WO2016059602A2 - Méthodes de traitement du cancer et compositions associées - Google Patents

Méthodes de traitement du cancer et compositions associées Download PDF

Info

Publication number
WO2016059602A2
WO2016059602A2 PCT/IB2015/057947 IB2015057947W WO2016059602A2 WO 2016059602 A2 WO2016059602 A2 WO 2016059602A2 IB 2015057947 W IB2015057947 W IB 2015057947W WO 2016059602 A2 WO2016059602 A2 WO 2016059602A2
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
acid sequence
cancer
sequence shown
Prior art date
Application number
PCT/IB2015/057947
Other languages
English (en)
Other versions
WO2016059602A3 (fr
Inventor
Neil James Clarke
Rakesh Kumar
Biju MANGATT
Christopher MATHENY
Yong Yu
Original Assignee
Glaxo Group Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaxo Group Limited filed Critical Glaxo Group Limited
Publication of WO2016059602A2 publication Critical patent/WO2016059602A2/fr
Publication of WO2016059602A3 publication Critical patent/WO2016059602A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • the present disclosure relates to antigen binding proteins, such as antibodies, which bind to the HER3 receptor, polynucleotides encoding such antigen binding proteins, pharmaceutical compositions comprising said antigen binding proteins, and methods of manufacture.
  • the present disclosure also concerns the use of such antigen binding proteins in the treatment or prophylaxis of diseases associated with a variety of cancers.
  • HER3 also called ErbB3 (SEQ ID NO: 21) is one of four structurally related receptor tyrosine kinases comprising the ErbB / HER protein family or epidermal growth factor receptor (EGFR) family of receptors. These receptors are made up of an extracellular region that contains approximately 620 amino acids, a single transmembrane spanning region, and a cytoplasmic tyrosine kinase domain. The extracellular region of each family member is made up of four subdomains, LI, S I (CR1), L2 and S2 (CR2), where "L” signifies a leucine- rich repeat domain and "CR" a cysteine-rich region.
  • HER3 is unique among this family in that, while it has a ligand (Neuregulin-1, NRG; Heregulin, HRG; see Table 1) binding domain, it has no intrinsic tyrosine kinase activity due to the presence of certain amino acid changes in the kinase domain. Therefore, it can bind ligand, but as a homodimer, does not convey the signal into the cell through protein phosphorylation. However, it does form heterodimers with other EGF receptor family members that have kinase activity (e.g., HER1/ HER3;
  • HER2/ HER3; HER3/HER4 to form active signaling -competent moieties.
  • the pairing with HER2 since the HER2/ HER3 combination appears to have the highest proliferative potential through various intracellular pathways including the PI3K pAKT pathway.
  • the resulting signaling complex can be disrupted by antibodies, such as pertuzumab, directed to the HER2 component.
  • the affinity of HER3 for HRG may be increased when coexpressed with HER2.
  • the interactions of HER3 with other cell surface receptors including those outside of the HER family, such as c-MET have emerged as important escape mechanisms for resistance to certain anti -cancer agents.
  • Alternate transcriptional splice variants encoding different isoforms of HER3 have been characterized, though not fully.
  • One isoform lacks the intermembrane region and is secreted outside the cell. This form may act to modulate the activity of the membrane-bound form by sequestering ligand.
  • Heterodimerization of HER3 with other receptors leads to the activation of pathways important in cell growth and survival. Therefore, controlled expression and activation of these pathways is a necessity for normal growth of the organism and any impairment of such can lead to disease.
  • the four members of the HER protein family are capable of forming homodimers, heterodimers, and higher order oligomers upon activation by a subset of potential growth factor ligands.
  • ErbB-1 EGFR / HER1
  • ErbB-2 HER2
  • EGFR is overexpressed in many cancers including lung and colon.
  • Drugs such as cetuximab, gefitinib, erlotinib are used to inhibit the activity of this receptor in those settings.
  • the HER2 gene is amplified and the protein overexpressed in breast cancer, which is currently treated with herceptin, tamoxifen and lapatinib, amongst others. Escape from sensitivity to these treatments is an increasing problem in cancer, and is a major reason why more novel and effective treatments are required.
  • Amplification of the HER3 gene and/or overexpression of its protein have been reported in numerous cancers. Recently, it has been shown that acquired resistance to, e.g., gefitinib can be linked to hyperactivity of HER3. This is linked to an acquired overexpression of c-MET that phosphorylates HER3, which, in turn, activates the PI3K Akt pathway—a key cell growth/survival pathway.
  • the HER3 receptor (SEQ ID NO: 21) has unique properties and occupies a key node in cell signaling pathways mediated by the HER receptor family. It is also increasingly implicated in mechanisms of resistance to common cancer therapeutic agents. Since it lacks a functionally active kinase domain, it is not 'druggable' with conventional small molecules. However, as a cell surface receptor that relies on interaction with other cell surface receptors for its activity in various key growth, survival and differentiation pathways, it is an attractive target for biopharmaceutical approaches.
  • immune checkpoint inhibitor molecules and therapeutic antibodies that target HER3 receptors for treating cancers.
  • One aspect of the disclosure is a method of treating a cancer in a subject comprising the steps of: a) identifying a subject with cancer; and b) administering a therapeutically effective amount of a first antigen binding protein which specifically binds to a peptide chain domain comprising amino acid residues 184-329 of SEQ ID NO: 21 and a second antigen binding protein which specifically binds to a peptide chain selected from the group consisting of PD-1 (programmed cell death 1 receptor or CD279), PDL-1 (programmed cell death 1 receptor ligand 1 or CD274), CTLA-4 (cytotoxic T-lymphocyte associated protein 4 or CD152), OX40 (tumor necrosis factor receptor superfamily member 4 or CD134), 4-1BB (CD137) and ICOS (inducible costimulator or CD278) to the subject, whereby the cancer in a subject is treated.
  • PD-1 programmeed cell death 1 receptor or CD279
  • PDL-1 programmeed cell death 1 receptor lig
  • Another aspect of the disclosure is any invention disclosed herein.
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO:
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO:
  • CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CDRL3 having the amino acid sequence shown in SEQ ID NO: 37 and iii) an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104; and c) administering a therapeutically effective amount of a second antigen binding protein that is a PD- 1 inhibitor; whereby the cancer in a subject is treated.
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 34, ii) an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO: 35, CDRL2 having the amino acid sequence shown in SEQ
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO:
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO:
  • CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CDRL3 having the amino acid sequence shown in SEQ ID NO: 37 and iii) an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104; and c) administering a therapeutically effective amount of a second antigen binding protein that is a CTLA-4 inhibitor; whereby the cancer in a subject is treated.
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO:
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO:
  • CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CDRL3 having the amino acid sequence shown in SEQ ID NO: 37 and iii) an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104; and c) administering a therapeutically effective amount of a second antigen binding protein that is a OX40 agonist; whereby the cancer in a subject is treated.
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO:
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRHl having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRLl having the amino acid sequence shown in SEQ ID NO:
  • CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CDRL3 having the amino acid sequence shown in SEQ ID NO: 37 and iii) an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104; and c) administering a therapeutically effective amount of a second antigen binding protein that is a 4- IBB agonist; whereby the cancer in a subject is treated.
  • a second antigen binding protein that is a 4- IBB agonist
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO:
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO:
  • CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CDRL3 having the amino acid sequence shown in SEQ ID NO: 37 and iii) an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104; and c) administering a therapeutically effective amount of a second antigen binding protein that is a ICOS agonist; whereby the cancer in a subject is treated.
  • a second antigen binding protein that is a ICOS agonist
  • Another aspect of the disclosure is a method of treating a HER3+ cancer in a subject comprising the steps of: a) identifying a subject with a HER3+ cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO:
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRHl having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRLl having the amino acid sequence shown in SEQ ID NO:
  • CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CDRL3 having the amino acid sequence shown in SEQ ID NO: 37 and iii) an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104; and c) administering a therapeutically effective amount of lenalidomide ((RS)-3-(4-Amino-l-oxo l,3-dihydro-2H- isoindol- 2-yl)piperidine-2,6-dione); whereby the cancer in a subject is treated.
  • lenalidomide ((RS)-3-(4-Amino-l-oxo l,3-dihydro-2H- isoindol- 2-yl)piperidine-2,6-dione
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO:
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO:
  • CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CDRL3 having the amino acid sequence shown in SEQ ID NO: 37 and iii) an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104; c) administering a therapeutically effective amount of a second antigen binding protein that is a ipilimumab (comprises the amino acid sequences as shown in SEQ ID NO: 113 and SEQ ID NO: 114); and d) administering a therapeutically effective amount of a second antigen binding protein that is a pembrolizumab (MK-3475; Merck and Company, Inc.); whereby the cancer in a subject is treated.
  • MK-3475 pembrolizumab
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO:
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRHl having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRLl having the amino acid sequence shown in SEQ ID NO:
  • CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CDRL3 having the amino acid sequence shown in SEQ ID NO: 37 and iii) an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104; c) administering a therapeutically effective amount of a second antigen binding protein that is a ipilimumab (comprises the amino acid sequences as shown in SEQ ID NO: 113 and SEQ ID NO: 114); d) administering a therapeutically effective amount of a BRAF inhibitor; and
  • a second antigen binding protein that is a pembrolizumab (MK-3475; Merck and Company, Inc.); whereby the cancer in a subject is treated.
  • Figure 1 Inhibition of heregulin induced human HER3 receptor phosphorylation with anti-HER3 antibodies in BxPC3 pancreatic cancer cells.
  • Figure 2 Inhibition of heregulin induced human HER3 receptor phosphorylation with anti-HER3 antibodies in CHL-1 melanoma cells.
  • Figure 3 Inhibition of heregulin induced human HER3 receptor phosphorylation with anti-HER3 antibodies in N87 gastric cancer cells.
  • Figure 4 Inhibition of heregulin induced human HER3 receptor phosphorylation with anti-HER3 antibodies in SK-BR-3 breast cancer cells.
  • Figure 6 Inhibition of heregulin induced human HER3 receptor phosphorylation with anti-HER3 antibodies in MCF-7 breast cancer cells.
  • Figure 7 Inhibition of heregulin induced human Akt phosphorylation with anti- HER3 antibodies in BxPC3 pancreatic cancer cells.
  • Figure 8 Inhibition of heregulin induced human Akt phosphorylation with anti- HER3 antibodies in CHL-1 melanoma cells.
  • Figure 9 Inhibition of heregulin induced human Akt phosphorylation with anti- HER3 antibodies in N87 gastric cancer cells.
  • Figure 10 Inhibition of heregulin induced human Akt phosphorylation with anti- HER3 antibodies in SK-BR-3 breast cancer cells.
  • Figure 13 Inhibition of heregulin induced heterodimer formation and human HER3 receptor phosphorylation with anti-HER3 antibodies in CHO cells transduced with epidermal growth factor receptor (EGFR) and HER3.
  • Figure 14 Inhibition of heregulin induced heterodimer formation and human HER3 receptor phosphorylation with anti-HER3 antibodies in CHO cells transduced with HER2 and HER3.
  • EGFR epidermal growth factor receptor
  • Figure 15 Inhibition of heregulin induced heterodimer formation and human HER3 receptor phosphorylation with anti-HER3 antibodies in CHO cells transduced with HER4 and HER3.
  • the murine 1D9 antibody (M5.1D9.1F5) binds the full length human HER3 ECD and human HER3 domain III.
  • the murine 15D5 antibody (M5.15D5.2A1.1H10) binds the full length human HER3 ECD and human HER3 Domain II.
  • the humanized 1D9 POTELLIGENT ® antibody binds the full length human HER3 ECD and human HER3 Domain III.
  • FIG. 20 The humanized 1D9 AccretaMab ® antibody binds the full length human HER3 ECD and human HER3 Domain III.
  • FIG. 21 The humanized 1D9 antibody binds the full length human HER3 ECD and human HER3 Domain III.
  • FIG. 22 (a) The murine 1D9 antibody (M5.1D9.1F5) recognizes HER3 on human MCF-7 breast cancer cells as assessed by flow cytometric analyses, (b) The murine 1D9 antibody (M5.1D9.1F5) antibody recognizes HER3 on human BxPC3 pancreatic cancer cells as assessed by flow cytometric analyses.
  • Figure 23 (a) The humanized 1D9 antibody, the humanized AccretaMab ® 1D9 antibody, and humanized POTELLIGENT ® antibody recognize HER3 on human CHL-1 melanoma cells as assessed by flow cytometric analyses, (b) The humanized 1D9 antibody, the humanized AccretaMab ® 1D9 antibody, and humanized POTELLIGENT ® antibody recognize HER3 on human BxPC3 pancreatic cancer cells as assessed by flow cytometric analyses.
  • FIG. 24 The murine 1D9 antibody (M5.1D9.1F5) and murine 15D5 antibody (M5.15D5.2A1.1H10) inhibit heregulin induced BxPC3 pancreatic cancer cell proliferation.
  • FIG. 25 Themurine 1D9 antibody (M5.1D9.1F5) and murine 15D5 antibody (M5.15D5.2A1.1H10) antibody inhibit heregulin induced MCF-7 breast cancer cell proliferation.
  • FIG 26 The humanized 1D9 AccretaMab ® antibody and murine 1D9 antibody inhibit heregulin induced BxPC3 pancreatic cancer cell proliferation.
  • Figure 27 The murine 1D9 antibody (M5.1D9.1F5), the murine 15D5 antibody (M5.15D5.2A1), the murine24H5 antibody (M5.24H5.C2), the chimeric 1D9 antibody and the chimeric 15D5 antibody inhibit heregulin induced BxPC3 pancreatic cancer cell invasion.
  • Figure 28 The murine 15D5 antibody (M5.15D5.2A1.H10) and humanized 1D9 antibody induced receptor internalization in human CHL-1 melanoma cells.
  • Figure 29 (a) The murine 1D9 antibody (M5.1D9.1F5) cross-reacts with murine HER3 expressed on B 16F10 cells, (b) The murine 24H5 antibody (M5.24H5.C2) cross- reacts with murine HER3 expressed on B16F10 cells, (c) The murine 15D5 antibody (M5.15D5.1C1) cross-reacts with murine HER3 expressed on B16F10 cells.
  • FIG 30 Efficacy of mouse anti-HER3 mAb, murine 1D9 antibody, in the B 16F10 syngeneic tumor model.
  • Isotype control and mlD9 were administered on Day 3 (25 or 50 mg/kg, i.p.) and on Days 7 and 11 (5 or 25 mg/kg, i.p.) post B16F10 injection.
  • GEMZARTM was administered on Day 3 only (20 mg/kg, i.v.).
  • FIG 31 Efficacy of mouse anti-HER3 mAb, murine 15D5 antibody, in the B16F10 syngeneic tumor model.
  • Isotype control and ml5D5 were administered on Day 3 (25 or 50 mg/kg, i.p.) and on Days 7 and 11 (5 or 25 mg/kg, i.p.) post B16F10 injection.
  • GEMZARTM was administered on Day 3 only (20 mg/kg, i.v.).
  • Figure 32 Efficacy of mouse Anti-HER3 mAb, murine 1D9 antibody, in the CHL-1 xenograft model.
  • Treatment with mouse anti-HER3 mAb, mlD9, twice weekly at 5 to 100 mg/kg i.p. resulted in decreased CHL-1 tumor growth in CB-17 SCID mice.
  • Dose-dependent and statistically significant decreases compared to isotype control were observed on Days 24 and 27 post implantation (*p ⁇ 0.05; ***p ⁇ 0.001; 2-Way ANOVA repeated measures analysis with Bonferroni post test).
  • Figure 33 Efficacy of mouse anti-HER3 mAb, murine 15D5 antibody, in the CHL-1 xenograft model.
  • Treatment with mouse anti-HER3 mAb, ml5D5, twice weekly at 5 to 100 mg/kg i.p. resulted in decreased CHL-1 tumor growth in CB-17 SCID mice.
  • Dose-dependent and statistically significant decreases compared to isotype control were observed on Days 20, 24 and 27 post implantation (*p ⁇ 0.05; ***p ⁇ 0.001; 2-Way ANOVA repeated measures analysis with Bonferroni post test).
  • Figure 34 Efficacy of mouse anti-HER3 mAb, murine 1D9 antibody, in the BxPC3 xenograft model.
  • Figure 35 Efficacy of mouse anti-HER3 mAb, murine 15D5 antibody, in the BxPC3 xenograft model.
  • Figure 36 Efficacy of mouse anti-HER3 mAb, murine 1D9 antibody, in the NCI- N87 xenograft model.
  • Figure 37 Efficacy of mouse anti-HER3 mAb, murine 15D5 antibody, in the NCI- N87 xenograft model.
  • FIG 38 Efficacy of chimeric anti-HER3 mAb, chimeric 1D9 antibody, in the CHL-1 xenograft model.
  • Figure 39 Efficacy of humanized anti-HER3 mAb, humanized 15D5 antibody, in the CHL-1 xenograft model.
  • FIG 40 Efficacy of humanized anti-HER3 mAb, humanized 1D9 RR antibody, in the CHL-1 xenograft model. Treatment with humanized 1D9RR, twice weekly at 5 to 50 mg/kg i.p., resulted in decreased CHL-1 tumor growth in CB-17 SCID mice. The decrease in tumor growth was similar and statistically signifcant at all dose levels compared to the isoptype control on Days 29 and 34 post implantation. (***p ⁇ 0.001; 2-Way ANOVA repeated measures analysis with Bonferroni post test).
  • FIG 41 Efficacy of humanized 1D9 R AccretaMab ® in the CHL-1 xenograft model. Treatment with humanized 1D9 RR AccretaMab ® , twice weekly at 5 to 50 mg/kg i.p., resulted in decreased CHL-1 tumor growth in CB-17 SCID mice. The decrease in tumor growth was similar and statistically signifcant at all dose levels compared to the isoptype control on Days 29 and 34 post implantation. (***p ⁇ 0.001; 2-Way ANOVA repeated measures analysis with Bonferroni post test).
  • FIG 42 Efficacy of humanized 1D9 RR POTELLIGENT ® in the CHL-1 xenograft model. Treatment with humanized 1D9 RR POTELLIGENT ® , twice weekly at 5 to 50 mg/kg i.p., resulted in decreased CHL-1 tumor growth in CB-17 SCID mice. The decrease in tumor growth was dose-dependent and statistically signifcant compared to the isoptype control on Days 29 and 34 post implantation. (***p ⁇ 0.001; 2-Way ANOVA repeated measures analysis with Bonferroni post test).
  • FIG 43 Efficacy of chimeric Anti-HER3 mAb, chimeric 1D9 antibody, in the BxPC3 xenograft model (subcutaneous implant).
  • CB-17 SCID mice were treated with chimeric anti-HER3 mAb, chlD9, twice weekly at 0.5 to 50 mg/kg i.p. to assess effect on BxPC3 tumor growth.
  • Dose-dependent and statistically significant decreases in tumor growth were observed in the 0.5, 5 and 50 mg/kg treatment groups compared to the isotype control on Day 33, and in the 50 mg/kg group on Day 36 post implantation (**p ⁇ 0.01; ***p ⁇ 0.001; 2- Way ANOVA repeated measures analysis with Bonferroni post test).
  • FIG 44 Efficacy of humanized anti-HER3 mAb, humanized 15D5 antibody, in the BxPC3 xenograft model (subcutaneous implant).
  • CB-17 SCID mice were treated with humanized anti-HER3 mAb, hl5D5, twice weekly at 0.5 to 50 mg/kg i.p. to assess effect on BxPC3 tumor growth. Decreased tumor growth was observed in the 50 mg/kg group compared to the isotype control on Days 33 and 36 post implantation (**p ⁇ 0.01; 2-Way ANOVA repeated measures analysis with Bonferroni post test).
  • Figure 45 Efficacy of humanized 1D9 RR antibody in the BxPC3 xenograft model (subcutaneous implant). hlD9RR was administered to BxPC3 tumor bearing CB-17 SCID mice twice weekly i.p. at 0.5 to 50 mg/kg to determine effect on tumor cell growth. The observed decrease in tumor volume in the 20 mg/kg group returned to isotype control level by Day 36. (*p ⁇ 0.05; ***p ⁇ 0.001; 2-Way ANOVA repeated measures analysis with Bonferroni post test comparison).
  • FIG. 46 Efficacy of chimeric 1D9 antibody and humanized 15D5 antibody in the BxPC3 xenograft model (orthotopic implant).
  • BxPC3 pancreatic cancer fragments were implanted orthotopically into the pancreas of female CB-17 SCID mice.
  • the HER3 mAbs, hl5D5 and ChlD9, were administered twice weekly at 50 mg/kg once tumor volumes reached 80-100 mm3. Tumor volumes were determined by ultrasound (Vevo Image
  • Treatment with anti-HER3 mAbs caused significant decrease in tumor growth compared to the isotype control at weeks 5, 6 and 7 post implantation (** p ⁇ 0.01; ***p ⁇ 0.001; 2-Way ANOVA with Bonferroni post test comparison).
  • FIG 47 Efficacy of humanized 1D9 RR antibody and variants in the NCI-N87 xenograft model.
  • CB-17 SCID mice were administered the indicated humanized HER3 mAbs (humanized 1D9 RR antibody, humanized 1D9 RR POTELLIGENT ® antibody and humanized 1D9 RR AccretaMab ® antibody) at 50 mg/kg twice weekly i.p. to determine effect on N87 tumor cell growth.
  • Statistically significant decreases in tumor volume were observed on Day 37 in the hlD9 RR POTELLIGENT ® group and on Day 44 in the hlD9RR AccretaMab ® group compared to the isotype control (*p ⁇ 0.05; 2-Way ANOVA with
  • FIG. 48 ADCC assay using HER3 transduced HEK293 as target cells and human PBL as effector cells (donor 2126).
  • FIG. 49 ADCC assay using CHL-1 cells as target cells and human PBL as effector cells (donor 2126).
  • FIG. 50 ADCC assay using HER3 transduced HEK293 cells as target cells and cynomolgus monkey PBL as effector cells (70-105).
  • FIG. 51 ADCC assay using HER3 transduced HEK293 cells as target cells and cynomolgus monkey PBL as effector cells (70-113).
  • FIG. 52 ADCC assay using CHL-1 cells as target cells and cynomolgus monkey PBL as effector cells (70-105).
  • FIG. 53 ADCC assay using CHL-1 cells as target cells and cynomolgus monkey PBL as effector cells (70-113).
  • Figure 54 CDC assay using HER3 BACMAMTM transduced HEK293 target cells and CALBIOCHEMTM rabbit complement.
  • Figure 55 X-ray crystallographic structure showing amino acid contacts between domain III of the human HER3 ECD (SEQ ID NO: 66; co-crystallized fragment) and the murine 1D9 light chain variable region and murine 1D9 heavy chain variable region (in co- crystallized murine 1D9 antibody derived Fab).
  • FIG. 64 Anti-Her3 antibody combination with Immunotherapy in RENCA (Renal Cell Carcinoma) syngeneic xenograft model.
  • RENCA Random Cell Carcinoma
  • Group 8 Mouse Anti-Her3 + CTLA-4 - Data to Day 30).
  • HER3 and ⁇ 3 receptor " ' are interchangeable, and refer to any one of: the full-length unprocessed precursor form of HER3; mature HER3 that results from post-Iran slaiional cleavage of the C-terroina domain; in latent and non-latent (active ⁇ forms.
  • HERS and 'TIERS receptor
  • HERS also refer 10 any fragments and variants of the HERS receptor that retain one or more biological activities associated with the HER3 receptor.
  • the full-length unprocessed precursor form of the HERS receptor comprises propeptide and the C -terminal domain that forms the mature protein, with or without a signal sequence. This form is also known as polyprotein.
  • the HERS receptor precursor may be present as a monomer or homodimcr.
  • Mature HERS is the protein that is cleaved from the C-terminus of the HERS precursor protein, also known as the C-terminal domain. Mature HERS may be present as a monomer, homodimer, or in a HERS latent complex. Depending on conditions, mature HERS may establish equilibrium between a combination of these different forms.
  • HERS pro-peptide is the polypeptide that is cleaved from the N-terminal domain of the HERS precursor protein following cleavage of the signal sequence. Pro-peptide is also known as latency-associated peptide (LAP). HERS pro-peptide is capable of non-covantely binding to the pro-peptide binding domain on mature HERS.
  • LAP latency-associated peptide
  • a HER3 receptor antigen binding protein can bind to any one or any combination of precursor, mature, monomelic, dimeric, latent and active forms of the HER3 receptor.
  • the antigen binding protein may bind mature HER3 receptor in its monomelic and/or dimeric forms.
  • the antigen binding protein may bind the HER3 receptor when it is in a complex with pro-peptide and/or follistatin.
  • the antigen binding protein may bind the HER3 receptor when it is in a complex with the HER2 receptor or other HER3 interacting receptors (e.g., heterodimers of HERS).
  • antigen binding protein refers to isolated antibodies, antibody fragments, antigen binding fragments and other protein constructs, such as domains, which are capable of binding to the HER3 receptor (SEQ ID NO: 21), domain II of the HERS receptor which comprises amino acid residues 184 to 329 of SEQ ID NO: 21, or domain III of the HER3 receptor which comprises amino acid residues 330 to 495 of SEQ ID NO: 21.
  • antibody refers to molecules with an immunoglobulin-like domain and includes monoclonal, recombinant, polyclonal, chimeric, humanized, bispecific and heteroconjugate antibodies such as monoclonal antibody/domain antibody conjugates; a single variable domain; a domain antibody; antigen binding fragments; immunologically effective fragments; single chain Fv; diabodies; TANDABSTM, etc. (for a summary of alternative "antibody” formats, see Holliger, et al., Nature Biotechnology, Vol 23, No. 9: 1126-1136 (2005)).
  • single variable domain refers to an antigen binding protein variable domain (for example, VH, VHH, VL) that specifically binds an antigen or epitope independently of a different variable region or domain.
  • a immunoglobulin single variable domain may be a human antibody variable domain, but also includes single antibody variable domains from other species, such as rodent (for example, as disclosed in WO 00/29004), nurse shark, and Camelid ⁇ un dAbs.
  • Camelid VHH are immunoglobulin single variable domain polypeptides that are derived from species including camel, llama, alpaca, dromedary, and guanaco, which produce heavy chain antibodies naturally devoid of light chains. Such VHH domains may be humanized according to standard techniques available in the art, and such domains are considered to be "domain antibodies”.
  • VH includes camelid VHH domains.
  • NARV are another type of
  • domain refers to a folded protein structure that has tertiary structure independent of the rest of the protein. Generally, domains are responsible for discrete functional properties of proteins, and, in many cases, may be added, removed or transferred to other proteins without loss of function of the remainder of the protein and/or of the domain.
  • immunoglobulin single variable domain is a folded polypeptide domain comprising sequences characteristic of antibody variable domains.
  • variable domains and modified variable domains, for example, in which one or more loops have been replaced by sequences that are not characteristic of antibody variable domains, or antibody variable domains that have been truncated or comprise N- or C-terminal extensions, as well as folded fragments of variable domains that retain at least the binding activity and specificity of the full-length domain.
  • a domain can bind an antigen or epitope independently of a different variable region or domain.
  • Epitope-binding domain refers to a domain that specifically binds an antigen or epitope independently of a different V region or domain, this may be a domain antibody (dAb), for example a human, camelid or shark immunoglobulin single variable domain or it may be a domain which is a derivative of a scaffold selected from the group consisting of CTLA-4 (Evibody); lipocalin; Protein A derived molecules such as Z-domain of Protein A (Affibody, SpA), A-domain (Avimer/Maxibody); Heat shock proteins such as GroEL and GroES; transferrin (trans-body); ankyrin repeat protein (DARPin); peptide aptamer; C-type lectin domain (Tetranectin); human gamma-crystallin and human ubiquitin (affilins); PDZ domains; scorpion toxin, kunitz type domains of human protease inhibitors; and fibronectin (adnectin); which has been
  • An antigen binding fragment may be provided by means of arrangement of one or more CDRs on non-antibody protein scaffold, such as a domain.
  • the domain may be a domain antibody, or it may be a domain that is a derivative of a scaffold selected from the group of: CTLA-4 (Evibody); lipocalin; Protein A derived molecules, such as Z-domain of Protein A (Affibody, SpA), A-domain (Avimer/Maxibody); Heat shock proteins such as GroEl and GroES; transferrin (trans-body); ankyrin repeat protein (DARPin); peptide aptamer; C-type lectin domain (Tetranectin); human -crystallin and human ubiquitin (affilins); PDZ domains; scorpion toxin, kunitz type domains of human protease inhibitors; and fibronectin (adnectin); which has been subjected to protein engineering in order to obtain binding to an antigen, such as the HER3 receptor, other than
  • CTLA-4 Cytotoxic T Lymphocyte-associated Antigen 4
  • CTLA-4 is a CD28-family receptor expressed on mainly CD4+ T-cells. Its extracellular domain has a variable domain-like Ig fold. Loops corresponding to CDRs of antibodies can be substituted with heterologous sequence to confer different binding properties.
  • CTLA-4 molecules engineered to have different binding specificities are also known as Evibodies. For further details see Journal of Immunological Methods 248 (1-2), 31-45 (2001)
  • Lipocalins are a family of extracellular proteins which transport small hydrophobic molecules such as steroids, bilins, retinoids and lipids. They have a rigid -sheet secondary structure with a number of loops at the open end of the conical structure which can be engineered to bind to different target antigens. Anticalins are between 160-180 amino acids in size, and are derived from lipocalins. For further details see Biochim Biophys Acta 1482: 337-350 (2000), US7250297B 1 and US20070224633
  • An affibody is a scaffold derived from Protein A of Staphylococcus aureus, which can be engineered to bind to antigen.
  • the domain consists of a three-helical bundle of approximately 58 amino acids. Libraries have been generated by randomisation of surface residues. For further details, see Protein Eng. Des. Sel. 17, 455-462 (2004) and EP1641818A1
  • Avimers are multidomain proteins derived from the A-domain scaffold family.
  • the native domains of approximately 35 amino acids adopt a defined disulphide bonded structure. Diversity is generated by shuffling of the natural variation exhibited by the family of A- domains. For further details see Nature Biotechnology 23(12), 1556 - 1561 (2005) and Expert Opinion on Investigational Drugs 16(6), 909-917 (June 2007)
  • a transferrin is a monomelic serum transport glycoprotein. Transferrins can be engineered to bind different target antigens by insertion of peptide sequences in a permissive surface loop. Examples of engineered transferrin scaffolds include the Trans-body. For further details see J. Biol. Chem 274, 24066-24073 (1999).
  • DARPins Designed Ankyrin Repeat Proteins
  • Ankyrin which is a family of proteins that mediate attachment of integral membrane proteins to the cytoskeleton.
  • a single ankyrin repeat is a 33 residue motif consisting of two -helices and a -turn. They can be engineered to bind different target antigens by randomising residues in the first -helix and a -turn of each repeat. Their binding interface can be increased by increasing the number of modules (a method of affinity maturation).
  • affinity maturation For further details see J. Mol. Biol. 332, 489-503 (2003), PNAS 100(4), 1700-1705 (2003) and J. Mol. Biol. 369, 1015-1028 (2007) and US20040132028A1.
  • Fibronectin is a scaffold which can be engineered to bind to antigen.
  • Adnectins consists of a backbone of the natural amino acid sequence of the 10th domain of the 15 repeating units of human fibronectin type III (FN3). Three loops at one end of the -sandwich can be engineered to enable an Adnectin to specifically recognize a therapeutic target of interest. For further details see Protein Eng. Des. Sel. 18, 435-444 (2005), US20080139791, WO2005056764 and US6818418B 1.
  • Peptide aptamers are combinatorial recognition molecules that consist of a constant scaffold protein, typically thioredoxin (TrxA) which contains a constrained variable peptide loop inserted at the active site.
  • TrxA thioredoxin
  • Microbodies are derived from naturally occurring microproteins of 25-50 amino acids in length which contain 3-4 cysteine bridges - examples of microproteins include KalataB l and conotoxin and knottins.
  • the microproteins have a loop which can be engineered to include upto 25 amino acids without affecting the overall fold of the microprotein.
  • engineered knottin domains see WO2008098796.
  • epitope binding domains include proteins which have been used as a scaffold to engineer different target antigen binding properties include human -crystallin and human ubiquitin (affilins), kunitz type domains of human protease inhibitors, PDZ -domains of the Ras-binding protein AF-6, scorpion toxins (charybdotoxin), C-type lectin domain
  • An antigen binding fragment or an immunologically effective fragment may comprise partial heavy or light chain variable sequences. Fragments are at least 5, 6, 8 or 10 amino acids in length. Alternatively, the fragments are at least 15, at least 20, at least 50, at least 75, or at least 100 amino acids in length.
  • the term "specifically binds", as used herein in relation to antigen binding, proteins means that the antigen binding protein binds to the HER3 receptor as well as a discrete domain, or discrete amino acid sequence, within a HER3 receptor with no or insignificant binding to other (for example, unrelated) proteins. This term, however, does not exclude the fact that the antigen binding proteins may also be cross-reactive with closely related molecules (for example, the HER2 receptor).
  • the antigen binding proteins described herein may bind to the HER3 receptor with at least 2, 5, 10, 50, 100, or 1000-fold greater affinity than they bind to closely related molecules, such as the HER2 receptor.
  • Ranges provided herein include all values within a particular range described and values about an endpoint for a particular range.
  • the binding affinity (K D ) of the antigen binding protein-HER3 interaction may be 1 mM or less, 100 nM or less, 10 nM or less, 2 nM or less or 1 nM or less. Alternatively, the K D may be between 5 and 10 nM; or between 1 and 2 nM. The K D may be between 1 pM and 500 pM; or between 500 pM and 1 nM.
  • the binding affinity may be measured by BIACORETM, for example, by capture of the test antibody onto a protein-A coated sensor surface and flowing HER3 receptor over this surface. Alternatively, the binding affinity can be measured by FORTEBIOTM, for example, with the test antibody receptor captured onto a protein-A coated needle and flowing HER3 receptor over this surface.
  • the K d may be lxlO "3 Ms "1 or less, lxlO "4 Ms “1 or less, or lxlO "5 Ms "1 or less.
  • the K d may be between lxlO "5 Ms "1 and lxlO "4 Ms "1 ; or between lxlO "4 Ms "1 and lxlO "3 Ms "1 .
  • a slow K d may result in a slow dissociation of the antigen binding protein-ligand complex and improved neutralization of the ligand.
  • Exemplary Binding affinities and related data for the antigen binding proteins described herein are provided in Table 2.
  • murine 15D5 antibody refers to a monoclonal antibody comprising the variable heavy chain, variable light chain, complementarity determining regions and framework regions shown in SEQ ID NO:s 1-8;
  • humanized 15D5 antibody refers to a monoclonal antibody comprising the variable heavy chain, variable light chain,
  • murine 1D9 antibody refers to a monoclonal antibody comprising the variable heavy chain, variable light chain, complementarity determining regions and framework regions shown in SEQ ID NO:s 44-51
  • humanized 1D9 antibody refers to a monoclonal antibody comprising the variable heavy chain, variable light chain, complementarity determining regions and framework regions shown in SEQ ID NO:s 30-37.
  • the "humanized 1D9" monoclonal antibody in Table 2 comprises the heavy chain variable region amino acid sequence shown in SEQ ID NO: 30 and the variable light chain amino acid sequence shown in SEQ ID NO: 57 as well as the corresponding complementarity determining regions shown in SEQ ID NO:s 30-33 and SEQ ID NO:s 35-37.
  • ECD means extracellular domain and, with regard to HER3 may refer to a peptide chain comprising domains I, II, III and IV of a HER3 isoform such as one having the amino acid sequence shown in SEQ ID NO: 21.
  • neutralizes means that the biological activity of HER3 is reduced in the presence of an antigen binding protein as described herein in comparison to the activity of HER3 in the absence of the antigen binding protein, in vitro or in vivo.
  • Neutralization may be due, but not limited to one or more of, blocking HER3 binding to its ligand, preventing HER3 from being activated by its ligand, down-regulating the HER3 receptor or its ligands, interfering with the ability of the receptor to adopt an 'active' (e.g., signaling- competent) conformation, blocking the ability of the receptor to homo-, hetero or oligomerize or otherwise affecting receptor activity or effector function.
  • 'active' e.g., signaling- competent
  • Measurement of HER3 receptor activity includes, but is not limited to, methods that determine levels of phosphorylated receptor (pHER3), phosphorylated AKT (pAKT), complex formation between HER3 and members of the HER (or other) families of receptors, reduction in PBKinase, ERK2, c-Jun or PYK2 activity, proliferation of HER3 expressing tumor cell lines, ability of said lines to grow in soft agar (clonal growth), migration of such lines across a membrane in response to ligand etc.
  • pHER3 phosphorylated receptor
  • pAKT phosphorylated AKT
  • complex formation between HER3 and members of the HER (or other) families of receptors include reduction in PBKinase, ERK2, c-Jun or PYK2 activity, proliferation of HER3 expressing tumor cell lines, ability of said lines to grow in soft agar (clonal growth), migration of such lines across a membrane in response to ligand etc.
  • a neutralizing antigen binding protein may neutralize the activity of the HER3 receptor by at least 20%, 30% 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 82%, 84%, 86%, 88%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or 100% relative to HER3 activity in the absence of the antigen binding protein.
  • IC 50 is the concentration that reduces a biological response by 50% of its maximum.
  • Neutralization may be determined or measured using one or more assays known to the skilled person, or as described herein.
  • antigen binding protein binding to HER3 can be assessed in a sandwich ELISA, by BIACORETM, FMAT, FORTEBIOTM, or similar in vitro assays.
  • An ELISA-based receptor binding assay can be used to determine the neutralising activity of the antigen binding protein by measuring HER3 receptor binding to its ligands, neuregulin 1 and neuregulin 2 immobilised on a plate in the presence of the antigen binding protein.
  • a cell-based receptor binding assay can be used to determine the neutralizing activity of the antigen binding protein by measuring inhibition of receptor binding, downstream signaling, and gene activation.
  • In vivo neutralization may be determined using a number of different assays in animals that demonstrate changes in, for example, any one or a combination of HER3 mediated function and / or signal transduction for example, reduction in phosphorylated HER3 (pHER3), phosphorylated AKT (pAKT), complex formation between HER3 and members of the HER (or other) families of receptors, reduction in PBKinase, ERK2, c-Jun or PYK2 activity and also by measuring the ability of the antigen binding protein to prevent, reduce or otherwise diminish tumor cell growth in e.g tumor xenograft models.
  • pHER3 phosphorylated HER3
  • pAKT phosphorylated AKT
  • complex formation between HER3 and members of the HER (or other) families of receptors reduction in PBKinase, ERK2, c-Jun or PYK2 activity and also by measuring the ability of the antigen binding protein to prevent, reduce or otherwise diminish tumor cell growth in
  • ADCC Antibody dependant cell mediated cytotoxic activity
  • CDC complement-dependant cytotoxic activity
  • Fc-mediated phagocytosis Fc-mediated phagocytosis and antibody recycling via the FcRn receptor.
  • ADCC antibody-dependent cellular cytotoxicity
  • CDC complement-dependant cytotoxic activity
  • phagocytosis antibody-dependent cell-mediated phagocytosis or ADCP
  • half-life/clearance of the antibody Usually, the ability to mediate effector function requires binding of the antibody to an antigen and not all antibodies will mediate every effector function.
  • Effector function can be measured in a number of ways including for example via binding of the FcyRIII to Natural Killer cells or via FcyRI to monocytes/macrophages to measure for ADCC effector function.
  • the antibody or antigen binding fragment of the present invention has an increased ADCC effector function when measured against the equivalent wild type antibody or antigen binding fragment thereof in a Natural Killer cell assay. Examples of such assays can be found in Shields et al, 2001 The Journal of Biological Chemistry, Vol. 276, p6591-6604; Chappel et al, 1993 The Journal of Biological Chemistry, Vol 268, p25124-25131; Lazar et al, 2006 PNAS, 103; 4005-4010. Examples of assays to determine CDC function include that described in 1995 J Imm Meth 184:29-38.
  • Human constant regions which essentially lack the functions of a) activation of complement by the classical pathway; and b) mediating antibody-dependent cellular cytotoxicity include the IgG4 constant region and the IgG2 constant region.
