WO2016059793A1 - Negative electrode active material, negative electrode, cell, and method for manufacturing negative electrode active material - Google Patents

Negative electrode active material, negative electrode, cell, and method for manufacturing negative electrode active material Download PDF

Info

Publication number
WO2016059793A1
WO2016059793A1 PCT/JP2015/005192 JP2015005192W WO2016059793A1 WO 2016059793 A1 WO2016059793 A1 WO 2016059793A1 JP 2015005192 W JP2015005192 W JP 2015005192W WO 2016059793 A1 WO2016059793 A1 WO 2016059793A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
charge
phase
active material
electrode active
Prior art date
Application number
PCT/JP2015/005192
Other languages
French (fr)
Japanese (ja)
Inventor
永田 辰夫
禰宜 教之
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016553974A priority Critical patent/JPWO2016059793A1/en
Publication of WO2016059793A1 publication Critical patent/WO2016059793A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material, a negative electrode, a battery, and a negative electrode active material.
  • graphite-based negative electrode active material For secondary batteries represented by lithium ion batteries, graphite-based negative electrode active material is used.
  • a graphite-based negative electrode active material has limitations in increasing capacity and cycle characteristics.
  • an alloy-based negative electrode active material having a higher capacity than a graphite-based negative electrode active material has attracted attention.
  • silicon (Si) -based negative electrode active material, tin (Sn) -based negative electrode active material, and zinc (Zn) -based negative electrode active material are known.
  • Various studies have been made on the above alloy-based negative electrode active material materials for practical use of a more compact and long-life lithium ion battery.
  • the alloy-based negative electrode active material material repeats large expansion and contraction during charging and discharging. Therefore, the capacity of the alloy-based negative electrode active material is likely to deteriorate.
  • the volume expansion / contraction rate of graphite accompanying charging is about 12%.
  • the volume expansion / contraction rate of Si alone or Sn accompanying charging is about 400%.
  • the capacity of the negative electrode is significantly reduced. This is because part of the negative electrode active material is liberated by volume expansion and contraction, and the negative electrode plate loses electronic conductivity.
  • Patent Document 1 discloses a non-aqueous electrolyte secondary battery capable of suppressing capacity deterioration.
  • This battery includes a negative electrode including a negative electrode material made of composite particles in which the whole or part of the periphery of a core particle made of solid phase A is coated with solid phase B.
  • the solid phase A contains at least one of silicon, tin, and zinc as a constituent element.
  • the solid phase B is selected from the group consisting of silicon, tin, and zinc, which are constituent elements of the solid phase A, and the group 2 element, transition element, group 12 element, group 13 element, and group 14 element of the periodic table.
  • the composite particles contain ceramics.
  • the solid phase A gives a high capacity.
  • Solid phase B suppresses expansion associated with charging of solid phase A. Therefore, collapse of the solid phase A is suppressed and cycle characteristics are improved. Furthermore, since the ceramic suppresses the propagation of cracks, the cycle characteristics are improved.
  • An object of the present invention is to provide a negative electrode active material having excellent charge / discharge capacity and cycle characteristics.
  • the negative electrode active material according to this embodiment includes a plurality of charge / discharge phases, a constrained phase, and a plurality of ceramic particles.
  • the plurality of charge / discharge phases are composed of one or more selected from the group consisting of Si, Sn and Zn, and have an average crystal grain size of 10 to 100 nm.
  • the constrained phase is one or more elements selected from the group consisting of Group 2 elements, transition elements, Group 12 elements, Group 13 elements, and Group 14 elements (however, charge-discharge phase elements and C And a solid solution or an intermetallic compound composed of elements contained in the charge / discharge phase, in which the charge / discharge phase is dispersed.
  • the ceramic particles are dispersed at least in the charge / discharge phase, have an average particle diameter of 0.01 to 0.1 ⁇ m, and are contained in an amount of 1 to 10% by mass.
  • the half-value width of the peak of the constrained phase is 0.35 to 0.65 °.
  • the negative electrode active material according to this embodiment is excellent in charge / discharge capacity and cycle characteristics.
  • FIG. 1 is a diagram showing the relationship between the heat treatment temperature and the half-value width of the constrained phase, which is an index of the amount of strain.
  • the negative electrode active material according to this embodiment includes a plurality of charge / discharge phases, a constrained phase, and a plurality of ceramic particles.
  • the plurality of charge / discharge phases are composed of one or more selected from the group consisting of Si, Sn and Zn, and have an average crystal grain size of 10 to 100 nm.
  • the constrained phase is one or more elements selected from the group consisting of Group 2 elements, transition elements, Group 12 elements, Group 13 elements, and Group 14 elements (however, charge-discharge phase elements and C And a solid solution or an intermetallic compound composed of elements contained in the charge / discharge phase, in which the charge / discharge phase is dispersed.
  • the ceramic particles are dispersed at least in the charge / discharge phase, have an average particle diameter of 0.01 to 0.1 ⁇ m, and are contained in an amount of 1 to 10% by mass.
  • the half-value width of the peak of the constrained phase is 0.35 to 0.65 °.
  • the charge / discharge phase absorbs and releases metal ions typified by lithium (Li). That is, the charge / discharge phase increases the capacity. Furthermore, a restraint phase suppresses the volume change (expansion and shrinkage
  • Li lithium
  • the amount of strain in the constrained phase is reduced in advance by performing heat treatment described below.
  • the diffraction peak half-value width of the constrained phase which is an index of the strain amount, can be lowered to 0.65 ° or less. Since the strain in the constrained phase is small, the cycle characteristics are enhanced.
  • the crystal grains of the charge / discharge phase are fine. If the crystal grains are fine, the strength of the charge / discharge phase is increased. In this case, even if charging / discharging is repeated and the charging / discharging phase repeats expansion and contraction, it is possible to suppress part of the charging / discharging phase from being separated or collapsed.
  • the crystal grains in the charge / discharge phase are likely to be coarsened. Therefore, in this embodiment, fine ceramic particles are dispersed at least in the charge / discharge phase. Thereby, even if it is a case where heat processing is performed, the coarsening of a crystal grain is suppressed by ceramic particles. As a result, the average grain size of the crystal grains in the charge / discharge phase is suppressed to 10 to 100 nm, and fine crystal grains can be maintained. Therefore, cycle characteristics are improved.
  • Ceramic particles are particles mainly composed of ceramics. “Main component” means that the volume fraction of ceramics in the particles is 50% or more.
  • the ceramic particles are, for example, oxide-based ceramics, non-oxide-based ceramics, or a mixture thereof.
  • oxide-based ceramic include Al 2 O 3 , MgO, ZrO 2 , Y 2 O 3 , TiO 2 , La 2 O 3 , and CeO 2 .
  • Non-oxide ceramics are, for example, CrN, TiN, TaN, AlN, BN, Si 3 N 4 , NbN, ZrB, TaB 2 , MoB 2 , WC, VC, TiC, SiC, HfC, and the like.
  • the ceramic particles are one or more selected from the group consisting of Al 2 O 3 , MgO, ZrO 2 , Y 2 O 3 , TiO 2 , La 2 O 3 and CeO 2 .
  • These ceramic particles are thermodynamically stable at a temperature of 700 ° C. or lower. Therefore, these ceramic particles hardly react chemically with the charge / discharge phase alloy and the constrained phase alloy.
  • the charge / discharge phase of the negative electrode active material is made of Si
  • the constraining phase is made of one or more metal silicides.
  • the metal silicide may contain Ni and / or Ti.
  • the manufacturing method of the negative electrode active material of the present embodiment includes a preparation process, a mechanical grinding process (hereinafter referred to as MG process) process, and a heat treatment process.
  • the charge / discharge phase is composed of one or more selected from the group consisting of Si, Sn and Zn, and is composed of a Group 2 element, a transition element, a Group 12 element, a Group 13 element and a Group 14 element.
  • a raw material containing one or more elements selected from the group (excluding charge-discharge phase elements and C) and a charge-discharge phase element solid solution or a constrained phase that is an intermetallic compound prepare.
  • the raw material and ceramic particles having an average particle diameter of 0.01 to 0.1 ⁇ m are mixed, and then mechanical grinding treatment is performed. As a result, a negative electrode active material containing a charge / discharge phase, a constrained phase, and 1 to 10% by mass of ceramic particles is produced.
  • the negative electrode active material is heat treated at 400 to 700 ° C.
  • the half-value width of the peak of the constrained phase becomes 0.65 ° or less in the X-ray diffraction by CuK ⁇ ray, and the amount of strain is reduced. Furthermore, in the charge / discharge phase, the average crystal grain size can be suppressed to 100 nm or less even when the above heat treatment is performed with ceramic particles. Therefore, the cycle characteristics (capacity maintenance ratio) of the manufactured negative electrode active material are increased.
  • the negative electrode active material of this embodiment can reversibly absorb and release metal ions typified by Li.
  • the negative electrode active material contains a charge / discharge phase, a constrained phase, and ceramic particles.
  • the charge / discharge phase is composed of one or more selected from the group consisting of silicon (Si), tin (Sn), and zinc (Zn). These elements absorb and release metal ions. That is, the charge / discharge phase increases the charge / discharge capacity of the negative electrode active material.
  • the average crystal grain size of the charge / discharge phase crystal grains is 10 to 100 nm. In this embodiment, the charge / discharge phase crystal grains are fine. If the average crystal grain size is 100 nm or less, the diffusion distance of metal ions in the charge / discharge phase is short, and stress concentration associated with absorption and release of metal ions is reduced. In this case, even if the charge / discharge phase repeatedly expands and contracts with charge / discharge, the charge / discharge phase is prevented from being partially detached or collapsed.
  • a preferable upper limit of the average crystal grain size is 80 nm, and more preferably 50 nm.
  • the average crystal grain size of the charge / discharge phase crystal grains is measured by the following method.
  • a sample for microstructural observation is prepared from the negative electrode active material.
  • the produced sample is observed with a transmission electron microscope (TEM) to generate a photographic image.
  • TEM transmission electron microscope
  • the plurality of charge / discharge phases described above are dispersed in the constraining phase.
  • the constraining phase surrounds the charge / discharge phase.
  • the charge / discharge phase repeats expansion and contraction.
  • the constraining phase surrounds and constrains the charge / discharge phase, and suppresses volume changes (expansion and contraction) of the charge / discharge phase. Therefore, it is suppressed that a part of charging / discharging phase leaves
  • the constrained phase is one or more elements selected from the group consisting of Group 2 elements, transition elements, Group 12 elements, Group 13 elements and Group 14 elements in the periodic table (however, the charge / discharge phase) And a solid solution or an intermetallic compound consisting of elements contained in the charge / discharge phase.
  • the charge / discharge phase is a Si phase made of Si
  • the constraining phase is, for example, a metal silicide phase.
  • the metal silicide phase contains, for example, Si, Ti, and Ni.
  • the half-value width of the diffraction peak of the constrained phase is 0.35 to 0.65 °.
  • the restraint phase suppresses the volume change (expansion and contraction) of the charge / discharge phase. At this time, the restraint phase receives an external force from the charge / discharge phase. For this reason, strain is accumulated in the constraining phase with charge and discharge.
  • the amount of strain is large in the constrained phase before charging / discharging, the strain is further added along with charging / discharging. As a result, a part of the restraint phase is disengaged or collapses. In this case, the cycle characteristics (capacity maintenance ratio) of the negative electrode active material are lowered. Therefore, in the constrained phase before charging / discharging, it is preferable that the amount of strain is small.
  • the half width of the diffraction peak of the constrained phase is an index of the amount of strain in the constrained phase. The smaller the half width, the smaller the amount of strain in the constrained phase. If the half width exceeds 0.65 °, the amount of strain in the constrained phase is too large. In this case, the cycle characteristics of the negative electrode active material are low.
  • the negative electrode active material has excellent cycle characteristics.
  • the upper limit with preferable half value width is 0.50 degree, More preferably, it is 0.35 degree.
  • the lower limit of the full width at half maximum is not particularly limited.
  • the strain amount of the constrained phase is adjusted by a heat treatment described later. If the heat treatment temperature is raised, the half width can be lowered. However, if the heat treatment temperature is too high, the charge and discharge phase crystal grains become coarse. In this case, as described above, the cycle characteristics deteriorate.
  • the lower limit of the half width within the range in which the average crystal grains of the charge / discharge phase can be maintained at 10 to 100 nm is 0.35 °. Accordingly, the half width of the constrained phase is 0.35 to 0.65 °.
  • the full width at half maximum of the restraint phase is measured by the following method.
  • X-ray diffraction is performed on the constrained phase of the negative electrode active material.
  • CuK ⁇ rays (wavelength is 1.5418 mm) are used under the conditions of 30 kV and 100 mA.
  • the diffraction angle at the height at which the half height of the diffraction peak height is obtained is measured as the half width.
  • the half width derived from the X-ray diffractometer is measured using a single crystal of LaB6 (lanthanum hexaboride) (an ideal single crystal having no half width). Correction is performed by subtracting the measured half-value width inherent to the apparatus from the measured half-value width. The corrected value is defined as the half width of the diffraction peak of the constrained phase.
  • Ceramic particles The plurality of ceramic particles are dispersed in the negative electrode active material. That is, the ceramic particles are dispersed in the charge / discharge phase and the constraining phase.
  • the average particle size of the ceramic particles is 0.01 to 0.1 ⁇ m and is fine.
  • ceramic particles having an average particle diameter of 0.01 to 0.1 ⁇ m are also referred to as “fine ceramic particles”.
  • the fine ceramic particles have the following action.
  • the fine ceramic particles in the charge / discharge phase keep the average crystal grain size of the charge / discharge phase crystal grains fine.
  • the amount of strain in the constrained phase is reduced by performing heat treatment.
  • the crystal grains in the charge / discharge phase tend to be coarse.
  • the fine ceramic particles dispersed in the charge / discharge phase suppress the coarsening of crystal grains in the charge / discharge phase due to heat treatment. Therefore, the average crystal grain size of the charge / discharge phase is maintained at 10 to 100 nm.
  • the ceramic particles are too large. In this case, it is difficult to suppress the coarsening of the crystal grains of the charge / discharge phase, and the average crystal grain size of the crystal grains may exceed 100 nm. Therefore, the upper limit of the average particle size of the ceramic particles is 0.1 ⁇ m. A preferable upper limit of the average particle size of the ceramic particles is 0.06 ⁇ m.
