WO2016059866A1 - Labyrinth seal, centrifugal compressor, and supercharger - Google Patents

Labyrinth seal, centrifugal compressor, and supercharger Download PDF

Info

Publication number
WO2016059866A1
WO2016059866A1 PCT/JP2015/073128 JP2015073128W WO2016059866A1 WO 2016059866 A1 WO2016059866 A1 WO 2016059866A1 JP 2015073128 W JP2015073128 W JP 2015073128W WO 2016059866 A1 WO2016059866 A1 WO 2016059866A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
convex portion
labyrinth seal
stationary member
centrifugal compressor
Prior art date
Application number
PCT/JP2015/073128
Other languages
French (fr)
Japanese (ja)
Inventor
平野 雄一郎
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201580039997.4A priority Critical patent/CN108026938B/en
Priority to KR1020167032861A priority patent/KR101855610B1/en
Publication of WO2016059866A1 publication Critical patent/WO2016059866A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/083Sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/29Three-dimensional machined; miscellaneous
    • F05D2250/294Three-dimensional machined; miscellaneous grooved

Definitions

  • the present disclosure relates to a radially extending labyrinth seal of a centrifugal compressor, and a centrifugal compressor and a turbocharger provided with the same.
  • a centrifugal compressor of a supercharger is configured to pressurize air flowing into the centrifugal compressor by an impeller.
  • the air pressurized by the centrifugal compressor is led to the engine cylinder and burns, and the high-temperature, high-pressure combustion gas generated by the combustion passes through the turbine of the turbocharger to rotate the shaft connected to the turbine,
  • the centrifugal compressor provided on the other end side of is driven.
  • a labyrinth seal may be provided between a rotating member including an impeller and a stationary member including a bearing casing.
  • Patent Document 1 describes a labyrinth seal disposed on an impeller back wall of a centrifugal compressor of an exhaust gas turbine supercharger. In this configuration, the leakage flow of the compressed fluid compressed when passing through the impeller via the rear side of the impeller is suppressed.
  • the labyrinth seal has a configuration in which narrow areas and fluid expansion areas are alternately provided. Thereby, the amount of fluid leakage from the centrifugal compressor can be suppressed. In addition, since the fluid leaking out of the labyrinth seal is gradually reduced in pressure, the pressure on the back of the impeller can be reduced.
  • the fluid force acting on the turbine of the supercharger may exert a thrust from the turbine side to the compressor side, and in this case, it is necessary to reduce the pressure on the back of the impeller It is desirable from the viewpoint of maintaining the thrust balance properly.
  • the temperature of the leak flow rises due to fluid friction in the narrow flow passage, and the amount of heat transfer to the impeller increases.
  • the impeller is a component on which high centrifugal stress acts by rotation, and when the temperature is increased by the amount of heat transfer, the possibility of breakage due to creep increases. Therefore, there is a demand for a labyrinth seal having high sealing performance and small heat transfer to the impeller.
  • a vortex chamber is provided on the downstream side of the throttling point (narrow area), and a part of the fluid passing through the throttling point is vortexed in the vortex chamber and the remaining fluid is It is supposed to join the Thereby, the heat input to the impeller side is suppressed to a certain extent.
  • At least one embodiment of the present invention provides a labyrinth seal capable of reducing the amount of heat input from the fluid passing through the labyrinth seal to the impeller, and a centrifugal compressor and a turbocharger provided with the same.
  • the purpose is to
  • a labyrinth seal for use in a centrifugal compressor comprising: an impeller through which fluid flows in a radial direction; and a stationary member provided on the rear side of the impeller, A plurality of first convex portions respectively provided along the circumferential direction at a plurality of radial positions on the rear surface of the impeller; And a plurality of second convex portions provided along the circumferential direction on the stationary member such that a tip end portion intrudes between the adjacent first convex portions.
  • a labyrinth-like flow path including a plurality of minimum clearances formed between the first projection and the second projection is in the radial direction.
  • the stationary member is positioned upstream of the minimum clearance portion in the flow direction of the leak flow passing through the minimum clearance portion formed between the first convex portion and the second convex portion, and the minimum clearance portion
  • the back side of the impeller is located on the downstream side of the wheel.
  • one of the causes of heat input to the impeller in the conventional labyrinth seal is that the fluid having a high flow velocity that has passed through the minimum clearance portion collides with the wall surface of the stationary member and It has been found that when flowing, fluid in the vicinity of the wall surface of the stationary member, which has a high relative temperature as viewed from the impeller side, is transported to the impeller side.
  • the configuration of the above (1) is conceived based on this finding by the present inventors, and the stationary member is located upstream of the minimum clearance portion in the flow direction of the leakage flow passing through the minimum clearance portion. And, the back of the impeller is positioned downstream of the minimum clearance portion.
  • the fluid accelerated when passing through the minimum clearance portion flows along the back of the impeller after colliding with the back of the impeller instead of the stationary member side. Therefore, it is possible to suppress a situation in which the fluid near the wall surface of the stationary member having a high relative total temperature as viewed from the impeller side is accompanied by the fluid having the high flow velocity which has passed through the minimum clearance portion and transported to the impeller side. Therefore, the amount of heat input from the fluid passing through the labyrinth seal to the impeller can be reduced, and the temperature rise of the impeller can be suppressed.
  • the labyrinth seal seals the leakage flow directed radially inward between the rear surface of the impeller and the stationary member.
  • the minimum clearance portion is formed between the tip of the first convex portion or the radially inner surface of the first convex portion and the second convex portion.
  • a seal sword tip is provided at the tip of the second convex portion, and the minimum clearance portion is an inner side in the radial direction of the first convex portion. And the seal tip of the second protrusion.
  • the seal blade tip is provided on the second convex portion on the stationary member side, the wall surface of the stationary member from the flow of fluid passing through the minimal clearance portion on the downstream side of the minimal clearance portion 2) The wall surface of the convex part is moving away. For this reason, it is possible to effectively suppress a situation in which the flow velocity passing through the minimum clearance portion is accompanied by the high fluid and transferred to the impeller side. Therefore, the amount of heat input from the fluid passing through the labyrinth seal to the impeller can be effectively reduced, and the temperature rise of the impeller can be further suppressed.
  • the radially inner surface of the first convex portion forms a sealing surface extending along the axial direction of the centrifugal compressor.
  • the second convex portion is provided so as to project from the stationary member toward the rear surface side of the impeller and the outer side in the radial direction.
  • a seal sword tip is provided at the tip of the first convex portion, and the minimum clearance portion is the seal sword tip of the first convex portion. And the radial outer surface of the second projection.
  • the fluid that has passed through the minimum clearance formed between the seal tip of the first projection on the impeller side and the radially outer surface of the second projection of the stationary member Can be directed to the back of the impeller.
  • the amount of heat input from the fluid passing through the labyrinth seal to the impeller can be reduced, and the temperature rise of the impeller can be suppressed.
  • a seal sword tip is provided at the tip of the first convex portion, the minimum clearance portion is the seal sword tip of the first convex portion, It is formed between the radially outer surface of the second convex portion.
  • the clearance width direction of the minimum clearance portion is along the radial direction, the clearance width of the minimum clearance portion is hardly influenced even if the impeller is shifted in the axial direction. Therefore, the seal performance deterioration due to the displacement of the axial direction of the impeller can be suppressed.
  • a centrifugal compressor according to at least one embodiment of the present invention, An impeller through which fluid flows in a radial direction; A stationary member provided on the back side of the impeller; The labyrinth seal according to any one of the above (1) to (6) may be provided between the rear surface of the impeller and the stationary member. According to the structure of said (7), the heat gain to the impeller from the fluid which passes a labyrinth seal can be reduced, and the temperature rise of an impeller can be suppressed. Therefore, it is possible to suppress a decrease in creep life caused by the high temperature of the impeller, and to realize a high pressure ratio of the centrifugal compressor.
  • a turbocharger configured to include the centrifugal compressor according to the configuration of the above (7), for compressing intake air to an internal combustion engine; And a turbine configured to be driven by the exhaust gas of an internal combustion engine to drive the compressor.
  • the amount of heat input from the fluid passing through the labyrinth seal to the impeller can be reduced, and the temperature rise of the impeller can be suppressed. Therefore, the fall of the creep life resulting from temperature rising of an impeller can be suppressed.
  • the labyrinth seal 10 is specifically applied to the centrifugal compressor 3 of the supercharger 1.
  • the application destination of the labyrinth seal 10 is not limited to the illustrated centrifugal compressor 3 and may be used for other types of centrifugal compressors.
  • FIG. 1 is a cross-sectional view (longitudinal cross-sectional view) showing an entire configuration of a turbocharger 1 according to an embodiment, and shows an exhaust turbine turbocharger for marine use as an example.
  • a turbocharger 1 according to an embodiment is an axial flow turbine (hereinafter referred to as a turbine) 2 configured to be driven by exhaust gas from an internal combustion engine (for example, a marine diesel engine).
  • a centrifugal compressor 3 driven by the turbine 2 and configured to compress intake air supplied to the internal combustion engine.
  • a bearing stand 4 is provided between the turbine 2 and the centrifugal compressor 3.
  • the turbine casing 21 of the turbine 2, the bearing stand 4, and the compressor casing 31 of the centrifugal compressor 3 are integrally configured by connection means such as a fastening member (for example, a bolt).
  • a thrust bearing 41 and radial bearings 42 and 43 are accommodated in the bearing stand 4.
  • the rotor 5 is rotatably supported by the thrust bearing 41 and the radial bearings 42 and 43.
  • the moving blade 24 of the turbine 2 is connected to one end side of the rotor 5, and the impeller 32 of the centrifugal compressor 3 is connected to the other end side.
  • the turbine 2 is configured to be driven by the exhaust gas of an internal combustion engine (not shown) to drive the centrifugal compressor 3.
  • the turbine 2 is provided on the outer peripheral side of the rotor 5 (actually, one end side of the rotor 5), a plurality of moving blades 24 implanted on the outer periphery of the rotor 5, the rotor 5 and the moving blades 24.
  • a turbine casing 21 a turbine casing 21.
  • An inlet passage 27 through which exhaust gas flows, an axial passage 28 and an outlet passage 29 are sequentially formed in the flow direction of the exhaust gas by the stationary system member including the turbine casing 21.
  • An axial passage 28 is located between the inlet passage 27 and the outlet passage 29 and extends along the rotational axis O of the rotor 5.
  • a moving blade 24 is provided in the axial passage. Further, a turbine nozzle (static blade) 25 is provided on the inlet side of the moving blade 24.
  • exhaust gas from the internal combustion engine is introduced from the inlet passage 27, and the rotor 5 coupled to the moving blades 24 is rotated by the exhaust gas flowing through the axial passage 28. Exhaust gas having passed through the moving blades 24 is discharged through the outlet passage 29.
  • the centrifugal compressor 3 is configured to compress intake air to an internal combustion engine (not shown), and the rotor 5 (actually, the other end side of the rotor 5) and an impeller 32 provided on the outer periphery of the rotor 5 , And a compressor casing 31 provided on the outer peripheral side of the rotor 5 and the impeller 32.
  • An air inlet 37 and an outlet scroll 38 are formed by a stationary system member including the compressor casing 31. Between the air inlet 37 and the outlet scroll 38, an impeller 32 and a diffuser 36 are disposed in order in the air flow direction (radial direction of the centrifugal compressor 3).
  • the impeller 32 has a disk-like hub 33 fixed to the outer periphery of the rotor 5 and a plurality of vanes 34 fixed to the hub 33 and arranged radially with respect to the hub 33.
  • fluid here, air
  • a multistage centrifugal compressor may be sufficient.
  • the air introduced from the air inlet 37 is pressurized when passing through the impeller 32, the diffuser 36 and the outlet scroll 38.
  • Most of the air compressed by the centrifugal compressor 3 is led to the engine cylinder of the internal combustion engine and performs the work of pushing down the piston in the combustion / expansion stroke.
  • the high-temperature and high-pressure combustion gas generated here is sent to the turbine 2, and the turbine 2 drives the centrifugal compressor 3 coaxially.
  • a lubricating oil supply passage 44 is formed in the bearing stand 4.
  • One end of the lubricating oil supply passage 44 is connected to a lubricating oil supply unit (for example, an oil tank and an oil pump).
  • the other end of the lubricating oil supply passage 44 is branched into a plurality of branches, and the branched ends are connected to the thrust bearing 41 and the radial bearings 42 and 43, respectively.
  • the lubricating oil is supplied to the thrust bearing 41 and the radial bearings 42 and 43 through the lubricating oil supply passage 44, respectively.
  • a labyrinth seal 10 is provided between the centrifugal compressor 3 and the bearing stand 4.
  • the labyrinth seal 10 is configured to seal between the impeller 32 and the stationary member 46 of the bearing stand 4 facing the impeller 32.
  • the labyrinth seal 10 mainly prevents air containing lubricating oil in the bearing stand 4 from mixing in with the compressed air of the centrifugal compressor 3.
  • the internal space of the bearing stand 4 may be filled with mist in which the lubricating oil is scattered.
  • a part of the air discharged from the impeller 32 may go around to the back and leak into the internal space of the bearing stand 4.
  • the back surface of the impeller 32 has a high pressure, and in the direction of the rotation axis O of the rotor 5, a high thrust force acting on the impeller 32 from the back surface side to the inlet side of the impeller 32 acts.
