WO2016059951A1 - Direct diode laser processing device and sheet metal processing method using same - Google Patents

Direct diode laser processing device and sheet metal processing method using same Download PDF

Info

Publication number
WO2016059951A1
WO2016059951A1 PCT/JP2015/076929 JP2015076929W WO2016059951A1 WO 2016059951 A1 WO2016059951 A1 WO 2016059951A1 JP 2015076929 W JP2015076929 W JP 2015076929W WO 2016059951 A1 WO2016059951 A1 WO 2016059951A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
laser light
lens
processing apparatus
collimator lens
Prior art date
Application number
PCT/JP2015/076929
Other languages
French (fr)
Japanese (ja)
Inventor
小林 哲也
伊藤 亮平
Original Assignee
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダホールディングス filed Critical 株式会社アマダホールディングス
Publication of WO2016059951A1 publication Critical patent/WO2016059951A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the present invention relates to a direct diode laser processing apparatus and a sheet metal processing method using the same.
  • a laser processing apparatus for processing a sheet metal an apparatus using a carbon dioxide gas (CO 2 ) laser oscillator, a YAG laser oscillator, or a fiber laser oscillator as a laser light source is known.
  • CO 2 carbon dioxide gas
  • the fiber laser oscillator has advantages such as better light quality and extremely high oscillation efficiency than the YAG laser oscillator. For this reason, a fiber laser processing apparatus using a fiber laser oscillator is used for industrial purposes, particularly for sheet metal processing (cutting or welding).
  • DDL processing apparatus using a direct diode laser (DDL: Direct Diode Laser) oscillator as a laser light source
  • the DDL processing apparatus superimposes multiple-wavelength laser light using a plurality of laser diodes (LD) and transmits the laser light to the processing head using a transmission fiber. Then, the laser light emitted from the end face of the transmission fiber is condensed and irradiated on the workpiece by a collimator lens and a condenser lens.
  • LD laser diodes
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-44000 (Patent Document 1), multi-wavelength laser light is condensed by a condensing lens that does not have an achromatic function, and is on the same optical axis due to the influence of chromatic aberration. By focusing on different positions and irradiating the workpiece, and repeatedly turning on the laser light in the order of shorter wavelengths, high-performance processing is possible even for thick materials.
  • Patent Document 1 chromatic aberration generated when a synthetic quartz condenser lens having no achromatic function is used, but the interval between multiple focal points due to chromatic aberration is not positively increased.
  • the present invention has been made in view of the above problems, and according to the present invention, it is possible to positively increase the interval between multiple focal points caused by chromatic aberration when condensing multi-wavelength laser light. It is possible to provide a direct diode laser processing apparatus capable of forming a beam suitable for plate cutting and a metal plate processing method using the same.
  • a laser oscillator that oscillates multi-wavelength laser light
  • a transmission fiber that transmits multi-wavelength laser light oscillated by the laser oscillator, and a multi-wavelength laser light transmitted by the transmission fiber
  • a collimator lens for converting the parallel light into a parallel light
  • a condensing lens for condensing the multi-wavelength laser light converted into the parallel light by the collimator lens and irradiating the workpiece with at least one of the collimator lens and the condensing lens.
  • Direct diode laser processing apparatus that forms a plurality of condensing points at different positions on the optical axis and disperses the intervals between the plurality of condensing points by using a material having a wavelength dispersion larger than quartz for any one of them. And the processing method of a metal plate using the same is provided.
  • FIG. 2A is a front view showing an example of a laser oscillator according to an embodiment of the present invention.
  • FIG. 2B is a side view showing an example of the laser oscillator according to the embodiment of the present invention.
  • It is a schematic diagram showing an example of a laser oscillator concerning one embodiment of the present invention. It is a graph showing an example of the oscillation wavelength of the laser oscillator which concerns on one Embodiment of this invention.
  • It is a simulation result showing the change of the focal position for every material of a lens.
  • It is a simulation result showing the change of the focal position for every combination of the material of a lens.
  • a DDL processing apparatus includes a laser oscillator 11 that oscillates multi-wavelength laser light LB, and a transmission fiber (process) that transmits the laser light LB oscillated by the laser oscillator 11.
  • Fiber) 12 and a laser beam machine 13 for condensing the laser beam LB transmitted by the transmission fiber 12 to a high energy density and irradiating the workpiece (workpiece) W.
  • the laser processing machine 13 includes a collimator unit 14 that converts the laser light LB emitted from the transmission fiber 12 into substantially parallel light by the collimator lens 15, and the laser light LB converted to substantially parallel light in the X-axis and Y-axis directions.
  • a bending mirror 16 that reflects downward in the Z-axis direction perpendicular to the laser beam, and a processing head 17 that condenses the laser beam LB reflected by the bending mirror 16 with a condenser lens 18.
  • a lens driving unit that drives the collimator lens 15 in a direction parallel to the optical axis (X-axis direction) is installed in the collimator unit 14.
  • the DDL processing apparatus further includes a control unit that controls the lens driving unit.
  • the laser processing machine 13 further includes a processing table 21 on which the workpiece W is placed, a portal X-axis carriage 22 that moves in the X-axis direction on the processing table 21, and an X-axis direction on the X-axis carriage 22. And a Y-axis carriage 23 that moves in the Y-axis direction perpendicular to the axis.
  • the collimator lens 15 in the collimator unit 14, the bend mirror 16, and the condensing lens 18 in the processing head 17 are fixed to the Y-axis carriage 23 in a state where the optical axis has been adjusted in advance. Move in the axial direction. It is also possible to provide a Z-axis carriage that can move in the vertical direction with respect to the Y-axis carriage 23 and to provide the condenser lens 18 on the Z-axis carriage.
  • the DDL processing apparatus irradiates the workpiece W with the laser beam LB having the smallest condensing diameter (minimum condensing diameter) condensed by the condensing lens 18 and coaxially assisting gas.
  • the X-axis carriage 22 and the Y-axis carriage 23 are moved while spraying and removing the melt. Thereby, the DDL processing apparatus can cut the workpiece W.
  • the workpiece W include various materials such as stainless steel, mild steel, and aluminum.
  • the plate thickness of the workpiece W is, for example, about 0.1 mm to 50 mm.
  • the laser oscillator 11 will be described with reference to FIGS. 2A and 2B, the laser oscillator 11 includes a housing 60, the DDL module 10 housed in the housing 60 and connected to the transmission fiber 12, and the housing 60.
  • a power supply unit 61 that is housed in the DDL module 10 and supplies power to the DDL module 10
  • a control module 62 that is housed in the housing 60 and controls the output of the DDL module 10, and the like are provided.
  • An air conditioner 63 that adjusts the temperature and humidity in the housing 60 is installed outside the housing 60.