  • the lower limit of the average particle size of the ceramic particles is not particularly limited. However, considering the production cost, the lower limit of the average particle size of the ceramic particles is 0.01 ⁇ m.
  • the average particle size of the ceramic particles is measured by the following method. Measurement is performed using a laser diffraction / scattering type particle size distribution measuring apparatus (Microtrack FRA manufactured by Nikkiso Co., Ltd.). This measurement is performed after loosening the powder by ultrasonic waves using water as a dispersion solvent. At the time of data analysis, the refractive index of each substance provided by the measuring device manufacturer is input to obtain the particle size distribution.
  • a laser diffraction / scattering type particle size distribution measuring apparatus Microtrack FRA manufactured by Nikkiso Co., Ltd.
  • the content of ceramic particles in the negative electrode active material is 1 to 10% by mass. If the ceramic particle content is too low, the crystal grains of the charge / discharge phase after the heat treatment become coarse. On the other hand, ceramic particles do not contribute to the charge / discharge capacity. Therefore, if the content of ceramic particles is too high, the charge / discharge capacity decreases. When the content of the ceramic particles is 1 to 10%, a high charge / discharge capacity can be obtained while maintaining fine grains of the charge / discharge phase. A preferable lower limit of the content of the ceramic particles is 2%. A preferable upper limit of the content of ceramic particles is 6%.
  • the negative electrode active material may contain impurities in addition to the charge / discharge phase, the constrained phase, and the ceramic particles.
  • the negative electrode active material may further contain other phases or particles.
  • the method for producing a negative electrode active material includes a preparation step, an MG treatment step, and a heat treatment step.
  • a raw material containing a charge / discharge phase and a constraining phase is prepared.
  • one or more elements selected from the group consisting of Si, Sn and Zn, and a group consisting of Group 2 elements, transition elements, Group 12 elements, Group 13 elements and Group 14 elements are selected.
  • the raw material containing the 1 or more types of element (however, the element and C of a charge / discharge phase are remove
  • the blending of these elements is adjusted so that a charge / discharge phase and a constrained phase are formed.
  • the composition of these elements is adjusted using Si, Ni, Ti, etc. as raw materials. .
  • the dissolution method is not particularly limited. Examples of the melting method include arc melting, high-frequency heating melting, resistance heating melting, and the like.
  • the cooling method is not particularly limited.
  • the cooling method is, for example, a strip casting method (SC method).
  • SC method strip casting method
  • molten metal is poured onto a rotating water-cooled roll, and the molten metal is rapidly solidified. In this case, a flaky cast piece is produced.
  • the ingot may be manufactured by casting a molten metal in a mold.
  • the raw material is manufactured by crushing the manufactured material (ingot or slab). For example, the raw material is cut or pulverized using a hammer mill or the like to obtain a coarse powder of 100 ⁇ m or less. Further, the coarse powder is pulverized using a ball mill, an attritor, a disk mill, a jet mill, a pin mill, or the like to adjust the size (particle size) of the raw material (powder particles).
  • the average particle diameter of the raw material is not particularly limited. The average particle size of the raw material is, for example, 25 to 30 ⁇ m.
  • the pulverization process is performed in an inert gas atmosphere or a dry atmosphere. This is to prevent oxidation of the raw material.
  • MG treatment process The raw material and fine ceramic particles are mixed to produce a mixed powder.
  • MG treatment is performed on the mixed powder.
  • a ball mill is used.
  • graphite, stearic acid, or PVP polyvinylpyrrolidone
  • it can suppress that the negative electrode active material (powder particle) produced
  • a negative electrode active material including a charge / discharge phase having fine crystal grains is manufactured.
  • the average particle diameter of the negative electrode active material is, for example, 5 to 200 ⁇ m.
  • the negative electrode active material includes a charge / discharge phase having fine crystal grains, a constrained phase, and ceramic particles.
  • a charge / discharge phase having fine crystal grains
  • a constrained phase having fine crystal grains
  • ceramic particles many strains are introduced into the constrained phase by the MG treatment. Therefore, heat treatment is performed on the negative electrode active material to reduce the strain amount of the constrained phase.
  • FIG. 1 is a diagram showing the relationship between the heat treatment temperature and the half width.
  • FIG. 1 was obtained by the following method. A negative electrode active material including a constrained phase (metal silicide phase), a charge / discharge phase (Si phase) and ceramic particles shown in Table 1 described later was produced. At this time, the heat treatment temperature was changed. The heat treatment time was 4 hours. The half width of the manufactured negative electrode active material was measured, and FIG. 1 was created.
  • “ ⁇ ” marks include a metal silicide phase composed of TiSi 2 and Ni 4 Ti 4 Si 7 as a constraining phase, a Si phase as a charge / discharge phase, and Al 2 O 3 as ceramic particles. It is a result of the contained negative electrode active material.
  • the “ ⁇ ” mark indicates a negative electrode active material containing a metal silicide phase composed of Ni 4 Ti 4 Si 7 as a constraining phase, a Si phase as a charge / discharge phase, and Al 2 O 3 as ceramic particles. It is a result.
  • the heat treatment temperature is 400 ° C. to 700 ° C.
  • the half width is 0.65 ° or less, and the amount of strain is sufficiently reduced.
  • the heat treatment temperature is too high, the strain amount of the constrained phase is reduced, but the crystal grains of the charge / discharge phase become coarse.
  • the inclusion of 1 to 10% by mass of fine ceramic particles suppresses the coarsening of crystal grains in the charge / discharge phase during the heat treatment.
  • the heat treatment temperature is 700 ° C. or lower, the average crystal grain size of the charge / discharge phase can be suppressed to 100 nm or lower.
  • the preferable upper limit of the heat treatment temperature is 600 ° C.
  • a preferred lower limit of the heat treatment temperature is 400 ° C.
  • a preferable heat treatment time is 3.0 hours to 12 hours.
  • a more preferable lower limit of the heat treatment time is 4.0 hours.
  • a more preferable upper limit of the heat treatment time is 8 hours.
  • the negative electrode active material is manufactured by the above manufacturing process.
  • An example of the negative electrode manufacturing method according to the present embodiment is as follows.
  • a negative electrode mixture is prepared by mixing a binder with the negative electrode active material powder described above.
  • the binder is, for example, a water-insoluble resin such as polyvinylidene fluoride (PVDF), polymethyl methacrylate (PMMA), polytetrafluoroethylene (PTFE), etc., and is insoluble in the solvent used for the non-aqueous electrolyte of the battery.
  • water-soluble resins such as carboxymethyl cellulose (CMC) and vinyl alcohol (PVA), and styrene butadiene rubber (SBR).
  • conductive powder for increasing conductivity is mixed with the negative electrode mixture.
  • the conductive powder is, for example, a carbon material such as natural graphite, artificial graphite or acetylene black, or a metal such as Ni.
  • a preferred conductive powder is a carbon material.
  • the carbon material can occlude Li ions. Therefore, the carbon material increases not only the conductivity but also the capacity of the negative electrode.
  • the carbon material is further excellent in liquid retention.
  • a preferred carbon material is acetylene black.
  • a solvent such as water is added to the negative electrode mixture, and if necessary, the mixture is sufficiently stirred using a homogenizer and glass beads to produce a negative electrode mixture slurry.
  • This slurry is applied to an active material support such as rolled copper foil or electrodeposited copper foil and dried. Thereafter, the dried product is pressed as necessary.
  • a negative electrode is manufactured by the above process.
  • the battery of this embodiment is a nonaqueous electrolyte secondary battery.
  • the battery includes the above-described negative electrode.
  • a battery is provided with the negative electrode of this embodiment, a positive electrode, a separator, and electrolyte solution or electrolyte, for example.
  • the shape of the battery may be a cylindrical shape, a square shape, a coin shape, a sheet shape, or the like.
  • the battery of this embodiment may be a battery using a solid electrolyte such as a polymer battery.
  • the positive electrode preferably contains a transition metal compound containing a metal ion as an active material. More preferably, the positive electrode contains a lithium (Li) -containing transition metal compound as an active material.
  • the Li-containing transition metal compound is, for example, LiM 1 -xM′xO 2 or LiM 2 yM′O 4 .
  • 0 ⁇ x, y ⁇ 1, M and M ′ are barium (Ba), cobalt (Co), nickel (Ni), manganese (Mn), chromium (Cr), titanium (Ti), respectively. , Vanadium (V), iron (Fe), zinc (Zn), aluminum (Al), indium (In), tin (Sn), scandium (Sc), and yttrium (Y).
  • the battery of this embodiment includes a transition metal chalcogenide; a vanadium oxide and its lithium (Li) compound; a niobium oxide and its lithium compound; a conjugated polymer using an organic conductive material; a sheprel phase compound; Other positive electrodes such as fibers may be used.
  • the electrolytic solution is generally a non-aqueous electrolytic solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent.
  • the lithium salt include LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiB (C 6 H 5 ), LiCF 3 SO 3 , LiCH 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li (CF 2 SO 2 ) 2 , LiCl, LiBr, LiI and the like. These may be used alone or in combination.
  • the organic solvent is preferably a carbonic acid ester such as propylene carbonate, ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate, or diethyl carbonate.
  • a carbonic acid ester such as propylene carbonate, ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate, or diethyl carbonate.
  • various other organic solvents including carboxylic acid esters and ethers can also be used. These organic solvents may be used alone or in combination.
  • the separator is installed between the positive electrode and the negative electrode.
  • the separator serves as an insulator. Further, the separator greatly contributes to the retention of the electrolyte.
  • the battery of this embodiment may be provided with a known separator.
  • the separator is, for example, a polyolefin material such as polypropylene, polyethylene, a mixed cloth of both, or a porous body such as a glass filter.
  • a laminate in which a separator and a metal Li thin plate are sequentially laminated on a negative electrode is manufactured.
  • the laminate is placed in a case and pressed with a caulking machine to manufacture a battery.
  • Batteries containing negative electrode active material of test numbers 1 to 18 shown in Table 1 were prepared by the following method, and battery characteristics (initial charge capacity, initial discharge capacity, capacity maintenance rate after 50 cycles) were investigated.
  • the raw material in the melting crucible was heated to 1500 ° C. by high frequency induction heating to produce a molten metal.
  • the produced molten metal was brought into contact with a copper water-cooled roll rotating at a peripheral speed of 90 m / min and rapidly solidified to produce a flaky slab (SC method).
  • the cooling rate in the SC method was 500 to 2000 ° C./second.
  • the produced slab was pulverized and classified with a 63 ⁇ m sieve to produce a raw material having an average particle size of 25 to 30 ⁇ m.
  • test numbers 15 to 18 the mass ratio of Ni, Ti and Si in the raw material stored in the melting crucible was 22.2: 18.0: 59.8. In other manufacturing processes, raw materials were prepared in the same manner as in test numbers 1 to 14.
  • a mixture was prepared by mixing raw materials and alumina (Al 2 O 3 ) powder.
  • the average particle diameter of the alumina powder of each test number was 0.06 ⁇ m.
  • the mixture was put into a planetary ball mill (manufactured by Kurimoto Steel Co., Ltd., trade name: BX384E) and subjected to MG treatment to produce a negative electrode active material (powder).
  • the mixture was put into a mill pot of a planetary ball mill.
  • the material of the mill pot was SUS304, the inner diameter was 100 mm, and the depth was 67 mm.
  • a plurality of balls were thrown into the mill pot.
  • the material of the ball was SUS304, and the ball diameter was 4 mm.
  • graphite was introduced into the mill pot.
  • the inside of the glove box was made a nitrogen atmosphere (less than 1% oxygen). Further, the MG treatment was carried out for 10 hours with the rotational speed of the mill pot set to 500 rpm. After the MG treatment, the negative electrode active material was taken out in a glove box in a nitrogen atmosphere (less than 1% oxygen) and sieved (63 ⁇ m).
  • the negative electrode mixture slurry was thinly applied onto an electrolytic copper foil having a thickness of 30 ⁇ m using a doctor blade (150 ⁇ m) and dried to form a coating film. This coating film was punched out using a punch having a diameter of 13 mm to produce a negative electrode.
  • the coating amount of the negative electrode mixture slurry on the copper foil was 2 to 3 mg / cm 2 .
  • a coin-type battery (2016 type) using Li metal as a counter electrode (positive electrode) was manufactured. Specifically, a separator having a diameter of 19 mm was disposed on the negative electrode. Furthermore, a metal Li plate having a diameter of 15 mm was disposed on the separator to form a laminate. The laminate was placed in the case. The outer periphery of the case containing the laminate was pressed with a dedicated caulking machine to produce a coin-type battery (2016 type).
  • 1 of ethylene carbonate and ethyl methyl carbonate 3 mixed solvent of LiPF 6 supporting electrolyte is obtained by dissolving LiPF 6 as a 1 mol / L solution was used as an electrolyte.
  • the electrolytic solution contained 8% by mass of fluoroethylene carbonate as an additive.
  • the measured dope amount was defined as the initial charge capacity (mAh / cc), and the measured dedope capacity was defined as the initial discharge capacity (mAh / cc).
  • the ratio of initial discharge capacity to initial charge capacity ( initial discharge capacity / initial charge capacity) (%) was defined as initial charge / discharge efficiency (%).
  • the negative electrode active material of test numbers 2 to 6, 12, 13, 16, and 17 was within the scope of the present invention. Therefore, the initial charge capacity and the initial discharge capacity were high. Specifically, the initial charge capacity exceeded 1600 mAh / cc, and the initial discharge capacity exceeded 1400 mAh / cc. Furthermore, the capacity retention rate was 80% or more.
  • test number 7 the content of fine ceramic particles in the negative electrode active material was too high. Therefore, the initial charge capacity and the initial discharge capacity were low. The proportion of fine ceramic particles that do not contribute to the charge / discharge capacity in the Si phase is considered to be too high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 Provided is a negative electrode active material having excellent charge/discharge capacity and cycle characteristics. The negative electrode active material of the present embodiment contains a plurality of charge/discharge phases, a constraint phase, and a plurality of ceramic particles. The plurality of charge/discharge phases comprise one or more elements selected from the group consisting of Si, Sn, and Zn. The constraint phase is a solid solution or intermetallic compound comprising one or more elements selected from the group consisting of Group 2 elements, transition elements, Group 12 elements, Group 13 elements, and Group 14 elements (but excluding C and the element(s) of the charge/discharge phases), and the element(s) contained in the charge/discharge phases; the charge/discharge phases are dispersed therein. The ceramic particles are dispersed within the charge/discharge phases, have average particle diameters of 0.01-0.1 μm, and are contained at a level of 1-10% in mass%. In X-ray diffraction using the CuKα line, the half width of the peak of the constraint phase is 0.35-0.65°.

