WO2016058513A2 - 一种硬度和韧性优异的等离子喷涂tin涂层、其制备方法及涂有该tin涂层的模具 - Google Patents

一种硬度和韧性优异的等离子喷涂tin涂层、其制备方法及涂有该tin涂层的模具 Download PDF

Info

Publication number
WO2016058513A2
WO2016058513A2 PCT/CN2015/091811 CN2015091811W WO2016058513A2 WO 2016058513 A2 WO2016058513 A2 WO 2016058513A2 CN 2015091811 W CN2015091811 W CN 2015091811W WO 2016058513 A2 WO2016058513 A2 WO 2016058513A2
Authority
WO
WIPO (PCT)
Prior art keywords
coating
tin
powder
mold
spraying
Prior art date
Application number
PCT/CN2015/091811
Other languages
English (en)
French (fr)
Other versions
WO2016058513A3 (zh
Inventor
王海斗
邢志国
崔华威
金国
Original Assignee
王海斗
邢志国
崔华威
金国
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410539638.2A external-priority patent/CN104372284A/zh
Priority claimed from CN201410539532.2A external-priority patent/CN104342613A/zh
Priority claimed from CN201410539533.7A external-priority patent/CN104372283A/zh
Application filed by 王海斗, 邢志国, 崔华威, 金国 filed Critical 王海斗
Priority to US15/102,976 priority Critical patent/US10047014B2/en
Publication of WO2016058513A2 publication Critical patent/WO2016058513A2/zh
Publication of WO2016058513A3 publication Critical patent/WO2016058513A3/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the invention relates to the field of material technology research, in particular to a plasma sprayed TiN coating, a preparation method thereof and a mold coated with the TiN coating.
  • TiN coatings have a low coefficient of friction, high hardness and good corrosion resistance, and are widely used as decorative coatings, wear resistant coatings, and corrosion resistant coatings.
  • many researchers have prepared TiN coatings by reactive thermal spraying, chemical vapor deposition (CVD), physical vapor deposition (PVD), arc plating, etc., and studied the deposition process, microstructure and properties of the coating. .
  • the thickness of TiN coating prepared by CVD, PVD and other technologies is thinner, which reduces the mechanical properties of the coating.
  • the thermal spray reaction technology can prepare thick TiN coating, but the coating contains more pores and is more brittle. The quality of the coating is not easy to control.
  • Direct spraying of TiN powder by plasma spraying technology can prepare a thick coating in a short time, and at the same time, TiN is oxidized during the spraying process to produce an oxide phase of Ti, which can improve the toughness of the coating.
  • Plasma spray technology is widely used to prepare metal, ceramic and composite coatings to resist wear, corrosion and high temperatures.
  • Microscopic defects such as oxides and pores are easily generated during the spraying process because the molten particles chemically react with the surrounding medium during melting and flying and contact with the surface of the substrate, so that the sprayed material is oxidized, and also due to the molten particles. The stacking and partial granules are lost and the pores are inevitable between the particles.
  • Micro-defects such as oxide content and porosity in the coating are important criteria for judging the quality of the coating.
  • TiN is easily decomposed and oxidized at high temperature, and has high activity. It reacts with other media to form Ti oxide during plasma spraying. Ti oxide phase has lower hardness and strength than TiN phase, and the oxide content in TiN coating directly affects. Coating properties. Fracture toughness is the ability of materials to resist fracture and damage. The measurement of fracture toughness of coatings by indentation has been widely used. Coating hardness and fracture toughness are the main indexes of coating resistance to crack propagation and fracture, which directly affects coating. Service performance and longevity.
  • TiN coatings by reactive thermal spraying, chemical vapor deposition (CVD), physical vapor deposition (PVD), arc plating, etc., and studied the deposition process, microstructure and properties of the coating. .
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • arc plating etc.
  • the TiN coating prepared by PVD and other technologies has a thinner thickness and lowers the mechanical properties of the coating.
  • the thermal spray reaction technique can prepare a thicker TiN coating, but the coating contains more pores and is more brittle. Quality is not easy to control.
  • the direct coating of TiN powder by plasma can not only ensure the thickness of the coating, but also the oxide phase of Ti in the TiN coating can improve the toughness of the coating, thereby obtaining a TiN coating with good toughness and hardness.
  • Another object of the present invention is to provide a method of preparing a TiN coating.
  • the present invention provides a TiN agglomerated powder comprising atomic fractions of Ti-72% and N-28% which, after agglomeration, form spherical agglomerates having a particle size of from 40 to 80 ⁇ m.
  • the present invention also provides a TiN coating which is prepared from a TiN agglomerated powder.
  • the three strong peak phases of the coating are TiN phases, and some TiO, TiO 2 and Ti 3 O oxide phases are also present; the coating has a layered distribution of light and dark phases, which is combined with the layered structure inside the layered structure. There is a small amount of pores; there is no microscopic defect such as crack at the joint of the coating and the substrate, and the combination is good.
  • the invention provides a method of making a TiN coating comprising the steps of:
  • the powder comprises an atomic fraction of Ti-72% and N-28%, and after agglomeration, a spherical agglomerate having a particle diameter of 40 to 80 ⁇ m is formed;
  • Spraying spraying with a plasma spray gun, the spraying parameters are: the main gas is argon gas, the gas flow rate is 38L ⁇ min -1 -42L ⁇ min -1 ; the secondary gas is hydrogen gas flow rate is 12L ⁇ min -1 - 16L ⁇ min -1 ; the powder feeding gas is argon gas, the spraying distance is 100-140mm; the powder feeding amount is 40g ⁇ min -1 , the spraying voltage is 41KW-50KW; the spraying current is 500A-600A;
