WO2016058112A1 - 全自动超低压无分馏水分无损提取装置 - Google Patents

全自动超低压无分馏水分无损提取装置 Download PDF

Info

Publication number
WO2016058112A1
WO2016058112A1 PCT/CN2014/000916 CN2014000916W WO2016058112A1 WO 2016058112 A1 WO2016058112 A1 WO 2016058112A1 CN 2014000916 W CN2014000916 W CN 2014000916W WO 2016058112 A1 WO2016058112 A1 WO 2016058112A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
ultra
low pressure
fractionated
moisture
Prior art date
Application number
PCT/CN2014/000916
Other languages
English (en)
French (fr)
Inventor
刘亚勇
邢友武
朱湘宁
李晓波
Original Assignee
北京理加联合科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理加联合科技有限公司 filed Critical 北京理加联合科技有限公司
Priority to US15/519,683 priority Critical patent/US10295446B2/en
Priority to PCT/CN2014/000916 priority patent/WO2016058112A1/zh
Publication of WO2016058112A1 publication Critical patent/WO2016058112A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D7/00Sublimation
    • B01D7/02Crystallisation directly from the vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D8/00Cold traps; Cold baffles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • G01N2001/4033Concentrating samples by thermal techniques; Phase changes sample concentrated on a cold spot, e.g. condensation or distillation

