WO2016056641A1 - 血流シミュレーションのための血流解析機器、その方法及びコンピュータソフトウエアプログラム - Google Patents
血流シミュレーションのための血流解析機器、その方法及びコンピュータソフトウエアプログラム Download PDFInfo
- Publication number
- WO2016056641A1 WO2016056641A1 PCT/JP2015/078693 JP2015078693W WO2016056641A1 WO 2016056641 A1 WO2016056641 A1 WO 2016056641A1 JP 2015078693 W JP2015078693 W JP 2015078693W WO 2016056641 A1 WO2016056641 A1 WO 2016056641A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood
- blood flow
- blood vessel
- target
- analysis
- Prior art date
Links
- 230000017531 blood circulation Effects 0.000 title claims abstract description 143
- 238000005206 flow analysis Methods 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000004088 simulation Methods 0.000 title 1
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 170
- 238000004458 analytical method Methods 0.000 claims abstract description 35
- 239000012530 fluid Substances 0.000 claims abstract description 9
- 230000035882 stress Effects 0.000 claims description 50
- 210000004369 blood Anatomy 0.000 claims description 46
- 239000008280 blood Substances 0.000 claims description 46
- 238000004364 calculation method Methods 0.000 claims description 44
- 230000032683 aging Effects 0.000 claims description 33
- 201000010099 disease Diseases 0.000 claims description 25
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 3
- 230000007310 pathophysiology Effects 0.000 claims 2
- 238000004590 computer program Methods 0.000 claims 1
- 230000001575 pathological effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 210000001627 cerebral artery Anatomy 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 206010020772 Hypertension Diseases 0.000 description 4
- 210000002889 endothelial cell Anatomy 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 206010003210 Arteriosclerosis Diseases 0.000 description 3
- 208000011775 arteriosclerosis disease Diseases 0.000 description 3
- 230000010349 pulsation Effects 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 210000000709 aorta Anatomy 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 210000001715 carotid artery Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000002608 intravascular ultrasound Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 210000003556 vascular endothelial cell Anatomy 0.000 description 2
- 208000019838 Blood disease Diseases 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 208000031226 Hyperlipidaemia Diseases 0.000 description 1
- 101150049891 MCA1 gene Proteins 0.000 description 1
- 101150009920 MCA2 gene Proteins 0.000 description 1
- 101150073928 MCA3 gene Proteins 0.000 description 1
- 101100290371 Schizosaccharomyces pombe (strain 972 / ATCC 24843) pca1 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 210000002551 anterior cerebral artery Anatomy 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 229940127218 antiplatelet drug Drugs 0.000 description 1
- 210000002565 arteriole Anatomy 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000008571 general function Effects 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 208000018706 hematopoietic system disease Diseases 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 210000003657 middle cerebral artery Anatomy 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000037197 vascular physiology Effects 0.000 description 1
- 238000007631 vascular surgery Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0073—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/02108—Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/0261—Measuring blood flow using optical means, e.g. infrared light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/0263—Measuring blood flow using NMR
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/0285—Measuring or recording phase velocity of blood waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2576/00—Medical imaging apparatus involving image processing or analysis
- A61B2576/02—Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0066—Optical coherence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7282—Event detection, e.g. detecting unique waveforms indicative of a medical condition
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
Definitions
- the present invention relates to a method for estimating a boundary condition that is one of the inputs of blood flow analysis by computational fluid dynamics (CFD), and a blood flow analysis device having a function for automatically setting the boundary condition based on the method. It is.
- CFD computational fluid dynamics
- CFD computational fluid dynamics
- the boundary condition in blood flow analysis is given by (1) an actual measurement value by a phase contrast MRI method or an ultrasonic Doppler method, and (2) a statistical average value based on the measurement.
- the blood flow in the blood vessel is a pulsatile flow that varies with time.
- a blood vessel is a flexible conduit, and the time-varying characteristics are different for each individual blood vessel.
- blood flow is transported only during the systole of the heart, and blood flow is almost zero in the diastole.
- blood flow does not become zero even in the systole due to the pumping action of the blood vessel contraction / dilation. It was difficult to automatically set the boundary condition setting in consideration of such pulsating flow of blood flow, time fluctuation, and differences in individual blood vessels.
- vascular endothelial cells there are vascular endothelial cells on the luminal surface of the blood vessel. It is known that vascular endothelial cells have a function of sensing a mechanical stimulation of blood flow, and have a function of changing a cell's biochemical reaction in accordance with the value. More specifically, it is considered that an appropriate wall shear stress exists in the endothelial cells, and when the value deviates from a normal value, the shape is adjusted by contracting or relaxing the blood vessel diameter.
- the present inventors have hereby developed from human clinical research on the appropriate setting of the wall shear stress, and as a result, have completed a system and method capable of automatically setting boundary conditions for blood flow analysis. is there.
- a blood flow analysis method for performing a numerical fluid analysis of blood flow in a target blood vessel region and displaying the analysis result.
- the computer calculates the blood vessel diameter (d) of the inlet and / or outlet of the analysis target blood vessel part from the medical image including the analysis target blood vessel part, and the computer based on the blood vessel diameter (d)
- a blood flow analysis method comprising the step of outputting a blood flow characteristic at the outlet.