Description

負極活物質材料、負極、電池、及び、負極活物質材料の製造方法Negative electrode active material, negative electrode, battery, and method for producing negative electrode active material
 本発明は、負極活物質材料、負極、電池、及び、負極活物質材料に関する。 The present invention relates to a negative electrode active material, a negative electrode, a battery, and a negative electrode active material.
 近年、家庭用ビデオカメラ、ノートパソコン、及び、スマートフォン等の小型電子機器が普及している。これらの小型電子機器の普及に伴い、電池の高容量化及び高サイクル特性が求められている。 In recent years, small electronic devices such as home video cameras, notebook computers, and smartphones have become widespread. With the widespread use of these small electronic devices, higher battery capacity and higher cycle characteristics are required.
 リチウムイオン電池に代表される二次電池には、黒鉛系の負極活物質材料が利用されている。しかしながら、黒鉛系の負極活物質材料では、高容量化、高サイクル特性化に限界がある。 For secondary batteries represented by lithium ion batteries, graphite-based negative electrode active material is used. However, a graphite-based negative electrode active material has limitations in increasing capacity and cycle characteristics.
 そこで、黒鉛系負極活物質材料よりも高容量な合金系負極活物質材料が注目されている。合金系負極活物質材料としては、シリコン(Si)系負極活物質材料、スズ(Sn)系負極活物質材料、亜鉛(Zn)系負極活物質材料が知られている。よりコンパクトで長寿命なリチウムイオン電池の実用化のために、上記合金系負極活物質材料に対して様々な検討がなされている。 Therefore, an alloy-based negative electrode active material having a higher capacity than a graphite-based negative electrode active material has attracted attention. As the alloy-based negative electrode active material, silicon (Si) -based negative electrode active material, tin (Sn) -based negative electrode active material, and zinc (Zn) -based negative electrode active material are known. Various studies have been made on the above alloy-based negative electrode active material materials for practical use of a more compact and long-life lithium ion battery.
 しかしながら、合金系負極活物質材料は、充放電時に大きな膨張及び収縮を繰り返す。そのため、合金系負極活物質材料の容量は劣化しやすい。充電に伴う黒鉛の体積膨張収縮率は、12%程度である。これに対して、充電に伴うSi単体又はSn単体の体積膨張収縮率は400%前後である。このため、Sn単体の負極板が充放電を繰り返すと、顕著な膨張収縮が起こり、負極活物質材料を含む負極板に、き裂及び割れが発生する。この場合、負極の容量が顕著に低下する。体積膨張収縮により負極活物質材料の一部が遊離して負極板が電子伝導性を失うためである。 However, the alloy-based negative electrode active material material repeats large expansion and contraction during charging and discharging. Therefore, the capacity of the alloy-based negative electrode active material is likely to deteriorate. The volume expansion / contraction rate of graphite accompanying charging is about 12%. On the other hand, the volume expansion / contraction rate of Si alone or Sn accompanying charging is about 400%. For this reason, when the negative electrode plate of Sn alone is repeatedly charged and discharged, remarkable expansion and contraction occur, and cracks and cracks occur in the negative electrode plate containing the negative electrode active material. In this case, the capacity of the negative electrode is significantly reduced. This is because part of the negative electrode active material is liberated by volume expansion and contraction, and the negative electrode plate loses electronic conductivity.
 特開2001-243946号公報(特許文献1)は、容量の劣化を抑制できる非水電解質二次電池を開示する。この電池は、固相Aからなる核粒子の周囲の全面又は一部を固相Bで被覆した複合粒子からなる負極材料を含む負極を備える。固相Aは、ケイ素、スズ、亜鉛の少なくとも1種を構成元素として含有する。固相Bは、固相Aの構成元素であるケイ素、スズ、亜鉛のいずれかと、周期表の2族元素、遷移元素、12族元素、13族元素、及び14族元素からなる群から選択される少なくとも1種の元素(但し、固相Aの構成元素及び炭素を除く)との固溶体又は金属間化合物からなる。複合粒子は、セラミックスを含有する。 Japanese Patent Application Laid-Open No. 2001-243946 (Patent Document 1) discloses a non-aqueous electrolyte secondary battery capable of suppressing capacity deterioration. This battery includes a negative electrode including a negative electrode material made of composite particles in which the whole or part of the periphery of a core particle made of solid phase A is coated with solid phase B. The solid phase A contains at least one of silicon, tin, and zinc as a constituent element. The solid phase B is selected from the group consisting of silicon, tin, and zinc, which are constituent elements of the solid phase A, and the group 2 element, transition element, group 12 element, group 13 element, and group 14 element of the periodic table. A solid solution or an intermetallic compound with at least one element (except for the constituent element of solid phase A and carbon). The composite particles contain ceramics.
 特許文献1では、固相Aが高容量を与える。固相Bが、固相Aの充電に伴う膨張を抑える。そのため、固相Aの崩壊が抑制されサイクル特性が向上する。さらに、セラミックスは、クラックの伝播を抑制するため、サイクル特性が向上する。 In Patent Document 1, the solid phase A gives a high capacity. Solid phase B suppresses expansion associated with charging of solid phase A. Therefore, collapse of the solid phase A is suppressed and cycle characteristics are improved. Furthermore, since the ceramic suppresses the propagation of cracks, the cycle characteristics are improved.
特開2001-243946号公報JP 2001-243946 A
 しかしながら、特許文献1に開示された負極活物質材料を用いても、サイクル特性が低い場合がある。 However, even when the negative electrode active material disclosed in Patent Document 1 is used, the cycle characteristics may be low.
 本発明の目的は、充放電容量及びサイクル特性に優れた負極活物質材料を提供することである。 An object of the present invention is to provide a negative electrode active material having excellent charge / discharge capacity and cycle characteristics.
 本実施形態による負極活物質材料は、複数の充放電相と、拘束相と、複数のセラミックス粒子とを含有する。複数の充放電相は、Si、Sn及びZnからなる群から選択される1種以上からなり、10~100nmの平均結晶粒径を有する。拘束相は、第2族元素、遷移元素、第12族元素、第13族元素及び第14族元素からなる群から選択される1種以上の元素(だたし、充放電相の元素及びCは除く)と、充放電相に含有される元素とからなる固溶体又は金属間化合物であって、内部に充放電相が分散される。セラミックス粒子は、少なくとも充放電相内に分散され、0.01~0.1μmの平均粒径を有し、質量%で1~10%含有される。CuKα線によるX線回折において、拘束相のピークの半価幅が0.35~0.65°である。 The negative electrode active material according to this embodiment includes a plurality of charge / discharge phases, a constrained phase, and a plurality of ceramic particles. The plurality of charge / discharge phases are composed of one or more selected from the group consisting of Si, Sn and Zn, and have an average crystal grain size of 10 to 100 nm. The constrained phase is one or more elements selected from the group consisting of Group 2 elements, transition elements, Group 12 elements, Group 13 elements, and Group 14 elements (however, charge-discharge phase elements and C And a solid solution or an intermetallic compound composed of elements contained in the charge / discharge phase, in which the charge / discharge phase is dispersed. The ceramic particles are dispersed at least in the charge / discharge phase, have an average particle diameter of 0.01 to 0.1 μm, and are contained in an amount of 1 to 10% by mass. In X-ray diffraction using CuKα rays, the half-value width of the peak of the constrained phase is 0.35 to 0.65 °.
 本実施形態による負極活物質材料は、充放電容量及びサイクル特性に優れる。 The negative electrode active material according to this embodiment is excellent in charge / discharge capacity and cycle characteristics.
図1は、熱処理温度とひずみ量の指標である拘束相の半価幅との関係を示す図である。FIG. 1 is a diagram showing the relationship between the heat treatment temperature and the half-value width of the constrained phase, which is an index of the amount of strain.
 本実施形態による負極活物質材料は、複数の充放電相と、拘束相と、複数のセラミックス粒子とを含有する。複数の充放電相は、Si、Sn及びZnからなる群から選択される1種以上からなり、10~100nmの平均結晶粒径を有する。拘束相は、第2族元素、遷移元素、第12族元素、第13族元素及び第14族元素からなる群から選択される1種以上の元素(だたし、充放電相の元素及びCは除く)と、充放電相に含有される元素とからなる固溶体又は金属間化合物であって、内部に充放電相が分散される。セラミックス粒子は、少なくとも充放電相内に分散され、0.01~0.1μmの平均粒径を有し、質量%で1~10%含有される。CuKα線によるX線回折において、拘束相のピークの半価幅が0.35~0.65°である。 The negative electrode active material according to this embodiment includes a plurality of charge / discharge phases, a constrained phase, and a plurality of ceramic particles. The plurality of charge / discharge phases are composed of one or more selected from the group consisting of Si, Sn and Zn, and have an average crystal grain size of 10 to 100 nm. The constrained phase is one or more elements selected from the group consisting of Group 2 elements, transition elements, Group 12 elements, Group 13 elements, and Group 14 elements (however, charge-discharge phase elements and C And a solid solution or an intermetallic compound composed of elements contained in the charge / discharge phase, in which the charge / discharge phase is dispersed. The ceramic particles are dispersed at least in the charge / discharge phase, have an average particle diameter of 0.01 to 0.1 μm, and are contained in an amount of 1 to 10% by mass. In X-ray diffraction using CuKα rays, the half-value width of the peak of the constrained phase is 0.35 to 0.65 °.
 本実施形態の負極活物質材料では、充放電相が、リチウム(Li)に代表される金属イオンの吸収及び放出を行う。つまり、充放電相が容量を高める。さらに、拘束相が、充電に伴う充放電相の体積変化(膨張及び収縮)を抑える。ところで、拘束相のひずみが多い場合、充放電相の体積変化(膨張及び収縮)を抑えることにより、ひずみ量がさらに増大する。この場合、拘束相の一部が早期に離脱したり、崩壊したりする。その結果、負極活物質材料のサイクル特性が低下する。 In the negative electrode active material of this embodiment, the charge / discharge phase absorbs and releases metal ions typified by lithium (Li). That is, the charge / discharge phase increases the capacity. Furthermore, a restraint phase suppresses the volume change (expansion and shrinkage | contraction) of the charging / discharging phase accompanying charging. By the way, when the restraint phase has a large amount of strain, the amount of strain further increases by suppressing the volume change (expansion and contraction) of the charge / discharge phase. In this case, a part of the restraint phase is detached early or collapses. As a result, the cycle characteristics of the negative electrode active material are deteriorated.
 本実施形態では、後述の熱処理を行うことにより、拘束相内のひずみ量を予め低減する。その結果、ひずみ量の指標である、拘束相の回折ピーク半価幅を0.65°以下と低くすることができる。拘束相内のひずみは少ないため、サイクル特性が高まる。 In this embodiment, the amount of strain in the constrained phase is reduced in advance by performing heat treatment described below. As a result, the diffraction peak half-value width of the constrained phase, which is an index of the strain amount, can be lowered to 0.65 ° or less. Since the strain in the constrained phase is small, the cycle characteristics are enhanced.
 ところで、サイクル特性を高めるには、充放電相の結晶粒は微細である方が好ましい。結晶粒が微細であれば、充放電相の強度は高まる。この場合、充放電を繰り返して充放電相が膨張及び収縮を繰り返しても、充放電相の一部が離脱したり、崩壊するのを抑制できる。 By the way, in order to improve cycle characteristics, it is preferable that the crystal grains of the charge / discharge phase are fine. If the crystal grains are fine, the strength of the charge / discharge phase is increased. In this case, even if charging / discharging is repeated and the charging / discharging phase repeats expansion and contraction, it is possible to suppress part of the charging / discharging phase from being separated or collapsed.
 しかしながら、拘束相のひずみ量を低減するために熱処理を実施する場合、充放電相内の結晶粒が粗大化しやすい。そこで、本実施形態では、少なくとも充放電相内に微細なセラミックス粒子が分散される。これにより、熱処理を行った場合であっても、セラミックス粒子により、結晶粒の粗大化が抑制される。その結果、充放電相内の結晶粒の平均粒径は10~100nmに抑えられ、微細な結晶粒を維持できる。そのため、サイクル特性が高まる。 However, when heat treatment is performed to reduce the strain amount of the constrained phase, the crystal grains in the charge / discharge phase are likely to be coarsened. Therefore, in this embodiment, fine ceramic particles are dispersed at least in the charge / discharge phase. Thereby, even if it is a case where heat processing is performed, the coarsening of a crystal grain is suppressed by ceramic particles. As a result, the average grain size of the crystal grains in the charge / discharge phase is suppressed to 10 to 100 nm, and fine crystal grains can be maintained. Therefore, cycle characteristics are improved.
 セラミックス粒子はセラミックスを主成分とする粒子である。「主成分」とは、粒子中のセラミックスの体積率が50%以上であることを意味する。セラミックス粒子はたとえば、酸化物系セラミックス、非酸化物系セラミックス、又はこれらの混合物である。酸化物系セラミックスはたとえば、Al、MgO、ZrO、Y、TiO、La、CeO等である。非酸化物系セラミックスはたとえば、CrN、TiN、TaN、AlN、BN、Si、NbN、ZrB、TaB、MoB、WC、VC、TiC、SiC、HfC等である。 Ceramic particles are particles mainly composed of ceramics. “Main component” means that the volume fraction of ceramics in the particles is 50% or more. The ceramic particles are, for example, oxide-based ceramics, non-oxide-based ceramics, or a mixture thereof. Examples of the oxide-based ceramic include Al 2 O 3 , MgO, ZrO 2 , Y 2 O 3 , TiO 2 , La 2 O 3 , and CeO 2 . Non-oxide ceramics are, for example, CrN, TiN, TaN, AlN, BN, Si 3 N 4 , NbN, ZrB, TaB 2 , MoB 2 , WC, VC, TiC, SiC, HfC, and the like.
 好ましくは、セラミックス粒子は、Al、MgO、ZrO、Y、TiO、La及びCeOからなる群から選択される1種又は2種以上である。これらのセラミックス粒子は、700℃以下の温度で熱力学的に安定である。そのため、これらのセラミックス粒子は、充放電相合金及び拘束相合金とほとんど化学反応しない。 Preferably, the ceramic particles are one or more selected from the group consisting of Al 2 O 3 , MgO, ZrO 2 , Y 2 O 3 , TiO 2 , La 2 O 3 and CeO 2 . These ceramic particles are thermodynamically stable at a temperature of 700 ° C. or lower. Therefore, these ceramic particles hardly react chemically with the charge / discharge phase alloy and the constrained phase alloy.
 たとえば、上記負極活物質材料の充放電相はSiからなり、拘束相は1種以上の金属珪化物からなる。金属珪化物は、Ni及び/又はTiを含有してもよい。 For example, the charge / discharge phase of the negative electrode active material is made of Si, and the constraining phase is made of one or more metal silicides. The metal silicide may contain Ni and / or Ti.
 本実施形態の負極活物質材料の製造方法は、準備工程と、メカニカルグラインディング処理(以下、MG処理という)工程と、熱処理工程とを備える。準備工程では、Si、Sn及びZnからなる群から選択される1種以上からなる充放電相と、第2族元素、遷移元素、第12族元素、第13族元素及び第14族元素からなる群から選択される1種以上の元素(だたし、充放電相の元素及びCは除く)と、充放電相の元素とからなる固溶体又は金属間化合物である拘束相とを含有する原材料を準備する。MG処理工程では、原材料と、0.01~0.1μmの平均粒径を有するセラミックス粒子とを混合した後、メカニカルグラインディング処理を実施する。これにより、充放電相と、拘束相と、質量%で1~10%のセラミックス粒子とを含有する負極活物質材料を製造する。熱処理工程では、負極活物質材料に対して、400~700℃で熱処理を実施する。 The manufacturing method of the negative electrode active material of the present embodiment includes a preparation process, a mechanical grinding process (hereinafter referred to as MG process) process, and a heat treatment process. In the preparation step, the charge / discharge phase is composed of one or more selected from the group consisting of Si, Sn and Zn, and is composed of a Group 2 element, a transition element, a Group 12 element, a Group 13 element and a Group 14 element. A raw material containing one or more elements selected from the group (excluding charge-discharge phase elements and C) and a charge-discharge phase element solid solution or a constrained phase that is an intermetallic compound prepare. In the MG treatment step, the raw material and ceramic particles having an average particle diameter of 0.01 to 0.1 μm are mixed, and then mechanical grinding treatment is performed. As a result, a negative electrode active material containing a charge / discharge phase, a constrained phase, and 1 to 10% by mass of ceramic particles is produced. In the heat treatment step, the negative electrode active material is heat treated at 400 to 700 ° C.