  • the DDL module 10 superimposes laser light having multiple wavelengths ( ⁇ 1 , ⁇ 2 , ⁇ 3 ,..., ⁇ n (hereinafter referred to as ⁇ i ⁇ ). And output.
  • the DDL module 10 includes a plurality of laser diodes (hereinafter referred to as “LD”) 3 1 , 3 2 , 3 3 ,...
  • LD 3 1 , 3 2 , 3 3 , ⁇ ⁇ ⁇ 3 n to the fiber 4 1, 4 2, 4 3, is connected via a ⁇ ⁇ ⁇ 4 n, the spectrum of performing spectral beam combining (spectral beam combining) the laser beam of multiple wavelengths ⁇ lambda i ⁇
  • a beam combining unit 50 and a condensing lens 54 that condenses the laser light from the spectral beam combining unit 50 and enters the transmission fiber 12 are provided.
  • Various semiconductor lasers can be used for the plurality of LD3 1 , 3 2 , 3 3 ,... 3 n (hereinafter referred to as a plurality of LD3).
  • the combination of the type and number of the plurality of LDs 3 is not particularly limited, and can be appropriately selected according to the purpose of sheet metal processing.
  • the wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 ,..., ⁇ n of the plurality of LDs 3 are selected to be, for example, less than 1000 nm, selected from a range of 800 nm to 1000 nm, or selected from a range of 910 nm to 950 nm. be able to.
  • the laser light of multiple wavelengths ⁇ i ⁇ is controlled by group (block) management for each wavelength band, for example.
  • the output can be variably adjusted individually for each wavelength band.
  • the output of the entire wavelength band can be adjusted so that the absorptance is constant.
  • a plurality of LDs 3 are simultaneously operated, and an appropriate assist gas such as oxygen or nitrogen is blown near the focal position.
  • an appropriate assist gas such as oxygen or nitrogen
  • the laser beams of the respective wavelengths from the LD 3 1 , 3 2 , 3 3 ,... 3 n cooperate with each other and also with the assist gas such as oxygen to melt the workpiece at a high speed.
  • the molten work material is blown off by the assist gas, and the work is cut at a high speed.
  • the spectral beam combining unit 50 includes a fixing unit 51 that bundles and fixes the emission ends of the fibers 4 1 , 4 2 , 4 3 ,... 4 n to form a fiber array 4, and fibers 4 1 , 4 2 , 4 3. ,... 4 n Collimator lens 52 that collimates laser light from n, diffraction grating 53 that diffracts multi-wavelength ⁇ i ⁇ laser light and matches the optical axis, and a plurality of LDs 3
  • a partial reflection coupler 55 constituting a resonator is provided with a reflection surface provided at the end. Note that the position of the partial reflection coupler 55 shown in FIG. 3 is an example, and is not particularly limited thereto.
  • the laser oscillator 11 oscillates laser light having multiple wavelengths (five wavelengths ⁇ 1 to ⁇ 5 in FIG. 4). For this reason, when the laser beam from the laser oscillator 11 is condensed by the lens, chromatic aberration occurs. Therefore, in the present embodiment, in order to positively use chromatic aberration, at least one of the materials of the collimator lens 15 and the condenser lens 18 has a wavelength dispersion larger than that of quartz (in other words, multifocusing). Use materials that are highly effective. As a material having a larger wavelength dispersion than quartz, zinc sulfide (ZnS), zinc selenide (ZnSe), or the like can be used.
  • ZnS zinc sulfide
  • ZnSe zinc selenide
  • a material of at least one of the collimator lens 15 and the condenser lens 18 a material having a larger wavelength dispersion than quartz is used, so that the influence of chromatic aberration becomes more conspicuous and the interval between multiple focal points on the optical axis is further increased. Multiple focal points can be distributed.
  • the materials of the collimator lens 15 and the condenser lens 18 may be the same material or different materials. If one of the collimator lens and the condensing lens 18 is ZnS or ZnSe, multiple focusing is possible compared to the case where both the collimator lens and the condensing lens 18 are quartz.
  • the distance between the exit end of the transmission fiber 12 and the collimator lens 15 is d0
  • the distance between the collimator lens 15 and the condensing lens 18 is d1
  • the distance from P is d2.
  • d2 at wavelengths of 800 nm, 810 nm, 820 nm, 830 nm, and 840 nm are 134.2 mm, 135.2 mm, 136.1 mm, 137.0 mm, and 137.8 mm, respectively.
  • Multiple focal spots with an interval of 9 mm are formed.
  • d2 at wavelengths of 960 nm, 970 nm, 980 nm, 990 nm, and 1000 nm are 130.4 mm, 131.4 mm, 132.3 mm, 133.2 mm, and 134.0 mm, respectively.
  • Multiple focal spots with an interval of 9 mm are formed.
  • the laser oscillator 11 light of five wavelengths of 910 nm, 920 nm, 930 nm, 940 nm, and 950 nm is output and coupled in a wavelength range of 910 nm to 950 nm. Note that a continuous wave can be used as the laser light.
  • d2 of wavelengths 910 nm, 920 nm, 930 nm, 940 nm, and 950 nm are 131.9 mm, 132.9 mm, 133.8 mm, 134.7 mm, and 135, respectively.
  • 0.5 mm, and multiple focal points with an interval of about 0.9 mm are formed within the range of 3.6 mm. Therefore, it is suitable for cutting a workpiece W having a thickness of about 0.9 mm to 3.6 mm, for example.
  • the horizontal axis indicates d2
  • the vertical axis indicates the peak intensity of the laser light of each wavelength.
  • the light output of each wavelength emitted from the transmission fiber and the BPP are the same. From this, it can be seen that the peak intensity of each wavelength is shifted in the d2 direction (processing depth direction). This indicates that it is superior to thick plate cutting.
  • the substantial Rayleigh length of the laser light with multiple wavelengths (the Rayleigh area of the laser light with the shortest focal length (the area covered by the Rayleigh length above and below the beam waist in the laser light)
  • the distance to the lowest end of the Rayleigh region of the laser beam having a long focal length is preferably substantially equal to the thickness of the workpiece.
  • FIG. 7 shows the simulation results for the focal length of the lens (design wavelength: 1080 nm) and the change in the focal position depending on the wavelength of each material under the same conditions.
  • the distance d0 to the collimator lens 15 100 mm
  • the focal length of the collimator lens 15 100 mm (a plano-convex lens with a design wavelength of 1080 nm)
  • the distance d1 1500 mm between the collimator lens 15 and the condenser lens
  • Focal length 150 mm (plano-convex lens with a design wavelength of 1080 nm).
  • the vertical axis shows the change of the focal position with a wavelength of 1 nm.
  • “C” on the horizontal axis indicates the collimator lens 15, and “F” indicates the condenser lens 18. From FIG. 7, it can be seen that ZnS and ZnSe form a multifocal with a wider focal interval than quartz.
  • FIG. 8 shows a simulation result of a change in focal position due to a combination of materials under the same conditions as in FIG.
  • the vertical axis shows the change of the focal position with a wavelength of 1 nm.
  • “C” on the horizontal axis indicates the collimator lens 15, and “F” indicates the condenser lens 18. From FIG. 8, it can be seen that if ZnS or ZnSe is used for either the collimator lens 15 or the condensing lens 18, a multiple focus having a wider focal distance than quartz is formed.
  • the curvature of the lens as in the related art is specially made.
  • a plurality of condensing points can be formed at different positions on the optical axis without using a changed multifocal lens, and the intervals between the plurality of condensing points can be further dispersed. Therefore, a beam suitable for the thick plate can be formed, and the cutting process can be speeded up also for the thick plate.
  • the interval between the plurality of condensing points can be varied, and the beam is suitable for the thick plate to be processed. Can be formed.
  • a diode laser processing apparatus and a metal plate processing method using the same can be provided.