  • IgGl constant regions containing specific mutations have separately been described to reduce binding to Fc receptors and therefore reduce ADCC and CDC (Duncan et al. Nature 1988, 332; 563-564; Lund et al. J. Immunol. 1991, 147; 2657-2662; Chappel et al. PNAS 1991, 88; 9036-9040; Burton and Woof, Adv. Immunol.
  • effector functionalities including ADCC and ADCP are mediated by the interaction of the heavy chain constant region with a family of Fey receptors present on the surface of immune cells.
  • these include FcyRI (CD64), FcyRII (CD32) and FcyRIII (CD 16).
  • FcyRI CD64
  • FcyRII CD32
  • FcyRIII CD 16
  • Interaction between the antibody bound to antigen and the formation of the Fc/ Fey complex induces a range of effects including cytotoxicity, immune cell activation, phagocytosis and release of inflammatory cytokines.
  • Specific substitutions in the constant region including S239D/I332E are known to increase the affinity of the heavy chain constant region for certain Fc receptors, thus enhancing the effector functionality of the antibody (Lazar et al. PNAS 2006).
  • isolated it is intended that the molecule, such as an antigen binding protein or nucleic acid, is removed from the environment in which it may be found in nature.
  • the molecule may be purified away from substances with which it would normally exist in nature.
  • the mass of the molecule in a sample may be 95% of the total mass.
  • expression vector means an isolated nucleic acid which can be used to introduce a nucleic acid of interest into a cell, such as a eukaryotic cell or prokaryotic cell, or a cell free expression system where the nucleic acid sequence of interest is expressed as a peptide chain such as a protein.
  • Such expression vectors may be, for example, cosmids, plasmids, viral sequences, transposons, and linear nucleic acids comprising a nucleic acid of interest.
  • Expression vectors within the scope of the disclosure may provide necessary elements for eukaryotic or prokaryotic expression and include viral promoter driven vectors, such as CMV promoter driven vectors, e.g., pcDNA3.1, pCEP4, and their derivatives, Baculovirus expression vectors, Drosophila expression vectors, and expression vectors that are driven by mammalian gene promoters, such as human Ig gene promoters.
  • viral promoter driven vectors such as CMV promoter driven vectors, e.g., pcDNA3.1, pCEP4, and their derivatives
  • Baculovirus expression vectors e.g., pcDNA3.1, pCEP4, and their derivatives
  • Baculovirus expression vectors e.g., pcDNA3.1, pCEP4, and their derivatives
  • Baculovirus expression vectors e.g., pcDNA3.1, pCEP4
  • Drosophila expression vectors e.g., pcDNA3.1
  • recombinant host cell means a cell that comprises a nucleic acid sequence of interest that was isolated prior to its introduction into the cell.
  • the nucleic acid sequence of interest may be in an expression vector while the cell may be prokaryotic or eukaryotic.
  • exemplary eukaryotic cells are mammalian cells, such as but not limited to, COS-1, COS-7, HEK293, BHK21, CHO, BSC-1, HepG2, 653, SP2/0, NSO, 293, HeLa, myeloma, lymphoma cells or any derivative thereof.
  • the eukaryotic cell is a HEK293, NSO, SP2/0, or CHO cell.
  • a recombinant cell according to the disclosure may be generated by transfection, cell fusion, immortalization, or other procedures well known in the art.
  • a nucleic acid sequence of interest, such as an expression vector, transfected into a cell may be extrachromasomal or stably integrated into the chromosome of the cell.
  • a “chimeric antibody” refers to a type of engineered antibody which contains a naturally-occurring variable region (light chain and heavy chains) derived from a donor antibody in association with light and heavy chain constant regions derived from an acceptor antibody.
  • a “humanized antibody” refers to a type of engineered antibody having its CDRs derived from a non-human donor immunoglobulin, the remaining immunoglobulin-derived parts of the molecule being derived from one or more human immunoglobulin(s).
  • framework support residues may be altered to preserve binding affinity (see, e.g., Queen et al. Proc. Natl Acad Sci USA, 86: 10029-10032 (1989), Hodgson, et al, Bio/Technology, 9:421 (1991)).
  • a suitable human acceptor antibody may be one selected from a conventional database, e.g., the KABATTM database, Los Alamos database, and Swiss Protein database, by homology to the nucleotide and amino acid sequences of the donor antibody.
  • a human antibody characterized by a homology to the framework regions of the donor antibody (on an amino acid basis) may be suitable to provide a heavy chain constant region and/or a heavy chain variable framework region for insertion of the donor CDRs.
  • a suitable acceptor antibody capable of donating light chain constant or variable framework regions may be selected in a similar manner. It should be noted that the acceptor antibody heavy and light chains are not required to originate from the same acceptor antibody.
  • the prior art describes several ways of producing such humanized antibodies - see, for example, EP-A-0239400 and EP-A-054951.
  • donor antibody refers to an antibody that contributes the amino acid sequences of its variable regions, CDRs, or other functional fragments or analogs thereof to a first immunoglobulin partner.
  • the donor therefore, provides the altered immunoglobulin coding region and resulting expressed altered antibody with the antigenic specificity and neutralising activity characteristic of the donor antibody.
  • acceptor antibody refers to an antibody that is heterologous to the donor antibody, which contributes all (or any portion) of the amino acid sequences encoding its heavy and/or light chain framework regions and/or its heavy and/or light chain constant regions to the first immunoglobulin partner.
  • a human antibody may be the acceptor antibody.
  • V H and V L are used herein to refer to the heavy chain variable region and light chain variable region respectively of an antigen binding protein.
  • CDRs are defined as the complementarity determining region amino acid sequences of an antigen binding protein. These are the hypervariable regions of
  • CDRs refers to all three heavy chain CDRs, all three light chain CDRs, all heavy and light chain CDRs, or at least one CDR and wherein the at least one CDR is CDRH3.
  • the minimum overlapping region using at least two of the Kabat, Chothia, AbM and contact methods can be determined to provide the "minimum binding unit".
  • the minimum binding unit may be a sub-portion of a CDR.
  • Table 3 represents one definition using each numbering convention for each CDR or binding unit.
  • the Kabat numbering scheme is used in Table 3 to number the variable domain amino acid sequence. It should be noted that some of the CDR definitions may vary depending on the individual publication used.
  • the term "antigen binding site” refers to a site on an antigen binding protein that is capable of specifically binding to an antigen. This may be a single domain (for example, an epitope-binding domain), or single-chain Fv (ScFv) domains or it may be paired H VL domains as can be found on a standard antibody.
  • epitope refers to that portion of the antigen that makes contact with a particular binding domain of the antigen binding protein.
  • An epitope may be linear, comprising an essentially linear amino acid sequence from the antigen.
  • an epitope may be conformational or discontinuous.
  • a conformational epitope comprises amino acid residues which require an element of structural constraint.
  • a discontinuous epitope comprises amino acid residues that are separated by other sequences, i.e. not in a continuous sequence in the antigen's primary sequence.
  • the residues of a discontinuous epitope are near enough to each other to be bound by an antigen binding protein.
  • nucleotide and amino acid sequences For nucleotide and amino acid sequences, the term “identical” or “sequence identity” indicates the degree of identity between two nucleic acid or two amino acid sequences when optimally aligned and compared with appropriate insertions or deletions.
  • the comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm, as described below.
  • the percent identity between two nucleotide sequences can be determined using the GAP program in the GCG software package, using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6.
  • the percent identity between two nucleotide or amino acid sequences can also be determined using the algorithm of Meyers, et al, Comput. Appl. Biosci., 4: 11-17 (1988), which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
  • the percent identity between two amino acid sequences can be determined using the Needleman, et al, J. Mol.
  • Biol. 48:444-453 (1970) algorithm which has been incorporated into the GAP program in the GCG software package, using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.
  • a polynucleotide sequence may be identical to a reference polynucleotide sequence that is 100% identical to the reference sequence, or it may include up to a certain integer number of nucleotide alterations as compared to the reference sequence, such as at least 50, 60, 70, 75, 80, 85, 90, 95, 98, or 99% identical.
  • Such alterations are selected from at least one nucleotide deletion, substitution, including transition and transversion, or insertion, and wherein said alterations may occur at the 5 Or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.
  • the number of nucleotide alterations is determined by multiplying the total number of nucleotides in the reference polynucleotide sequence as described herein by the numerical percent of the respective percent identity (divided by 100) and subtracting that product from said total number of nucleotides in the reference polynucleotide sequence, or:
  • n n is the number of nucleotide alterations
  • x n is the total number of nucleotides in the reference polynucleotide sequence as described herein (see the nucleic acid sequences in the "Sequence Listing" for exemplary reference polynucleotides sequences)
  • y is 0.50 for 50%, 0.60 for 60%, 0.70 for 70%, 0.75 for 75%, 0.80 for 80%, 0.85 for 85%, 0.90 for 90%, 0.95 for 95%, 0.98 for 98%, 0.99 for 99% or 1.00 for 100%
  • is the symbol for the multiplication operator, and wherein any non-integer product of x n and y is rounded down to the nearest integer prior to subtracting it from x n .
  • a polypeptide sequence may be identical to a polypeptide reference sequence as described herein (see the amino acid sequences in the "Sequence Listing" for exemplary reference polypeptide sequences), that is 100% identical, or it may include up to a certain integer number of amino acid alterations as compared to the reference sequence such that the % identity is less than 100%, such as at least 50, 60, 70, 75, 80, 85, 90, 95, 98, or 99% identical.
  • Such alterations are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion, and wherein said alterations may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between those terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence.
  • the number of amino acid alterations for a given % identity is determined by multiplying the total number of amino acids in the polypeptide sequence encoded by the polypeptide reference sequence by the numerical percent of the respective percent identity (divided by 100) and then subtracting that product from said total number of amino acids in the polypeptide reference sequence as described herein (see, for example SEQ ID NOs: l-21), or:
  • n a is the number of amino acid alterations
  • x a is the total number of amino acids in the reference polypeptide sequence
  • y is, 0.50 for 50%, 0.60 for 60%, 0.70 for 70%, 0.75 for 75%, 0.80 for 80%, 0.85 for 85%, 0.90 for 90%, 0.95 for 95%, 0.98 for 98%, 0.99 for 99%, or 1.00 for 100%
  • is the symbol for the multiplication operator, and wherein any non-integer product of x a and y is rounded down to the nearest integer prior to subtracting it from x a .
  • the % identity may be determined across the length of the sequence.
  • the term “over 75% identical” includes over 75%, 80%, 85%, 95%, 98% and 99% identity as well as all discrete values, and discrete subranges, with in this range.
  • the terms “peptide”, “polypeptide”, and “protein” each refer to a molecule comprising two or more amino acid residues. A peptide may be monomelic or polymeric.
  • amino acids are divided into groups based on common side-chain properties and substitutions within groups that maintain all or substantially all of the binding affinity of the antigen binding protein are regarded as conservative substitutions. See Table 4.
  • the antigen binding proteins disclosed herein can comprise such "conservative" amino acid substitutions.
  • an antigen binding protein that specifically binds HER3 comprising a heavy chain variable region having at least one CDR with greater than 75% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 3, and SEQ ID NO: 4; and/or a light chain variable region having at least one CDR with 75% or greater sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 6, SEQ ID NO: 7, and SEQ ID NO: 8. It is preferred that the antigen binding proteins of the disclosure comprise at least one CDRH3 such as CDRH3 from the murine or humanized 1D9, 15D5, 22A5 monoclonal antibodies disclosed herein.
  • the disclosure also provides an antigen binding protein that specifically binds HER3 wherein the antigen binding protein is selected from the group consisting of a chimeric antibody and a humanized antibody.
  • the disclosure also provides an antigen binding protein that specifically binds HER3 comprising a heavy chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 2, the CDR amino acid sequence shown in SEQ ID NO: 3, and the CDR amino acid sequence shown in SEQ ID NO: 4; and a light chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 6, the CDR amino acid sequence shown in SEQ ID NO: 7, and the CDR amino acid sequence shown in SEQ ID NO: 8.
  • the disclosure also provides an antigen binding protein which specifically binds to a peptide chain domain comprising amino acid residues 184 to 329 of SEQ ID NO: 21. Amino acid residues 184 to 329 of SEQ ID NO: 21 comprise domain II of HER3. Domain II of HER3 is involved in dimer formation, such as heterodimerization.
  • an antigen binding protein that specifically binds HER3 comprising a heavy chain variable region having at least one CDR with greater than 75% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 23, SEQ ID NO: 24, and SEQ ID NO: 25; and/or a light chain variable region having at least one CDR with 75% or greater sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 27, SEQ ID NO: 28, and SEQ ID NO: 29.
  • the disclosure also provides an antigen binding protein that specifically binds HER3 comprising a heavy chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 23, the CDR amino acid sequence shown in SEQ ID NO: 24, and the CDR amino acid sequence shown in SEQ ID NO: 25; and a light chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 27, the CDR amino acid sequence shown in SEQ ID NO: 28, and the CDR amino acid sequence shown in SEQ ID NO: 29.
  • an antigen binding protein that specifically binds HER3 comprising a heavy chain variable region having at least one CDR with greater than 75% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 45, SEQ ID NO: 46, and SEQ ID NO: 47; and/or a light chain variable region having at least one CDR with 75% or greater sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 49, SEQ ID NO: 50, and SEQ ID NO: 51.
  • the disclosure also provides an antigen binding protein that specifically binds HER3 comprising a heavy chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 45, the CDR amino acid sequence shown in SEQ ID NO: 46, and the CDR amino acid sequence shown in SEQ ID NO: 47; and/or a light chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 49, the CDR amino acid sequence shown in SEQ ID NO: 50, and the CDR amino acid sequence shown in SEQ ID NO: 51.
  • the disclosure also provides an antigen binding protein which specifically binds to a peptide chain domain comprising amino acid residues 330 to 495 of SEQ ID NO: 21.
  • Amino acid residues 330 to 495 of SEQ ID NO: 21 comprise domain III of HER3.
  • Domain III of HER3 is involved in ligand binding by the HER3 receptor.
  • an antigen binding protein that specifically binds HER3 comprising a heavy chain variable region having at least one CDR with greater than 75% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 31, SEQ ID NO: 32, and SEQ ID NO: 33; and/or a light chain variable region having at least one CDR with 75% or greater sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 35, SEQ ID NO: 36, and SEQ ID NO: 37.
  • Another aspect of the disclosure is an antigen binding protein that specifically binds HER3 comprising a heavy chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 31, the CDR amino acid sequence shown in SEQ ID NO: 32, and the CDR amino acid sequence shown in SEQ ID NO: 33; and/or a light chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 35, the CDR amino acid sequence shown in SEQ ID NO: 36, and the CDR amino acid sequence shown in SEQ ID NO: 37.
  • an antigen binding protein that specifically binds to the HER3 receptor comprising a heavy chain variable region having at least one CDR with greater than 75% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 10, SEQ ID NO: 11, and SEQ ID NO: 12; and/or a light chain variable region having at least one CDR with 75% or greater sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 12, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 18, SEQ ID NO: 19, and SEQ ID NO: 20.
  • the disclosure also provides an antigen binding protein that specifically binds to the HER3 receptor comprising a heavy chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 10, the CDR amino acid sequence shown in SEQ ID NO: 1 1, and the CDR amino acid sequence shown in SEQ ID NO: 12; and either a light chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 12, the CDR amino acid sequence shown in SEQ ID NO: 7, and the CDR amino acid sequence shown in SEQ ID NO: 8 or a light chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 18, the CDR amino acid sequence shown in SEQ ID NO: 19, and the CDR amino acid sequence shown in SEQ ID NO: 20.
  • the disclosure also provides an antigen binding protein that specifically binds HER 3 and which inhibits formation of a dimer comprising the amino acid sequence shown in SEQ ID NO: 21.
  • inhibition of dimer formation may be determined by assaying dimer quantities both in the presence and absence of an antigen binding protein of the disclosure.
  • dimer formation assays are well known in the art and include, for example, co-precipitation based assays or two-hybrid assays.
  • Another aspect of the disclosure is an antigen binding protein that specifically binds HER3 comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 1 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 5.
  • Another aspect of the disclosure is an antigen binding protein that specifically binds HER3 comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 22 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 26.
  • Another aspect of the disclosure is an antigen binding protein that specifically binds HER3 comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 44 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 48.
  • Another aspect of the disclosure is an antigen binding protein that specifically binds HER3 comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 34.
  • Another aspect of the disclosure is an antigen binding protein that specifically binds HER3 comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 9 and a light chain variable region sequence selected from the group consisting of the amino acid sequence shown in SEQ ID NO: 13 and the amino acid sequence shown in SEQ ID NO: 17.
  • Another aspect of the disclosure is an antigen binding protein that specifically binds to the HER3 receptor comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 57.
  • the disclosure also provides isolated nucleic acids encoding the antigen binding proteins described herein.
  • the disclosure also provides an isolated nucleic acid comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 38 and the nucleic acid sequence shown in SEQ ID NO: 39.
  • the disclosure also provides an isolated nucleic acid comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 59 and the nucleic acid sequence shown in SEQ ID NO: 60.
  • the disclosure also provides an isolated nucleic acid comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 40 and the nucleic acid sequence shown in SEQ ID NO: 41.
  • the disclosure also provides an isolated nucleic acid comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 52 and the nucleic acid sequence shown in SEQ ID NO: 53.
  • the disclosure also provides an isolated nucleic acid comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 42 and the nucleic acid sequence shown in SEQ ID NO: 43.
  • the disclosure also provides an isolated nucleic acid comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 42 and the nucleic acid sequence shown in SEQ ID NO: 58.
  • the disclosure also provides an isolated nucleic acid comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 54, the nucleic acid sequence shown in SEQ ID NO: 55 and the nucleic acid sequence shown in SEQ ID NO: 56.
  • the disclosure also provides an isolated nucleic acid comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 63, the nucleic acid sequence shown in SEQ ID NO: 64 and the nucleic acid sequence shown in SEQ ID NO: 65.
  • the disclosure also provides an expression vector comprising the isolated nucleic acids described herein.
  • the disclosure also provides a recombinant host cell comprising an expression vector comprising the isolated nucleic acids described herein.
  • the disclosure also provides a method for the production of an antigen binding protein that specifically binds HER3 comprising the step of culturing a recombinant host cell comprising an expression vector comprising the isolated nucleic acids described herein; and recovering the antigen binding protein.
  • the disclosure also provides a pharmaceutical composition
  • a pharmaceutical composition comprising an antigen binding protein described herein; and a pharmaceutically acceptable carrier.
  • the disclosure also provides a method of treating cancer in a subject comprising the step of administering a therapeutically effective amount of an antigen binding protein described herein to the subject, whereby the cancer in the subject is treated.
  • the disclosure also provides a method of treating cancer in a mammal comprising administering a therapeutically effective amount of an antigen binding protein as described herein.
  • the mammal is a human.
  • the cancer is selected from breast cancer, ovarian cancer, prostate cancer, bladder cancer, pancreatic cancer, skin cancer, gastric cancer and melanoma.
  • an antigen binding protein as described herein for use in use in the treatment of breast cancer, ovarian cancer, prostate cancer, bladder cancer, pancreatic cancer, skin cancer, gastric cancer and melanoma.
  • the disclosure also provides a method of treating cancer in a subject comprising the steps of a) identifying a subject with a cancer selected from the group consisting of breast cancer, ovarian cancer, prostate cancer, bladder cancer, pancreatic cancer, skin cancer, gastric cancer and melanoma; and b) administering a therapeutically effective amount of an antigen binding protein described herein to the subject, whereby the cancer in the subject is treated.
  • a cancer selected from the group consisting of breast cancer, ovarian cancer, prostate cancer, bladder cancer, pancreatic cancer, skin cancer, gastric cancer and melanoma
  • the disclosure also provides a method of treatment further comprising the step of c) determining the cancer expresses a protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21.
  • determinations can be made by assays of intact cancer cells, or preparations of such cells, such as lysates or immunohistochemical (IHC) preparations by a variety of different techniques and reagents such as antigen binding proteins that specifically bind a peptide chain domain comprising amino acid residues 184 to 329 of SEQ ID NO: 21 or nucleic acid primers or probes specific for a nucleic acid sequence encoding amino acid residues 184 to 329 of SEQ ID NO: 21.
  • Such determinations may be made, for example, by the use of flow cytometry including fluorescence activated cell sorting (FACS), ELISA, Southern blotting, Northern blotting or nucleic acid microarray analyses.
  • determinations may be made relative to appropriate positive and negative controls or based on previously collected data sets (e.g. , the average expression of amino acid residues 184 to 329 of SEQ ID NO: 21 in a particular cell or tissue type).
  • the disclosure also provides a method of treatment wherein the protein comprises the amino acid sequence shown in SEQ ID NO: 21.
  • the methods of treatment of the disclosure may further comprise determining if at least one tumor cell from said subject has an amplification of a gene encoding SEQ ID NO: 21 or a portion thereof, such as domain II or domain III of HER3, or amplification of RNA transcripts encoding SEQ ID NO: 21 or a portion thereof.
  • the disclosure also provides a method of treatment further comprising the step of c) determining the cancer expresses a protein comprising amino acid residues 330 to 495 of SEQ ID NO: 21.
  • determinations can be made by assays of intact cancer cells, or preparations of such cells, such as lysates or immunohistochemical (IHC) preparations by a variety of different techniques and reagents such as antigen binding proteins that specifically bind amino acid residues 330 to 495 of SEQ ID NO: 21 or nucleic acid primers or probes specific for a nucleic acid sequence encoding amino acid residues 330 to 495 of SEQ ID NO: 21.
  • IHC immunohistochemical
  • Such determinations may be made, for example, by the use of flow cytometry including fluorescence activated cell sorting (FACS), ELISA, Southern blotting, Northern blotting or nucleic acid microarray analyses. Such determinations may be made relative to appropriate positive and negative controls or based on previously collected data sets (e.g., the average expression of amino acid residues 330 to 495 of SEQ ID NO: 21 in a particular cell or tissue type).
  • flow cytometry including fluorescence activated cell sorting (FACS), ELISA, Southern blotting, Northern blotting or nucleic acid microarray analyses.
  • the disclosure also provides the use of a substance described herein, such as an antigen binding protein, in the manufacture of a medicament for the treatment of condition selected from the group consisting of breast cancer, ovarian cancer, prostate cancer, bladder cancer, pancreatic cancer, skin cancer, gastric cancer and melanoma.
  • a substance described herein such as an antigen binding protein
  • the present disclosure also relates to a method for treating or lessening the severity of a cancer selected from: brain (gliomas), glioblastomas, Bannayan-Zonana syndrome, Cowden disease, Lhermitte-Duclos disease, breast, inflammatory breast cancer, Wilm's tumor, Ewing's sarcoma, Rhabdomyosarcoma, ependymoma, medulloblastoma, colon, head and neck, kidney, lung, liver, melanoma, ovarian, pancreatic, prostate, sarcoma,
  • a cancer selected from: brain (gliomas), glioblastomas, Bannayan-Zonana syndrome, Cowden disease, Lhermitte-Duclos disease, breast, inflammatory breast cancer, Wilm's tumor, Ewing's sarcoma, Rhabdomyosarcoma, ependymoma, medulloblastoma, colon, head and neck
  • osteosarcoma giant cell tumor of bone, thyroid, lymphoblastic T-cell leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, hairy -cell leukemia, acute lymphoblastic leukemia, acute myelogenous leukemia, chronic neutrophilic leukemia, acute lymphoblastic T-cell leukemia, plasmacytoma, immunoblastic large cell leukemia, mantle cell leukemia, multiple myeloma megakaryoblastic leukemia, multiple myeloma, acute megakaryocyte leukemia, promyelocytic leukemia, erythroleukemia, malignant lymphoma, Hodgkins lymphoma, non-hodgkins lymphoma, lymphoblastic T cell lymphoma, Burkitt's lymphoma, follicular lymphoma, neuroblastoma, bladder cancer, urothelial cancer, lung cancer, vulval cancer, cervical cancer, endometrial
  • nasopharangeal cancer nasopharangeal cancer
  • buccal cancer cancer of the mouth
  • GIST gastrointestinal stromal tumor
  • testicular cancer testicular cancer
  • Another aspect of the disclosure is an antigen binding protein which specifically binds to a peptide chain domain comprising amino acid residues 184 to 329 of SEQ ID NO: 21.
  • Another aspect of the disclosure is an antigen binding protein which specifically binds to a peptide chain domain comprising amino acid residues 330 to 495 of SEQ ID NO: 21.
  • the disclosure also provides a method for the production of an antigen binding protein that specifically binds HER3 comprising the steps of a) culturing a recombinant host cell comprising an expression vector comprising the isolated nucleic acid as described herein, wherein the FUT8 gene encoding alpha- 1,6-fucosyltransferase has been inactivated in the recombinant host cell; and b) recovering the antigen binding protein; whereby the antigen binding protein is produced.
  • Such methods for the production of antigen binding proteins can be performed, for example, using the POTELLIGENT ® technology system available from BioWa, Inc.
  • An antigen binding protein of the disclosure may also be provided as an antibody- drug conjugate (ADC).
  • the antigen binding protein may be conjugated via a protease cleavable, peptide linker to a chemotherapeutic drug.
  • Auristatins are one example of such chemotherapeutic agents. Examples of suitable auristatins include monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF). Other suitable chemotherapeutic agents are described herein. Those skilled in the art will recognize other suitable chemotherapeutic agents.
  • Conjugates may also be prepared by linking a chemotherapeutic drug to an antigen binding protein via a chemical bond formed from a reactive group.
  • the disclosure also provides a method for the production of an antigen binding protein that specifically binds HER3 wherein the recombinant host cell is a CHOK1SV cell.
  • the disclosure also provides an antigen binding protein that specifically binds HER3 produced by the disclosed methods for production of an antigen binding protein.
  • the disclosure also provides a method for the production of an antigen binding protein that specifically binds HER3 comprising the steps of a) culturing a recombinant host cell comprising an expression vector comprising an isolated nucleic acid as described herein wherein the expression vector comprises a Fc nucleic acid sequence encoding a chimeric Fc domain having both IgGl and IgG3 Fc domain amino acid residues; and b) recovering the antigen binding protein; whereby the antigen binding protein is produced.
  • Such methods for the production of antigen binding proteins can be performed, for example, using the
  • COMPLEGENT ® technology system available from BioWa, Inc. (La Jolla, CA, USA) and Kyowa Hakko Kogyo (now, Kyowa Hakko Kirin Co., Ltd.) Co., Ltd. in which a recombinant host cell comprising an expression vector in which a Fc nucleic acid sequence encoding a chimeric Fc domain having both IgGl and IgG3 Fc domain amino acid residues is fused to an antibody heavy chain is expressed to produce an antigen binding protein having enhanced complement dependent cytotoxicity (CDC) activity that is increased relative to an otherwise identical monoclonal antibody lacking such a chimeric Fc domain.
  • CDC complement dependent cytotoxicity
  • COMPLEGENT ® technology system are described in WO2007011041 and US20070148165 each of which are incorporated herein by reference.
  • CDC activity may also be increased by introducing sequence specific mutations into the Fc region of an IgG chain.
  • the disclosure also provides a method for the production of an antigen binding protein that specifically binds HER3 wherein the Fc nucleic acid sequence is fused in frame to a nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 40 and the nucleic acid sequence shown in SEQ ID NO: 42.
  • Such methods for the production of antigen binding proteins can be performed, for example, using the AccretaMab ® technology system available from BioWa, Inc. (La Jolla, CA, USA) which combines the POTELLIGENT ® and COMPLEGENT ® technology systems to produce an antigen binding protein having both ADCC and CDC enhanced activity that is increased relative to an otherwise identical monoclonal antibody lacking a chimeric Fc domain.
  • the disclosure also provides a method for the production of an antigen binding protein that specifically binds HER3 comprising the steps of a) culturing a recombinant host cell containing an expression vector containing an isolated nucleic acid as described herein, said expression vector further comprising a Fc nucleic acid sequence encoding a chimeric Fc domain having both IgGl and IgG3 Fc domain amino acid residues, and wherein the FUT8 gene encoding alpha- 1,6-fucosyltransferase has been inactivated in the recombinant host cell; and b) recovering the antigen binding protein; whereby the antigen binding protein is produced in a cell with a functional FUT8 gene.
  • the disclosure also provides a method for the production of an antigen binding protein that specifically binds HER3 wherein the Fc nucleic acid sequence is fused in frame to a nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 40 and the nucleic acid sequence shown in SEQ ID NO: 42.
  • the disclosure also provides a method of treating a pre-cancerous condition in a subject comprising the step of administering a therapeutically effective amount of an antigen binding protein described herein to the subject, whereby the pre-cancerous condition in the subject is treated.
  • the disclosure also provides a method of treating a pre-cancerous condition in a subject comprising the steps of a) identifying a subject with a pre-cancerous condition; and b) administering a therapeutically effective amount of an antigen binding protein of the disclosure to the subject, whereby the pre-cancerous condition in a subject is treated.
  • the disclosure also provides a method of treating a pre-cancerous condition in a subject further comprising the step of c) determining the cancer expresses a protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21.
  • the disclosure also provides a method of treating a pre-cancerous condition in a subject wherein the protein comprises the amino acid sequence shown in SEQ ID NO: 21.
  • the disclosure also provides a method of treating a pre-cancerous condition in a subject further comprising the step of c) determining the cancer expresses a protein comprising amino acid residues 330 to 495 of SEQ ID NO: 21.
  • Another aspect of the disclosure is an antigen binding protein which specifically binds a HER3 receptor and comprises CDRHl having the amino acid sequence shown in SEQ ID NO: 2, CDRH2 having the amino acid sequence shown in SEQ ID NO: 3, CDRH3 having the amino acid sequence shown in SEQ ID NO: 4, CDRLl having the amino acid sequence shown in SEQ ID NO: 6, CDRL2 having the amino acid sequence shown in SEQ ID NO: 7, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 8.
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRHl having the amino acid sequence shown in SEQ ID NO: 23, CDRH2 having the amino acid sequence shown in SEQ ID NO: 24, CDRH3 having the amino acid sequence shown in SEQ ID NO: 25, CDRLl having the amino acid sequence shown in SEQ ID NO: 27, CDRL2 having the amino acid sequence shown in SEQ ID NO: 28, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 29.
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRHl having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRLl having the amino acid sequence shown in SEQ ID NO: 35, CDRL2 having the amino acid sequence shown in SEQ ID NO: 36, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 37.
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRHl having the amino acid sequence shown in SEQ ID NO: 45, CDRH2 having the amino acid sequence shown in SEQ ID NO: 46, CDRH3 having the amino acid sequence shown in SEQ ID NO: 47, CDRLl having the amino acid sequence shown in SEQ ID NO: 49, CDRL2 having the amino acid sequence shown in SEQ ID NO: 50, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 51.
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRHl having the amino acid sequence shown in SEQ ID NO: 10, CDRH2 having the amino acid sequence shown in SEQ ID NO: 11, CDRH3 having the amino acid sequence shown in SEQ ID NO: 12, CDRLl having the amino acid sequence shown in SEQ ID NO: 14, CDRL2 having the amino acid sequence shown in SEQ ID NO: 15, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 16.
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRHl having the amino acid sequence shown in SEQ ID NO: 10, CDRH2 having the amino acid sequence shown in SEQ ID NO: 11, CDRH3 having the amino acid sequence shown in SEQ ID NO: 12, CDRLl having the amino acid sequence shown in SEQ ID NO: 18, CDRL2 having the amino acid sequence shown in SEQ ID NO: 19, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 20.
  • the disclosure also provides a pharmaceutical composition as described herein for use in medicine.
  • the disclosure also provides a pharmaceutical composition as described herein for use in the treatment of breast cancer, ovarian cancer, prostate cancer, bladder cancer, pancreatic cancer, skin cancer, gastric cancer and melanoma.
  • the disclosed antigen binding proteins that specifically binds HER3 may be an antibody, for example, a monoclonal antibody.
  • a monoclonal antibody for example, Several such exemplary antibodies are described herein including murine versions of the 15D5, 1D9 and 22A5 monoclonal antibodies as well as humanized versions of the 15D5 and 1D9 monoclonal antibodies.
  • Epitope mapping approaches indicate 15D5 monoclonal antibody binds to domain II of HER3 and are able to inhibit or interfere with ligand - induced receptor dimerization between HER3 and other receptors such as, for example, those in Table 1. These include, but are not limited to: HER2 and other HER family receptors, c-MET and other tyrosine kinase or cell surface receptors. The result of inhibiting or interfering with the ability of HER3 to interact with these receptors is to inhibit or diminish receptor-mediated cell signaling processes or pathways that are HER3 dependent.
  • Epitope mapping also indicates the 1D9 monoclonal antibodies bind to domain III of HER3 to inhibit HER3 ligand binding and heterodimer formation.
  • the disclosed antigen binding proteins that specifically binds HER3 may bind to and neutralize the HER3 receptor (also known as ErbB3) (SEQ ID NO: 21) and compete for binding to the HER3 receptor with a reference antibody that comprises a heavy chain variable region sequence of SEQ ID NO: 1 or 9, and a light chain variable region sequence of SEQ ID NO: 5, 13, or 17).
  • HER3 receptor also known as ErbB3
  • the antigen binding proteins that specifically binds HER3, such as the murine and humanized 15D5 monoclonal antibodies, may bind domain II of the HER3 receptor (residues 184-329 of SEQ ID NO: 21), but does not bind domains I (residues 20-183 of SEQ ID NO: 21), III (amino acid residues 330-495 of SEQ ID NO: 21), or IV (amino acid residues 496-643 of SEQ ID NO: 21 of the HER3 receptor (SEQ ID NO: 21).
  • Domain II of the HER3 receptor is an important interface for the formation of receptor dimers such that the two antigen binding proteins described herein are candidate dimerization inhibitors.
  • the antigen binding proteins that specifically bind HER3, such as murine and humanized 1D9 antibodies, may also bind domain III to prevent binding of ligand to the HER3 receptor.
  • the disclosed antigen binding proteins that specifically bind HER3 may also compete with the murine or humanized 15D5, 1D9 or 22A5 monoclonal antibodies described herein.
  • the antigen binding proteins of the disclosure, or pharmaceutical compositions comprising these, may also be used in methods of treating a subject afflicted with hyperproliferative or HER3 associated disorders, such as cancers that are based on number of factors such as HER3 expression.
  • Such tumors or cancers may be selected from, but not limited to, the group of: breast cancer, ovarian cancer, gastrointestinal cancer, prostate cancer, bladder cancer, pancreatic cancer, stomach cancer, endometrial cancer, lung cancer, kidney cancer, head and neck cancers, glioma, melanoma and non melanoma skin cancers, as well as other skin cancers and other HER3 expressing or overexpressing cancers.
  • the antigen binding proteins may also be used to detect HER3 positive cancers that are responsive to EGFR targeted therapies such as AG1478-trastuzumab combinations or pertuzumab which inhibit HER2/HER3 heterodimerization. See e.g., Lee-Hoeflich et al , 68 Cancer. Res. 5875 (2008) and Emlet et al, 94 Br. J. Cancer 1144 (2006).
  • benefit from this disclosure will be derived by persons from groups including: 1) anti-HER2 mAb-resistant patients, 2) anti- HER2 mAb-ineligible patients, 3) anti HER1 (EGFR) mAb-resistant or ineligible patients, and 4) patients with tyrosine kinase (small molecule)-resistant tumors.
  • Antigen binding proteins of the disclosure could be used alone in monotherapy, or in combination therapy approaches, wherein the agent is administered in conjunction with other agents specified elsewhere in this document.
  • the disclosure provides methods that may lead to inhibition or regression of a cancerous tumor in a subject, extended patient survival, time to tumor progression or quality of patient life wherein such methods comprise the step of administering a therapeutically effective amount of an antigen binding protein alone, or in combination with other specific agents as defined herein.
  • trastuzumab-DMl also called trastuzumab-DMl or trastuzumab-MCC-DMl
  • T-DM1 trastuzumab-DMl
  • HERCEPTINTM antibody-drug conjugate consisting of the antibody trastuzumab (HERCEPTINTM) linked to the cytotoxin mertansine (DM1). It has the structure:
  • Another embodiment of the disclosure is a method of treating cancer in a mammal comprising administering a therapeutically effective amount of an antigen binding protein of the disclosure with at least one other agent as described herein.
  • agents are described, at for example, pages 59-78 of the disclosure.
  • the at least one other agent is selected from the group consisting of trastuzumab, pertuzumab and T-DM1.
  • the antigen binding proteins of the disclosure may also be used for the treatment of a subject afflicted with tumors selected from but not limited to the group of: breast cancer, ovarian cancer, gastrointestinal cancer, prostate cancer, bladder cancer, pancreatic cancer, stomach cancer, endometrial cancer, lung cancer, kidney cancer, head and neck cancers, glioma, melanoma and non melanoma skin cancers and other HER3 expressing or overexpressing cancers.
  • the antigen binding proteins of the disclosure may also be for use in the treatment of breast cancer, ovarian cancer, gastrointestinal cancer, prostate cancer, bladder cancer, pancreatic cancer, stomach cancer, endometrial cancer, lung cancer, kidney cancer, head and neck cancers, glioma, melanoma and non melanoma skin cancers and other HER3 expressing or overexpressing cancers.
  • the antigen binding protein may bind to and neutralize the HER3 receptor and compete for binding to the HER3 receptor with a reference antibody comprising a heavy chain variable region sequence of SEQ ID NO: 1 or 9, and a light chain variable region sequence of SEQ ID NO: 5, 13, or 17.
  • the antigen binding protein may bind to and neutralize the HER3 receptor and compete for binding to the HER3 receptor with a reference antibody comprising a heavy chain variable region sequence of SEQ ID NO: 1 or 9, and a light chain variable region sequence of SEQ ID NO: 5, 13, or 17. In some embodiments the antigen binding protein does not bind to the HER2 receptor.
  • the reference antibody may comprise the following heavy chain and light chain combinations: (1) murine 15D5 antibody (M5.15D5.2A1.1H10; murine monoclonal antibody; comprising SEQ ID NOs: 1 and 5); (2) murine 22A5 antibody (M5.22A5.1G6.1 CIO; murine monoclonal antibody; comprising SEQ ID NOs: 9, 13, and 17); (3) humanized 15D5 antibody (humanized monoclonal antibody; comprising SEQ ID NO:s 22 and 26); (4) humanized 1D9 antibody (humanized monoclonal antibody; comprising SEQ ID NO:s 30 and 34); (5) murine 1D9 antibody (murine monoclonal antibody; comprising SEQ ID NO:s 44 and 48); (6) humanized 1D9 RR (also referred to as humanized 1D9 E antibody a humanized monoclonal antibody; comprising SEQ ID NO:s 30 and 57).
  • the second antibody, the murine 22A5 antibody has 2 light chain variable domains (SEQ ID NOs; 13 and 17) so
  • Competition between the antigen binding protein and the reference antibody may be determined by competition ELISA.
  • Competition for neutralization of HER3 may be determined by any one or a combination of: competition for binding to HER3, for example as determined by ELISA, FMAT or BIACORE ; competition for inhibition of HER3 to the neuregulin 1 and neuregulin 2 ligands; and competition for inhibition of cell signaling resulting in luciferase expression in an A204 cell based assay.
  • a competing antigen binding protein may bind to the same epitope, an overlapping epitope, or an epitope in close proximity of the epitope to which the reference antibody binds.
  • the antigen binding protein may not bind significantly to the HER3 peptide fragment or artificial peptide sequence.
  • the antigen binding protein may not bind to the HER3 peptide fragment or artificial peptide sequence at a ratio range of 1 : 1 to 1 : 10, of antigen binding protein to peptide, respectively.
  • Binding or lack of binding between the antigen binding protein and the HER3 receptor peptide fragment or artificial peptide sequence may be determined by ELISA or by SDS PAGE using reducing conditions.
  • binding or lack of binding of the antigen binding protein to the linear full-length HER3 receptor sequence may be determined by reducing SDS PAGE.
  • the present disclosure also provides an antigen binding protein that binds to and neutralizes the HER3 receptor and comprises CDRH3 of SEQ ID NOs:4, 15, or 20 or a variant CDR thereof.
  • the antigen binding protein may further comprise one or more CDRs, or all CDRs, in any combination, selected from: CDRHl (SEQ ID NOs:2, 10, or 31), CDRH2 (SEQ ID NOs: 3, 11, or 32), CDRH3 (SEQ ID NO: 4, 12 or 33), CDRL1 (SEQ ID NO: 6, 14, 18, or 35), CDRL2 (SEQ ID NO: 7, 15, 19, or 36), and CDRL3 (SEQ ID NO: 8, 16, 20, or 37); or a variant thereof.
  • CDRHl SEQ ID NOs:2, 10, or 31
  • CDRH2 SEQ ID NOs: 3, 11, or 32
  • CDRH3 SEQ ID NO: 4, 12 or 33
  • CDRL1 SEQ ID NO: 6, 14, 18, or 35
  • CDRL2 SEQ ID NO: 7, 15, 19, or 36
  • CDRL3 SEQ ID NO: 8, 16, 20, or 37
  • the antigen binding protein may comprise CDRH3 (SEQ ID NO: 4, 12 or 33) and CDRHl (SEQ ID NOs: 2, 10, or 31), or variants thereof.
  • the antigen binding protein may comprise CDRH3 (SEQ ID NO: 4, 12 or 33) and CDRH2 (SEQ ID NOs: 3, 11, or 32), or variants thereof.
  • the antigen binding protein may comprise CDRHl (SEQ ID NOs:2, 10, or 31), CDRH2 (SEQ ID NOs: 3, 11, or 32), and CDRH3 (SEQ ID NO: 4, 12 or 33), or variants thereof.
  • the antigen binding protein may comprise CDRLl (SEQ ID NO: 6, 14, 18, or 35) and CDRL2 (SEQ ID NO: 7, 15, 19, or 36), or variants thereof.
  • the antigen binding protein may comprise CDRL2 (SEQ ID NO: 7, 15, 19, or 36) and CDRL3 (SEQ ID NO: 8, 16, 20, or 37), or variants thereof.
  • the antigen binding protein may comprise CDRLl (SEQ ID NO: 6, 14, 18, or 35), CDRL2 (SEQ ID NO: 7, 15, 19, or 36), and CDRL3 (SEQ ID NO: 8, 16, 20, or 37), or variants thereof.
  • the antigen binding protein may comprise CDRH3 (SEQ ID NO: 4, 12 or 33) and CDRL3 (SEQ ID NO: 8, 16, 20, or 37), or variants thereof.
  • the antigen binding protein may comprise CDRH3 (SEQ ID NO: 4, 12 or 33), CDRH2 (SEQ ID NOs: 3, 11, or 32), and CDRL3 (SEQ ID NO: 8, 16, 20, or 37), or variants thereof.
  • the antigen binding protein may comprise CDRH3 (SEQ ID NO: 4, 12 or 33), CDRH2 (SEQ ID NOs: 3, 11, or 32), CDRL2 (SEQ ID NO: 7, 15, 19, or 36), and CDRL3 (SEQ ID NO: 8, 16, 20, or 37), or variants thereof.
  • the antigen binding protein may comprise CDRH1 (SEQ ID NOs: 2, 10, or 31), CDRH2 (SEQ ID NOs: 3, 11, or 32), CDRH3 (SEQ ID NO: 4, 12 or 33), CDRLl (SEQ ID NO: 6, 14, 18, or 35), CDRL2 (SEQ ID NO: 7, 15, 19, or 36) and CDRL3 (SEQ ID NO: 8, 16, 20, or 37), or variants thereof.
  • the present disclosure also provides an antigen binding protein which binds to and neutralizes the HER3 receptor, wherein the antigen binding protein is a chimeric or a humanized antibody comprising the corresponding CDRH3 of the variable domain sequence of SEQ ID NO: 1, 9 or 30 or a variant CDRH3.
  • the chimeric or humanized antigen binding protein may further comprise one or more, or all of the corresponding CDRs selected from the variable domain sequence of SEQ ID NO: 1, SEQ ID NO: 9, SEQ ID NO: 30, or a variant CDR thereof.
  • the antigen binding protein may comprise corresponding CDRH3 and corresponding CDRH1, or variants thereof.
  • the antigen binding protein may comprise corresponding CDRH3 and corresponding CDRH2, or variants thereof.
  • the antigen binding protein may comprise corresponding CDRH1, corresponding CDRH2, and corresponding CDRH3; or variants thereof.
  • the antigen binding protein may comprise corresponding CDRLl and corresponding CDRL2, or variants thereof.
  • antigen binding protein may comprise corresponding CDRL2 and corresponding CDRL3, or variants thereof.
  • the antigen binding protein also may comprise corresponding CDRLl, corresponding CDRL2 and corresponding CDRL3, or variants thereof.
  • the antigen binding protein may comprise corresponding CDRH3 and corresponding CDRL3, or variants thereof.
  • the antigen binding protein may comprise corresponding CDRH3, corresponding CDRH2 and corresponding CDRL3, or variants thereof.
  • the antigen binding protein may comprise corresponding CDRH3,
  • the antigen binding protein may comprise corresponding CDRH1, corresponding CDRH2, corresponding CDRH3, corresponding CDRLl, corresponding CDRL2 and corresponding CDRL3, or variants thereof.
  • the corresponding CDRs can be defined by reference to Kabat (1987), Chothia (1989), AbM or contact methods. One definition of each of the methods can be found at Table 3 and can be applied to the reference heavy chain variable domain of SEQ ID NO: 1, 9 or 30 and the reference light chain variable domain of SEQ ID NO: 5, 13, 17 or 35 to determine the corresponding CDR.
  • the antigen binding protein may comprise a binding unit CDR H3 and a binding unit CDR HI, or variants thereof.
  • the antigen binding protein may comprise a binding unit CDR H3 and a binding unit CDR H2, or variants thereof.
  • the antigen binding protein may comprise a binding unit CDR HI, a binding unit CDR H2, and a binding unit CDR H3; or variants thereof.
  • the antigen binding protein may comprise a binding unit CDR LI and a binding unit CDR L2, or variants thereof.
  • the antigen binding protein may comprise a binding unit CDR L2 and a binding unit CDR L3, or variants thereof.
  • the antigen binding protein may comprise a binding unit CDR LI, a binding unit CDR L2, and a binding unit CDR L3; or variants thereof.
  • the antigen binding protein may comprise a binding unit CDR H3 and a binding unit CDR L3, or variants thereof.
  • the antigen binding protein may comprise a binding unit CDR H3, a binding unit CDR H2, and a binding unit CDR L3; or variants thereof.
  • the antigen binding protein may comprise a binding unit CDR H3, a binding unit CDR H2, a binding unit CDR L2, and a binding unit CDR L3; or variants thereof.
  • the antigen binding protein may comprise a binding unit CDR HI, a binding unit CDR H2, a binding unit CDR H3, a binding unit CDR LI, a binding unit CDR L2, and a binding unit CDR L3; or variants thereof.
  • a CDR variant or variant binding unit includes an amino acid sequence modified by at least one amino acid, wherein said modification can be chemical or a partial alteration of the amino acid sequence (for example by no more than 10 amino acids), which modification permits the variant to retain the biological characteristics of the unmodified sequence.
  • the variant is a functional variant which binds to and neutralizes HER3.
  • a partial alteration of the CDR amino acid sequence may be by deletion or substitution of one to several amino acids, or by addition or insertion of one to several amino acids, or by a combination thereof (for example by no more than 10 amino acids).
  • the CDR variant or binding unit variant may contain 1, 2, 3, 4, 5 or 6 amino acid substitutions, additions or deletions, in any combination, in the amino acid sequence.
  • the CDR variant or binding unit variant may contain 1, 2 or 3 amino acid substitutions, insertions or deletions, in any combination, in the amino acid sequence.
  • the substitutions in amino acid residues may be conservative substitutions, for example, substituting one hydrophobic amino acid for an alternative hydrophobic amino acid.
  • leucine may be substituted with valine, or isoleucine.
  • the antigen binding protein comprising the CDRs, corresponding CDRs, variant CDRs, binding units or variant binding units described, may display a potency for binding to HER3, as demonstrated by ED50, of within 10-fold, or within 5-fold of the potency demonstrated by a reference antibody described herein. Potency for binding to HER3, as demonstrated by ED50, may be carried out by an ELISA assay.
  • the antigen binding protein may or may not have a substitution at amino acid position 54 from asparagine (N) to aspartate (D) or glutamine (Q).
  • the antigen binding protein variant may or may not have a substitution at amino acid position 91 from cysteine (C) to serine (S).
  • One or more of the CDRs, corresponding CDRs, variant CDRs or binding units described herein may be present in the context of a human framework, for example as a humanized or chimeric variable domain.
  • the humanized heavy chain variable domain may comprise the CDRs described in the sequence listing, corresponding CDRs, binding units, or variants thereof, within an acceptor antibody framework having 75% or greater, 80% or greater, 85% or greater, 90% or greater, 95% or greater, 98% or greater, 99% or greater or 100% identity in the framework regions to the human variable domain sequence in SEQ ID NOs: 1 and 9.
  • the humanized light chain variable domain may comprise the CDRs listed in SEQ ID NOs:6, 7, 8, 14, 15, 16, 18, 19, or 20, corresponding CDRs, binding units, or variants thereof, within an acceptor antibody framework having 75% or greater, 80% or greater, 85% or greater, 90% or greater, 95% or greater, 98% or greater, 99% or greater or 100% identity.
  • the antigen binding protein variable heavy chain may have a serine (S) amino acid residue at position 28 and/or a threonine (T) amino acid residue at position 105.
  • the antigen binding protein variable light chain may have an arginine (R) amino acid residue at position 16 and/or a tyrosine (Y) amino acid residue at position 71 and/or an alanine (A) amino acid residue at position 100.
  • the antigen binding protein may comprise serine (S) at position 28 of the variable heavy chain and tyrosine (Y) at position 71 of the variable light chain.
  • the disclosure also provides an antigen binding protein that binds to and neutralizes HER3 and comprises any one of the following heavy chain and light chain variable region combinations: (1) murine 15D5 antibody (M5.15D5.2A1.1H10; murine monoclonal antibody; comprising SEQ ID NOs: 1 and 5); (2) murine 22A5 antibody (M5.22A5.1G6.1 CIO; murine monoclonal antibody; comprising SEQ ID NOs: 9, 13, and 17); (3) humanized 15D5 antibody (humanized monoclonal antibody; comprising SEQ ID NO:s 22 and 26); (4) humanized 1D9 antibody (humanized monoclonal antibody; comprising SEQ ID NO:s 30 and 34); (5) murine 1D9 antibody (murine monoclonal antibody; comprising SEQ ID NO:s 44 and 48); (6) humanized 1D9 RR (also referred to as humanized 1D9 E antibody a humanized monoclonal antibody; comprising SEQ ID NO:s 30 and 57). Any of the heavy chain variable regions may be
  • Antigen binding proteins as described above may display a potency for binding to HER3, as demonstrated by ED50, of within 10-fold, or within 5-fold of the potency demonstrated by (1) M5 15D5 2A1 1H10 (murine monoclonal antibody; comprising SEQ ID NOs: 1 and 5); (2) M5_ 22A5 1G6 1 CIO (murine monoclonal antibody; comprising SEQ ID NOs: 9, 13, and 17); (3) humanized 15D5 (humanized monoclonal antibody; comprising SEQ ID NO:s 22 and 26); (4) humanized 1D9 (humanized monoclonal antibody; comprising SEQ ID NO:s 30 and 34); (5) murine 1D9 (murine monoclonal antibody; HER3, as demonstrated by ED50, of within 10-fold, or within 5-fold of the potency demonstrated by (1) M5 15D5 2A1 1H10 (murine monoclonal antibody; comprising SEQ ID NOs: 1 and 5); (2) M5_ 22A5 1G6 1 CIO (murine
  • the antigen binding proteins described herein may not bind to a peptide fragment of the HER3 receptor.
  • the peptide fragment of the HER3 receptor may be any fragment consisting of up to 14 amino acids of the HER3 sequence.
  • the peptide fragment of HER3 may be linear.
  • the peptide fragment of HER3 may be any fragment of the HER3 receptor sequence, including the full length sequence, wherein the sequence is linear.
  • Binding or lack of binding between the antigen binding protein and the HER3 peptide fragment or artificial peptide sequence may be determined by ELISA or by SDS PAGE using reducing conditions.
  • binding or lack of binding of the antigen binding protein to the linear full length HER3 sequence may be determined by reducing (i.e., denaturing) SDS PAGE.
  • the epitope of the HER3 receptor to which the antigen binding proteins described herein bind may be a conformational or discontinuous epitope.
  • the antigen binding proteins described herein may not bind to a linear epitope on the HER3 receptor.
  • the antigen binding protein may not bind to a reduced or denatured sample of the HER3 receptor.
  • the conformational or discontinuous epitope may be identical to, similar to, or overlap with the HER3 receptor binding site.
  • the epitope may be accessible when the HER3 receptor is in its mature form and as part of a dimer with another receptor molecule.
  • the epitope may also be accessible when the HER3 receptor is in its mature form and as part of a tetramer with other HER3 receptor binding molecules as described.
  • the epitope may be distributed across two HER3 receptor polypeptides.
  • This type of discontinuous epitope may comprise sequences from each HER3 receptor molecule.
  • the sequences may, in the context of the dimer's tertiary and quaternary structure, be near enough to each other to form an epitope and be bound by an antigen binding protein.
  • Conformational and/or discontinuous epitopes may be identified by known methods, for example CLIPSTM (Pepscan Systems).
  • the antigen binding protein may have a half life of at least 6 hours, at least 1 day, at least 2 days, at least 3 days, at least 4 days, at least 5 days, at least 7 days, or at least 9 days in vivo in humans, or in a murine animal model.
  • Mutational changes to the Fc effector portion of the antibody can be used to change the affinity of the interaction between the FcRn and antibody to modulate antibody turnover.
  • the half life of the antibody can be extended in vivo. This would be beneficial to patient populations as maximal dose amounts and maximal dosing frequencies could be achieved as a result of maintaining in vivo IC50 for longer periods of time.
  • the HER3 receptor polypeptide to which the antigen binding protein binds may be a recombinant polypeptide.
  • the HER3 receptor may be in solution, or may be attached to a solid surface.
  • the HER3 receptor may be attached to beads, such as magnetic beads.
  • the HER3 receptor may be biotinylated.
  • the biotin molecule conjugated to the HER3 receptor may be used to immobilize HER3 on a solid surface by coupling biotinstreptavidin on the solid surface.
  • the antigen binding protein may be derived from rat, mouse, primate (e.g., cynomolgus, Old World monkey or Great Ape), or human.
  • the antigen binding protein may be a humanized or chimeric antibody.
  • the antigen binding protein may comprise a constant region, which may be of any isotype or subclass.
  • the constant region may be of the IgG isotype, for example, IgGl, IgG2, IgG3, IgG4 or variants thereof.
  • the antigen binding protein constant region may be IgGl .
  • the antigen binding protein may comprise one or more modifications selected from a mutated constant domain such that the antibody has enhanced effector functions/ ADCC and/or complement activation. Examples of suitable modifications are described in Shields, et al, J. Biol. Chem. (2001) 276:6591-6604, Lazar, et al, PNAS (2006) 103:4005-4010 and US6737056, WO2004063351 and WO2004029207.
  • the antigen binding protein may comprise a constant domain with an altered glycosylation profile such that the antigen binding protein has enhanced effector functions/ ADCC and/or complement activation. Examples of suitable methodologies to produce an antigen binding protein with an altered glycosylation profile are described in
  • the present disclosure also provides a nucleic acid molecule that encodes an antigen binding protein as described herein.
  • the nucleic acid molecule may comprise sequences encoding both the heavy chain variable or full length sequence; and the light chain variable or full length sequence.
  • the nucleic acid molecule that encodes an antigen binding protein described herein may comprise sequences encoding the heavy chain variable or full length sequence; or light chain variable or full length sequence.
  • the present disclosure also provides an expression vector comprising a nucleic acid molecule as described herein. Also provided is a recombinant host cell comprising an expression vector as described herein.
  • the antigen binding protein described herein may be produced in a suitable host cell.
  • a method for the production of the antigen binding protein as described herein may comprise the step of culturing a host cell as described herein and recovering the antigen binding protein.
  • a recombinant transformed, transfected, or transduced host cell may comprise at least one expression cassette, whereby said expression cassette comprises a polynucleotide encoding a heavy chain of the antigen binding protein described herein and further comprises a polynucleotide encoding a light chain of the antigen binding protein described herein.
  • a recombinant transformed, transfected or transduced host cell may comprise at least one expression cassette, whereby a first expression cassette comprises a polynucleotide encoding a heavy chain of the antigen binding protein described herein and further comprise a second cassette comprising a polynucleotide encoding a light chain of the antigen binding protein described herein.
  • a stably transformed host cell may comprise a vector comprising one or more expression cassettes encoding a heavy chain and/or a light chain of the antigen binding protein described herein.
  • such host cells may comprise a first vector encoding the light chain and a second vector encoding the heavy chain.
  • the host cell may be eukaryotic, for example, mammalian. Examples of such cell lines include CHO or NSO.
  • the host cell may be cultured in a culture media, for example, serum-free culture media.
  • the antigen binding protein may be secreted by the host cell into the culture media.
  • the antigen binding protein can be purified to at least 95% or greater (e.g., 98% or greater) with respect to said culture media containing the antigen binding protein. Methods for culturing cells in different media compositions and ambient conditions are well known to those skilled in the art.
  • a pharmaceutical composition comprising the antigen binding protein and a pharmaceutically acceptable carrier may be provided.
  • a kit-of-parts comprising the pharmaceutical composition together with instructions for use may be provided.
  • the kit may comprise the reagents in predetermined amounts with instructions for use.
  • the light chains of antibodies from most vertebrate species can be assigned to one of two types called Kappa and Lambda based upon the amino acid sequence of the constant region.
  • human antibodies can be assigned to five different classes, IgA, IgD, IgE, IgG and IgM.
  • IgG and IgA can be further subdivided into subclasses, IgGl, IgG2, IgG3 and IgG4; and IgAl and IgA2.
  • Species variants exist with mouse and rat having at least IgG2a, IgG2b.
  • variable region The more conserved portions of the variable region are called Framework regions (FR).
  • the variable domains of intact heavy and light chains each comprise four FR connected by three CDRs.
  • the CDRs in each chain are held together in close proximity by the FR regions and with the CDRs from the other chain contribute to the formation of the antigen binding site of antibodies.
  • the constant regions are not directly involved in the binding of the antibody to the antigen, but exhibit various effector functions such as participation in antibody dependent cell-mediated cytotoxicity (ADCC), phagocytosis via binding to Fey receptor, half- life/clearance rate via neonatal Fc receptor (FcRn) and complement dependent cytotoxicity via the Clq component of the complement cascade.
  • ADCC antibody dependent cell-mediated cytotoxicity
  • FcRn neonatal Fc receptor
  • complement dependent cytotoxicity via the Clq component of the complement cascade.
  • the human IgG2 constant region has been reported to essentially lack the ability to activate complement by the classical pathway or to mediate antibody-dependent cellular cytotoxicity.
  • the IgG4 constant region has been reported to lack the ability to activate complement by the classical pathway and mediates antibody-dependent cellular cytotoxicity only weakly. Antibodies essentially lacking these effector functions may be termed 'non- lytic' antibodies.
  • Human antibodies may be produced by a number of methods known to those of skill in the art. Human antibodies can be made by the hybridoma method using human myeloma or mouse -human heteromyeloma cells lines. See Kozbor (1984) J. Immunol 133, 3001, and Brodeur, MONOCLONAL ANTIBODY PRODUCTION TECHNIQUES AND
  • immunoglobulin loci has been replaced with human immunoglobulin gene segments (see Tomizuka (2000) PNAS 97: 722-727; Fishwild (1996) Nature Biotechnol. 14: 845-851; Mendez (1997) Nature Genetics, 15: 146-156).
  • Phage display technology can be used to produce human antigen binding proteins (and fragments thereof), see McCafferty (1990) Nature 348: 552-553 and Griffiths, et al., EMBO 13: 3245-3260 (1994).
  • affinity maturation ⁇ Marks Bio/technol (1992) 10: 779-783) may be used to improve binding affinity wherein the affinity of the primary human antibody is improved by sequentially replacing the H and L chain variable regions with naturally occurring variants and selecting on the basis of improved binding affinities.
  • Variants of this technique such as "epitope imprinting" are now also available. See, for example, WO 93/06213; Waterhouse (1993) Nucl. Acids Res. 21: 2265-2266.
  • Chimeric antibodies are typically produced using recombinant DNA methods.
  • DNA encoding the antibodies ⁇ e.g., cDNA) are isolated and sequenced using conventional procedures ⁇ e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the H and L chains of the antibody.
  • Hybridoma cells serve as a typical source of such DNA.
  • the DNA is placed into expression vectors which are then transfected into host cells such as E. coli, COS cells, CHO cells or myeloma cells that do not otherwise produce immunoglobulin protein to obtain synthesis of the antibody.
  • the DNA may be modified by substituting the coding sequence for human L and H chains for the corresponding non-human ⁇ e.g., murine) H and L constant regions. See, for example, Morrison ⁇ 19U) PNAS 81 : 6851.
  • a large decrease in immunogenicity can be achieved by grafting only the CDRs of a non-human ⁇ e.g., murine) antibodies ("donor” antibodies) onto human framework ("acceptor framework") and constant regions to generate humanized antibodies (see Jones, et al. (1986) Nature 321 : 522-525; and Verhoeyen, et al. (1988) Science 239: 1534-1536).
  • donor antibodies non-human ⁇ e.g., murine antibodies
  • acceptor framework human framework
  • CDR grafting per se may not result in the complete retention of antigen-binding properties and it is frequently found that some framework residues (sometimes referred to as "back mutations") of the donor antibody need to be preserved in the humanized molecule, if significant antigen- binding affinity is to be recovered (see Queen, et al.
  • human variable regions showing the greatest sequence homology to the non-human donor antibody are chosen from a database in order to provide the human framework (FR).
  • the selection of human FRs can be made either from human consensus or individual human antibodies. Where necessary, key residues from the donor antibody can be substituted into the human acceptor framework to preserve CDR conformations. Computer modelling of the antibody may be used to help identify such structurally important residues. See WO 99/48523.
  • humanization may be achieved by a process of "veneering".
  • Veneering A statistical analysis of unique human and murine immunoglobulin heavy and light chain variable regions revealed that the precise patterns of exposed residues are different in human and murine antibodies, and most individual surface positions have a strong preference for a small number of different residues (see Padlan, et al. (1991) Mol. Immunol. 28: 489-498; and Pedersen, et al. (1994) J. Mol. Biol. 235: 959-973). Therefore, it is possible to reduce the immunogenicity of a non-human Fv by replacing exposed residues in its framework regions that differ from those usually found in human antibodies.
  • WO04/006955 and the procedure of HUMANEERINGTM (Kalobios) which makes use of bacterial expression systems and produces antibodies that are close to human germline in sequence (Alfenito-M Advancing Protein Therapeutics January 2007, San Diego, California). Bispecific antigen binding proteins
  • a bispecific antigen binding protein is an antigen binding protein having binding specificities for at least two different epitopes. Methods of making such antigen binding proteins are known in the art. Traditionally, the recombinant production of bispecific antigen binding proteins is based on the co-expression of two immunoglobulin H chain-L chain pairs, where the two H chains have different binding specificities. See Millstein, et al. (1983) Nature 305: 537-539; WO 93/08829; and Traunecker, et al. (1991) EMBO 10: 3655-3659. Because of the random assortment of H and L chains, a potential mixture of ten different antibody structures are produced of which only one has the desired binding specificity.
  • variable domains with the desired binding specificities to heavy chain constant region comprising at least part of the hinge region, CH2 and CH3 regions.
  • the CHI region containing the site necessary for light chain binding may be present in at least one of the fusions.
  • DNA encoding these fusions, and if desired the L chain are inserted into separate expression vectors and are then co-transfected into a suitable host organism. It is possible, though, to insert the coding sequences for two or all three chains into one expression vector.
  • the bispecific antibody is composed of a H chain with a first binding specificity in one arm and a H-L chain pair, providing a second binding specificity in the other arm. See WO 94/04690; see also Suresh, et al. (1986) Methods in Enzymology 121 : 210.
  • Fragments lacking the constant region lack the ability to activate complement by the classical pathway or to mediate antibody-dependent cellular cytotoxicity.
  • fragments are produced by the proteolytic digestion of intact antibodies by, e.g., papain digestion (see, for example, WO 94/29348), but may be produced directly from
  • antigen binding fragments may be produced using a variety of engineering techniques as described below.
  • Fv fragments appear to have lower interaction energy of their two chains than Fab fragments. To stabilize the association of the VH and VL domains, they have been linked with peptides (Bird, et al. (1988) Science 242: 423-426; Huston, et al. (1988) PNAS 85(16): 5879- 5883), disulphide bridges (Glockshuber, et al. (1990) Biochemistry 29: 1362-1367) and "knob in hole” mutations (Zhu, et al. (1997) Protein Sci., 6: 781-788). ScFv fragments can be produced by methods well known to those skilled in the art, see Whitlow, et al. (1991) Methods Companion Methods Enzymol, 2: 97-105 and Huston, et al. (1993) Int. Rev.
  • ScFv may be produced in bacterial cells such as E. coli or in eukaryotic cells.
  • One disadvantage of ScFv is the monovalency of the product, which precludes an increased avidity due to polyvalent binding, and their short half-life.
  • Attempts to overcome these problems include bivalent (ScFv') 2 produced from ScFv containing an additional C-terminal cysteine by chemical coupling (Adams, et al. (1993) Can. Res 53: 4026-4034; and McCartney, et al. (1995) Protein Eng. 8: 301-314) or by spontaneous site- specific dimerisation of ScFv containing an unpaired C-terminal cysteine residue (see Kipriyanov, et al.
  • ScFv can be forced to form multimers by shortening the peptide linker to 3 to 12 residues to form "diabodies”, see Holliger, et al. (1993) PNAS 90: 6444-6448. Reducing the linker still further can result in ScFv trimers ("triabodies”, see Kortt, et al. (1997) Protein Eng 10: 423-433) and tetramers ("tetrabodies", see Le Gall, et al. (1999) FEBSLett, 453: 164-168).
  • ScFv-Sc-Fv tandems (ScFV) 2 ) may also be produced by linking two ScFv units by a third peptide linker, see Kurucz, et al. (1995) J. Immol. 154: 4576-4582.
  • Bispecific diabodies can be produced through the noncovalent association of two single chain fusion products consisting of V H domain from one antibody connected by a short linker to the VL domain of another antibody, see Kipriyanov, et al. (1998) Int. J. Can 77: 763-772.
  • the stability of such bispecific diabodies can be enhanced by the introduction of disulphide bridges or "knob in hole” mutations as described supra, or by the formation of single chain diabodies (ScDb), wherein two hybrid ScFv fragments are connected through a peptide linker see Kontermann, et al. (1999) J. Immunol. Methods 226: 179-188.
  • Tetravalent bispecific molecules are available by, e.g., fusing a ScFv fragment to the CH3 domain of an IgG molecule or to a Fab fragment through the hinge region. See Coloma, et al. (1997) Nature Biotechnol. 15: 159-163. Alternatively, tetravalent bispecific molecules have been created by the fusion of bispecific single chain diabodies (see Alt, et al. (1999) FEBSLett 454: 90-94.
  • Smaller tetravalent bispecific molecules can also be formed by the dimerization of either ScFv-ScFv tandems with a linker containing a helix-loop-helix motif (DiBi miniantibodies, see Muller, et al. (1998) FEBSLett 432: 45-49) or a single chain molecule comprising four antibody variable domains (VH and VL) in an orientation preventing intramolecular pairing (tandem diabody, see Kipriyanov, et al. (1999) J. Mol. Biol. 293: 41- 56).
  • Bispecific F(ab') 2 fragments can be created by chemical coupling of Fab' fragments or by heterodimerization through leucine zippers (see Shalaby, et al. (1992) J Exp. Med. 175: 217- 225; and Kostelny, et al. (1992), J. Immunol. 148: 1547-1553). Also available are isolated VH and V L domains (Domantis pic). See US 6,248,516; US 6,291, 158; and US 6, 172, 197.
  • Heteroconjugate antibodies are composed of two covalently joined antibodies formed using any convenient cross-linking methods. See, for example, US 4,676,980.
  • the antigen binding proteins of the present disclosure may comprise other modifications to enhance or change their effector functions.
  • the interaction between the Fc region of an antibody and various Fc receptors (FcyR) is believed to mediate the effector functions of the antibody which include antibody-dependent cellular cytotoxicity (ADCC), fixation of complement, phagocytosis and half-life/clearance of the antibody.
  • FcyR Fc receptors
  • ADCC antibody-dependent cellular cytotoxicity
  • fixation of complement phagocytosis
  • half-life/clearance of the antibody include antibody-dependent cellular cytotoxicity (ADCC), fixation of complement, phagocytosis and half-life/clearance of the antibody.
  • Various modifications to the Fc region of antibodies may be carried out depending on the desired property. For example, specific mutations in the Fc region to render an otherwise lytic antibody, non-lytic is detailed in EP 0629 240 and EP 0307 434, or one may incorporate a salvage receptor binding epitope into the antibody to increase
  • Human Fey receptors include FcyR (I), FcyRIIa, FcyRIIb, FcyRIIIa and neonatal FcRn. Shields, et al. (2001) J. Biol. Chem 276: 6591-6604 demonstrated that a common set of IgGl residues is involved in binding all FcyRs, while FcyRII and FcyRIII utilize distinct sites outside of this common set.
  • One group of IgGl residues reduced binding to all FcyRs when altered to alanine: Pro-238, Asp-265, Asp-270, Asn-297 and Pro-239. All are in the IgG CH2 domain and clustered near the hinge joining CHI and CH2.
  • FcyRI utilizes only the common set of IgGl residues for binding
  • FcyRII and FcyRIII interact with distinct residues in addition to the common set.
  • Alteration of some residues reduced binding only to FcyRII (e.g., Arg-292) or FcyRIII (e.g., Glu-293).
  • Some variants showed improved binding to FcyRII or FcyRIII but did not affect binding to the other receptor (e.g., Ser-267Ala improved binding to FcyRII but binding to FcyRIII was unaffected).
  • Human IgGl residues determined to interact directly with human FcRn includes Ile253, Ser254, Lys288, Thr307, Gln311, Asn434 and His435. Substitutions at any of the positions described in this section may enable increased serum half-life and/or altered effector properties of the antibodies.
  • glycosylation variants of the antibodies include glycosylation variants of the antibodies. Glycosylation of antibodies at conserved positions in their constant regions is known to have a profound effect on antibody function, particularly effector functioning such as those described above. See, for example, Boyd, et al. (1996) Mol. Immunol. 32: 1311-1318. Glycosylation variants of the antibodies or antigen binding fragments thereof wherein one or more carbohydrate moiety is added, substituted, deleted or modified are contemplated. Introduction of an asparagine-X- serine or asparagine-X-threonine motif creates a potential site for enzymatic attachment of carbohydrate moieties and may, therefore, be used to manipulate the glycosylation of an antibody. In Raju, et al.
  • Antibodies in common with most glycoproteins, are typically produced as a mixture of glycoforms. This mixture is particularly apparent when antibodies are produced in eukaryotic, particularly mammalian cells.
  • a variety of methods have been developed to manufacture defined glycoforms. See Zhang, et al. (2004) Science 303: 371 : Sears, et al. (2001) Science 291 : 2344; Wacker, et al. (2002) Science 298: 1790; Davis, et al. (2002) Chem. Rev. 102: 579; Hang, et al. (2001) Acc. Chem. Res 34: 727.
  • the antibodies for example, of the IgG isotype, e.g. IgGl
  • the antibodies may comprise a defined number (e.g., 7 or less, for example 5 or less, such as two or a single) of glycoform(s).
  • the antibodies may be coupled to a non-proteinaeous polymer such as polyethylene glycol (PEG), polypropylene glycol or polyoxyalkylene.
  • PEG polyethylene glycol
  • PEG polypropylene glycol
  • polyoxyalkylene polyethylene glycol
  • Conjugation of proteins to PEG is an established technique for increasing the half-life of proteins, as well as reducing antigenicity and immunogenicity of proteins.
  • the use of PEGylation with different molecular weights and styles (linear or branched) has been investigated with intact antibodies, as well as with Fab' fragments. See Koumenis et al, (2000) Int. J. Pharmaceut. 198: 83-95.
  • Antigen binding proteins may be produced in transgenic organisms, such as goats (see Pollock, et al. (1999) J. Immunol. Methods 231: 147-157), chickens (see Morrow (2000) Genet. Eng. News 20: 1-55, mice (see Pollock, et al.) or plants (see Doran (2000) Curr.
  • Antigen binding proteins may also be produced by chemical synthesis. However, antigen binding proteins are typically produced using recombinant cell culturing technology well known to those skilled in the art. A polynucleotide encoding the antigen binding protein is isolated and inserted into a replicable vector such as a plasmid for further cloning
  • telomere sequence is readily isolated and sequenced using conventional procedures (e.g., oligonucleotide probes).
  • Vectors that may be used include plasmid, virus, phage, transposons, minichromosomes of which plasmids are typically used. Generally, such vectors further include a signal sequence, origin of replication, one or more marker genes, an enhancer element, a promoter and transcription termination sequences operably linked to the antigen binding protein polynucleotide so as to facilitate expression.
  • Polynucleotide encoding the light and heavy chains may be inserted into separate vectors and introduced, for example, by transformation, transfection, electroporation or transduction, into the same host cell concurrently or sequentially or, if desired, both the heavy chain and light chain can be inserted into the same vector prior to said introduction.
  • Codon optimisation may be used with the intent that the total level of protein produced by the host cell is greater when transfected with the codon-optimised gene in comparison with the level when transfected with the wild-type sequence.
  • Antigen binding proteins may be produced as a fusion protein with a heterologous signal sequence having a specific cleavage site at the N-terminus of the mature protein.
  • the signal sequence should be recognized and processed by the host cell.
  • the signal sequence may be, for example, an alkaline phosphatase, penicillinase, or heat stable enterotoxin II leaders.
  • the signal sequences may be, for example, a yeast invertase leader, a factor leader or acid phosphatase leaders. See, e.g., WO90/13646.
  • viral secretory leaders such as herpes simplex gD signal, and a native immunoglobulin signal sequence may be suitable.
  • the signal sequence is ligated in reading frame to DNA encoding the antigen binding protein.
  • Origin of replications are well known in the art with pBR322 suitable for most gram- negative bacteria, 2 ⁇ plasmid for most yeast and various viral origins, such as SV40, polyoma, adenovirus, VSV or BPV for most mammalian cells.
  • origin of replication component is not needed for mammalian expression vectors, but the SV40 may be used, because it contains the early promoter.
  • Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate or tetracycline or (b) complement auxiotrophic deficiencies or supply nutrients not available in the complex media or (c) combinations of both.
  • the selection scheme may involve arresting growth of the host cell. Cells which have been successfully transformed with the genes encoding the antigen binding protein, survive due to, e.g., drug resistance conferred by the co-delivered selection marker.
  • One example is the DHFR selection marker, wherein transformants are cultured in the presence of methotrexate.
  • Cells can be cultured in the presence of increasing amounts of methotrexate to amplify the copy number of the exogenous gene of interest.
  • CHO cells are a particularly useful cell line for the DHFR selection.
  • a further example is the glutamate synthetase expression system (Lonza Biologies).
  • An example of a selection gene for use in yeast is the trpl gene. See Stinchcomb, et al. (1979) Nature 282: 38.
  • Suitable promoters for expressing antigen binding proteins are operably linked to DNA/polynucleotide encoding the antigen binding protein.
  • Promoters for prokaryotic hosts include phoA promoter, beta-lactamase and lactose promoter systems, alkaline phosphatase, tryptophan and hybrid promoters such as Tac.
  • Promoters suitable for expression in yeast cells include 3 -phosphogly cerate kinase or other glycolytic enzymes, e.g., enolase, glyceralderhyde 3 phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose 6 phosphate isomerase, 3 -phosphogly cerate mutase and glucokinase.