 上記製造方法により、CuKα線によるX線回折において、拘束相のピークの半価幅が0.65°以下になり、ひずみ量が低減する。さらに、充放電相では、セラミックス粒子により、上記熱処理が実施されても、平均結晶粒径を100nm以下に抑えることができる。そのため、製造された負極活物質材料のサイクル特性(容量維持率)が高まる。 By the above manufacturing method, the half-value width of the peak of the constrained phase becomes 0.65 ° or less in the X-ray diffraction by CuKα ray, and the amount of strain is reduced. Furthermore, in the charge / discharge phase, the average crystal grain size can be suppressed to 100 nm or less even when the above heat treatment is performed with ceramic particles. Therefore, the cycle characteristics (capacity maintenance ratio) of the manufactured negative electrode active material are increased.
 以下、本実施形態の負極活物質材料及びその製造方法について詳述する。 Hereinafter, the negative electrode active material of this embodiment and the manufacturing method thereof will be described in detail.
 [負極活物質材料]
 本実施形態の負極活物質材料は、Liに代表される金属イオンを可逆的に吸収及び放出できる。負極活物質材料は、充放電相と、拘束相と、セラミックス粒子とを含有する。
[Negative electrode active material]
The negative electrode active material of this embodiment can reversibly absorb and release metal ions typified by Li. The negative electrode active material contains a charge / discharge phase, a constrained phase, and ceramic particles.
 [充放電相]
 充放電相は、珪素(Si)、スズ(Sn)及び亜鉛(Zn)からなる群から選択される1種以上からなる。これらの元素は、金属イオンを吸収及び放出する。つまり、充放電相は、負極活物質材料の充放電容量を高める。
[Charge / discharge phase]
The charge / discharge phase is composed of one or more selected from the group consisting of silicon (Si), tin (Sn), and zinc (Zn). These elements absorb and release metal ions. That is, the charge / discharge phase increases the charge / discharge capacity of the negative electrode active material.
 充放電相の結晶粒の平均結晶粒径は10~100nmである。本実施形態では、充放電相の結晶粒は微細である。平均結晶粒径が100nm以下であれば、充放電相中の金属イオンの拡散距離が短く、金属イオンの吸収及び放出に伴う応力集中が軽減される。この場合、充放電に伴い充放電相が膨張及び収縮を繰り返しても、充放電相の一部が離脱したり、崩壊したりするのが抑制される。平均結晶粒径の好ましい上限は80nmであり、さらに好ましくは50nmである。 The average crystal grain size of the charge / discharge phase crystal grains is 10 to 100 nm. In this embodiment, the charge / discharge phase crystal grains are fine. If the average crystal grain size is 100 nm or less, the diffusion distance of metal ions in the charge / discharge phase is short, and stress concentration associated with absorption and release of metal ions is reduced. In this case, even if the charge / discharge phase repeatedly expands and contracts with charge / discharge, the charge / discharge phase is prevented from being partially detached or collapsed. A preferable upper limit of the average crystal grain size is 80 nm, and more preferably 50 nm.
 充放電相の結晶粒の平均結晶粒径は次の方法で測定される。負極活物質材料から、ミクロ組織観察用のサンプルを作製する。作製したサンプルを透過電子顕微鏡(TEM)で観察して写真画像を生成する。写真画像を利用して、充放電相の結晶粒の平均結晶粒径を求める。 The average crystal grain size of the charge / discharge phase crystal grains is measured by the following method. A sample for microstructural observation is prepared from the negative electrode active material. The produced sample is observed with a transmission electron microscope (TEM) to generate a photographic image. Using the photographic image, the average crystal grain size of the charge / discharge phase crystal grains is determined.
 [拘束相]
 上述の複数の充放電相は、拘束相内に分散される。換言すれば、拘束相は、充放電相を取り囲む。上述のとおり、充放電相は、膨張及び収縮を繰り返す。拘束相は、充放電相を取り囲んで拘束し、充放電相の体積変化(膨張及び収縮)を抑制する。そのため、充放電層の急激な体積変化により、充放電相の一部が離脱したり、崩壊したりするのが抑制される。その結果、負極活物質材料のサイクル特性が高まる。
[Restricted Phase]
The plurality of charge / discharge phases described above are dispersed in the constraining phase. In other words, the constraining phase surrounds the charge / discharge phase. As described above, the charge / discharge phase repeats expansion and contraction. The constraining phase surrounds and constrains the charge / discharge phase, and suppresses volume changes (expansion and contraction) of the charge / discharge phase. Therefore, it is suppressed that a part of charging / discharging phase leaves | separates or collapses by the rapid volume change of a charging / discharging layer. As a result, the cycle characteristics of the negative electrode active material are enhanced.
 拘束相は、周期表における、第2族元素、遷移元素、第12族元素、第13族元素及び第14族元素からなる群から選択される1種以上の元素(だたし、充放電相の元素及びCは除く)と、充放電相に含有される元素とからなる固溶体又は金属間化合物である。充放電相がSiからなるSi相である場合、拘束相はたとえば、金属珪化物相である。金属珪化物相はたとえば、Siと、Tiと、Niとを含有する。 The constrained phase is one or more elements selected from the group consisting of Group 2 elements, transition elements, Group 12 elements, Group 13 elements and Group 14 elements in the periodic table (however, the charge / discharge phase) And a solid solution or an intermetallic compound consisting of elements contained in the charge / discharge phase. When the charge / discharge phase is a Si phase made of Si, the constraining phase is, for example, a metal silicide phase. The metal silicide phase contains, for example, Si, Ti, and Ni.
 CuKα線を用いたX線回折において、拘束相の回折ピークの半価幅は0.35~0.65°である。 In X-ray diffraction using CuKα rays, the half-value width of the diffraction peak of the constrained phase is 0.35 to 0.65 °.
 拘束相は、充放電相の体積変化(膨張及び収縮)を抑える。このとき、拘束相は充放電相からの外力を受ける。そのため、充放電に伴い、拘束相にひずみが蓄積されていく。 The restraint phase suppresses the volume change (expansion and contraction) of the charge / discharge phase. At this time, the restraint phase receives an external force from the charge / discharge phase. For this reason, strain is accumulated in the constraining phase with charge and discharge.
 充放電前の拘束相でひずみ量が多ければ、充放電に伴いひずみがさらに加算される。その結果、拘束相の一部が離脱したり、崩壊したりする。この場合、負極活物質材料のサイクル特性(容量維持率)が低下する。したがって、充放電前の拘束相では、ひずみ量が少ない方が好ましい。 If the amount of strain is large in the constrained phase before charging / discharging, the strain is further added along with charging / discharging. As a result, a part of the restraint phase is disengaged or collapses. In this case, the cycle characteristics (capacity maintenance ratio) of the negative electrode active material are lowered. Therefore, in the constrained phase before charging / discharging, it is preferable that the amount of strain is small.
 拘束相の回折ピークの半価幅は、拘束相内のひずみ量の指標となる。半価幅が小さいほど、拘束相内のひずみ量が少ない。半価幅が0.65°を超えれば、拘束相内のひずみ量が多すぎる。この場合、負極活物質材料のサイクル特性が低い。 The half width of the diffraction peak of the constrained phase is an index of the amount of strain in the constrained phase. The smaller the half width, the smaller the amount of strain in the constrained phase. If the half width exceeds 0.65 °, the amount of strain in the constrained phase is too large. In this case, the cycle characteristics of the negative electrode active material are low.
 拘束相の半価幅が0.65°以下であれば、拘束相内のひずみ量が十分に少ない。そのため、負極活物質材料は優れたサイクル特性を有する。半価幅の好ましい上限は0.50°であり、さらに好ましくは0.35°である。 If the half width of the constrained phase is 0.65 ° or less, the amount of strain in the constrained phase is sufficiently small. Therefore, the negative electrode active material has excellent cycle characteristics. The upper limit with preferable half value width is 0.50 degree, More preferably, it is 0.35 degree.
 拘束相のみを考慮した場合、半価幅の下限は特に限定されない。拘束相のひずみ量は、後述の熱処理により調整される。熱処理温度を高くすれば、半価幅を低くすることができる。しかしながら、熱処理温度が高すぎれば、充放電相の結晶粒が粗大化する。この場合、上述のとおり、サイクル特性が低下する。充放電相の平均結晶粒を10~100nmに維持できる範囲での半価幅の下限は0.35°である。したがって、拘束相の半価幅は0.35~0.65°である。 When considering only the restraint phase, the lower limit of the full width at half maximum is not particularly limited. The strain amount of the constrained phase is adjusted by a heat treatment described later. If the heat treatment temperature is raised, the half width can be lowered. However, if the heat treatment temperature is too high, the charge and discharge phase crystal grains become coarse. In this case, as described above, the cycle characteristics deteriorate. The lower limit of the half width within the range in which the average crystal grains of the charge / discharge phase can be maintained at 10 to 100 nm is 0.35 °. Accordingly, the half width of the constrained phase is 0.35 to 0.65 °.
 拘束相の半価幅は次の方法で測定される。負極活物質材料の拘束相に対してX線回折を実施する。X線回折では、30kV、100mAの条件でCuKα線(波長は1.5418Å)を用いる。ピークトップ法に基づいて、回折ピーク高さの半価になる高さにおける回折角度を半価幅として測定する。さらに、LaB6(六ホウ化ランタン)の単結晶(半価幅を持たない理想な単結晶)を用いて、X線回折装置由来の半価幅を測定する。測定された装置固有の半価幅を、測定された半価幅から差し引いて補正を行う。補正後の値を、拘束相の回折ピークの半価幅と定義する。 ¡The full width at half maximum of the restraint phase is measured by the following method. X-ray diffraction is performed on the constrained phase of the negative electrode active material. In X-ray diffraction, CuKα rays (wavelength is 1.5418 mm) are used under the conditions of 30 kV and 100 mA. Based on the peak top method, the diffraction angle at the height at which the half height of the diffraction peak height is obtained is measured as the half width. Further, the half width derived from the X-ray diffractometer is measured using a single crystal of LaB6 (lanthanum hexaboride) (an ideal single crystal having no half width). Correction is performed by subtracting the measured half-value width inherent to the apparatus from the measured half-value width. The corrected value is defined as the half width of the diffraction peak of the constrained phase.
 [セラミックス粒子]
 複数のセラミックス粒子は、負極活物質材料内に分散される。つまり、セラミックス粒子は充放電相及び拘束相内に分散される。セラミックス粒子の平均粒径は0.01~0.1μmであり、微細である。以下、平均粒径が0.01~0.1μmのセラミックス粒子を「微細セラミックス粒子」ともいう。微細セラミックス粒子は、次の作用を有する。
[Ceramic particles]
The plurality of ceramic particles are dispersed in the negative electrode active material. That is, the ceramic particles are dispersed in the charge / discharge phase and the constraining phase. The average particle size of the ceramic particles is 0.01 to 0.1 μm and is fine. Hereinafter, ceramic particles having an average particle diameter of 0.01 to 0.1 μm are also referred to as “fine ceramic particles”. The fine ceramic particles have the following action.
 充放電相内の微細セラミックス粒子は、充放電相の結晶粒の平均結晶粒径を微細なまま維持する。上述のとおり、本実施形態では、熱処理を実施することにより、拘束相内のひずみ量を低減する。しかしながら、熱処理を実施すれば、充放電相内の結晶粒が粗大になりやすい。本実施形態では、充放電相内に分散した微細セラミックス粒子が、熱処理により充放電相内の結晶粒が粗大化するのを抑制する。そのため、充放電相の平均結晶粒径が10~100nmに維持される。 The fine ceramic particles in the charge / discharge phase keep the average crystal grain size of the charge / discharge phase crystal grains fine. As described above, in this embodiment, the amount of strain in the constrained phase is reduced by performing heat treatment. However, if heat treatment is performed, the crystal grains in the charge / discharge phase tend to be coarse. In this embodiment, the fine ceramic particles dispersed in the charge / discharge phase suppress the coarsening of crystal grains in the charge / discharge phase due to heat treatment. Therefore, the average crystal grain size of the charge / discharge phase is maintained at 10 to 100 nm.
 セラミックス粒子の平均粒径が0.1μmを超えれば、セラミックス粒子が大きすぎる。この場合、充放電相の結晶粒の粗大化を抑制しにくく、結晶粒の平均結晶粒径が100nmを超える場合がある。したがって、セラミックス粒子の平均粒径の上限は0.1μmである。セラミックス粒子の平均粒径の好ましい上限は0.06μmである。セラミックス粒子の平均粒径の下限は特に限定されない。しかしながら、製造コストを考慮すれば、セラミックス粒子の平均粒径の下限は0.01μmである。 If the average particle size of the ceramic particles exceeds 0.1 μm, the ceramic particles are too large. In this case, it is difficult to suppress the coarsening of the crystal grains of the charge / discharge phase, and the average crystal grain size of the crystal grains may exceed 100 nm. Therefore, the upper limit of the average particle size of the ceramic particles is 0.1 μm. A preferable upper limit of the average particle size of the ceramic particles is 0.06 μm. The lower limit of the average particle size of the ceramic particles is not particularly limited. However, considering the production cost, the lower limit of the average particle size of the ceramic particles is 0.01 μm.
 セラミックス粒子の平均粒径は、次の方法で測定される。レーザー回折・散乱式の粒度分布測定装置(日機装株式会社製 マイクロトラックFRA)を用いて測定する。この測定は、水を分散溶媒として、超音波により粉末凝集をほぐした後に行う。データ解析時には、測定装置メーカー提供の各物質の屈折率を入力して、粒度分布を求める。 The average particle size of the ceramic particles is measured by the following method. Measurement is performed using a laser diffraction / scattering type particle size distribution measuring apparatus (Microtrack FRA manufactured by Nikkiso Co., Ltd.). This measurement is performed after loosening the powder by ultrasonic waves using water as a dispersion solvent. At the time of data analysis, the refractive index of each substance provided by the measuring device manufacturer is input to obtain the particle size distribution.
 負極活物質材料内のセラミックス粒子の含有量は、質量%で1~10%である。セラミックス粒子の含有量が低すぎれば、熱処理後の充放電相の結晶粒が粗大になる。一方、セラミックス粒子は充放電容量に寄与しない。そのため、セラミックス粒子の含有量が高すぎれば、充放電容量が低下する。セラミックス粒子の含有量が1~10%であれば、充放電相の結晶粒を微細に維持しつつ、高い充放電容量が得られる。セラミックス粒子の含有量の好ましい下限は2%である。セラミックス粒子の含有量の好ましい上限は6%である。 The content of ceramic particles in the negative electrode active material is 1 to 10% by mass. If the ceramic particle content is too low, the crystal grains of the charge / discharge phase after the heat treatment become coarse. On the other hand, ceramic particles do not contribute to the charge / discharge capacity. Therefore, if the content of ceramic particles is too high, the charge / discharge capacity decreases. When the content of the ceramic particles is 1 to 10%, a high charge / discharge capacity can be obtained while maintaining fine grains of the charge / discharge phase. A preferable lower limit of the content of the ceramic particles is 2%. A preferable upper limit of the content of ceramic particles is 6%.