  • a TiN coating was prepared: the three strong peak phases of the coating were TiN phases, and some TiO, TiO 2 and Ti 3 O oxide phases were also present.
  • the step (1) in the method for preparing the TiN coating is specifically:
  • polyvinyl alcohol PVA
  • the binder is generally added in an amount of not more than 1% by mass, which can be used to adjust the free flowability of the powder.
  • step (2) with mold surface pretreatment includes grinding, cleaning and sand blasting of the mold.
  • step (2) More preferably, the specific steps of step (2) are:
  • the surface of the mold is sandblasted.
  • the blasting material is made of brown corundum with a particle size of less than 700 ⁇ m.
  • the blasting pressure is 0.7 MPa, the blasting angle is 45°, and the distance between the spray gun and the surface of the mold is 0.15 m.
  • step (3) are:
  • the spraying parameter in the step (3) is that the main gas is argon gas, the gas flow rate is 38 L ⁇ min -1 ; the secondary gas is a hydrogen gas flow rate of 16 L ⁇ min -1 ; the powder feeding gas is argon gas, spraying The distance is 125mm; the powder feeding amount is 40g ⁇ min -1 , the spraying voltage is 46KW; the spraying current is 540A.
  • the step (4) in the method for preparing the TiN coating is specifically:
  • the melting point of TiN powder is about 2950 ° C.
  • the spray powder TiN agglomerated powder is melted at the high temperature of the plasma beam.
  • the supersonic plasma spraying equipment can make the molten powder have a high flying speed and can form a dense coating;
  • the sprayed powder is deposited on the substrate, and the molten particles react with the surrounding air during the flight to produce oxidation, which forms TiO, Ti 3 O, TiO 2 oxide, and Ti oxide phase. It has lower strength and hardness than TiN and can improve the toughness of the coating.
  • the present invention provides a mold having a surface coated with a TiN coating, the three strong peak phases of which are TiN phases, and also a portion of TiO, TiO 2 and Ti 3 O oxide phases; There is a layered distribution of light and dark phase in the coating. There is a small amount of pores in the inner part of the layered structure and the layered structure; there is no microscopic defect such as crack at the joint of the coating and the substrate, and the combination is good.
  • the TiN coating is prepared from a TiN agglomerated powder comprising atomic fractions of Ti-72% and N-28%, which agglomerate to form spherical agglomerates having a particle size of 40-80 ⁇ m.
  • the mold comprises a metal piece and a non-metal piece.
  • the metal member comprises a bolt, a gear, a bearing, a drill sleeve.
  • the present invention provides a bearing sleeve having an inner wall coated with a TiN coating.
  • the invention directly sprays the TiN powder, and can directly prepare a wear-resistant ceramic coating on the surface of the part, and the appearance of Ti oxide in the coating improves the toughness of the coating.
  • Direct spraying of the TiN coating can avoid the drawbacks of the conventional brittleness and process complexity when using the reactive sprayed TiN layer and the need for more human and material resources.
  • the invention adopts supersonic spraying TiN coating, the coating is dense, has a small amount of voids, and has good bonding with the substrate, the thickness is about 200 ⁇ m, and the fracture toughness of the coating is measured by the indentation method.
  • the invention adopts the TiN coating prepared by plasma spraying TiN powder.
  • the method can be directly sprayed by powder, has convenient operation, is easy to popularize, and greatly saves cost.
  • the invention adopts supersonic plasma spraying TiN coating, and the hardness is high, and can reach 1210HV 0.1 .
  • the high hardness can improve the wear resistance of the coating, the fracture toughness of the coating is large, and the fracture mechanical property in the coating can be improved and prolonged. The fatigue life of the coating.
  • Figure 1 is a TiN coating prepared in Example 1 of the present invention.
  • Figure 2 is a trend diagram of the effect of spray power on porosity
  • Figure 5 is a SEM scan of the coating
  • Figure 8 shows the effect of different porosity on the hardness of the coating
  • the fermenter type used was BIOSTAR Bplus, Germany.
  • the preparation process of the coating is divided into four stages: preparation of TiN agglomerated powder, mold surface pretreatment, spray parameter optimization, and spraying.
  • the four stages are as follows:
  • the agglomerated powder was passed through a -200 mesh to 400 mesh powder sieve to obtain a micron spherical agglomerate having a TiN agglomerated powder having a particle diameter of 40 to 80 ⁇ m.
  • the powder comprises atomic fractions of Ti-72% and N-28%, which agglomerate to form spherical agglomerates having a particle size of 40-80 ⁇ m.
  • the surface of the mold is sandblasted.
  • the blasting material is made of brown corundum with a particle size of less than 700 ⁇ m.
  • the blasting pressure is 0.7 MPa, the blasting angle is 45°, and the distance between the spray gun and the surface of the mold is 0.15 m.
  • the spraying equipment adopts a supersonic plasma spray gun, and the spraying parameter is that the main gas is argon gas.
  • the gas flow rate is 38 L ⁇ min -1 ; the secondary gas is the hydrogen gas flow rate of 16 L ⁇ min -1 ; the powder feeding gas is argon gas, the spraying distance is 125 mm; the powder feeding amount is 40 g ⁇ min -1 , and the spraying voltage is 46 KW; spraying The current is 540A;
  • the melting point of TiN powder is about 2950 ° C.
  • the spray powder TiN agglomerated powder is melted at the high temperature of the plasma beam.
  • the supersonic plasma spraying equipment can make the molten powder have a high flying speed and can form a dense coating;