Definitions

  • the invention relates to the field of experimental detection devices, in particular to a fully automatic ultra-low pressure non-fractionated moisture non-destructive extraction device.
  • the purpose of the application is to overcome the defects of the traditional extraction technology, and to provide a fully automatic ultra-low pressure non-fractional moisture non-destructive extraction device, which fundamentally solves the difficulty in extracting and collecting plant water and soil moisture, has low automation, and cannot simultaneously simultaneously Collect separation problems.
  • the object of the present invention is achieved by the following technical solutions.
  • the invention provides a fully automatic ultra-low pressure non-fractionated moisture non-destructive extraction device, comprising a control box, an extraction part, an ultra-low temperature cold trap and a transmission device, wherein the control box and the extraction part are located at the top of the cabinet, and the ultra-low temperature cold trap position Inside the cabinet, the control box is provided with a touch screen, and a temperature control table is disposed on a side of the control box, and the extraction portion includes an upper layer, a middle layer, a bottom plate and a test tube, and the bottom plate is fixedly mounted on the cabinet, The cryocool trap is placed with a test tube that is fixedly mounted to the base plate.
  • the object of the present invention can also be further achieved by the following technical measures.
  • the control box comprises a main control board, a vacuum gauge tube, a vacuum pump and a temperature control table, the vacuum gauge tube and the KF flange three One end of the through hole is connected, the other end of the KF flange tee is connected with the electromagnetic flapper valve, and the KF flange tee has one end connected to the gas path connected in parallel with the electromagnetic valve seat, and the electromagnetic flapper valve and the vacuum pump are inserted.
  • Air port connection
  • the above-mentioned fully automatic ultra-low pressure non-fractionated moisture non-destructive extraction device wherein the outlet of the vacuum pump is connected to the outside through a muffler.
  • the aforementioned fully automatic ultra-low pressure non-fractionated moisture non-destructive extraction device wherein the transmission device comprises a cross arm bearing and a gas spring.
  • the above-mentioned fully automatic ultra-low pressure non-fractionated moisture non-destructive extraction device wherein the upper plate is fixed on the cross arm, and the rotating shaft on the upper plate is rotatable around the bearing on the cross arm.
  • the above-mentioned fully automatic ultra-low pressure non-fractionated moisture non-destructive extraction device wherein the middle plate is fixed with a middle plate handle, the gas spring is fixed at one end to the bottom plate, and the other end is fixed to the cross arm.
  • the above-mentioned fully automatic ultra-low pressure non-fractionated moisture non-destructive extraction device wherein the upper plate is made of aluminum, the upper plate is laminated with a layer of thermal iron, and the thermal plate is provided with a heat shield.
  • An induction cooker is provided on the heat insulation board.
  • the above-mentioned fully automatic ultra-low pressure non-fractionated moisture non-destructive extraction device wherein the upper layer plate is provided with a positioning pin, and the positioning pin enters the positioning support angle after being dropped by the cross arm.
  • the above-mentioned fully automatic ultra-low pressure non-fractionated moisture non-destructive extraction device wherein the bottom plate is provided with a positioning block for positioning the middle plate, the positioning block and the electromagnetic valve seat are fixed on the carrier plate,
  • the lower part of the bottom plate is provided with heat insulating cotton, and the outer side of the bottom plate is provided with an eccentric pressing device, and the eccentric pressing device is pressed tightly with the cross arm.
  • the above-mentioned fully automatic ultra-low pressure non-fractionated moisture non-destructive extraction device wherein the positioning block and the electromagnetic valve seat are fixed on the carrier plate, and the two-way electromagnetic valve is fixed on the electromagnetic valve seat on the carrier plate.
  • a stopper is provided, and the test tube is fixed to the extraction block by a silicone sealing tube.
  • the electromagnetic valve seat comprises an O-ring groove
  • the O-ring groove is provided with an O-ring
  • the O-ring groove passes through the air hole 2 and the air hole a connection, the air hole one, the air hole two and the air hole three penetrate, the air hole three is connected with one port of the two-way electromagnetic valve, the other port of the two-way electromagnetic valve is connected with the air hole three, the air hole three and the through hole
  • the holes are connected, one end of the through hole is closed, and the other end of the through hole is connected in parallel with the through hole on the electromagnetic valve seat and connected to one port of the KF flange tee.
  • the above-mentioned fully automatic ultra-low pressure non-fractionated moisture non-destructive extraction device wherein the top end of the extraction block is provided with an O-ring groove, the middle portion of the O-ring groove is provided with a vent hole, and the lower end of the vent hole is deep.
  • the test tube is sealed with an extraction block through a silicone tube, the side of the air hole is provided with a vent hole 5, the vent hole 5 is internally inserted with a Teflon tube, and the Teflon tube is inserted into the bottom of the test tube, The vent 5 is connected to the vent 6 and the process hole.
  • the above-mentioned fully automatic ultra-low pressure non-fractionated moisture non-destructive extraction device wherein the upper layer plate is provided with a rotating shaft, and a temperature sensor hole is arranged at a front end of the upper layer plate, and a front end of the upper layer plate is provided with a positioning pin.
  • the above-mentioned fully automatic ultra-low pressure non-fractionated moisture non-destructive extraction device wherein the middle plate is provided with a sample bottle cavity, and an outer periphery of the sample bottle cavity is provided with an O-ring groove, the upper plate There is a sample bottle cavity matched with the middle plate, and the middle plate is provided with a positioning support angle.
  • the above-mentioned fully automatic ultra-low pressure non-fractionated moisture non-destructive extraction device wherein the main control board is respectively connected with a touch screen, a buzzer and a temperature sensor.