 上記負極活物質材料は、充放電相、拘束相、及び、セラミックス粒子の他、不純物を含有してもよい。負極活物質材料はさらに、他の相又は粒子を含有してもよい。 The negative electrode active material may contain impurities in addition to the charge / discharge phase, the constrained phase, and the ceramic particles. The negative electrode active material may further contain other phases or particles.
 [製造方法]
 本実施形態の負極活物質材料の製造方法の一例を説明する。負極活物質材料の製造方法は、準備工程と、MG処理工程と、熱処理工程とを備える。
[Production method]
An example of the manufacturing method of the negative electrode active material of this embodiment is demonstrated. The method for producing a negative electrode active material includes a preparation step, an MG treatment step, and a heat treatment step.
 [準備工程]
 準備工程では、充放電相と、拘束相とを含有する原材料を準備する。初めに、Si、Sn及びZnからなる群から選択される1種以上からなる元素と、第2族元素、遷移元素、第12族元素、第13族元素及び第14族元素からなる群から選択される1種以上の元素(だたし、充放電相の元素及びCは除く)とを含有する原料を準備する。このとき、充放電相と、拘束相とが形成されるように、これらの元素の配合を調整する。たとえば、充放電相としてのSi相と、拘束相としての金属珪化物相とを含有する負極活物質材料を製造する場合、Si、Ni、Ti等を原料として、これらの元素の配合を調整する。
[Preparation process]
In the preparation step, a raw material containing a charge / discharge phase and a constraining phase is prepared. First, one or more elements selected from the group consisting of Si, Sn and Zn, and a group consisting of Group 2 elements, transition elements, Group 12 elements, Group 13 elements and Group 14 elements are selected. The raw material containing the 1 or more types of element (however, the element and C of a charge / discharge phase are remove | excluded) is prepared. At this time, the blending of these elements is adjusted so that a charge / discharge phase and a constrained phase are formed. For example, when producing a negative electrode active material containing a Si phase as a charge / discharge phase and a metal silicide phase as a constraining phase, the composition of these elements is adjusted using Si, Ni, Ti, etc. as raw materials. .
 準備された原料を溶解して溶湯を製造する。溶解方法は特に限定されない。溶解方法はたとえば、アーク溶解、高周波加熱溶解、抵抗加熱溶解等である。 * Prepare the molten metal by melting the prepared raw materials. The dissolution method is not particularly limited. Examples of the melting method include arc melting, high-frequency heating melting, resistance heating melting, and the like.
 次に、溶湯を冷却してインゴット又は鋳片を製造する。冷却方法は特に限定されない。冷却方法はたとえば、ストリップキャスティング法(SC法)である。ストリップキャスティング法では、回転する水冷ロール上に溶湯を注ぎ、溶湯を急冷凝固する。この場合、薄片状の鋳片が製造される。なお、溶湯を鋳型に鋳込んでインゴットを製造してもよい。 Next, the molten metal is cooled to produce an ingot or slab. The cooling method is not particularly limited. The cooling method is, for example, a strip casting method (SC method). In the strip casting method, molten metal is poured onto a rotating water-cooled roll, and the molten metal is rapidly solidified. In this case, a flaky cast piece is produced. The ingot may be manufactured by casting a molten metal in a mold.
 製造された素材(インゴット又は鋳片)を粉砕して原材料を製造する。たとえば、素材を切断したり、ハンマーミル等を用いて粉砕したりして、100μm以下の粗粉末にする。さらに、粗粉末に対してボールミル、アトライタ、ディスクミル、ジェットミル、ピンミル等を用いて粉砕加工を実施し、原材料(粉末粒子)のサイズ(粒径)を調整する。原材料の平均粒径は特に限定されない。原材料の平均粒径はたとえば、25~30μmである。 * The raw material is manufactured by crushing the manufactured material (ingot or slab). For example, the raw material is cut or pulverized using a hammer mill or the like to obtain a coarse powder of 100 μm or less. Further, the coarse powder is pulverized using a ball mill, an attritor, a disk mill, a jet mill, a pin mill, or the like to adjust the size (particle size) of the raw material (powder particles). The average particle diameter of the raw material is not particularly limited. The average particle size of the raw material is, for example, 25 to 30 μm.
 好ましくは、上記粉砕加工を、不活性ガス雰囲気又はドライ雰囲気で実施する。原材料の酸化を防止するためである。 Preferably, the pulverization process is performed in an inert gas atmosphere or a dry atmosphere. This is to prevent oxidation of the raw material.
 [MG処理工程]
 上記原材料と、微細セラミックス粒子とを混合して、混合粉末を作製する。混合粉末に対して、MG処理を実施する。MG処理ではたとえば、ボールミルを利用する。MG処理において、混合粉末に黒鉛、ステアリン酸、又は、PVP(ポリビニルピロリドン)を配合してもよい。この場合、MG処理で生成された負極活物質材料(粉末粒子)がボールミルの内壁に付着するのを抑制できる。MG処理により、微細な結晶粒を有する充放電相を含む負極活物質材料が製造される。負極活物質材料の平均粒径はたとえば、5~200μmである。
[MG treatment process]
The raw material and fine ceramic particles are mixed to produce a mixed powder. MG treatment is performed on the mixed powder. In the MG processing, for example, a ball mill is used. In the MG treatment, graphite, stearic acid, or PVP (polyvinylpyrrolidone) may be added to the mixed powder. In this case, it can suppress that the negative electrode active material (powder particle) produced | generated by MG process adheres to the inner wall of a ball mill. By the MG treatment, a negative electrode active material including a charge / discharge phase having fine crystal grains is manufactured. The average particle diameter of the negative electrode active material is, for example, 5 to 200 μm.
 [熱処理工程]
 負極活物質材料は、上述のとおり、微細な結晶粒を有する充放電相と、拘束相と、セラミックス粒子とを含有する。しかしながら、MG処理により、拘束相内には多数のひずみが導入されている。そこで、負極活物質材料に対して熱処理を実施して、拘束相のひずみ量を低減する。
[Heat treatment process]
As described above, the negative electrode active material includes a charge / discharge phase having fine crystal grains, a constrained phase, and ceramic particles. However, many strains are introduced into the constrained phase by the MG treatment. Therefore, heat treatment is performed on the negative electrode active material to reduce the strain amount of the constrained phase.
 熱処理温度は、400~700℃である。図1は、熱処理温度と半価幅との関係を示す図である。図1は次の方法により得られた。後述の表1に示す拘束相(金属珪化物相)、充放電相(Si相)及びセラミックス粒子を含む負極活物質材料を製造した。このとき、熱処理温度を変化させた。熱処理時間は4時間であった。製造された負極活物質材料の半価幅を測定し、図1を作成した。 The heat treatment temperature is 400 to 700 ° C. FIG. 1 is a diagram showing the relationship between the heat treatment temperature and the half width. FIG. 1 was obtained by the following method. A negative electrode active material including a constrained phase (metal silicide phase), a charge / discharge phase (Si phase) and ceramic particles shown in Table 1 described later was produced. At this time, the heat treatment temperature was changed. The heat treatment time was 4 hours. The half width of the manufactured negative electrode active material was measured, and FIG. 1 was created.
 図1中の「◇」印は、拘束相としてTiSi及びNiTiSiからなる金属珪化物相を含有し、充放電相としてSi相を含有し、セラミックス粒子としてAlを含有した負極活物質材料の結果である。「□」印は、拘束相としてNiTiSiからなる金属珪化物相を含有し、充放電相としてSi相を含有し、セラミックス粒子としてAlを含有した負極活物質材料の結果である。 In FIG. 1, “◇” marks include a metal silicide phase composed of TiSi 2 and Ni 4 Ti 4 Si 7 as a constraining phase, a Si phase as a charge / discharge phase, and Al 2 O 3 as ceramic particles. It is a result of the contained negative electrode active material. The “□” mark indicates a negative electrode active material containing a metal silicide phase composed of Ni 4 Ti 4 Si 7 as a constraining phase, a Si phase as a charge / discharge phase, and Al 2 O 3 as ceramic particles. It is a result.
 図1を参照して、熱処理温度が高いほど、半価幅が小さくなり、ひずみ量が低減する。そして、熱処理温度が400℃~700℃であれば、半価幅が0.65°以下になり、ひずみ量が十分少なくなる。 Referring to FIG. 1, the higher the heat treatment temperature, the smaller the half width, and the amount of strain decreases. When the heat treatment temperature is 400 ° C. to 700 ° C., the half width is 0.65 ° or less, and the amount of strain is sufficiently reduced.
 熱処理温度が高すぎれば、拘束相のひずみ量は低減するものの、充放電相の結晶粒が粗大化する。しかしながら、本実施形態の負極活物質材料では、1~10質量%の微細セラミックス粒子を含有することにより、熱処理中の充放電相内の結晶粒の粗大化が抑制される。熱処理温度が700℃以下であれば、充放電相の平均結晶粒径を100nm以下に抑えることができる。 If the heat treatment temperature is too high, the strain amount of the constrained phase is reduced, but the crystal grains of the charge / discharge phase become coarse. However, in the negative electrode active material of this embodiment, the inclusion of 1 to 10% by mass of fine ceramic particles suppresses the coarsening of crystal grains in the charge / discharge phase during the heat treatment. When the heat treatment temperature is 700 ° C. or lower, the average crystal grain size of the charge / discharge phase can be suppressed to 100 nm or lower.
 熱処理温度の好ましい上限は600℃である。熱処理温度の好ましい下限は400℃である。 The preferable upper limit of the heat treatment temperature is 600 ° C. A preferred lower limit of the heat treatment temperature is 400 ° C.
 好ましい熱処理時間は3.0時間~12時間である。熱処理時間のさらに好ましい下限は4.0時間である。熱処理時間のさらに好ましい上限は8時間である。 A preferable heat treatment time is 3.0 hours to 12 hours. A more preferable lower limit of the heat treatment time is 4.0 hours. A more preferable upper limit of the heat treatment time is 8 hours.
 以上の製造工程により、負極活物質材料が製造される。
 [負極の製造方法]
 本実施形態による負極の製造方法の一例は次のとおりである。上述の負極活物質材料の粉末に対して、結着剤を混合して負極合剤を調製する。結着剤はたとえば、ポリフッ化ビニリデン(PVDF)、ポリメチルメタクリレート(PMMA)、ポリテトラフルオロエチレン(PTFE)等の非水溶性の樹脂であって電池の非水電解質に使用される溶媒に不溶性のもの、カルビキシメチルセルロース(CMC)及びビニルアルコール(PVA)等の水溶性樹脂、及び、スチレンブタジエンラバー(SBR)等である。
The negative electrode active material is manufactured by the above manufacturing process.
[Production method of negative electrode]
An example of the negative electrode manufacturing method according to the present embodiment is as follows. A negative electrode mixture is prepared by mixing a binder with the negative electrode active material powder described above. The binder is, for example, a water-insoluble resin such as polyvinylidene fluoride (PVDF), polymethyl methacrylate (PMMA), polytetrafluoroethylene (PTFE), etc., and is insoluble in the solvent used for the non-aqueous electrolyte of the battery. And water-soluble resins such as carboxymethyl cellulose (CMC) and vinyl alcohol (PVA), and styrene butadiene rubber (SBR).
 負極に十分な導電性を付与する場合、負極合剤に、導電性を高めるための導電粉を混合する。導電粉はたとえば、天然黒鉛、人造黒鉛、アセチレンブラック等の炭素材料、Ni等の金属である。好ましい導電粉は炭素材料である。炭素材料は、Liイオンを吸蔵できる。したがって、炭素材料は、導電性だけでなく、負極の容量も高める。炭素材料はさらに、保液性に優れる。好ましい炭素材料は、アセチレンブラックである。 In the case of imparting sufficient conductivity to the negative electrode, conductive powder for increasing conductivity is mixed with the negative electrode mixture. The conductive powder is, for example, a carbon material such as natural graphite, artificial graphite or acetylene black, or a metal such as Ni. A preferred conductive powder is a carbon material. The carbon material can occlude Li ions. Therefore, the carbon material increases not only the conductivity but also the capacity of the negative electrode. The carbon material is further excellent in liquid retention. A preferred carbon material is acetylene black.
 負極合剤に水などの溶媒を加えて、必要であればホモジナイザ、ガラスビーズを用いて十分に攪拌し、負極合剤スラリを製造する。このスラリを圧延銅箔、電析銅箔などの活物質支持体に塗布して乾燥する。その後、必要に応じて、その乾燥物にプレスを施す。以上の工程により、負極を製造する。 A solvent such as water is added to the negative electrode mixture, and if necessary, the mixture is sufficiently stirred using a homogenizer and glass beads to produce a negative electrode mixture slurry. This slurry is applied to an active material support such as rolled copper foil or electrodeposited copper foil and dried. Thereafter, the dried product is pressed as necessary. A negative electrode is manufactured by the above process.
 [電池]
 本実施形態の電池は、非水電解質二次電池である。電池は、上述の負極を含む。電池はたとえば、本実施形態の負極と、正極と、セパレータと、電解液又は電解質とを備える。
[battery]
The battery of this embodiment is a nonaqueous electrolyte secondary battery. The battery includes the above-described negative electrode. A battery is provided with the negative electrode of this embodiment, a positive electrode, a separator, and electrolyte solution or electrolyte, for example.
 電池の形状は、円筒形、角形であってもよいし、コイン型、シート型等でもよい。本実施形態の電池は、ポリマー電池等の固体電解質を利用した電池でもよい。 The shape of the battery may be a cylindrical shape, a square shape, a coin shape, a sheet shape, or the like. The battery of this embodiment may be a battery using a solid electrolyte such as a polymer battery.
 正極は、好ましくは、金属イオンを含有する遷移金属化合物を活物質として含有する。さらに好ましくは、正極は、リチウム(Li)含有遷移金属化合物を活物質として含有する。Li含有遷移金属化合物はたとえば、LiM-xM’xO、又は、LiMyM’Oである。ここで、式中、0≦x、y≦1、M及びM’はそれぞれ、バリウム(Ba)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、クロム(Cr)、チタン(Ti)、バナジウム(V)、鉄(Fe)、亜鉛(Zn)、アルミニウム(Al)、インジウム(In)、スズ(Sn)、スカンジウム(Sc)及びイットリウム(Y)の少なくとも1種である。 The positive electrode preferably contains a transition metal compound containing a metal ion as an active material. More preferably, the positive electrode contains a lithium (Li) -containing transition metal compound as an active material. The Li-containing transition metal compound is, for example, LiM 1 -xM′xO 2 or LiM 2 yM′O 4 . Here, in the formula, 0 ≦ x, y ≦ 1, M and M ′ are barium (Ba), cobalt (Co), nickel (Ni), manganese (Mn), chromium (Cr), titanium (Ti), respectively. , Vanadium (V), iron (Fe), zinc (Zn), aluminum (Al), indium (In), tin (Sn), scandium (Sc), and yttrium (Y).
 本実施形態の電池は、遷移金属カルコゲン化物;バナジウム酸化物及びそのリチウム(Li)化合物;ニオブ酸化物及びそのリチウム化合物;有機導電性物質を用いた共役系ポリマー;シェプレル相化合物;活性炭、活性炭素繊維等、といった他の正極を用いてもよい。 The battery of this embodiment includes a transition metal chalcogenide; a vanadium oxide and its lithium (Li) compound; a niobium oxide and its lithium compound; a conjugated polymer using an organic conductive material; a sheprel phase compound; Other positive electrodes such as fibers may be used.
 電解液は、一般に、支持電解質としてのリチウム塩を有機溶媒に溶解させた非水系電解液である。リチウム塩は例えば、LiClO、LiBF、LiPF、LiAsF、LiB(C)、LiCFSO、LiCHSO、Li(CFSON、LiCSO、Li(CFSO、LiCl、LiBr、LiI等である。これらは、単独で用いられてもよく組み合わせて用いられてもよい。有機溶媒は、プロピレンカーボネート、エチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネートなどの炭酸エステル類が好ましい。但し、カルボン酸エステル、エーテルをはじめとする他の各種の有機溶媒も使用可能である。これらの有機溶媒は、単独で用いられてもよいし、組み合わせて用いられてもよい。 The electrolytic solution is generally a non-aqueous electrolytic solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent. Examples of the lithium salt include LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiB (C 6 H 5 ), LiCF 3 SO 3 , LiCH 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li (CF 2 SO 2 ) 2 , LiCl, LiBr, LiI and the like. These may be used alone or in combination. The organic solvent is preferably a carbonic acid ester such as propylene carbonate, ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate, or diethyl carbonate. However, various other organic solvents including carboxylic acid esters and ethers can also be used. These organic solvents may be used alone or in combination.