  • This high thrust force may lead to an increase in the size of the thrust bearing 41 and high friction loss. Therefore, also from the viewpoint of thrust balance, it may be desirable to reduce the pressure on the rear surface of the impeller 32 by the labyrinth seal 10.
  • FIG. 2A is a view showing the labyrinth seal 10 according to one embodiment, and is a longitudinal cross-sectional view of the periphery of the back surface of the impeller 32.
  • FIG. 2B is a plan view of the impeller 32 shown in FIG. 2A as viewed from the rear surface (direction A) 35 side.
  • FIG. 3 is a view showing the labyrinth seal 10 according to one embodiment, and is a schematic cross-sectional view of the impeller 32 and the stationary member 46.
  • FIG. FIG.4 and FIG.5 is an expanded sectional view of the labyrinth seal 10 in each embodiment.
  • the labyrinth seal 10 includes an impeller 32 through which fluid (for example, air) flows in a radial direction, and a stationary member provided on the back surface 35 of the impeller 32. And 46 are used in a centrifugal compressor.
  • the labyrinth seal 10 seals between the rear surface 35 of the impeller 32 and the stationary member 46 in the radial direction of the centrifugal compressor.
  • the labyrinth seal 10 includes a plurality of first projections 11 provided on the back surface 35 of the impeller 32 and a plurality of second projections 12 provided on the stationary member 46. There is.
  • a labyrinth flow passage 15 is formed between the first convex portion 11 and the second convex portion 12 in the radial direction.
  • the plurality of first protrusions 11 are provided along the circumferential direction at a plurality of radial positions on the back surface 35 of the impeller 32.
  • a plurality of first convex portions 11 are provided in a ring shape around the rotation axis O of the rotor 5. That is, the plurality of first convex portions 11 are formed concentrically.
  • the plurality of second convex portions 12 are provided along the circumferential direction on the stationary member 46 such that the tip end portion enters between the adjacent first convex portions 11.
  • the plurality of second convex portions 12 are annularly provided around the rotation axis O of the rotor 5 so as to correspond to the plurality of first convex portions 11 shown in FIG. 2B. That is, the plurality of second convex portions 12 are formed concentrically.
  • one second protrusion 12 is disposed between two adjacent first protrusions 11 in the radial direction, ie, the first protrusion 11 and the first protrusion 11 in the radial direction.
  • the configuration in which the two convex portions 12 are alternately arranged one by one is illustrated.
  • at least one second convex portion 12 may be disposed between two adjacent first convex portions 11, and, for example, between two adjacent first convex portions 11 in the radial direction, Two second projections 12 may be disposed.
  • the back surface 35 of the impeller 32 is formed to be orthogonal to the rotation axis O of the rotor 5.
  • the arrangement direction of the plurality of first protrusions 11 in the radial direction and the arrangement direction of the plurality of second protrusions 12 in the radial direction are both orthogonal to the rotation axis O of the rotor 5 .
  • the arrangement direction of the plurality of first convex portions 11 or the plurality of second convex portions 12 may be a direction inclined with respect to a plane orthogonal to the rotation axis O.
  • the plurality of first protrusions 11 or the plurality of second protrusions are arranged along a direction inclined away from the inlet side of the impeller 32 in the axial direction as going from the radially outer side to the inner side It is also good.
  • FIG. 6 is a diagram showing a flow velocity distribution in the meridional plane among the flow analysis results in the labyrinth seal 50.
  • FIG. 7 is a diagram showing the relative total temperature distribution among the flow analysis results in the labyrinth seal 50. As shown in FIG.
  • the first convex portion 52 on the back side of the impeller 32 and the second convex portion 53 of the stationary member 46 are alternately arranged in the radial direction. It is arranged. Further, the flow path 51 between the first convex portion 52 and the second convex portion 53 has a minimum clearance between the radial outer surface of the first convex portion 52 and the tip portion of the second convex portion 53.
  • the portion 54 is formed.
  • the flow velocity distribution in the flow passage 51 has the highest flow velocity at the minimum clearance portion 54.
  • an expansion area 55 formed between adjacent second convex portions 53 and the tip end portion of the first convex portion 52 is located.
  • the fluid having a high flow velocity in the minimum clearance portion 54 decelerates rapidly in the expansion region 55. By repeating this, it is known that the pressure of the fluid gradually decreases.
  • the fluid having a high flow velocity that has actually passed through the minimum clearance portion 54 collides with the wall surface 56 on the stationary member 46 side, and the flow velocity is partial in the flow path returning to the impeller 32 side. It remains relatively high.
  • FIG. 6 the fluid having a high flow velocity that has actually passed through the minimum clearance portion 54 collides with the wall surface 56 on the stationary member 46 side, and the flow velocity is partial in the flow path returning to the impeller 32 side. It remains relatively high.
  • the labyrinth seal 10 which concerns on this embodiment is conceived based on the above-mentioned knowledge by the present inventors, and is further provided with the following composition.
  • a labyrinth comprising a plurality of minimum clearances 16 formed between the first projection 11 and the second projection 12 between the back surface 35 of the impeller 32 and the stationary member 46
  • a channel 15 is formed along the radial direction.
  • the stationary member 46 is positioned upstream of the minimum clearance portion 16, and the minimum The back surface 35 of the impeller 32 is located downstream of the clearance portion 16.
  • the stationary member 46 is positioned upstream of the minimum clearance 16 in the flow direction of the leakage flow passing through the minimum clearance 16, and the back surface 35 of the impeller 32 downstream of the minimum clearance 16. Is supposed to be located. Therefore, the fluid accelerated when passing through the minimum clearance portion 16 flows along the back surface 35 of the impeller 32 after colliding with the back surface 35 of the impeller 32 instead of the stationary member 46 side. Therefore, the fluid near the wall surface of the stationary member 46 having a high relative total temperature as viewed from the impeller 32 side is prevented from being transferred to the impeller 32 side along with the fluid having a high flow velocity which has passed through the minimum clearance portion 16 it can. Therefore, the amount of heat input from the fluid passing through the labyrinth seal 10 to the impeller 32 can be reduced, and the temperature rise of the impeller 32 can be suppressed.
  • the labyrinth seal 10 is configured to seal the radially inward leakage flow between the back surface 35 of the impeller 32 and the stationary member 46, and the minimum clearance 16 is a first protrusion It may be formed between the second protrusion 12 and the radially inner surface of the first end 11 or the first protrusion 11.
  • the flow of the fluid toward the back surface 35 of the impeller 32 can be realized on the downstream side of the minimum clearance portion 16. Thereby, the amount of heat input from the fluid passing through the labyrinth seal 10 to the impeller 32 can be reduced, and the temperature rise of the impeller 32 can be suppressed.
  • the radially inner surface of the first convex portion 11 or this surface side The minimum clearance portion 16 is formed by the tip (sword tip) of the second projection 12 and the radially outer surface of the second convex portion 12 or the tip (sword tip) on the surface side.
  • the fluid flowing along the radially inner surface of the first protrusion 11 or the radially outer surface of the second protrusion 12 is the stationary member 46. It flows from the side toward the impeller 32 side.
  • the labyrinth seal 10 may be configured to allow the fluid to flow radially inward from the inside in the flow path 15.
  • a seal tip 12 a is provided at the tip of the second convex portion 12 of the labyrinth seal 10. Further, the minimum clearance portion 16 is formed between the radial inner surface of the first convex portion 11 and the seal tip 12 a of the second convex portion 12. As a specific configuration example, the radially inner surface of the first convex portion 11 is formed along the axial direction. Further, the radially outer surface of the first convex portion 11 is formed to be inclined with respect to the axial direction.
  • the radially outer surface of the first convex portion 11 may be inclined in a direction away from the inlet side of the impeller 32 in the axial direction as it goes from the radially outer side to the inner side.
  • the width of the first convex portion 11 in the radial direction is larger at the end on the stationary member 46 side than the base on the rear surface 35 side of the impeller 32.
  • the first convex portion 11 may be rounded at corner portions in the radial direction, or the corner portions may be chamfered in a tapered shape.
  • both the radially inner surface and the outer surface are formed to be inclined with respect to the axial direction, and these surfaces are parallel to each other.
  • the radially inner surface and the outer surface of the second convex portion 12 may be inclined in a direction away from the inlet side of the impeller 32 in the axial direction as it goes from the radially outer side to the inner side.
  • R may be attached to the corner
  • the seal tip 12a is provided on the second convex portion 12 on the stationary member 46 side, the wall surface of the stationary member 46 from the flow of fluid passing through the minimal clearance portion 16 on the downstream side of the minimal clearance portion 16 (The wall surface of the second convex portion 12) is far away. For this reason, it is possible to effectively suppress a situation in which the flow velocity passing through the minimum clearance portion 16 is accompanied by the high fluid and transferred to the impeller 32 side. Therefore, the amount of heat input from the fluid passing through the labyrinth seal 10 to the impeller 32 can be effectively reduced, and the temperature rise of the impeller 32 can be further suppressed.
  • the radially inner surface of the first convex portion 11 forms a seal surface extending along the axial direction of the centrifugal compressor (for example, the direction of the rotation axis O shown in FIG. 1).
  • the second convex portion 12 is provided so as to protrude from the stationary member 46 toward the rear surface 35 side of the impeller 32 and the outer side in the radial direction.
  • a seal point 11 a is provided at the tip of the first convex portion 11 of the labyrinth seal 10. Further, the minimum clearance portion 16 is formed between the seal tip 11 a of the first convex portion 11 and the outer surface of the second convex portion 12 in the radial direction.
  • the radially inner surface of the first protrusion 11 and the radially outer surface of the first protrusion 11 are formed to be inclined with respect to the axial direction.
  • the radially inner surface of the first convex portion 11 and the radially outer surface of the first convex portion 11 are in the axial direction on the inlet side of the impeller 32 as they go from the radially outer side to the inner side. It may be inclined in the direction away from. Further, the inclination angles of the radial inner surface of the first convex portion 11 and the radial outer surface of the first convex portion 11 may be different. In this case, the width of the first convex portion 11 in the radial direction is larger at the end on the stationary member 46 side than at the base on the rear surface 35 side of the impeller 32.
  • first convex portion 11 may be rounded at corner portions in the radial direction, or the corner portions may be chamfered in a tapered shape.
  • first convex portion 11 may be rounded at corner portions in the radial direction, or the corner portions may be chamfered in a tapered shape.
  • second convex portion 12 both the radially inner surface and the outer surface are formed along the axial direction, and these surfaces are parallel to each other.
  • R may be attached to the corner
  • the minimum clearance portion 16 formed between the seal tip 11a of the first convex portion 11 on the impeller 32 side and the radial outer surface of the second convex portion 12 of the stationary member 46 is passed.
  • the fluid can be directed to the back 35 of the impeller 32.
  • the seal nib 11 a is provided at the tip of the first convex portion 11, and the minimum clearance portion 16 is the outer surface of the seal convex 11 a of the first convex portion 11 and the second convex portion 12 in the radial direction. And between.
  • the clearance width direction of the minimum clearance portion 16 is in the radial direction, the clearance width of the minimum clearance portion 16 is not easily affected even if the impeller 32 is shifted in the axial direction. Therefore, the seal performance deterioration due to the displacement of the axial direction of the impeller 32 can be suppressed.
  • the amount of heat input to the impeller 32 from the fluid passing through the labyrinth seal 10 is reduced, and the temperature rise of the impeller 32 is suppressed. Can. Therefore, the fall of the creep life resulting from high temperature formation of impeller 32 can be controlled.
  • the centrifugal compressor according to at least one embodiment of the present invention the amount of heat input from the fluid passing through the labyrinth seal 10 to the impeller 32 can be reduced, and the temperature rise of the impeller 32 can be suppressed. Therefore, it is possible to suppress a decrease in creep life caused by the high temperature of the impeller 32, and to realize a high pressure ratio of the centrifugal compressor.
  • the increase in pressure ratio of the centrifugal compressor is realized by reducing the amount of heat input from the fluid passing through the labyrinth seal 10 to the impeller 32.
  • the performance of the turbocharger 1 can be improved.
  • the present invention is not limited to the above-described embodiments, and includes the embodiments in which the above-described embodiments are modified, and the embodiments in which these embodiments are appropriately combined.
  • the application destination of the labyrinth seal 10 is limited to the centrifugal compressor 3 of a supercharger. Instead, it may be used for other centrifugal compressors.
  • the supercharger 1 was demonstrated as an application destination of a centrifugal compressor as an example in the said embodiment, the application destination of the centrifugal compressor which concerns on this embodiment is not limited to this.
  • relative or absolute arrangements such as “radial”, “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial”
  • the expression is not only to express such an arrangement strictly, but also to indicate a relative displacement or a relative displacement with an angle or distance that can obtain the same function.
  • expressions that indicate that things such as “identical”, “equal” and “homogeneous” are equal states not only represent strictly equal states, but also have tolerances or differences with which the same function can be obtained. It also represents the existing state.
  • expressions representing shapes such as quadrilateral shapes and cylindrical shapes not only represent shapes such as rectangular shapes and cylindrical shapes in a geometrically strict sense, but also uneven portions and chamfers within the range where the same effect can be obtained.
  • the shape including a part etc. shall also be expressed.
  • the expressions “comprising”, “including” or “having” one component are not exclusive expressions excluding the presence of other components.