  • the automatic ultra-low pressure non-fractional moisture non-destructive extraction device of the invention has at least the following advantages and beneficial effects:
  • the invention has the beneficial effects that the plurality of samples can be simultaneously extracted, the extraction efficiency is high; the consumables such as liquid nitrogen and organic solvent are not needed, and the pollution to the environment is reduced; the extraction process is fully automatic controlled, liberating manpower; and the non-destructive extraction of moisture can be prevented Isotope fractionation to ensure the extraction effect; system design integration, compact and reliable structure. Further reducing the separation pressure, compressor refrigeration, an ultra-low pressure separation system that extracts plant moisture and soil moisture that is safe and does not cause damage to plants and soil structures. The invention realizes rapid separation of moisture under optimal temperature and pressure, controls heating and cooling, controls vacuum degree, realizes full-automatic control and completely non-destructive extraction of moisture, and prevents isotope fractionation. And the use of new low temperature technology to prevent damage to the sample structure. The system designs the built-in parameters by studying the correlation between temperature, vacuum and time required, and uses different temperatures, vacuum degrees and extraction times to achieve water separation according to different sample types.
  • Figure 1 is a diagram showing the overall structure of the system.
  • Figure 2 is a partial structural view of the control box.
  • Figure 3 is a schematic view of the connection portion of the extraction portion and the transmission.
  • Figure 4 is a cross-sectional view showing the connection portion of the extraction portion and the transmission.
  • Figure 5 is a partial structural view of the lower deck.
  • Figure 6 is a structural view of a solenoid valve seat.
  • Figure 7 is a structural view of a solenoid valve seat.
  • Figure 8 is a partial structural view of the upper plate.
  • Fig. 9A is a partial structural view of the middle plate.
  • Figure 9B is a cross-sectional view of Figure 9A.
  • Figure 10 is a block diagram of the system circuit.
  • control box 2 touch screen
  • Refrigeration relay 68 Solenoid valve relay
  • the control box 1 is mounted on the cabinet 5 to automatically control the extraction system.
  • the touch screen 2 is mounted on the control box 1 for setting parameters and monitoring the acquisition process.
  • Temperature control table 3 can set the heating temperature range and display the current temperature.
  • the ultra-low temperature cold trap 4 is placed inside the cabinet 5 to condense the water vapor in the test tube 30 to collect the moisture in a solid form.
  • the bottom plate 9 is fixed to the upper portion of the cabinet 5, and the extraction portion of the system is mounted thereon.
  • the cross arm support 8 is fixed to the bottom plate 9, and the cross arm 7 is fixed by the cross arm bearing 29 so that the cross arm 7 can be rotated therearound.
  • the induction cooker 6 heats the sample vial 44 in the middle plate 26 to sublimate the moisture and enter the test tube 30 to condense.
  • the solenoid valve cover 11 is fixed to the bottom plate 9 to protect the solenoid valve 24 on the solenoid valve seat 25.
  • the temperature control table 22 is fixedly mounted inside the control box 1 to realize control of the extraction system.
  • One end of the KF flange tee 17 is connected to the vacuum gauge tube 18, the other end is connected to the electromagnetic flapper valve 19, the electromagnetic flapper valve 19 is connected to the air inlet of the vacuum pump 20, and the air outlet of the vacuum pump 20 is connected to the outside through a muffler.
  • the KF flange tee 17 is also connected to the gas path in parallel with the two solenoid valve seats 25, so that the vacuum pump 20 can perform vacuuming operation for each of the channels.
  • the upper plate 27 is fixed to the cross arm 7, and the rotating shaft 50 on the upper plate 27 is rotatable about the bearing 36 on the cross arm 7.
  • the middle plate handle 28 is fixed to the middle plate 26 to facilitate the movement of the middle plate.
  • the gas spring 23 is fixed at one end to the bottom plate 9, and the other end is fixed to the cross arm 7 by an optical axis, so that when the cross arm is rotated about the bearing 36, there is damping for achieving random stopping at both the opening and closing positions.
  • the upper layer plate 27 is made of aluminum, and a layer of heat-conducting iron plate 64 is attached to the upper surface of the heat-conducting iron plate 64.
  • the heat-insulating plate 63 is attached to the heat-insulating plate 63.
  • the positioning pin 49 on the upper plate 27 enters the positioning yoke 45 when the upper plate 27 is rotated down with the cross arm 7, so that the hole in the upper plate 27 can accurately correspond to the hole in the intermediate plate 26.
  • the intermediate deck 26 is removed or carried into the system extraction section by the intermediate deck handle 28.
  • the holes under the intermediate plate 26 are positioned by the pins inserted into the positioning block 41.
  • the positioning block 41 and the solenoid valve seat 25 are fixed to the carrier 65, and the carrier 65 is fixed to the bottom plate 9.
  • the heat insulating cotton 43 enters the pan-type cold trap in the ultra-low temperature cold trap 4, and the heat insulating cotton 43 isolates the low temperature in the cold trap from the high temperature above the carrier plate 65.
  • the middle plate 26 is also placed by the positioning block 41, and the upper plate 27 is pressed against the intermediate plate 26 as the cross arm 7 is rotated down.
  • the device 12 presses the cross brace on the cross arm 7 to effect sealing of the system air path due to the action of the internal O-ring.
  • the positioning block 41 and the solenoid valve seat 25 are fixed to the carrier 65, the two-way solenoid valve 33 is fixed to the solenoid valve seat 25, and the 14 extraction blocks 40 are placed on the positioning block 41 and the solenoid valve seat 25. And achieve positioning.
  • the stopper 42 plays a certain guiding role when the middle plate 26 is dropped.
  • the test tube 30 is fixed to the extraction block 40 by a silicone sealing tube.
  • an O-ring is placed in the O-ring groove 57 to seal the lower end of the extraction block 40 from the solenoid valve seat 25.
  • the air hole two 59 is connected to the air hole one 58 and the air hole three 60
  • the air hole three 60 is connected to one port of the two-way electromagnetic valve 33
  • the other port of the two-way electromagnetic valve 33 is connected to the air hole four 61
  • the air hole four 61 is connected to the through hole 62.