- the method further comprises the step of causing the computer to selectively input the aging, pathological condition, heart rate and / or target blood vessel type of the patient subject to blood flow analysis.
- the blood flow characteristic pattern is an individual pattern prepared according to the patient's aging, disease state, heart rate and / or target blood vessel type input to the user, and outputting the blood flow characteristic Is to output the blood flow characteristic using the blood flow characteristic pattern according to the patient's aging, disease state, heart rate and / or target blood vessel type input by the user.
- the blood flow characteristic pattern is provided as defining the relationship between one axis with a dimensionless flow rate and the other axis with a dimensionless time.
- the step of obtaining the estimated flow rate (Q) is to obtain the estimated flow rate (Q) based on the cube of the blood vessel diameter (d 3 ).
- the estimated flow rate (Q) is preferably obtained based on (where ⁇ is an appropriate wall shear stress and ⁇ is a blood viscosity).
- the system further includes a step in which the computer causes the user to input the aging, disease state, heart rate and / or target blood vessel type of the patient to be analyzed for blood flow, and the computer inputs the blood flow analysis target input by the user. And determining the appropriate wall shear stress ( ⁇ ) and / or blood viscosity ( ⁇ ) based on the aging, disease state, heart rate and / or target blood vessel type of the patient.
- the step of determining the appropriate wall shear stress ( ⁇ ) and / or blood viscosity ( ⁇ ) includes an appropriate shear stress template standardized for each patient's aging, disease state, heart rate and / or target blood vessel type, and It is preferable to use a blood property template.
- the blood vessel diameter (d) is an equivalent diameter when the computer assumes a circle having the same area as that measured on a plane perpendicular to the center line of the blood vessel.
- the equivalent diameter is calculated using an average value or a median value.
- the blood flow characteristic pattern is a time varying flow pattern and the blood flow characteristic is a time varying flow rate.
- a blood flow analysis device that executes a numerical fluid analysis of blood flow in a target blood vessel region and displays the analysis result.
- a blood vessel diameter calculation unit that obtains the blood vessel diameter (d) of the inlet and / or outlet of the blood vessel part to be analyzed from the medical image to include, and a computer estimates based on the blood vessel diameter (d) at the inlet and / or outlet.
- a blood vessel characteristic calculation unit for obtaining a flow rate (Q) and a computer apply the estimated flow rate (Q) to the blood flow characteristic pattern of the analysis target site, and blood at the inlet and / or outlet of the analysis target site.
- a blood flow analysis device including a blood flow characteristic calculation unit that outputs a flow characteristic is provided.
- a computer software program for executing a numerical fluid analysis of blood flow in a target blood vessel region and displaying the analysis result, and the following steps: A step of obtaining a blood vessel diameter (d) at the inlet and / or outlet of the analysis target blood vessel part from the medical image including the analysis target blood vessel part, and a computer based on the blood vessel diameter (d) A step of obtaining an estimated flow rate (Q) at the outlet, and a computer applies the estimated flow rate (Q) to a blood flow characteristic pattern of the analysis target portion, and blood at the inlet and / or outlet of the analysis target portion.
- a computer software program comprising instructions for executing a flow characteristic output step.
- FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.
- FIG. 2 is a flowchart showing processing steps in the present embodiment.
- FIGS. 3A to 3F are diagrams for explaining a process of calculating a blood vessel diameter from a medical image.
- FIG. 4A is a schematic diagram illustrating wall shear stress.
- (B) is an example of the appropriate wall shear stress template in one embodiment of the present invention.
- FIG. 5A is an example of a blood characteristic template in one embodiment of the present invention.
- (B) is a figure which shows the relationship between an object blood vessel and a non-Newtonian coefficient.
- FIG. 6 is a diagram illustrating an example of calculating the average flow rate according to the embodiment of the present invention.
- FIG. 4A is a schematic diagram illustrating wall shear stress.
- (B) is an example of the appropriate wall shear stress template in one embodiment of the present invention.
- FIG. 5A is an example of a blood characteristic template in one embodiment of the present invention
- FIG. 7 is a diagram showing empirical data of blood vessel diameter and flow rate.
- 8A and 8B are diagrams showing a comparison between the calculated value of the blood vessel characteristic calculation unit and the verification data.
- FIG. 9A is an example of a blood flow characteristic template.
- FIG. 9B is an example of a heart rate template.
- FIGS. 9C to 9E are diagrams showing examples of time-varying flow rate patterns.
- FIG. 10A is an example in which the calculation result of the blood flow characteristic calculation unit is output while being superimposed on the target blood vessel site.
- FIGS. 10B to 10E are diagrams showing calculation results of the blood flow characteristic calculation unit.
- FIG. 1 is a schematic configuration diagram showing a blood flow analysis apparatus according to this embodiment.
- the blood flow analysis device 1 includes a program storage unit 6 and a data storage unit 7 such as various templates connected to a bus 5 to which a CPU 2, a memory 3, and an input / output unit 4 are connected.