  • Inducible yeast promoters include alcohol dehydrogenase 2, isocytochrome C, acid phosphatase,
  • Promoters for expression in mammalian cell systems include viral promoters such as polyoma, fowlpox and adenoviruses (e.g., adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus (in particular, the immediate early gene promoter), retrovirus, hepatitis B virus, actin, rous sarcoma virus (RSV) promoter, and the early or late Simian virus 40.
  • viral promoters such as polyoma, fowlpox and adenoviruses (e.g., adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus (in particular, the immediate early gene promoter), retrovirus, hepatitis B virus, actin, rous sarcoma virus (RSV) promoter, and the early or late Simian virus 40.
  • adenoviruses
  • a first plasmid may comprise a RSV and/or SV40 and/or CMV promoter, DNA encoding light chain variable region (VL), KC region together with neomycin and ampicillin resistance selection markers and a second plasmid comprising a RSV or SV40 promoter, DNA encoding the heavy chain variable region (V H ), DNA encoding the y ⁇ constant region, DHFR and ampicillin resistance markers.
  • an enhancer element operably linked to the promoter element in a vector may be used.
  • Mammalian enhancer sequences include enhancer elements from globin, elastase, albumin, fetoprotein, and insulin.
  • an enhancer element from a eukaroytic cell virus such as SV40 enhancer (at bp 100-270), cytomegalovirus early promoter enhancer, polyma enhancer, baculoviral enhancer or murine IgG2a locus (see WO04/009823).
  • the enhancer may be located on the vector at a site upstream to the promoter. Alternatively, the enhancer may be located elsewhere, for example, within the untranslated region or downstream of the polyadenylation signal. The choice and positioning of enhancer may be based upon suitable compatibility with the host cell used for expression.
  • polyadenylation signals are operably linked to
  • DNA/polynucleotide encoding the antigen binding protein are typically placed 3' of the open reading frame.
  • signals typically placed 3' of the open reading frame.
  • non-limiting examples include signals derived from growth hormones, elongation factor-1 alpha and viral (e.g., SV40) genes or retroviral long terminal repeats.
  • viral e.g., SV40
  • polydenylation/termination signals include those derived from the phosphoglycerate kinase (PGK) and the alcohol dehydrogenase 1 (ADH) genes.
  • PGK phosphoglycerate kinase
  • ADH alcohol dehydrogenase 1
  • polyadenylation signals are typically not required, and it is, instead, usual to employ shorter and more defined terminator sequences.
  • the choice of polyadenylation/ termination sequences may be based upon suitable compatibility with the host cell used for expression. Other methods/elements for enhanced yields
  • Suitable host cells for cloning or expressing vectors encoding antigen binding proteins are prokaroytic, yeast or higher eukaryotic cells.
  • Suitable prokaryotic cells include eubacteria, e.g., enterobacteriaceae such as Escherichia, e.g., E. coli (for example, ATCC 31,446; 31,537; 27,325), Enterobacter, Erwinia, Klebsiella Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia e.g. Serratia marcescans and Shigella as well as Bacilli such as B. subtilis and B. licheniformis (see DD 266 710), Pseudomonas such as P.
  • enterobacteriaceae such as Escherichia, e.g., E. coli (for example, ATCC 31,446; 31,537; 27,325)
  • Enterobacter Erwinia
  • yeast host cells Saccharomyces cerevisiae
  • Tolypocladium and Aspergillus hosts such as A. nidulans and A. niger, are also contemplated.
  • Higher eukaryotic host cells include mammalian cells, such as COS-1 (ATCC No.CRL 1650), COS-7 (ATCC CRL 1651), human embryonic kidney line 293, baby hamster kidney cells (BHK) (ATCC CRL.1632), BHK570 (ATCC NO: CRL 10314), 293 (ATCC NO.CRL 1573), Chinese hamster ovary cells CHO (e.g., CHO-K1, ATCC NO: CCL 61, DHFR-CHO cell line, such as DG44 (see Urlaub, et al. (1986) Somatic CellMol. Genet.
  • mammalian cells such as COS-1 (ATCC No.CRL 1650), COS-7 (ATCC CRL 1651), human embryonic kidney line 293, baby hamster kidney cells (BHK) (ATCC CRL.1632), BHK570 (ATCC NO: CRL 10314), 293 (ATCC NO.CRL 1573), Chinese hamster ovary cells CHO (
  • CHO cell lines adapted for suspension culture mouse Sertoli cells, monkey kidney cells, African green monkey kidney cells (ATCC CRL- 1587), HELA cells, canine kidney cells (ATCC CCL 34), human lung cells (ATCC CCL 75), Hep G2, and myeloma or lymphoma cells, e.g., NS0 (see US 5,807,715), Sp2/0, Y0.
  • Such host cells may also be further engineered or adapted to modify quality, function and/or yield of the antigen binding protein.
  • Non-limiting examples include expression of specific modifying (e.g., glycosylation) enzymes and protein folding chaperones.
  • Host cells transformed with vectors encoding antigen binding proteins may be cultured by any method known to those skilled in the art.
  • Host cells may be cultured in spinner flasks, roller bottles or hollow fibre systems but for large scale production that stirred tank reactors are used particularly for suspension cultures.
  • the stirred tankers may be adapted for aeration using, e.g., spargers, baffles or low shear impellers. For bubble columns and airlift reactors direct aeration with air or oxygen bubbles maybe used.
  • a cell protective agent such as pluronic F-68 to help prevent cell damage as a result of the aeration process.
  • microcarriers may be used as growth substrates for anchorage dependent cell lines or the cells maybe adapted to suspension culture (which is typical).
  • the culturing of host cells, particularly invertebrate host cells may utilise a variety of operational modes, such as fed-batch, repeated batch processing (see Drapeau, et al. (1994) Cytotechnology 15: 103-109), extended batch process or perfusion culture.
  • recombinantly transformed mammalian host cells may be cultured in serum -containing media such as fetal calf serum (FCS), for example, such host cells are cultured in synthetic serum-free media such as disclosed in Keen, et al. (1995)
  • Cytotechnology 17 153-163, or commercially available media such as ProCHO-CDM or UltraCHOTM (Cambrex NJ, USA), supplemented, where necessary, with an energy source such as glucose and synthetic growth factors, such as recombinant insulin.
  • the serum-free culturing of host cells may require that those cells are adapted to grow in serum free conditions.
  • One adaptation approach is to culture such host cells in serum containing media and repeatedly exchange 80% of the culture medium for the serum-free media so that the host cells learn to adapt in serum free conditions (see, e.g., Scharfenberg, et al. (1995) in
  • Antigen binding proteins secreted into the media may be recovered and purified using a variety of techniques to provide a degree of purification suitable for the intended use.
  • the use of antigen binding proteins for the treatment of human patients typically mandates at least 95% purity, more typically 98% or 99% or greater purity (compared to the crude culture medium).
  • Cell debris from the culture media is typically removed using centrifugation followed by a clarification step of the supernatant using, e.g., microfiltration, ultrafiltration and/or depth filtration.
  • HA hydroxyapatite
  • affinity chromatography optionally involving an affinity tagging system such as polyhistidine
  • HIC hydrophobic interaction chromatography
  • the antibodies following various clarification steps, can be captured using Protein A or G affinity chromatography. Further chromatography steps can follow, such as ion exchange and/or HA chromatography, anion or cation exchange, size exclusion chromatography, and ammonium sulphate precipitation.
  • virus removal steps may also be employed (e.g.,
  • a purified (for example a monoclonal) preparation comprising at least 75mg/ml or greater, or lOOmg/ml or greater, of the antigen binding protein is provided.
  • Such preparations are substantially free of aggregated forms of antigen binding proteins.
  • Bacterial systems may be used for the expression of antigen binding fragments. Such fragments can be localized intracellularly within the periplasm, or secreted extracellularly. Insoluble proteins can be extracted and refolded to form active proteins according to methods known to those skilled in the art, see Sanchez, et al. (1999) J. Biotechnol. 72: 13-20; and Cupit, et al. (1999) Lett Appl Microbiol 29: 273-277.
  • Deamidation is a chemical reaction in which an amide functional group is removed. In biochemistry, the reaction is important in the degradation of proteins because it damages the amide-containing side chains of the amino acids asparagine and glutamine. Deamidation reactions are believed to be one of the factors that can limit the useful lifetime of a protein, they are also one of the most common post-translational modifications occurring during the manufacture of therapeutic proteins. For example, a reduction or loss of in vitro or in vivo biological activity has been reported for recombinant human DNAse and recombinant soluble CD4, whereas other recombinant proteins appear to be unaffected. The ability of the antigen binding proteins described herein to bind to HER3 seems to be unaffected under stress conditions that induce deamidation. Thus, the biological activity of the antigen binding proteins described herein, and their useful lifetime is unlikely to be affected by deamidation. Pharmaceutical Compositions
  • Purified preparations of an antigen binding protein as described herein may be incorporated into pharmaceutical compositions for use in the treatment of the human diseases, disorders and conditions described herein.
  • the pharmaceutical composition can be used in the treatment of diseases where the HER3 receptor contributes to the disease, or where neutralizing the activity of the HER3 receptor will be beneficial.
  • the pharmaceutical composition comprising a therapeutically effective amount of the antigen binding protein described herein can be used in the treatment of diseases responsive to neutralization of the HER3 receptor.
  • the pharmaceutical preparation may comprise an antigen binding protein in combination with a pharmaceutically acceptable carrier.
  • the antigen binding protein may be administered alone, or as part of a pharmaceutical composition.
  • compositions comprise a pharmaceutically acceptable carrier as known and called for by acceptable pharmaceutical practice.
  • a pharmaceutically acceptable carrier as known and called for by acceptable pharmaceutical practice.
  • Such carriers include sterilised carriers, such as saline, Ringers solution, or dextrose solution, optionally buffered with suitable buffers to a pH within a range of 5 to 8.
  • compositions may be administered by injection or continuous infusion (e.g., intravenous, intraperitoneal, intradermal, subcutaneous, intramuscular, or intraportal). Such compositions are suitably free of visible particulate matter.
  • Pharmaceutical compositions may comprise between lmg to lOg of antigen binding protein, for example, between 5mg and lg of antigen binding protein.
  • the composition may comprise between 5mg and 500mg of antigen binding protein, for example, between 5mg and 50mg.
  • compositions may comprise between lmg to lOg of antigen binding protein in unit dosage form, optionally together with instructions for use.
  • Pharmaceutical compositions may be lyophilized (freeze dried) for reconstitution prior to administration according to methods well known or apparent to those skilled in the art.
  • a chelator of copper such as citrate (e.g., sodium citrate) or EDTA or histidine, may be added to the pharmaceutical composition to reduce the degree of copper-mediated degradation of antibodies of this isotype. See EP0612251.
  • compositions may also comprise a solubilizer, such as arginine base, a detergent/anti-aggregation agent such as polysorbate 80, and an inert gas such as nitrogen to replace vial headspace oxygen.
  • a solubilizer such as arginine base
  • a detergent/anti-aggregation agent such as polysorbate 80
  • an inert gas such as nitrogen to replace vial headspace oxygen.
  • Effective doses and treatment regimes for administering the antigen binding protein are generally determined empirically and may be dependent on factors, such as the age, weight, and health status of the patient and disease or disorder to be treated. Such factors are within the purview of the attending physician. Guidance in selecting appropriate doses may be found in, e.g., Smith, et al. (1977) ANTIBODIES IN HUMAN DIAGNOSIS AND THERAPY, Raven Press, New York.
  • the dosage of antigen binding protein administered to a subject is generally between 1 ⁇ g/kg to 150 mg/kg, between 0.1 mg/kg and 100 mg/kg, between 0.5 mg/kg and 50 mg/kg, between 1 and 25 mg/kg or between 1 and 10 mg/kg of the subject's body weight.
  • the dose may be 10 mg/kg, 30 mg/kg, or 60 mg/kg.
  • the dose may also be from 10 mg/kg to 110 mg/mg 15 mg/kg to 25 mg/kg or 15 mg/kg to 100 mg/kg.
  • the antigen binding protein may be administered, for example, parenterally, subcutaneously, intravenously, or intramuscularly.
  • the dose may be any discrete subrange with these dosage ranges.
  • the effective daily dose of a therapeutic composition may be administered as two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms.
  • the administration of a dose may be by slow continuous infusion over a period of from 2 to 24 hours, such as of from 2 to 12 hours, or from 2 to 6 hours.
  • the administration of a dose may be repeated one or more times as necessary, for example, three times daily, once every day, once every 2 days, once a week, once a fortnight, once a month, once every 3 months, once every 6 months, or once every 12 months.
  • the antigen binding proteins may be administered by maintenance therapy, for example once a week for a period of 6 months or more.
  • the antigen binding proteins may be administered by intermittent therapy, for example, for a period of 3 to 6 months and then no dose for 3 to 6 months, followed by administration of antigen binding proteins again for 3 to 6 months, and so on, in a cycle.
  • the dose may be administered subcutaneously, once every 14 or 28 days, in the form of multiple sub-doses on each day of administration.
  • the dosage can be determined or adjusted by measuring the amount of circulating anti-HER3 antigen binding proteins after administration in a biological sample by using anti- idiotypic antibodies that target the anti-HER3 antigen binding proteins.
  • the antigen binding protein can be administered in an amount and for a duration effective to down-regulate HER3 activity in the subject.
  • the antigen binding protein may be administered to the subject in such a way as to target therapy to a particular site.
  • the antigen binding protein may be injected locally into muscle, for example skeletal muscle.
  • the antigen binding protein may be used in combination with one or more other therapeutically active agents, such as antibodies or small molecule inhibitors of other receptor tyrosine kinases such as, but not limited to, other HER family members, c-Met, IGF-1R, receptor ligands such as Vascular Endothelial Growth Factor (VEGF), cytotoxic agents such as doxorubicin, cis-platin or carboplatin, cytokines or antineoplastic agents.
  • VEGF Vascular Endothelial Growth Factor
  • Examples of the latter include, but are not limited to, antibodies or immunomodulatory proteins, small molecule inhibitors or chemotherapeutic agents from the group of mitotic inhibitors, kinase inhibitors, alkylating agents, anti metabolites, intercalating antibiotics,growth factor inhibitors, cell cycle inhibitors, enzymes, topoisomerase inhibitors, histone deacetylase inhibitors, anti -survival agents, biological response modifiers, anti -hormones, eg anti androgens and anti angiogenesis agents.
  • the anti neoplastic agent is radiation
  • treatment can be achieved either with an internal (brachytherapy BT) or external (external beam radiation therapy: EBRT) source.
  • the antibodies of the disclosure may be conjugated, by any type of mechanism including chemical bonds, hydrophobic interactions, electrostatic interactions and the like, to chemotherapeutic agents or radioisotopes as described herein or in WO2007/077028 the entire disclosure of which is incorporated herein by reference.
  • the antibodies of the disclosure may be used combination with other therapeutically active agents in the treatment of the diseases described herein. Such combinations can be used in the treatment of diseases where the HER3 receptor contributes to the disease, or where neutralizing the HER3 receptor will be beneficial.
  • the individual components may be administered either together or separately, sequentially or simultaneously, in separate or combined pharmaceutical formulations, by any convenient route. If administered separately or sequentially, the antigen binding protein and the therapeutically active agent(s) can be administered in any order.
  • combinations referred to above may be presented for use in the form of a single pharmaceutical formulation comprising a combination as defined above, optionally together with a pharmaceutically acceptable carrier or excipient.
  • pharmaceutically acceptable carriers or excipients are well known in the art and include those disclosed in
  • any other references identified herein is incorporated by reference into the present disclosure.
  • the components When combined in the same formulation, it will be appreciated that the components must be stable and compatible with each other and the other components of the formulation and may be formulated for administration. When formulated separately, they may be provided in any convenient formulation, for example, in such a manner as known for antigen binding proteins in the art.
  • each component may differ from that when the antigen binding protein is used alone. Appropriate doses will be readily appreciated by those skilled in the art.
  • therapeutically active agent(s) in combination has a greater effect on the disease, disorder, or condition described herein than the sum of the effect of each alone.
  • the term "effective amount” means that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought, for instance, by a researcher or clinician.
  • the term "therapeutically effective amount” means any amount which, as compared to a corresponding subject who has not received such amount, results in, but is not limited to, healing, prevention, or amelioration of a disease, disorder, or side effect, or a decrease in the rate of advancement of a disease or disorder.
  • the term also includes within its scope amounts effective to enhance normal physiological function as well as amounts effective to cause a physiological function in a patient which enhances or aids in the therapeutic effect of a second pharmaceutical agent.
  • cancer As used herein, the terms "cancer,” “neoplasm,” and “tumor,” are used
  • a cancer cell refers to cells that have undergone a malignant transformation that makes them pathological to the host organism.
  • Primary cancer cells that is, cells obtained from near the site of malignant transformation
  • the definition of a cancer cell includes not only a primary cancer cell, but any cell derived from a cancer cell ancestor. This includes metastasized cancer cells, and in vitro cultures and cell lines derived from cancer cells.
  • a "clinically detectable" tumor is one that is detectable on the basis of tumor mass; e.g., by procedures such as CAT scan, MR imaging, X-ray, ultrasound or palpation, and/or which is detectable because of the expression of one or more cancer-specific antigens in a sample obtainable from a patient.
  • Tumors may be hematopoietic tumor, for example, tumors of blood cells or the like, meaning liquid tumors.
  • Specific examples of clinical conditions based on such a tumor include leukemia such as chronic myelocytic leukemia or acute myelocytic leukemia; myeloma such as multiple myeloma; lymphoma and the like.
  • treating means: (1) to ameliorate the condition of one or more of the biological manifestations of the condition, (2) to interfere with (a) one or more points in the biological cascade that leads to or is responsible for the condition or (b) one or more of the biological manifestations of the condition, (3) to alleviate one or more of the symptoms, effects or side effects associated with the condition or treatment thereof, (4) to slow the progression of the condition or one or more of the biological manifestations of the condition or (5) to prevent the onset of one or more of the biological manifistations of the condition.
  • Prophylactic therapy is also contemplated thereby.
  • prevention is not an absolute term. In medicine, “prevention” is understood to refer to the prophylactic administration of a drug to
  • Prophylactic therapy is appropriate, for example, when a subject is considered at high risk for developing cancer, such as when a subject has a strong family history of cancer or when a subject has been exposed to a carcinogen.
  • an antigen binding protein can be "co-administered" which means either the simultaneous administration or any manner of separate sequential administration of an antigen binding protein, as described herein, and a further active ingredient or ingredients, known to be useful in the treatment of cancer, including chemotherapy and radiation treatment.
  • further active ingredient or ingredients includes any compound or therapeutic agent known to or that demonstrates advantageous properties when administered to a patient in need of treatment for cancer or arthritis.
  • the compounds are administered in a close time proximity to each other.
  • the compounds are administered in the same dosage form, e.g. one compound may be administered topically and another compound may be administered orally.
  • any anti-neoplastic agent that has activity versus a susceptible tumor being treated may be co-administered in the treatment of cancer in the present disclosure.
  • examples of such agents can be found in Cancer Principles and Practice of Oncology by V.T. Devita and S. Hellman (editors), 6 th edition (February 15, 2001), Lippincott Williams & Wilkins Publishers.
  • a person of ordinary skill in the art would be able to discern which combinations of agents would be useful based on the particular characteristics of the drugs and the cancer involved.
  • Typical anti-neoplastic agents useful in the present disclsoure include, but are not limited to, anti-microtubule agents such as diterpenoids and vinca alkaloids; platinum coordination complexes; alkylating agents such as nitrogen mustards, oxazaphosphorines, alkylsulfonates, nitrosoureas, and triazenes; antibiotic agents such as anthracyclins, actinomycins and bleomycins; topoisomerase II inhibitors such as epipodophyllotoxins; antimetabolites such as purine and pyrimidine analogues and anti-folate compounds;
  • topoisomerase I inhibitors such as camptothecins; hormones and hormonal analogues; signal transduction pathway inhibitors; non-receptor tyrosine kinase angiogenesis inhibitors;
  • chemotherapeutic agents examples include chemotherapeutic agents.
  • chemotherapeutic agents examples include chemotherapeutic agents and other categories of therapeutic agents that may be combined with the antigen binding proteins of the disclosure in compositions, or by co-administration in a method of treatment, are described below.
  • Anti-microtubule or anti-mitotic agents are phase specific agents active against the microtubules of tumor cells during M or the mitosis phase of the cell cycle.
  • anti-microtubule agents include, but are not limited to, diterpenoids and vinca alkaloids.
  • Diterpenoids which are derived from natural sources, are phase specific anti -cancer agents that operate at the G2/M phases of the cell cycle. It is believed that the diterpenoids stabilize the ⁇ -tubulin subunit of the microtubules, by binding with this protein. Disassembly of the protein appears then to be inhibited with mitosis being arrested and cell death following. Examples of diterpenoids include, but are not limited to, paclitaxel and its analog docetaxel.
  • Paclitaxel 5p,20-epoxy-l,2a,4,7p, 10p,13a-hexa-hydroxytax-l l-en-9-one 4, 10- diacetate 2-benzoate 13-ester with (2R,3S)-N-benzoyl-3-phenylisoserine; is a natural diterpene product isolated from the Pacific yew tree Taxus brevifolia and is commercially available as an injectable solution TAXOLTM. It is a member of the taxane family of terpenes. It was first isolated in 1971 by Wani et al. J. Am. Chem, Soc, 93:2325. 1971), who characterized its structure by chemical and X-ray crystallographic methods.
  • Paclitaxel has been approved for clinical use in the treatment of refractory ovarian cancer in the United States (Markman et al., Yale Journal of Biology and Medicine, 64:583, 1991; McGuire et al., Ann. Intern, Med., 111 :273, 1989) and for the treatment of breast cancer (Holmes et al., J. Nat. Cancer Inst., 83: 1797,1991.) It is a potential candidate for treatment of neoplasms in the skin (Einzig et. al., Proc. Am. Soc. Clin. Oncol., 20:46) and head and neck carcinomas (Forastire et. al., Sem. Oncol., 20:56, 1990).
  • the compound also shows potential for the treatment of polycystic kidney disease (Woo et. al., Nature, 368:750. 1994), lung cancer and malaria.
  • Treatment of patients with paclitaxel results in bone marrow suppression (multiple cell lineages, Ignoff, R.J. et. al, Cancer Chemotherapy Pocket Guide i 1998) related to the duration of dosing above a threshold concentration (50nM) (Kearns, CM. et. al., Seminars in Oncology, 3(6) p.16-23, 1995).
  • Docetaxel (2R,3S)- N-carboxy-3-phenylisoserine,N-fert-butyl ester, 13-ester with 5p-20-epoxy-l,2a,4,7p,10p,13a-hexahydroxytax-l l-en-9-one 4-acetate 2-benzoate, trihydrate; is commercially available as an injectable solution as TAXOTERETM.
  • Docetaxel is indicated for the treatment of breast cancer.
  • Docetaxel is a semisynthetic derivative of paclitaxel q. . , prepared using a natural precursor, 10-deacetyl-baccatin III, extracted from the needle of the European Yew tree. The dose limiting toxicity of docetaxel is neutropenia.
  • Vinca alkaloids are phase specific anti-neoplastic agents derived from the periwinkle plant. Vinca alkaloids act at the M phase (mitosis) of the cell cycle by binding specifically to tubulin. Consequently, the bound tubulin molecule is unable to polymerize into microtubules. Mitosis is believed to be arrested in metaphase with cell death following. Examples of vinca alkaloids include, but are not limited to, vinblastine, vincristine, and vinorelbine.
  • Vinblastine vincaleukoblastine sulfate
  • VELBANTM an injectable solution.
  • testicular cancer and various lymphomas including Hodgkin's Disease; and lymphocytic and histiocytic lymphomas.
  • Myelosuppression is the dose limiting side effect of vinblastine.
  • Vincristine vincaleukoblastine, 22-oxo-, sulfate
  • ONCOVINTM an injectable solution.
  • Vincristine is indicated for the treatment of acute leukemias and has also found use in treatment regimens for Hodgkin's and non-Hodgkin's malignant lymphomas.
  • Alopecia and neurologic effects are the most common side effect of vincristine and to a lesser extent myelosupression and gastrointestinal mucositis effects occur.
  • Vinorelbine 3',4'-didehydro -4'-deoxy-C'-norvincaleukoblastine [R-(R*,R*)-2,3- dihydroxybutanedioate (l :2)(salt)], commercially available as an injectable solution of vinorelbine tartrate (NAVELBINETM), is a semisynthetic vinca alkaloid.
  • Vinorelbine is indicated as a single agent or in combination with other chemotherapeutic agents, such as cisplatin, in the treatment of various solid tumors, particularly non-small cell lung, advanced breast, and hormone refractory prostate cancers. Myelosuppression is the most common dose limiting side effect of vinorelbine.
  • Platinum coordination complexes are non-phase specific anti-cancer agents, which are interactive with DNA.
  • the platinum complexes enter tumor cells, undergo, aquation and form intra- and interstrand crosslinks with DNA causing adverse biological effects to the tumor.
  • Examples of platinum coordination complexes include, but are not limited to, cisplatin and carboplatin.
  • Cisplatin cis-diamminedichloroplatinum
  • PLATINOLTM an injectable solution.
  • Cisplatin is primarily indicated in the treatment of metastatic testicular and ovarian cancer and advanced bladder cancer.
  • the primary dose limiting side effects of cisplatin are nephrotoxicity, which may be controlled by hydration and diuresis, and ototoxicity.
  • Carboplatin platinum, diammine [l, l-cyclobutane-dicarboxylate(2-)-0,0'], is commercially available as PARAPLATINTM as an injectable solution.
  • Carboplatin is primarily indicated in the first and second line treatment of advanced ovarian carcinoma. Bone marrow suppression is the dose limiting toxicity of carboplatin.
  • Alkylating agents are non-phase anti -cancer specific agents and strong electrophiles. Typically, alkylating agents form covalent linkages, by alkylation, to DNA through nucleophilic moieties of the DNA molecule such as phosphate, amino, sulfhydryl, hydroxyl, carboxyl, and imidazole groups. Such alkylation disrupts nucleic acid function leading to cell death.
  • alkylating agents include, but are not limited to, nitrogen mustards such as cyclophosphamide, melphalan, and chlorambucil; alkyl sulfonates such as busulfan;
  • nitrosoureas such as carmustine
  • triazenes such as dacarbazine
  • Cyclophosphamide 2-[bis(2-chloroethyl)amino]tetrahydro-2H-l,3,2- oxazaphosphorine 2-oxide monohydrate, is commercially available as an injectable solution or tablets as CYTOXANTM. Cyclophosphamide is indicated as a single agent or in combination with other chemotherapeutic agents, in the treatment of malignant lymphomas, multiple myeloma, and leukemias. Alopecia, nausea, vomiting and leukopenia are the most common dose limiting side effects of cyclophosphamide.
  • Melphalan 4-[bis(2-chloroethyl)amino]-L-phenylalanine, is commercially available as an injectable solution or tablets as ALKERANTM. Melphalan is indicated for the palliative treatment of multiple myeloma and non-resectable epithelial carcinoma of the ovary. Bone marrow suppression is the most common dose limiting side effect of melphalan.
  • Chlorambucil 4-[bis(2-chloroethyl)amino]benzenebutanoic acid, is commercially available as LEUKERANTM tablets. Chlorambucil is indicated for the palliative treatment of chronic lymphatic leukemia, and malignant lymphomas such as lymphosarcoma, giant follicular lymphoma, and Hodgkin's disease. Bone marrow suppression is the most common dose limiting side effect of chlorambucil. Busulfan, 1,4-butanediol dimethanesulfonate, is commercially available as
  • Busulfan is indicated for the palliative treatment of chronic myelogenous leukemia. Bone marrow suppression is the most common dose limiting side effects of busulfan.
  • Carmustine 1, 3 -[bis(2-chloroethyl)-l -nitrosourea, is commercially available as single vials of lyophilized material as BiCNUTM.
  • Carmustine is indicated for the palliative treatment as a single agent or in combination with other agents for brain tumors, multiple myeloma, Hodgkin's disease, and non-Hodgkin's lymphomas. Delayed myelosuppression is the most common dose limiting side effects of carmustine.
  • dacarbazine 5-(3,3-dimethyl-l-triazeno)-imidazole-4-carboxamide, is commercially available as single vials of material as DTIC-DomeTM.
  • dacarbazine is indicated for the treatment of metastatic malignant melanoma and in combination with other agents for the second line treatment of Hodgkin's Disease. Nausea, vomiting, and anorexia are the most common dose limiting side effects of dacarbazine.
  • Antibiotic anti-neoplastics are non-phase specific agents, which bind or intercalate with DNA. Typically, such action results in stable DNA complexes or strand breakage, which disrupts ordinary function of the nucleic acids leading to cell death.
  • antibiotic anti-neoplastic agents include, but are not limited to, actinomycins such as dactinomycin, anthrocyclins such as daunorubicin and doxorubicin; and bleomycins.
  • Dactinomycin also know as Actinomycin D, is commercially available in injectable form as COSMEGENTM. Dactinomycin is indicated for the treatment of Wilm's tumor and rhabdomyosarcoma. Nausea, vomiting, and anorexia are the most common dose limiting side effects of dactinomycin.
  • Daunorubicin (8S-cis-)-8-acetyl-10-[(3-amino-2,3,6-trideoxy-a-L-lyxo- hexopyranosyl)oxy] -7,8,9,10-tetrahydro-6,8, 11 -trihydroxy- 1 -methoxy-5 , 12 naphthacenedione hydrochloride, is commercially available as a liposomal injectable form as DAUNOXOMETM or as an injectable as CERUBIDINETM. Daunorubicin is indicated for remission induction in the treatment of acute nonlymphocytic leukemia and advanced HIV associated Kaposi's sarcoma. Myelosuppression is the most common dose limiting side effect of daunorubicin.
  • ADRIAMYCIN RDFTM Doxorubicin is primarily indicated for the treatment of acute lymphoblastic leukemia and acute myeloblastic leukemia, but is also a useful component in the treatment of some solid tumors and lymphomas. Myelosuppression is the most common dose limiting side effect of doxorubicin.
  • Bleomycin a mixture of cytotoxic glycopeptide antibiotics isolated from a strain of Streptomyces verticillus, is commercially available as BLENOXANETM. Bleomycin is indicated as a palliative treatment, as a single agent or in combination with other agents, of squamous cell carcinoma, lymphomas, and testicular carcinomas. Pulmonary and cutaneous toxicities are the most common dose limiting side effects of bleomycin.
  • Topoisomerase II inhibitors include, but are not limited to, epipodophyllotoxins.
  • Epipodophyllotoxins are phase specific anti-neoplastic agents derived from the mandrake plant. Epipodophyllotoxins typically affect cells in the S and G2 phases of the cell cycle by forming a ternary complex with topoisomerase II and DNA causing DNA strand breaks. The strand breaks accumulate and cell death follows. Examples of
  • epipodophyllotoxins include, but are not limited to, etoposide and teniposide.
  • Etoposide, 4'-demethyl-epipodophyllotoxin 9[4,6-0-(R )-ethylidene-P-D- glucopyranoside] is commercially available as an injectable solution or capsules as
  • VePESIDTM and is commonly known as VP- 16.
  • Etoposide is indicated as a single agent or in combination with other chemotherapy agents in the treatment of testicular and non-small cell lung cancers. Myelosuppression is the most common side effect of etoposide. The incidence of leucopenia tends to be more severe than thrombocytopenia.
  • Teniposide 4'-demethyl-epipodophyllotoxin 9[4,6-0-(R )-thenylidene-P-D- glucopyranoside], is commercially available as an injectable solution as VUMONTM and is commonly known as VM-26. Teniposide is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia in children.
  • Teniposide can induce both leucopenia and thrombocytopenia.
  • Antimetabolite neoplastic agents are phase specific anti-neoplastic agents that act at S phase (DNA synthesis) of the cell cycle by inhibiting DNA synthesis or by inhibiting purine or pyrimidine base synthesis and thereby limiting DNA synthesis. Consequently, S phase does not proceed and cell death follows.
  • Examples of antimetabolite anti-neoplastic agents include, but are not limited to, fluorouracil, methotrexate, cytarabine, mecaptopurine, thioguanine, and gemcitabine.
  • 5-fluorouracil 5-fluoro-2,4- (1H,3H) pyrimidinedione
  • fluorouracil is commercially available as fluorouracil.
  • Administration of 5-fluorouracil leads to inhibition of thymidylate synthesis and is also incorporated into both RNA and DNA. The result typically is cell death.
  • 5-fluorouracil is indicated as a single agent or in combination with other chemotherapy agents in the treatment of carcinomas of the breast, colon, rectum, stomach and pancreas.
  • fluoropyrimidine analogs include 5-fluoro deoxyuridine (floxuridine) and 5- fluorodeoxyuridine monophosphate.
  • Cytarabine 4-amino-l-P-D-arabinofuranosyl-2 (lH)-pyrimidinone, is commercially available as CYTOSAR-UTM and is commonly known as Ara-C. It is believed that cytarabine exhibits cell phase specificity at S-phase by inhibiting DNA chain elongation by terminal incorporation of cytarabine into the growing DNA chain. Cytarabine is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia. Other cytidine analogs include 5-azacytidine and 2',2'-difluorodeoxycytidine (gemcitabine). Cytarabine induces leucopenia, thrombocytopenia, and mucositis.
  • Mercaptopurine l,7-dihydro-6H-purine-6-thione monohydrate
  • PURINETHOLTM is commercially available as PURINETHOLTM.
  • Mercaptopurine exhibits cell phase specificity at S-phase by inhibiting DNA synthesis by an as of yet unspecified mechanism.
  • Mercaptopurine is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia. Myelosuppression and gastrointestinal mucositis are expected side effects of mercaptopurine at high doses.
  • a useful mercaptopurine analog is azathioprine.
  • Thioguanine 2-amino-l,7-dihydro-6H-purine-6-thione, is commercially available as TABLOIDTM.
  • Thioguanine exhibits cell phase specificity at S-phase by inhibiting DNA synthesis by an as of yet unspecified mechanism.
  • Thioguanine is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia.
  • Myelosuppression including leucopenia, thrombocytopenia, and anemia, is the most common dose limiting side effect of thioguanine administration. However, gastrointestinal side effects occur and can be dose limiting.
  • Other purine analogs include pentostatin,
  • erythrohydroxynonyladenine erythrohydroxynonyladenine
  • fludarabine phosphate fludarabine phosphate
  • cladribine erythrohydroxynonyladenine
  • Gemcitabine 2'-deoxy-2', 2'-difluorocytidine monohydrochloride ( ⁇ -isomer), is commercially available as GEMZARTM. Gemcitabine exhibits cell phase specificity at S- phase and by blocking progression of cells through the Gl/S boundary. Gemcitabine is indicated in combination with cisplatin in the treatment of locally advanced non-small cell lung cancer and alone in the treatment of locally advanced pancreatic cancer.
  • Myelosuppression including leucopenia, thrombocytopenia, and anemia, is the most common dose limiting side effect of gemcitabine administration.
  • Methotrexate N-[4[[(2,4-diamino-6-pteridinyl) methyl] methylamino] benzoyl]-L- glutamic acid, is commercially available as methotrexate sodium. Methotrexate exhibits cell phase effects specifically at S-phase by inhibiting DNA synthesis, repair and/or replication through the inhibition of dyhydrofolic acid reductase which is required for synthesis of purine nucleotides and thymidylate.
  • Methotrexate is indicated as a single agent or in combination with other chemotherapy agents in the treatment of choriocarcinoma, meningeal leukemia, non-Hodgkin's lymphoma, and carcinomas of the breast, head, neck, ovary and bladder.
  • Myelosuppression (leucopenia, thrombocytopenia, and anemia) and mucositis are expected side effect of methotrexate administration.
  • Camptothecins including, camptothecin and camptothecin derivatives are available or under development as Topoisomerase I inhibitors. Camptothecins cytotoxic activity is believed to be related to its Topoisomerase I inhibitory activity. Examples of camptothecins include, but are not limited to irinotecan, topotecan, and the various optical forms of 7-(4- methylpiperazino-methylene)-10,l l-ethylenedioxy-20-camptothecin described below.
  • Irinotecan is a derivative of camptothecin which binds, along with its active metabolite SN-38, to the topoisomerase I - DNA complex. It is believed that cytotoxicity occurs as a result of irreparable double strand breaks caused by interaction of the topoisomerase I: DNA: irintecan or SN-38 ternary complex with replication enzymes.
  • Irinotecan is indicated for treatment of metastatic cancer of the colon or rectum.
  • the dose limiting side effects of irinotecan HC1 are myelosuppression, including neutropenia, and GI effects, including diarrhea.
  • Topotecan HC1 (S)- 10-[(dimethylamino)methyl]-4-ethyl-4,9-dihydroxy- 1H- pyrano[3 ' ,4 ' ,6,7]indolizino [ 1 ,2-b]quinoline-3 , 14-(4H, 12H)-dione monohydrochloride, is commercially available as the injectable solution HYCAMTINTM.
  • Topotecan is a derivative of camptothecin which binds to the topoisomerase I - DNA complex and prevents religation of singles strand breaks caused by Topoisomerase I in response to torsional strain of the DNA molecule.
  • Topotecan is indicated for second line treatment of metastatic carcinoma of the ovary and small cell lung cancer.
  • the dose limiting side effect of topotecan HC1 is myelosuppression, primarily neutropenia.
  • camptothecin derivative of formula A following, currently under development, including the racemic mixture (R,S) form as well as the R and S enantiomers:
  • Hormones and hormonal analogues are useful compounds for treating cancers in which there is a relationship between the hormone(s) and growth and/or lack of growth of the cancer.
  • hormones and hormonal analogues useful in cancer treatment include, but are not limited to, adrenocorticosteroids such as prednisone and prednisolone which are useful in the treatment of malignant lymphoma and acute leukemia in children;
  • aminoglutethimide and other aromatase inhibitors such as anastrozole, letrazole, vorazole, and exemestane useful in the treatment of adrenocortical carcinoma and hormone dependent breast carcinoma containing estrogen receptors
  • progestrins such as megestrol acetate useful in the treatment of hormone dependent breast cancer and endometrial carcinoma
  • estrogens, androgens, and anti-androgens such as flutamide, nilutamide, bicalutamide, cyproterone acetate and 5ot-reductases such as finasteride and dutasteride, useful in the treatment of prostatic carcinoma and benign prostatic hypertrophy
  • anti -estrogens such as tamoxifen, toremifene, raloxifene, droloxifene, iodoxyfene, as well as selective estrogen receptor modulators (SERMS) such those described in U.S.
  • SERMS selective estrogen receptor modulators
  • GnRH gonadotropin-releasing hormone
  • LH leutinizing hormone
  • FSH follicle stimulating hormone
  • Signal transduction pathway inhibitors are those inhibitors, which block or inhibit a chemical process which evokes an intracellular change. As used herein this change is cell proliferation or differentiation.