  • the through hole 62 is blocked at one end, and the other end is connected in parallel with the through hole 62 of the other electromagnetic valve seat 25, and is connected to one port of the KF flange tee 17.
  • the vent hole-58 orifice is blocked after processing.
  • an O-ring is placed in the O-ring groove 53, and the upper end of the extraction block 40 and the intermediate plate 26 are sealed.
  • the upper end of the air hole VIII is opposed to the air hole VII 47 on the middle plate 26, and the sealing of the two holes is made through the O-ring groove 53.
  • the lower end of the vent hole 82 is deep into the test tube 30, and the test tube 30 is sealed by the silicone tube and the extraction block 40.
  • the Teflon 5 is internally inserted into the Teflon tube, and the Teflon tube is inserted into the bottom of the test tube 30.
  • the air hole 5 54 and the air hole 65 and the process hole 56 are penetrated, and the hole of the process hole 56 is blocked after the processing is completed.
  • the rotating shaft 50 is fixed to the upper plate 27, and the rotating shaft 50 is rotatable around the bearing 36 on the cross arm 7.
  • a temperature sensor is installed inside the temperature sensor hole 51 to detect the temperature of the upper plate.
  • the positioning pin 49 is fixed to the upper plate 27.
  • the cap of the vial 44 is removed, first placed in the vial chamber of the intermediate plate 26, and the vial 44 is also placed in the vial chamber.
  • An O-ring is placed in the O-ring groove 48 to seal the upper end surface of the intermediate plate 26 and the lower end surface of the upper plate 27.
  • the heat shield 46 prevents heat loss from the middle panel 26.
  • the positioning fulcrum 45 is fixed to the middle plate.
  • 220V AC enters the leakage protector 13, and then supplies power to the entire control system through the switch socket 14, and is converted into DC 24V through the AC-DC switching power supply 21, and two outputs are outputted to the 12V main power supply to the 12v main.
  • the control board 16 controls the heating relay 66, the refrigerating relay 67, and the solenoid valve relay 68 respectively; wherein the heating is performed by the induction cooker 6, the heating part has overcurrent protection, overheat protection, temperature insurance 39, temperature switch 38, The limit switch 37 performs safety protection; the main control board controls the measurement part, has an LCD touch screen 2 for displaying measurement data and system status display, a buzzer 31 with a warning alarm function, a temperature sensor 32, a two-way solenoid valve 33, and control The solenoid valve 24 of the gas path extracts a vacuum pump 35 of a vacuum degree.
  • the invention adopts the principle of ultra-low pressure vacuum distillation and freezing, uses water to evaporate or sublimate in an ultra-low pressure environment, condenses in a low-temperature environment, freezes the water without fractionation and loss, and extracts all the water in the sample without fractionation. come out.
  • the system consists mainly of an ultra-low pressure system, a heating system, a refrigeration system and an acquisition control system.
  • the ultra-low pressure system mainly maintains a specific vacuum degree of the refrigeration system, the heating system and the pipeline to facilitate the fastest migration of moisture.
  • the heating system heats the sample so that the water evaporates and the evaporated water enters the freezing system and freezes into ice under the gradient caused by the ultra-low pressure. The entire process is done automatically with the intervention of the acquisition control system.
  • each sample as a separate channel, first open the vacuum pump to reduce the pressure of each channel to a low pressure of 500Pa.
  • the water vapor is transported to the condenser tube for freezing under the action of a pressure gradient. Sealed in the water vapor separation tube; then heat the sample, and use the low temperature freezing method to separate and freeze the remaining water in the sample, so that the water in the sample will be completely separated and frozen (more than 99%).
  • Ultra-low pressure system mainly consists of vacuum pump, vacuum electromagnetic flapper valve, vacuum gauge tube, multi-channel vacuum solenoid valve and control module.
  • Vacuum pump is the power to maintain the ultra-low pressure of the whole system.
  • Vacuum gauge is used to detect the vacuum pressure of each channel.
  • the control module controls the respective vacuum solenoid valve and the total valve vacuum electromagnetic flapper valve to adjust the vacuum degree of the system. In order to achieve the most suitable conditions for water transport.
  • Heating system mainly composed of temperature controller, induction cooker, thermal iron plate and temperature sensor.
  • the sample is connected to a vacuum system and placed in a heating chamber that controls the temperature required to evaporate the sample. By controlling the temperature, it is possible to suppress the release of other organic volatiles in the sample and keep the extracted moisture clean.
  • the invention adopts an electromagnetic heating method and has high heating efficiency.
  • the freezing system consists of an incubator, a compressor, a condenser, an evaporator, a drying filter, and a capillary.
  • the compressor is the power of the refrigeration cycle system, which can drive the refrigerant to circulate in the pipeline of the system and achieve the purpose of refrigeration through thermal power conversion.
  • the condenser can also be called a radiator. Its function is to change the high-temperature and high-pressure refrigerant discharged from the compressor and the superheated steam into a medium-temperature and high-pressure supercooling liquid through external heat exchange, and the heat is transmitted to the outside through the condenser. Steaming The hair generator is also called a cooler.
  • the liquid refrigerant When the liquid refrigerant vaporizes and evaporates in the evaporator, it absorbs the heat in the incubator and cools the incubator to achieve the purpose of freezing.
  • the collection tube is located in the freezing system and the gaseous water that can transport the sample tube is collected in solid form.
  • Acquisition control system It consists of a data processing system with a single chip as the core, which monitors and controls the entire system.
  • the human-computer interaction interface is convenient for the user to set parameters and observe system pressure, temperature and other data in real time to control the system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种全自动超低压无分馏水分无损提取装置,包括控制箱、提取部分、超低温冷阱和传动装置,所述控制箱和提取部分位于机柜的顶部,所述超低温冷阱位于机柜内部,所述控制箱上设有触摸屏,在控制箱的侧面设有温控表,所述提取部分包括上层板、中层板、底板和试管,所述底板固定安装在机柜上,所述超低温冷阱内容置有试管,所述传动装置固定安装在底板上。其有益效果是,可以同时提取多个样品,提取效率高;无需液氮及有机溶剂等耗材,减少对环境的污染。

