WO2016056943A1 - Catalytically active coating on the surface of an internal combustion engine chamber - Google Patents

Catalytically active coating on the surface of an internal combustion engine chamber Download PDF

Info

Publication number
WO2016056943A1
WO2016056943A1 PCT/RU2014/000802 RU2014000802W WO2016056943A1 WO 2016056943 A1 WO2016056943 A1 WO 2016056943A1 RU 2014000802 W RU2014000802 W RU 2014000802W WO 2016056943 A1 WO2016056943 A1 WO 2016056943A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
coating
catalytically active
internal combustion
thickness
Prior art date
Application number
PCT/RU2014/000802
Other languages
French (fr)
Russian (ru)
Inventor
Дмитрий Александрович ЛЕБЕДЕВ
Максим Борисович ИВАНОВ
Original Assignee
Дмитрий Александрович ЛЕБЕДЕВ
Иннтаргет Ллс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Александрович ЛЕБЕДЕВ, Иннтаргет Ллс filed Critical Дмитрий Александрович ЛЕБЕДЕВ
Publication of WO2016056943A1 publication Critical patent/WO2016056943A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials

Definitions

  • the invention relates to wear-resistant catalytically active ceramic coatings that can be used in internal combustion engines (ICE).
  • ICE internal combustion engines
  • a known method of preparing a catalyst for cleaning exhaust gases with increased activity and mechanical strength (SU 733717, B01J37 / 00 publ. 05/15/1980).
  • the titanium plate is anodized in solutions of hydrochloric and sulfuric acids.
  • a known method of obtaining a protective coating comprising the sequential deposition of two metal layers and ceramic layers, the metal layers are applied in vacuum and diffusion vacuum annealing is carried out after applying the metal layer , the ceramic layer is deposited with a thickness of 70-300 ⁇ m, after which the ceramic coating layer is hardened by high-temperature pulsed plasma followed by oxidative annealing at a temperature of at least 1050 ° C for at least 5 hours.
  • the closest analogue is a method of obtaining a protective coating on parts (RU N ° 2305034, ⁇ 23 ⁇ 14/28 publ. 08/27/2007). At least one metal layer is applied to the surface of the part. Then carry out alitization or chromoalithium. After that, a ceramic layer based on zirconium oxide containing yttrium oxide is applied. The hardening of the ceramic layer is carried out by applying at least
  • SUBSTITUTE SHEET (RULE 26) three ceramic layers based on zirconium oxide containing 6-9% yttrium oxide and 3-30% alumina. This method improves the reliability and durability of the protective coating.
  • cerium oxide is not added to the analogue composition, which is an effective catalyst accelerating the process and completeness of fuel combustion, which is necessary when the engine is running.
  • the coating layers are applied by methods such as vacuum-plasma, diffusion, electron-beam, cathode and laser sputtering, in our invention, the coating is formed by the method of microarc (plasma electrolytic) oxidation, this method is characterized by higher adhesion resistance, resistance to thermal shock and thermal cycling.
  • the task of the authors is to increase the reliability and efficiency of the internal combustion chamber of the engine, increase the efficiency (ICE) of the internal combustion engine, reduce the level of emissions of carbon monoxide (CO), carbon dioxide (CO2) and hydrocarbons into the environment.
  • ICE efficiency
  • CO carbon monoxide
  • CO2 carbon dioxide
  • hydrocarbons hydrocarbons
  • the problem is solved thanks to the catalytically active ceramic thermal barrier coating formed by the method of microarc (plasma electrolytic) oxidation on the piston and cylinder head of the combustion chamber of the internal combustion engine.
  • microarc plasma electrolytic
  • the essence of the invention consists in the formation of a catalytically active ceramic thermal barrier two-layer coating, consisting mainly of aluminum oxide and cerium oxide, by the method of microarc (plasma electrolytic) oxidation, on the piston and the cylinder head sphere of the ICE combustion chamber.
  • a catalytically active ceramic thermal barrier two-layer coating consisting mainly of aluminum oxide and cerium oxide
  • the oxide layers obtained by the microarc oxidation method are characterized by high adhesion, resistance to thermal shock, and thermal cycling.
  • Cerium oxide, as well as its binary and ternary oxides (including with aluminum) are effective catalysts for the conversion of hydrocarbons and carbon monoxide (CO) at sufficiently low temperatures (of the order of 500 ° C, which corresponds to the conditions of the chamber of an internal combustion engine), accelerating the process and completeness of fuel combustion.
  • a two-layer catalytically active thermal barrier ceramic coating is formed, with a thickness of 15-150 microns.
  • the first (inner) coating layer 5-100 microns thick., Consists mainly of aluminum (not less than 90 mol.%) And is in direct contact with the metal from which the piston and the head of the ICE chamber sphere are made.
  • the first layer has high hardness and wear resistance.
  • the second (outer) porous layer 10-100 microns thick, consists of aluminum oxide, silicon oxide and cerium oxide in a mole fraction of 1 to 50%.
  • the second layer has high adhesive strength, resistance to thermal shock and thermal cycling, and also has a thermal barrier and catalytic effect. Additionally, the coating may contain oxides of copper and magnesium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