  • Signal tranduction inhibitors useful in the present invention include inhibitors of receptor tyrosine kinases, non-receptor tyrosine kinases, SH2/SH3 blockers, serine/threonine kinases, phosphotidyl inositol-3 kinases, myo-inositol signaling, and Ras oncogenes.
  • Protein tyrosine kinases catalyse the phosphorylation of specific tyrosyl residues in various proteins involved in the regulation of cell growth.
  • Such protein tyrosine kinases can be broadly classified as receptor or non-receptor kinases.
  • Receptor tyrosine kinases are transmembrane proteins having an extracellular ligand binding , a transmembrane domain, and a tyrosine kinase domain.
  • Receptor tyrosine kinases are involved in the regulation of cell growth and are generally termed growth factor receptors. Inappropriate or uncontrolled activation of many of these kinases, i.e.
  • aberrant kinase growth factor receptor activity for example by over-expression or mutation, has been shown to result in uncontrolled cell growth. Accordingly, the aberrant activity of such kinases has been linked to malignant tissue growth. Consequently, inhibitors of such kinases could provide cancer treatment methods.
  • Growth factor receptors include, for example, epidermal growth factor receptor (EGFr), platelet derived growth factor receptor (PDGFr), erbB2, erbB4, vascular endothelial growth factor receptor (VEGFr), tyrosine kinase with immunoglobulin- like and epidermal growth factor homology domains (TIE-2), insulin growth factor -I (IGFI) receptor, macrophage colony stimulating factor (cfms), BTK, ckit, cmet, fibroblast growth factor (FGF) receptors, Trk receptors (TrkA, TrkB, and TrkC), ephrin (eph) receptors, and the RET protooncogene.
  • IGFI insulin growth factor -I
  • cfms macrophage colony stimulating factor
  • BTK ckit
  • cmet fibroblast growth factor
  • Trk receptors Trk receptors
  • TrkA, TrkB, and TrkC ephrin (e
  • oligonucleotides Growth factor receptors and agents that inhibit growth factor receptor function are described, for instance, in Kath, John C, Exp. Opin. Ther. Patents (2000) 10(6):803-818; Shawver et al DDT Vol 2, No. 2 February 1997; and Lofts, F. J. et al, "Growth factor receptors as targets", New Molecular Targets for Cancer Chemotherapy, ed. Workman, Paul and Kerr, David, CRC press 1994, London.
  • Non-receptor tyrosine kinases which are not growth factor receptor kinases are termed nonreceptor tyrosine kinases.
  • Non-receptor tyrosine kinases for use in the present invention include cSrc, Lck, Fyn, Yes, Jak, cAbl, FAK (Focal adhesion kinase), Brutons tyrosine kinase, and Bcr-Abl.
  • Such non-receptor kinases and agents which inhibit non-receptor tyrosine kinase function are described in Sinh, S.
  • SH2/SH3 domain blockers are agents that disrupt SH2 or SH3 domain binding in a variety of enzymes or adaptor proteins including, PI3-K p85 subunit, Src family kinases, adaptor molecules (She, Crk, Nek, Grb2) and Ras-GAP.
  • SH2/SH3 domains as targets for anti -cancer drugs are discussed in Smithgall, T.E. (1995), Journal of Pharmacological and Toxicological Methods. 34(3) 125-32.
  • Inhibitors of Serine/Threonine Kinases include MAP kinase cascade blockers which also include blockers of Raf kinases (rafk), Mitogen or Extracellular Regulated Kinase (MEKs), and Extracellular Regulated Kinases (ERKs); and Protein kinase C family member blockers including blockers of PKCs (alpha, beta, gamma, epsilon, mu, lambda, iota, zeta). IkB kinase family (IKKa, IKKb), PKB family kinases, akt kinase family members, and TGF beta receptor kinases.
  • rafk Raf kinases
  • MEKs Mitogen or Extracellular Regulated Kinase
  • ERKs Extracellular Regulated Kinases
  • PKCs protein kinase C family member blockers including blockers of PKCs (alpha, beta, gamma,
  • Serine/Threonine kinases and inhibitors thereof are described in Yamamoto, T., Taya, S., Kaibuchi, K., (1999), Journal of Biochemistry. 126 (5) 799-803; Brodt, P, Samani, A., and Navab, R. (2000), Biochemical Pharmacology, 60. 1101-1107; Massague, J., Weis-Garcia, F. (1996) Cancer Surveys. 27:41-64; Philip, P.A., and Harris, A.L. (1995), Cancer Treatment and Research. 78: 3-27, Lackey, K. et al Bioorganic and Medicinal Chemistry Letters, (10), 2000, 223-226; U.S. Patent No. 6,268,391; and Martinez- Iacaci, L., et al, Int. J. Cancer (2000), 88(1), 44-52.
  • Inhibitors of Phosphotidyl inositol-3 Kinase family members including blockers of PI3-kinase, ATM, DNA-PK, and Ku may also be useful in the present invention.
  • Such kinases are discussed in Abraham, R.T. (1996), Current Opinion in Immunology. 8 (3) 412-8; Canman, C.E., Lim, D.S. (1998), Oncogene 17 (25) 3301-3308; Jackson, S.P. (1997), International Journal of Biochemistry and Cell Biology. 29 (7):935-8; and Zhong, H. et al, Cancer res, (2000) 60(6), 1541-1545.
  • Myo-inositol signaling inhibitors such as phospholipase C blockers and Myoinositol analogues.
  • signal inhibitors are described in Powis, G., and Kozikowski A., (1994) New Molecular Targets for Cancer Chemotherapy ed., Paul Workman and David Kerr, CRC press 1994, London.
  • Ras Oncogene Another group of signal transduction pathway inhibitors are inhibitors of Ras Oncogene.
  • Such inhibitors include inhibitors of farnesyltransferase, geranyl-geranyl transferase, and CAAX proteases as well as anti-sense oligonucleotides, ribozymes and immunotherapy.
  • Such inhibitors have been shown to block ras activation in cells containing wild type mutant ras, thereby acting as antiproliferation agents.
  • Ras oncogene inhibition is discussed in Scharovsky, O.G., Rozados, V.R., Gervasoni, S.I. Matar, P. (2000), Journal of Biomedical Science. 7(4) 292-8; Ashby, M.N. (1998), Current Opinion in Lipidology. 9 (2) 99 - 102; and BioChim. Biophys. Acta, (19899) 1423(3): 19-30.
  • Antibody antagonists to receptor kinase ligand binding may also serve as signal transduction inhibitors.
  • This group of signal transduction pathway inhibitors includes the use of humanized antibodies to the extracellular ligand binding domain of receptor tyrosine kinases.
  • Imclone C225 EGFR specific antibody see Green, M.C. et al, Monoclonal Antibody Therapy for Solid Tumors, Cancer Treat.
  • Non-receptor kinase angiogenesis inhibitors may also be useful in the present invention.
  • Inhibitors of angiogenesis related VEGFR and TIE2 are discussed above in regard to signal transduction inhibitors (both receptors are receptor tyrosine kinases).
  • Angiogenesis is linked to erbB2/EGFR signaling since inhibitors of erbB2 and EGFR have been shown to inhibit angiogenesis, primarily VEGF expression. Accordingly, non-receptor tyrosine kinase inhibitors may be used in combination with the compounds of the present disclosure.
  • anti-VEGF antibodies which do not recognize VEGFR (the receptor tyrosine kinase), but bind to the ligand; small molecule inhibitors of integrin (alpha v betas) that will inhibit angiogenesis; endostatin and angiostatin (non-RTK) may also prove useful in combination with the disclosed compounds.
  • VEGFR the receptor tyrosine kinase
  • small molecule inhibitors of integrin alpha v betas
  • endostatin and angiostatin non-RTK
  • Agents used in immunotherapeutic regimens may also be useful in combination with the antigen binding proteins of the disclosure.
  • immunologic strategies to generate an immune response. These strategies are generally in the realm of tumor vaccinations.
  • the efficacy of immunologic approaches may be greatly enhanced through combined inhibition of signaling pathways using a small molecule inhibitor. Discussion of the immunologic/tumor vaccine approach against erbB2/EGFR are found in Reilly RT et al. (2000), Cancer Res. 60: 3569-3576; and Chen Y, Hu D, Eling DJ, Robbins J, and Kipps TJ. (1998), Cancer Res. 58: 1965-1971.
  • Agents used in proapoptotic regimens may also be used in the combination of the present invention.
  • Members of the Bcl-2 family of proteins block apoptosis. Upregulation of bcl-2 has therefore been linked to chemoresistance.
  • EGF epidermal growth factor
  • Cell cycle signalling inhibitors inhibit molecules involved in the control of the cell cycle.
  • a family of protein kinases called cyclin dependent kinases (CDKs) and their interaction with a family of proteins termed cyclins controls progression through the eukaryotic cell cycle. The coordinate activation and inactivation of different cyclin/CDK complexes is necessary for normal progression through the cell cycle.
  • CDKs cyclin dependent kinases
  • Several inhibitors of cell cycle signalling are under development. For instance, examples of cyclin dependent kinases, including CDK2, CDK4, and CDK6 and inhibitors for the same are described in, for instance, Rosania et al, Exp. Opin. Ther. Patents (2000) 10(2):215-230.
  • p21WAFl/CIPl has been described as a potent and universal inhibitor of cyclin-dependent kinases (Cdks) (Ball et al., Progress in Cell Cycle Res., 3: 125 (1997)).
  • Cdks cyclin-dependent kinases
  • Compounds that are known to induce expression of p21WAFl/CIPl have been implicated in the suppression of cell proliferation and as having tumor suppressing activity (Richon et al., Proc. Nat Acad. Sci. U.S.A. 97(18): 10014-10019 (2000)), and are included as cell cycle signaling inhibitors.
  • Histone deacetylase (HDAC) inhibitors are implicated in the transcriptional activation of p21 WAF1/CIP1 (Vigushin et al., Anticancer Drugs, 13(1): 1-13 (Jan 2002)), and are suitable cell cycle signaling inhibitors for use herein.
  • HDAC inhibitors examples include:
  • Vorinostat including pharmaceutically acceptable salts thereof. Marks et al., Nature Biotechnology 25, 84 to 90 (2007); Stenger, Community Oncology 4, 384-386 (2007).
  • Panobinostat including pharmaceutically acceptable salts thereof.
  • Panobinostat has the following chemical structure and name:
  • Valproic acid including pharmaceutically acceptable salts thereof. Gottlich, et al., EMBO J. 20(24): 6969-6978 (2001).
  • Valproic acid has the following chemical structure and name:
  • Mocetinostat (MGCD0103), including pharmaceutically acceptable salts thereof. Balasubramanian et al., Cancer Letters 280: 211-221 (2009). Mocetinostat, has the following chemical structure and name:
  • HDAC inhibitors are included in Bertrand European Journal of Medicinal Chemistry 45, (2010) 2095-2116, particularly the compounds of Table 3 therein as indicated below.
  • the cancer treatment methods of the disclosure also includes the co-administration of an antigen binding protein of the disclosure and/or a pharmaceutically acceptable salt, hydrate, solvate or pro-drug thereof and at least one anti-neoplastic agent, such as one selected from the group consisting of anti-microtubule agents, platinum coordination complexes, alkylating agents, antibiotic agents, topoisomerase II inhibitors, antimetabolites, topoisomerase I inhibitors, hormones and hormonal analogues, signal transduction pathway inhibitors, non-receptor tyrosine kinase angiogenesis inhibitors, immunotherapeutic agents, proapoptotic agents, and cell cycle signaling inhibitors.
  • an antigen binding protein of the disclosure and/or a pharmaceutically acceptable salt, hydrate, solvate or pro-drug thereof and at least one anti-neoplastic agent, such as one selected from the group consisting of anti-microtubule agents, platinum coordination complexes, alkylating agents, antibiotic agents, topoisomerase II inhibitors,
  • the antigen binding proteins of the disclosure may be used in combination with a MEK inhibitor such as, for example, N- ⁇ 3-[3- cyclopropyl-5-(2-fluoro-4-iodo-phenylamino)-6,8-dimethy-2,4,7-trioxo-3,4,6,7-tetrahydro- 2H-pyrido[4,3-d]pyrimidin-l-yl]phenyl ⁇ acetamide, or a pharmaceutically acceptable salt or solvate, including the dimethyl sulfoxide solvate, thereof, which is disclosed and claimed in International Application No. PCT/JP2005/011082, having an International filing date of June 10, 2005; International Publication Number WO 2005/121142 and an International
  • N- ⁇ 3 -[3 -cyclopropyl-5 -(2-fluoro-4-iodo-phenylamino)-6,8-dimethy-2,4,7- trioxo-3,4,6,7-tetrahydro-2H-pyrido[4,3-d]pyrimidin-l-yl]phenyl ⁇ acetamide can be prepared as described in United States Patent Publication No. US 2006/0014768, Published January 19, 2006, the entire disclosure of which is hereby incorporated by reference.
  • the antigen binding proteins of the disclosure may be used in combination with a B-Raf inhibitor such as, for example, N- ⁇ 3-[5-(2-Amino-4-pyrimidinyl)-2-(l,l-dimethylethyl)-l,3-thiazol-4-yl]-2- fluorophenyl ⁇ -2,6-difluorobenzenesulfonamide, or a pharmaceutically acceptable salt thereof, which is disclosed and claimed, in International Application No. PCT/US2009/042682, having an International filing date of May 4, 2009, the entire disclosure of which is hereby incorporated by reference.
  • a B-Raf inhibitor such as, for example, N- ⁇ 3-[5-(2-Amino-4-pyrimidinyl)-2-(l,l-dimethylethyl)-l,3-thiazol-4-yl]-2- fluorophenyl ⁇ -2,6-difluorobenzenesulfonamide, or a pharmaceutically acceptable
  • N- ⁇ 3-[5-(2-Amino-4-pyrimidinyl)-2-(l,l-dimethylethyl)-l,3- thiazol-4-yl]-2-fluorophenyl ⁇ -2,6-difluorobenzenesulfonamide can be prepared as described in International Application No. PCT/US2009/042682.
  • the antigen binding proteins of the disclosure may be used in combination with an Akt inhibitor such as, for example, N- ⁇ (lS)-2- amino-l-[(3,4-difluorophenyl)methyl]ethyl ⁇ -5-chloro-4-(4-chloro-l-methyl-lH-pyrazol-5- yl)-2-furancarboxamide or a pharmaceutically acceptable salt thereof, which is disclosed and claimed in International Application No. PCT/US2008/053269, having an International filing date of February 7, 2008; International Publication Number WO 2008/098104 and an International Publication date of August 14, 2008, the entire disclosure of which is hereby incorporated by reference.
  • 4- (4-chloro-l-methyl-lH-pyrazol-5-yl)-2-furancarboxamide can be prepared as described in International Application No. PCT/US2008/053269.
  • the antigen binding proteins of the disclosure may also be used in combination with an Akt inhibitor such as, for example, N-
  • N- ⁇ (l ⁇ S)-2-amino-l-[(3- fluorophenyl)methyl] ethyl ⁇ -5 -chloro-4-(4-chloro- 1 -methyl- lH-pyrazol-5 -yl)-2- thiophenecarboxamide is the compound of example 96 and can be prepared as described in International Application No. PCT/US2008/053269.
  • JV- ⁇ (15)-2-amino-l-[(3- fluorophenyl)methyl] ethyl ⁇ -5 -chloro-4-(4-chloro- 1 -methyl- lH-pyrazol-5 -yl)-2- thiophenecarboxamide is in the form of a hydrochloride salt.
  • the salt form can be prepared by one of skill in the art from the description in International Application No.
  • Pazopanib is another composition that may be co-administered with an antigen binding protein of the disclosure.
  • Pazopanib which commercially available as
  • VOTRIENTTM is a tyrosine kinase inhibitor (TKI).
  • Pazopanib is presented as the hydrochloride salt, with the chemical name 5-[[4-[(2,3-dimethyl-2H-indazol-6- yl)methylamino]-2-pyrimidinyl]amino]-2-methylbenzenesulfonamide monohydrochloride.
  • Pazoponib is approved for treatment of patients with advanced renal cell carcinoma.
  • Rituximab is another composition that may be co-administered with an antigen binding protein of the disclosure.
  • Rituximab is a chimeric monoclonal antibody which is sold as RITUXANTM and MABTHERATM.
  • Rituximab binds to CD20 on B cells and causes cell apopotosis.
  • Rituximab is administered intravenously and is approved for treatment of rheumatoid arthritis and B-cell non-Hodgkin's lymphoma.
  • Ofatumumab is another composition that may be co-administered with an antigen binding protein of the disclosure.
  • Ofatumumab is a fully human monoclonal antibody which is sold as ARZERRATM.
  • Ofatumumab binds to CD20 on B cells and is used to treat chronic lymphocytic leukemia (CLL; a type of cancer of the white blood cells) in adults who are refractory to treatment with with with fludarabine (Fludara) and alemtuzumab (Campath).
  • CLL chronic lymphocytic leukemia
  • Fludara fludarabine
  • alemtuzumab Campath
  • mTOR inhibitors may be co-administered with an antigen binding protein of the disclosure.
  • mTOR inhibitors include but are not limited to rapamycin and rapalogs, RADOOl or everolimus (Afinitor), CCI-779 or temsirolimus, AP23573, AZD8055, WYE-354, WYE- 600, WYE-687 and Ppl21.
  • Bexarotene is another composition that may be co-administered with an antigen binding protein of the disclosure.
  • Bexarotene is sold as TargretinTM and is a member of a subclass of retinoids that selectively activate retinoid X receptors (RXRs). These retinoid receptors have biologic activity distinct from that of retinoic acid receptors (RARs).
  • RXRs retinoid X receptors
  • RARs retinoic acid receptors
  • the chemical name is 4-[l-(5,6,7,8-tetrahydro-3,5,5,8,8-pentamethyl-2-naphthalenyl) ethenyl] benzoic acid.
  • Bexarotene is used to treat cutaneous T-cell lymphoma (CTCL, a type of skin cancer) in people whose disease could not be treated successfully with at least one other medication.
  • CTCL cutaneous T-cell lymphoma
  • Sorafenib is another composition that may be co-administered with an antigen binding protein of the disclosure.
  • Sorafenib is marketed as NexavarTM and is in a class of medications called multikinase inhibitors. Its chemical name is 4-[4-[[4-chloro-3- (trifluoromethyl)phenyl]carbamoylamino] phenoxy]-N-methyl-pyridine-2-carboxamide.
  • Sorafenib is used to treat advanced renal cell carcinoma (a type of cancer that begins in the kidneys).
  • Sorafenib is also used to treat unresectable hepatocellular carcinoma (a type of liver cancer that cannot be treated with surgery).
  • the disclosure provides methods of treating cancer.
  • the cancer treated in the disclosed methods may be selected from: brain (gliomas), glioblastomas, astrocytomas, glioblastoma multiforme, Bannayan-Zonana syndrome, Cowden disease, Lhermitte-Duclos disease, breast, inflammatory breast cancer, Wilm's tumor, Ewing's sarcoma,
  • Rhabdomyosarcoma ependymoma, medulloblastoma, colon, head and neck, kidney, lung, liver, melanoma, ovarian, pancreatic, prostate, sarcoma, osteosarcoma, giant cell tumor of bone, thyroid, Lymphoblastic T cell leukemia, Chronic myelogenous leukemia, Chronic lymphocytic leukemia, Hairy-cell leukemia, acute lymphoblastic leukemia, acute
  • myelogenous leukemia Chronic neutrophilic leukemia, Acute lymphoblastic T cell leukemia, Plasmacytoma, Immunoblastic large cell leukemia, Mantle cell leukemia, Megakaryoblastic leukemia, multiple myeloma, acute megakaryocytic leukemia, promyelocytic leukemia, and Erythroleukemia, malignant lymphoma, hodgkins lymphoma, non-hodgkins lymphoma, lymphoblastic T cell lymphoma, Burkitt's lymphoma, follicular lymphoma, neuroblastoma, bladder cancer, urothelial cancer, lung cancer, vulval cancer, cervical cancer, endometrial cancer, renal cancer, mesothelioma, esophageal cancer, salivary gland cancer, hepatocellular cancer, gastric cancer, nasopharangeal cancer, buccal cancer, cancer of the mouth, GIST (gastrointestinal stromal tumor)
  • the pre-cancerous condition in the methods of the disclosure may be cervical intraepithelial neoplasia, monoclonal gammapathy of unknown significance (MGUS), myelodysplastic syndrome, aplastic anemia, cervical lesions, skin nevi (pre-melanoma), prostatic intraepithleial (intraductal) neoplasia (PIN), Ductal Carcinoma in situ (DCIS), colon polyps and severe hepatitis or cirrhosis.
  • the pharmaceutical composition may comprise a kit of parts of the antigen binding protein together with other medicaments, optionally with instructions for use.
  • the kit may comprise the reagents in predetermined amounts with instructions for use.
  • the terms "individual”, “subject” and “patient” are used herein interchangeably.
  • the subject is typically a human.
  • the subject may also be a mammal, such as a mouse, rat, or primate (e.g., a marmoset or monkey).
  • the subject can be a non-human animal.
  • the antigen binding proteins also have veterinary use.
  • the subject to be treated may be a farm animal, for example, a cow or bull, sheep, pig, ox, goat or horse, or may be a domestic animal such as a dog or cat.
  • the animal may be any age, or a mature adult animal.
  • the subject is a laboratory animal, such as a mouse, rat or primate, the animal can be treated to induce a disease or condition associated with breast, ovarian, prostate or bladder cancer.
  • Treatment can be therapeutic, prophylactic or preventative.
  • the subject will be one who is in need thereof.
  • Those in need of treatment may include individuals already suffering from a particular medical disease, in addition to those who may develop the disease in the future.
  • the antigen binding protein described herein can be used for prophylactic or preventative treatment.
  • the antigen binding protein described herein is administered to an individual in order to prevent or delay the onset of one or more aspects or symptoms of the disease.
  • the subject can be asymptomatic.
  • the subject may have a genetic predisposition to the disease.
  • a prophylactically effective amount of the antigen binding protein is administered to such an individual.
  • a prophylactically effective amount is an amount which prevents or delays the onset of one or more aspects or symptoms of a disease described herein.
  • the antigen binding protein described herein may also be used in methods of therapy.
  • therapy encompasses alleviation, reduction, or prevention of at least one aspect or symptom of a disease.
  • the antigen binding protein described herein may be used to ameliorate or reduce one or more aspects or symptoms of a disease described herein.
  • the antigen binding protein described herein is used in an effective amount for therapeutic, prophylactic or preventative treatment.
  • a therapeutically effective amount of the antigen binding protein described herein is an amount effective to ameliorate or reduce one or more aspects or symptoms of the disease.
  • the antigen binding protein described herein may also be used to treat, prevent, or cure the disease described herein.
  • the antigen binding protein described herein can have a generally beneficial effect on the subject's health, for example it can increase the subject's expected longevity.
  • the antigen binding protein described herein need not affect a complete cure, or eradicate every symptom or manifestation of the disease to constitute a viable therapeutic treatment.
  • drugs employed as therapeutic agents may reduce the severity of a given disease state, but need not abolish every manifestation of the disease to be regarded as useful therapeutic agents.
  • a prophylactically administered treatment need not be completely effective in preventing the onset of a disease in order to constitute a viable prophylactic agent. Simply reducing the impact of a disease (for example, by reducing the number or severity of its symptoms, or by increasing the effectiveness of another treatment, or by producing another beneficial effect), or reducing the likelihood that the disease will occur (for example by delaying the onset of the disease) or worsen in a subject, is sufficient.
  • the disorder, disease, or condition includes breast cancer, ovarian cancer, prostate cancer, and bladder cancer.
  • the disease may be associated with high levels of HER3.
  • the antigen binding proteins described herein can be used to modulate the level of HER3 and/or the activity of HER3.
  • the antigen binding proteins described herein may be used to detect HER3 in a biological sample in vitro or in vivo for diagnostic purposes.
  • the anti-HER3 antigen binding proteins such as the murine or humanized 15D5 monoclonal antibodies, can be used to detect HER3 in cultured cells, in a tissue or in serum.
  • the tissue may have been first removed (for example, a biopsy) from a human or animal body.
  • Conventional immunoassays may be employed, including ELISA, Western blot, immunohistochemistry, or immunoprecipitation .
  • HER3 By correlating the presence or level of HER3 with a disease, one of skill in the art can diagnose the associated disease. Furthermore, detection of increased levels of HER3 in a subject may be indicative of a patient population that would be responsive to treatment with the antigen binding proteins described herein. Detection of a reduction in HER3 level, function or signal transducing capabilities may be indicative of the biological effect of decreased tumor size in subjects treated with the antigen binding proteins described herein.
  • the antigen binding proteins may be provided in a diagnostic kit comprising one or more antigen binding proteins, a detectable label, and instructions for use of the kit.
  • the kit may comprise the reagents in predetermined amounts with instructions for use.
  • Nucleic acid molecules encoding the antigen binding proteins described herein can be administered to a subject in need thereof.
  • the nucleic acid molecule may express the CDRs in an appropriate scaffold or domain, the variable domain, or the full length antibody.
  • the nucleic acid molecule may be comprised in a vector which allows for expression in a human or animal cell.
  • the nucleic acid molecule or vector may be formulated for administration with a pharmaceutically acceptable excipient and/or one or more therapeutically active agents as discussed above.
  • an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 100 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104.
  • the disclosure also provides an antigen binding protein as described herein comprising fucosylated glycans.
  • the disclosure also provides an antigen binding protein as described herein wherein the fucosylated glycans are selected from the group consisting of GO, G2, GOF, G2F, Gl, Man5, GIF and GIF'.
  • the disclosure also provides an antigen binding protein as described herein comprising non-fucosylated glycans.
  • the disclosure also provides an antigen binding protein as described herein wherein the non-fucosylated glycans are selected from the group consisting of GO, G2, Gl and Man5.
  • an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104.
  • Another aspect of the disclosure is an isolated nucleic acid encoding amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 100.
  • the disclosure also provides an isolated nucleic comprising the nucleic acid sequence shown in SEQ ID NO: 101.
  • Another aspect of the disclosure is an isolated nucleic acid encoding amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104.
  • the disclosure also provides an isolated nucleic acid comprising the nucleic acid sequence shown in SEQ ID NO: 105.
  • Another aspect of the disclosure is an isolated nucleic acid encoding amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102.
  • the disclosure also provides an isolated nucleic acid comprising the nucleic acid sequence shown in SEQ ID NO: 103.
  • the disclosure also provides a recombinant host cell as described herein wherein the FUT8 gene encoding alpha- 1,6-fucosyltransferase is present.
  • the disclosure also provides a recombinant host cell as described herein that is a CHOK1 cell.
  • CHOK1 includes a parental CHOK1 cell and cells of any cell lines derived from this parental cell line (e.g., by genetic engineering, clonal selection etc.).
  • the disclosure also provides a recombinant host cell as described herein wherein the FUT8 gene encoding alpha- 1,6-fucosyltransferase has been inactivated.
  • the disclosure also provides a method for the production of an antigen binding protein comprising the steps of: a) culturing a recombinant host cell comprising an expression vector comprising an isolated nucleic acid encoding an antibody heavy chain as described herein and comprising an isolated nucleic acid encoding an antibody light chain as described herein, wherein the FUT8 gene encoding alpha- 1,6-fucosyltransferase is active in the recombinant host cell; and b) recovering the antigen binding protein; whereby the antigen binding protein is produced.
  • the disclosure also provides a method for the production of an antigen binding protein comprising the steps of: a) culturing a recombinant host cell comprising an expression vector comprising an isolated nucleic acid encoding an antibody heavy chain as described herein and comprising an isolated nucleic acid encoding an antibody light chain as described herein, wherein the FUT8 gene encoding alpha- 1,6-fucosyltransferase has been inactivated in the recombinant host cell; and b) recovering the antigen binding protein; whereby the antigen binding protein is produced.
  • the disclosure also provides an antigen binding protein as described herein for use in treatment of a condition selected from the group consisting of breast cancer, ovarian cancer, prostate cancer, bladder cancer, pancreatic cancer, skin cancer, gastric cancer and melanoma.
  • One aspect of the disclosure is a method of treating a cancer in a subject comprising the steps of: a) identifying a subject with cancer; and b) administering a therapeutically effective amount of a first antigen binding protein which specifically binds to a peptide chain domain comprising amino acid residues 184-329 of SEQ ID NO: 21 and a second antigen binding protein which specifically binds to a peptide chain selected from the group consisting of PD-1 (programmed cell death 1 receptor or CD279), PDL-1 (programmed cell death 1 receptor ligand 1 or CD274), CTLA-4 (cytotoxic T-lymphocyte associated protein 4 or CD152), OX40 (tumor necrosis factor receptor superfamily member 4 or CD134), 4-1BB (CD137) and ICOS (inducible costimulator or CD278) to the subject, whereby the cancer in a subject is treated.
  • PD-1 programmeed cell death 1 receptor or CD279
  • PDL-1 programmeed cell death 1 receptor lig
  • Another aspect of the disclosure is any invention disclosed herein.
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO:
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO:
  • CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CDRL3 having the amino acid sequence shown in SEQ ID NO: 37 and iii) an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104; and c) administering a therapeutically effective amount of a second antigen binding protein that is a PD-1 inhibitor; whereby the cancer in a subject is treated
  • the disclosure also provides a method wherein the PD-1 inhibitor is selected from the group consisting of pembrolizumab (MK-3475; Merck and Company, Inc.; CAS 1374853-91- 4; Formula C6504H10004 1716O2036S46; Mol. mass aboutl46.3 kDa), nivolumab (Bristol-Myers Squibb/Ono; CAS number 946414-94-4; Formula C6362H9862 1712O1995S42; Mol. mass about 143.6 kDa), pidilizumab (CT-011; CureTech and Teva; CAS number 1310680-64-8; Formula C6424H9920 1704O2002S48; Mol. mass about 147.43 kDa) and AMP-514
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 34, ii) an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO: 35, CDRL2 having the amino acid sequence shown in SEQ
  • the disclosure also provides the method wherein the PDL-1 inhibitor is MEDI-4736 (AstraZeneca/Medlmmune), MPDL-3280A (Roche/Genentech/Chugai), BMS-936559 (Bristol-Myers Squibb) and MSB0010718C (Merck Serono).
  • the PDL-1 inhibitor is MEDI-4736 (AstraZeneca/Medlmmune), MPDL-3280A (Roche/Genentech/Chugai), BMS-936559 (Bristol-Myers Squibb) and MSB0010718C (Merck Serono).
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 34, ii) an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO:
  • CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CDRL3 having the amino acid sequence shown in SEQ ID NO: 37 and iii) an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104; and c) administering a therapeutically effective amount of a second antigen binding protein that is a CTLA-4 inhibitor; whereby the cancer in a subject is treated
  • CTLA-4 inhibitor is ipilimumab (Bristol-Myers Squibb; comprises the amino acid sequences as shown in SEQ ID NO: 113 and SEQ ID NO: 114) and tremelimumab (Pfizer; CAS number 745013-59-6; Formula C6500H9974N1726O2026S52; Mol. mass about 146380.472 Da).
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO:
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO:
  • CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CDRL3 having the amino acid sequence shown in SEQ ID NO: 37 and iii) an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104; and c) administering a therapeutically effective amount of a second antigen binding protein that is a OX40 agonist; whereby the cancer in a subject is treated
  • the OX40 agonist is selected from the group consisting of i) an antigen binding protein which specifically binds OX40 and comprises a CDRH1 amino acid sequence as shown in SEQ ID NO: 109, a CDRH2 amino acid sequence as shown in SEQ ID NO: 109, a CDRH3 amino acid sequence as shown in SEQ ID NO: 109, a CDRL1 amino acid sequence as shown in SEQ ID NO: 110, a CDRL2 amino acid sequence as shown in SEQ ID NO: 110, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 110, ii) an antigen binding protein comprising a heavy chain sequence having amino acid residue 20 through the carboxy terminal amino acid residue of the amino acid sequence shown in SEQ ID NO: 109 and a light chain sequence having amino acid residue 20 through the carboxy terminal amino acid residue of the amino acid sequence shown in SEQ ID NO: 110 and iii) RG7888 (Roche/Genentech), iv) MEDI
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO:
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRHl having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRLl having the amino acid sequence shown in SEQ ID NO:
  • CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CDRL3 having the amino acid sequence shown in SEQ ID NO: 37 and iii) an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104; and c) administering a therapeutically effective amount of a second antigen binding protein that is a 4- IBB agonist; whereby the cancer in a subject is treated.
  • a second antigen binding protein that is a 4- IBB agonist
  • the disclosure also provides a method wherein the 4- IBB agonist is PF-05082566 (Pfizer) and urelumab (BMS-663513, Bristol-Myers Squibb; CAS number 934823-49-1; Formula C 6 502H9972N 1712 0203oS44; Mol. mass about 145.8 kDa).
  • the 4- IBB agonist is PF-05082566 (Pfizer) and urelumab (BMS-663513, Bristol-Myers Squibb; CAS number 934823-49-1; Formula C 6 502H9972N 1712 0203oS44; Mol. mass about 145.8 kDa).
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 34, ii) an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO: 35, CDRL2 having the amino acid
  • the disclosure also provides a method wherein the ICOS agonist is selected from the group consisting of i) an antigen binding protein which specifically binds ICOS and comprises a CDRH1 amino acid sequence as shown in SEQ ID NO: 107, a CDRH2 amino acid sequence as shown in SEQ ID NO: 107, a CDRH3 amino acid sequence as shown in SEQ ID NO: 107, a CDRL1 amino acid sequence as shown in SEQ ID NO: 108, a CDRL2 amino acid sequence as shown in SEQ ID NO: 108, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 108 and ii) an antigen binding protein comprising a heavy chain sequence having amino acid residue 20 through the carboxy terminal amino acid residue of the amino acid sequence shown in SEQ ID NO: 107 and a light chain sequence having amino acid residue 20 through the carboxy terminal amino acid residue of the amino acid sequence shown in SEQ ID NO: 108.
  • an antigen binding protein comprising a heavy chain sequence having amino acid residue 20
  • Another aspect of the disclosure is a method of treating a HER3+ cancer in a subject comprising the steps of: a) identifying a subject with a HER3+ cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO:
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO:
  • CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CDRL3 having the amino acid sequence shown in SEQ ID NO: 37 and iii) an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104; and c) administering a therapeutically effective amount of lenalidomide ((RS)-3-(4-Amino-l-oxo l,3-dihydro-2H- isoindol- 2-yl)piperidine-2,6-dione); whereby the cancer in a subject is treated.
  • lenalidomide ((RS)-3-(4-Amino-l-oxo l,3-dihydro-2H- isoindol- 2-yl)piperidine-2,6-dione
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO:
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO:
  • CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CDRL3 having the amino acid sequence shown in SEQ ID NO: 37 and iii) an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104; c) administering a therapeutically effective amount of a second antigen binding protein that is a ipilimumab (comprises the amino acid sequences as shown in SEQ ID NO: 113 and SEQ ID NO: 114); and d) administering a therapeutically effective amount of a second antigen binding protein that is a pembrolizumab (MK-3475; Merck and Company, Inc.); whereby the cancer in a subject is treated.
  • MK-3475 pembrolizumab
  • Another aspect of the disclosure is a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21 ; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO:
  • an antigen binding protein which specifically binds a HER3 receptor and comprises CDRHl having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRLl having the amino acid sequence shown in SEQ ID NO:
  • CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CDRL3 having the amino acid sequence shown in SEQ ID NO: 37 and iii) an antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104; c) administering a therapeutically effective amount of a second antigen binding protein that is a ipilimumab (comprises the amino acid sequences as shown in SEQ ID NO: 113 and SEQ ID NO: 114); d) administering a therapeutically effective amount of a BRAF inhibitor; and e) administering a therapeutically effective amount of a second antigen binding protein that is a pembrolizumab (MK-3475; Merck and Company, Inc.); whereby the cancer in a subject is treated.
  • MK-3475 pembrolizumab
  • the disclosure also provides a method wherein the BRAF inhibitor is selected from the group consisting of vemurafenib (N-(3- ⁇ [5-(4-chlorophenyl)-lH-pyrrolo[2,3-b]pyridin-3- yl]carbonyl ⁇ -2,4-difluorophenyl)propane-l-sulfonamide), sorafenib (4-[4-[[4-chloro-3- (trifluoromethyl)phenyl]carbamoylamino]phenoxy]-N-methyl-pyridine-2-carboxamide), dabrafenib (N- ⁇ 3-[5-(2-aminopyrimidin-4-yl)-2-tert-butyl-l,3-thiazol-4-yl]-2-fluorophenyl ⁇ - 2,6-difluorobenzenesulfonamide) and encorafenib (Methyl [(2S)-l
  • the disclosure also provides a method wherein the BRAF inhibitor is dabrafenib and the method further comprises f) administering a therapeutically effective amount of trametinib (N-(3 - ⁇ 3 -Cyclopropyl-5 -[(2-fluoro-4-iodophenyl)amino] -6, 8-dimethyl -2,4,7- trioxo-3 ,4,6,7-tetrahydropyrido [4,3 -d]pyrimidin- 1 (2H)-yl ⁇ phenyl)acetamide) .
  • trametinib N-(3 - ⁇ 3 -Cyclopropyl-5 -[(2-fluoro-4-iodophenyl)amino] -6, 8-dimethyl -2,4,7- trioxo-3 ,4,6,7-tetrahydropyrido [4,3 -d]pyrimidin- 1 (2H)-yl ⁇ phenyl)acet
  • the disclosure also provides a pharmaceutical composition comprising the first antigen binding protein and second antigen binding protein of the disclosure.
  • the disclosure also provides the pharmaceutical composition for use in medicine.
  • the disclosure also provides a pharmaceutical composition for treating cancer.
  • the disclosure also provides a method wherein the cancer is breast cancer, ovarian cancer, prostate cancer, bladder cancer, pancreatic cancer, skin cancer, gastric cancer, melanoma, lung cancer, renal cancer, liver cancer, head cancer, neck cancer and cervical cancer.
  • the disclosure also provides a method wherein the cancer is selected from the group consisting of a carcinoma, a renal carcinoma, an adenocarcinoma and a renal
  • the disclosure also provides pharmaceutical composition for treating cancer wherein the cancer is breast cancer, ovarian cancer, prostate cancer, bladder cancer, pancreatic cancer, skin cancer, gastric cancer, melanoma, lung cancer, renal cancer, liver cancer, head cancer, neck cancer and cervical cancer.
  • the disclosure also provides a pharmaceutical composition comprising the first antigen binding protein of the disclosure and lenalidomide. Aspects of the disclosure include:
  • An antigen binding protein comprising a heavy chain variable region having at least one CDR with greater than 75% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 3, and SEQ ID NO: 4; and/or a light chain variable region having at least one CDR with 75% or greater sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 6, SEQ ID NO: 7, and SEQ ID NO: 8.
  • the antigen binding protein of 1 wherein the antigen binding protein is selected from the group consisting of a chimeric antibody and a humanized antibody.
  • the antigen binding protein of 2 comprising a heavy chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 2, the CDR amino acid sequence shown in SEQ ID NO: 3, and the CDR amino acid sequence shown in SEQ ID NO: 4; and a light chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 6, the CDR amino acid sequence shown in SEQ ID NO: 7, and the CDR amino acid sequence shown in SEQ ID NO: 8.
  • the antigen binding protein of 3 which specifically binds to a peptide chain domain comprising amino acid residues 184 to 329 of SEQ ID NO: 21.
  • An antigen binding protein comprising a heavy chain variable region having at least one CDR with greater than 75% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 23, SEQ ID NO: 24, and SEQ ID NO: 25; and/or a light chain variable region having at least one CDR with 75% or greater sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 27, SEQ ID NO: 28, and SEQ ID NO: 29.
  • the antigen binding protein of 6 comprising a heavy chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 23, the CDR amino acid sequence shown in SEQ ID NO: 24, and the CDR amino acid sequence shown in SEQ ID NO: 25; and/or a light chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 27, the CDR amino acid sequence shown in SEQ ID NO: 28, and the CDR amino acid sequence shown in SEQ ID NO: 29.
  • the antigen binding protein of 7 which specifically binds to a peptide chain domain comprising amino acid residues 184 to 329 of SEQ ID NO: 21.
  • An antigen binding protein comprising a heavy chain variable region having at least one CDR with greater than 75% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 45, SEQ ID NO: 46, and SEQ ID NO: 47; and/or a light chain variable region having at least one CDR with 75% or greater sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 49, SEQ ID NO: 50, and SEQ ID NO: 51.