Description

全自动超低压无分馏水分无损提取装置 技术领域
本发明涉及实验检测装置领域,特别是涉及一种全自动超低压无分馏水分无损提取装置。
背景技术
随着生态研究与环境研究的深入,植物水分和土壤水分的提取采集一直倍受农业、林业以及环境科研院所等研究机构的关注,但始终无法找到完善的提取植物水分和土壤水分的方法,现有的技术方法有的需要使用液氮冷却,有的采用甲苯或二甲苯等作为溶剂。传统的提取方法中使用有毒有害且价格昂贵的有机化学试剂作为溶剂,不仅危害人体健康及周围环境,而且使用过的此类溶剂难于回收利用,这一直以来也是造成植物提取成本居高不下的主要原因。
另一方面,有些人是采用液氮冷却,操作过程中需要人工添加液氮,操作繁琐,容易发生氮泄露,且自动化程度低。
当前,在虽然水分提取的方法有多种,但没有相应的配套产品,实验室大多数采用简易的方法组装,设备运行不可靠,安全性较低。在水分抽提的过程中对于不同的种类的样品,抽提所用的时间不一样,使用的温度也不同,没有人做过相关的研究。水分提取使用的样品大多都是从野外采集而来,样品量有限,之前往往因为连接漏气导致水分分离失败,样品就不能够使用了。由于样品量都比较大,人工操作效率低下。
由此可见,上述现有的植物水分和土壤水分的提取设备和方法在结构与使用上,显然仍存在有不便与缺陷,而亟待加以进一步改进。为了解决其存在的问题,相关厂商莫不费尽心思来谋求解决之道,但长久以来一直未见适用的设计被发展完成,而一般产品又没有适切的结构能够解决上述问题,此显然是相关业者急欲解决的问题。
发明内容
本申请的目的在于克服传统提取技术的缺陷,而提供一种全自动超低压无分馏水分无损提取装置,从根本上解决植物水分和土壤水分提取采集困难,自动化程度低,不能对多个样品同时采集分离的问题。
本发明的目的是采用以下的技术方案来实现的。本发明提供一种全自动超低压无分馏水分无损提取装置,包括控制箱、提取部分、超低温冷阱和传动装置,所述控制箱和提取部分位于机柜的顶部,所述超低温冷阱位 于机柜内部,所述控制箱上设有触摸屏,在控制箱的侧面设有温控表,所述提取部分包括上层板、中层板、底板和试管,所述底板固定安装在机柜上,所述超低温冷阱内容置有试管,所述传动装置固定安装在底板上。
本发明的目的还可以采用以下的技术措施来进一步实现。
较佳的,前述的全自动超低压无分馏水分无损提取装置,其中所述的控制箱内包括有主控板、真空规管、真空泵和温控表,所述真空规管与KF法兰三通的一端相连,所述KF法兰三通另一端与电磁挡板阀相连,KF法兰三通还有一端与电磁阀座并联后的气路相连,所述电磁挡板阀与真空泵的进气口连接。
较佳的,前述的全自动超低压无分馏水分无损提取装置,其中所述的真空泵的出气口通过消音器与外界相连。
较佳的,前述的全自动超低压无分馏水分无损提取装置,其中所述的传动装置包括横臂轴承和气弹簧。
较佳的,前述的全自动超低压无分馏水分无损提取装置,其中所述的上层板固定在横臂上,上层板上的转轴可绕横臂上的轴承旋转。
较佳的,前述的全自动超低压无分馏水分无损提取装置,其中所述的中层板上固定有中层板把手,所述气弹簧一端固定在底板,另一端固定在横臂。
较佳的,前述的全自动超低压无分馏水分无损提取装置,其中所述的上层板为铝制材质,上层板上面贴合一层导热铁板,所述导热铁板上设有隔热板,在隔热板上设有电磁炉。
较佳的,前述的全自动超低压无分馏水分无损提取装置,其中所述的上层板上设有定位销,所述定位销随横臂旋转落下后进入定位支角中。
较佳的,前述的全自动超低压无分馏水分无损提取装置,其中所述的底板上设有用于对中层板定位的定位块,所述定位块和电磁阀座固定在载板上,所述底板下部设有隔热棉,所述底板的外侧设有偏心压紧装置,所述偏心压紧装置与横臂配合紧压。
较佳的,前述的全自动超低压无分馏水分无损提取装置,其中所述的定位块和电磁阀座固定在载板上,所述两通电磁阀固定在电磁阀座上,在载板上设有挡块,所述试管通过硅胶密封管固定在提取块上。
较佳的,前述的全自动超低压无分馏水分无损提取装置,其中电磁阀座包括O型圈槽,所述O型圈槽内放O型圈,所述O型圈槽通过气孔二与气孔一相连,所述气孔一、气孔二和气孔三贯通,所述气孔三与两通电磁阀的一个口相连,所述两通电磁阀的另一个口与气孔三相连,所述气孔三与贯通孔相连,所述贯通孔的一端为封闭,贯通孔的另一端与电磁阀座上的贯通孔并联后与KF法兰三通的一个口相连。
较佳的,前述的全自动超低压无分馏水分无损提取装置,其中所述提取块的顶端设有O型圈槽,所述O型圈槽的中部设有气孔八,所述气孔八下端深入到试管,所述试管通过硅胶管与提取块进行密封,所述气孔八侧面设有气孔五,所述气孔五内部插有泰氟龙管,所述泰氟龙管插入到试管底部,所述气孔五与气孔六,以及工艺孔相贯通。
较佳的,前述的全自动超低压无分馏水分无损提取装置,其中所述上层板上设有转轴,在上层板的前端设有温度传感器孔,所述上层板的正前端设有定位销。
较佳的,前述的全自动超低压无分馏水分无损提取装置,其中所述中层板设有样品瓶容腔中,所述样品瓶容腔的外周边设有O型圈槽,所述上层板上设有与中层板相配合的样品瓶容腔,所述中层板上设有定位支角。
较佳的,前述的全自动超低压无分馏水分无损提取装置,其中所述主控板分别与触摸屏、蜂鸣器和温度传感器相连。
借由上述技术方案,本发明全自动超低压无分馏水分无损提取装置至少具有下列优点及有益效果:
本发明的有益效果是,可以同时提取多个样品,提取效率高;无需液氮及有机溶剂等耗材,减少对环境的污染;提取过程全自动控制,解放人力;能实现水分的无损提取,防止同位素分馏,保证提取效果;系统设计集成化,结构紧凑可靠。进一步降低分离压力,压缩机制冷,既安全的、又不会对植物和土壤结构造成破坏的提取植物水分和土壤水分的超低压分离系统。该发明在最佳的温度和压力下实现水分快速分离,控制加热和制冷,控制真空度,实现全自动控制和水分完全无损提取,防止同位素分馏。并且利用新型低温技术,防止破坏样品结构。本系统通过研究温度、真空度和所需时间的相关性关系,设计内置参数,根据不同的样品种类,使用不同的温度、真空度和抽提时间实现水分分离。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图的简要说明
图1是系统整体结构图。
图2是控制箱部分结构图。
图3是提取部分和传动装置连接结构的示意图。
图4是提取部分和传动装置连接结构的剖视图。
图5是下层板部分结构图。
图6是电磁阀座结构图。
图7是电磁阀座结构图。
图8是上层板部分结构图。
图9A是中层板部分结构图。
图9B是图9A的截面图。
图10是系统电路原理框图。
【主要元件符号说明】
1:控制箱            2:触摸屏
3:温控表            4:超低温冷阱
5:机柜              6:电磁炉
7:横臂              8:横臂支座
9:底板              10:加热块罩