Abstract

A direct diode laser processing device is equipped with: a laser oscillator (11) that oscillates multi-wavelength laser light; a transmission fiber (12) that transmits the multi-wavelength laser light oscillated by the laser oscillator (11); a collimator lens (15) that converts the multi-wavelength laser light transmitted by the transmission fiber (12) into parallel light; and a condensing lens (18) that condenses the multi-wavelength laser light that has been converted to parallel light by the collimator lens (15), thereby irradiating a material to be processed (W). A material having a greater wavelength dispersion than that of quartz is used for the collimator lens (15) and/or the condensing lens (18), thereby forming multiple light concentration points at different positions on the light axis, and spreading out the intervals between the multiple light concentration points.

Description

ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法Direct diode laser processing apparatus and sheet metal processing method using the same
 本発明は、ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法に関する。 The present invention relates to a direct diode laser processing apparatus and a sheet metal processing method using the same.
 従来、板金加工用のレーザ加工装置として、炭酸ガス(CO)レーザ発振器やYAGレーザ発振器、ファイバレーザ発振器をレーザ光源として用いたものが知られている。ファイバレーザ発振器は、YAGレーザ発振器よりも光品質に優れ、発振効率が極めて高い等の利点を有する。このため、ファイバレーザ発振器を用いたファイバレーザ加工装置は、産業用、特に板金加工用(切断又は溶接等)に利用されている。 2. Description of the Related Art Conventionally, as a laser processing apparatus for processing a sheet metal, an apparatus using a carbon dioxide gas (CO 2 ) laser oscillator, a YAG laser oscillator, or a fiber laser oscillator as a laser light source is known. The fiber laser oscillator has advantages such as better light quality and extremely high oscillation efficiency than the YAG laser oscillator. For this reason, a fiber laser processing apparatus using a fiber laser oscillator is used for industrial purposes, particularly for sheet metal processing (cutting or welding).
 更に近年では、ダイレクトダイオードレーザ(DDL:Direct Diode Laser)発振器をレーザ光源として用いるDDL加工装置が開発されている。DDL加工装置は、複数のレーザダイオード(LD:Laser Diode)を用いて多波長(multiple-wavelength)のレーザ光を重畳し、伝送ファイバを用いて加工ヘッドまで伝送する。そして、伝送ファイバの端面から射出されたレーザ光は、コリメータレンズ及び集光レンズ等により被加工材上に集光されて照射される。 In recent years, a DDL processing apparatus using a direct diode laser (DDL: Direct Diode Laser) oscillator as a laser light source has been developed. The DDL processing apparatus superimposes multiple-wavelength laser light using a plurality of laser diodes (LD) and transmits the laser light to the processing head using a transmission fiber. Then, the laser light emitted from the end face of the transmission fiber is condensed and irradiated on the workpiece by a collimator lens and a condenser lens.
 ところで、板金加工用のレーザ加工装置においては、厚板に対してもより高速に切断加工を行えることが要求される。このため、日本国特許公開公報特開2008-44000号(特許文献1)では、多波長のレーザ光を色消し機能を持たない集光レンズで集光し、色収差の影響により同一光軸上の異なる位置にフォーカスして被加工物に照射して、かつ、レーザ光を波長の短い順に繰り返して点灯させることにより、厚物材料に対しても高性能の加工を可能としている。 By the way, in a laser processing apparatus for sheet metal processing, it is required that a thick plate can be cut at a higher speed. For this reason, in Japanese Patent Application Laid-Open No. 2008-44000 (Patent Document 1), multi-wavelength laser light is condensed by a condensing lens that does not have an achromatic function, and is on the same optical axis due to the influence of chromatic aberration. By focusing on different positions and irradiating the workpiece, and repeatedly turning on the laser light in the order of shorter wavelengths, high-performance processing is possible even for thick materials.
 しかしながら、特許文献1では、色消し機能を持たない合成石英製の集光レンズを用いたときに生じる色収差を利用しているが、色収差による多重焦点の間隔を積極的に大きくするものではない。 However, in Patent Document 1, chromatic aberration generated when a synthetic quartz condenser lens having no achromatic function is used, but the interval between multiple focal points due to chromatic aberration is not positively increased.
 本発明は上記課題に鑑みて成されたものであり、本発明によれば、多波長のレーザ光を集光したときの色収差により生じる多重焦点の間隔を積極的に大きくすることができ、厚板の切断加工に適したビームを形成することができるダイレクトダイオードレーザ加工装置及びこれを用いた金属板の加工方法を提供することができる。 The present invention has been made in view of the above problems, and according to the present invention, it is possible to positively increase the interval between multiple focal points caused by chromatic aberration when condensing multi-wavelength laser light. It is possible to provide a direct diode laser processing apparatus capable of forming a beam suitable for plate cutting and a metal plate processing method using the same.
 本発明の一態様によれば、多波長のレーザ光を発振するレーザ発振器と、レーザ発振器により発振された多波長のレーザ光を伝送する伝送ファイバと、伝送ファイバにより伝送された多波長のレーザ光を平行光に変換するコリメータレンズと、コリメータレンズにより平行光に変換された多波長のレーザ光を集光して被加工材に照射する集光レンズとを備え、コリメータレンズ及び集光レンズの少なくともいずれか一方に、石英よりも波長分散の大きい材料を用いることにより、光軸上の異なる位置に複数の集光点を形成し、且つ複数の集光点の間隔を分散させるダイレクトダイオードレーザ加工装置及びこれを用いた金属板の加工方法が提供される。 According to one aspect of the present invention, a laser oscillator that oscillates multi-wavelength laser light, a transmission fiber that transmits multi-wavelength laser light oscillated by the laser oscillator, and a multi-wavelength laser light transmitted by the transmission fiber A collimator lens for converting the parallel light into a parallel light, and a condensing lens for condensing the multi-wavelength laser light converted into the parallel light by the collimator lens and irradiating the workpiece with at least one of the collimator lens and the condensing lens. Direct diode laser processing apparatus that forms a plurality of condensing points at different positions on the optical axis and disperses the intervals between the plurality of condensing points by using a material having a wavelength dispersion larger than quartz for any one of them. And the processing method of a metal plate using the same is provided.