  • the antigen binding protein of 9 wherein the antigen binding protein is selected from the group consisting of a chimeric antibody and a humanized antibody.
  • the antigen binding protein of 10 comprising a heavy chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 45, the CDR amino acid sequence shown in SEQ ID NO: 46, and the CDR amino acid sequence shown in SEQ ID NO: 47; and/or a light chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 49, the CDR amino acid sequence shown in SEQ ID NO: 50, and the CDR amino acid sequence shown in SEQ ID NO: 51.
  • the antigen binding protein of 11 which specifically binds to a peptide chain domain comprising amino acid residues 330 to 495 of SEQ ID NO: 21.
  • An antigen binding protein comprising a heavy chain variable region having at least one CDR with greater than 75% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 31, SEQ ID NO: 32, and SEQ ID NO: 33; and/or a light chain variable region having at least one CDR with 75% or greater sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 35, SEQ ID NO: 36, and SEQ ID NO: 37.
  • the antigen binding protein of 13 wherein the antigen binding protein is selected from the group consisting of a chimeric antibody and a humanized antibody.
  • the antigen binding protein of 14 comprising a heavy chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 31, the CDR amino acid sequence shown in SEQ ID NO: 32, and the CDR amino acid sequence shown in SEQ ID NO: 33; and a light chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 35, the CDR amino acid sequence shown in SEQ ID NO: 36, and the CDR amino acid sequence shown in SEQ ID NO: 37.
  • the antigen binding protein of 15 which specifically binds to a peptide chain domain comprising amino acid residues 330 to 495 of SEQ ID NO: 21.
  • An antigen binding protein comprising a heavy chain variable region having at least one CDR with greater than 75% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 10, SEQ ID NO: 11, and SEQ ID NO: 12; and/or a light chain variable region having at least one CDR with 75% or greater sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 12, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 18, SEQ ID NO: 19, and SEQ ID NO: 20.
  • the antigen binding protein of 18 comprising a heavy chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 10, the CDR amino acid sequence shown in SEQ ID NO: 11, and the CDR amino acid sequence shown in SEQ ID NO: 12; and either a light chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 12, the CDR amino acid sequence shown in SEQ ID NO: 7, and the CDR amino acid sequence shown in SEQ ID NO: 8 or a light chain variable region having the CDR amino acid sequence shown in SEQ ID NO: 18, the CDR amino acid sequence shown in SEQ ID NO: 19, and the CDR amino acid sequence shown in SEQ ID NO: 20.
  • the antigen binding protein of 19 which inhibits formation of a dimer comprising the amino acid sequence shown in SEQ ID NO: 21.
  • An antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 1 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 5.
  • An antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 22 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 26.
  • An antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 44 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 48.
  • An antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 34.
  • An antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 9 and a light chain variable region sequence selected from the group consisting of the amino acid sequence shown in SEQ ID NO: 13 and the amino acid sequence shown in SEQ ID NO: 17.
  • An antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 57.
  • the isolated nucleic acid of 27 comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 38 and the nucleic acid sequence shown in SEQ ID NO: 39.
  • the isolated nucleic acid of 27 comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 59 and the nucleic acid sequence shown in SEQ ID NO: 60.
  • the isolated nucleic acid of 30 comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 40 and the nucleic acid sequence shown in SEQ ID NO: 41.
  • the isolated nucleic acid of 32 comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 52 and the nucleic acid sequence shown in SEQ ID NO: 53.
  • the isolated nucleic acid of 32 comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 61 and the nucleic acid sequence shown in SEQ ID NO: 62.
  • the isolated nucleic acid of 35 comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 42 and the nucleic acid sequence shown in SEQ ID NO: 43.
  • the isolated nucleic acid of 37 comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 42 and the nucleic acid sequence shown in SEQ ID NO: 58.
  • the isolated nucleic acid of 39 comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 54, the nucleic acid sequence shown in SEQ ID NO: 55 and the nucleic acid sequence shown in SEQ ID NO: 56.
  • the isolated nucleic acid of 39 comprising at least one nucleic acid selected from the group consisting of the nucleic acid sequence shown in SEQ ID NO: 63, the nucleic acid sequence shown in SEQ ID NO: 64 and the nucleic acid sequence shown in SEQ ID NO: 65.
  • An expression vector comprising the isolated nucleic acid as in any one of 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 and 41.
  • a recombinant host cell comprising an expression vector comprising the isolated nucleic acid as in any one of 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 and 41.
  • a method for the production of an antigen binding protein comprising the step of culturing a recombinant host cell comprising an expression vector comprising the isolated nucleic acid as in any one of 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 and 41; and recovering the antigen binding protein.
  • a pharmaceutical composition comprising the antigen binding protein as in any one of 1, 5, 9, 13, 17, 21, 22, 23, 24, 25 and 26; and a pharmaceutically acceptable carrier.
  • a method of treating cancer in a subject comprising the step of administering a therapeutically effective amount of the antigen binding protein as in any one of 1, 5, 9, 13, 17, 21, 22, 23, 24, 25 and 26 to the subject, whereby the cancer in the subject is treated.
  • a method of treating cancer in a subject comprising the steps of:
  • identifying a subject with a cancer selected from the group consisting of breast cancer, ovarian cancer, prostate cancer, bladder cancer, pancreatic cancer, skin cancer, gastric cancer and melanoma; and
  • a method of treating cancer in a subject comprising the steps of:
  • identifying a subject with a cancer selected from the group consisting of breast cancer, ovarian cancer, prostate cancer, bladder cancer, pancreatic cancer, skin cancer, gastric cancer and melanoma; and
  • the method of 50 further comprising the step of:
  • An antigen binding protein which specifically binds to a peptide chain domain comprising amino acid residues 184 to 329 of SEQ ID NO: 21.
  • the antigen binding protein of 56 wherein the antigen binding protein is selected from the group consisting of a chimeric antibody and a humanized antibody.
  • a method for the production of an antigen binding protein comprising the steps of:
  • a method for the production of an antigen binding protein comprising the steps of:
  • a method for the production of an antigen binding protein comprising the steps of:
  • a method of treating a pre-cancerous condition in a subject comprising the step of administering a therapeutically effective amount of the antigen binding protein as in any one of 1, 5, 9, 13, 17, 21, 22, 23, 24, 25 and 26 to the subject, whereby the pre-cancerous condition in the subject is treated.
  • a method of treating a pre-cancerous condition in a subject comprising the steps of:
  • a method of treating a pre-cancerous condition in a subject comprising the steps of:
  • An antigen binding protein which specifically binds a HER3 receptor and comprises CDRH3 having the amino acid sequence shown in SEQ ID NO: 2.
  • An antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 2, CDRH2 having the amino acid sequence shown in SEQ ID NO: 3, CDRH3 having the amino acid sequence shown in SEQ ID NO: 4, CDRL1 having the amino acid sequence shown in SEQ ID NO: 6, CDRL2 having the amino acid sequence shown in SEQ ID NO: 7, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 8. 77.
  • An antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 23, CDRH2 having the amino acid sequence shown in SEQ ID NO: 24, CDRH3 having the amino acid sequence shown in SEQ ID NO: 25, CDRL1 having the amino acid sequence shown in SEQ ID NO: 27, CDRL2 having the amino acid sequence shown in SEQ ID NO: 28, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 29.
  • An antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO: 35, CDRL2 having the amino acid sequence shown in SEQ ID NO: 36, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 37.
  • An antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 45, CDRH2 having the amino acid sequence shown in SEQ ID NO: 46, CDRH3 having the amino acid sequence shown in SEQ ID NO: 47, CDRL1 having the amino acid sequence shown in SEQ ID NO: 49, CDRL2 having the amino acid sequence shown in SEQ ID NO: 50, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 51.
  • An antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 10, CDRH2 having the amino acid sequence shown in SEQ ID NO: 11, CDRH3 having the amino acid sequence shown in SEQ ID NO: 12, CDRL1 having the amino acid sequence shown in SEQ ID NO: 14, CDRL2 having the amino acid sequence shown in SEQ ID NO: 15, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 16.
  • An antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 10, CDRH2 having the amino acid sequence shown in SEQ ID NO: 11, CDRH3 having the amino acid sequence shown in SEQ ID NO: 12, CDRL1 having the amino acid sequence shown in SEQ ID NO: 18, CDRL2 having the amino acid sequence shown in SEQ ID NO: 19, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 20.
  • a method of treating cancer in a mammal comprising administering a therapeutically effective amount of an antigen binding protein as in any one of 1, 5, 9, 13, 17, 21, 22, 23, 24, 25 and 26.
  • the method of 84 wherein the mammal is a human.
  • An antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 100 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104.
  • the antigen binding protein of 87 comprising fucosylated glycans.
  • the antigen binding protein of 88 wherein the fucosylated glycans are selected from the group consisting of GO, G2, G0F, G2F, Gl, Man5, GIF and GIF' .
  • the antigen binding protein of 87 comprising non-fucosylated glycans.
  • the antigen binding protein of 90 wherein the non-fucosylated glycans are selected from the group consisting of GO, G2, Gl and Man5.
  • An antigen binding protein comprising a heavy chain sequence having amino acid residues 20 to 466 of the amino acid sequence shown in SEQ ID NO: 102 and a light chain sequence having amino acid residues 20 to 238 of the amino acid sequence shown in SEQ ID NO: 104.
  • the antigen binding protein of 92 comprising fucosylated glycans.
  • the antigen binding protein of 93 wherein the fucosylated glycans are selected from the group consisting of GO, G2, G0F, G2F, Gl, Man5, GIF and GIF' .
  • the antigen binding protein of 92 comprising non-fucosylated glycans.
  • the antigen binding protein of 95 wherein the non-fucosylated glycans are selected from the group consisting of GO, G2, Gl and Man5.
  • the isolated nucleic acid of 99 comprising the nucleic acid sequence shown in SEQ ID NO: 105.
  • the isolated nucleic acid of 101 comprising the nucleic acid sequence shown in SEQ ID NO: 103. 103.
  • An expression vector comprising the isolated nucleic acid as in any one of 97, 98, 99, 100, 101 and 102.
  • a recombinant host cell comprising an expression vector comprising the isolated nucleic acid as in any one of 97, 98, 99, 100, 101 and 102.
  • the recombinant host cell of 105 that is a CHOK1 cell.
  • the recombinant host cell of 107 that is a CHOK1SV cell.
  • a pharmaceutical compositing comprising the antigen binding protein as in any one of 87, 88, 89, 90, 91, 92, 93, 94, 95 and 96; and a pharmaceutically acceptable carrier.
  • a method of treating cancer in a subject comprising the step of administering a therapeutically effective amount of the antigen binding protein as in any one of 87, 88, 89, 90, 91, 92, 93, 94, 95 and 96 to the subject, whereby the cancer in the subject is treated.
  • a method of treating cancer in a subject comprising the steps of: a) identifying a subject with a cancer selected from the group consisting of breast cancer, ovarian cancer, prostate cancer, bladder cancer, pancreatic cancer, skin cancer, gastric cancer and melanoma; and b) administering a therapeutically effective amount of the antigen binding protein as in any one of 87, 88, 89, 90, 91, 92, 93, 94, 95 and 96 to the subject, whereby the cancer in a subject is treated.
  • the method of 111 further comprising the step of: c) determining the cancer expresses a protein comprising amino acid residues 330 to 495 of SEQ ID NO: 21.
  • a method for the production of an antigen binding protein comprising the steps of: a) culturing a recombinant host cell comprising an expression vector comprising an isolated nucleic acid as in 97 or 98 and comprising an isolated nucleic acid as in 97 or 100, wherein the FUT8 gene encoding alpha- 1,6-fucosyltransferase is active in the recombinant host cell; and b) recovering the antigen binding protein;
  • a method for the production of an antigen binding protein comprising the steps of: a) culturing a recombinant host cell comprising an expression vector comprising an isolated nucleic acid as in 97 or 98 and comprising an isolated nucleic acid as in 97 or 100, wherein the FUT8 gene encoding alpha- 1,6-fucosyltransferase has been inactivated in the recombinant host cell; and b) recovering the antigen binding protein;
  • An antigen binding protein produced by the method of 118.
  • a method for the production of an antigen binding protein comprising the steps of: a) culturing a recombinant host cell comprising an expression vector comprising an isolated nucleic acid as in 99 or 100 and comprising an isolated nucleic acid as in 101 and 102, wherein the FUT8 gene encoding alpha- 1,6-fucosyltransferase is active in the recombinant host cell; and b) recovering the antigen binding protein;
  • a method for the production of an antigen binding protein comprising the steps of: a) culturing a recombinant host cell comprising an expression vector comprising an isolated nucleic acid as in 99 or 100 and comprising an isolated nucleic acid as in 101 and 102, wherein the FUT8 gene encoding alpha- 1,6-fucosyltransferase has been inactivated in the recombinant host cell; and b) recovering the antigen binding protein; whereby the antigen binding protein is produced.
  • An antigen binding protein produced by the method of 124.
  • a method of treating a pre-cancerous condition in a subject comprising the step of administering a therapeutically effective amount of the antigen binding protein as in any one of 87, 88, 89, 90, 91, 92, 93, 94, 95 and 96 to the subject, whereby the pre-cancerous condition in the subject is treated.
  • a method of treating a pre-cancerous condition in a subject comprising the steps of: a) identifying a subject with a pre-cancerous condition; and b) administering a therapeutically effective amount of the antigen binding protein as in any one of 87, 88, 89, 90, 91, 92, 93, 94, 95 and 96 to the subject, whereby the pre-cancerous condition in a subject is treated.
  • the method of 128 further comprising the step of: c) administering a fluid to the subject. 130.
  • the method of 128 further comprising the step of: c) determining the cancer expresses a protein comprising amino acid residues 330 to 495 of SEQ ID NO: 21.
  • a method of treating cancer in a mammal comprising administering a therapeutically effective amount of an antigen binding protein as in any one of 87, 88, 89, 90, 91, 92, 93, 94, 95 and 96.
  • 136 The method of either 134 or 135 wherein the cancer is selected from breast cancer, ovarian cancer, prostate cancer, bladder cancer, pancreatic cancer, skin cancer, gastric cancer and melanoma.
  • a method of treating a cancer in a subject comprising the steps of: a) identifying a subject with cancer; and b) administering a therapeutically effective amount of a first antigen binding protein which specifically binds to a peptide chain domain comprising amino acid residues 184-329 of SEQ ID NO: 21 and a second antigen binding protein which specifically binds to a peptide chain selected from the group consisting of PD-1 (programmed cell death 1 receptor or CD279), PDL-1 (programmed cell death 1 receptor ligand 1 or CD274), CTLA-4 (cytotoxic T-lymphocyte associated protein 4 or CD 152), OX40 (tumor necrosis factor receptor superfamily member 4 or CD134), 4-1BB (CD137) and ICOS (inducible costimulator or CD278) to the subject, whereby the cancer in a subject is treated.
  • PD-1 programmeed cell death 1 receptor or CD279
  • PDL-1 programmeed cell death 1 receptor ligand 1 or CD274
  • a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 34, ii) an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO: 35, CDRL2 having the amino acid sequence shown in SEQ ID NO:
  • PD-1 inhibitor is selected from the group consisting of pembrolizumab (MK-3475; Merck and Company, Inc.; CAS 1374853-91-4; Formula C6504H10004N1716O2036S46; Mol. mass aboutl46.3 kDa), nivolumab (Bristol-Myers Squibb/Ono; CAS number 946414-94-4; Formula C6362H9862N1712O1995S42; Mol. mass about 143.6 kDa), pidilizumab (CT-011; CureTech and Teva; CAS number 1310680-64-8; Formula C6424H9920N1704O2002S48; Mol. mass about 147.43 kDa) and AMP-514
  • a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 34, ii) an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO: 35, CDRL2 having the amino acid sequence shown in SEQ ID NO: 36,
  • a method of treating a HER3 cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 34, ii) an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO: 35, CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • CTLA-4 inhibitor is ipilimumab (Bristol- Myers Squibb; comprises the amino acid sequences as shown in SEQ ID NO: 113 and SEQ ID NO: 114) and tremelimumab (Pfizer; CAS number 745013-59-6; Formula
  • a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 34, ii) an antigen binding protein which specifically binds a HER3 receptor and comprises CDRHl having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRLl having the amino acid sequence shown in SEQ ID NO: 35, CDRL2 having the amino acid sequence shown in SEQ ID NO:
  • OX40 agonist is selected from the group consisting of i) an antigen binding protein which specifically binds OX40 and comprises a CDRH1 amino acid sequence as shown in SEQ ID NO: 109, a CDRH2 amino acid sequence as shown in SEQ ID NO: 109, a CDRH3 amino acid sequence as shown in SEQ ID NO: 109, a CDRL1 amino acid sequence as shown in SEQ ID NO: 110, a CDRL2 amino acid sequence as shown in SEQ ID NO: 110, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 110, ii) an antigen binding protein comprising a heavy chain sequence having amino acid residue 20 through the carboxy terminal amino acid residue of the amino acid sequence shown in SEQ ID NO: 109 and a light chain sequence having amino acid residue 20 through the carboxy terminal amino acid residue of the amino acid sequence shown in SEQ ID NO: 110 and iii) RG7888 (Roche/Genentech), iv) MED
  • a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 34, ii) an antigen binding protein which specifically binds a HER3 receptor and comprises CDRHl having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRLl having the amino acid sequence shown in SEQ ID NO: 35, CDRL2 having the amino acid sequence shown in SEQ ID NO:
  • a method of treating a HER3 cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 34, ii) an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO: 35, CDRL2 having the amino acid sequence shown in SEQ ID NO: 36
  • the method of 142 wherein the ICOS agonist is selected from the group consisting of i) an antigen binding protein which specifically binds ICOS and comprises a CDRH1 amino acid sequence as shown in SEQ ID NO: 107, a CDRH2 amino acid sequence as shown in SEQ ID NO: 107, a CDRH3 amino acid sequence as shown in SEQ ID NO: 107, a CDRL1 amino acid sequence as shown in SEQ ID NO: 108, a CDRL2 amino acid sequence as shown in SEQ ID NO: 108, and CDRL3 having the amino acid sequence shown in SEQ ID NO: 108 and ii) an antigen binding protein comprising a heavy chain sequence having amino acid residue 20 through the carboxy terminal amino acid residue of the amino acid sequence shown in SEQ ID NO: 107 and a light chain sequence having amino acid residue 20 through the carboxy terminal amino acid residue of the amino acid sequence shown in SEQ ID NO: 108.
  • a method of treating a HER3+ cancer in a subject comprising the steps of: a) identifying a subject with a HER3+ cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 34, ii) an antigen binding protein which specifically binds a HER3 receptor and comprises CDRHl having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO: 35, CDRL2 having the amino acid sequence shown in SEQ ID NO:
  • a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 34, ii) an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO: 35, CDRL2 having the amino acid sequence shown in SEQ ID NO:
  • a method of treating a HER3 + cancer in a subject comprising the steps of: a) identifying a subject with a HER3 + cancer by determining the cancer expresses a first protein comprising amino acid residues 184 to 329 of SEQ ID NO: 21; and b) administering a therapeutically effective amount of a first antigen binding protein selected from the group consisting of i) an antigen binding protein comprising a heavy chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 30 and a light chain variable region sequence having the amino acid sequence shown in SEQ ID NO: 34, ii) an antigen binding protein which specifically binds a HER3 receptor and comprises CDRH1 having the amino acid sequence shown in SEQ ID NO: 31, CDRH2 having the amino acid sequence shown in SEQ ID NO: 32, CDRH3 having the amino acid sequence shown in SEQ ID NO: 33, CDRL1 having the amino acid sequence shown in SEQ ID NO: 35, CDRL2 having the amino acid sequence shown in SEQ ID NO:
  • vemurafenib N-(3- ⁇ [5-(4-chlorophenyl)-lH-pyrrolo[2,3-b]pyridin-3- yl]carbonyl ⁇ -2,4-difluorophenyl)propane-l-sulfonamide
  • sorafenib (4-[4-[[4-chloro-3- (trifluoromethyl)phenyl]carbamoylamino]phenoxy]-N-methyl-pyridine-2-carboxamide)
  • dabrafenib N- ⁇ 3-[5-(2-aminopyrimidin-4-yl)-2-tert-butyl-l,3-thiazol-4-yl]-2-fluorophenyl ⁇ - 2,6-difluorobenzenesulfonamide
  • encorafenib Method for 154 wherein the BRAF inhibitor is selected from the group consisting of vemurafenib (N-(3-
  • trametinib N-(3- ⁇ 3- Cyclopropyl-5-[(2 -fluoro-4-iodophenyl)amino]-6,8-dimethyl-2,4,7-trioxo-3 ,4,6,7- tetrahydropyrido [4,3 -d]pyrimidin- 1 (2H)-yl ⁇ phenyl)acetamide
  • a pharmaceutical composition comprising the first antigen binding protein and second antigen binding protein of Claims 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155 or 156.
  • a pharmaceutical composition for treating cancer according to the method of 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155 or 156.
  • a pharmaceutical composition as defined in 157 for use in the treatment of cancer is defined in 157.
  • the pharmaceutical composition of 157 wherein the cancer is breast cancer, ovarian cancer, prostate cancer, bladder cancer, pancreatic cancer, skin cancer, gastric cancer, melanoma, lung cancer, renal cancer, liver cancer, head cancer, neck cancer and cervical cancer.
  • the pharmaceutical composition of 157 wherein the cancer is selected from the group consisting of a carcinoma, a renal carcinoma, an adenocarcinoma and a renal adenocarcinoma.
  • a pharmaceutical composition comprising the first antigen binding protein and of 152 and lenalidomide.
  • a pharmaceutical composition as defined in 165 for use in the treatment of cancer is defined in 165.
  • the pharmaceutical composition of 165 wherein the cancer is breast cancer, ovarian cancer, prostate cancer, bladder cancer, pancreatic cancer, skin cancer, gastric cancer, melanoma, lung cancer, renal cancer, liver cancer, head cancer, neck cancer and cervical cancer.
  • the pharmaceutical composition of 167 wherein the cancer is selected from the group consisting of a carcinoma, a renal carcinoma, an adenocarcinoma and a renal adenocarcinoma.
  • the murine 1D9 antibody (M5.1D9.1F5), the murine 15D5 antibody
  • the objective of this example was to determine the affinities of the murine 1D9 antibody, the murine 15D5 antibody, the chimeric 1D9 antibody and the chimeric 15D5 antibody.
  • Mouse monoclonal antibodies were analysed using rabbit anti-mouse (RAM) IgG (GE Healthcare BR- 1008-38) covalently coupled to a BIACORETM CM5 chip (GE HEalthcare BR- 1000- 14) by primary amine chemistry (NHS/EDC activated) (GE Healthcare amine coupling kit BR-1000-50). Chimeric and humanized competitor monoclonal antibodies were analyzed using anti-human, Fc specific monoclonal (GE Healthcare BR-1008-39) similarly coupled. Each chip was also prepared with a reference surface to which no capture reagent antibody is coupled. Sensorgrams for cycles run with differing analyte concentrations are acquired for kinetic analysis.
  • RAM rabbit anti-mouse
  • BIACORETM CM5 chip GE HEalthcare BR- 1000- 14
  • NHS/EDC activated primary amine chemistry
  • Chimeric and humanized competitor monoclonal antibodies were analyzed using anti-human, Fc specific monoclonal (GE Healthcare BR
  • a cycle consists of capturing the monoclonal on the surface, a short stabilization period with flowing run buffer followed by binding of a defined concentration of analyte (ECD or sub-domain protein). Injection of analyte for surface binding (3-4 minutes) yields the association part of curve. This is followed by buffer only flow (3-4minutes) which allows recording of dissociation data.
  • the cycle is then finished and injection of capture kit supplied regeneration solution (a mild acidic solution for RAM and 3M MgCl 2 for anti-human captures) removes the captured antibody/analyte, but does not significantly affect the capability of the capture antibody to perform another capture of monoclonal for subsequent cycles.
  • capture kit supplied regeneration solution a mild acidic solution for RAM and 3M MgCl 2 for anti-human captures
  • the general method for affinity analysis is as follows. First, chips were prepared and tested for reasonance units (RU) captured for several monoclonal antibody concentrations.
  • RU reasonance units
  • I l l Kinetic cycles were then run in which monoclonal antibody was captured to a level of approximately 100RU, analyte protein was allowed to bind then dissociate and the surface was regenerated to remove all but covalently coupled protein.
  • RAM chips were regenerated with capture kit supplied lOOmM glycine pH1.7 and anti-human chips with capture kit supplied 3M MgC ⁇ . A series of these cycles are run at 6 different concentrations of analyte protein (usually 256nM, 128nM, 64nM, 32nM, 16nM and 8nM).
  • a mock coupled surface provides a reference which is subtracted from the specific antibody -analyte RU data in run to eliminate buffer artifacts. Double referencing was performed for some runs by subtracting a buffer only cycle from analyte containing cycle data for each concentration in the set of kinetic curves. Resulting curve data are globally fitted to the 1 : 1 Langmuir model using BIAEVALUATIONTM Software (v.3.2).
  • the monoclonal murine 1D9 antibody and murine 15D5 antibody were generated against the human HER3 extracellular domain.
  • the murine 1D9 antibody antibody binds to the full-length, human HER3 ECD and sub-domain 3 of the human HER3 ECD.
  • the murine 15D5 antibody binds to the full-length, human HER3 ECD and sub-domain 2 of the human HER3 ECD.
  • Nanomolar and subnanomolar affinities of all antibodies were determined for interaction with the full-length, human HER3 ECD and select human HER3 ECD sub- domains. Similar overall affinities (KD) are seen for both the murine 1D9 antibody and the murine 15D5 antibodies with the murine 1D9 antibody antibody having a faster on (ka) and off rate (kd).
  • the murine 15D5 antibody has been demonstrated to bind to sub-domains 2, 1- 2 and 2-3 of the human HER3 ECD, but not to sub-domains 1, 3 or 4 by immunoassay and competitive immunocytochemisry.
  • BIACORETM analysis shows an augmented affinity for these portions of the HER3 ECD (i.e., sub-domains 2, 1-2 and 2-3 of the human HER3 ECD) relative to the full-length, human HER3 ECD (sub-domains 1-4).
  • This effect is seen with all three sub-domain 2 containing human HER3 ECD protein constructs (D2, Dl-2 and D2-3) and, without wishing to be bound by theory, it is believed this may be due to a greater accessibility of the epitope within domain 2 in the smaller sub-domain proteins.
  • the murine 15D5 antibody has greater affinity for an open conformation of the HER3 receptor. This open conformation has been shown to be the state when the receptor is engaging heregulin ligand.
  • the chimeric 15D5 antibody and the chimeric 1D9 antibody retain similar affinity to the parent murine 1D9 antibody and murine 15D5 antibodies.
  • Example 2 X-ray crystallographic analysis was coupled with in silico modelling to predict the binding interfaces for the murine 1D9 antibody and its variants. These analyses also provided mechanistic insight into the functional neutralization observed with the murine 1D9 antibody, and facilitated rational antibody maturation.
  • a high resolution (3.0 A) structure of a complex comprising a murine 1D9 antibody derived Fab bound to domain III of the human HER3 ECD was established. To do this, domain III of the human HER3 ECD and the murine 1D9 antibody were expressed in CHO cells and purified by affinity chromatography as well as size exclusion chromatography. The Fab fragment of the murine 1D9 antibody was generated by papain cleavage using standard methods.
  • the complex comprising a murine 1D9 antibody derived Fab bound to domain III of the human HER3 ECD was generated by mixing 1 : 1.2 molar ratio of the murine 1D9 antibody derived Fab with domain III of the human HER3 ECD. This protein mixture was then concentrated and crystallized using the hanging drop vapor diffusion method. X-ray diffraction data were collected at the Advanced Photon Source in the Argonne National Laboratory. Diffraction data were indexed and scaled using HKL2000 software (HKL Research, Inc.). The structure was determined by molecular replacement in the program X-PLOR. The initial molecular replacement solution produced was then subjected to multiple rounds of molecular dynamics refinement in CNS and rebuilding with the program WINCOOT. An atomic coordinate file for the complex comprising the murine 1D9 derived Fab bound to domain III of the human HER3 ECD was then produced and the resulting structure was analyzed.
  • the epitope on domain III of the human HER3 ECD domain III comprises Ile346, Asn350, Gly351, Asp352, Pro353, Trp354, His355, Lys356, Ile357, Pro358 and Ala359 of SEQ ID NO: 66 which can be found in a fragment comprising amino acid residues 20 to 643 of SEQ ID NO: 21. See Table 7. The contacts between interacting residues are described in Table 7 and Figure 55.
  • Trp354 [VL CDR1 His31 (27D);VL CDR1 Tyr37 (32); VL CDR3 Gly96 (91); VL CDR3 TrplOl (96); VH CDR3 Leu 100 (96); VH CDR3 AlalOl (97); VH CDR3 Glyl02 (98); VH CDR3 Thrl03 (99)]
  • VL Framework 1 Aspl (1)
  • VL CDR1 His31 (27D), Ser32 (27E), Tyr37 (32)
  • VL CDR3 Gly96 (91), Ser97 (92), His98 (93), Val99 (94), ProlOO (95), TrplOl (96)
  • VH CDR1 Trp33 (33)
  • VH CDR2 Val50 (50), Asp52 (52), Asp55 (54), Tyr57 (56), His59 (58)
  • VH CDR3 Leu 100 (96), AlalOl (97), Glyl02 (98), Thrl03 (99)
  • the murine 1D9 antibody Fab fragment binds exclusively to domain III of the human HER3 ECD and covers an epitope that partially overlaps with the heregulin binding site present in the open conformation of the HER3 ECD.
  • the murine 1D9 antibody Fab can bind the HER3 ECD when it is in the closed conformation to sterically preventing the receptor from adopting the extended conformation required for dimerization.
  • the murine 1D9 antibody Fab is belived to produce its effects, in part, by preventing domain 1 of the human HER3 ECD from adopting the conformation required for dimerization. It is further believed, without wishing to be limted by theory, that the structural effects described here contribute to the potent inhibition of HER3 activity produced by the murine 1D9 antibody, and its variants.
  • the search procedure is repeated from different random starting orientations to create 10 5 structures, which are then ranked using an energy function dominated by van der Waals interactions, an implicit solvation model and an orientation-dependent hydrogen bonding potential.
  • the top 1000 decoys passing a score cutoff were retained.
  • unbound rotamer conformations were included in the rotamer library and gradient-based minimization on the side-chain torsion angles were used.
  • the 200 best-scoring decoys at the end of this high-resolution search are clustered on the basis of pair-wise root mean square deviation (rmsd) using a hierarchical clustering algorithm. Structures within a 2.5 A clustering threshold are designated as a set, and the lowest-scoring decoy within the set represents the cluster.
  • the resulting model of the murine 15D5 antibody bound to the human HER3 ECD predicts this antibody binds the HER3 ECD in the open conformation and creates steric hindrance near the dimerization arm. Without wishing to be limited by theory, this suggests the murine 15D5 antibody blocks HER3 dimerization.
  • a series of humanized RR variants of the murine 1D9 antibody and murine 15D5 antibody were generated and expressed using molecular biology techniques. These antibodies were then subjected to BIACORETM analysis for binding to the full-length human HER3 extracellular domain (ECD).
  • the objective of this example was to determine the affinities of the humanized variants of the murine 1D9 and 15D5 antibodies.
  • the humanized variants were the 1D9 H6L2 RR antibody (comprising SEQ ID NO: 30 and SEQ ID NO: 57), 1D9 H0L7 RR antibody (comprising SEQ ID NO: 67 and SEQ ID NO: 85), 1D9 H2L2 RR antibody (comprising SEQ ID NO: 71 and SEQ ID NO: 57), 1D9 H6L6 RR antibody (comprising SEQ ID NO: 38 and SEQ ID NO: 83), 1D9 H6L3 RR antibody (comprising SEQ ID NO: 30 and SEQ ID NO: 77), 1D9 H3L6 RR antibody (comprising SEQ ID NO: 73 and SEQ ID NO: 83), 1D9 H0L9 RR antibody (comprising SEQ ID NO: ).
  • BIACORETM 3000 The binding kinetics of these antibodies for was assessed using a BIACORETM 3000.
  • Antibodies were captured on a CM5 biosensor chip to which an immobilized anti-human IgG (Fc specific) BIACORETM (GE Healthcare cat# BR-1008-39) monoclonal antibody had been conjugated using supplied coupling buffer (9000 RU).
  • Full-length human HER3 ECD concentrations were injected for 120s at a flow rate of 30ul/min.
  • Biosensor chips were regenerated as described in Example 1. Kinetics were determined by global fitting of data to the 1 : 1 Langmuir model using BIACORETM Evaluation software. Analytical runs were carried out at 25 C using HBS-EP as the running buffer.
  • BIAcore Kinetic run cycle steps buffer, 512nM HER3 ECD, 256nM HER3 ECD, 128nM HER3 ECD, 64 nM HER3 ECD, 32 nM HER3 ECD and 16nM HER3 ECD. Buffer cycle and double referencing were performed as described in Example 1 ; and
  • RR antibody H6L2
  • humanized 15D5 antibody H4Ll
  • the humanized 1D9 antibody, the humanized 1D9 Fc disabled antibody, the humanized 1D9 AccretaMab ® antibody and the humanized 1D9 POTELLIGENT ® antibody were generated and expressed using molecular biology techniques. These antibodies were then subjected to BIACORETM analysis for binding to the full-length human HER3 extracellular domain (ECD), the full-length rat HER3 extracellular domain (ECD) and full- length cynomolgus monkey HER3 extracellular domain (ECD) as indicated below.
  • the objective of this example was to determine the affinities of the humanized 1D9 antibody, the humanized 1D9 Fc disabled antibody, the humanized 1D9 AccretaMab ® antibody and the humanized 1D9 POTELLIGENT ® antibody.
  • BIACORETM analysis was used to determine the binding affinity of the humanized 1D9 antibody, the humanized 1D9 Fc disabled antibody, the humanized 1D9 A AccretaMab ® antibody and the humanized 1D9 POTELLIGENT ® antibody.
  • Protein A was immobilised on a CM5 chip by primary amine coupling to a level of -1300 resonance units (RU's), humanized antibodies were then captured on this chip. All antibodies were captured to a similar level (100-200 RU's).
  • the full-length, human HER3 ECDs was then passed over the chip at 50nM, 25nM, 12.5nM, 6.25nM, 3.125nM and 1.5625nM for as indicated below.
  • the full-length, rat HER3 ECD or the full- length cynomolgus monkey ECD were passed over the chip at lOnM, 5nM, 2.5nM, 1.25nM, 0.625nM and 0.3125nM.
  • POTELLIGENT ® demonstrates specific binding to full-length, human HER3 ECD. Based on cross species homology predictions domain III of the rat HER3 ECD and domain III of the cynomolgus monkey HER3 ECD are about 95% homologous to the domain III human HER3 ECD epitope bound by the humanized 1D9 antibody and its variants. This indicates a strong likelihood for functional cross reactivity. Consistent with this the humanized 1D9 Fc disabled antibody was observed to cross-react with the full-length cynomolgus monkey HER3 ECD and the full-length rat HER3 ECD at a comparable level as assessed by BIACORETM analysis. See Table 10 and Table 11 above.
  • This example demonstrates the ability of the 1D9 antibodies (e.g., the murine 1D9 antibody and its humanized variants) and 15D5 antibodies (e.g., the murine 15D5 antibody and its humanized variants) to inhibit heregulin induced HER3 phosphorylation, decrease downstream AKT signalling, act as heterodimerization inhibitors to prevent activated EGFR from heterodimerizing with HER3, to prevent heregulin induced EGFR-HER3, HER2-HER3 as well as HER4-HER3 heterodimer formation and to prevent subsequent HER3
  • 1D9 antibodies e.g., the murine 1D9 antibody and its humanized variants
  • 15D5 antibodies e.g., the murine 15D5 antibody and its humanized variants
  • the 1D9 antibodies e.g. , the murine 1D9 antibody and its humanized variants
  • 15D5 antibodies e.g. , the murine 15D5 antibody and its humanized variants
  • BxPC3, CHL-1, N87, SK-BR-3, BT-474, or MCF-7 cells at approximately 80% confluency were harvested with trypsin, washed in 10% FBS/media, and resuspended at 3-5 xlO 5 cells/ml in 10% FBS/media. 100 ul/well was plated into 96 well tissue culture treated flat bottom plates and incubated overnight at 37°C in a 5% CO 2 atmosphere. The next day media was aspirated and replaced with serum free media, and incubated overnight for a serum starve. mAb stocks were then prepped in serum free media, and half log serial dilutions were made.
  • BxPC3, CHL-1, N87, SK-BR-3, or BT-474 cells at approximately 80% confluency were harvested with trypsin, washed in 10% FBS/media, and resuspended at 3-5 xlO 5 cells/ml in 10% FBS/media. 100 ul/well was plated into 96 well tissue culture treated flat bottom plates and incubated overnight at 37°C in a 5% CO 2 atmosphere. The next day media was aspirated and replaced with serum free media, and incubated overnight for a serum starve. The next day mAb stocks were prepped in serum free media, and half log serial dilutions were made.
  • SK-BR-3 cells were assayed as described in section 3.2.1 of this example (above) for use in the Human Phospho-ErbB3 ELISA R&D Systems catalog number DYC1769, with the exception that either epidermal growth factor (EGF) or betacellulin was the activating ligand instead of heregulin.
  • EGF epidermal growth factor
  • betacellulin was the activating ligand instead of heregulin.
  • a heterodimerization assay was developed using PerkinElmer ALPHALISATM assay technology to examine anti-HER3 mAb mediated inhibition of HER3 receptor
  • phosphorylation by EGFR, HER2 and HER4 after heregulin-betal stimulation Reagents were prepared according to the PerkinElmer protocol. Briefly, a phospho-tyrosine specific mouse mAb (P-Tyr-100 Cell Signaling Technology catalog #9411 PBS only formulation) was conjugated to ALPHALISATM acceptor beads (PerkinElmer catalog #6772002). A 10: 1 coupling weight ratio was used by conjugating 1 mg of acceptor beads to 100 ug of antibody for 48 hours. A commercially available anti-human HER3 antibody (R&D Systems
  • MAB3481 was biotinylated using a 30: 1 molar ratio of biotin to antibody by utilizing 7.6 ul of a 2 mg/ml CHROMALINKTM Biotin 354 (Sulfo NHS, SoluLinK catalog #B-1007-105) per 100 ug of antibody.
  • Anti-HER3 mAbs were then assessed by transducing Chinese hamster ovary cells at 3xl0 5 cells/ml overnight with specific BACMAMTM pairings of EGFR + HER3, HER2 + HER3 and HER4 + HER3 in 96 well plates. The next day anti-HER3 mAbs were added and incubated for 1 hour at 37°C.
  • Heregulin- ⁇ was then added to a final concentration of 100 ng/ml and plates were incubated for 30 minutes. Media was then aspirated and cells were lysed in cold lysis buffer containing phosphatase and protease inhibitors. Lysates were rocked on ice for 30 minutes and either used immediately or frozen at -80°C and thawed on ice to perform the ALPHALISATM assay. 2.5ul of lysate was then added to 10 ul of 2.5 nM biotinylated anti-human ErbB3 antibody (R&D Systems MAB3481) in 384 well plates and incubated for 1 hour at room temperature.
  • R&D Systems MAB3481 biotinylated anti-human ErbB3 antibody
  • Murine 1D9 antibody (M5.1D9.1F5; 4.77 mg/ml)
  • Murine IgGl isotype control antibody (R&D Systems 500 ug/ml cat# MAB002)
  • Murine IgG2b isotype control (R&D Systems 500 ug/ml cat# MAB004)
  • Human anti -malaria mAb Human isotype control; 5.74 mg/ml
  • the anti-HER3 1D9 and 15D5 antibodies inhibited heregulin induced HER3 phosphorylation in the BxPC3 ( Figure 1), CHL-1 ( Figure 2), N87 (Figure 3), SK-BR-3 ( Figure 4), BT-474 ( Figure 5), and MCF-7 ( Figure 6) cancer cells.
  • All 1D9 antibody constructs including the humanized 1D9 POTELLIGENT ® antibody and the humanized AccretaMab ® antibody, showed potent inhibition with IC50 values ranging from 2.5 to 40.6 ng/ml IC50 values, as shown in Table 12.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