Abstract

A labyrinth seal used in a centrifugal compressor is provided with: an impeller along which fluid flows radially; and a stationary member provided on the rear surface side of the impeller. The labyrinth seal is further provided with: a plurality of first protrusions individually circumferentially arranged at a plurality of radial positions on the rear surface of the impeller; and second protrusions circumferentially arranged on the stationary member so that the front end of each of the protrusions is located between adjacent first protrusions. A labyrinth-shaped flow passage including a plurality of minimum clearance sections formed between the first protrusions and the second protrusions is formed radially between the rear surface of the impeller and the stationary member. With respect to the direction of flow of leakage passing through the minimum clearance sections formed between the first protrusions and the second protrusions, the stationary member is located upstream of the minimum clearance sections, and the rear surface of the impeller is located downstream of the minimum clearance sections.

Description

ラビリンスシール、遠心圧縮機及び過給機Labyrinth seal, centrifugal compressor and supercharger
 本開示は、遠心圧縮機の半径方向に延在するラビリンスシール、並びにこれを備えた遠心圧縮機及び過給機に関する。 The present disclosure relates to a radially extending labyrinth seal of a centrifugal compressor, and a centrifugal compressor and a turbocharger provided with the same.
 一般に、過給機の遠心圧縮機は、遠心圧縮機に流入する空気を羽根車によって昇圧させるように構成されている。遠心圧縮機で昇圧された空気はエンジンシリンダに導かれて燃焼し、燃焼によって発生した高温高圧の燃焼ガスは、過給機のタービンを通過することでタービンに接続された軸を回転させ、軸の他端側に設けられた遠心圧縮機を駆動するようになっている。 Generally, a centrifugal compressor of a supercharger is configured to pressurize air flowing into the centrifugal compressor by an impeller. The air pressurized by the centrifugal compressor is led to the engine cylinder and burns, and the high-temperature, high-pressure combustion gas generated by the combustion passes through the turbine of the turbocharger to rotate the shaft connected to the turbine, The centrifugal compressor provided on the other end side of is driven.
 このような遠心圧縮機においては、羽根車を含む回転部材と軸受ケーシングを含む静止部材との間にラビリンスシールが設けられることがある。例えば、特許文献1には、排気タービン過給機の遠心圧縮機のインペラ背壁に配置されたラビリンスシールが記載されている。この構成においては、インペラを通過する際に圧縮された圧縮流体のインペラの背面側を介した漏れ流れを抑制するようになっている。 In such a centrifugal compressor, a labyrinth seal may be provided between a rotating member including an impeller and a stationary member including a bearing casing. For example, Patent Document 1 describes a labyrinth seal disposed on an impeller back wall of a centrifugal compressor of an exhaust gas turbine supercharger. In this configuration, the leakage flow of the compressed fluid compressed when passing through the impeller via the rear side of the impeller is suppressed.
 通常、ラビリンスシールは、狭隘な領域と流体膨張領域とが交互に設けられた構成を有する。これにより、遠心圧縮機からの流体の漏れ量を抑えることができる。また、ラビリンスシールを漏れ出る流体は徐々に圧力が低下するため、羽根車背面の圧力を下げることができる。遠心圧縮機を備える過給機においては、過給機のタービンに作用する流体力によりタービン側から圧縮機側に向かうスラストが作用する場合があり、この場合、羽根車背面の圧力を下げることはスラストバランスを適切に維持する観点から望ましい。 Usually, the labyrinth seal has a configuration in which narrow areas and fluid expansion areas are alternately provided. Thereby, the amount of fluid leakage from the centrifugal compressor can be suppressed. In addition, since the fluid leaking out of the labyrinth seal is gradually reduced in pressure, the pressure on the back of the impeller can be reduced. In a supercharger equipped with a centrifugal compressor, the fluid force acting on the turbine of the supercharger may exert a thrust from the turbine side to the compressor side, and in this case, it is necessary to reduce the pressure on the back of the impeller It is desirable from the viewpoint of maintaining the thrust balance properly.
特開平11-247618号公報JP-A-11-247618
 しかしながら、上記したようなラビリンスシールにおいては、狭隘な流路における流体摩擦により漏れ流れの温度が上昇し、羽根車への伝熱量が増加する。羽根車は回転により高い遠心応力が作用する部品であり、伝熱量によって温度が上昇すると、クリープによって破断する可能性が高まる。そのため、シール性が高く、且つ羽根車への伝熱力が小さいラビリンスシールが求められている。 However, in the labyrinth seal as described above, the temperature of the leak flow rises due to fluid friction in the narrow flow passage, and the amount of heat transfer to the impeller increases. The impeller is a component on which high centrifugal stress acts by rotation, and when the temperature is increased by the amount of heat transfer, the possibility of breakage due to creep increases. Therefore, there is a demand for a labyrinth seal having high sealing performance and small heat transfer to the impeller.
 この点、特許文献1のラビリンスシールにおいては、絞り箇所(狭隘な領域)の下流側に渦室を設け、絞り箇所を通過した流体のうち一部を渦室内で渦運動させてから残りの流体に合流させるようになっている。これにより、羽根車側への入熱をある程度抑制するようになっている。 In this point, in the labyrinth seal of Patent Document 1, a vortex chamber is provided on the downstream side of the throttling point (narrow area), and a part of the fluid passing through the throttling point is vortexed in the vortex chamber and the remaining fluid is It is supposed to join the Thereby, the heat input to the impeller side is suppressed to a certain extent.
 しかし、遠心圧縮機の効率向上の観点から圧力比が高まる傾向にあるため、羽根車側への入熱をさらに抑制することが望まれている。 However, since the pressure ratio tends to increase from the viewpoint of improving the efficiency of the centrifugal compressor, it is desired to further suppress the heat input to the impeller side.
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、ラビリンスシールを通過する流体から羽根車への入熱量を低減可能なラビリンスシール、並びにこれを備えた遠心圧縮機及び過給機を提供することを目的とする。 In view of the above-described circumstances, at least one embodiment of the present invention provides a labyrinth seal capable of reducing the amount of heat input from the fluid passing through the labyrinth seal to the impeller, and a centrifugal compressor and a turbocharger provided with the same. The purpose is to
(1)本発明の少なくとも一実施形態に係るラビリンスシールは、
 流体が半径方向に流れる羽根車と、前記羽根車の背面側に設けられる静止部材とを備える遠心圧縮機に用いられるラビリンスシールであって、
 前記羽根車の背面上の複数の半径方向位置において周方向に沿ってそれぞれ設けられる複数の第1凸部と、
 隣接する前記第1凸部間に先端部が侵入するように前記静止部材に周方向に沿って設けられる複数の第2凸部と、を備え、
 前記羽根車の前記背面と前記静止部材との間には、前記第1凸部と前記第2凸部との間に形成される複数の最小クリアランス部を含むラビリンス状の流路が前記半径方向に沿って形成されており、
 前記第1凸部と前記第2凸部との間に形成される最小クリアランス部を通過する漏れ流れの流れ方向において、前記最小クリアランス部の上流側に前記静止部材が位置し、前記最小クリアランス部の下流側に前記羽根車の前記背面が位置することを特徴とする。
(1) The labyrinth seal according to at least one embodiment of the present invention,
A labyrinth seal for use in a centrifugal compressor comprising: an impeller through which fluid flows in a radial direction; and a stationary member provided on the rear side of the impeller,
A plurality of first convex portions respectively provided along the circumferential direction at a plurality of radial positions on the rear surface of the impeller;
And a plurality of second convex portions provided along the circumferential direction on the stationary member such that a tip end portion intrudes between the adjacent first convex portions.
Between the rear surface of the impeller and the stationary member, a labyrinth-like flow path including a plurality of minimum clearances formed between the first projection and the second projection is in the radial direction. Formed along the
The stationary member is positioned upstream of the minimum clearance portion in the flow direction of the leak flow passing through the minimum clearance portion formed between the first convex portion and the second convex portion, and the minimum clearance portion The back side of the impeller is located on the downstream side of the wheel.
 本発明者らの鋭意検討の結果、従来のラビリンスシールにおける羽根車への入熱の原因の一つが、最小クリアランス部を通過した流速の高い流体が静止部材側の壁面に衝突してこの壁面に流れる際、羽根車側からみて相対全温が高い静止部材の壁面近傍の流体を随伴して羽根車側に移送してしまう点にあることを見出した。
 上記(1)の構成は、本発明者らによるこの知見に基づいて着想されたものであり、最小クリアランス部を通過する漏れ流れの流れ方向において、最小クリアランス部の上流側に静止部材が位置し、且つ、最小クリアランス部の下流側に羽根車の背面が位置するようになっている。このため、最小クリアランス部を通過する際に加速された流体は、静止部材側ではなく羽根車の背面に衝突した後、羽根車の背面に沿って流れる。よって、羽根車側からみて相対全温の高い静止部材の壁面近傍の流体が、最小クリアランス部を通過した流速の高い流体に随伴されて羽根車側に移送されてしまう事態を抑制できる。したがって、ラビリンスシールを通過する流体から羽根車への入熱量を低減し、羽根車の温度上昇を抑制することができる。
As a result of intensive studies by the present inventors, one of the causes of heat input to the impeller in the conventional labyrinth seal is that the fluid having a high flow velocity that has passed through the minimum clearance portion collides with the wall surface of the stationary member and It has been found that when flowing, fluid in the vicinity of the wall surface of the stationary member, which has a high relative temperature as viewed from the impeller side, is transported to the impeller side.
The configuration of the above (1) is conceived based on this finding by the present inventors, and the stationary member is located upstream of the minimum clearance portion in the flow direction of the leakage flow passing through the minimum clearance portion. And, the back of the impeller is positioned downstream of the minimum clearance portion. For this reason, the fluid accelerated when passing through the minimum clearance portion flows along the back of the impeller after colliding with the back of the impeller instead of the stationary member side. Therefore, it is possible to suppress a situation in which the fluid near the wall surface of the stationary member having a high relative total temperature as viewed from the impeller side is accompanied by the fluid having the high flow velocity which has passed through the minimum clearance portion and transported to the impeller side. Therefore, the amount of heat input from the fluid passing through the labyrinth seal to the impeller can be reduced, and the temperature rise of the impeller can be suppressed.
(2)幾つかの実施形態では、上記(1)の構成において、前記ラビリンスシールは、前記羽根車の前記背面と前記静止部材との間を半径方向の内側に向かう前記漏れ流れをシールするように構成され、前記最小クリアランス部は、前記第1凸部の先端または前記第1凸部の前記半径方向の内側の面と前記第2凸部との間に形成される。
 上記(2)の構成によれば、半径方向内側に向かう漏れ流れをシールするラビリンスシールにおいて、最小クリアランス部の下流側において流体の羽根車背面に向かう流れを実現できる。これにより、ラビリンスシールを通過する流体から羽根車への入熱量を低減し、羽根車の温度上昇を抑制することができる。
(2) In some embodiments, in the configuration of the above (1), the labyrinth seal seals the leakage flow directed radially inward between the rear surface of the impeller and the stationary member. The minimum clearance portion is formed between the tip of the first convex portion or the radially inner surface of the first convex portion and the second convex portion.
According to the configuration of the above (2), in the labyrinth seal that seals the leak flow directed inward in the radial direction, it is possible to realize the flow of the fluid toward the back surface of the impeller downstream of the minimum clearance portion. Thus, the amount of heat input from the fluid passing through the labyrinth seal to the impeller can be reduced, and the temperature rise of the impeller can be suppressed.
(3)一実施形態では、上記(2)の構成において、前記第2凸部の先端にはシール剣先が設けられており、前記最小クリアランス部は、前記第1凸部の前記半径方向の内側の面と、前記第2凸部の前記シール剣先との間に形成される。
 上記(3)の構成によれば、静止部材側の第2凸部にシール剣先を設けたので、最小クリアランス部の下流側において、最小クリアランス部を通過した流体の流れから静止部材の壁面(第2凸部の壁面)が遠ざかっている。このため、最小クリアランス部を通過した流速が高い流体に随伴されて羽根車側に移送されてしまう事態を効果的に抑制できる。よって、ラビリンスシールを通過する流体から羽根車への入熱量を効果的に低減し、羽根車の温度上昇をより一層抑制することができる。
(3) In one embodiment, in the configuration of the above (2), a seal sword tip is provided at the tip of the second convex portion, and the minimum clearance portion is an inner side in the radial direction of the first convex portion. And the seal tip of the second protrusion.