本発明の1実施形態に係るDDL加工装置の一例を示す斜視図である。It is a perspective view showing an example of a DDL processing device concerning one embodiment of the present invention. 図2(a)は、本発明の1実施形態に係るレーザ発振器の一例を示す正面図である。図2(b)は、本発明の実施の形態に係るレーザ発振器の一例を示す側面図である。FIG. 2A is a front view showing an example of a laser oscillator according to an embodiment of the present invention. FIG. 2B is a side view showing an example of the laser oscillator according to the embodiment of the present invention. 本発明の1実施形態に係るレーザ発振器の一例を示す概略図である。It is a schematic diagram showing an example of a laser oscillator concerning one embodiment of the present invention. 本発明の1実施形態に係るレーザ発振器の発振波長の一例を表すグラフである。It is a graph showing an example of the oscillation wavelength of the laser oscillator which concerns on one Embodiment of this invention. 本発明の1実施形態に係るコリメータレンズ及び集光レンズの一例を示す概略図である。It is a schematic diagram showing an example of a collimator lens and a condensing lens concerning one embodiment of the present invention. 各波長のd2に対するピーク強度を表すグラフである。It is a graph showing the peak intensity with respect to d2 of each wavelength. レンズの材料毎の焦点位置の変化を表すシミュレーション結果である。It is a simulation result showing the change of the focal position for every material of a lens. レンズの材料の組み合わせ毎の焦点位置の変化を表すシミュレーション結果である。It is a simulation result showing the change of the focal position for every combination of the material of a lens.
 図面を参照して、本発明の1実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。 Embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
 図1を参照して、本実施の形態に係るダイレクトダイオードレーザ(以下、「DDL」という)加工装置の全体構成を説明する。本発明の実施形態に係るDDL加工装置は、図1に示すように、多波長のレーザ光LBを発振するレーザ発振器11と、レーザ発振器11により発振されたレーザ光LBを伝送する伝送ファイバ(プロセスファイバ)12と、伝送ファイバ12により伝送されたレーザ光LBを高エネルギー密度に集光させて被加工材(ワーク)Wに照射するレーザ加工機13とを備える。 Referring to FIG. 1, the overall configuration of a direct diode laser (hereinafter referred to as “DDL”) processing apparatus according to the present embodiment will be described. As shown in FIG. 1, a DDL processing apparatus according to an embodiment of the present invention includes a laser oscillator 11 that oscillates multi-wavelength laser light LB, and a transmission fiber (process) that transmits the laser light LB oscillated by the laser oscillator 11. Fiber) 12 and a laser beam machine 13 for condensing the laser beam LB transmitted by the transmission fiber 12 to a high energy density and irradiating the workpiece (workpiece) W.
 レーザ加工機13は、伝送ファイバ12から射出されたレーザ光LBをコリメータレンズ15で略平行光に変換するコリメータユニット14と、略平行光に変換されたレーザ光LBを、X軸及びY軸方向に垂直なZ軸方向下方に向けて反射するベンドミラー16と、ベンドミラー16により反射されたレーザ光LBを集光レンズ18で集光する加工ヘッド17とを備える。なお、図1では図示を省略するが、コリメータユニット14内には、コリメータレンズ15を光軸に平行な方向(X軸方向)に駆動するレンズ駆動部が設置されている。また、DDL加工装置は、レンズ駆動部を制御する制御部を更に備える。 The laser processing machine 13 includes a collimator unit 14 that converts the laser light LB emitted from the transmission fiber 12 into substantially parallel light by the collimator lens 15, and the laser light LB converted to substantially parallel light in the X-axis and Y-axis directions. A bending mirror 16 that reflects downward in the Z-axis direction perpendicular to the laser beam, and a processing head 17 that condenses the laser beam LB reflected by the bending mirror 16 with a condenser lens 18. Although not shown in FIG. 1, a lens driving unit that drives the collimator lens 15 in a direction parallel to the optical axis (X-axis direction) is installed in the collimator unit 14. The DDL processing apparatus further includes a control unit that controls the lens driving unit.
 レーザ加工機13は更に、被加工材Wが載置される加工テーブル21と、加工テーブル21上においてX軸方向に移動する門型のX軸キャリッジ22と、X軸キャリッジ22上においてX軸方向に垂直なY軸方向に移動するY軸キャリッジ23とを備える。コリメータユニット14内のコリメータレンズ15、ベンドミラー16、及び加工ヘッド17内の集光レンズ18は、予め光軸の調整が成された状態でY軸キャリッジ23に固定され、Y軸キャリッジ23と共にY軸方向に移動する。なおY軸キャリッジ23に対して上下方向へ移動可能なZ軸キャリッジを設け、当該Z軸キャリッジに集光レンズ18を設けることも出来る。 The laser processing machine 13 further includes a processing table 21 on which the workpiece W is placed, a portal X-axis carriage 22 that moves in the X-axis direction on the processing table 21, and an X-axis direction on the X-axis carriage 22. And a Y-axis carriage 23 that moves in the Y-axis direction perpendicular to the axis. The collimator lens 15 in the collimator unit 14, the bend mirror 16, and the condensing lens 18 in the processing head 17 are fixed to the Y-axis carriage 23 in a state where the optical axis has been adjusted in advance. Move in the axial direction. It is also possible to provide a Z-axis carriage that can move in the vertical direction with respect to the Y-axis carriage 23 and to provide the condenser lens 18 on the Z-axis carriage.