  • the sprayed powder is deposited on the substrate, and the molten particles react with the surrounding air during the flight to produce oxidation, which forms TiO, Ti 3 O, TiO 2 oxide, and Ti oxide phase. It has lower strength and hardness than TiN and can improve the toughness of the coating.
  • the TiN coating obtained is as shown in Fig. 1.
  • the coating is dense, has a small amount of voids, and has good bonding with the substrate.
  • the thickness is about 200 ⁇ m.
  • the fracture toughness of the coating is measured by the indentation method.
  • the spraying power in the spraying parameters, the spraying distance is the main index affecting the coating, and 10 different process parameters are used to optimize the coating.
  • the evaluation criteria of the optimization index are hardness and fracture. toughness.
  • the results of different spray power versus hardness are as follows. Under the ST4 process parameters, when the spray power is 46KW, the coating hardness is the highest, which is 1402HV0.1, ST5, ST3, ST1, ST2. The hardness of the coating was sequentially reduced to 1248 HV 0.1, 1096 HV 0.1, 10 12 HV 0.1, 985 HV 0.1, respectively.
  • the oxide in the coating first decreases and then increases.
  • the oxide content in the coating is the least. See Figure 3 for details.
  • Example 4 Performance of the coating in Example 1
  • phase composition of the coating prepared in Example 1 was analyzed by BRUKER D8 X-ray analysis diffractometer (XRD).
  • XRD X-ray analysis diffractometer
  • Figure 4 shows the XRD pattern of the TiN coating.
  • the three strong peaks in the figure are TiN phase, the TiN phase has a strong (200) orientation, and some TiO, TiO 2 and Ti 3 O oxide phases exist. This is due to the oxidation of TiN at high temperatures during plasma spraying to form oxides of Ti. The presence of the metastable phase of TiO and Ti 3 O in the coating is due to insufficient deposition of TiN oxidation during plasma spraying. The strength of the three strong peaks of the TiN phase is much greater than the strength of the oxide phase, indicating that the coating is mainly TiN phase.
  • the elemental analysis of the TiN coating was carried out using an EDS spectrometer used in a Nova Nano SEM 450 scanning electron microscope, as shown in Figure 5 and Table 5, to determine the respective coatings. Phase The combination of the situation.
  • the cross-sectional scan photograph 5 there is a layered distribution of light and dark phases in the coating, and a small amount of pores are present inside the layered structure and at the junction of the layered structure.
  • the elemental surface scan distribution that the Ti element is more evenly distributed throughout the cross section, and the N element and the O element are regionally distributed.
  • the darker A area in the SEM picture is rich in Ti and N, and a small amount.
  • the brighter B region is rich in Ti, O and a small amount of N.
  • the main component of the A region is the TiN phase
  • the main component of the B region is the Ti oxide phase and a small amount of the TiN phase.
  • the difference in the color of A and B may be mainly due to the difference in the content of the oxide phase.
  • the microhardness of the coating was tested by HVS-1000 digital display Vickers hardness tester.
  • the microhardness loading load was 100g
  • the loading time was 15S
  • the number of test points was 10 points
  • the average hardness of the coating reached 1210HV 0.1 .
  • the coating has a higher hardness, as shown in Figure 6.
  • the indentation was pressed using a HVS-1000 digital display Vickers hardness tester, as shown in Fig. 7 and Table 6, and the fracture toughness of the coating was calculated by the following formula of the indentation method:
  • Fig. 8 The trend diagram of the effect of porosity on the hardness of the coating is shown in Fig. 8. It can be seen that under the three processes, the hardness of the coating decreases with the increase of the porosity in the coating. The hardness of the coating is the highest when the porosity is small, which is 1402 HV0.1.
  • Bolt The surface of the bolt is sprayed with plasma sprayed TiN coating to improve the wear resistance of the bolt surface.
  • the wear volume of the unsprayed coating is 82547 ⁇ m 3 within 30min, and the wear volume after spraying is 20636 ⁇ m 3 , the wear resistance of the coating after spraying is increased by 4.03 times compared with the unpainted, and the dimensional tolerance of the bolt surface should be paid attention to during the spraying process.
  • Gear The surface of the gear is sprayed with plasma TiN coating, which can greatly improve the contact fatigue life during the contact process of the gear surface. After the surface of the gear is sprayed and unpainted, the contact fatigue accelerated life test under large load is found. The surface of the post-coated gears wears after 130,000 rotations, while the unsprayed coating wears after 42,000 rotations. The contact fatigue accelerated life is 3.1 times higher than that of the unpainted after spraying.
  • Drill sleeve The plasma coating of TiN coating on the surface of the drill sleeve can improve the failure of the parts during the working process due to the impact and wear of the sediment.
  • the erosion test of the plasma sprayed TiN coating and the unsprayed coating is carried out. After the erosion angle is 60 degrees and the erosion time is 20 minutes, the volume of the etch pit of the sprayed TiN coating is 186379 ⁇ m 3 , and the volume of the spray coating is 650616 ⁇ m 3 .
  • the life of the sprayed TiN coating parts is less than that. Spraying increased by 3.49 times, greatly improving the life of parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开了一种TiN团聚粉末,该粉末包括原子分数为Ti-72%和N-28%,其团聚后形成粒径为40~80μm球状团聚体。本发明还提供了一种TiN涂层,该TiN涂层是由TiN团聚粉末制备得到;该涂层的三强峰相为TiN相,还存在部分TiO、TiO2和Ti3O氧化物相;该涂层中存在明暗相层状分布,在层状结构内部和层状结构结合处有少量孔隙;涂层与基体结合处无裂纹等微观缺陷,结合良好。本发明采用超音速等离子喷涂TiN涂层,硬度较高,可以达到1210HV0.1,高的硬度可以提高涂层的耐磨性,涂层的断裂韧性较大,可以提高涂层内断裂力学性能,延长涂层的疲劳寿命。本发明还提供了该TiN涂层的制备方法以及涂有该TiN涂层的模具。