- the program storage unit 6 includes a blood vessel diameter calculation unit 11 that calculates the blood vessel diameter of the target blood vessel from the blood vessel shape information 21, an appropriate shear stress calculation unit 12, a blood characteristic calculation unit 13, a blood vessel characteristic calculation unit 14, a blood flow A characteristic calculation unit 15, a blood flow analysis execution unit 16, and an input interface generation unit 17 are provided.
- the data storage unit 7 includes blood vessel shape information 21, an appropriate shear stress template 22, a blood characteristic template 23, a blood vessel characteristic template 24, a blood flow characteristic template 25, and a pulsation number template 26.
- blood vessel diameter calculation unit 11, appropriate shear stress calculation unit 12, blood characteristic calculation unit 13, blood vessel characteristic calculation unit 14, blood flow characteristic calculation unit 15, blood flow analysis execution unit 16, input interface generation unit 17 Is configured by computer software stored in the storage area of the hard disk, and is configured to function as each component of the present invention by being called up by the CPU 2 and expanded and executed on the memory 3. It has become.
- the blood vessel diameter calculation unit 11 starts from a medical image 21 acquired from an image capturing apparatus (not shown) (step S1-1).
- the diameter of the blood vessel at the entrance / exit of the target blood vessel site is calculated (step S1-2).
- the appropriate shear stress calculation unit 12 uses the appropriate shear stress template 22 (step S2-1) to calculate an appropriate shear stress acting on the target blood vessel site based on conditions specified by the user (step S2-2). It is.
- the blood characteristic calculation unit 13 uses the blood characteristic template (step S3-1) to calculate the blood characteristic of the target blood vessel site based on conditions specified by the user (step S3-2).
- the blood vessel diameter, the appropriate shear stress, and the blood characteristic obtained in the above steps S1 to S3 are passed to the blood vessel characteristic calculation unit 14.
- the blood vessel characteristic calculator 14 applies the received information to the blood vessel characteristic template (step S4-1), thereby calculating the average flow rate of the inlet / outlet blood vessels of the target blood vessel site (step S4-2).
- the blood flow characteristic calculation unit 15 calculates the blood flow characteristics of the target blood vessel site, specifically, the time-varying flow rate of the inlet / outlet blood vessels based on this. Is calculated.
- the blood flow characteristic calculation unit 15 uses a blood flow characteristic template and / or a pulsation rate template prepared based on conditions specified by the user (specifically, pathological condition, patient age, etc.). (Steps S5-1 and S5-2) By applying the average flow rate of the inlet / outlet blood vessels of the target blood vessel site to this, the time-varying flow rate of the inlet / outlet blood vessels of the target blood vessel site is calculated (step S5- 3). Thereafter, the blood flow analysis execution unit 16 executes the blood flow analysis of the target blood vessel site using the time-varying flow rate of the inlet / outlet blood vessels calculated in step S5 as an input.
- the configuration is such that the user designates the condition at each step.
- the input interface generation unit 16 can be used to designate the condition that needs to be designated by the user at each template.
- An input interface may be generated.
- FIGS. 3A to 3F are schematic diagrams showing processing of the blood vessel diameter calculation unit 11.
- the blood vessel diameter calculating unit 11 first acquires a medical image including the target blood vessel from the image capturing device (FIG. 3A).
- the image pickup device includes MRA (magnetic resonance image), CTA (X-ray computed tomography image), DSA (angiography image), IVUS (intravascular ultrasound image), OCT (near infrared image), and the like.
- MRA magnetic resonance image
- CTA X-ray computed tomography image
- DSA angiography image
- IVUS intravascular ultrasound image
- OCT near infrared image
- a blood vessel part is extracted from the medical image by three-dimensional volume rendering (FIG. 3B).
- a blood vessel-specific signal is extracted, but any method may be used, such as a threshold method using the signal value itself or a gradient method using a signal spatial change.
- a target blood vessel used for blood flow analysis is extracted (FIG. 3C). This extraction is performed by user designation (using a mouse or the like) or automatically (automatic determination of the target blood vessel region).
- the cerebral artery is designated.
- this designation determines the entrance and exit of the target blood vessel.
- a curved surface of the blood vessel is formed using a marching cube method or the like (FIG. 3 (d)). This shifts from the voxel space of the image to the polygon space. That is, at this time, the blood vessel wall surface is composed of minute triangular elements.
- FIG. 3 (e) a center line is constructed for each blood vessel. Many methods for extracting the center line have been reported, but the method is not limited here. Next, names are given to the blood vessels at the entrance and exit (FIG. 3 (e)).
- the blood vessel shape is measured (FIG. 3 (f)).
- an orthogonal cross section is created at each point of the center line, and the change in the area is calculated for each blood vessel.
- the diameters of the inlet and outlet blood vessels are determined based on the diameter (equivalent diameter) obtained assuming a circle equivalent to each area value.
- the diameter of the end face may be used, or a median value or an average value may be used.
- step S2 In the appropriate shear stress calculation unit 12, the user determines the appropriate shear stress by selecting a predetermined condition from the appropriate shear stress template 22 prepared by the computer.