 本実施の形態に係るDDL加工装置は、集光レンズ18により集光されて最も小さい集光直径(最小集光直径)のレーザ光LBを被加工材Wに照射し、また同軸にアシストガスを噴射して溶融物を除去しながら、X軸キャリッジ22及びY軸キャリッジ23を移動させる。これにより、DDL加工装置は被加工材Wを切断加工することができる。被加工材Wとしては、ステンレス鋼、軟鋼、アルミニウム等の種々の材料が挙げられる。被加工材Wの板厚は、例えば0.1mm~50mm程度である。 The DDL processing apparatus according to the present embodiment irradiates the workpiece W with the laser beam LB having the smallest condensing diameter (minimum condensing diameter) condensed by the condensing lens 18 and coaxially assisting gas. The X-axis carriage 22 and the Y-axis carriage 23 are moved while spraying and removing the melt. Thereby, the DDL processing apparatus can cut the workpiece W. Examples of the workpiece W include various materials such as stainless steel, mild steel, and aluminum. The plate thickness of the workpiece W is, for example, about 0.1 mm to 50 mm.
 図2及び図3を参照して、レーザ発振器11について説明する。レーザ発振器11は、図2(a)及び図2(b)に示すように、筐体60と、筐体60内に収容され、伝送ファイバ12に接続されているDDLモジュール10と、筐体60内に収容され、DDLモジュール10に電力を供給する電源部61と、筐体60内に収容され、DDLモジュール10の出力等を制御する制御モジュール62等が設けられている。また、筐体60の外側には、筐体60内の温度及び湿度を調整する空調機器63が設置されている。 The laser oscillator 11 will be described with reference to FIGS. 2A and 2B, the laser oscillator 11 includes a housing 60, the DDL module 10 housed in the housing 60 and connected to the transmission fiber 12, and the housing 60. A power supply unit 61 that is housed in the DDL module 10 and supplies power to the DDL module 10, a control module 62 that is housed in the housing 60 and controls the output of the DDL module 10, and the like are provided. An air conditioner 63 that adjusts the temperature and humidity in the housing 60 is installed outside the housing 60.
 DDLモジュール10は、図3に示すように、多波長(multiple-wavelength)λ,λ,λ,・・・,λ(以下{λ}と表記する。)のレーザ光を重畳して出力する。DDLモジュール10は、複数のレーザダイオード(以下、「LD」という)3,3,3,・・・3(nは4以上の整数)と、LD3,3,3,・・・3にファイバ4,4,4,・・・4を介して接続され、多波長{λ}のレーザ光に対してスペクトルビーム結合(spectral beam combining)を行うスペクトルビーム結合部50と、スペクトルビーム結合部50からのレーザ光を集光して伝送ファイバ12へ入射させる集光レンズ54とを備える。 As shown in FIG. 3, the DDL module 10 superimposes laser light having multiple wavelengths (λ 1 , λ 2 , λ 3 ,..., Λ n (hereinafter referred to as {λ i }). And output. The DDL module 10 includes a plurality of laser diodes (hereinafter referred to as “LD”) 3 1 , 3 2 , 3 3 ,... 3 n (n is an integer of 4 or more), LD 3 1 , 3 2 , 3 3 , · · · 3 n to the fiber 4 1, 4 2, 4 3, is connected via a · · · 4 n, the spectrum of performing spectral beam combining (spectral beam combining) the laser beam of multiple wavelengths {lambda i} A beam combining unit 50 and a condensing lens 54 that condenses the laser light from the spectral beam combining unit 50 and enters the transmission fiber 12 are provided.
 複数のLD3,3,3,・・・3(以下複数のLD3という。)は各種の半導体レーザが採用可能である。複数のLD3の種類と数の組み合わせは特に限定されず、板金加工の目的に合わせて適宜選択可能である。複数のLD3の波長λ,λ,λ,・・・,λは、例えば1000nm未満で選択したり、800nm~1000nmの範囲で選択したり、910nm~950nmの範囲で選択したりすることができる。 Various semiconductor lasers can be used for the plurality of LD3 1 , 3 2 , 3 3 ,... 3 n (hereinafter referred to as a plurality of LD3). The combination of the type and number of the plurality of LDs 3 is not particularly limited, and can be appropriately selected according to the purpose of sheet metal processing. The wavelengths λ 1 , λ 2 , λ 3 ,..., Λ n of the plurality of LDs 3 are selected to be, for example, less than 1000 nm, selected from a range of 800 nm to 1000 nm, or selected from a range of 910 nm to 950 nm. be able to.
 多波長{λ}のレーザ光は、例えば、波長帯域毎に群(ブロック)管理されて制御される。そして、波長帯域毎に個別に出力を可変調節することができる。また、全波長帯域の出力を吸収率が一定となるよう調整することができる。 The laser light of multiple wavelengths {λ i } is controlled by group (block) management for each wavelength band, for example. The output can be variably adjusted individually for each wavelength band. In addition, the output of the entire wavelength band can be adjusted so that the absorptance is constant.
 切断加工に際しては、複数のLD3を同時に動作させると共に、酸素、窒素等の適宜のアシストガスを焦点位置近傍へ吹き付ける。これにより、LD3,3,3,・・・3からの各波長のレーザ光が、相互に協働すると共に、酸素等のアシストガスとも協働してワークを高速で溶融する。また当該溶融ワーク材料がアシストガスにより吹き飛ばされてワークが高速で切断される。 In the cutting process, a plurality of LDs 3 are simultaneously operated, and an appropriate assist gas such as oxygen or nitrogen is blown near the focal position. As a result, the laser beams of the respective wavelengths from the LD 3 1 , 3 2 , 3 3 ,... 3 n cooperate with each other and also with the assist gas such as oxygen to melt the workpiece at a high speed. Further, the molten work material is blown off by the assist gas, and the work is cut at a high speed.
 スペクトルビーム結合部50は、ファイバ4,4,4,・・・4の射出端側を束ねて固定しファイバアレイ4とする固定部51と、ファイバ4,4,4,・・・4からのレーザ光を平行光にするコリメータレンズ52と、多波長{λ}のレーザ光を回折し光軸を一致させる回折格子(diffraction grating)53と、複数のLD3後端部に設けた反射面と共に共振器を構成する部分反射カプラ55を備える。なお、図3に示す部分反射カプラ55の位置は一例であり、これに特に限定されるものではない。 The spectral beam combining unit 50 includes a fixing unit 51 that bundles and fixes the emission ends of the fibers 4 1 , 4 2 , 4 3 ,... 4 n to form a fiber array 4, and fibers 4 1 , 4 2 , 4 3. ,... 4 n Collimator lens 52 that collimates laser light from n, diffraction grating 53 that diffracts multi-wavelength {λ i } laser light and matches the optical axis, and a plurality of LDs 3 A partial reflection coupler 55 constituting a resonator is provided with a reflection surface provided at the end. Note that the position of the partial reflection coupler 55 shown in FIG. 3 is an example, and is not particularly limited thereto.