The invention relates to wear-resistant catalytically active ceramic coatings which can be used in internal combustion engines (ICEs). A double-layer catalytically active ceramic thermal barrier coating with a thickness of 15-150 μm is formed on a piston and a sphere of a cylinder head of an ICE combustion chamber by micro-arc (plasma electrolytic) oxidation. A first (inner) layer of the coating, having a thickness of 5-100 μm, consists mainly of aluminium (not less than 90 mol%) and is in direct contact with the metal from which the piston and the sphere of a cylinder head of an ICE combustion chamber are made. The first layer has high hardness and wear resistance. A second (outer) porous layer, having a thickness of 10-100 μm, consists of aluminium oxide, silicon oxide and cerium oxide in a mole fraction of from 1 to 50%. The second layer has high adhesion strength and resistance to thermal shocks and thermal cycling and also has a thermal barrier effect and a catalytic effect. The coating may additionally contain oxides of copper and magnesium.

Description

КАТАЛИТИЧЕСКИ-АКТИВНОЕ ПОКРЫТИЕ НА ПОВЕРХНОСТИ КАМЕРЫ  CATALYTIC ACTIVE COATING ON THE SURFACE OF THE CAMERA
ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ  INTERNAL COMBUSTION ENGINE
Изобретение относится к износостойким каталитически-активным керамическим покрытиям, которые могут применяться в двигателях внутреннего сгорания (ДВС). The invention relates to wear-resistant catalytically active ceramic coatings that can be used in internal combustion engines (ICE).
Известен способ приготовления катализатора для очистки выхлопных газов с повышенной активностью и механической прочностью (SU 733717, B01J37/00 опубл. 15.05.1980г.). В данном способе перед нанесением каталитически активного слоя титановую пластину анодируют в растворах соляной и серной кислот.  A known method of preparing a catalyst for cleaning exhaust gases with increased activity and mechanical strength (SU 733717, B01J37 / 00 publ. 05/15/1980). In this method, before applying the catalytically active layer, the titanium plate is anodized in solutions of hydrochloric and sulfuric acids.
Недостатком является то, что данный способ позволяет получать оксидный, пористый слой только на титане.  The disadvantage is that this method allows to obtain an oxide, porous layer only on titanium.
Известен способ получения защитного покрытия (RU N°2089655, С23С 14/06, опубл. 10.09.1997г.), включающий последовательное нанесение двух металлических слоев и керамического слоев, при этом металлические слои наносят в вакууме и после нанесения металлического слоя проводят диффузионный вакуумный отжиг, керамический слой наносят толщиной 70-300 мкм, после чего керамический слой покрытия упрочняют высокотемпературной импульсной плазмой с последующим окислительным отжигом при температуре не менее 1050°С не менее 5 часов.  A known method of obtaining a protective coating (RU N ° 2089655, C23C 14/06, publ. 09/10/1997), comprising the sequential deposition of two metal layers and ceramic layers, the metal layers are applied in vacuum and diffusion vacuum annealing is carried out after applying the metal layer , the ceramic layer is deposited with a thickness of 70-300 μm, after which the ceramic coating layer is hardened by high-temperature pulsed plasma followed by oxidative annealing at a temperature of at least 1050 ° C for at least 5 hours.
Однако такое покрытие ненадежно и недолговечно при работе, так как при получении покрытия данным способом в керамическом слое наблюдается наличие дефектов в виде каналов и полостей, через которые происходит доступ кислорода рабочей (газовой среды) к металлу и, как следствие, окисление металлического покрытия под керамикой, что приводит к отслоению керамики и ее преждевременному растрескиванию.  However, such a coating is unreliable and short-lived during operation, since upon receipt of the coating by this method in the ceramic layer there are defects in the form of channels and cavities through which oxygen of the working (gaseous medium) accesses the metal and, as a result, oxidation of the metal coating under the ceramic , which leads to the delamination of the ceramics and its premature cracking.