- the endothelial cells on the inner surface of the blood vessel sense blood flow shear stress to control the contraction and expansion of the blood vessel diameter. That is, the endothelial cell adjusts the blood vessel diameter so as to obtain an appropriate shear stress according to the state.
- the shear stress in this case can be calculated by the product of the blood viscosity ⁇ and the velocity gradient du / dy, as in the equation of FIG.
- the appropriate shear stress is provided by the appropriate shear stress template 22 associated with “aging / pathological condition”.
- the numerical value of the template is a statistical average value calculated from an experiment.
- the appropriate shear stress template 22 is based on a standard value serving as a baseline, and each standard value is associated with aging.
- the appropriate shear stress template 22 further selects the presence or absence of a disease state.
- the appropriate shear stress calculation unit 12 selects, for example, the input interface of “aging” and “pathological condition” to the user (patient, doctor, or system operator) in order to select the appropriate shear stress template 22.
- the user patient, doctor, or system operator
- the appropriate shear stress template 22 Preferably provided with the candidate.
- the system may automatically input.
- the input (selection) information of “Aging” and “Disease state” input here is also used by the blood characteristic calculation unit 13 and the blood flow characteristic calculation unit 15 later.
- the blood characteristic calculation unit 13 calculates a blood characteristic by the user selecting a predetermined condition from a blood characteristic template 23 prepared by a computer as shown in FIG. Blood characteristics are blood density and viscosity.
- a blood characteristic template 23 in which blood characteristics are associated with aging / pathological conditions is provided.
- the numerical value of the template is a statistical average value calculated from an experiment.
- the blood characteristic template 23 is based on a standard value serving as a baseline, and each standard value is associated with aging.
- the presence or absence of a blood disease, the type of the disease (hyperlipidemia, diabetes in this embodiment), the presence / absence / degree of drug administration (this embodiment) Provides an interface that allows a user or the like to select an antiplatelet agent or an anticoagulant) and a target blood vessel (here, the target blood vessels are large, middle, small, and arterioles).
- the relationship between the target blood vessel and the viscosity will be described.
- the standard viscosity (baseline) is the blood viscosity in a high shear region where the blood viscosity does not depend on the shear rate.
- blood viscosity has been shown to increase with decreasing shear rate. That is, the smaller the blood vessel, the lower the flow rate of the blood vessel, the higher the viscosity. Therefore, selecting the target blood vessel corrects this point.
- the relative value when the standard viscosity is 1 is provided. This is called a non-Newtonian coefficient. Referring to FIG. 5B, for example, when a small artery is selected, an average coefficient in the shear rate region of the small artery region is used.
- the blood vessel characteristic calculation unit 14 provides the values (blood vessel diameter, shear stress, viscosity) calculated in steps S1 to S3 to the blood vessel characteristic template 24 (in this example, the following model formula (FIG. 6)) prepared by the computer. Thus, the average flow rate of the inlet / outlet blood vessels of the target blood vessel is calculated.
- model equation relates factors such as appropriate shear stress, blood characteristics (density and viscosity), blood vessel diameter, and average flow rate. Each factor is output in advance as described above, and is used by substituting it into the model formula.
- the inlet flow rate and the outlet flow rate can be calculated from the inlet diameter and outlet diameter of the target blood vessel, respectively.
- the viscosity ⁇ 3 cP
- the appropriate shear stress ⁇ 1.5 Pa
- d 4.24 mm
- the average flow rate Q 225 ml / min is calculated from the above model formula.
- the graph of FIG. 7 shows the demonstration that the cube of the blood vessel diameter is proportional to the flow rate.
- the brain blood vessels of healthy volunteers were targeted.
- the number of subjects is three.
- 5 to 7 blood vessels were targeted.
- a phase contrast MRI method was used to measure the flow rate.
- the blood vessel diameter is also expressed by an equivalent diameter by the MRI method.
- the flow rate and the cube of the blood vessel diameter are proportional to each other although the inclination is different.
- FIGS. 8 (a) and 8 (b) show that the estimated average flow rate obtained in steps S1 to S4 is effective.
- the literature value is the average flow rate of each blood vessel by a plurality of volunteers.
- the literature values and the calculated values are in good agreement for the blood vessels ICA, MCA, and ACA.
- the MCA is calculated as the sum of the three branches (MCA1, MCA2, and MCA3) shown in FIG.
- the fact that the blood vessel diameter cubed and the flow rate are proportional also shows the effectiveness of the flow rate distribution ratio. In other words, it is clear that when the flow rate distribution ratio for ACA is compared between the literature value and the calculated value, both agree well.
- the blood flow characteristic calculation unit 15 calculates the blood flow characteristic of the target blood vessel site, specifically the time-varying flow rate of the inlet / outlet blood vessels, based on the estimated average flow rate output in step S4. Specifically, the blood flow characteristic calculation unit 15 prepares the blood flow characteristic template 25 and / or the pulsation number template 26 prepared based on conditions specified by the user (specifically, pathological condition, patient age, etc.). (Steps S5-1 and S5-2), and applying the average flow rate of the inlet / outlet blood vessels of the target blood vessel site to calculate the time-varying flow rate of the inlet / outlet blood vessels of the target blood vessel site (step S5-1, S5-2) S5-3).