Description

一种硬度和韧性优异的等离子喷涂TIN涂层、其制备方法及涂有该TIN涂层的模具 技术领域
本发明涉及材料技术研究领域,具体而言涉及一种等离子喷涂TiN涂层、其制备方法以及涂有该TiN涂层的模具。
背景技术
TiN涂层具有低的摩擦系数和高的硬度以及良好的耐腐蚀性,被广泛应用为装饰涂层、耐磨涂层、耐腐蚀涂层。目前,许多研究者通过反应热喷涂、化学气相沉积(CVD)、物理气相沉积(PVD)、电弧镀等技术制备了TiN涂层,并对涂层的沉积过程、显微结构和性能进行了研究。采用CVD、PVD等技术制备的TiN涂层厚度较薄,降低涂层的机械性能;而利用热喷涂反应技术可以制备较厚的TiN涂层,但涂层内含有较多的孔隙,脆性较大,涂层质量不易控制。采用等离子喷涂技术直接喷涂TiN粉末可以在短时间内制备较厚的涂层,同时在喷涂过程中TiN发生氧化,产生Ti的氧化物相,可以提高涂层的韧性。
等离子喷涂技术被广泛应用于制备金属、陶瓷和复合涂层以抵抗磨损、腐蚀和高温。在喷涂过程中,易产生氧化物和孔隙等微观缺陷,这是由于熔融颗粒在熔化和飞行以及与基体表面接触过程中与周围介质发生了化学反应,使得喷涂材料出现氧化,而且还由于熔融颗粒的陆续堆叠和部分颗粒的反弹散失,在颗粒之间不可避免的出现孔隙。涂层内氧化物含量和孔隙率等微观缺陷是评判涂层质量的重要标准,有学者针对等离子喷涂过程中氧化物的控制和孔隙率对涂层性能的影响进行了研究,通过控制合适的工艺参数能够显著改善涂层的微观结构和性能。TiN高温下易分解氧化,活性较大,在等离子喷涂过程中与其它介质反应生成Ti的氧化物,Ti的氧化物相相比TiN相硬度和强度较低,TiN涂层内氧化物含量直接影响了涂层性能。断裂韧性是材料抵抗断裂破坏的能力,采用压痕法对涂层断裂韧性的测量已得到广泛应用,涂层硬度和断裂韧性是涂层抵抗裂纹增殖和发生断裂的主要指标,直接影响了涂层的服役性能和寿命。
目前,许多研究者通过反应热喷涂、化学气相沉积(CVD)、物理气相沉积(PVD)、电弧镀等技术制备了TiN涂层,并对涂层的沉积过程、显微结构和性能进行了研究。采用CVD、 PVD等技术制备的TiN涂层厚度较薄,降低涂层的机械性能;而利用热喷涂反应技术可以制备较厚的TiN涂层,但涂层内含有较多的孔隙,脆性较大,涂层质量不易控制。而采用等离子直接喷涂TiN粉末,既可以保证涂层的厚度,同时,TiN涂层内Ti的氧化物相可以提高涂层的韧性,从而得到韧性和硬度都较好的TiN涂层。
发明内容
为了解决上述问题,本发明的一个目的是提供一种TiN涂层。
本发明的另一个目的是提供一种TiN涂层的制备方法。
本发明的还一个目的是提供一种涂有TiN涂层的模具。
在一个方面中,本发明提供了一种TiN团聚粉末,该粉末包括原子分数为Ti-72%和N-28%,其团聚后形成粒径为40~80μm球状团聚体。
进一步地,本发明还提供了一种TiN涂层,该TiN涂层是由TiN团聚粉末制备得到。
并且,该涂层的三强峰相为TiN相,还存在部分TiO、TiO2和Ti3O氧化物相;该涂层中存在明暗相层状分布,在层状结构内部和层状结构结合处有少量孔隙;涂层与基体结合处无裂纹等微观缺陷,结合良好。
在另一个方面中,本发明提供了一种制备TiN涂层的方法,其包括如下步骤:
(1)制备TiN团聚粉末:该粉末包括原子分数为Ti-72%和N-28%,其团聚后形成粒径为40~80μm球状团聚体;
(2)模具表面预处理;
(3)喷涂:利用等离子喷枪进行喷涂,喷涂参数为,喷涂主气为氩气,气体流量为38L·min-1-42L·min-1;次气为氢气气体流量为12L·min-1-16L·min-1;送粉气为氩气,喷涂距离为100-140mm;送粉量为40g·min-1,喷涂电压为41KW-50KW;喷涂电流为500A-600A;
(4)制得TiN涂层:该涂层三强峰相为TiN相,还存在部分TiO、TiO2和Ti3O氧化物相。
优选地,制备TiN涂层的方法中步骤(1)具体为:
(1-1)对TiN粉末原料进行雾化,粉末粒径为1-5μm;
(1-2)对雾化后的TiN粉末和粘结剂进行混料加入到团聚设备内进行团聚,并对团聚后的粉末进行干燥,冷却;
(1-3)将团聚后的粉末通过-200目~400目粉末筛,得到的TiN团聚粉末粒径为40-80微米球状团聚体。
更优选地,采用聚乙烯醇(PVA)作为粘结剂,粘结剂加入一般不超过1%(质量比),其可以用来调节粉末自由流动性。
优选地,步骤(2)具模具表面预处理包括模具的磨削、清洗和喷砂。
更优选地,步骤(2)具体步骤为:
(2-1)对模具表面首先进行磨削处理,使模具表面的粗糙度达到Ra=0.8μm;
(2-2)然后对模具表面进行酒精或丙酮清洗,去除模具表面的油污;
(2-3)对模具表面进行喷砂处理,喷砂材料选用粒径小于700μm的棕刚玉,喷砂气压为0.7MPa,喷砂角度为45°,喷枪离模具表面距离为0.15m。
优选地,步骤(3)具体步骤为:
(3-1)在喷涂参数下,利用超音速等离子喷枪对工件表面进行喷涂,扫描过程采用“井”字扫描,扫描速度为1.25m/min;
(3-2)根据沉积速度对工件表面进行4~6次“井”字扫描,得到厚度约为200μm厚度的涂层。
更优选地,步骤(3)中喷涂参数为,喷涂主气为氩气,气体流量为38L·min-1;次气为氢气气体流量为16L·min-1;送粉气为氩气,喷涂距离为125mm;送粉量为40g·min-1,喷涂电压为46KW;喷涂电流为540A。
优选地,制备TiN涂层的方法中步骤(4)具体为:
(4-1)TiN粉末熔点约为2950℃,喷涂粉末TiN团聚粉末在等离子束的高温下熔化,超音速等离子喷涂设备可以使熔化粉末具有高的飞行速度,可以形成较致密的涂层;