 セパレータは、正極及び負極の間に設置される。セパレータは絶縁体としての役割を果たす。セパレータはさらに、電解質の保持にも大きく寄与する。本実施形態の電池は周知のセパレータを備えればよい。セパレータはたとえば、ポリオレフィン系材質であるポリプロピレン、ポリエチレン、又はその両者の混合布、もしくは、ガラスフィルターなどの多孔体である。 The separator is installed between the positive electrode and the negative electrode. The separator serves as an insulator. Further, the separator greatly contributes to the retention of the electrolyte. The battery of this embodiment may be provided with a known separator. The separator is, for example, a polyolefin material such as polypropylene, polyethylene, a mixed cloth of both, or a porous body such as a glass filter.
 負極電極上に、セパレータ、金属Li薄板を順次積層した積層物を製造する。積層物をケースに収め、かしめ機でプレス加工して、電池を製造する。 A laminate in which a separator and a metal Li thin plate are sequentially laminated on a negative electrode is manufactured. The laminate is placed in a case and pressed with a caulking machine to manufacture a battery.
 表1に示す試験番号1~18の負極活物質材料を含む電池を、次の方法により作成し、電池特性(初回充電容量、初回放電容量、50サイクル後容量維持率)を調査した。 Batteries containing negative electrode active material of test numbers 1 to 18 shown in Table 1 were prepared by the following method, and battery characteristics (initial charge capacity, initial discharge capacity, capacity maintenance rate after 50 cycles) were investigated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [負極活物質材料の製造]
 [原材料の製造]
 試験番号1~14では、次の方法により一次粉末を製造した。Ni、Ti及びSiの純原料を、チタン酸アルミ製の溶解るつぼに収納した。Ni、Ti及びSiの質量比は、12.0:18.0:70.0であった。
[Manufacture of negative electrode active material]
[Manufacture of raw materials]
In test numbers 1 to 14, primary powders were produced by the following method. Pure raw materials of Ni, Ti and Si were stored in a melting crucible made of aluminum titanate. The mass ratio of Ni, Ti and Si was 12.0: 18.0: 70.0.
 溶解るつぼ内をアルゴン(Ar)雰囲気とした後、溶解るつぼ内の原料を、高周波誘導加熱により1500℃まで加熱して溶湯を製造した。製造された溶湯を、周速90m/分で回転する銅製の水冷ロール上に接触させて急冷凝固し、薄片状の鋳片を製造した(SC法)。SC法での冷却速度は500~2000℃/秒であった。製造された鋳片を粉砕した後、63μmの篩で分級して、平均粒径25~30μmの原材料を作製した。 After making the inside of the melting crucible an argon (Ar) atmosphere, the raw material in the melting crucible was heated to 1500 ° C. by high frequency induction heating to produce a molten metal. The produced molten metal was brought into contact with a copper water-cooled roll rotating at a peripheral speed of 90 m / min and rapidly solidified to produce a flaky slab (SC method). The cooling rate in the SC method was 500 to 2000 ° C./second. The produced slab was pulverized and classified with a 63 μm sieve to produce a raw material having an average particle size of 25 to 30 μm.
 試験番号15~18では、溶解るつぼに収納した原料におけるNi、Ti及びSiの質量比が、22.2:18.0:59.8であった。その他の製造工程は、試験番号1~14と同様にして、原材料を作製した。 In test numbers 15 to 18, the mass ratio of Ni, Ti and Si in the raw material stored in the melting crucible was 22.2: 18.0: 59.8. In other manufacturing processes, raw materials were prepared in the same manner as in test numbers 1 to 14.
 [負極活物質材料の製造]
 各試験番号ごとに、原材料と、アルミナ(Al)粉末とを混合した混合物を作製した。各試験番号のアルミナ粉末の平均粒径はいずれも、0.06μmであった。混合物を遊星ボールミル(株式会社栗本鐵工所製、商品名:BX384E)に投入し、MG処理を実施して、負極活物質材料(粉末)を製造した。
[Manufacture of negative electrode active material]
For each test number, a mixture was prepared by mixing raw materials and alumina (Al 2 O 3 ) powder. The average particle diameter of the alumina powder of each test number was 0.06 μm. The mixture was put into a planetary ball mill (manufactured by Kurimoto Steel Co., Ltd., trade name: BX384E) and subjected to MG treatment to produce a negative electrode active material (powder).
 具体的には、混合物を、遊星ボールミルのミルポットに投入した。ミルポットの材質はSUS304であり、内径は100mmであり、深さは67mmであった。さらに、複数のボールをミルポットに投入した。ボールの材質はSUS304であり、ボール径は4mmであった。さらに、ボール及びミルポット内壁に負極活物質材料が固着するのを抑制するため、黒鉛をミルポットに投入した。投入された混合物、ボール及び黒鉛の質量比は、混合物:黒鉛:ボール=35g:5g:600gであった。 Specifically, the mixture was put into a mill pot of a planetary ball mill. The material of the mill pot was SUS304, the inner diameter was 100 mm, and the depth was 67 mm. In addition, a plurality of balls were thrown into the mill pot. The material of the ball was SUS304, and the ball diameter was 4 mm. Furthermore, in order to prevent the negative electrode active material from adhering to the ball and the inner wall of the mill pot, graphite was introduced into the mill pot. The mass ratio of the charged mixture, balls and graphite was mixture: graphite: ball = 35 g: 5 g: 600 g.
 MG処理では、グローブボックス内を窒素雰囲気(酸素1%未満)とした。さらに、ミルポットの回転数を500rmpとして、MG処理を10時間実施した。MG処理後、窒素雰囲気(酸素1%未満)のグローブボックス内で負極活物質材料を取り出して篩分級(63μm)した。 In the MG treatment, the inside of the glove box was made a nitrogen atmosphere (less than 1% oxygen). Further, the MG treatment was carried out for 10 hours with the rotational speed of the mill pot set to 500 rpm. After the MG treatment, the negative electrode active material was taken out in a glove box in a nitrogen atmosphere (less than 1% oxygen) and sieved (63 μm).
 [熱処理]
 製造された負極活物質材料に対して、表1に示す温度及び時間で熱処理を実施した。
[Heat treatment]
The manufactured negative electrode active material was subjected to heat treatment at the temperature and time shown in Table 1.
 [熱処理後の充放電相中の結晶粒の平均結晶粒径の測定方法]
 FIB(集束イオンビーム)装置を用いて、加速されたガリウム(Ga)イオンにより、熱処理後の負極活物質材料から、厚さ200nm以下の箔片部を作製した。透過顕微鏡を用いて箔片部の明視野像を写真撮影し、充放電相を観察した。観察された充放電相の結晶粒は、アスペクト比が1.5未満の丸い形状を有した。写真画像上で観察された充放電相の結晶粒の縦、横の長さをそれぞれ測定し、その平均値を充放電相の結晶粒径とし、n=6の対象相を観察した後、平均結晶粒径を算出した。
[Measurement method of average grain size of crystal grains in charge / discharge phase after heat treatment]
Using a FIB (focused ion beam) apparatus, a foil piece having a thickness of 200 nm or less was produced from the negative electrode active material after heat treatment by accelerated gallium (Ga) ions. A bright-field image of the foil piece was photographed using a transmission microscope, and the charge / discharge phase was observed. The observed charge / discharge phase grains had a round shape with an aspect ratio of less than 1.5. The vertical and horizontal lengths of the charge / discharge phase crystal grains observed on the photographic image were measured, the average value was taken as the crystal grain size of the charge / discharge phase, and the target phase of n = 6 was observed. The crystal grain size was calculated.
 [負極の製造]
 製造された負極活物質材料(粉末)75質量部に対して、5質量部のスチレンブタジエンラバー(SBR)(バインダー)、5質量部のカルボキシメチルセルロース(CMC)(バインダー)、15質量部のアセチレンブラック粉末(導電粉)を混合して混合物を作製した。さらに混合物に蒸留水を添加した後に混練し、負極合剤スラリを調製した。
[Manufacture of negative electrode]
5 parts by mass of styrene butadiene rubber (SBR) (binder), 5 parts by mass of carboxymethyl cellulose (CMC) (binder), and 15 parts by mass of acetylene black with respect to 75 parts by mass of the produced negative electrode active material (powder) Powder (conductive powder) was mixed to prepare a mixture. Further, distilled water was added to the mixture and kneaded to prepare a negative electrode mixture slurry.
 負極合剤スラリを、ドクターブレード(150μm)を用いて厚さ30μmの電解銅箔上に薄く塗布し、乾燥させて塗膜を形成した。この塗膜を、直径13mmの大きさのポンチを用いて打ち抜き、負極を製造した。銅箔上の負極合剤スラリの塗布量は2~3mg/cmであった。 The negative electrode mixture slurry was thinly applied onto an electrolytic copper foil having a thickness of 30 μm using a doctor blade (150 μm) and dried to form a coating film. This coating film was punched out using a punch having a diameter of 13 mm to produce a negative electrode. The coating amount of the negative electrode mixture slurry on the copper foil was 2 to 3 mg / cm 2 .
 [コイン型電池の製造]
 対極(正極)にLi金属を用いたコイン型電池(2016型)を製造した。具体的には、負極電極上に、直径19mmのセパレータを配置した。さらに、セパレータ上に、直径15mmの金属Li板を配置して、積層物を形成した。積層物をケース内に納めた。積層物を収納したケースの外周部を、専用のかしめ機でプレス加工して、コイン型電池(2016型)を作製した。エチレンカーボネートとエチルメチルカーボネートとの1:3混合溶媒中に、支持電解質のLiPFが1mol/LとなるようにLiPFを溶解させた溶液を、電解液として使用した。電解液は、添加剤として8質量%のフルオロエチレンカーボネートを含有した。
[Manufacture of coin-type batteries]
A coin-type battery (2016 type) using Li metal as a counter electrode (positive electrode) was manufactured. Specifically, a separator having a diameter of 19 mm was disposed on the negative electrode. Furthermore, a metal Li plate having a diameter of 15 mm was disposed on the separator to form a laminate. The laminate was placed in the case. The outer periphery of the case containing the laminate was pressed with a dedicated caulking machine to produce a coin-type battery (2016 type). 1 of ethylene carbonate and ethyl methyl carbonate: 3 mixed solvent of LiPF 6 supporting electrolyte is obtained by dissolving LiPF 6 as a 1 mol / L solution was used as an electrolyte. The electrolytic solution contained 8% by mass of fluoroethylene carbonate as an additive.
 [評価試験]
 [初回充電容量、初回放電容量、初回充放電効率]
 製造された電池において、0.15mAの電流値で、対極(正極)に対して電位差5mVになるまで定電流でドープ(負極へのリチウムイオンの挿入、リチウムイオン二次電池の充電に相当)を行った。その後、さらに5mVを保持したまま、電流値が10μAになるまで定電圧でドープを続けた。30分間の休止時間後、0.15mAの定電流で、電位差1.2Vになるまで脱ドープ(電極からのリチウムイオンの離脱、リチウムイオン二次電池の放電に相当)を行った。以上の初回サイクル後、測定されたドープ量を初回充電容量(mAh/cc)とし、測定された脱ドープ容量を、初回放電容量(mAh/cc)とした。初回充電容量に対する初回放電容量の比(=初回放電容量/初回充電容量)(%)を、初回充放電効率(%)とした。
[Evaluation test]
[Initial charge capacity, initial discharge capacity, initial charge / discharge efficiency]
In the manufactured battery, dope with constant current until the potential difference becomes 5 mV with respect to the counter electrode (positive electrode) at a current value of 0.15 mA (equivalent to insertion of lithium ions into the negative electrode, charging of the lithium ion secondary battery). went. Thereafter, doping was continued at a constant voltage while maintaining 5 mV until the current value reached 10 μA. After a 30-minute rest period, de-doping (corresponding to detachment of lithium ions from the electrode and discharging of the lithium ion secondary battery) was performed at a constant current of 0.15 mA until the potential difference became 1.2V. After the above initial cycle, the measured dope amount was defined as the initial charge capacity (mAh / cc), and the measured dedope capacity was defined as the initial discharge capacity (mAh / cc). The ratio of initial discharge capacity to initial charge capacity (= initial discharge capacity / initial charge capacity) (%) was defined as initial charge / discharge efficiency (%).
 [50サイクル後の容量維持率]
 2サイクル目以上の充放電を、次のとおり実施した。0.15mAの電流値で、対極に対して電位差5mVになるまで、定電流でドープを行った。さらに5mVを維持したまま、電流値が10μAになるまで定電圧でドープを続けた。ドープが終了してから30分休止した後、0.15mAの定電流で、電位差1.2Vになるまで脱ドープを行った。初回放電容量に対する、50サイクル後の放電容量の比(=50サイクル後の放電容量/初回放電容量)を、容量維持率(%)とした。
[Capacity maintenance rate after 50 cycles]
Charging / discharging of the 2nd cycle or more was implemented as follows. Doping was performed at a constant current until the potential difference became 5 mV with respect to the counter electrode at a current value of 0.15 mA. Further, while maintaining 5 mV, doping was continued at a constant voltage until the current value reached 10 μA. After a 30-minute pause after the doping was completed, undoping was performed at a constant current of 0.15 mA until the potential difference became 1.2V. The ratio of the discharge capacity after 50 cycles to the initial discharge capacity (= discharge capacity after 50 cycles / initial discharge capacity) was defined as the capacity retention rate (%).
 [試験結果]
 表1を参照して、試験番号2~6、12、13、16及び17の負極活物質材料は、本発明の範囲内であった。そのため、初回充電容量及び初回放電容量は高かった。具体的には、初回充電容量は1600mAh/ccを超え、初回放電容量は1400mAh/ccを超えた。さらに、容量維持率は80%以上であった。
[Test results]
Referring to Table 1, the negative electrode active material of test numbers 2 to 6, 12, 13, 16, and 17 was within the scope of the present invention. Therefore, the initial charge capacity and the initial discharge capacity were high. Specifically, the initial charge capacity exceeded 1600 mAh / cc, and the initial discharge capacity exceeded 1400 mAh / cc. Furthermore, the capacity retention rate was 80% or more.
 一方、試験番号1では、微細セラミックス粒子(Al)が含有されなかった。そのため、Si相の平均結晶粒径が100nmを超えた。その結果、容量維持率が低かった。 On the other hand, in the test number 1, fine ceramic particles (Al 2 O 3 ) were not contained. Therefore, the average crystal grain size of the Si phase exceeded 100 nm. As a result, the capacity retention rate was low.
 試験番号7では、負極活物質材料において微細セラミックス粒子の含有量が高すぎた。そのため、初回充電容量及び初回放電容量が低かった。充放電容量に寄与しない微細セラミックス粒子がSi相内に占める割合が高すぎたため、充放電容量が低くなったと考えられる。 In test number 7, the content of fine ceramic particles in the negative electrode active material was too high. Therefore, the initial charge capacity and the initial discharge capacity were low. The proportion of fine ceramic particles that do not contribute to the charge / discharge capacity in the Si phase is considered to be too high.
 試験番号8~11及び15では、負極活物質材料に対する熱処理を実施しなかった。そのため、金属珪化物相の半価幅が高すぎた。そのため、容量維持率が低く、80%未満であった。 In Test Nos. 8 to 11 and 15, no heat treatment was performed on the negative electrode active material. Therefore, the half width of the metal silicide phase was too high. Therefore, the capacity retention rate was low and less than 80%.
 試験番号14及び18では、負極活物質材料に対する熱処理温度が高すぎた。そのため、Si相の平均結晶粒径が100nmを超えた。その結果、容量維持率が低く、80%未満であった。Si相が粗粒なため、サイクル試験中にSi相の一部が離脱等したためと考えられる。 In test numbers 14 and 18, the heat treatment temperature for the negative electrode active material was too high. Therefore, the average crystal grain size of the Si phase exceeded 100 nm. As a result, the capacity retention rate was low and less than 80%. This is probably because part of the Si phase was detached during the cycle test because the Si phase was coarse.
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The embodiment of the present invention has been described above. However, the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately changing the above-described embodiment without departing from the spirit thereof.