 図4に示すように、レーザ発振器11は、多波長(図4では5つの波長λ~λ)のレーザ光を発振する。このため、レーザ発振器11からのレーザ光をレンズにより集光すると色収差が生じる。そこで、本実施の形態においては、色収差を積極的に利用すべく、コリメータレンズ15及び集光レンズ18の少なくともいずれかの材料を、石英よりも波長分散の大きい(換言すれば、多重焦点化の効果が大きい)材料を使用する。石英よりも波長分散の大きい材料としては、硫化亜鉛(ZnS)又はセレン化亜鉛(ZnSe)等が採用可能である。コリメータレンズ15及び集光レンズ18の少なくともいずれかの材料として、石英よりも波長分散の大きい材料を用いることにより、色収差の影響がより顕著になり、光軸上の多重焦点の間隔をより大きくすることができ、多重焦点を分散することができる。 As shown in FIG. 4, the laser oscillator 11 oscillates laser light having multiple wavelengths (five wavelengths λ 1 to λ 5 in FIG. 4). For this reason, when the laser beam from the laser oscillator 11 is condensed by the lens, chromatic aberration occurs. Therefore, in the present embodiment, in order to positively use chromatic aberration, at least one of the materials of the collimator lens 15 and the condenser lens 18 has a wavelength dispersion larger than that of quartz (in other words, multifocusing). Use materials that are highly effective. As a material having a larger wavelength dispersion than quartz, zinc sulfide (ZnS), zinc selenide (ZnSe), or the like can be used. As a material of at least one of the collimator lens 15 and the condenser lens 18, a material having a larger wavelength dispersion than quartz is used, so that the influence of chromatic aberration becomes more conspicuous and the interval between multiple focal points on the optical axis is further increased. Multiple focal points can be distributed.
 なお、コリメータレンズ15及び集光レンズ18の材料は、互いに同一材料であってもよく、異なる材料であってもよい。コリメータレンズ及び集光レンズ18の一方がZnS、ZnSeであれば、コリメータレンズ及び集光レンズ18がともに石英の場合に比べ、多重焦点化が可能である。 Note that the materials of the collimator lens 15 and the condenser lens 18 may be the same material or different materials. If one of the collimator lens and the condensing lens 18 is ZnS or ZnSe, multiple focusing is possible compared to the case where both the collimator lens and the condensing lens 18 are quartz.
 ここで、図5に示すように、伝送ファイバ12の射出端とコリメータレンズ15との距離をd0、コリメータレンズ15と集光レンズ18との距離をd1、集光レンズ18と加工点(集光点)Pとの距離をd2とする。例えば、波長が800nm~840nmの範囲で、800nm、810nm、820nm、830nm、840nmの5つの波長の光が出力、結合されているとし、d0=97.8mm、d1=1500mmとする。この場合、波長800nm、810nm、820nm、830nm、840nmのd2はそれぞれ、134.2mm、135.2mm、136.1mm、137.0mm、137.8mmとなり、3.6mmの範囲内で、約0.9mm間隔の多重焦点が形成される。 Here, as shown in FIG. 5, the distance between the exit end of the transmission fiber 12 and the collimator lens 15 is d0, the distance between the collimator lens 15 and the condensing lens 18 is d1, the condensing lens 18 and the processing point (condensing point). Point) The distance from P is d2. For example, it is assumed that light having five wavelengths of 800 nm, 810 nm, 820 nm, 830 nm, and 840 nm is output and combined in a wavelength range of 800 nm to 840 nm, and d0 = 97.8 mm and d1 = 1500 mm. In this case, d2 at wavelengths of 800 nm, 810 nm, 820 nm, 830 nm, and 840 nm are 134.2 mm, 135.2 mm, 136.1 mm, 137.0 mm, and 137.8 mm, respectively. Multiple focal spots with an interval of 9 mm are formed.
 また、例えば波長が960nm~1000nmの範囲で、960nm、970nm、980nm、990nm、1000nmの5つの波長の光が出力、結合されているとし、d0=100.9mm、d1=1500mmとする。この場合、波長960nm、970nm、980nm、990nm、1000nmのd2はそれぞれ、130.4mm、131.4mm、132.3mm、133.2mm、134.0mmとなり、3.6mmの範囲内で、約0.9mm間隔の多重焦点が形成される。 Also, for example, assume that light of five wavelengths of 960 nm, 970 nm, 980 nm, 990 nm, and 1000 nm is output and coupled in a wavelength range of 960 nm to 1000 nm, and d0 = 100.9 mm and d1 = 1500 mm. In this case, d2 at wavelengths of 960 nm, 970 nm, 980 nm, 990 nm, and 1000 nm are 130.4 mm, 131.4 mm, 132.3 mm, 133.2 mm, and 134.0 mm, respectively. Multiple focal spots with an interval of 9 mm are formed.
 <実施例>
 本実施の形態に係るDDL加工装置の実施例を説明する。コリメータレンズ15として、曲率R=147.808mmのZnSeからなる平凸レンズを用い、集光レンズ18として、曲率R=221.711mmのZnSeからなる平凸レンズを用いるとする。また、レーザ発振器11では、波長が910nm~950nmの範囲で、910nm、920nm、930nm、940nm、950nmの5つの波長の光が出力、結合されているとする。なおレーザ光は連続波を用いることができる。
<Example>
An example of the DDL processing apparatus according to the present embodiment will be described. It is assumed that a plano-convex lens made of ZnSe with a curvature R = 147.808 mm is used as the collimator lens 15 and a plano-convex lens made of ZnSe with a curvature R = 221.711 mm is used as the condenser lens 18. In the laser oscillator 11, light of five wavelengths of 910 nm, 920 nm, 930 nm, 940 nm, and 950 nm is output and coupled in a wavelength range of 910 nm to 950 nm. Note that a continuous wave can be used as the laser light.
 例えばd0=100mm、d1=1500mmとすると、図6に示すように、波長910nm、920nm、930nm、940nm、950nmのd2はそれぞれ、131.9mm、132.9mm、133.8mm、134.7mm、135.5mmとなり、3.6mmの範囲内で、約0.9mm間隔の多重焦点が形成される。よって、例えば0.9mm~3.6mm程度の板厚の被加工材Wの切断可能に好適である。 For example, when d0 = 100 mm and d1 = 1500 mm, as shown in FIG. 6, d2 of wavelengths 910 nm, 920 nm, 930 nm, 940 nm, and 950 nm are 131.9 mm, 132.9 mm, 133.8 mm, 134.7 mm, and 135, respectively. 0.5 mm, and multiple focal points with an interval of about 0.9 mm are formed within the range of 3.6 mm. Therefore, it is suitable for cutting a workpiece W having a thickness of about 0.9 mm to 3.6 mm, for example.
