. 一种第一设备,其特征在于,包括:发射机、接收机、处理器及总线,其中发射机、接收机、及所述处理器通过所述总线连接实现相互通信;
    处理器,用于检测第二设备在非授权载波上传输的数据;
    发射机,用于在所述处理器检测到在所述接收机开始接收所述第二设备在非授权载波上传输的数据后的第N个时间资源上向所述第二设备发送信道状态信息CSI,其中N为小于4的正整数。
  30. 根据权利要求29所述的第一设备,其特征在于,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
  31. 根据权利要求30所述的第一设备,其特征在于,所述多个信噪比区间中每个信噪比区间的信噪比最大值与最小值的差值相等。
  32. 根据权利要求30所述的第一设备,其特征在于,所述多个信噪比区间为:[-6dB,0dB],[1dB,7dB],[8dB,14dB]和[15dB,21dB];或,
    所述多个信噪比区间为:[-6dB,3dB],[3dB,12dB]和[12dB, 21dB];或,
    所述多个信噪比区间为:[-6dB,-3dB],[-3dB,0dB],[0dB,3dB],[3dB,6dB],[6dB,9dB],[10dB,13dB],[14dB,17dB]和[18dB,21dB]。
  33. 根据权利要求30所述的第一设备,其特征在于,所述调制方式指示包括:四相相移键控QPSK、16进制正交幅度调制16QAM、64进制正交幅度调制64QAM和256进制正交幅度调制256QAM中任意一个的指示。
  34. 根据权利要求29-33中任意一项所述的第一设备,其特征在于,所述N为1或2。
  35. 根据权利要求29-34中任意一项所述的第一设备,其特征在于,
    所述第一设备为基站或用户设备,或
    所述第二设备为基站或用户设备。
  36. 一种第二设备,其特征在于,包括:发射机、接收机及总线,其中发射机及接收机通过所述总线连接实现相互通信;
    接收机,用于所述发射机在非授权载波上向第一设备开始传输数据后的第N个时间资源上接收所述第一设备发送的信道状态信息CSI,其中N为小于4的正整数;
    发射机,用于根据所述接收机接收的所述CSI向所述第一设备发送数据。
  37. 根据权利要求36所述的第二设备,其特征在于,所述基站还包括与所述总线连接的处理器;
    所述处理器,用于在目标信噪比区间内平均选取K个信噪比,K为正整数;
    所述发射机具体用于,按照所述处理器选取的所述K个信噪比对应的K个调制与编码策略MCS向所述第一设备发送数据。
  38. 根据权利要求36所述的第二设备,其特征在于,所述CSI包括:传输中断指示、调制方式指示或信噪比区间指示,所述传输中 断指示用于指示所述第二设备停止在所述非授权载波上向所述第一设备传输数据,所述调制方式指示用于指示所述第二设备向所述第一设备传输数据所使用的调制方式,所述信噪比区间指示用于指示多个信噪比区间中的一个信噪比区间。
  39. 根据权利要求38所述的第二设备,其特征在于,所述CSI为信噪比区间指示;
    所述发射机具体用于,根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS向所述第一设备发送数据。
  40. 根据权利要求39所述的第二设备,其特征在于,
    所述发射机具体用于,根据所述信噪比区间指示所指示的信噪比区间,选取所述信噪比区间中最大的信噪比对应的MCS连续M次向所述第一设备发送数据,其中M为正整数。
  41. 根据权利要求36-40中任意一项所述的第二设备,其特征在于,所述N为1或2。
  42. 根据权利要求36-41中任意一项所述的第二设备,其特征在于,
    所述第一设备为基站或用户设备,或
    所述第二设备为基站或用户设备。
PCT/CN2014/089202 2014-10-22 2014-10-22 一种数据传输方法及设备 WO2016061770A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/521,232 US10440583B2 (en) 2014-10-22 2014-10-22 Data transmission method and device
JP2017522132A JP2017531968A (ja) 2014-10-22 2014-10-22 データ伝送方法および装置
PCT/CN2014/089202 WO2016061770A1 (zh) 2014-10-22 2014-10-22 一种数据传输方法及设备
EP14904482.8A EP3197079B1 (en) 2014-10-22 2014-10-22 Data transmission method and device
KR1020177013281A KR101922040B1 (ko) 2014-10-22 2014-10-22 데이터 전송 방법 및 장치
CN201480080940.4A CN106576015B (zh) 2014-10-22 2014-10-22 一种数据传输方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/089202 WO2016061770A1 (zh) 2014-10-22 2014-10-22 一种数据传输方法及设备

Publications (1)

Publication Number Publication Date
WO2016061770A1 true WO2016061770A1 (zh) 2016-04-28

Family

ID=55760061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089202 WO2016061770A1 (zh) 2014-10-22 2014-10-22 一种数据传输方法及设备

Country Status (6)