La présente invention concerne des protéines de liaison à un antigène, telles que des anticorps, qui se lient à HER3, des polynucléotides codant pour ces protéines de liaison à un antigène, des compositions pharmaceutiques comprenant lesdites protéines de liaison à un antigène, et des procédés de fabrication. La présente invention porte en outre sur l'utilisation de ces protéines de liaison à un antigène dans le traitement ou la prophylaxie de maladies associées au cancer du sein, des ovaires, de la prostate, de la vessie, du pancréas, et de l'estomac, au mélanome et à d'autres types de cancer surexprimant HER3.
PCT/IB2015/057947 2014-10-16 2015-10-15 Méthodes de traitement du cancer et compositions associées WO2016059602A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462064559P 2014-10-16 2014-10-16
US62/064,559 2014-10-16
US201562121639P 2015-02-27 2015-02-27
US62/121,639 2015-02-27

Publications (2)

Publication Number Publication Date
WO2016059602A2 true WO2016059602A2 (fr) 2016-04-21
WO2016059602A3 WO2016059602A3 (fr) 2016-06-09

Family

ID=54477033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/057947 WO2016059602A2 (fr) 2014-10-16 2015-10-15 Méthodes de traitement du cancer et compositions associées

Country Status (1)

Country Link
WO (1) WO2016059602A2 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9527917B2 (en) 2010-08-23 2016-12-27 Board Of Regents, The University Of Texas System Nucleic acid encoding anti-OX40 antibodies
JP2017203725A (ja) * 2016-05-12 2017-11-16 国立大学法人神戸大学 ErbB3活性化に伴うシグナルの伝達抑制物質及びそのスクリーニング方法
US9920123B2 (en) 2008-12-09 2018-03-20 Genentech, Inc. Anti-PD-L1 antibodies, compositions and articles of manufacture
WO2018152419A1 (fr) * 2017-02-16 2018-08-23 Huff & Day Enterprises, LLC Système de gestion proactive d'état de maladie
US10259882B2 (en) 2015-05-07 2019-04-16 Agenus Inc. Anti-OX40 antibodies
US10336824B2 (en) 2015-03-13 2019-07-02 Cytomx Therapeutics, Inc. Anti-PDL1 antibodies, activatable anti-PDL1 antibodies, and methods of thereof
US10513558B2 (en) 2015-07-13 2019-12-24 Cytomx Therapeutics, Inc. Anti-PD1 antibodies, activatable anti-PD1 antibodies, and methods of use thereof
CN110831971A (zh) * 2017-06-09 2020-02-21 葛兰素史克知识产权开发有限公司 用icos激动剂和ox40激动剂治疗癌症的组合疗法
US10570202B2 (en) 2014-02-04 2020-02-25 Pfizer Inc. Combination of a PD-1 antagonist and a VEGFR inhibitor for treating cancer
US10800846B2 (en) 2015-02-26 2020-10-13 Merck Patent Gmbh PD-1/PD-L1 inhibitors for the treatment of cancer
US10836830B2 (en) 2015-12-02 2020-11-17 Agenus Inc. Antibodies and methods of use thereof
US10869924B2 (en) 2015-06-16 2020-12-22 Merck Patent Gmbh PD-L1 antagonist combination treatments
WO2021048274A1 (fr) * 2019-09-11 2021-03-18 Hummingbird Bioscience Holdings Pte. Ltd. Traitement et prévention du cancer à l'aide de molécules de liaison à l'antigène her3
WO2021108331A1 (fr) * 2019-11-26 2021-06-03 The Regents Of The University Of California Polythérapie pour le cancer de la tête et du cou
US11040027B2 (en) 2017-01-17 2021-06-22 Heparegenix Gmbh Protein kinase inhibitors for promoting liver regeneration or reducing or preventing hepatocyte death
US11168144B2 (en) 2017-06-01 2021-11-09 Cytomx Therapeutics, Inc. Activatable anti-PDL1 antibodies, and methods of use thereof
US11274154B2 (en) 2016-10-06 2022-03-15 Pfizer Inc. Dosing regimen of avelumab for the treatment of cancer
US11359028B2 (en) 2016-11-09 2022-06-14 Agenus Inc. Anti-OX40 antibodies and anti-GITR antibodies
US11396647B2 (en) 2020-01-07 2022-07-26 Board Of Regents, The University Of Texas System Human methylthioadenosine/adenosine depleting enzyme variants for cancer therapy
US11542332B2 (en) 2016-03-26 2023-01-03 Bioatla, Inc. Anti-CTLA4 antibodies, antibody fragments, their immunoconjugates and uses thereof
US11596699B2 (en) 2016-04-29 2023-03-07 CureVac SE RNA encoding an antibody
EP3976793A4 (fr) * 2019-05-27 2023-06-21 The University of British Columbia Épitopes spécifiques de conformation dans une protéine tau, anticorps de ceux-ci et procédés associés

Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0054951A1 (fr) 1980-12-24 1982-06-30 Chugai Seiyaku Kabushiki Kaisha Dibenzo(b,f)(1,4)oxazépines, leur procédé de préparation et les compositions pharmaceutiques les contenant
EP0183070A2 (fr) 1984-10-30 1986-06-04 Phillips Petroleum Company Transformation de levures du genre Pichia
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
EP0239400A2 (fr) 1986-03-27 1987-09-30 Medical Research Council Anticorps recombinants et leurs procédés de production
EP0244234A2 (fr) 1986-04-30 1987-11-04 Alko Group Ltd. Transformation de trichoderma
EP0307434A1 (fr) 1987-03-18 1989-03-22 Medical Res Council Anticorps alteres.
DD266710A3 (de) 1983-06-06 1989-04-12 Ve Forschungszentrum Biotechnologie Verfahren zur biotechnischen Herstellung van alkalischer Phosphatase
WO1990013646A1 (fr) 1989-04-28 1990-11-15 Transgene S.A. Application de nouveaux fragments d'adn en tant que sequence codant pour un peptide signal pour la secretion de proteines matures par des levures recombinantes, cassettes d'expression, levures transformees et procede de preparation de proteines correspondant
EP0402226A1 (fr) 1989-06-06 1990-12-12 Institut National De La Recherche Agronomique Vecteurs de transformation de la levure yarrowia
WO1993006213A1 (fr) 1991-09-23 1993-04-01 Medical Research Council Production d'anticorps chimeriques - une approche combinatoire
WO1993008829A1 (fr) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions induisant la destruction de cellules infectees par l'hiv
WO1994004690A1 (fr) 1992-08-17 1994-03-03 Genentech, Inc. Immunoadhesines bispecifiques
US5342947A (en) 1992-10-09 1994-08-30 Glaxo Inc. Preparation of water soluble camptothecin derivatives
EP0612251A1 (fr) 1991-10-28 1994-08-31 The Wellcome Foundation Limited Anticorps stabilises
EP0629240A1 (fr) 1992-02-19 1994-12-21 Scotgen Limited Anticorps modifies, produits et procedes s'y rapportant
WO1994029348A2 (fr) 1993-06-03 1994-12-22 Therapeutic Antibodies Inc. Production de fragments d'anticorps
US5429746A (en) 1994-02-22 1995-07-04 Smith Kline Beecham Corporation Antibody purification
US5491237A (en) 1994-05-03 1996-02-13 Glaxo Wellcome Inc. Intermediates in pharmaceutical camptothecin preparation
US5559235A (en) 1991-10-29 1996-09-24 Glaxo Wellcome Inc. Water soluble camptothecin derivatives
WO1997011086A1 (fr) 1995-09-22 1997-03-27 The General Hospital Corporation Expression de proteines a des hauts niveaux
US5681835A (en) 1994-04-25 1997-10-28 Glaxo Wellcome Inc. Non-steroidal ligands for the estrogen receptor
US5739277A (en) 1995-04-14 1998-04-14 Genentech Inc. Altered polypeptides with increased half-life
WO1998034640A2 (fr) 1997-02-07 1998-08-13 Merck & Co., Inc. Genes synthetiques du gag hiv
US5807715A (en) 1984-08-27 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin
WO1999048523A2 (fr) 1998-03-26 1999-09-30 Glaxo Group Limited Antagonistes de mediateurs inflammatoires
WO2000029004A1 (fr) 1998-11-18 2000-05-25 Peptor Ltd. Petites unites fonctionnelles de regions variables a chaine lourde d'anticorps
WO2000061739A1 (fr) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Methode de regulation de l'activite d'une molecule immunologiquement fonctionnelle
US6172197B1 (en) 1991-07-10 2001-01-09 Medical Research Council Methods for producing members of specific binding pairs
US6248516B1 (en) 1988-11-11 2001-06-19 Medical Research Council Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors
US6268391B1 (en) 1997-08-06 2001-07-31 Glaxo Wellcome Inc. Benzylidene-1,3-dihydro-indol-2-one derivatives a receptor tyrosine kinase inhibitors, particularly of Raf kinases
US6291158B1 (en) 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertoire
WO2002031240A2 (fr) 2000-10-06 2002-04-18 Milliken & Company Plaque avant pour fil texture de type file
EP1229125A1 (fr) 1999-10-19 2002-08-07 Kyowa Hakko Kogyo Co., Ltd. Procede de production d'un polypeptide
WO2003011878A2 (fr) 2001-08-03 2003-02-13 Glycart Biotechnology Ag Variants de glycosylation d'anticorps presentant une cytotoxicite cellulaire accrue dependante des anticorps
WO2004006955A1 (fr) 2001-07-12 2004-01-22 Jefferson Foote Anticorps super humanises
WO2004009823A1 (fr) 2002-07-18 2004-01-29 Lonza Biologics Plc. Technique d'expression de proteines de recombinaison dans des cellules d'ovaire de hamster chinois (cho)
WO2004029207A2 (fr) 2002-09-27 2004-04-08 Xencor Inc. Variants fc optimises et methodes destinees a leur generation
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
US20040132028A1 (en) 2000-09-08 2004-07-08 Stumpp Michael Tobias Collection of repeat proteins comprising repeat modules
WO2004063351A2 (fr) 2003-01-09 2004-07-29 Macrogenics, Inc. Identification et elaboration d'anticorps avec des regions du variant fc et procedes d'utilisation associes
US6818418B1 (en) 1998-12-10 2004-11-16 Compound Therapeutics, Inc. Protein scaffolds for antibody mimics and other binding proteins
US20050043519A1 (en) 2001-08-10 2005-02-24 Helen Dooley Antigen binding domains
WO2005056764A2 (fr) 2003-12-05 2005-06-23 Compound Therapeutics, Inc. Inhibiteurs des recepteurs du facteur de croissance endothelial vasculaire de type 2
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
WO2005121142A1 (fr) 2004-06-11 2005-12-22 Japan Tobacco Inc. Dérivés de 5-amino-2,4,7-trioxo-3,4,7,8-tétrahydro-2h-pyrido’2,3-d! pyrimidine et composés apparentés pour le traitement du cancer
US20060014768A1 (en) 2004-06-11 2006-01-19 Japan Tobacco Inc. Pyrimidine compound and medical use thereof
WO2006014679A1 (fr) 2004-07-21 2006-02-09 Glycofi, Inc. Immunoglobulines contenant principalement un glycoforme de type glcnac2man3glcnac2
EP1641818A1 (fr) 2003-07-04 2006-04-05 Affibody AB Polypeptides presentant une affinite de liaison pour le recepteur 2 du facteur de croissance epidermique humain (her2)
WO2007011041A1 (fr) 2005-07-22 2007-01-25 Kyowa Hakko Kogyo Co., Ltd. Composition d'anticorps génétiquement modifié
US20070148165A1 (en) 2005-07-22 2007-06-28 Kyowa Hakko Kogyo Co., Ltd. Recombinant antibody composition
WO2007077028A2 (fr) 2005-12-30 2007-07-12 U3 Pharma Ag Anticorps dirigés contre le her-3 et leurs utilisations
US7250297B1 (en) 1997-09-26 2007-07-31 Pieris Ag Anticalins
US20070224633A1 (en) 2003-08-25 2007-09-27 Pieris Ag Muteins of Tear Lipocalin
US20080139791A1 (en) 1998-12-10 2008-06-12 Adnexus Therapeutics, Inc. Pharmaceutically acceptable Fn3 Polypeptides for human treatments
WO2008098104A1 (fr) 2007-02-07 2008-08-14 Smithkline Beecham Corporation Inhibiteurs de l'activité de akt
WO2008098796A1 (fr) 2007-02-16 2008-08-21 Nascacell Technologies Ag Polypeptide comprenant un fragment de protéine knottine
US20100022323A1 (en) 2008-07-22 2010-01-28 Nike, Inc. Releasable and interchangeable connections for golf club heads and shafts