Claims (7)

  1.  Si、Sn及びZnからなる群から選択される1種以上からなり、10~100nmの平均結晶粒径を有する複数の充放電相と、
     第2族元素、遷移元素、第12族元素、第13族元素及び第14族元素からなる群から選択される1種以上の元素(だたし、前記充放電相の元素及びCは除く)と、前記充放電相に含有される元素とからなる固溶体又は金属間化合物であって、内部に前記充放電相が分散された拘束相と、
     前記充放電相内に分散され、0.01~0.1μmの平均粒径を有し、質量%で1~10%の複数のセラミックス粒子とを含有し、
     CuKα線によるX線回折において、前記拘束相のピークの半価幅が0.35~0.65°である、負極活物質材料。
    A plurality of charge and discharge phases comprising at least one selected from the group consisting of Si, Sn and Zn and having an average crystal grain size of 10 to 100 nm;
    One or more elements selected from the group consisting of Group 2 elements, transition elements, Group 12 elements, Group 13 elements and Group 14 elements (however, the charge-discharge element and C are excluded) And a solid solution or an intermetallic compound composed of an element contained in the charge / discharge phase, and a constrained phase in which the charge / discharge phase is dispersed,
    A plurality of ceramic particles dispersed in the charge / discharge phase, having an average particle diameter of 0.01 to 0.1 μm, and 1 to 10% by mass;
    A negative electrode active material in which the half-value width of the peak of the constrained phase is 0.35 to 0.65 ° in X-ray diffraction by CuKα rays.
  2.  請求項1に記載の負極活物質材料であって、
     前記セラミックス粒子は、Al、MgO、ZrO、Y、TiO、La及びCeOからなる群から選択される1種又は2種以上である、負極活物質材料。
    The negative electrode active material according to claim 1,
    The ceramic particles are one or more selected from the group consisting of Al 2 O 3 , MgO, ZrO 2 , Y 2 O 3 , TiO 2 , La 2 O 3 and CeO 2. .
  3.  請求項1又は請求項2に記載の負極活物質材料であって、
     前記充放電相はSiからなり、
     前記拘束相は1種以上の金属珪化物からなる、負極活物質材料。
    The negative electrode active material according to claim 1 or 2, wherein
    The charge / discharge phase is made of Si,
    The constrained phase is a negative electrode active material made of one or more metal silicides.
  4.  請求項3に記載の負極活物質材料であって、
     前記金属珪化物は、Ni及び/又はTiを含有する、負極活物質材料。
    The negative electrode active material according to claim 3,
    The metal silicide is a negative electrode active material containing Ni and / or Ti.
  5.  請求項1~請求項4のいずれか1項に記載の負極活物質材料を含む、負極。 A negative electrode comprising the negative electrode active material according to any one of claims 1 to 4.
  6.  請求項5に記載の負極を含む。電池。 The negative electrode according to claim 5 is included. battery.
  7.  Si、Sn及びZnからなる群から選択される1種以上からなる充放電相と、第2族元素、遷移元素、第12族元素、第13族元素及び第14族元素からなる群から選択される1種以上の元素(だたし、前記充放電相の元素及びCは除く)と、前記充放電相の元素とからなる固溶体又は金属間化合物である拘束相とを含有する原材料を準備する工程と、
     前記原材料と、0.01~0.1μmの平均粒径を有するセラミックス粒子とを混合した後、メカニカルグラインディング処理を実施して、前記充放電相と、前記拘束相と、質量%で1~10%の前記セラミックス粒子とを含有する負極活物質材料を製造する工程と、
     前記負極活物質材料に対して、400~700℃で熱処理を実施する工程とを備える、負極活物質材料の製造方法。
    A charge / discharge phase consisting of one or more selected from the group consisting of Si, Sn and Zn, and a group consisting of Group 2 elements, transition elements, Group 12 elements, Group 13 elements and Group 14 elements. A raw material containing at least one element (excluding the charge / discharge phase element and C) and a solid phase or a constrained phase that is an intermetallic compound composed of the charge / discharge phase element. Process,
    The raw material and ceramic particles having an average particle size of 0.01 to 0.1 μm are mixed, and then subjected to a mechanical grinding treatment, and the charge / discharge phase, the constrained phase, and 1% by mass. Producing a negative electrode active material containing 10% of the ceramic particles;
    And a step of performing a heat treatment at 400 to 700 ° C. on the negative electrode active material.
PCT/JP2015/005192 2014-10-17 2015-10-14 Negative electrode active material, negative electrode, cell, and method for manufacturing negative electrode active material WO2016059793A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016553974A JPWO2016059793A1 (en) 2014-10-17 2015-10-14 Negative electrode active material, negative electrode, battery, and method for producing negative electrode active material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014213047 2014-10-17
JP2014-213047 2014-10-17