(4-2)喷涂粉末由于沉积到基体上,熔化颗粒在飞行过程中,与周围的空气发生了反应,产生了氧化,生成了TiO,Ti3O,TiO2氧化物,Ti的氧化物相比TiN相强度和硬度较低,可以提高涂层的韧性。
在又一个方面中,本发明提供了一种模具,其表面涂有TiN涂层,该涂层的三强峰相为TiN相,还存在部分TiO、TiO2和Ti3O氧化物相;该涂层中存在明暗相层状分布,在层状结构内部和层状结构结合处有少量孔隙;涂层与基体结合处无裂纹等微观缺陷,结合良好。
优选地,所述TiN涂层是由TiN团聚粉末制备得到,该粉末包括原子分数为Ti-72%和N-28%,其团聚后形成粒径为40~80μm球状团聚体。
优选地,所述模具包括金属件和非金属件。
优选地,所述金属件包括螺栓、齿轮、轴承、钻头套。
进一步地,本发明提供了一种轴承套,该轴承套内壁喷涂有TiN涂层。
本发明的有益效果如下:
本发明直接对TiN粉末进行喷涂,可以在零件表面直接制备耐磨陶瓷涂层,涂层中Ti氧化物的出现,提高了涂层的韧性。直接喷涂TiN涂层可以避免传统的采用反应喷涂TiN层时较大的脆性和工艺复杂以及需要较多的人力和物力资源的缺陷。
本发明采用超音速喷涂TiN涂层,涂层较致密,有少量空隙,与基体结合良好,厚度约200μm,采用压痕法测量涂层断裂韧性为
Figure PCTCN2015091811-appb-000001
本发明采用等离子喷涂TiN粉末制备的TiN涂层,该方法可以采用粉末直接喷涂,操作方便,易于推广,大大的节约了成本。
本发明采用超音速等离子喷涂TiN涂层,硬度较高,可以达到1210HV0.1,高的硬度可以提高涂层的耐磨性,涂层的断裂韧性较大,可以提高涂层内断裂力学性能,延长涂层的疲劳寿命。
附图说明
图1本发明实施例1制得的TiN涂层;
图2喷涂功率对孔隙率的影响趋势图;
图3喷涂距离对氧化物含量的影响;
图4涂层的XRD测试结果;
图5涂层的SEM扫描形貌;
图6涂层硬度测试结果;
图7断裂韧性测试压痕形貌;
图8不同孔隙率对涂层硬度的影响;
图9不同氧化物含量对涂层断裂韧性的影响。
具体实施方式
下面结合附图及其具体实施方式详细介绍本发明。但本发明的保护范围并不局限于以下实例,应包含权利要求书中的全部内容。
以下实施例中所使用的常规仪器,所用的发酵罐型号为BIOSTAR Bplus,Germany。
实施例1:涂层的制备
涂层的制备过程分为制备TiN团聚粉末,模具表面预处理,喷涂参数优化,喷涂四个阶段,四个阶段步骤如下:
(1)制备TiN团聚粉末;
(1-1)以粉末粒径为1-5μm的TiN粉末为原料进行雾化;
(1-2)对雾化后的TiN粉末和粘结剂进行混料加入到团聚设备内进行团聚,并对团聚后的粉末进行干燥,冷却;
(1-3)将团聚后的粉末通过-200目~400目粉末筛,得到的TiN团聚粉末粒径为40-80微米的微米球状团聚体。
该粉末包括原子分数为Ti-72%和N-28%,其团聚后形成粒径为40~80μm球状团聚体。
(2)模具表面预处理;
(2-1)对模具表面首先进行磨削处理,使模具表面的粗糙度达到Ra=0.8μm;
(2-2)然后对模具表面进行酒精或丙酮清洗,去除模具表面的油污;
(2-3)对模具表面进行喷砂处理,喷砂材料选用粒径小于700μm的棕刚玉,喷砂气压为0.7MPa,喷砂角度为45°,喷枪离模具表面距离为0.15m。
(3)喷涂
(3-1)喷涂设备采用超音速等离子喷枪,喷涂参数为,喷涂主气为氩气,
气体流量为38L·min-1;次气为氢气气体流量为16L·min-1;送粉气为氩气,喷涂距离为125mm;送粉量为40g·min-1,喷涂电压为46KW;喷涂电流为540A;
(3-2)在喷涂参数下,利用超音速等离子喷枪对工件表面进行喷涂,扫描过程采用“井”字扫描,扫描速度为1.25m/min;
(3-3)根据沉积速度对工件表面进行4~6次“井”字扫描,得到厚度约为200μm厚度的涂层;
(4)制得TiN涂层
(4-1)TiN粉末熔点约为2950℃,喷涂粉末TiN团聚粉末在等离子束的高温下熔化,超音速等离子喷涂设备可以使熔化粉末具有高的飞行速度,可以形成较致密的涂层;
(4-2)喷涂粉末由于沉积到基体上,熔化颗粒在飞行过程中,与周围的空气发生了反应,产生了氧化,生成了TiO,Ti3O,TiO2氧化物,Ti的氧化物相比TiN相强度和硬度较低,可以提高涂层的韧性。
制得的TiN涂层如图1所示,涂层较致密,有少量空隙,与基体结合良好,厚度约200μm,采用压痕法测量涂层断裂韧性为
Figure PCTCN2015091811-appb-000002
实施例2:喷涂参数的影响
喷涂参数中的喷涂功率,喷涂距离是影响涂层的主要指标,采用了10种不同工艺参数来对涂层进行优化,具体如表1和表2所示,优化指标的评判标准为硬度和断裂韧性。
表1不同喷涂功率下喷涂参数
Figure PCTCN2015091811-appb-000003
表2不同喷涂距离下喷涂参数
Figure PCTCN2015091811-appb-000004
通过改变ST1-ST5五种工艺参数,不同喷涂功率对硬度的结果如下,在ST4工艺参数下,喷涂功率为46KW时,涂层硬度最高,为1402HV0.1,ST5,ST3,ST1,ST2工艺下,涂层的硬度依次减小,分别为1248HV0.1,1096HV0.1,1012HV0.1,985HV0.1。
通过改变ST6-ST10五种工艺参数,在最佳喷涂功率下,不同喷涂距离是造成涂层中氧化物含量不同的主要原因,从而导致了涂层的断裂韧性差异。在ST8工艺参数下,涂层的氧化物含量为16%左右时,涂层的断裂韧性最大,为