11:电磁阀罩         12:偏心压紧装置
13:漏电保护器       14:带开关插座
15:继电器           16:主控板
17:KF法兰三通       18:真空规管
19:电磁挡板阀       20:真空泵
21:AC-DC开关电源    22:温控表
23:气弹簧           24:电磁阀
25:电磁阀座         26:中层板
27:上层板           28:中层板把手
29:横臂轴承         30:试管
31:蜂鸣器           32:温度传感器
33:两通电磁阀       34:继电器
35:真空泵           36:轴承
37:限位开关         38:温度开关
39:温度保险         40:提取块
41:定位块           42:挡块
43:隔热棉           44:样品瓶
45:定位支角         46:隔热板
47:气孔七           48:O型圈槽
49:定位销           50:转轴
51:温度传感器孔     52:气孔八
53:O型圈槽          54:气孔五
55:气孔六           56:工艺孔
57:O型圈槽          58:气孔一
59:气孔二           60:气孔三
61:气孔四           62:贯通孔
63:隔热板           64:导热铁板
65:载板             66:加热继电器
67:制冷继电器       68:电磁阀继电器
69:提取部分         70:传动装置
实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种全自动超低压无分馏水分无损提取装置其具体实施方式、结构、特征及其功效,详细说明如后。
如图1所示,控制箱1安装在机柜5上面,对抽提系统进行自动控制。触摸屏2安装在控制箱1上,用于设置参数,和监控采集过程。温控表3可设置加热温度范围并显示当前温度。超低温冷阱4放置在机柜5里面,对试管30中的水汽进行冷凝,使水分以固态形式收集下来。底板9固定在机柜5上面,上面安装系统的提取部分。横臂支座8固定在底板9上,通过横臂轴承29固定横臂7,使横臂7能绕其转动。电磁炉6对中层板26中的样品瓶44进行加热,使水分升华,并进入试管30后冷凝。电磁阀罩11固定在底板9上,对电磁阀座25上的电磁阀24进行保护。
如图2所示,漏电保护器13,带开关插座14,继电器15,主控板16,KF法兰三通17,真空规管18,电磁挡板阀19,真空泵20,AC-DC开关电源21,温控表22固定安装在控制箱1内部,实现对抽提系统的控制。KF法兰三通17一端与真空规管18相连,另一端与电磁挡板阀19相连,电磁挡板阀19与真空泵20进气口相连,真空泵20出气口通过消音器与外界相连。KF法兰三通17还有一端与两个电磁阀座25并联后的气路相连,使得真空泵20能对每一路进行抽真空操作。
如图3所示,上层板27固定在横臂7上,上层板27上的转轴50可绕横臂7上的轴承36旋转。中层板把手28固定在中层板26上,方便中层板移动。气弹簧23一端固定在底板9上,另一端通过光轴固定在横臂7上,使得横臂绕轴承36旋转时,有阻尼,用于实现在打开和关闭两个位置的随意停靠。
如图4所示,上层板27为铝制材质,上面贴合一层导热铁板64,导热铁板64上面贴合一层隔热板63,隔热板63上面贴合电磁炉6。电磁炉6通电后通过内部的线圈在导热铁板64内产生热量,热量向下传递至铝制的上层板27。隔热板63的作用是防止导热铁板64向上导热,将过多的热量 传递至电磁炉6上,对电磁炉6造成损坏。上层板27上的定位销49在上层板27随横臂7旋转落下时,进入定位支角45中,使得上层板27上的孔能够准确的与中层板26上的孔对应。中层板26通过中层板把手28搬离或搬入到系统抽提部分。当中层板26搬入系统时,中层板26底下的孔通过插入定位块41中的销钉实现定位。定位块41和电磁阀座25固定在载板65上,载板65固定在底板9上。将提取部分与机柜5固定时,隔热棉43进入超低温冷阱4中的锅式冷阱中,隔热棉43使冷阱中的低温与载板65上方的高温隔绝。当14块提取块40全部在载板65上摆放好以后,中层板26也通过定位块41放好位置,上层板27随横臂7旋转落下时至中层板26上时,将偏心压紧装置12压紧横臂7上的横撑,由于内部O型圈的作用,实现系统气路的密封。
如图5所示,定位块41和电磁阀座25固定在载板65上,两通电磁阀33固定在电磁阀座25上,14个提取块40放置在定位块41和电磁阀座25上,并实现定位。挡块42在中层板26落下时,起一定的导向作用。试管30通过硅胶密封管固定在提取块40上。
如图6所示,O型圈槽57内放O型圈,实现提取块40下端与电磁阀座25的密封。气孔二59与气孔一58和气孔三60贯通,气孔三60与两通电磁阀33的一个口相连,两通电磁阀33的另一个口与气孔四61相连,气孔四61与贯通孔62相连,贯通孔62一端堵死,另一端与另外一块电磁阀座25的贯通孔62并联后与KF法兰三通17的一个口相连。气孔一58孔口在加工完成后堵死。
如图7所示,O型圈槽53内放O型圈,实现提取块40上端与中层板26的密封。气孔八52上端与中层板26上的气孔七47对气,并通过O型圈槽53实现两孔对接时的密封。气孔八52下端深入到试管30中,试管30通过硅胶管与提取块40实现密封。气孔五54内部插入泰氟龙管,泰氟龙管插入到试管30底部,气孔五54和气孔六55与工艺孔56贯通,工艺孔56孔口在加工完成后堵死。当提取块40安装在电磁阀座25上时,气孔六55与电磁阀座25上的气孔二59相通,并通过O型圈槽57实现两孔对接时的密封。
如图8所示,转轴50固定在上层板27上,转轴50可绕横臂7上的轴承36旋转。温度传感器孔51内部安装温度传感器,检测上层板的温度。定位销49固定在上层板27上。
如图9A所示,提取前,将样品瓶44的瓶帽取下,先放入中层板26的样品瓶容腔中,再将样品瓶44也放入样品瓶容腔中。O型圈槽48内放O型圈,实现中层板26上端面与上层板27下端面的密封。隔热板46阻止中层板26的热量散失。定位支角45固定在中层板上。
如图10所示,220V交流电进入漏电保护器13,然后经过带开关插座14给整个控制系统提供电源,经过AC-DC开关电源21转换成直流24V,与12V两路输出,分别供电给12v主控板16;主控板16分别控制加热继电器66、制冷继电器67、电磁阀继电器68;其中加热通过电磁炉6进行加热,加热部分具有过流保护,过热保护,通过温度保险39,温度开关38,限位开关37进行安全保护;主控板控制测量部分,具有显示测量数据与系统状态显示的LCD触摸屏2,有提示警告报警作用的蜂鸣器31,温度传感器32,两通电磁阀33,控制气路的电磁阀24,抽取真空度的真空泵35。