Publications (1)

Publication Number Publication Date
WO2016059793A1 true WO2016059793A1 (en) 2016-04-21

Family

ID=55746353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005192 WO2016059793A1 (en) 2014-10-17 2015-10-14 Negative electrode active material, negative electrode, cell, and method for manufacturing negative electrode active material

Country Status (2)

Country Link
JP (1) JPWO2016059793A1 (en)
WO (1) WO2016059793A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149937A (en) * 1998-09-08 2000-05-30 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, and its manufacture
JP2013191529A (en) * 2012-02-16 2013-09-26 Hitachi Chemical Co Ltd Composite material, method for manufacturing composite material, electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149937A (en) * 1998-09-08 2000-05-30 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, and its manufacture
JP2013191529A (en) * 2012-02-16 2013-09-26 Hitachi Chemical Co Ltd Composite material, method for manufacturing composite material, electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JPWO2016059793A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6127080B2 (en) Si / C composite anode for lithium ion batteries maintaining high capacity per unit area
KR102182611B1 (en) Negative electrode active substance material, negative electrode, and cell
JP6601937B2 (en) Negative electrode active material, negative electrode employing the same, lithium battery, and method for producing the negative electrode active material
JP6365658B2 (en) Composite particles, negative electrode and battery
US20160181601A1 (en) Composite particles, method for manufacturing same, electrode, and non-aqueous electrolyte secondary cell
US12021188B2 (en) Sulfide solid electrolyte, method for producing sulfide solid electrolyte, electrode, and all solid state battery
JP2017224499A (en) Negative electrode active material for lithium ion battery and lithium ion battery
JPH10302770A (en) Negative electrode material for lithium ion secondary battery and manufacture thereof
WO2014034494A1 (en) Alloy particles, electrode, nonaqueous electrolyte secondary battery, and method for producing alloy particles
JP2018200876A (en) Negative electrode active material, negative electrode and battery
JP2015222696A (en) Positive electrode active material for lithium ion secondary batteries and method for manufacturing the same
JP2017091724A (en) Negative electrode active substance material, manufacturing method thereof, negative electrode and battery
JP6187706B2 (en) Negative electrode active material, negative electrode and battery
JP7337580B2 (en) Anode materials for lithium-ion batteries containing multicomponent silicides and silicon
WO2016059793A1 (en) Negative electrode active material, negative electrode, cell, and method for manufacturing negative electrode active material
JP2018098018A (en) Negative electrode active material for lithium ion secondary battery and manufacturing method thereof, negative electrode, and battery
KR101505257B1 (en) Anode material of non-aqueous electrolyte secondary battery and method for producing same
JP2021150111A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2020009754A (en) Active material powder for use in negative electrode of battery and battery including such active material powder
JP2014116297A (en) Negative electrode active material for lithium ion secondary battery
JP4196894B2 (en) Anode material for non-aqueous secondary battery
JP4844503B2 (en) Anode material for lithium ion secondary battery
JP2022161719A (en) Negative electrode active material particle, negative electrode, and, battery
JP2011077055A (en) Anode material for nonaqueous electrolyte secondary battery
JP2021150077A (en) Powder material for negative electrode of lithium ion battery and production method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016553974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851410

Country of ref document: EP

Kind code of ref document: A1