Figure PCTCN2015091811-appb-000005
在ST10,ST7,ST9,ST6工艺参数下,涂层的断裂韧性依次降低,分别为
Figure PCTCN2015091811-appb-000006
Figure PCTCN2015091811-appb-000007
通过改变涂层的喷涂参数,喷涂功率的改变对涂层中孔隙率有直接影响,影响结果如3所示:
表3不同喷涂功率下涂层孔隙率的大小
Figure PCTCN2015091811-appb-000008
喷涂功率的减小,涂层内孔隙率出现先增大后减小的趋势,喷涂功率为46KW时涂层内孔隙率最小,具体如图2所示。
实施例3:喷涂距离对氧化物含量的影响
利用三种参数检测喷涂距离对氧化物含量的影响,具体如表4所示。
表4喷涂距离对氧化物含量的影响三种参数下涂层EDS结果
Figure PCTCN2015091811-appb-000009
喷涂距离的增大,涂层内氧化物出现先减小后增大的趋势,喷涂距离为125mm左右时涂层内氧化物含量最少,具体参见图3。
实施例4:实施例1中涂层的性能
为了测量涂层中相成分和相结构,采用BRUKER公司D8型X射线分析衍射仪(XRD)对实施例1制得的涂层进行相成分分析,衍射靶材为Cu靶,波长为0.154056nm,测试结果如图4所示所示。
图4所示为TiN涂层XRD图谱,经过对比PDF卡片,图中的三强峰相为TiN相,TiN相具有强烈的(200)取向,存在部分TiO、TiO2和Ti3O氧化物相,这是由于等离子喷涂过程中TiN高温下发生了氧化,生成了Ti的氧化物。涂层内TiO和Ti3O亚稳相的存在是由于等离子喷涂过程中TiN的氧化不充分沉积形成。TiN相三强峰的强度远大于氧化物相的强度,说明涂层中主要为TiN相。
为了确定涂层中各元素的分布情况,采用Nova NanoSEM450型扫描电子显微镜所采用的EDS能谱仪对TiN涂层进行了元素分析,具体如图5和表5所示,以确定涂层中各相之 间的结合情况。
表5涂层EDS结果
Figure PCTCN2015091811-appb-000010
从截面扫描照片图5中可以看出,涂层中存在明暗相层状分布,在层状结构内部和层状结构结合处有少量孔隙。从元素面扫描分布图中可以看出Ti元素在整个截面中分布较均匀,N元素和O元素呈区域性分布,SEM图片中颜色较暗的A区富含成分为Ti和N,以及少量的O,相反,颜色较亮的B区富含成分为Ti、O和少量的N。结合XRD结果,可以分析A区主要成分为TiN相,而B区的主要成分为Ti氧化物相和少量TiN相。A和B颜色的不同,主要可能是氧化物相含量的不同所致。
采用HVS-1000型数显维氏硬度计测试涂层显微硬度,显微硬度加载载荷为100g,加载时间15S,测试点个数为10个点,涂层的平均硬度达到1210HV0.1,可以看出涂层具有较高的硬度,具体如图6所示。
采用HVS-1000型数显维氏硬度计压出压痕,如图7和表6所示,并利用压痕法的如下公式计算了涂层的断裂韧性:
Figure PCTCN2015091811-appb-000011
Figure PCTCN2015091811-appb-000012
式(1)中:a为对角线压痕长度的一半;P为加载载荷;式(2)中:E为杨氏模量;c为从压痕中心到裂纹边径向裂纹的长度。
表6涂层断裂韧性KIC计算参数
Figure PCTCN2015091811-appb-000013
涂层内喷涂参数对孔隙率和氧化物的影响,对硬度和断裂韧性也有影响
涂层内孔隙率对硬度的影响趋势图如图8所示,可以看出,三种工艺下,随涂层内孔隙率增大,涂层硬度呈明显降低趋势。孔隙率较小时涂层的硬度最高,为1402HV0.1。
涂层内氧化物对断裂韧性的影响趋势,如图9所示。可以看出,随氧化物含量增加涂层的断裂韧性呈先增加后降低的趋势,在氧化物含量为16%左右时,涂层的断裂韧性值最大,为
Figure PCTCN2015091811-appb-000014
应用例对模具进行喷涂
具体喷涂方法请见实施例1的过程。
1、螺栓:螺栓表面进行等离子喷涂TiN涂层的喷涂,可以提高螺栓表面的耐磨性,在摩擦磨损试验中,30min时间内,未喷涂涂层的磨损体积为82547μm3,喷涂后磨损体积为20636μm3,喷涂后涂层的耐磨性较未喷涂提高了4.03倍,在喷涂过程中需要注意螺栓表面的尺寸公差问题。
2、齿轮:齿轮表面进行等离子TiN涂层的喷涂,可以大大提高齿轮表面再接触过程中的接触疲劳寿命,在齿轮表面喷涂后和未喷涂进行了大载荷下的接触疲劳加速寿命试验,发现喷涂后涂层的齿轮在转动130000次后出现表面磨损,而未喷涂涂层在转动42000次后出现磨损,接触疲劳加速寿命喷涂后较未喷涂提高了3.1倍。
3、轴承:轴承外部进行等离子喷涂TiN涂层的喷涂,可以提高轴承表面的耐磨性,在摩擦磨损试验中,30min时间内,未喷涂涂层的磨损体积为91844μm3,喷涂后磨损体积为25659μm3,喷涂后涂层的耐磨性较未喷涂提高了3.58倍。
4、钻头套:钻头套表面等离子喷涂TiN涂层,可以提高零件在工作过程中由于泥沙等冲击和磨损带来的失效,在对等离子喷涂TiN涂层和未喷涂涂层进行了冲蚀试验,在冲蚀角度为60度,冲蚀时间为20分钟后,喷涂TiN涂层的冲蚀坑体积为186379μm3,为喷涂涂层冲蚀坑体积为650616μm3,喷涂TiN涂层零件寿命较未喷涂提高了3.49倍,大大提高零件的寿命。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (14)