本发明采用超低压真空蒸馏冷冻的原理,利用水分在超低压的环境中蒸发或升华,在低温环境中冷凝的技术,水分无分馏无损失的冷冻收集,把样品中的水分无分馏的全部提取出来。系统主要由超低压系统、加热系统、冷冻系统和采集控制系统组成。超低压系统主要是维持冷冻系统、加热系统以及管路一个特定的真空度,以有利于水分最快运移。加热系统把样品加热,使得水分蒸发出来,蒸发出来的水分在超低压造成的梯度作用下,进入冷冻系统,冻结成冰。整个过程在采集控制系统的干预下自动完成。
仪器工作时,对于每一个样品做为一个独立的通道,首先打开真空泵分别把每一通道的压力降低到500Pa的低压力下。水汽在压力梯度的作用下,运移到冷凝管内冷冻。密封在水汽分离管内;然后给样品加热,利用低温冷冻的方法把样品中的剩余水分分离冷冻起来,这样样品中水分就会完全分离冷冻起来(99%以上)。
1)超低压系统:主要由真空泵、真空电磁挡板阀、真空规管、多通路真空电磁阀以及控制模块组成,真空泵是维持整个系统超低压的动力,用真空规管检测各个通道的真空压力,控制模块分别控制各自的真空电磁阀及总阀真空电磁挡板阀,调节系统的真空度。以达到水分运移最适宜的条件。
2)加热系统:主要由温度控制器,电磁炉,导热铁板,温度传感器构成。样品连接到真空系统中,放置在加热容腔里,加热系统控制样品中水分蒸发所需要的温度。通过控制温度,能抑制样品中的其它有机挥发物释放出来,保持提取出来的水分的洁净。该发明采用电磁加热方式,加热效率极高。
3)冷冻系统:冷冻系统由保温箱体、压缩机、冷凝器、蒸发器、干燥过滤器、毛细管组成。压缩机是制冷循环系统的动力,可驱使制冷剂在系统的管路中往返循环,并通过热功转换达到制冷的目的。冷凝器又可称为散热器,它的作用是通过外界的热交换将压缩机排出的高温高压制冷剂以及过热蒸汽变成中温高压的过冷液,热量是通过冷凝器传递给外界的。蒸 发器又称为冷却器,液态制冷剂在蒸发器内汽化蒸发时,吸收保温箱体内的热量,使保温箱降温,以达到冷冻的目的。收集管位于冷冻系统内,能将样品管运移过来的气态水以固态的形式收集起来。
4)采集控制系统:由单片机为核心的数据处理系统组成,对整个系统监测和控制。人机交互界面便于用户对参数进行设置并实时观测系统压力,温度等数据,对系统进行控制。
虽然上面的举例了一些特定实施例来说明和描述本发明,但并不意味着本发明仅局限于其中的各种细节。相反地,在等价于权利要求书的范畴和范围内可以不偏离本发明精神地在各种细节上做出各种修改。因此,对其他部分不进行详细述说。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种全自动超低压无分馏水分无损提取装置,包括控制箱(1)、提取部分(69)、超低温冷阱(4)和传动装置(70),其特征在于:所述控制箱(1)和提取部分(69)位于机柜(5)的顶部,所述超低温冷阱(4)位于机柜(5)内部,所述控制箱(1)上设有触摸屏(2),在控制箱(1)的侧面设有温控表(3),所述提取部分(69)包括上层板(27)、中层板(26)、底板(9)和试管(30),所述底板(9)固定安装在机柜(5)上,所述超低温冷阱(4)内容置有试管(30),所述传动装置(70)固定安装在底板(9)上。
  2. 根据权利要求1所述的全自动超低压无分馏水分无损提取装置,其特征在于:所述控制箱(1)内包括有主控板(16)、真空规管(18)、真空泵(20)和温控表(22),所述真空规管(18)与KF法兰三通(17)的一端相连,所述KF法兰三通(17)另一端与电磁挡板阀(19)相连,KF法兰三通(17)还有一端与电磁阀座(25)并联后的气路相连,所述电磁挡板阀(19)与真空泵(20)的进气口连接。
  3. 根据权利要求2所述的全自动超低压无分馏水分无损提取装置,其特征在于:所述真空泵(20)的出气口通过消音器与外界相连。
  4. 根据权利要求1或2所述的全自动超低压无分馏水分无损提取装置,其特征在于:所述传动装置(70)包括横臂轴承(29)和气弹簧(23)。
  5. 根据权利要求1-3任一所述的全自动超低压无分馏水分无损提取装置,其特征在于:所述上层板(27)固定在横臂(7)上,上层板(27)上的转轴(50)可绕横臂(7)上的轴承(36)旋转。
  6. 根据权利要求1-3任一所述的全自动超低压无分馏水分无损提取装置,其特征在于:所述中层板(26)上固定有中层板把手(28),所述气弹簧(23)一端固定在底板(9),另一端固定在横臂(7)。
  7. 根据权利要求1-3任一所述的全自动超低压无分馏水分无损提取装置,其特征在于:所述上层板(27)为铝制材质,上层板(27)上面贴合一层导热铁板(64),所述导热铁板(64)上设有隔热板(63),在隔热板(63)上设有电磁炉(6)。
  8. 根据权利要求7所述的全自动超低压无分馏水分无损提取装置,其特征在于:所述上层板(27)上设有定位销(49),所述定位销(49)随横臂(7)旋转落下后进入定位支角(45)中。
  9. 根据权利要求1-3、8任一所述的全自动超低压无分馏水分无损提取装置,其特征在于:所述底板(9)上设有用于对中层板(26)定位的定位块(41),所述定位块(41)和电磁阀座(25)固定在载板(65)上,所述底板(9)下部设有隔热棉(43),所述底板(9)的外侧设有偏心压紧装置(12),所述偏心 压紧装置(12)与横臂(7)配合紧压。
  10. 根据权利要求9所述的全自动超低压无分馏水分无损提取装置,其特征在于:所述定位块(41)和电磁阀座(25)固定在载板(65)上,所述两通电磁阀(33)固定在电磁阀座(25)上,在载板(65)上设有挡块(42),所述试管(30)通过硅胶密封管固定在提取块(40)上。
PCT/CN2014/000916 2014-10-16 2014-10-16 全自动超低压无分馏水分无损提取装置 WO2016058112A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/519,683 US10295446B2 (en) 2014-10-16 2014-10-16 Apparatus for full-automatic, ultra-low pressure, fractionation-free and non-destructive extraction of water
PCT/CN2014/000916 WO2016058112A1 (zh) 2014-10-16 2014-10-16 全自动超低压无分馏水分无损提取装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/000916 WO2016058112A1 (zh) 2014-10-16 2014-10-16 全自动超低压无分馏水分无损提取装置