According to the configuration of the above (3), since the seal blade tip is provided on the second convex portion on the stationary member side, the wall surface of the stationary member from the flow of fluid passing through the minimal clearance portion on the downstream side of the minimal clearance portion 2) The wall surface of the convex part is moving away. For this reason, it is possible to effectively suppress a situation in which the flow velocity passing through the minimum clearance portion is accompanied by the high fluid and transferred to the impeller side. Therefore, the amount of heat input from the fluid passing through the labyrinth seal to the impeller can be effectively reduced, and the temperature rise of the impeller can be further suppressed.
(4)一実施形態では、上記(3)の構成において、前記第1凸部の前記半径方向の内側の面は、前記遠心圧縮機の軸方向に沿って延在するシール面を形成しており、前記第2凸部は、前記羽根車の前記背面側かつ前記半径方向の外側に向かって前記静止部材から突出して設けられている。
 上記(4)の構成によれば、最小クリアランス部のクリアランス幅方向が半径方向に沿っているため、羽根車が軸方向にずれても、最小クリアランス部のクリアランス幅は影響を受けにくい。よって、羽根車の軸方向位置のずれによるシール性能低下を抑制することができる。
(4) In one embodiment, in the configuration of the above (3), the radially inner surface of the first convex portion forms a sealing surface extending along the axial direction of the centrifugal compressor. The second convex portion is provided so as to project from the stationary member toward the rear surface side of the impeller and the outer side in the radial direction.
According to the configuration of the above (4), since the clearance width direction of the minimum clearance portion is along the radial direction, the clearance width of the minimum clearance portion is hardly affected even if the impeller is shifted in the axial direction. Therefore, the seal performance deterioration due to the displacement of the axial direction of the impeller can be suppressed.
(5)他の実施形態では、上記(2)の構成において、前記第1凸部の先端にはシール剣先が設けられており、前記最小クリアランス部は、前記第1凸部の前記シール剣先と、前記第2凸部の前記半径方向の外側の面との間に形成される。
 上記(5)の構成によれば、羽根車側の第1凸部のシール剣先と、静止部材の第2凸部の径方向外側の面との間に形成される最小クリアランス部を通過した流体を、羽根車背面に向かわせることができる。これにより、ラビリンスシールを通過する流体から羽根車への入熱量を低減し、羽根車の温度上昇を抑制することができる。
(5) In another embodiment, in the configuration of the above (2), a seal sword tip is provided at the tip of the first convex portion, and the minimum clearance portion is the seal sword tip of the first convex portion. And the radial outer surface of the second projection.
According to the configuration of (5), the fluid that has passed through the minimum clearance formed between the seal tip of the first projection on the impeller side and the radially outer surface of the second projection of the stationary member Can be directed to the back of the impeller. Thus, the amount of heat input from the fluid passing through the labyrinth seal to the impeller can be reduced, and the temperature rise of the impeller can be suppressed.
(6)一実施形態では、上記(5)の構成において、前記第1凸部の先端にはシール剣先が設けられており、前記最小クリアランス部は、前記第1凸部の前記シール剣先と、前記第2凸部の前記半径方向の外側の面との間に形成される。
 上記(6)の構成によれば、最小クリアランス部のクリアランス幅方向が半径方向に沿っているため、羽根車が軸方向にずれても、最小クリアランス部のクリアランス幅は影響を受けにくい。よって、羽根車の軸方向位置のずれによるシール性能低下を抑制することができる。
(6) In one embodiment, in the configuration of the above (5), a seal sword tip is provided at the tip of the first convex portion, the minimum clearance portion is the seal sword tip of the first convex portion, It is formed between the radially outer surface of the second convex portion.
According to the configuration of the above (6), since the clearance width direction of the minimum clearance portion is along the radial direction, the clearance width of the minimum clearance portion is hardly influenced even if the impeller is shifted in the axial direction. Therefore, the seal performance deterioration due to the displacement of the axial direction of the impeller can be suppressed.
(7)本発明の少なくとも一実施形態に係る遠心圧縮機は、
 流体が半径方向に流れる羽根車と、
 前記羽根車の背面側に設けられる静止部材と、
 前記羽根車の前記背面と前記静止部材との間に設けられる上記(1)乃至(6)の何れかの構成に記載のラビリンスシールと、を備えることを特徴とする。
 上記(7)の構成によれば、ラビリンスシールを通過する流体から羽根車への入熱量を低減し、羽根車の温度上昇を抑制することができる。よって、羽根車の高温化に起因したクリープ寿命の低下を抑制でき、遠心圧縮機の高圧力比化を実現することが可能になる。
(7) A centrifugal compressor according to at least one embodiment of the present invention,
An impeller through which fluid flows in a radial direction;
A stationary member provided on the back side of the impeller;
The labyrinth seal according to any one of the above (1) to (6) may be provided between the rear surface of the impeller and the stationary member.
According to the structure of said (7), the heat gain to the impeller from the fluid which passes a labyrinth seal can be reduced, and the temperature rise of an impeller can be suppressed. Therefore, it is possible to suppress a decrease in creep life caused by the high temperature of the impeller, and to realize a high pressure ratio of the centrifugal compressor.
(8)本発明の少なくとも一実施形態に係る過給機は、
 上記(7)の構成に記載の遠心圧縮機を含んで構成され、内燃機関への吸気を圧縮するための圧縮機と、
 内燃機関の排気ガスによって駆動されて、前記圧縮機を駆動するように構成されたタービンと、を備える。
 上記(8)の構成によれば、ラビリンスシールを通過する流体から羽根車への入熱量を低減することで、遠心圧縮機の高圧力比化が実現可能となり、過給機の性能を向上させることができる。
(8) A turbocharger according to at least one embodiment of the present invention,
A compressor configured to include the centrifugal compressor according to the configuration of the above (7), for compressing intake air to an internal combustion engine;
And a turbine configured to be driven by the exhaust gas of an internal combustion engine to drive the compressor.
According to the configuration of the above (8), by reducing the amount of heat input from the fluid passing through the labyrinth seal to the impeller, it is possible to realize high pressure ratio of the centrifugal compressor and improve the performance of the turbocharger. be able to.
 本発明の少なくとも一実施形態によれば、ラビリンスシールを通過する流体から羽根車への入熱量を低減し、羽根車の温度上昇を抑制することができる。よって、羽根車の高温化に起因したクリープ寿命の低下を抑制できる。 According to at least one embodiment of the present invention, the amount of heat input from the fluid passing through the labyrinth seal to the impeller can be reduced, and the temperature rise of the impeller can be suppressed. Therefore, the fall of the creep life resulting from temperature rising of an impeller can be suppressed.
一実施形態に係る過給機の全体構成を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the whole structure of the turbocharger which concerns on one Embodiment. 一実施形態に係るラビリンスシールを示す図であり、羽根車の背面周辺の縦断面図である。It is a figure which shows the labyrinth seal which concerns on one Embodiment, and is a longitudinal cross-sectional view of the back surface periphery periphery of an impeller. 図2Aに示す羽根車を背面(A方向)から視た平面図である。It is the top view which looked the impeller shown to FIG. 2A from the back surface (A direction). 一実施形態に係るラビリンスシールを示す図であり、羽根車及び静止部材の概略断面図である。It is a figure showing a labyrinth seal concerning one embodiment, and is an outline sectional view of an impeller and a stationary member. 図3に示すラビリンスシールの拡大断面図である。It is an expanded sectional view of the labyrinth seal shown in FIG. 他の実施形態に係るラビリンスシールの拡大断面図である。It is an expanded sectional view of the labyrinth seal concerning other embodiments. ラビリンスシールにおける流動解析結果のうち子午面内流速分布を示す図である。It is a figure which shows the flow velocity distribution in a meridional plane among the flow analysis results in a labyrinth seal. ラビリンスシールにおける流動解析結果のうち相対全温分布を示す図である。It is a figure which shows relative whole temperature distribution among the flow analysis results in a labyrinth seal.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, but are merely illustrative. Absent.
 最初に、図1を参照して、本実施形態に係るラビリンスシール10が適用される過給機1について説明する。同図において、具体的にラビリンスシール10は、過給機1の遠心圧縮機3に適用されている。なお、ラビリンスシール10の適用先は図示される遠心圧縮機3に限定されるものではなく、他の形態の遠心圧縮機に用いられてもよい。 First, with reference to FIG. 1, a supercharger 1 to which a labyrinth seal 10 according to the present embodiment is applied will be described. In the figure, the labyrinth seal 10 is specifically applied to the centrifugal compressor 3 of the supercharger 1. The application destination of the labyrinth seal 10 is not limited to the illustrated centrifugal compressor 3 and may be used for other types of centrifugal compressors.
 図1は、一実施形態に係る過給機1の全体構成を示す断面図(縦断面図)であり、一例として舶用の排気タービン過給機を示している。
 同図に示すように、一実施形態に係る過給機1は、内燃機関(例えば舶用ディーゼル機関)からの排ガスによって駆動されるように構成された軸流タービン(以下、タービンと称する)2と、このタービン2によって駆動され、内燃機関に供給される吸気を圧縮するように構成された遠心圧縮機3と、を備える。
FIG. 1 is a cross-sectional view (longitudinal cross-sectional view) showing an entire configuration of a turbocharger 1 according to an embodiment, and shows an exhaust turbine turbocharger for marine use as an example.
As shown in the figure, a turbocharger 1 according to an embodiment is an axial flow turbine (hereinafter referred to as a turbine) 2 configured to be driven by exhaust gas from an internal combustion engine (for example, a marine diesel engine). And a centrifugal compressor 3 driven by the turbine 2 and configured to compress intake air supplied to the internal combustion engine.
 具体的な構成例として、タービン2と遠心圧縮機3の間には軸受台4が設けられている。タービン2のタービンケーシング21と、軸受台4と、遠心圧縮機3の圧縮機ケーシング31とは、締結部材(例えばボルト)等の連結手段によって一体的に構成される。軸受台4には、スラスト軸受41と、ラジアル軸受42,43が収容されている。これらのスラスト軸受41及びラジアル軸受42,43によって、ロータ5が回転自在に支持されている。ロータ5の一端側にはタービン2の動翼24が連結されており、他端側には遠心圧縮機3の羽根車32が連結されている。 As a specific configuration example, a bearing stand 4 is provided between the turbine 2 and the centrifugal compressor 3. The turbine casing 21 of the turbine 2, the bearing stand 4, and the compressor casing 31 of the centrifugal compressor 3 are integrally configured by connection means such as a fastening member (for example, a bolt). A thrust bearing 41 and radial bearings 42 and 43 are accommodated in the bearing stand 4. The rotor 5 is rotatably supported by the thrust bearing 41 and the radial bearings 42 and 43. The moving blade 24 of the turbine 2 is connected to one end side of the rotor 5, and the impeller 32 of the centrifugal compressor 3 is connected to the other end side.
 タービン2は、内燃機関(不図示)の排気ガスによって駆動されて、遠心圧縮機3を駆動するように構成される。具体的に、タービン2は、ロータ5(実際にはロータ5の一端側)と、ロータ5の外周に植設された複数の動翼24と、ロータ5及び動翼24の外周側に設けられたタービンケーシング21と、を含む。タービンケーシング21を含む静止系部材によって、排気ガスが流れる入口通路27と軸方向通路28と出口通路29とが、排気ガスの流れ方向において順に形成されている。軸方向通路28は、入口通路27と出口通路29との間に位置し、ロータ5の回転軸Oに沿って延在する。この軸方向通路に動翼24が設けられている。また、動翼24の入口側にはタービンノズル(静翼)25が設けられている。
 このタービン2においては、内燃機関からの排気ガスが入口通路27から導入されて、軸方向通路28を流れる排気ガスによって動翼24に連結されたロータ5が回転するようになっている。動翼24を通過した排気ガスは、出口通路29を通って排出される。
The turbine 2 is configured to be driven by the exhaust gas of an internal combustion engine (not shown) to drive the centrifugal compressor 3. Specifically, the turbine 2 is provided on the outer peripheral side of the rotor 5 (actually, one end side of the rotor 5), a plurality of moving blades 24 implanted on the outer periphery of the rotor 5, the rotor 5 and the moving blades 24. And a turbine casing 21. An inlet passage 27 through which exhaust gas flows, an axial passage 28 and an outlet passage 29 are sequentially formed in the flow direction of the exhaust gas by the stationary system member including the turbine casing 21. An axial passage 28 is located between the inlet passage 27 and the outlet passage 29 and extends along the rotational axis O of the rotor 5. A moving blade 24 is provided in the axial passage. Further, a turbine nozzle (static blade) 25 is provided on the inlet side of the moving blade 24.
In the turbine 2, exhaust gas from the internal combustion engine is introduced from the inlet passage 27, and the rotor 5 coupled to the moving blades 24 is rotated by the exhaust gas flowing through the axial passage 28. Exhaust gas having passed through the moving blades 24 is discharged through the outlet passage 29.