- a blood flow characteristic template (time-varying flow rate pattern) in which the time-varying flow rate at the entrance and exit of the blood vessel is associated with the blood vessel site, aging, and disease state is used.
- the blood flow characteristic template 26 is standard data in which the horizontal axis is dimensionless time and the vertical axis is dimensionless flow rate as shown in FIGS. 9 (c) to (e).
- the numerical values on the horizontal and vertical axes are obtained by making the experimental data dimensionless and are temporal blood flow fluctuation patterns that are statistical average values.
- the non-dimensionalization of the horizontal axis is made non-dimensional in one cycle of the heartbeat in order to consider the heart rate that varies depending on the subject.
- the non-dimensionalization of the vertical axis is made non-dimensional with the average flow rate in order to consider the average flow rate that varies depending on the subject.
- step S5-1 the system first selects a baseline based on the blood vessel site type (cerebral artery, carotid artery, aorta, etc.) input by the user.
- the baseline provides a time-variable flow rate that differs for each part such as the cerebral artery and the carotid artery as a standard value.
- this system uses an aging / pathological condition information template that associates aging / pathological condition information (arteriosclerosis, hypertension) input by the user and a heart rate template that is a heart rate template that correlates the heart rate.
- the base line is corrected as indicated by the broken line in FIGS.
- arteriosclerosis two types
- high blood pressure two types
- heart rate information as aging / pathological information that can be selected and input by the user are shown in FIG. 9 (b).
- five types of standard, low heart rate (2 types), and high heart rate (2 types) are provided.
- Step S5-3 a blood flow fluctuation flow template (broken line shown in FIGS. 9C to 9E) to be applied to the average flow obtained in step S4 is obtained.
- the estimated average flow rate at the inlet and outlet of the target blood vessel obtained in step S4 is the average flow rate of the blood flow fluctuation flow template determined above (broken line shown in FIGS. 9C to 9E).
- the time-varying flow rates at the respective inlets and outlets of the target blood vessel site can be obtained.
- the cerebral artery is targeted based on the healthy value.
- the present invention can be variously modified, and is not limited to the above-described embodiment, and can be variously modified without changing the gist of the invention.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Hematology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Vascular Medicine (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
この場合、前記推定流量(Q)を求める工程は、次式:
Q=(τxπ/32μ)d3
(ここでτは適正壁面せん断応力、μは血液粘度)に基づいて前記推定流量(Q)を求めるのが好ましい。
また、このシステムは、さらに、コンピュータが、ユーザに血流解析対象の患者の加齢、病態、心拍数及び/または対象血管種別を入力させる工程と、コンピュータが、ユーザが入力した血流解析対象の患者の加齢、病態、心拍数及び/または対象血管種別に基づいて、前記適正壁面せん断応力(τ)及び/若しくは血液粘度(μ)を決定する工程とを有すことが好ましい。
図3(a)~(f)は、血管径算出部11の処理を示す概略図である。