Publications (1)

Publication Number Publication Date
WO2016058112A1 true WO2016058112A1 (zh) 2016-04-21

Family

ID=55745933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000916 WO2016058112A1 (zh) 2014-10-16 2014-10-16 全自动超低压无分馏水分无损提取装置

Country Status (2)

Country Link
US (1) US10295446B2 (zh)
WO (1) WO2016058112A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108801690A (zh) * 2017-11-03 2018-11-13 北京剑灵科技有限公司 一种双冷冻低压自动旋转水分抽提装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108513510A (zh) * 2018-05-30 2018-09-07 江苏师范大学 一种通信机柜自动散热装置
CN109507509B (zh) * 2018-11-26 2020-12-18 重庆津油纳米光学科技有限公司 一种用于触摸屏的检测结构及其使用方法
CN110501461B (zh) * 2019-08-28 2022-03-04 嘉兴鼎祥汽车零部件有限公司 一种新型冷镦上料检测装置
CN112816265A (zh) * 2021-01-06 2021-05-18 中国电建集团贵阳勘测设计研究院有限公司 一种稻田渗漏水自动分时段收集装置
CN114112539B (zh) * 2021-12-22 2024-02-06 河南华晨地质工程有限公司 一种用于水工环地质工程勘测的样本浓缩取样装置
CN114307224B (zh) * 2021-12-28 2023-08-15 广东省桂粤实业有限公司 一种低温亚临界萃取肉桂油的智能化设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080022786A1 (en) * 2004-01-14 2008-01-31 Heiner Sann Device And Method For Taking Samples
CN102012327A (zh) * 2010-10-19 2011-04-13 中国地质大学(武汉) 一种同位素水样提取与提纯装置
CN102226632A (zh) * 2011-05-24 2011-10-26 上海理工大学 一种集真空、微波、冰温技术实施干燥的装置及方法
CN202853951U (zh) * 2012-08-31 2013-04-03 中国科学院地理科学与资源研究所 一种低温真空蒸馏装置
CN103439164A (zh) * 2013-09-05 2013-12-11 中国科学院新疆生态与地理研究所 基于微波加热的植物或土壤水分快速真空抽提方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830260B2 (ja) * 1990-08-22 1996-03-27 アネルバ株式会社 真空処理装置
JP2006509999A (ja) * 2002-08-02 2006-03-23 イー エイ フィシオネ インストルメンツ インコーポレーテッド 顕微鏡の試料調製方法及び装置
US8061056B2 (en) * 2008-01-02 2011-11-22 Modular Sfc, Llc Apparatus and method for drying a solid or liquid sample
US20090249801A1 (en) * 2008-04-04 2009-10-08 Hedberg Herbert J Cold trap to increase gas residence time to increase condensation of vapor molecules
EP2331930A1 (en) * 2008-09-05 2011-06-15 The Government Of The U.S.A, As Represented By The Secretary, Dept. Of Health And Human Services Device and method for microwave assisted cryo-sample processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080022786A1 (en) * 2004-01-14 2008-01-31 Heiner Sann Device And Method For Taking Samples
CN102012327A (zh) * 2010-10-19 2011-04-13 中国地质大学(武汉) 一种同位素水样提取与提纯装置
CN102226632A (zh) * 2011-05-24 2011-10-26 上海理工大学 一种集真空、微波、冰温技术实施干燥的装置及方法
CN202853951U (zh) * 2012-08-31 2013-04-03 中国科学院地理科学与资源研究所 一种低温真空蒸馏装置
CN103439164A (zh) * 2013-09-05 2013-12-11 中国科学院新疆生态与地理研究所 基于微波加热的植物或土壤水分快速真空抽提方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108801690A (zh) * 2017-11-03 2018-11-13 北京剑灵科技有限公司 一种双冷冻低压自动旋转水分抽提装置
CN108801690B (zh) * 2017-11-03 2024-06-11 北京剑灵科技有限公司 一种双冷冻低压自动旋转水分抽提装置

Also Published As

Publication number Publication date
US10295446B2 (en) 2019-05-21
US20180045624A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
WO2016058112A1 (zh) 全自动超低压无分馏水分无损提取装置
CN202141627U (zh) 低温载气流冷捕集-热解吸装置
CN104502493A (zh) 一种用于连续在线观测水中挥发性有机物的吹扫捕集仪
CN106932228B (zh) 天然六氟化铀液相取样系统及方法
CN105043846A (zh) 一种挥发性有机物样气捕集系统及捕集方法
CN103698496B (zh) 一种快速冻融与单边冻融一体试验机
CN205483676U (zh) 一种盐类矿物微量水真空抽提装置
CN207366580U (zh) 一种重油四组分自动测定装置
KR101373766B1 (ko) 냉각제를 사용하지 않는 반도체 칠러장치
KR830001927B1 (ko) 저온 공기 샘플러
CN109346953A (zh) 一种用于环网柜封闭空间的除湿装置
CN115856176B (zh) 一种环境监测仪器中的VOCs预浓缩处理组件及处理方法
CN205786045U (zh) 一种挥发性有机物样气捕集系统
CN208091769U (zh) 一种常压反应釜密闭取样装置和负压反应釜密闭取样装置
CN104359712A (zh) 一种土壤水分连续抽提装置及其使用方法
CN206339414U (zh) 大气水汽收集装置
CN105353046A (zh) 一种挥发性有机物气体冷冻捕集系统及捕集方法
CN209422992U (zh) 一种基于冷阱的旋转蒸发系统
CN214307885U (zh) 智能程控微波真空干燥箱
CN103969288B (zh) 一种低温区导热系数测试装置
CN207281021U (zh) 一种控温效果好的液相色谱仪
CN202204710U (zh) 一种voc采样装置
CN206945400U (zh) 多功能样品预处理仪
CN108801690B (zh) 一种双冷冻低压自动旋转水分抽提装置
CN219714068U (zh) 分析化验试剂挥发气体的冷凝装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15519683

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14903855

Country of ref document: EP

Kind code of ref document: A1