 遠心圧縮機3は、内燃機関(不図示)への吸気を圧縮するように構成され、ロータ5(実際にはロータ5の他端側)と、ロータ5の外周に設けられた羽根車32と、ロータ5及び羽根車32の外周側に設けられた圧縮機ケーシング31と、を含む。圧縮機ケーシング31を含む静止系部材によって、空気入口37及び出口スクロール38が形成されている。空気入口37と出口スクロール38との間には、空気の流れ方向(遠心圧縮機3の半径方向)において順に羽根車32とディフューザ36とが配置されている。羽根車32は、ロータ5の外周に固定された円盤状のハブ33と、ハブ33に固定され、該ハブ33に対して放射状に配列された複数の羽根(ベーン)34と、を有する。この羽根車32には、流体(ここでは空気)が半径方向に流れるようになっている。なお、図1には単段の遠心圧縮機について例示したが、多段の遠心圧縮機であってもよい。 The centrifugal compressor 3 is configured to compress intake air to an internal combustion engine (not shown), and the rotor 5 (actually, the other end side of the rotor 5) and an impeller 32 provided on the outer periphery of the rotor 5 , And a compressor casing 31 provided on the outer peripheral side of the rotor 5 and the impeller 32. An air inlet 37 and an outlet scroll 38 are formed by a stationary system member including the compressor casing 31. Between the air inlet 37 and the outlet scroll 38, an impeller 32 and a diffuser 36 are disposed in order in the air flow direction (radial direction of the centrifugal compressor 3). The impeller 32 has a disk-like hub 33 fixed to the outer periphery of the rotor 5 and a plurality of vanes 34 fixed to the hub 33 and arranged radially with respect to the hub 33. In the impeller 32, fluid (here, air) flows in the radial direction. In addition, although illustrated about the single stage centrifugal compressor in FIG. 1, a multistage centrifugal compressor may be sufficient.
 この遠心圧縮機3において、空気入口37から導入された空気は、羽根車32、ディフューザ36及び出口スクロール38を通過する際に昇圧されるようになっている。遠心圧縮機3で圧縮された空気の大部分は、内燃機関のエンジンシリンダに導かれ、燃焼・膨張行程でピストンを押し下げる仕事を行う。ここで発生した高温高圧の燃焼ガスは、タービン2に送られ、タービン2によって同軸上の遠心圧縮機3を駆動するようになっている。 In the centrifugal compressor 3, the air introduced from the air inlet 37 is pressurized when passing through the impeller 32, the diffuser 36 and the outlet scroll 38. Most of the air compressed by the centrifugal compressor 3 is led to the engine cylinder of the internal combustion engine and performs the work of pushing down the piston in the combustion / expansion stroke. The high-temperature and high-pressure combustion gas generated here is sent to the turbine 2, and the turbine 2 drives the centrifugal compressor 3 coaxially.
 軸受台4には、潤滑油供給通路44が形成されている。潤滑油供給通路44の一端側は潤滑油供給部(例えばオイルタンク及びオイルポンプ)に接続されている。潤滑油供給通路44の他端側は複数に分岐しており、分岐端部はスラスト軸受41及びラジアル軸受42,43にそれぞれ接続されている。そして、潤滑油供給通路44を介して、スラスト軸受41及びラジアル軸受42,43にそれぞれ潤滑油が供給されるようになっている。 A lubricating oil supply passage 44 is formed in the bearing stand 4. One end of the lubricating oil supply passage 44 is connected to a lubricating oil supply unit (for example, an oil tank and an oil pump). The other end of the lubricating oil supply passage 44 is branched into a plurality of branches, and the branched ends are connected to the thrust bearing 41 and the radial bearings 42 and 43, respectively. The lubricating oil is supplied to the thrust bearing 41 and the radial bearings 42 and 43 through the lubricating oil supply passage 44, respectively.
 上記したような構成を有する過給機1において、遠心圧縮機3と軸受台4の間には、ラビリンスシール10が設けられている。具体的には、ラビリンスシール10は、羽根車32と、羽根車32に対面する軸受台4の静止部材46との間をシールするように構成されている。
 このラビリンスシール10によって、主として、軸受台4の内部の潤滑油を含む空気が遠心圧縮機3の圧縮空気に混入することを防止している。軸受台4の内部空間には、潤滑油が飛散したミストが充満していることがある。このミストが遠心圧縮機3の圧縮空気に混入することを防止するために、羽根車32を通過した高圧の圧縮空気の一部を、ラビリンスシール10を介して羽根車32の背面に流すことで、遠心圧縮機3の圧縮空気の流路と軸受台4の内部空間との間をシールしている。
In the turbocharger 1 having the configuration as described above, a labyrinth seal 10 is provided between the centrifugal compressor 3 and the bearing stand 4. Specifically, the labyrinth seal 10 is configured to seal between the impeller 32 and the stationary member 46 of the bearing stand 4 facing the impeller 32.
The labyrinth seal 10 mainly prevents air containing lubricating oil in the bearing stand 4 from mixing in with the compressed air of the centrifugal compressor 3. The internal space of the bearing stand 4 may be filled with mist in which the lubricating oil is scattered. In order to prevent this mist from being mixed with the compressed air of the centrifugal compressor 3, part of the high pressure compressed air that has passed through the impeller 32 is caused to flow to the back of the impeller 32 through the labyrinth seal 10. Between the flow path of the compressed air of the centrifugal compressor 3 and the internal space of the bearing stand 4.
 また、過給機1において、羽根車32からの吐出空気の一部は背面に回り込み、軸受台4の内部空間に漏れ込むことがある。この場合、羽根車32の背面は高い圧力となり、ロータ5の回転軸Oの方向において羽根車32には背面側から羽根車32の入口側に向かう高いスラスト力が作用する。この高スラスト力は、スラスト軸受41の大型化や高摩擦損失に繋がる可能性がある。そのため、スラストバランスの観点からも、ラビリンスシール10によって羽根車32の背面の圧力を下げることが望ましい場合もある。 Further, in the turbocharger 1, a part of the air discharged from the impeller 32 may go around to the back and leak into the internal space of the bearing stand 4. In this case, the back surface of the impeller 32 has a high pressure, and in the direction of the rotation axis O of the rotor 5, a high thrust force acting on the impeller 32 from the back surface side to the inlet side of the impeller 32 acts. This high thrust force may lead to an increase in the size of the thrust bearing 41 and high friction loss. Therefore, also from the viewpoint of thrust balance, it may be desirable to reduce the pressure on the rear surface of the impeller 32 by the labyrinth seal 10.
 ここで、図2A及び図2B~図5を参照して、本実施形態に係るラビリンスシール10について、詳細に説明する。なお、図2Aは、一実施形態に係るラビリンスシール10を示す図であり、羽根車32の背面周辺の縦断面図である。図2Bは、図2Aに示す羽根車32を背面(A方向)35側から視た平面図である。図3は、一実施形態に係るラビリンスシール10を示す図であり、羽根車32及び静止部材46の概略断面図である。図4及び図5は、各実施形態におけるラビリンスシール10の拡大断面図である。 Here, the labyrinth seal 10 according to the present embodiment will be described in detail with reference to FIGS. 2A and 2B to 5. FIG. 2A is a view showing the labyrinth seal 10 according to one embodiment, and is a longitudinal cross-sectional view of the periphery of the back surface of the impeller 32. As shown in FIG. FIG. 2B is a plan view of the impeller 32 shown in FIG. 2A as viewed from the rear surface (direction A) 35 side. FIG. 3 is a view showing the labyrinth seal 10 according to one embodiment, and is a schematic cross-sectional view of the impeller 32 and the stationary member 46. As shown in FIG. FIG.4 and FIG.5 is an expanded sectional view of the labyrinth seal 10 in each embodiment.
 図2A及び図2B~図5に示すように、本実施形態に係るラビリンスシール10は、流体(例えば空気)が半径方向に流れる羽根車32と、羽根車32の背面35側に設けられる静止部材46とを備える遠心圧縮機に用いられる。このラビリンスシール10は、羽根車32の背面35と、静止部材46との間を、遠心圧縮機の半径方向においてシールするようになっている。 As shown in FIGS. 2A and 2B to 5, the labyrinth seal 10 according to this embodiment includes an impeller 32 through which fluid (for example, air) flows in a radial direction, and a stationary member provided on the back surface 35 of the impeller 32. And 46 are used in a centrifugal compressor. The labyrinth seal 10 seals between the rear surface 35 of the impeller 32 and the stationary member 46 in the radial direction of the centrifugal compressor.
 幾つかの実施形態において、ラビリンスシール10は、羽根車32の背面35に設けられた複数の第1凸部11と、静止部材46に設けられた複数の第2凸部12と、を含んでいる。第1凸部11と第2凸部12との間には、ラビリンス状の流路15が半径方向に沿って形成されている。
 複数の第1凸部11は、羽根車32の背面35上の複数の半径方向位置において周方向に沿ってそれぞれ設けられている。例えば図2Bに示すように、複数の第1凸部11は、ロータ5の回転軸Oを中心として環状に複数設けられている。すなわち、複数の第1凸部11が同心円上に形成されている。
 複数の第2凸部12は、隣接する第1凸部11間に先端部が侵入するように静止部材46に周方向に沿って設けられている。例えば、複数の第2凸部12は、図2Bに示す複数の第1凸部11に対応するように、ロータ5の回転軸Oを中心として環状に複数設けられている。すなわち、複数の第2凸部12が同心円上に形成されている。
In some embodiments, the labyrinth seal 10 includes a plurality of first projections 11 provided on the back surface 35 of the impeller 32 and a plurality of second projections 12 provided on the stationary member 46. There is. A labyrinth flow passage 15 is formed between the first convex portion 11 and the second convex portion 12 in the radial direction.
The plurality of first protrusions 11 are provided along the circumferential direction at a plurality of radial positions on the back surface 35 of the impeller 32. For example, as shown in FIG. 2B, a plurality of first convex portions 11 are provided in a ring shape around the rotation axis O of the rotor 5. That is, the plurality of first convex portions 11 are formed concentrically.
The plurality of second convex portions 12 are provided along the circumferential direction on the stationary member 46 such that the tip end portion enters between the adjacent first convex portions 11. For example, the plurality of second convex portions 12 are annularly provided around the rotation axis O of the rotor 5 so as to correspond to the plurality of first convex portions 11 shown in FIG. 2B. That is, the plurality of second convex portions 12 are formed concentrically.
 図2A及び図2B~図5においては、半径方向において隣り合う2つの第1凸部11の間に1つの第2凸部12が配置された構成、すなわち半径方向において第1凸部11と第2凸部12とが1つずつ交互に配置された構成について例示している。ただし、隣り合う2つの第1凸部11の間に、少なくとも1つの第2凸部12が配置されていればよく、例えば、半径方向において隣り合う2つの第1凸部11の間に、2つの第2凸部12が配置されていてもよい。
 また、図2A及び図2B~図5においては、羽根車32の背面35が、ロータ5の回転軸Oに直交するように形成されている。この場合、複数の第1凸部11の半径方向における配列方向、及び、複数の第2凸部12の半径方向における配列方向は、いずれもロータ5の回転軸Oに直交する方向となっている。ただし、複数の第1凸部11又は複数の第2凸部12の配列方向は、回転軸Oに直交する面に対して傾斜した方向であってもよい。例えば、複数の第1凸部11又は複数の第2凸部は、半径方向外側から内側へ向かうにつれて、軸方向において羽根車32の入口側から離れるように傾斜した方向に沿って配列されていてもよい。
In FIGS. 2A and 2B to 5, one second protrusion 12 is disposed between two adjacent first protrusions 11 in the radial direction, ie, the first protrusion 11 and the first protrusion 11 in the radial direction. The configuration in which the two convex portions 12 are alternately arranged one by one is illustrated. However, at least one second convex portion 12 may be disposed between two adjacent first convex portions 11, and, for example, between two adjacent first convex portions 11 in the radial direction, Two second projections 12 may be disposed.
Further, in FIGS. 2A and 2B to 5, the back surface 35 of the impeller 32 is formed to be orthogonal to the rotation axis O of the rotor 5. In this case, the arrangement direction of the plurality of first protrusions 11 in the radial direction and the arrangement direction of the plurality of second protrusions 12 in the radial direction are both orthogonal to the rotation axis O of the rotor 5 . However, the arrangement direction of the plurality of first convex portions 11 or the plurality of second convex portions 12 may be a direction inclined with respect to a plane orthogonal to the rotation axis O. For example, the plurality of first protrusions 11 or the plurality of second protrusions are arranged along a direction inclined away from the inlet side of the impeller 32 in the axial direction as going from the radially outer side to the inner side It is also good.
 上記構成を備えるラビリンスシール10において、流路15を通過する流体から羽根車32への入熱量を低減することを目的として、本発明者らが鋭意検討した結果、以下の知見が得られた。
 本発明者らは、比較例としてラビリンスシール50を用いて流動解析を行い、ラビリンスシール50の流路51内における流速分布と温度分布を算出した。
 図6は、ラビリンスシール50における流動解析結果のうち子午面内流速分布を示す図である。図7は、ラビリンスシール50における流動解析結果のうち相対全温分布を示す図である。なお、比較例であるラビリンスシール50は、図6及び図7に示すように、羽根車32の背面側の第1凸部52と静止部材46の第2凸部53とが半径方向に交互に配置されている。また、第1凸部52と第2凸部53との間の流路51は、第1凸部52の半径方向の外側の面と、第2凸部53の先端部との間に最小クリアランス部54が形成されている。
In the labyrinth seal 10 having the above-described configuration, as a result of intensive studies by the present inventors for the purpose of reducing the amount of heat input from the fluid passing through the flow path 15 to the impeller 32, the following findings were obtained.
The present inventors conducted flow analysis using the labyrinth seal 50 as a comparative example, and calculated the flow velocity distribution and temperature distribution in the flow path 51 of the labyrinth seal 50.