Ближайшим аналогом является способ получения защитного покрытия на деталях (RU N° 2305034, С23С 14/28 опубл. 27.08.2007г.). На поверхность детали наносят, по меньшей мере, один металлический слой. Затем проводят алитирование или хромоалитирование. После этого наносят керамический слой на основе оксида циркония, содержащего оксид иттрия. Упрочнение керамического слоя осуществляют путем нанесения на него, по меньшей мере,  The closest analogue is a method of obtaining a protective coating on parts (RU N ° 2305034, С23С 14/28 publ. 08/27/2007). At least one metal layer is applied to the surface of the part. Then carry out alitization or chromoalithium. After that, a ceramic layer based on zirconium oxide containing yttrium oxide is applied. The hardening of the ceramic layer is carried out by applying at least
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) трех керамических слоев на основе оксида циркония, содержащих 6-9 % оксида иттрия и 3-30 % оксида алюминия. Данный способ позволяет повысить надежность и долговечность защитного покрытия. SUBSTITUTE SHEET (RULE 26) three ceramic layers based on zirconium oxide containing 6-9% yttrium oxide and 3-30% alumina. This method improves the reliability and durability of the protective coating.
В отличие от заявляемого каталитически-активного покрытия наносимого на поршень ДВС, в состав аналога не добавляется оксид церия, являющийся эффективным катализатором ускоряющим процесс и полноту сгорания топлива, что необходимо при работе двигателя. Также в аналогичном изобретении слои покрытия наносятся способами, такими как вакуумно-плазменный, диффузионный, электронно-лучевой, катодного и лазерного напыления, в нашем изобретении покрытие формируется методом микродугового (плазменного электролитического) оксидирования, данный метод характеризуется более высокой адгезионной стойкостью, стойкостью к термоударам и термоциклированию.  Unlike the claimed catalytically active coating applied to the internal combustion engine piston, cerium oxide is not added to the analogue composition, which is an effective catalyst accelerating the process and completeness of fuel combustion, which is necessary when the engine is running. Also in a similar invention, the coating layers are applied by methods such as vacuum-plasma, diffusion, electron-beam, cathode and laser sputtering, in our invention, the coating is formed by the method of microarc (plasma electrolytic) oxidation, this method is characterized by higher adhesion resistance, resistance to thermal shock and thermal cycling.
Задачей стоящей перед авторами является повышение надежности и эффективности в работе камеры внутреннего сгорания двигателя, увеличение коэффициента полезного действия (КПД) ДВС, снижение уровня выбросов угарного газа (СО), углекислого газа (СО2) и углеводородов в окружающую среду.  The task of the authors is to increase the reliability and efficiency of the internal combustion chamber of the engine, increase the efficiency (ICE) of the internal combustion engine, reduce the level of emissions of carbon monoxide (CO), carbon dioxide (CO2) and hydrocarbons into the environment.
Поставленная задача решается благодаря каталитически-активному керамическому термобарьерному покрытию, формируемому методом микродугового (плазменного электролитического) оксидирования, на поршне и сфере головки цилиндра камеры сгорания ДВС.  The problem is solved thanks to the catalytically active ceramic thermal barrier coating formed by the method of microarc (plasma electrolytic) oxidation on the piston and cylinder head of the combustion chamber of the internal combustion engine.
Сущность изобретения состоит в формировании, каталитически-активного керамического термобарьерного двуслойного покрытия, состоящего в основном из оксида алюминия и оксида церия, методом микродугового (плазменного электролитического) оксидирования, на поршне и сфере головки цилиндра камеры сгорания ДВС.  The essence of the invention consists in the formation of a catalytically active ceramic thermal barrier two-layer coating, consisting mainly of aluminum oxide and cerium oxide, by the method of microarc (plasma electrolytic) oxidation, on the piston and the cylinder head sphere of the ICE combustion chamber.