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3530736A3 (fr) * 2005-05-09 2019-11-06 ONO Pharmaceutical Co., Ltd. Anticorps monoclonaux humains pour mort programmée 1 (pd-1) et procédés de traitement du cancer à l'aide d'anticorps anti-pd-1 seuls ou combinés à d'autres formulations immunothérapeutiques
HUE033312T2 (en) * 2009-07-20 2017-11-28 Bristol Myers Squibb Co Combination of anti CTLA4 antibody with etoposide for synergistic treatment of proliferative diseases
TW201302793A (zh) * 2010-09-03 2013-01-16 Glaxo Group Ltd 新穎之抗原結合蛋白
JP6149042B2 (ja) * 2011-11-09 2017-06-14 ザ ユーエービー リサーチ ファンデーション Her3抗体およびその使用
CA2889298C (fr) * 2012-11-30 2024-01-02 Anton Belousov Identification de patients ayant besoin d'une cotherapie par un inhibiteur de pd-l1

Patent Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0054951A1 (fr) 1980-12-24 1982-06-30 Chugai Seiyaku Kabushiki Kaisha Dibenzo(b,f)(1,4)oxazépines, leur procédé de préparation et les compositions pharmaceutiques les contenant
DD266710A3 (de) 1983-06-06 1989-04-12 Ve Forschungszentrum Biotechnologie Verfahren zur biotechnischen Herstellung van alkalischer Phosphatase
US5807715A (en) 1984-08-27 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin
EP0183070A2 (fr) 1984-10-30 1986-06-04 Phillips Petroleum Company Transformation de levures du genre Pichia
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
EP0239400A2 (fr) 1986-03-27 1987-09-30 Medical Research Council Anticorps recombinants et leurs procédés de production
EP0244234A2 (fr) 1986-04-30 1987-11-04 Alko Group Ltd. Transformation de trichoderma
EP0307434A1 (fr) 1987-03-18 1989-03-22 Medical Res Council Anticorps alteres.
US6248516B1 (en) 1988-11-11 2001-06-19 Medical Research Council Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors
WO1990013646A1 (fr) 1989-04-28 1990-11-15 Transgene S.A. Application de nouveaux fragments d'adn en tant que sequence codant pour un peptide signal pour la secretion de proteines matures par des levures recombinantes, cassettes d'expression, levures transformees et procede de preparation de proteines correspondant
US6291158B1 (en) 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertoire
EP0402226A1 (fr) 1989-06-06 1990-12-12 Institut National De La Recherche Agronomique Vecteurs de transformation de la levure yarrowia
US6172197B1 (en) 1991-07-10 2001-01-09 Medical Research Council Methods for producing members of specific binding pairs
WO1993006213A1 (fr) 1991-09-23 1993-04-01 Medical Research Council Production d'anticorps chimeriques - une approche combinatoire
EP0612251A1 (fr) 1991-10-28 1994-08-31 The Wellcome Foundation Limited Anticorps stabilises
US5559235A (en) 1991-10-29 1996-09-24 Glaxo Wellcome Inc. Water soluble camptothecin derivatives
WO1993008829A1 (fr) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions induisant la destruction de cellules infectees par l'hiv
EP0629240A1 (fr) 1992-02-19 1994-12-21 Scotgen Limited Anticorps modifies, produits et procedes s'y rapportant
WO1994004690A1 (fr) 1992-08-17 1994-03-03 Genentech, Inc. Immunoadhesines bispecifiques
US5342947A (en) 1992-10-09 1994-08-30 Glaxo Inc. Preparation of water soluble camptothecin derivatives
WO1994029348A2 (fr) 1993-06-03 1994-12-22 Therapeutic Antibodies Inc. Production de fragments d'anticorps
US5429746A (en) 1994-02-22 1995-07-04 Smith Kline Beecham Corporation Antibody purification
US6207716B1 (en) 1994-04-25 2001-03-27 Glaxo Wellcome Inc. Non-steroidal ligands for the estrogen receptor
US5681835A (en) 1994-04-25 1997-10-28 Glaxo Wellcome Inc. Non-steroidal ligands for the estrogen receptor
US5877219A (en) 1994-04-25 1999-03-02 Glaxo Wellcomeinc. Non-steroidal ligands for the estrogen receptor
US6063923A (en) 1994-05-03 2000-05-16 Glaxo Wellcome Inc. Preparation of a camptothecin derivative by intramolecular cyclisation
US5491237A (en) 1994-05-03 1996-02-13 Glaxo Wellcome Inc. Intermediates in pharmaceutical camptothecin preparation
US5739277A (en) 1995-04-14 1998-04-14 Genentech Inc. Altered polypeptides with increased half-life
WO1997011086A1 (fr) 1995-09-22 1997-03-27 The General Hospital Corporation Expression de proteines a des hauts niveaux
WO1998034640A2 (fr) 1997-02-07 1998-08-13 Merck & Co., Inc. Genes synthetiques du gag hiv
US6268391B1 (en) 1997-08-06 2001-07-31 Glaxo Wellcome Inc. Benzylidene-1,3-dihydro-indol-2-one derivatives a receptor tyrosine kinase inhibitors, particularly of Raf kinases
US7250297B1 (en) 1997-09-26 2007-07-31 Pieris Ag Anticalins
WO1999048523A2 (fr) 1998-03-26 1999-09-30 Glaxo Group Limited Antagonistes de mediateurs inflammatoires
WO2000029004A1 (fr) 1998-11-18 2000-05-25 Peptor Ltd. Petites unites fonctionnelles de regions variables a chaine lourde d'anticorps
US20080139791A1 (en) 1998-12-10 2008-06-12 Adnexus Therapeutics, Inc. Pharmaceutically acceptable Fn3 Polypeptides for human treatments
US6818418B1 (en) 1998-12-10 2004-11-16 Compound Therapeutics, Inc. Protein scaffolds for antibody mimics and other binding proteins
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
WO2000061739A1 (fr) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Methode de regulation de l'activite d'une molecule immunologiquement fonctionnelle
US7214775B2 (en) 1999-04-09 2007-05-08 Kyowa Hakko Kogyo Co., Ltd. Method of modulating the activity of functional immune molecules
EP1229125A1 (fr) 1999-10-19 2002-08-07 Kyowa Hakko Kogyo Co., Ltd. Procede de production d'un polypeptide
US20040132028A1 (en) 2000-09-08 2004-07-08 Stumpp Michael Tobias Collection of repeat proteins comprising repeat modules
WO2002031240A2 (fr) 2000-10-06 2002-04-18 Milliken & Company Plaque avant pour fil texture de type file
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
WO2004006955A1 (fr) 2001-07-12 2004-01-22 Jefferson Foote Anticorps super humanises
WO2003011878A2 (fr) 2001-08-03 2003-02-13 Glycart Biotechnology Ag Variants de glycosylation d'anticorps presentant une cytotoxicite cellulaire accrue dependante des anticorps
US20050043519A1 (en) 2001-08-10 2005-02-24 Helen Dooley Antigen binding domains
WO2004009823A1 (fr) 2002-07-18 2004-01-29 Lonza Biologics Plc. Technique d'expression de proteines de recombinaison dans des cellules d'ovaire de hamster chinois (cho)
WO2004029207A2 (fr) 2002-09-27 2004-04-08 Xencor Inc. Variants fc optimises et methodes destinees a leur generation
WO2004063351A2 (fr) 2003-01-09 2004-07-29 Macrogenics, Inc. Identification et elaboration d'anticorps avec des regions du variant fc et procedes d'utilisation associes
EP1641818A1 (fr) 2003-07-04 2006-04-05 Affibody AB Polypeptides presentant une affinite de liaison pour le recepteur 2 du facteur de croissance epidermique humain (her2)
US20070224633A1 (en) 2003-08-25 2007-09-27 Pieris Ag Muteins of Tear Lipocalin
WO2005056764A2 (fr) 2003-12-05 2005-06-23 Compound Therapeutics, Inc. Inhibiteurs des recepteurs du facteur de croissance endothelial vasculaire de type 2
US20060014768A1 (en) 2004-06-11 2006-01-19 Japan Tobacco Inc. Pyrimidine compound and medical use thereof
WO2005121142A1 (fr) 2004-06-11 2005-12-22 Japan Tobacco Inc. Dérivés de 5-amino-2,4,7-trioxo-3,4,7,8-tétrahydro-2h-pyrido’2,3-d! pyrimidine et composés apparentés pour le traitement du cancer
WO2006014679A1 (fr) 2004-07-21 2006-02-09 Glycofi, Inc. Immunoglobulines contenant principalement un glycoforme de type glcnac2man3glcnac2
WO2007011041A1 (fr) 2005-07-22 2007-01-25 Kyowa Hakko Kogyo Co., Ltd. Composition d'anticorps génétiquement modifié
US20070148165A1 (en) 2005-07-22 2007-06-28 Kyowa Hakko Kogyo Co., Ltd. Recombinant antibody composition
WO2007077028A2 (fr) 2005-12-30 2007-07-12 U3 Pharma Ag Anticorps dirigés contre le her-3 et leurs utilisations
WO2008098104A1 (fr) 2007-02-07 2008-08-14 Smithkline Beecham Corporation Inhibiteurs de l'activité de akt
WO2008098796A1 (fr) 2007-02-16 2008-08-21 Nascacell Technologies Ag Polypeptide comprenant un fragment de protéine knottine
US20100022323A1 (en) 2008-07-22 2010-01-28 Nike, Inc. Releasable and interchangeable connections for golf club heads and shafts

Non-Patent Citations (166)

* Cited by examiner, † Cited by third party
Title
"REMINGTONS PHARMACEUTICAL SCIENCES, 16th edition", 1980, MACK PUBLISHING CO
"Tyrosine Kinase Signalling in Breast cancer:erbB Family Receptor Tyrosine Kniases", BREAST CANCER RES., vol. 2, no. 3, 2000, pages 176 - 183
ABRAHAM, R.T., CURRENT OPINION IN IMMUNOLOGY, vol. 8, no. 3, 1996, pages 412 - 8
ADAMS ET AL., CAN. RES, vol. 53, 1993, pages 4026 - 4034
ALT ET AL., FEBS LETT, vol. 454, 1999, pages 90 - 94
ANMAN, C.E.; LIM, D.S, ONCOGENE, vol. 17, no. 25, 1998, pages 3301 - 3308
ASHBY, M.N., CURRENT OPINION IN LIPIDOLOGY, vol. 9, no. 2, 1998, pages 99 - 102
BAEZ ET AL., BIOPHARM, vol. 13, 2000, pages 50 - 54
BALASUBRAMANIAN ET AL., CANCER LETTERS, vol. 280, 2009, pages 211 - 221
BALL ET AL., PROGRESS IN CELL CYCLE RES., vol. 3, 1997, pages 125
BERTRAND, EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 45, 2010, pages 2095 - 2116
BIOCHIM BIOPHYS ACTA, vol. 1482, 2000, pages 337 - 350
BIOCHIM. BIOPHYS. ACTA, vol. 1423, no. 3, 1989, pages 19 - 30
BIRD ET AL., SCIENCE, vol. 242, 1988, pages 423 - 426
BOLEN, J.B.; BRUGGE, J.S., ANNUAL REVIEW OF IMMUNOLOGY., vol. 15, 1997, pages 371 - 404
BOYD ET AL., MOL. IMMUNOL., vol. 32, 1996, pages 1311 - 1318
BREKKEN, R.A. ET AL.: "Selective Inhibition of VEGFR2 Activity by a monoclonal Anti-VEGF antibody blocks tumor growth in mice", CANCER RES., vol. 60, 2000, pages 5117 - 5124
BRODEUR: "MONOCLONAL ANTIBODY PRODUCTION TECHNIQUES AND APPLICATIONS", vol. 51-63, 1987, MARCEL DEKKER INC
BRODT, P; SAMANI, A.; NAVAB, R., BIOCHEMICAL PHARMACOLOGY, vol. 60, 2000, pages 1101 - 1107
BRUNS CJ ET AL., CANCER RES., vol. 60, 2000, pages 2926 - 2935
BURTON; WOOF, ADV. IMMUNOL., vol. 5 1, 1992, pages 1 - 84
CHAPPEL ET AL., PNAS, vol. 88, 1991, pages 9036 - 9040
CHAPPEL ET AL., THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 268, 1993, pages 25124 - 25131
CHEN Y; HU D; ELING DJ; ROBBINS J; KIPPS TJ, CANCER RES., vol. 58, 1998, pages 1965 - 1971
CHOTHIA ET AL., NATURE, vol. 342, 1989, pages 877 - 883
CO ET AL., NATURE, vol. 351, 1991, pages 501 - 502
COLOMA ET AL., NATURE BIOTECHNOL., vol. 15, 1997, pages 159 - 163
CUPIT ET AL., LETT APPL MICROBIOL, vol. 29, 1999, pages 273 - 277
D. G. I. KINGSTON ET AL.: "Studies in Organic Chemistry", vol. 26, 1986, ELSEVIER, article "New trends in Natural Products Chemistry 1986", pages: 219 - 235
DAVIS ET AL., CHEM. REV., vol. 102, 2002, pages 579
DORAN, CURR. OPINION BIOTECHNOL., vol. 11, 2000, pages 199 - 204
DRAPEAU ET AL., CYTOTECHNOLOGY, vol. 15, 1994, pages 103 - 109
DUNCAN ET AL., NATURE, vol. 332, 1988, pages 563 - 564
EINZIG, PROC. AM. SOC. CLIN. ONCOL., vol. 20, pages 46
EMLET ET AL., BR. J. CANCER, vol. 94, 2006, pages 1144
EXPERT OPIN. BIOL. THER., vol. 5, 2005, pages 783 - 797
EXPERT OPINION ON INVESTIGATIONAL DRUGS, vol. 16, no. 6, June 2007 (2007-06-01), pages 909 - 917
FISHWILD, NATURE BIOTECHNOL., vol. 14, 1996, pages 845 - 851
FORASTIRE, SEM. ONCOL., vol. 20, 1990, pages 56
GHETIE ET AL., ANNU. REV. IMMUNOL., vol. 18, 2000, pages 739 - 766
GLOCKSHUBER ET AL., BIOCHEMISTRY, vol. 29, 1990, pages 1362 - 1367
GOTTLICHER ET AL., EMBO J., vol. 20, no. 24, 2001, pages 6969 - 6978
GREEN, J. IMMUNOL. METHODS, vol. 231, 1999, pages 11 - 23
GREEN, M.C. ET AL.: "Monoclonal Antibody Therapy for Solid Tumors", CANCER TREAT. REV., vol. 26, no. 4, 2000, pages 269 - 286
GRIFFITHS ET AL., EMBO, vol. 13, 1994, pages 3245 - 3260
HANG ET AL., ACC. CHEM. RES, vol. 34, 2001, pages 727
HEZAREH ET AL., J. VIROL., vol. 75, no. 24, 2001, pages 12161 - 12168
HODGSON ET AL., BIOLTECHNOLOGY, vol. 9, 1991, pages 421
HOEKEMA ET AL., MOL CELL BIOL, vol. 7, no. 8, 1987, pages 2914 - 24
HOLLIGER ET AL., NATURE BIOTECHNOLOGY, vol. 23, no. 9, 2005, pages 1126 - 1136
HOLLIGER ET AL., PNAS, vol. 90, 1993, pages 6444 - 6448
HOLMES ET AL., J. NAT. CANCER INST., vol. 83, 1991, pages 1797
HU ET AL., CANCER RES., vol. 56, 1996, pages 3055 - 3061
HUSTON ET AL., INT. REV. IMMUNOL, vol. 10, 1993, pages 195 - 217
HUSTON ET AL., PNAS, vol. 85, no. 16, 1988, pages 5879 - 5883
IGNOFF, R.J, CANCER CHEMOTHERAPY POCKET GUIDE, 1998
J IMM METH, vol. 184, 1995, pages 29 - 38
J. BIOL. CHEM, vol. 274, 1999, pages 24066 - 24073
J. MOL. BIOL., vol. 332, 2003, pages 489 - 503
J. MOL. BIOL., vol. 369, 2007, pages 1015 - 1028
JACKSON, S.P, INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND CELL BIOLOGY, vol. 29, no. 7, 1997, pages 935 - 8
JONES ET AL., NATURE, vol. 321, 1986, pages 522 - 525
JOURNAL OF IMMUNOLOGICAL METHODS, vol. 248, no. 1-2, 2001, pages 31 - 45
JUNGHANS, IMMUNOL. RES, vol. 16, 1997, pages 29 - 57
KABAT ET AL.: "SEQUENCES OF PROTEINS OF IMMUNOLOGICAL INTEREST, 4th Ed.,", 1987, NATIONAL INSTITUTES OF HEALTH
KATH, JOHN C., EXP. OPIN. THER. PATENTS, vol. 10, no. 6, 2000, pages 803 - 818
KEARNS, C.M, SEMINARS IN ONCOLOGY, vol. 3, no. 6, 1995, pages 16 - 23
KEEN ET AL., CYTOTECHNOLOGY, vol. 17, 1995, pages 153 - 163
KIPRIYANOV ET AL., CELL. BIOPHYS, vol. 26, 1995, pages 187 - 204
KIPRIYANOV ET AL., INT. J. CAN, vol. 77, 1998, pages 763 - 772
KIPRIYANOV ET AL., J. MOL. BIOL., vol. 293, 1999, pages 41 - 56
KITADA S ET AL., ANTISENSE RES. DEV., vol. 4, 1994, pages 71 - 79
KONTERMANN ET AL., J. IMMUNOL. METHODS, vol. 226, 1999, pages 179 - 188
KORTT ET AL., PROTEIN ENG, vol. 10, 1997, pages 423 - 433
KOSTELNY ET AL., J. IMMUNOL., vol. 148, 1992, pages 1547 - 1553
KOUMENIS ET AL., INT. J. PHARMACEUT., vol. 198, 2000, pages 83 - 95
KOZBOR, J. IMMUNOL, vol. 133, 1984, pages 3001
KUMAR, J. BIOL, CHEM, vol. 256, 1981, pages 10435 - 10441
KURUCZ ET AL., J. IMMOL., vol. 154, 1995, pages 4576 - 4582
LACKEY, K ET AL., BIOORGANIC AND MEDICINAL CHEMISTRY LETTERS, 2000, pages 223 - 226
LAZAR ET AL., PNAS, 2006
LAZAR ET AL., PNAS, vol. 103, 2006, pages 4005 - 4010
LE GALL ET AL., FEBS LETT, vol. 453, 1999, pages 164 - 168
LEE-HOEFLICH ET AL., CANCER. RES., vol. 68, 2008, pages 5875
LOFTS, F. J. ET AL.: "New Molecular Targets for Cancer Chemotherapy", 1994, CRC PRESS, article "Growth factor receptors as targets"
LUND ET AL., J. IMMUNOL., vol. 147, 1991, pages 2657 - 2662
MA, NAT. MED, vol. 4, 1998, pages 601 - 606
MARK ET AL.: "Handbook of Experimental Pharmacology", vol. 113, 1994, SPRINGER-VERLAG, pages: 105 - 134
MARKMAN ET AL., YALE JOURNAL OF BIOLOGY AND MEDICINE, vol. 64, 1991, pages 583
MARKS ET AL., NATURE BIOTECHNOLOGY, vol. 25, 2007, pages 84 - 90
MARKS, BIOLTECHNOL, vol. 10, 1992, pages 779 - 783
MARTINEZ-IACACI, L. ET AL., INT. J. CANCER, vol. 88, no. 1, 2000, pages 44 - 52
MASSAGUE, J.; WEIS-GARCIA, F., CANCER SURVEYS., vol. 27, 1996, pages 41 - 64
MCCAFFERTY, NATURE, vol. 348, 1990, pages 552 - 553
MCCARTNEY ET AL., PROTEIN ENG., vol. 8, 1995, pages 301 - 314
MCGUIRE ET AL., ANN. INTERN, MED., vol. 111, 1989, pages 273
MENDEZ, NATURE GENETICS, vol. 15, 1997, pages 146 - 156
MEYERS ET AL., COMPUT. APPL. BIOSCI., vol. 4, 1988, pages 11 - 17
MILLSTEIN ET AL., NATURE, vol. 305, 1983, pages 537 - 539
MOL. IMMUNOL, vol. 44, 2006, pages 656 - 665
MORGAN ET AL., IMMUNOLOGY, vol. 86, 1995, pages 319 - 324
MORRISON, PNAS, vol. 81, 1984, pages 6851
MORROW, GENET. ENG. NEWS, vol. 20, 2000, pages 1 - 55
MULLER ET AL., FEBS LETT, vol. 432, 1998, pages 45 - 49
NAKAMURA ET AL., NUCLEIC ACIDS RESEARCH, vol. 24, 1996, pages 214 - 215
NATURE BIOTECHNOLOGY, vol. 23, no. 12, 2005, pages 1556 - 1561
NECHANSKY ET AL., MOL IMMUNOL, vol. 44, 2007, pages 1815 - 1817
NEEDLEMAN ET AL., J. MOL. BIOL., vol. 48, 1970, pages 444 - 453
PACK ET AL., BIOCHEMISTRY, vol. 31, 1992, pages 1579 - 1584
PADLAN ET AL., MOL. IMMUNOL., vol. 28, 1991, pages 489 - 498
PANOBINOSTAT, DRUGS OF THE FUTURE, vol. 32, no. 4, 2007, pages 315 - 322
PEDERSEN ET AL., J. MOL. BIOL., vol. 235, 1994, pages 959 - 973
PENG ET AL., J. BIOTECHNOL., vol. 108, 2004, pages 185 - 192
PHILIP, P.A.; HARRIS, A.L., CANCER TREATMENT AND RESEARCH, vol. 78, 1995, pages 3 - 27
PNAS, vol. 100, no. 4, 2003, pages 1700 - 1705
POLLOCK ET AL., J. IMMUNOL. METHODS, vol. 231, 1999, pages 147 - 157
POWIS, G.; KOZIKOWSKI A.: "New Molecular Targets for Cancer Chemotherapy", 1994, CRC PRESS
PROTEIN ENG. DES. SEL, vol. 17, 2004, pages 455 - 462
PROTEIN ENG. DES. SEL., vol. 18, 2005, pages 435 - 444
PROTEIN SCIENCE, vol. 15, 2006, pages 14 - 27
QUEEN ET AL., PNAS, vol. 86, 1989, pages 10,029 - 10,033
QUEEN ET AL., PROC. NATL ACAD SCI USA, vol. 86, 1989, pages 10029 - 10032
RAJU ET AL., BIOCHEMISTRY, vol. 40, 2001, pages 8868 - 8876
REILLY RT ET AL., CANCER RES., vol. 60, 2000, pages 3569 - 3576
RICHON ET AL., PROC. NAT ACAD. SCI. U.S.A., vol. 97, no. 18, 2000, pages 10014 - 10019
ROSANIA ET AL., EXP. OPIN. THER. PATENTS, vol. 10, no. 2, 2000, pages 215 - 230
SANCHEZ ET AL., J. BIOTECHNOL., vol. 72, 1999, pages 13 - 20
SCHARFENBERG ET AL.: "ANIMAL CELL TECHNOLOGY: DEVELOPMENTS TOWARDS THE 21ST CENTURY", 1995, KLUWER ACADEMIC PUBLISHERS, pages: 619 - 623
SCHAROVSKY, O.G.; ROZADOS, V.R.; GERVASONI, S.I; MATAR, P., JOURNAL OF BIOMEDICAL SCIENCE, vol. 7, no. 4, 2000, pages 292 - 8
SCHIFF ET AL., NATURE, vol. 277, 1979, pages 665 - 667
SCHIFF ET AL., PROC. NATL, ACAD, SCI. USA, vol. 77, 1980, pages 1561 - 1565
SCHREIBER AB; WINKLER ME; DERYNCK R., SCIENCE, vol. 232, 1986, pages 1250 - 1253
SEARS ET AL., SCIENCE, vol. 291, 2001, pages 2344
SHALABY ET AL., J. EXP. MED., vol. 175, 1992, pages 217 - 225
SHAWVER ET AL., DDT, vol. 2, no. 2, February 1997 (1997-02-01)
SHIELDS ET AL., J BIOL CHEM, vol. 276, 2001, pages 6591 - 6604
SHIELDS ET AL., J. BIOL. CHEM, vol. 276, 2001, pages 6591 - 6604
SHIELDS ET AL., J. BIOL. CHEM., vol. 276, 2001, pages 6591 - 6604
SHIELDS ET AL., THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, 2001, pages 6591 - 6604
SINH, S.; COREY, S.J., JOURNAL OF HEMATOTHERAPY AND STEM CELL RESEARCH, vol. 8, no. 5, 1999, pages 465 - 80
SMITH ET AL.: "ANTIBODIES IN HUMAN DIAGNOSIS AND THERAPY", 1977, RAVEN PRESS
SMITHGALL, T.E, JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS., vol. 34, no. 3, 1995, pages 125 - 32
STEFAN DUBEL: "Non-Antibody Scaffolds from Handbook of Therapeutic Antibodies", 2007, article "Chapter 7"
STENGER, COMMUNITY ONCOLOGY, vol. 4, 2007, pages 384 - 386
STINCHCOMB ET AL., NATURE, vol. 282, 1979, pages 38
STOGER ET AL., PLANTMOL. BIOL., vol. 42, 2000, pages 583 - 590
SURESH ET AL., METHODS IN ENZYMOLOGY, vol. 121, 1986, pages 210
TOMIZUKA, PNAS, vol. 97, 2000, pages 722 - 727
TRAUNECKER ET AL., EMBO, vol. 10, 1991, pages 3655 - 3659
URLAUB ET AL., SOMATIC CELL MOL. GENET., vol. 12, 1986, pages 555 - 556
V.T. DEVITA AND S. HELLMAN: "Cancer Principles and Practice of Oncology, 6th edition", 15 February 2001, LIPPINCOTT WILLIAMS & WILKINS PUBLISHERS
VERHOEYEN ET AL., SCIENCE, vol. 239, 1988, pages 1534 - 1536
VIGUSHIN ET AL., ANTICANCER DRUGS, vol. 13, no. 1, January 2002 (2002-01-01), pages 1 - 13
VINODHKUMAR ET AL., BIOMEDICINE & PHARMACOTHERAPY, vol. 62, 2008, pages 85 - 93
WACKER ET AL., SCIENCE, vol. 298, 2002, pages 1790
WANI ET AL., J. AM. CHEM, SOC., vol. 93, 1971, pages 2325
WATER JS ET AL., J. CLIN. ONCOL., vol. 18, 2000, pages 1812 - 1823
WATERHOUSE, NUCL. ACIDS RES., vol. 21, 1993, pages 2265 - 2266
WHITLOW ET AL., METHODS COMPANION METHODS ENZYMOL, vol. 2, 1991, pages 97 - 105
WINTER, ANNU. REV. IMMUNOL, vol. 12, 1994, pages 433 - 455
WOO, NATURE, vol. 368, 1994, pages 750
YAMAMOTO, T.; TAYA, S.; KAIBUCHI, K., JOURNAL OF BIOCHEMISTRY, vol. 126, no. 5, 1999, pages 799 - 803
YEN L ET AL., ONCOGENE, vol. 19, 2000, pages 3460 - 3469
ZHANG ET AL., SCIENCE, vol. 303, 2004, pages 371
ZHONG, H. ET AL., CANCER RES, vol. 60, no. 6, 2000, pages 1541 - 1545
ZHU ET AL., PROTEIN SCI.,, vol. 6, 1997, pages 781 - 788

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9920123B2 (en) 2008-12-09 2018-03-20 Genentech, Inc. Anti-PD-L1 antibodies, compositions and articles of manufacture
US9695246B2 (en) 2010-08-23 2017-07-04 Board Of Regents, The University Of Texas System Anti-OX40 antibodies and methods of using the same
US10851173B2 (en) 2010-08-23 2020-12-01 Board Of Regents, The University Of Texas System Anti-OX40 antibodies and methods of using the same
US10196450B2 (en) 2010-08-23 2019-02-05 Board Of Regents, The University Of Texas System Anti-OX40 antibodies and methods of using the same
US9527917B2 (en) 2010-08-23 2016-12-27 Board Of Regents, The University Of Texas System Nucleic acid encoding anti-OX40 antibodies
US10570202B2 (en) 2014-02-04 2020-02-25 Pfizer Inc. Combination of a PD-1 antagonist and a VEGFR inhibitor for treating cancer
US10800846B2 (en) 2015-02-26 2020-10-13 Merck Patent Gmbh PD-1/PD-L1 inhibitors for the treatment of cancer
US10669339B2 (en) 2015-03-13 2020-06-02 Cytomx Therapeutics, Inc. Anti-PDL1 antibodies, activatable anti-PDL1 antibodies, and methods of use thereof
US11174316B2 (en) 2015-03-13 2021-11-16 Cytomx Therapeutics, Inc. Anti-PDL1 antibodies, activatable anti-PDL1 antibodies, and methods of use thereof
US10336824B2 (en) 2015-03-13 2019-07-02 Cytomx Therapeutics, Inc. Anti-PDL1 antibodies, activatable anti-PDL1 antibodies, and methods of thereof
US11332536B2 (en) 2015-05-07 2022-05-17 Agenus Inc. Vectors comprising nucleic acids encoding anti-OX40 antibodies
US11136404B2 (en) 2015-05-07 2021-10-05 Agenus Inc. Anti-OX40 antibodies
US10626181B2 (en) 2015-05-07 2020-04-21 Agenus Inc. Nucleic acids encoding anti-OX40 antibodies
US10259882B2 (en) 2015-05-07 2019-04-16 Agenus Inc. Anti-OX40 antibodies
US11472883B2 (en) 2015-05-07 2022-10-18 Agenus Inc. Methods of administering anti-OX40 antibodies
US10869924B2 (en) 2015-06-16 2020-12-22 Merck Patent Gmbh PD-L1 antagonist combination treatments
US10513558B2 (en) 2015-07-13 2019-12-24 Cytomx Therapeutics, Inc. Anti-PD1 antibodies, activatable anti-PD1 antibodies, and methods of use thereof
US11447557B2 (en) 2015-12-02 2022-09-20 Agenus Inc. Antibodies and methods of use thereof
US10836830B2 (en) 2015-12-02 2020-11-17 Agenus Inc. Antibodies and methods of use thereof
US11542332B2 (en) 2016-03-26 2023-01-03 Bioatla, Inc. Anti-CTLA4 antibodies, antibody fragments, their immunoconjugates and uses thereof
US11596699B2 (en) 2016-04-29 2023-03-07 CureVac SE RNA encoding an antibody
JP2017203725A (ja) * 2016-05-12 2017-11-16 国立大学法人神戸大学 ErbB3活性化に伴うシグナルの伝達抑制物質及びそのスクリーニング方法
US11274154B2 (en) 2016-10-06 2022-03-15 Pfizer Inc. Dosing regimen of avelumab for the treatment of cancer
US11359028B2 (en) 2016-11-09 2022-06-14 Agenus Inc. Anti-OX40 antibodies and anti-GITR antibodies
US11040027B2 (en) 2017-01-17 2021-06-22 Heparegenix Gmbh Protein kinase inhibitors for promoting liver regeneration or reducing or preventing hepatocyte death
WO2018152419A1 (fr) * 2017-02-16 2018-08-23 Huff & Day Enterprises, LLC Système de gestion proactive d'état de maladie
US10311977B2 (en) 2017-02-16 2019-06-04 Huff & Enterprises, LLC Proactive disease state management system
US11168144B2 (en) 2017-06-01 2021-11-09 Cytomx Therapeutics, Inc. Activatable anti-PDL1 antibodies, and methods of use thereof
CN110831971A (zh) * 2017-06-09 2020-02-21 葛兰素史克知识产权开发有限公司 用icos激动剂和ox40激动剂治疗癌症的组合疗法
EP3976793A4 (fr) * 2019-05-27 2023-06-21 The University of British Columbia Épitopes spécifiques de conformation dans une protéine tau, anticorps de ceux-ci et procédés associés
EP3943509A1 (fr) * 2019-09-11 2022-01-26 Hummingbird Bioscience Holdings Limited Traitement et prévention du cancer à l'aide de molécules de liaison à l'antigène her3
US11208498B2 (en) 2019-09-11 2021-12-28 Hummingbird Bioscience Holdings Limited Treatment and prevention of cancer using HER3 antigen-binding molecules
US20220153870A1 (en) * 2019-09-11 2022-05-19 Hummingbird Biosciences Holdings Limited Treatment and prevention of cancer using her3 antigen-binding molecules
WO2021048274A1 (fr) * 2019-09-11 2021-03-18 Hummingbird Bioscience Holdings Pte. Ltd. Traitement et prévention du cancer à l'aide de molécules de liaison à l'antigène her3
WO2021108331A1 (fr) * 2019-11-26 2021-06-03 The Regents Of The University Of California Polythérapie pour le cancer de la tête et du cou
US11396647B2 (en) 2020-01-07 2022-07-26 Board Of Regents, The University Of Texas System Human methylthioadenosine/adenosine depleting enzyme variants for cancer therapy
US11591579B2 (en) 2020-01-07 2023-02-28 Board Of Regents, The University Of Texas System Human methylthioadenosine/adenosine depleting enzyme variants for cancer therapy

Also Published As

Publication number Publication date
WO2016059602A3 (fr) 2016-06-09

Similar Documents

Publication Publication Date Title
AU2011295726B2 (en) Novel antigen binding proteins
WO2016059602A2 (fr) Méthodes de traitement du cancer et compositions associées
AU2019200751B2 (en) Agonistic ICOS binding proteins
WO2017093942A1 (fr) Traitements combinés, et utilisations et méthodes associées
WO2017103895A1 (fr) Anticorps ciblant cd32b et leurs procédés d'utilisation associés
US20230295313A1 (en) Il1rap binding proteins
CN116940597A (zh) 多特异性抗体及其用途
CA3167689A1 (fr) Traitements combines et utilisations et methodes associees

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15791034

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15791034

Country of ref document: EP

Kind code of ref document: A2