 図6において、横軸はd2を示し、縦軸は各波長のレーザ光のピーク強度を示す。なお伝送ファイバから出射される各波長の光出力とBPPは同じとした。これより、d2方向(加工深さ方向)に各波長のピーク強度がシフトしていることが分かる。これは厚板切断に優位であることを示す。 In FIG. 6, the horizontal axis indicates d2, and the vertical axis indicates the peak intensity of the laser light of each wavelength. The light output of each wavelength emitted from the transmission fiber and the BPP are the same. From this, it can be seen that the peak intensity of each wavelength is shifted in the d2 direction (processing depth direction). This indicates that it is superior to thick plate cutting.
 なお上記において多波長のレーザ光の実質的なレイリー長(最も短い焦点距離のレーザ光のレイリー領域(当該レーザ光において、ビームウェストの上下のレイリー長でカバーされる領域)の最上端から、最も長い焦点距離のレーザ光のレイリー領域の最下端までの距離)はワークの板厚とほぼ等しいのが望ましい。 In the above, the substantial Rayleigh length of the laser light with multiple wavelengths (the Rayleigh area of the laser light with the shortest focal length (the area covered by the Rayleigh length above and below the beam waist in the laser light) The distance to the lowest end of the Rayleigh region of the laser beam having a long focal length is preferably substantially equal to the thickness of the workpiece.
 図7は、レンズの焦点距離(設計波長:1080nm)、配置は同条件時の材料毎の波長による焦点位置の変化についてのシミュレーション結果を示す。シミュレーションにおいて、コリメータレンズ15までの距離d0:100mm、コリメータレンズ15の焦点距離:100mm(設計波長が1080nmの平凸レンズ)、コリメータレンズ15と集光レンズ18の距離d1:1500mm、集光レンズ18の焦点距離:150mm(設計波長が1080nmの平凸レンズ)とした。縦軸には波長1nmによる焦点位置の変化を示す。横軸の「C」はコリメータレンズ15、「F」は集光レンズ18を示す。図7から、ZnS、ZnSeは石英より焦点間隔の広い多重焦点が形成されることが分かる。 FIG. 7 shows the simulation results for the focal length of the lens (design wavelength: 1080 nm) and the change in the focal position depending on the wavelength of each material under the same conditions. In the simulation, the distance d0 to the collimator lens 15: 100 mm, the focal length of the collimator lens 15: 100 mm (a plano-convex lens with a design wavelength of 1080 nm), the distance d1: 1500 mm between the collimator lens 15 and the condenser lens 18, Focal length: 150 mm (plano-convex lens with a design wavelength of 1080 nm). The vertical axis shows the change of the focal position with a wavelength of 1 nm. “C” on the horizontal axis indicates the collimator lens 15, and “F” indicates the condenser lens 18. From FIG. 7, it can be seen that ZnS and ZnSe form a multifocal with a wider focal interval than quartz.
 図8に、図7と同条件の場合の材料の組み合わせによる焦点位置の変化についてのシミュレーション結果を示す。縦軸には波長1nmによる焦点位置の変化を示す。横軸の「C」はコリメータレンズ15、「F」は集光レンズ18を示す。図8から、コリメータレンズ15と集光レンズ18のいずれかにZnS、ZnSeを用いれば、石英より焦点間隔の広い多重焦点が形成されることが分かる。 FIG. 8 shows a simulation result of a change in focal position due to a combination of materials under the same conditions as in FIG. The vertical axis shows the change of the focal position with a wavelength of 1 nm. “C” on the horizontal axis indicates the collimator lens 15, and “F” indicates the condenser lens 18. From FIG. 8, it can be seen that if ZnS or ZnSe is used for either the collimator lens 15 or the condensing lens 18, a multiple focus having a wider focal distance than quartz is formed.
 以上説明したように、本発明によれば、コリメータレンズ15及び集光レンズ18の少なくともいずれか一方に、石英よりも波長分散の大きい材料を用いることにより、従来のようなレンズの曲率を特殊に変化させた多重焦点レンズを用いることなく光軸上の異なる位置に複数の集光点を形成し、且つ複数の集光点の間隔をより大きく分散させることができる。したがって、厚板に適したビームを形成することができ、厚板に対しても切断加工の高速化を図ることができる。 As described above, according to the present invention, by using a material having a wavelength dispersion larger than that of quartz for at least one of the collimator lens 15 and the condenser lens 18, the curvature of the lens as in the related art is specially made. A plurality of condensing points can be formed at different positions on the optical axis without using a changed multifocal lens, and the intervals between the plurality of condensing points can be further dispersed. Therefore, a beam suitable for the thick plate can be formed, and the cutting process can be speeded up also for the thick plate.
 また、厚板の種類に応じて、コリメータレンズ15及び集光レンズ18の材料の組み合わせを替えることにより、複数の集光点の間隔を可変させることができ、加工対象の厚板に適したビームを形成することができる。 Further, by changing the combination of the materials of the collimator lens 15 and the condensing lens 18 according to the type of the thick plate, the interval between the plurality of condensing points can be varied, and the beam is suitable for the thick plate to be processed. Can be formed.
 また、複数のLD3を同時に動作させると共に、酸素、窒素等の適宜のアシストガスを焦点位置近傍へ吹き付けることにより、高速切断が可能となる。 Further, by simultaneously operating a plurality of LDs 3 and blowing an appropriate assist gas such as oxygen or nitrogen to the vicinity of the focal position, high-speed cutting can be performed.
 本発明は実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 Although the present invention has been described according to the embodiment, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. It goes without saying that the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
 本発明によれば、多波長のレーザ光を集光したときの色収差により生じる多重焦点の間隔を積極的に大きくすることができ、厚板の切断加工に適したビームを形成することができるダイレクトダイオードレーザ加工装置及びこれを用いた金属板の加工方法を提供することができる。 According to the present invention, it is possible to positively increase the interval between multiple focal points caused by chromatic aberration when condensing multi-wavelength laser light, and to form a beam suitable for cutting a thick plate. A diode laser processing apparatus and a metal plate processing method using the same can be provided.
 (米国指定)
 本国際特許出願は米国指定に関し、2014年10月14日に出願された日本国特許出願第2014-209896号について米国特許法第119条(a)に基づく優先権の利益を援用し、当該開示内容を引用する。
 