Country Link
US (1) US10440583B2 (zh)
EP (1) EP3197079B1 (zh)
JP (1) JP2017531968A (zh)
KR (1) KR101922040B1 (zh)
CN (1) CN106576015B (zh)
WO (1) WO2016061770A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080268863A1 (en) * 2007-04-30 2008-10-30 Klaus Pedersen Method and Apparatus for Reporting Channel Quality
US20080310360A1 (en) * 2007-06-13 2008-12-18 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving channel quality indicator in communication system
CN102595596A (zh) * 2011-01-10 2012-07-18 华为技术有限公司 一种csi的传输方法和装置
CN103051413A (zh) * 2011-10-17 2013-04-17 华为技术有限公司 实现信道质量指示cqi上报的方法及装置
CN103944668A (zh) * 2013-01-18 2014-07-23 北京三星通信技术研究有限公司 一种处理灵活子帧的上下行传输的方法和设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5069147B2 (ja) 2008-02-29 2012-11-07 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、基地局装置、ユーザ装置及び方法
US8948085B2 (en) * 2010-03-17 2015-02-03 Qualcomm Incorporated Methods and apparatus for best-effort radio backhaul among cells on unlicensed or shared spectrum
GB201007012D0 (en) * 2010-04-27 2010-06-09 Vodafone Ip Licensing Ltd Improving data rate in mobile communication network
WO2013006006A2 (ko) 2011-07-07 2013-01-10 엘지전자 주식회사 무선통신시스템에서 신호 전송 방법 및 장치
CN103427938B (zh) * 2012-05-18 2018-11-27 电信科学技术研究院 配置信道测量和dl csi反馈的方法、系统及设备
JP5918680B2 (ja) * 2012-10-03 2016-05-18 株式会社Nttドコモ 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
US10104565B2 (en) 2013-12-13 2018-10-16 Qualcomm Incorporated CSI feedback in LTE/LTE-advanced systems with unlicensed spectrum
US9681325B2 (en) * 2013-12-19 2017-06-13 Qualcomm Incorporated Channel and interference measurement in LTE/LTE-A networks including unlicensed spectrum
US9877203B2 (en) * 2015-05-07 2018-01-23 Qualcomm Incorporated Channel feedback reporting for shared frequency spectrum
WO2017126940A1 (en) * 2016-01-21 2017-07-27 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink control information in carrier aggregation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080268863A1 (en) * 2007-04-30 2008-10-30 Klaus Pedersen Method and Apparatus for Reporting Channel Quality
US20080310360A1 (en) * 2007-06-13 2008-12-18 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving channel quality indicator in communication system
CN102595596A (zh) * 2011-01-10 2012-07-18 华为技术有限公司 一种csi的传输方法和装置
CN103051413A (zh) * 2011-10-17 2013-04-17 华为技术有限公司 实现信道质量指示cqi上报的方法及装置
CN103944668A (zh) * 2013-01-18 2014-07-23 北京三星通信技术研究有限公司 一种处理灵活子帧的上下行传输的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3197079A4 *

Also Published As

Publication number Publication date
EP3197079A1 (en) 2017-07-26
EP3197079A4 (en) 2017-10-11
CN106576015B (zh) 2019-11-29
EP3197079B1 (en) 2020-02-26
KR101922040B1 (ko) 2018-11-26
KR20170072269A (ko) 2017-06-26
US20170318471A1 (en) 2017-11-02
JP2017531968A (ja) 2017-10-26
US10440583B2 (en) 2019-10-08
CN106576015A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6913129B2 (ja) 無線通信システムにおけるpdsch(物理下りリンク共有チャネル)受信時の電力節約方法のための方法および装置
CN113170348B (zh) 在支持非连续接收(drx)操作的无线通信系统中的终端和基站的方法和装置
US10536905B2 (en) Uplink transmissions for dual connectivity
KR101136247B1 (ko) Cdma 무선 통신 시스템들
JP6267723B2 (ja) ネットワーク支援型d2dのための物理チャネル設計
JP6584958B2 (ja) 端末装置、基地局装置および通信方法
CN111971924A (zh) 通信系统中控制信息的信令
WO2016049890A1 (zh) 数据传输方法和设备
TWI739996B (zh) 通信方法及終端
RU2701044C1 (ru) Узел радиосети, беспроводное устройство и способы, выполняемые в них
JP2008530837A (ja) 通信ネットワークにおける低い信頼度のスケジューリング許可を処理する方法と装置
WO2018196787A1 (zh) 一种信道状态的指示方法、装置及网络设备
WO2015035910A1 (zh) 上行控制信息的传输方法、用户设备及网络侧设备
US20160204838A1 (en) Signaling method for coordinated multiple point transmission and reception, and apparatus therefor
WO2018059264A1 (zh) 一种无线通信系统中调度传输的方法及设备
WO2013056527A1 (zh) 控制信令发送方法及系统
CN107409422A (zh) 无线通信网络中的设备、节点和方法
TWI741018B (zh) 發送或接收通道狀態資訊的方法和裝置
CN109756935B (zh) 一种调整工作带宽的方法和装置
WO2016061770A1 (zh) 一种数据传输方法及设备
WO2020143743A1 (zh) 接收数据的方法和装置
WO2022215350A1 (ja) 通信装置、基地局装置、通信方法、及び、通信プログラム
JP2018078627A (ja) ネットワーク支援型d2dのための物理チャネル設計
WO2016172822A1 (zh) 共享频谱上的数据传输方法、设备和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017522132

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014904482

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15521232

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177013281

Country of ref document: KR

Kind code of ref document: A