FIG. 6 is a diagram showing a flow velocity distribution in the meridional plane among the flow analysis results in the labyrinth seal 50. FIG. 7 is a diagram showing the relative total temperature distribution among the flow analysis results in the labyrinth seal 50. As shown in FIG. In the labyrinth seal 50 of the comparative example, as shown in FIGS. 6 and 7, the first convex portion 52 on the back side of the impeller 32 and the second convex portion 53 of the stationary member 46 are alternately arranged in the radial direction. It is arranged. Further, the flow path 51 between the first convex portion 52 and the second convex portion 53 has a minimum clearance between the radial outer surface of the first convex portion 52 and the tip portion of the second convex portion 53. The portion 54 is formed.
 図6に示すように、流路51内の流速分布は、最小クリアランス部54において流速が最も高くなっている。最小クリアランス部54の下流側には、隣り合う第2凸部53の間と第1凸部52の先端部とにより形成される膨張領域55が位置する。一般的には、最小クリアランス部54において高流速となった流体は、膨張領域55において急減速する。これを繰り返すことによって、流体の圧力が徐々に低下していくことが知られている。しかし、図6に示すように、実際には最小クリアランス部54を通過した流速の高い流体は静止部材46側の壁面56に衝突し、羽根車32側へ戻る一部の流路においては流速が比較的高いままである。
 一方、図7に示すように、流路51内において相対全温が比較的高い領域は静止部材46側に存在する。その理由は、静止部材46付近の流体は絶対系における流速が小さく、羽根車32とともに回転する回転座標系における流速が大きいことから、静止部材46付近の流体は、回転壁面側(羽根車32の背面側)の流体に対して相対全温が高くなるためである。
 ここで、図6に戻り、比較例におけるラビリンスシール50では、流路51内において、最小クリアランス部54を通過した流速の高い流体が静止部材46側の壁面56に衝突し、羽根車32側へ戻る比較的高流速な流路が存在する。そのため、最小クリアランス部54を通過した流速の高い流体が静止部材46側の壁面56に衝突してこの壁面56に流れる際、羽根車32側からみて相対全温が高い静止部材46の壁面56近傍の流体を随伴して羽根車32側に移送してしまうことが考えられる。本発明者らは、これがラビリンスシール50における羽根車32への入熱増大の原因の一つであることを見出した。
As shown in FIG. 6, the flow velocity distribution in the flow passage 51 has the highest flow velocity at the minimum clearance portion 54. On the downstream side of the minimum clearance portion 54, an expansion area 55 formed between adjacent second convex portions 53 and the tip end portion of the first convex portion 52 is located. In general, the fluid having a high flow velocity in the minimum clearance portion 54 decelerates rapidly in the expansion region 55. By repeating this, it is known that the pressure of the fluid gradually decreases. However, as shown in FIG. 6, the fluid having a high flow velocity that has actually passed through the minimum clearance portion 54 collides with the wall surface 56 on the stationary member 46 side, and the flow velocity is partial in the flow path returning to the impeller 32 side. It remains relatively high.
On the other hand, as shown in FIG. 7, in the flow path 51, a region where the relative total temperature is relatively high exists on the stationary member 46 side. The reason is that the fluid in the vicinity of the stationary member 46 has a low flow velocity in the absolute system, and the flow velocity in the rotary coordinate system rotating with the impeller 32 is large. This is because the relative total temperature becomes higher with respect to the fluid on the back side).
Here, returning to FIG. 6, in the labyrinth seal 50 in the comparative example, in the flow path 51, the fluid having a high flow velocity, which has passed through the minimum clearance portion 54, collides with the wall surface 56 on the stationary member 46 side, There is a relatively high flow rate flow path back. Therefore, when the fluid having a high flow velocity that has passed through the minimum clearance portion 54 collides with the wall surface 56 on the stationary member 46 side and flows to this wall surface 56, the vicinity of the wall surface 56 of the stationary member 46 is high when viewed from the impeller 32 It is conceivable that the fluid of the above is transported and transferred to the impeller 32 side. The present inventors have found that this is one of the causes of increased heat input to the impeller 32 in the labyrinth seal 50.
 図4及び図5を参照して、本実施形態に係るラビリンスシール10は、本発明者らによる上述の知見に基づいて着想されたものであり、以下の構成をさらに備える。
 幾つかの実施形態において、羽根車32の背面35と静止部材46との間には、第1凸部11と第2凸部12との間に形成される複数の最小クリアランス部16を含むラビリンス状の流路15が半径方向に沿って形成されている。
 また、第1凸部11と第2凸部12との間に形成される最小クリアランス部16を通過する漏れ流れの流れ方向において、最小クリアランス部16の上流側に静止部材46が位置し、最小クリアランス部16の下流側に羽根車32の背面35が位置する。
With reference to FIG. 4 and FIG. 5, the labyrinth seal 10 which concerns on this embodiment is conceived based on the above-mentioned knowledge by the present inventors, and is further provided with the following composition.
In some embodiments, a labyrinth comprising a plurality of minimum clearances 16 formed between the first projection 11 and the second projection 12 between the back surface 35 of the impeller 32 and the stationary member 46 A channel 15 is formed along the radial direction.
In addition, in the flow direction of the leak flow passing through the minimum clearance portion 16 formed between the first convex portion 11 and the second convex portion 12, the stationary member 46 is positioned upstream of the minimum clearance portion 16, and the minimum The back surface 35 of the impeller 32 is located downstream of the clearance portion 16.
 上記実施形態では、最小クリアランス部16を通過する漏れ流れの流れ方向において、最小クリアランス部16の上流側に静止部材46が位置し、且つ、最小クリアランス部16の下流側に羽根車32の背面35が位置するようになっている。このため、最小クリアランス部16を通過する際に加速された流体は、静止部材46側ではなく羽根車32の背面35に衝突した後、羽根車32の背面35に沿って流れる。よって、羽根車32側からみて相対全温の高い静止部材46の壁面近傍の流体が、最小クリアランス部16を通過した流速の高い流体に随伴されて羽根車32側に移送されてしまう事態を抑制できる。したがって、ラビリンスシール10を通過する流体から羽根車32への入熱量を低減し、羽根車32の温度上昇を抑制することができる。 In the above embodiment, the stationary member 46 is positioned upstream of the minimum clearance 16 in the flow direction of the leakage flow passing through the minimum clearance 16, and the back surface 35 of the impeller 32 downstream of the minimum clearance 16. Is supposed to be located. Therefore, the fluid accelerated when passing through the minimum clearance portion 16 flows along the back surface 35 of the impeller 32 after colliding with the back surface 35 of the impeller 32 instead of the stationary member 46 side. Therefore, the fluid near the wall surface of the stationary member 46 having a high relative total temperature as viewed from the impeller 32 side is prevented from being transferred to the impeller 32 side along with the fluid having a high flow velocity which has passed through the minimum clearance portion 16 it can. Therefore, the amount of heat input from the fluid passing through the labyrinth seal 10 to the impeller 32 can be reduced, and the temperature rise of the impeller 32 can be suppressed.
 一実施形態において、ラビリンスシール10は、羽根車32の背面35と静止部材46との間を半径方向の内側に向かう漏れ流れをシールするように構成され、最小クリアランス部16は、第1凸部11の先端または第1凸部11の半径方向の内側の面と第2凸部12との間に形成されてもよい。
 上記構成によれば、半径方向内側に向かう漏れ流れをシールするラビリンスシール10において、最小クリアランス部16の下流側において流体の羽根車32の背面35に向かう流れを実現できる。これにより、ラビリンスシール10を通過する流体から羽根車32への入熱量を低減し、羽根車32の温度上昇を抑制することができる。
In one embodiment, the labyrinth seal 10 is configured to seal the radially inward leakage flow between the back surface 35 of the impeller 32 and the stationary member 46, and the minimum clearance 16 is a first protrusion It may be formed between the second protrusion 12 and the radially inner surface of the first end 11 or the first protrusion 11.
According to the above configuration, in the labyrinth seal 10 that seals the leak flow toward the radially inward, the flow of the fluid toward the back surface 35 of the impeller 32 can be realized on the downstream side of the minimum clearance portion 16. Thereby, the amount of heat input from the fluid passing through the labyrinth seal 10 to the impeller 32 can be reduced, and the temperature rise of the impeller 32 can be suppressed.
 具体的には、図4及び図5に示されるように、流路15内を流体が半径方向外側から内側へ向けて流れる場合、第1凸部11における半径方向の内側の面又はこの面側の先端(剣先)と、第2凸部12における半径方向の外側の面又はこの面側の先端(剣先)とによって、最小クリアランス部16が形成される。流体が半径方向外側から内側へ向けて流れる場合、第1凸部11における半径方向の内側の面、又は、第2凸部12における半径方向の外側の面に沿って流れる流体は、静止部材46側から羽根車32側へ向かって流れる。そのため、静止部材46側から羽根車32側へ向かって流れる流路上に最小クリアランス部16を設けることによって、羽根車32側からみて相対全温の高い静止部材46の壁面近傍の流体が、最小クリアランス部16を通過した流速の高い流体に随伴されて羽根車32側に移送されてしまう事態を抑制できる。
 なお、ラビリンスシール10は、流路15内を流体が半径方向内側から外側へ向けて流れるように構成されてもよい。その場合、第1凸部11における半径方向の外側の面又はこの面側の先端(剣先)と、第2凸部12における半径方向の内側の面又はこの面側の先端(剣先)とによって、最小クリアランス部16が形成される。
Specifically, as shown in FIG. 4 and FIG. 5, when the fluid flows from the radially outer side to the inner side in the flow passage 15, the radially inner surface of the first convex portion 11 or this surface side The minimum clearance portion 16 is formed by the tip (sword tip) of the second projection 12 and the radially outer surface of the second convex portion 12 or the tip (sword tip) on the surface side. When the fluid flows from the radially outer side to the inner side, the fluid flowing along the radially inner surface of the first protrusion 11 or the radially outer surface of the second protrusion 12 is the stationary member 46. It flows from the side toward the impeller 32 side. Therefore, by providing the minimum clearance portion 16 on the flow path flowing from the stationary member 46 toward the impeller 32, the fluid in the vicinity of the wall of the stationary member 46 having a high relative temperature as viewed from the impeller 32 is the minimum clearance. It is possible to suppress a situation in which the fluid with high flow velocity flowed through the portion 16 is transferred to the impeller 32 side.
The labyrinth seal 10 may be configured to allow the fluid to flow radially inward from the inside in the flow path 15. In that case, the surface on the outer side in the radial direction of the first convex portion 11 or the tip on the surface side (sword tip) and the surface on the inner side in the radial direction of the second protrusion 12 or the tip on the surface side (sword tip) A minimum clearance 16 is formed.
 次に、図4及び図5に示す各実施形態の具体的な構成についてそれぞれ説明する。
 図4に示すように、一実施形態において、ラビリンスシール10の第2凸部12の先端にはシール剣先12aが設けられている。また、最小クリアランス部16は、第1凸部11の半径方向の内側の面と、第2凸部12のシール剣先12aとの間に形成される。
 具体的構成例として、第1凸部11の半径方向の内側の面は、軸方向に沿って形成されている。また、第1凸部11の半径方向の外側の面は、軸方向に対して傾斜して形成されている。その際、第1凸部11の半径方向の外側の面は、半径方向外側から内側へ向かうにつれて、軸方向において羽根車32の入口側から離れる方向に傾斜していてもよい。第1凸部11は、羽根車32の背面35側の基部よりも静止部材46側の先端部の方が、半径方向における幅が大きくなっている。また、第1凸部11は、半径方向における角部にRがつけられていてもよいし、角部がテーパ状に面取りされていてもよい。これにより、軽量化の観点からアルミ合金等の材料で形成される場合に、耐久性を向上させることができる。
 一方、第2凸部12は、半径方向の内側の面及び外側の面がいずれも軸方向に対して傾斜して形成されており、これらの面が互いに平行である。この際、第2凸部12の半径方向の内側の面及び外側の面は、半径方向外側から内側へ向かうにつれて、軸方向において羽根車32の入口側から離れる方向に傾斜していてもよい。また、第2凸部12も、半径方向における角部にRがつけられていてもよいし、角部がテーパ状に面取りされていてもよい。
Next, specific configurations of the embodiments shown in FIGS. 4 and 5 will be described.
As shown in FIG. 4, in one embodiment, a seal tip 12 a is provided at the tip of the second convex portion 12 of the labyrinth seal 10. Further, the minimum clearance portion 16 is formed between the radial inner surface of the first convex portion 11 and the seal tip 12 a of the second convex portion 12.
As a specific configuration example, the radially inner surface of the first convex portion 11 is formed along the axial direction. Further, the radially outer surface of the first convex portion 11 is formed to be inclined with respect to the axial direction. At that time, the radially outer surface of the first convex portion 11 may be inclined in a direction away from the inlet side of the impeller 32 in the axial direction as it goes from the radially outer side to the inner side. The width of the first convex portion 11 in the radial direction is larger at the end on the stationary member 46 side than the base on the rear surface 35 side of the impeller 32. In addition, the first convex portion 11 may be rounded at corner portions in the radial direction, or the corner portions may be chamfered in a tapered shape. Thereby, when it forms with materials, such as an aluminum alloy, from a viewpoint of weight reduction, durability can be improved.