適正せん断応力演算部12では、コンピュータが用意した適正せん断応力テンプレート22からユーザが所定の条件を選択することで適正せん断応力を決定する。
血液特性演算部13では、図5(a)で示すようなコンピュータが用意した血液特性テンプレート23からユーザが所定の条件を選択することで血液特性を算出する。血液特性とは、血液の密度と粘度である。ここでは、血液特性を、加齢・病態と関連付けた血液特性テンプレート23を提供する。テンプレートの数値は実験から算出した統計平均値である。
血管特性演算部14では、コンピュータが用意した血管特性テンプレート24(この例では、下記モデル式(図6))に、上記ステップS1~S3で算出した値(血管径、せん断応力、粘度)を提供することで対象血管の入口・出口血管の平均流量を算出する。
図7のグラフは、血管径の3乗と流量が比例関係にあることの実証を示すものである。ここでは、健康なボランティアの脳血管を対象とした。被験者数は3名である。各被験者において、5~7か所の血管を対象とした。例えば、中大脳動脈、前大脳動脈などである。流量の計測には位相コントラストMRI法を使用した。血管径も同様にMRI法により、等価直径を用いて表現している。各被験者において、傾きは異なるが流量と血管径3乗は比例関係にあることが示されている。
図8(a)及び(b)のデータは、前記のステップS1~S4により求められた推定平均流量が有効であることの実証を示すものである。ここでは、ある被験者に対して算出された平均流量を文献値と比較している。文献値は、複数のボランティアによる各血管の平均流量である。まず、平均値をみれば、血管ICA、MCA、ACAともに文献値と算出値は良好に一致する。ここでMCAは図8(a)に示す、3つの分枝(MCA1、MCA2、及びMCA3)の合計として算出されている。さらに前述の通り、血管径3乗と流量は比例するということも流量分配比を見ると有効性が示されている。すなわち、ACAに対しての流量分配比を文献値と算出値で比較すれば両者は良好な一致を示すことが明らである。
前記血流特性演算部15は、上記ステップS4で出力された推定平均流量に基づいて、対象血管部位の血流特性、具体的には入口・出口血管の時間変動流量を算出する。具体的には、前記血流特性演算部15は、ユーザが指定した条件(具体的には病態、患者の年齢等)に基づいて用意された血流特性テンプレート25及び/または拍動数テンプレート26を用い(ステップS5-1,S5-2)、これを対象血管部位の入口・出口血管の平均流量を適用することで、前記対象血管部位の入口・出口血管の時間変動流量を算出する(ステップS5-3)。
そして、最後に、上記ステップS4で求めた対象血管の入口及び出口の推定平均流量を、上記で決定した血流変動流量のテンプレート(図9(c)~(e)に示す破線)の平均流量として適用することで図10(b)~(e)に示すように、対象血管部位の各入口及び出口の時間変動流量を求めることができる。なお、図10(b)~(e)の例は、健常値をベースに脳動脈を対象としている。
Claims (27)
- 対象血管部位の血流の数値流体解析を実行して、その解析結果を表示するための血流解析方法であって、
コンピュータが、解析対象血管部位を含む医用画像から、解析対象血管部位の入口及び/若しくは出口の血管径(d)を求める工程と、
コンピュータが、前記血管径(d)に基づいて、当該入口及び/若しくは出口における推定流量(Q)を求める工程と、
コンピュータが、前記推定流量(Q)を、前記解析対象部位の血流特性パターンに適用して、当該解析対象部位の当該入口及び/若しくは出口における血流特性を出力する工程と、
を有することを特徴とする血流解析方法。 - 請求項1記載の血流解析方法は、さらに、
コンピュータが、ユーザに血流解析対象の患者の加齢、病態、心拍数及び/または対象血管種別を選択的に入力させる工程を有し、
前記血流特性パターンは、前記ユーザに入力させた患者の加齢、病態、心拍数及び/または対象血管種別に応じて用意された個別のパターンであり、
血流特性を出力する工程は、前記ユーザに入力させた患者の加齢、病態、心拍数及び/または対象血管種別に応じた前記血流特性パターンを用いて前記血流特性を出力するものである
ことを特徴とする血流解析方法。 - 請求項1記載の血流解析方法において、
前記血流特性パターンは、1つの軸を無次元流量、他の軸を無次元時間として両者の関係を規定するものとして提供されたものである
ことを特徴とする血流解析方法。 - 請求項1記載の血流解析方法において、
前記推定流量(Q)を求める工程は、
血管径の3乗(d3)に基づいて前記推定流量(Q)を求めるものである
ことを特徴とする血流解析方法。 - 請求項4記載の血流解析方法において、
前記推定流量(Q)を求める工程は、次式:
Q=(τxπ/32μ)d3
(ここでτは適正壁面せん断応力、μは血液粘度)
に基づいて前記推定流量(Q)を求めるものである
ことを特徴とする血流解析方法。 - 請求項5記載の血流解析方法は、さらに、
コンピュータが、ユーザに血流解析対象の患者の加齢、病態、心拍数及び/または対象血管種別を入力させる工程と、
コンピュータが、ユーザが入力した血流解析対象の患者の加齢、病態、心拍数及び/または対象血管種別に基づいて、前記適正壁面せん断応力(τ)及び/若しくは血液粘度(μ)を決定する工程と
を有する、
ことを特徴とする血流解析方法。 - 請求項6記載の血流解析方法において、
前記適正壁面せん断応力(τ)及び/若しくは血液粘度(μ)を決定する工程は、患者の加齢、病態、心拍数及び/または対象血管種別ごとに規格化された適正せん断応力テンプレー及び/若しくは血液特性テンプレートを用いるものである
ことを特徴とする血流解析方法。 - 請求項1記載の血流解析方法において、
前記血管径(d)は、コンピュータが、血管の中心線に直交する面で計測された面積と同一な円を想定した場合の等価直径として算出するものであり、等価直径は、平均値または中央値を用いるものである
ことを特徴とする血流解析方法。 - 請求項1記載の血流解析方法において、
前記血流特性パターンは、時間変動流量パターンであり、前記血流特性は、時間変動流量である
ことを特徴とする血流解析方法。 - 対象血管部位の血流の数値流体解析を実行して、その解析結果を表示する血流解析機器であって、
コンピュータが、解析対象血管部位を含む医用画像から、解析対象血管部位の入口及び/若しくは出口の血管径(d)を求める血管径算出部と、
コンピュータが、前記血管径(d)に基づいて、当該入口及び/若しくは出口における推定流量(Q)を求める血管特性演算部と、
コンピュータが、前記推定流量(Q)を、前記解析対象部位の血流特性パターンに適用して、当該解析対象部位の当該入口及び/若しくは出口における血流特性を出力する血流特性演算部と、
を有する、
ことを特徴とする血流解析機器。 - 請求項10記載の血流解析機器は、さらに、
コンピュータが、ユーザに血流解析対象の患者の加齢、病態、心拍数及び/または対象血管種別を選択的に入力させる入力部を有し、
前記血流特性パターンは、前記ユーザに入力させた患者の加齢、病態、心拍数及び/または対象血管種別に応じて用意された個別のパターンであり、