  1. 一种TiN涂层,其中该TiN涂层是由TiN团聚粉末制备得到,该粉末包括原子分数为Ti-72%和N-28%,其团聚后形成粒径为40~80μm球状团聚体。
  2. 如权利要求1所述的TiN涂层,其中该涂层的三强峰相为TiN相,还存在部分TiO、TiO2和Ti3O氧化物相;该涂层中存在明暗相层状分布,在层状结构内部和层状结构结合处有少量孔隙;涂层与基体结合处无裂纹等微观缺陷,结合良好。
  3. 一种制备权利要求1或2所述的TiN涂层的方法,其中所述方法包括以下步骤:
    (1)制备TiN团聚粉末:该粉末包括原子分数为Ti-72%和N-28%,其团聚后形成粒径为40~80μm球状团聚体;
    (2)模具表面预处理;
    (3)喷涂:利用等离子喷枪进行喷涂,喷涂参数为,喷涂主气为氩气,气体流量为38L·min-1-42L·min-1;次气为氢气气体流量为12L·min-1-16L·min-1;送粉气为氩气,喷涂距离为100-140mm;送粉量为40g·min-1,喷涂电压为41KW-50KW;喷涂电流为500A-600A;
    (4)制得TiN涂层:该涂层三强峰相为TiN相,还存在部分TiO、TiO2和Ti3O氧化物相。
  4. 如权利要求3所述的方法,其中步骤(1)的步骤包括:
    (1-1)对TiN粉末原料进行雾化;
    (1-2)对雾化后的TiN粉末和粘结剂进行混料加入到团聚设备内进行团聚,并对团聚后的粉末进行干燥,冷却;
    (1-3)将团聚后的粉末通过-200目~400目粉末筛,得到的TiN团聚粉末粒径为40-80微米球状团聚体。
  5. 如权利要求4所述的方法,其中所述粘结剂为聚乙烯醇,粘结剂加入不超过TiN粉末质量的1%。
  6. 如权利要求3所述的方法,其中步骤(2)的模具表面预处理包括模具的磨削、清洗和喷砂。
  7. 如权利要求3所述的方法,其中步骤(2)的步骤包括:
    (2-1)对模具表面首先进行磨削处理,使模具表面的粗糙度达到Ra=0.8μm;
    (2-2)然后对模具表面进行酒精或丙酮清洗,去除模具表面的油污;
    (2-3)对模具表面进行喷砂处理,喷砂材料选用粒径小于700μm的棕刚玉,喷砂气压为0.7MPa,喷砂角度为45°,喷枪离模具表面距离为0.15m。
  8. 如权利要求3所述的方法,其中步骤(3)的步骤包括:
    (3-1)在喷涂参数下,利用超音速等离子喷枪对工件表面进行喷涂,扫描过程采用“井”字扫描,扫描速度为1.25m/min;
    (3-2)根据沉积速度对工件表面进行4~6次“井”字扫描,得到厚度约为200μm厚度的涂层。
  9. 如权利要求3所述的方法,其中在步骤(3)中,喷涂参数为:喷涂主气为氩气,气体流量为38L·min-1;次气为氢气气体流量为16L·min-1;送粉气为氩气,喷涂距离为125mm;送粉量为40g·min-1,喷涂电压为46KW;喷涂电流为540A。
  10. 如权利要求3所述的方法,其中步骤(4)的步骤包括:
    (4-1)TiN粉末熔点约为2950℃,喷涂粉末TiN团聚粉末在等离子束的高温下熔化,超音速等离子喷涂设备可以使熔化粉末具有高的飞行速度,可以形成较致密的涂层;
    (4-2)喷涂粉末由于沉积到基体上,熔化颗粒在飞行过程中,与周围的空气发生了反应,产生了氧化,生成了TiO,Ti3O,TiO2氧化物,Ti的氧化物相比TiN相强度和硬度较低,可以提高涂层的韧性。
  11. 一种模具,其表面涂有如权利要求1所述的TiN涂层。
  12. 如权利要求11所述的模具,其中所述模具包括金属件和非金属件。
  13. 如权利要求12所述的模具,其中所述金属件包括螺栓、齿轮、轴承、钻头套。
  14. 如权利要求11所述的模具,其中所述模具选自轴承套。
PCT/CN2015/091811 2014-10-13 2015-10-13 一种硬度和韧性优异的等离子喷涂tin涂层、其制备方法及涂有该tin涂层的模具 WO2016058513A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/102,976 US10047014B2 (en) 2014-10-13 2015-10-13 Plasma-sprayed tin coating having excellent hardness and toughness, the preparation method therefor, and a mold coated with said tin coating