Оксидные слои, получаемые методом микродугового оксидирования, характеризуются высокой адгезией, стойкостью к термоударам и термоциклированию.  The oxide layers obtained by the microarc oxidation method are characterized by high adhesion, resistance to thermal shock, and thermal cycling.
Оксид церия, а также его бинарные и тройные оксиды (в том числе с алюминием) являются эффективными катализаторами конверсии углеводородов и угарного газа (СО) при достаточно низких температурах (порядка 500°С, что соответствует условиям камеры двигателя внутреннего сгорания), ускоряющими процесс и полноту горения топлива. Cerium oxide, as well as its binary and ternary oxides (including with aluminum) are effective catalysts for the conversion of hydrocarbons and carbon monoxide (CO) at sufficiently low temperatures (of the order of 500 ° C, which corresponds to the conditions of the chamber of an internal combustion engine), accelerating the process and completeness of fuel combustion.
Техническое решение изобретения.  The technical solution of the invention.
На поршне и сфере головки цилиндра камеры сгорания ДВС, методом микродугового (плазменного электролитического) оксидирования, формируется двуслойное каталитически-активное термобарьерное керамическое покрытие, толщиной 15-150 мкм. Первый (внутренний) слой покрытия, толщиной 5-100 мкм., состоит в основном из алюминия (не менее 90 мол. %) и контактирует непосредственно с металлом из которого изготовлен поршень и головка сферы камеры ДВС. Первый слой имеет высокую твердость и износостойкость. Второй (внешний) пористый слой, толщиной 10-100 мкм, состоит из оксида алюминия, оксида кремния и оксида церия в мольной доле от 1 до 50 %. Второй слой имеет высокую адгезионную прочность, стойкость к термоударам и термоциклированию, также обладает термобарьерным и каталитическим эффектом. Дополнительно покрытие может содержать оксиды меди и магния.  On the piston and the cylinder head sphere of the ICE combustion chamber, by the method of microarc (plasma electrolytic) oxidation, a two-layer catalytically active thermal barrier ceramic coating is formed, with a thickness of 15-150 microns. The first (inner) coating layer, 5-100 microns thick., Consists mainly of aluminum (not less than 90 mol.%) And is in direct contact with the metal from which the piston and the head of the ICE chamber sphere are made. The first layer has high hardness and wear resistance. The second (outer) porous layer, 10-100 microns thick, consists of aluminum oxide, silicon oxide and cerium oxide in a mole fraction of 1 to 50%. The second layer has high adhesive strength, resistance to thermal shock and thermal cycling, and also has a thermal barrier and catalytic effect. Additionally, the coating may contain oxides of copper and magnesium.
Техническим эффектом от использования каталитически-активного керамического термобарьерного покрытия в работе камеры внутреннего сгорания двигателя, является:  The technical effect of the use of a catalytically active ceramic thermal barrier coating in the operation of the internal combustion chamber of an engine is:
- повышения температуры в камере сгорания;  - increase the temperature in the combustion chamber;
- увеличение полноты сгорания топлива; - increase the completeness of fuel combustion;
- снижение уровня выбросов угарного газа (СО), углекислого газа (СО2) и углеводородов в окружающую среду;  - reduction of emissions of carbon monoxide (CO), carbon dioxide (CO2) and hydrocarbons in the environment;
- уменьшение тепловой нагрузки на систему охлаждения и другие детали двигателя;  - reduction of thermal load on the cooling system and other engine parts;
- как следствие увеличение КПД ДВС. - as a result, an increase in the efficiency of ICE.
Таким образом задача стоящая перед авторами по повышению надежности и эффективности в работе камеры внутреннего сгорания двигателя, увеличению коэффициента полезного действия (КПД) ДВС, снижению уровня выбросов угарного газа (СО), углекислого газа (СО2) и углеводородов в окружающую среду, выполнена.  Thus, the task facing the authors to increase the reliability and efficiency of the internal combustion chamber of the engine, increase the efficiency (ICE) of the internal combustion engine, reduce the level of emissions of carbon monoxide (CO), carbon dioxide (CO2) and hydrocarbons into the environment, has been completed.
з s