前記血流特性を出力する血流特性演算部は、前記ユーザに入力させた患者の加齢、病態、心拍数及び/または対象血管種別に応じた前記血流特性パターンを用いて前記血流特性を出力するものである
ことを特徴とする血流解析機器。 - 請求項10記載の血流解析機器において、
前記血流特性パターンは、1つの軸を無次元流量、他の軸を無次元時間として両者の関係を規定するものとして提供されたものである
ことを特徴とする血流解析機器。 - 請求項10記載の血流解析機器において、
前記推定流量(Q)を求める血管特性演算部は、
血管径の3乗(d3)に基づいて前記推定流量(Q)を求めるものである
ことを特徴とする血流解析機器。 - 請求項13記載の血流解析機器において、
前記推定流量(Q)を求める血管特性演算部は、次式:
Q=(τxπ/32μ)d3
(ここでτは適正壁面せん断応力、μは血液粘度)
に基づいて前記推定流量(Q)を求めるものである
ことを特徴とする血流解析機器。 - 請求項14記載の血流解析機器は、さらに、
コンピュータが、ユーザに血流解析対象の患者の加齢、病態、心拍数及び/または対象血管種別を選択的に入力させる入力部を有し、
コンピュータが、ユーザが入力した血流解析対象の患者の加齢、病態、心拍数及び/または対象血管種別に基づいて、前記適正壁面せん断応力(τ)を決定する適正壁面せん断応力演算部及び/若しくは血液粘度(μ)を決定する血液特性演算部と
を有する、
ことを特徴とする血流解析機器。 - 請求項15記載の血流解析機器において、
前記適正壁面せん断応力(τ)を決定する適正壁面せん断応力演算部及び/若しくは血液粘度(μ)を決定する血液特性演算部は、患者の加齢、病態、心拍数及び/または対象血管種別ごとに規格化された適正せん断応力テンプレー及び/若しくは血液特性テンプレートを用いるものである
ことを特徴とする血流解析機器。 - 請求項10記載の血流解析機器において、
前記血管径(d)は、コンピュータが、血管の中心線に直交する面で計測された面積と同一な円を想定した場合の等価直径として算出するものであり、等価直径は、平均値または中央値を用いるものである
ことを特徴とする血流解析機器。 - 請求項10記載の血流解析機器において、
前記血流特性パターンは、時間変動流量パターンであり、前記血流特性は、時間変動流量である
ことを特徴とする血流解析機器。 - 対象血管部位の血流の数値流体解析を実行して、その解析結果を表示するためのコンピュータソフトウエアプログラムであって、以下の工程:
コンピュータが、解析対象血管部位を含む医用画像から、解析対象血管部位の入口及び/若しくは出口の血管径(d)を求める工程と、
コンピュータが、前記血管径(d)に基づいて、当該入口及び/若しくは出口における推定流量(Q)を求める工程と、
コンピュータが、前記推定流量(Q)を、前記解析対象部位の血流特性パターンに適用して、当該解析対象部位の当該入口及び/若しくは出口における血流特性を出力する工程と、
を実行させる命令を含む
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項19記載のコンピュータソフトウエアプログラムは、さらに、
コンピュータが、ユーザに血流解析対象の患者の加齢、病態、心拍数及び/または対象血管種別を選択的に入力させる工程を実行させる命令を有し、
前記血流特性パターンは、前記ユーザに入力させた患者の加齢、病態、心拍数及び/または対象血管種別に応じて用意された個別のパターンであり、
血流特性を出力する工程は、前記ユーザに入力させた患者の加齢、病態、心拍数及び/または対象血管種別に応じた前記血流特性パターンを用いて前記血流特性を出力するものである
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項19記載のコンピュータソフトウエアプログラムにおいて、
前記血流特性パターンは、1つの軸を無次元流量、他の軸を無次元時間として両者の関係を規定するものとして提供されたものである
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項19記載のコンピュータソフトウエアプログラムにおいて、
前記推定流量(Q)を求める工程は、
血管径の3乗(d3)に基づいて前記推定流量(Q)を求めるものである
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項22記載のコンピュータソフトウエアプログラムにおいて、
前記推定流量(Q)を求める工程は、次式:
Q=(τxπ/32μ)d3
(ここでτは適正壁面せん断応力、μは血液粘度)
に基づいて前記推定流量(Q)を求めるものである
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項23記載のコンピュータソフトウエアプログラムは、さらに、
コンピュータが、ユーザに血流解析対象の患者の加齢、病態、心拍数及び/または対象血管種別を入力させる工程と、
コンピュータが、ユーザが入力した血流解析対象の患者の加齢、病態、心拍数及び/または対象血管種別に基づいて、前記適正壁面せん断応力(τ)及び/若しくは血液粘度(μ)を決定する工程と
を実行させる命令を有する、
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項24記載のコンピュータソフトウエアプログラムにおいて、
前記適正壁面せん断応力(τ)及び/若しくは血液粘度(μ)を決定する工程は、患者の加齢、病態、心拍数及び/または対象血管種別ごとに規格化された適正せん断応力テンプレー及び/若しくは血液特性テンプレートを用いるものである
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項19記載のコンピュータソフトウエアプログラムにおいて、
前記血管径(d)は、コンピュータが、血管の中心線に直交する面で計測された面積と同一な円を想定した場合の等価直径として算出するものであり、等価直径は、平均値または中央値を用いるものである
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項19記載のコンピュータソフトウエアプログラムにおいて、
前記血流特性パターンは、時間変動流量パターンであり、前記血流特性は、時間変動流量である
ことを特徴とするコンピュータソフトウエアプログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/503,618 US10786165B2 (en) | 2014-10-08 | 2015-10-08 | Blood-flow analysis device for blood-flow simulation and method therefor |
JP2016553163A JP6561347B2 (ja) | 2014-10-08 | 2015-10-08 | 血流シミュレーションのための血流解析機器、その方法及びコンピュータソフトウエアプログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462061418P | 2014-10-08 | 2014-10-08 | |