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201410539638.2A CN104372284A (zh) 2014-10-13 2014-10-13 一种硬度和韧性较好的等离子喷涂TiN涂层的制备方法
CN201410539532.2A CN104342613A (zh) 2014-10-13 2014-10-13 一种涂有TiN涂层的模具
CN201410539533.7 2014-10-13
CN201410539533.7A CN104372283A (zh) 2014-10-13 2014-10-13 一种硬度和韧性较好的等离子喷涂TiN涂层
CN201410539638.2 2014-10-13
CN201410539532.2 2014-10-13

Publications (2)

Publication Number Publication Date
WO2016058513A2 true WO2016058513A2 (zh) 2016-04-21
WO2016058513A3 WO2016058513A3 (zh) 2016-06-16

Family

ID=55747497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091811 WO2016058513A2 (zh) 2014-10-13 2015-10-13 一种硬度和韧性优异的等离子喷涂tin涂层、其制备方法及涂有该tin涂层的模具

Country Status (2)

Country Link
US (1) US10047014B2 (zh)
WO (1) WO2016058513A2 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945152B (zh) * 2020-07-24 2023-01-13 中国航发北京航空材料研究院 一种钛合金表面的TiAlN涂层的制备方法
CN111940611B (zh) * 2020-08-07 2024-06-04 和县卜集振兴标准件厂 一种提高合金钢冲压模具精密度的方法
CN115961283B (zh) * 2023-02-08 2024-06-25 重庆大学 一种合金表面用防护涂层的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747864A (en) * 1986-06-19 1988-05-31 Corning Glass Works Process for the precision molding of glass articles
SE524583C2 (sv) * 2002-12-12 2004-08-31 Erasteel Kloster Ab Sammansatt metallprodukt och förfarande för framställning av en sådan
CN104342613A (zh) 2014-10-13 2015-02-11 中国人民解放军装甲兵工程学院 一种涂有TiN涂层的模具
CN104372284A (zh) 2014-10-13 2015-02-25 中国人民解放军装甲兵工程学院 一种硬度和韧性较好的等离子喷涂TiN涂层的制备方法
CN104372283A (zh) 2014-10-13 2015-02-25 中国人民解放军装甲兵工程学院 一种硬度和韧性较好的等离子喷涂TiN涂层

Also Published As

Publication number Publication date
WO2016058513A3 (zh) 2016-06-16
US10047014B2 (en) 2018-08-14
US20160303774A1 (en) 2016-10-20

Similar Documents

Publication Publication Date Title
CN108504976B (zh) 一种金属-石墨烯复合涂层的制备方法
Sharma et al. Effect of surface preparation on the microstructure, adhesion, and tensile properties of cold-sprayed aluminum coatings on AA2024 substrates
JP4398436B2 (ja) 熱放射特性等に優れるセラミック溶射皮膜被覆部材およびその製造方法
Huang et al. Fabrication of thermal barrier coatings onto polyimide matrix composites via air plasma spray process
Di Girolamo et al. Microstructure and Wear Behavior of Plasma‐Sprayed Nanostructured WC–Co Coatings
CN106835112A (zh) 一种镁合金表面冷喷涂420不锈钢复合涂层的制备方法
CN104162662A (zh) 表面改性的非晶合金粉末、制备方法及利用其制备的涂层
Derelizade et al. High temperature (900 C) sliding wear of CrNiAlCY coatings deposited by high velocity oxy fuel thermal spray
WO2016058513A2 (zh) 一种硬度和韧性优异的等离子喷涂tin涂层、其制备方法及涂有该tin涂层的模具
Łatka et al. Mechanical properties and sliding wear resistance of suspension plasma sprayed YSZ coatings
CN104342613A (zh) 一种涂有TiN涂层的模具
Zhang et al. Influence of vacuum heat treatment on wear behavior of HVAF sprayed WC-Cr3C2–Ni coatings
CN104372284A (zh) 一种硬度和韧性较好的等离子喷涂TiN涂层的制备方法
Xie et al. Effects of oxygen fuel rate on microstructure and wear properties of detonation sprayed iron-based amorphous coatings
CN104264151B (zh) 一种反应等离子熔覆原位合成TiN涂层的制备方法
CN104264150B (zh) 一种耐磨性和疲劳性能较好的TiN涂层模具
Brezinová et al. Possibilities of utilization high velocity oxygen fuel (HVOF) coatings in conditions of thermal cyclic loading
CN105130466A (zh) 一种金属表面热喷涂用陶瓷复合材料及制作与应用方法
Wang et al. Optimization on the bonding strength and microstructure of atmospheric plasma sprayed Y2O3 coatings by response surface methodology
CN104372283A (zh) 一种硬度和韧性较好的等离子喷涂TiN涂层
CN114507853A (zh) 一种镁合金表面梯度陶瓷复合涂层激光熔覆制备方法
CN104372335B (zh) 一种反应等离子熔覆原位合成TiN涂层
CN101906631A (zh) 一种快速制备Ti3Al/TiN复合涂层的方法
Cheng et al. Microstructure and wear resistance of Al2O3–TiB2 composite coating deposited by axial plasma spraying
Sun et al. Embedment of nano-graphene in metal deposits via cold spraying

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15102976

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850400

Country of ref document: EP

Kind code of ref document: A2