Claims

ФОРМУЛА  FORMULA
Каталитически-активное термобарьерное керамическое покрытие на поверхности камеры двигателя внутреннего сгорания, нанесенное в несколько слоев, в состав которого входит оксид алюминия, отличающееся тем, что покрытие на деталях формируют методом микродугового оксидирования, а в состав покрытия дополнительно добавляют оксид церия в мольной доле от 1 до 50 %. The catalytically active thermal barrier ceramic coating on the surface of the chamber of an internal combustion engine, applied in several layers, which includes aluminum oxide, characterized in that the coating on the parts is formed by microarc oxidation, and ceria is added to the coating composition in a mole fraction of 1 up to 50 %.
PCT/RU2014/000802 2014-10-09 2014-10-23 Catalytically active coating on the surface of an internal combustion engine chamber WO2016056943A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2014140685/02A RU2581329C1 (en) 2014-10-09 2014-10-09 Catalytically active thermal barrier ceramic coating on surface of chamber of internal combustion engine
RU2014140685 2014-10-09

Publications (1)

Publication Number Publication Date
WO2016056943A1 true WO2016056943A1 (en) 2016-04-14

Family

ID=55653436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2014/000802 WO2016056943A1 (en) 2014-10-09 2014-10-23 Catalytically active coating on the surface of an internal combustion engine chamber

Country Status (2)

Country Link
RU (1) RU2581329C1 (en)
WO (1) WO2016056943A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110952104A (en) * 2019-08-19 2020-04-03 西南交通大学 Method for preparing deep narrow gap consumable electrode gas shielded welding contact tip
CN113294261A (en) * 2021-06-29 2021-08-24 潍柴动力股份有限公司 Cylinder cover, coating preparation device and coating preparation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2763137C1 (en) * 2021-02-11 2021-12-27 Акционерное общество "ЗЕНТОРН" Catalytically active thermal barrier ceramic modification layer on the surface of the bottom of the piston, and/or sphere, and/or exhaust channels of the internal combustion engine head and the method for its formation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2152255C1 (en) * 1998-07-14 2000-07-10 Мамаев Анатолий Иванович Method of preparing catalytically active layers and catalytically active material prepared by this method
RU2275962C1 (en) * 2004-12-09 2006-05-10 Институт физико-химических проблем керамических материалов Российской академии наук (ИПК РАН) Method of preparing catalyst for treating internal combustion engine exhaust gases and catalyst prepared by this method
EP1657326A1 (en) * 2004-11-16 2006-05-17 Aisin Seiki Kabushiki Kaisha Aluminium- or magnesium-piston containing 12-25% Silicon, the surface of which is oxidised by microarc-oxidation
CN1928341A (en) * 2006-02-20 2007-03-14 山东华盛农业药械股份有限公司 Method of producing aluminum alloy cylinder
RU2515727C2 (en) * 2010-09-09 2014-05-20 Государственное научное учреждение Всероссийский научно-исследовательский технологический институт ремонта и эксплуатации машинно-тракторного парка Россельхозакадемии (ГНУ ГОСНИТИ Россельхозакадемии) Method of obtaining nanostructured catalytic coatings on ceramic carriers for neutralisation of waste gasses of internal combustion engines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2152255C1 (en) * 1998-07-14 2000-07-10 Мамаев Анатолий Иванович Method of preparing catalytically active layers and catalytically active material prepared by this method
EP1657326A1 (en) * 2004-11-16 2006-05-17 Aisin Seiki Kabushiki Kaisha Aluminium- or magnesium-piston containing 12-25% Silicon, the surface of which is oxidised by microarc-oxidation
RU2275962C1 (en) * 2004-12-09 2006-05-10 Институт физико-химических проблем керамических материалов Российской академии наук (ИПК РАН) Method of preparing catalyst for treating internal combustion engine exhaust gases and catalyst prepared by this method
CN1928341A (en) * 2006-02-20 2007-03-14 山东华盛农业药械股份有限公司 Method of producing aluminum alloy cylinder
RU2515727C2 (en) * 2010-09-09 2014-05-20 Государственное научное учреждение Всероссийский научно-исследовательский технологический институт ремонта и эксплуатации машинно-тракторного парка Россельхозакадемии (ГНУ ГОСНИТИ Россельхозакадемии) Method of obtaining nanostructured catalytic coatings on ceramic carriers for neutralisation of waste gasses of internal combustion engines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110952104A (en) * 2019-08-19 2020-04-03 西南交通大学 Method for preparing deep narrow gap consumable electrode gas shielded welding contact tip
CN110952104B (en) * 2019-08-19 2021-09-03 西南交通大学 Method for preparing deep narrow gap consumable electrode gas shielded welding contact tip
CN113294261A (en) * 2021-06-29 2021-08-24 潍柴动力股份有限公司 Cylinder cover, coating preparation device and coating preparation method