On the other hand, in the second convex portion 12, both the radially inner surface and the outer surface are formed to be inclined with respect to the axial direction, and these surfaces are parallel to each other. At this time, the radially inner surface and the outer surface of the second convex portion 12 may be inclined in a direction away from the inlet side of the impeller 32 in the axial direction as it goes from the radially outer side to the inner side. Moreover, R may be attached to the corner | angular part in radial direction as for the 2nd convex part 12, a corner may be chamfered by taper shape.
 上記構成によれば、静止部材46側の第2凸部12にシール剣先12aを設けたので、最小クリアランス部16の下流側において、最小クリアランス部16を通過した流体の流れから静止部材46の壁面(第2凸部12の壁面)が遠ざかっている。このため、最小クリアランス部16を通過した流速が高い流体に随伴されて羽根車32側に移送されてしまう事態を効果的に抑制できる。よって、ラビリンスシール10を通過する流体から羽根車32への入熱量を効果的に低減し、羽根車32の温度上昇をより一層抑制することができる。 According to the above configuration, since the seal tip 12a is provided on the second convex portion 12 on the stationary member 46 side, the wall surface of the stationary member 46 from the flow of fluid passing through the minimal clearance portion 16 on the downstream side of the minimal clearance portion 16 (The wall surface of the second convex portion 12) is far away. For this reason, it is possible to effectively suppress a situation in which the flow velocity passing through the minimum clearance portion 16 is accompanied by the high fluid and transferred to the impeller 32 side. Therefore, the amount of heat input from the fluid passing through the labyrinth seal 10 to the impeller 32 can be effectively reduced, and the temperature rise of the impeller 32 can be further suppressed.
 この場合、第1凸部11の半径方向の内側の面は、遠心圧縮機の軸方向(例えば図1に示す回転軸Oの方向)に沿って延在するシール面を形成している。また、第2凸部12は、羽根車32の背面35側かつ半径方向の外側に向かって静止部材46から突出して設けられている。
 上記構成によれば、最小クリアランス部16のクリアランス幅方向が半径方向に沿っているため、羽根車32が軸方向にずれても、最小クリアランス部16のクリアランス幅は影響を受けにくい。よって、羽根車32の軸方向位置のずれによるシール性能低下を抑制することができる。
In this case, the radially inner surface of the first convex portion 11 forms a seal surface extending along the axial direction of the centrifugal compressor (for example, the direction of the rotation axis O shown in FIG. 1). In addition, the second convex portion 12 is provided so as to protrude from the stationary member 46 toward the rear surface 35 side of the impeller 32 and the outer side in the radial direction.
According to the above configuration, since the clearance width direction of the minimum clearance portion 16 is in the radial direction, the clearance width of the minimum clearance portion 16 is not easily affected even if the impeller 32 is shifted in the axial direction. Therefore, the seal performance deterioration due to the displacement of the axial direction of the impeller 32 can be suppressed.
 図7に示すように、他の実施形態において、ラビリンスシール10の第1凸部11の先端にはシール剣先11aが設けられている。また、最小クリアランス部16は、第1凸部11のシール剣先11aと、第2凸部12の半径方向の外側の面との間に形成されている。
 具体的構成例として、第1凸部11の半径方向の内側の面、及び、第1凸部11の半径方向の外側の面は、軸方向に対して傾斜して形成されている。その際、第1凸部11の半径方向の内側の面、及び、第1凸部11の半径方向の外側の面は、半径方向外側から内側へ向かうにつれて、軸方向において羽根車32の入口側から離れる方向に傾斜していてもよい。また、第1凸部11の半径方向の内側の面と、第1凸部11の半径方向の外側の面との傾斜角度は異なっていてもよい。この場合、第1凸部11は、羽根車32の背面35側の基部よりも静止部材46側の先端部の方が、半径方向における幅が大きくなっている。また、第1凸部11は、半径方向における角部にRがつけられていてもよいし、角部がテーパ状に面取りされていてもよい。これにより、軽量化の観点からアルミ合金等の材料で形成される場合に、耐久性を向上させることができる。
 一方、第2凸部12は、半径方向の内側の面及び外側の面がいずれも軸方向に沿って形成されており、これらの面が互いに平行である。また、第2凸部12も、半径方向における角部にRがつけられていてもよいし、角部がテーパ状に面取りされていてもよい。
As shown in FIG. 7, in another embodiment, a seal point 11 a is provided at the tip of the first convex portion 11 of the labyrinth seal 10. Further, the minimum clearance portion 16 is formed between the seal tip 11 a of the first convex portion 11 and the outer surface of the second convex portion 12 in the radial direction.
As a specific configuration example, the radially inner surface of the first protrusion 11 and the radially outer surface of the first protrusion 11 are formed to be inclined with respect to the axial direction. At that time, the radially inner surface of the first convex portion 11 and the radially outer surface of the first convex portion 11 are in the axial direction on the inlet side of the impeller 32 as they go from the radially outer side to the inner side. It may be inclined in the direction away from. Further, the inclination angles of the radial inner surface of the first convex portion 11 and the radial outer surface of the first convex portion 11 may be different. In this case, the width of the first convex portion 11 in the radial direction is larger at the end on the stationary member 46 side than at the base on the rear surface 35 side of the impeller 32. In addition, the first convex portion 11 may be rounded at corner portions in the radial direction, or the corner portions may be chamfered in a tapered shape. Thereby, when it forms with materials, such as an aluminum alloy, from a viewpoint of weight reduction, durability can be improved.
On the other hand, in the second convex portion 12, both the radially inner surface and the outer surface are formed along the axial direction, and these surfaces are parallel to each other. Moreover, R may be attached to the corner | angular part in radial direction as for the 2nd convex part 12, a corner may be chamfered by taper shape.
 上記構成によれば、羽根車32側の第1凸部11のシール剣先11aと、静止部材46の第2凸部12の径方向外側の面との間に形成される最小クリアランス部16を通過した流体を、羽根車32の背面35に向かわせることができる。これにより、ラビリンスシール10を通過する流体から羽根車32への入熱量を低減し、羽根車32の温度上昇を抑制することができる。 According to the above configuration, the minimum clearance portion 16 formed between the seal tip 11a of the first convex portion 11 on the impeller 32 side and the radial outer surface of the second convex portion 12 of the stationary member 46 is passed. The fluid can be directed to the back 35 of the impeller 32. Thereby, the amount of heat input from the fluid passing through the labyrinth seal 10 to the impeller 32 can be reduced, and the temperature rise of the impeller 32 can be suppressed.
 この場合、第1凸部11の先端にはシール剣先11aが設けられており、最小クリアランス部16は、第1凸部11のシール剣先11aと、第2凸部12の半径方向の外側の面との間に形成される。
 上記構成によれば、最小クリアランス部16のクリアランス幅方向が半径方向に沿っているため、羽根車32が軸方向にずれても、最小クリアランス部16のクリアランス幅は影響を受けにくい。よって、羽根車32の軸方向位置のずれによるシール性能低下を抑制することができる。
In this case, the seal nib 11 a is provided at the tip of the first convex portion 11, and the minimum clearance portion 16 is the outer surface of the seal convex 11 a of the first convex portion 11 and the second convex portion 12 in the radial direction. And between.
According to the above configuration, since the clearance width direction of the minimum clearance portion 16 is in the radial direction, the clearance width of the minimum clearance portion 16 is not easily affected even if the impeller 32 is shifted in the axial direction. Therefore, the seal performance deterioration due to the displacement of the axial direction of the impeller 32 can be suppressed.
 上述したように、本発明の少なくとも一実施形態に係るラビリンスシール10によれば、ラビリンスシール10を通過する流体から羽根車32への入熱量を低減し、羽根車32の温度上昇を抑制することができる。よって、羽根車32の高温化に起因したクリープ寿命の低下を抑制できる。
 また、本発明の少なくとも一実施形態に係る遠心圧縮機によれば、ラビリンスシール10を通過する流体から羽根車32への入熱量を低減し、羽根車32の温度上昇を抑制することができる。よって、羽根車32の高温化に起因したクリープ寿命の低下を抑制でき、遠心圧縮機の高圧力比化を実現することが可能になる。
 さらに、本発明の少なくとも一実施形態に係る過給機1によれば、ラビリンスシール10を通過する流体から羽根車32への入熱量を低減することで、遠心圧縮機の高圧力比化が実現可能となり、過給機1の性能を向上させることができる。
As described above, according to the labyrinth seal 10 according to at least one embodiment of the present invention, the amount of heat input to the impeller 32 from the fluid passing through the labyrinth seal 10 is reduced, and the temperature rise of the impeller 32 is suppressed. Can. Therefore, the fall of the creep life resulting from high temperature formation of impeller 32 can be controlled.
Further, according to the centrifugal compressor according to at least one embodiment of the present invention, the amount of heat input from the fluid passing through the labyrinth seal 10 to the impeller 32 can be reduced, and the temperature rise of the impeller 32 can be suppressed. Therefore, it is possible to suppress a decrease in creep life caused by the high temperature of the impeller 32, and to realize a high pressure ratio of the centrifugal compressor.
Furthermore, according to the supercharger 1 according to at least one embodiment of the present invention, the increase in pressure ratio of the centrifugal compressor is realized by reducing the amount of heat input from the fluid passing through the labyrinth seal 10 to the impeller 32. As a result, the performance of the turbocharger 1 can be improved.
 本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 上記実施形態では一例として、ラビリンスシール10が過給機1における遠心圧縮機3に適用された場合について説明したが、ラビリンスシール10の適用先は過給機の遠心圧縮機3に限定されるものではなく、他の遠心圧縮機に用いられてもよい。
 また、上記実施形態では一例として、遠心圧縮機の適用先として過給機1について説明したが、本実施形態に係る遠心圧縮機の適用先はこれに限定されるものではない。
The present invention is not limited to the above-described embodiments, and includes the embodiments in which the above-described embodiments are modified, and the embodiments in which these embodiments are appropriately combined.
Although the case where the labyrinth seal 10 was applied to the centrifugal compressor 3 in the supercharger 1 was demonstrated as an example in the said embodiment, the application destination of the labyrinth seal 10 is limited to the centrifugal compressor 3 of a supercharger. Instead, it may be used for other centrifugal compressors.
Moreover, although the supercharger 1 was demonstrated as an application destination of a centrifugal compressor as an example in the said embodiment, the application destination of the centrifugal compressor which concerns on this embodiment is not limited to this.
 例えば、「半径方向」、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
For example, relative or absolute arrangements such as “radial”, “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” The expression is not only to express such an arrangement strictly, but also to indicate a relative displacement or a relative displacement with an angle or distance that can obtain the same function.
For example, expressions that indicate that things such as "identical", "equal" and "homogeneous" are equal states not only represent strictly equal states, but also have tolerances or differences with which the same function can be obtained. It also represents the existing state.
For example, expressions representing shapes such as quadrilateral shapes and cylindrical shapes not only represent shapes such as rectangular shapes and cylindrical shapes in a geometrically strict sense, but also uneven portions and chamfers within the range where the same effect can be obtained. The shape including a part etc. shall also be expressed.
On the other hand, the expressions “comprising”, “including” or “having” one component are not exclusive expressions excluding the presence of other components.
1    過給機
2    タービン
3    遠心圧縮機
4    軸受台
5    ロータ
10   ラビリンスシール
11   第1凸部
11a,12a  シール剣先
12   第2凸部
15   流路
16   最小クリアランス部
21   タービンケーシング
24   動翼
31   圧縮機ケーシング
32   羽根車
33   ハブ
35   背面
41   スラスト軸受
42   ラジアル軸受
43   ラジアル軸受
44   潤滑油供給通路
46   静止部材
50   ラビリンスシール
51   流路
52   第1凸部
53   第2凸部
54   最小クリアランス部
55   膨張領域
56   壁面
O    回転軸
 