(US designation)
This international patent application is related to the designation of the United States, and the benefit of the priority right under US Patent Act 119 (a) for Japanese Patent Application No. 2014-209896, filed on October 14, 2014, is disclosed. Cite the contents.

Claims (7)

  1.  多波長のレーザ光を発振するレーザ発振器と、
     前記レーザ発振器により発振された多波長のレーザ光を伝送する伝送ファイバと、
     前記伝送ファイバにより伝送された多波長のレーザ光を平行光に変換するコリメータレンズと、
     前記コリメータレンズにより平行光に変換された多波長のレーザ光を集光して被加工材に照射する集光レンズと
    を備え、
     前記コリメータレンズ及び前記集光レンズの少なくともいずれか一方に石英よりも波長分散の大きい材料を用い、光軸上の異なる位置に複数の集光点を形成し、且つ前記複数の集光点の間隔を分散させるように構成することを特徴とするダイレクトダイオードレーザ加工装置。
    A laser oscillator that oscillates multi-wavelength laser light;
    A transmission fiber for transmitting multi-wavelength laser light oscillated by the laser oscillator;
    A collimator lens that converts multi-wavelength laser light transmitted by the transmission fiber into parallel light;
    A condensing lens that condenses the multi-wavelength laser light converted into parallel light by the collimator lens and irradiates the workpiece;
    At least one of the collimator lens and the condensing lens is made of a material having a wavelength dispersion larger than that of quartz, and a plurality of condensing points are formed at different positions on the optical axis. A direct diode laser processing apparatus, characterized in that it is configured to disperse.
  2.  前記コリメータレンズ及び前記集光レンズの少なくともいずれか一方が、硫化亜鉛又はセレン化亜鉛からなることを特徴とする請求項1に記載のダイレクトダイオードレーザ加工装置。 The direct diode laser processing apparatus according to claim 1, wherein at least one of the collimator lens and the condenser lens is made of zinc sulfide or zinc selenide.
  3.  前記多波長のレーザ光の波長が800nm~1000nmの範囲であることを特徴とする請求項1又は2に記載のダイレクトダイオードレーザ加工装置。 3. The direct diode laser processing apparatus according to claim 1, wherein a wavelength of the multi-wavelength laser light is in a range of 800 nm to 1000 nm.
  4.  前記被加工材の板厚が、0.9mm~3.6mmであることを特徴とする請求項1~3のいずれか1項に記載のダイレクトダイオードレーザ加工装置。 The direct diode laser processing apparatus according to any one of claims 1 to 3, wherein a thickness of the workpiece is 0.9 mm to 3.6 mm.
  5.  前記多波長のレーザ光の実質的なレイリー長は、前記被加工材の板厚と略等しいことを特徴とする請求項1~4のいずれか1項に記載のダイレクトダイオードレーザ加工装置。 5. The direct diode laser processing apparatus according to claim 1, wherein a substantial Rayleigh length of the multi-wavelength laser light is substantially equal to a plate thickness of the workpiece.
  6.  請求項1~4のいずれか1項に記載のダイレクトダイオードレーザ加工装置を用いて、板厚0.9mm~3.6mmの金属板を加工する方法であって、
     前記金属板の板厚方向に異なる焦点位置を有する多波長のレーザ光を、前記金属板の所定加工位置に同時に照射することと、
     アシストガスを当該加工位置へ吹き付けることと
    を含むことを特徴とする金属板の加工方法。
    A method of processing a metal plate having a plate thickness of 0.9 mm to 3.6 mm using the direct diode laser processing apparatus according to any one of claims 1 to 4,
    Simultaneously irradiating a predetermined processing position of the metal plate with multi-wavelength laser light having different focal positions in the thickness direction of the metal plate;
    Spraying an assist gas to the processing position. A method for processing a metal plate.
  7.  前記加工は板金の切断であることを特徴とする請求項6に記載の金属板の加工方法。
     
    The method for processing a metal plate according to claim 6, wherein the processing is cutting of a sheet metal.
PCT/JP2015/076929 2014-10-14 2015-09-24 Direct diode laser processing device and sheet metal processing method using same WO2016059951A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-209896 2014-10-14
JP2014209896A JP6035303B2 (en) 2014-10-14 2014-10-14 Direct diode laser processing apparatus and metal plate processing method using the same

Publications (1)

Publication Number Publication Date
WO2016059951A1 true WO2016059951A1 (en) 2016-04-21

Family

ID=55746499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076929 WO2016059951A1 (en) 2014-10-14 2015-09-24 Direct diode laser processing device and sheet metal processing method using same

Country Status (2)

Country Link
JP (1) JP6035303B2 (en)
WO (1) WO2016059951A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11691225B2 (en) * 2017-10-06 2023-07-04 Amada Holdings Co., Ltd. Laser cutting method for plated steel sheet, laser processing head and laser processing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075889A (en) * 2004-09-13 2006-03-23 Daihen Corp Laser beam machine
JP2006263771A (en) * 2005-03-24 2006-10-05 Mitsubishi Heavy Ind Ltd Laser beam machining device and laser beam machining method
JP2011180494A (en) * 2010-03-03 2011-09-15 Sumitomo Electric Hardmetal Corp Optical component for laser
JP2012152822A (en) * 2011-01-21 2012-08-16 Leister Technologies Ag Method for adjusting laser beam spot for processing and device therefor
WO2012157355A1 (en) * 2011-05-19 2012-11-22 村田機械株式会社 Laser processing machine
WO2014061438A1 (en) * 2012-10-18 2014-04-24 住友電気工業株式会社 Laser processing method and laser light irradiation device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231175A (en) * 1998-02-18 1999-08-27 Advanced Materials Processing Institute Kinki Japan Method for coupling and entering multi-beam into optical fiber
JP4148771B2 (en) * 2002-12-27 2008-09-10 株式会社トプコン Laser device for medical machine
US20100072182A1 (en) * 2008-09-25 2010-03-25 Air Liquide Industrial Us Lp Fiber Laser Cutting Process with Multiple Foci

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075889A (en) * 2004-09-13 2006-03-23 Daihen Corp Laser beam machine
JP2006263771A (en) * 2005-03-24 2006-10-05 Mitsubishi Heavy Ind Ltd Laser beam machining device and laser beam machining method
JP2011180494A (en) * 2010-03-03 2011-09-15 Sumitomo Electric Hardmetal Corp Optical component for laser
JP2012152822A (en) * 2011-01-21 2012-08-16 Leister Technologies Ag Method for adjusting laser beam spot for processing and device therefor
WO2012157355A1 (en) * 2011-05-19 2012-11-22 村田機械株式会社 Laser processing machine
WO2014061438A1 (en) * 2012-10-18 2014-04-24 住友電気工業株式会社 Laser processing method and laser light irradiation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11691225B2 (en) * 2017-10-06 2023-07-04 Amada Holdings Co., Ltd. Laser cutting method for plated steel sheet, laser processing head and laser processing device

Also Published As

Publication number Publication date
JP6035303B2 (en) 2016-11-30
JP2016078046A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP5919356B2 (en) Sheet metal processing method using laser light and laser processing apparatus for executing the same
JP6373714B2 (en) Direct diode laser processing apparatus and output monitoring method thereof
JP5965454B2 (en) Direct diode laser processing apparatus and sheet metal processing method using the same
US10283934B2 (en) Semiconductor laser oscillator
JPWO2016060103A1 (en) Semiconductor laser oscillator
JP2016112609A (en) Laser cutting apparatus and laser cutting method
US10300558B2 (en) Laser processing machine and laser cutting method
WO2010123068A1 (en) Laser processing device and method of laser processing
JP2016078047A (en) Direct diode laser processing device and processing method for metal plate using the same
JP6043773B2 (en) Sheet metal processing method using direct diode laser light and direct diode laser processing apparatus for executing the same
JP2016081994A (en) Direct diode laser oscillator
JP6069280B2 (en) Direct diode laser processing apparatus and sheet metal processing method using the same
JP2016078051A (en) Direct diode laser processing device and processing method for metal plate using the same
JP6035304B2 (en) Direct diode laser processing apparatus and sheet metal processing method using the same
WO2016059951A1 (en) Direct diode laser processing device and sheet metal processing method using same
WO2016059993A1 (en) Direct diode laser oscillator, direct diode laser processing device, and reflected light detection method
JP2016221579A (en) Direct diode laser processing device and processing method for metal plate using the same
JP6937865B2 (en) Direct diode laser machining equipment and sheet metal machining method using this
JP7398649B2 (en) Laser processing equipment and laser processing method
JP2016073983A (en) Laser welding device and laser welding method
JP2016078043A (en) Laser processing machine
JP2016153143A (en) Processing method for sheet metal with direct diode laser beam and direct laser processing apparatus for executing the same
JP2017001097A (en) Laser processing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851577

Country of ref document: EP

Kind code of ref document: A1