Also Published As

Publication number Publication date
RU2581329C1 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
US10995661B2 (en) Thermally insulated engine components using a ceramic coating
JP5696351B2 (en) Engine combustion chamber structure
US4495907A (en) Combustion chamber components for internal combustion engines
US9863312B2 (en) Internal combustion engine and manufacturing method therefor
Garud et al. Performance and CombustionCharacteristics of thermal barrier coated (YSZ) low heat rejection diesel engine
US20130146041A1 (en) Internal combustion engine and method of producing same
JP2007262447A (en) Oxidation-resistant film and its deposition method, thermal barrier coating, heat-resistant member, and gas turbine
JP2014040820A (en) Heat insulating structure of member facing engine combustion chamber, and method of manufacturing the same
RU2581329C1 (en) Catalytically active thermal barrier ceramic coating on surface of chamber of internal combustion engine
CN105463453A (en) Thermal barrier coating with stable interface and manufacturing method of thermal barrier coating
JP5607582B2 (en) Manufacturing method of engine valve
CN105734500A (en) High temperature oxidation-resistant thermal barrier coating layer with composite structure and preparation method thereof
JP5718774B2 (en) piston
JP2019124187A (en) Compression self-ignition type internal combustion engine
CN113088859A (en) Composite coating, piston, engine and vehicle
JP2012246802A (en) Piston for internal combustion engine and internal combustion engine having the same
JPH0143145B2 (en)
Sivakumar et al. Is thermal barrier coating for low heat rejection in SI engines or diesel engines
JP5966977B2 (en) Method for forming a heat insulating layer of an engine
RU2402639C1 (en) Procedure for application of combined heat insulated coating on parts out of heat resistant alloys
WO2016056942A1 (en) Internal combustion engine cylinder head sphere with ceramic coating
RU155143U1 (en) PISTON OF THE INTERNAL COMBUSTION ENGINE WITH CATALYTIC-ACTIVE THERMAL BARRIER CERAMIC COATING.
CN106715880B (en) Piston, piston machine with piston and automobile with piston machine
RU2763137C1 (en) Catalytically active thermal barrier ceramic modification layer on the surface of the bottom of the piston, and/or sphere, and/or exhaust channels of the internal combustion engine head and the method for its formation
RU165036U1 (en) Piston for internal combustion engine with catalytically active thermal barrier ceramic coating on the surface of the bottom, piston skirt and piston ring grooves

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903535

Country of ref document: EP

Kind code of ref document: A1