DESCRIPTION OF SYMBOLS 1 Turbocharger 2 Turbine 3 Centrifugal compressor 4 Bearing base 5 Rotor 10 Labyrinth seal 11 1st convex part 11a, 12a Sealed sword tip 12 2nd convex part 15 Flow path 16 Minimum clearance part 21 Turbine casing 24 Rotor blade 31 Compressor casing 32 impeller 33 hub 35 back surface 41 thrust bearing 42 radial bearing 43 radial bearing 44 lubricating oil supply passage 46 stationary member 50 labyrinth seal 51 flow path 52 first convex portion 53 second convex portion 54 minimum clearance portion 55 expansion area 56 wall surface O Axis of rotation

Claims (8)

  1.  羽根車と、前記羽根車の背面側に設けられる静止部材とを備える遠心圧縮機に用いられるラビリンスシールであって、
     前記羽根車の背面上の周方向に沿ってそれぞれ設けられる複数の第1凸部と、
     隣接する前記第1凸部間に先端部が侵入するように前記静止部材に周方向に沿って設けられる複数の第2凸部と、を備え、
     前記羽根車の背面と前記静止部材との間には、前記第1凸部と前記第2凸部との間に形成される複数の最小クリアランス部を含むラビリンス状の流路が形成されており、
     前記第1凸部と前記第2凸部との間に形成される最小クリアランス部を通過する流れの流れ方向において、前記最小クリアランス部の上流側に前記静止部材が位置し、前記最小クリアランス部の下流側に前記羽根車の前記背面が位置することを特徴とするラビリンスシール。
    A labyrinth seal for use in a centrifugal compressor comprising: an impeller; and a stationary member provided on the back side of the impeller,
    A plurality of first convex portions respectively provided along a circumferential direction on a back surface of the impeller;
    And a plurality of second convex portions provided along the circumferential direction on the stationary member such that a tip end portion intrudes between the adjacent first convex portions.
    A labyrinth-like flow path including a plurality of minimum clearances formed between the first projection and the second projection is formed between the rear surface of the impeller and the stationary member. ,
    The stationary member is positioned on the upstream side of the minimum clearance portion in the flow direction of the flow passing through the minimum clearance portion formed between the first convex portion and the second convex portion. A labyrinth seal characterized in that the rear face of the impeller is located downstream.
  2.  前記ラビリンスシールは、前記羽根車の前記背面と前記静止部材との間を半径方向の内側に向かう前記流れをシールするように構成され、
     前記最小クリアランス部は、前記第1凸部の先端と前記第2凸部との間、または前記第1凸部と前記第2凸部の先端との間に形成されることを特徴とする請求項1に記載のラビリンスシール。
    The labyrinth seal is configured to seal the flow radially inward between the back surface of the impeller and the stationary member;
    The minimum clearance portion is formed between the tip of the first convex portion and the second convex portion, or between the first convex portion and the tip of the second convex portion. The labyrinth seal according to Item 1.
  3.  前記第2凸部の先端にはシール剣先が設けられており、
     前記最小クリアランス部は、前記第1凸部と、前記第2凸部の前記シール剣先との間に形成されることを特徴とする請求項2に記載のラビリンスシール。
    A seal tip is provided at the tip of the second convex portion,
    The labyrinth seal according to claim 2, wherein the minimum clearance portion is formed between the first convex portion and the seal tip of the second convex portion.
  4.  前記第1凸部は、前記遠心圧縮機の軸方向に沿って延在するシール面を形成しており、
     前記第2凸部は、前記羽根車の前記背面側かつ前記半径方向の外側に向かって前記静止部材から突出して設けられていることを特徴とする請求項3に記載のラビリンスシール。
    The first convex portion forms a sealing surface extending along the axial direction of the centrifugal compressor,
    The labyrinth seal according to claim 3, wherein the second convex portion is provided so as to protrude from the stationary member toward the rear side of the impeller and the outer side in the radial direction.
  5.  前記第1凸部の先端にはシール剣先が設けられており、
     前記最小クリアランス部は、前記第1凸部の前記シール剣先と、前記第2凸部との間に形成されることを特徴とする請求項2に記載のラビリンスシール。
    A seal point is provided at the tip of the first convex portion,
    The labyrinth seal according to claim 2, wherein the minimum clearance portion is formed between the seal tip of the first convex portion and the second convex portion.
  6.  前記第2凸部の前記半径方向の外側の面は、前記遠心圧縮機の軸方向に沿って延在するシール面を形成しており、
     前記第1凸部は、前記静止部材側かつ前記半径方向の内側に向かって前記羽根車の前記背面から突出して設けられていることを特徴とする請求項5に記載のラビリンスシール。
    The radially outer surface of the second projection forms a sealing surface extending along the axial direction of the centrifugal compressor,
    The labyrinth seal according to claim 5, wherein said 1st convex part is projected and provided from said back of said impeller towards said stationary member side and the inner side of said radial direction.
  7.  流体が半径方向に流れる羽根車と、
     前記羽根車の背面側に設けられる静止部材と、
     前記羽根車の前記背面と前記静止部材との間に設けられる請求項1乃至6の何れか一項に記載のラビリンスシールと、を備えることを特徴とする遠心圧縮機。
    An impeller through which fluid flows in a radial direction;
    A stationary member provided on the back side of the impeller;
    A centrifugal compressor comprising: a labyrinth seal according to any one of claims 1 to 6, provided between the rear surface of the impeller and the stationary member.
  8.  請求項7に記載の遠心圧縮機と、
     内燃機関の排気ガスによって駆動されて、前記遠心圧縮機を駆動するように構成されたタービンと、を備えることを特徴とする過給機。
     
    The centrifugal compressor according to claim 7;
    A turbine driven by exhaust gas of an internal combustion engine and configured to drive the centrifugal compressor.
PCT/JP2015/073128 2014-10-17 2015-08-18 Labyrinth seal, centrifugal compressor, and supercharger WO2016059866A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580039997.4A CN108026938B (en) 2014-10-17 2015-08-18 Labyrinth seal, centrifugal compressor, and supercharger
KR1020167032861A KR101855610B1 (en) 2014-10-17 2015-08-18 Labyrinth seal, centrifugal compressor, and supercharger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-212559 2014-10-17
JP2014212559A JP6225092B2 (en) 2014-10-17 2014-10-17 Labyrinth seal, centrifugal compressor and turbocharger

Publications (1)

Publication Number Publication Date
WO2016059866A1 true WO2016059866A1 (en) 2016-04-21

Family

ID=55746414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073128 WO2016059866A1 (en) 2014-10-17 2015-08-18 Labyrinth seal, centrifugal compressor, and supercharger

Country Status (4)

Country Link
JP (1) JP6225092B2 (en)
KR (1) KR101855610B1 (en)
CN (1) CN108026938B (en)
WO (1) WO2016059866A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150345373A1 (en) * 2012-12-17 2015-12-03 Valeo Air Management Uk Limited Compressing device with thermal protection
GB2568715A (en) * 2017-11-24 2019-05-29 Jaguar Land Rover Ltd Impeller
WO2020177941A1 (en) * 2019-03-06 2020-09-10 Robert Bosch Gmbh Compressor
US20230184127A1 (en) * 2021-12-14 2023-06-15 Regi U.S., Inc. Rotary vane device with longitudinally extending seals

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102033355B1 (en) * 2018-02-07 2019-10-17 엘지전자 주식회사 Small Size Turbo Compressor
CN110145479A (en) * 2019-05-23 2019-08-20 大连海事大学 A kind of electric compressor of included rotor cooling system
CN110671157A (en) * 2019-11-22 2020-01-10 东方电气集团东方汽轮机有限公司 Radial steam seal structure for radial turbine and radial turbine
KR20220065923A (en) * 2020-11-13 2022-05-23 엘지전자 주식회사 Compressor and Chiller including the same
CN115450949B (en) * 2022-11-08 2023-04-25 中国核动力研究设计院 Supercritical carbon dioxide compressor and coaxial power generation system
CN115450950B (en) * 2022-11-08 2023-03-03 中国核动力研究设计院 Gas compressor and supercritical carbon dioxide power generation system
KR102643218B1 (en) * 2023-05-02 2024-03-04 윤홍태 Horizontal pump for semiconductor production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337567B2 (en) * 1974-04-04 1978-10-09
JPH05195999A (en) * 1991-08-03 1993-08-06 Man B & W Diesel Gmbh Dynamic stabilizer for radial-flow compressor rotor
JP2934530B2 (en) * 1991-06-14 1999-08-16 三菱重工業株式会社 Centrifugal compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4773823A (en) * 1984-11-13 1988-09-27 Tolo, Inc. Centrifugal pump having improvements in seal life
EP0924386B1 (en) 1997-12-23 2003-02-05 ABB Turbo Systems AG Method and device to seal off the space between a rotor and a stator
EP0961034B1 (en) * 1998-05-25 2003-09-03 ABB Turbo Systems AG Radial compressor
CN100491740C (en) * 2007-08-31 2009-05-27 清华大学 High temperature gas cooled reactor centrifugal type helium gas compressor of pebble bed
JP2011111923A (en) 2009-11-24 2011-06-09 Mitsubishi Heavy Ind Ltd Method for estimating life of centrifugal compressor impeller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337567B2 (en) * 1974-04-04 1978-10-09
JP2934530B2 (en) * 1991-06-14 1999-08-16 三菱重工業株式会社 Centrifugal compressor
JPH05195999A (en) * 1991-08-03 1993-08-06 Man B & W Diesel Gmbh Dynamic stabilizer for radial-flow compressor rotor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150345373A1 (en) * 2012-12-17 2015-12-03 Valeo Air Management Uk Limited Compressing device with thermal protection
GB2568715A (en) * 2017-11-24 2019-05-29 Jaguar Land Rover Ltd Impeller
GB2568715B (en) * 2017-11-24 2020-02-26 Jaguar Land Rover Ltd Pump assembly with tortuous flow path
US11092161B2 (en) 2017-11-24 2021-08-17 Jaguar Land Rover Limited Impeller
WO2020177941A1 (en) * 2019-03-06 2020-09-10 Robert Bosch Gmbh Compressor
US20230184127A1 (en) * 2021-12-14 2023-06-15 Regi U.S., Inc. Rotary vane device with longitudinally extending seals
US11873816B2 (en) * 2021-12-14 2024-01-16 Regi U.S., Inc. Rotary vane device with longitudinally extending seals

Also Published As

Publication number Publication date
KR20160147916A (en) 2016-12-23
KR101855610B1 (en) 2018-05-04
CN108026938A (en) 2018-05-11
CN108026938B (en) 2019-12-24
JP6225092B2 (en) 2017-11-01
JP2016079904A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
WO2016059866A1 (en) Labyrinth seal, centrifugal compressor, and supercharger
US8186938B2 (en) Turbine apparatus
US10677287B2 (en) Bearing structure and turbocharger
EP1926915B1 (en) Stationary seal ring for a centrifugal compressor
JP2012233475A (en) Centrifugal compressor assembly with stator vane row
KR102322458B1 (en) Diaphragms for centrifugal compressors
CN107002556B (en) Axial flow turbine and supercharger
JP5651459B2 (en) System and apparatus for compressor operation in a turbine engine
JP6234600B2 (en) Turbine
US20140241877A1 (en) Shaft sealing device and rotating machine comprising same
JP6087351B2 (en) Multistage centrifugal turbomachine
US11230934B2 (en) Airfoil of axial flow machine
US10221858B2 (en) Impeller blade morphology
WO2014087966A1 (en) Centrifugal compressor, supercharger with same, and method for operating centrifugal compressor
US10746025B2 (en) Turbine wheel, radial turbine, and supercharger
US20110318163A1 (en) Barrel-shaped centrifugal compressor
US20170002825A1 (en) Balance piston with a sealing member
RU2728549C1 (en) Aerodynamic profile of compressor
JP2019002361A (en) Turbomachine
US20210102471A1 (en) Turbine and turbocharger
JP6160079B2 (en) Centrifugal compressor
US11835057B2 (en) Impeller of centrifugal compressor, centrifugal compressor, and turbocharger
WO2021149244A1 (en) Turbocharger
JP6674913B2 (en) Radial inflow turbine, supercharger and method of assembling supercharger
US20200088212A1 (en) Turbine for turbocharger, and turbocharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167032861

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851596

Country of ref document: EP

Kind code of ref document: A1