US62/061,418 | 2014-10-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016056641A1 true WO2016056641A1 (ja) | 2016-04-14 |
Family
ID=55653245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078693 WO2016056641A1 (ja) | 2014-10-08 | 2015-10-08 | 血流シミュレーションのための血流解析機器、その方法及びコンピュータソフトウエアプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US10786165B2 (ja) |
JP (1) | JP6561347B2 (ja) |
WO (1) | WO2016056641A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10786165B2 (en) * | 2014-10-08 | 2020-09-29 | EBM Corporation | Blood-flow analysis device for blood-flow simulation and method therefor |
CN116617557B (zh) * | 2023-07-25 | 2023-10-13 | 深圳核心医疗科技股份有限公司 | 泵参数的优化方法及装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003144395A (ja) * | 2001-11-09 | 2003-05-20 | Fukuda Denshi Co Ltd | 血管内皮機能測定装置 |
JP2004321390A (ja) * | 2003-04-23 | 2004-11-18 | Toshiba Corp | X線画像診断装置及びx線画像診断方法 |
JP2013208158A (ja) * | 2012-03-30 | 2013-10-10 | Topcon Corp | 画像表示装置、画像表示方法、及びプログラム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103917165B (zh) * | 2011-08-26 | 2016-02-24 | Ebm株式会社 | 用于血流性状诊断的系统 |
JP6091870B2 (ja) * | 2012-12-07 | 2017-03-08 | 東芝メディカルシステムズ株式会社 | 血管解析装置、医用画像診断装置、血管解析方法、及び血管解析プログラム |
JP2015171486A (ja) * | 2014-03-12 | 2015-10-01 | 国立大学法人大阪大学 | 血流解析システムおよび血流解析プログラム |
US10786165B2 (en) * | 2014-10-08 | 2020-09-29 | EBM Corporation | Blood-flow analysis device for blood-flow simulation and method therefor |
-
2015
- 2015-10-08 US US15/503,618 patent/US10786165B2/en active Active
- 2015-10-08 WO PCT/JP2015/078693 patent/WO2016056641A1/ja active Application Filing
- 2015-10-08 JP JP2016553163A patent/JP6561347B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003144395A (ja) * | 2001-11-09 | 2003-05-20 | Fukuda Denshi Co Ltd | 血管内皮機能測定装置 |
JP2004321390A (ja) * | 2003-04-23 | 2004-11-18 | Toshiba Corp | X線画像診断装置及びx線画像診断方法 |
JP2013208158A (ja) * | 2012-03-30 | 2013-10-10 | Topcon Corp | 画像表示装置、画像表示方法、及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016056641A1 (ja) | 2017-07-27 |
US10786165B2 (en) | 2020-09-29 |
US20170360311A1 (en) | 2017-12-21 |
JP6561347B2 (ja) | 2019-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6918912B2 (ja) | 画像処理装置、画像処理方法、及びプログラム | |
US11375904B2 (en) | Medical image processing apparatus | |
JP6700363B2 (ja) | 患者固有の血流のモデリングのための方法およびシステム | |
JP6646711B2 (ja) | 患者別の血管情報を決定する方法 | |
JP6661613B2 (ja) | 心筋ブリッジ及び患者に及ぼす影響を自動的に判定するためのシステム及び方法 | |
AU2017200000B2 (en) | Method and system for modeling blood flow with boundary conditions for optimized diagnostic performance | |
US9629563B2 (en) | Method and system for functional assessment of renal artery stenosis from medical images | |
US10206587B2 (en) | Image processing apparatus, image processing method, and storage medium | |
KR102336929B1 (ko) | 환자-특정 기하학적 모델들을 변경함으로써 치료들을 결정하기 위한 방법 및 시스템 | |
JP7053656B2 (ja) | 造影剤注入撮像 | |
JP6751184B2 (ja) | 医用画像処理装置、医用画像処理システムおよび医用画像処理方法 | |
Gundelwein et al. | Personalized stent design for congenital heart defects using pulsatile blood flow simulations | |
JP6561347B2 (ja) | 血流シミュレーションのための血流解析機器、その方法及びコンピュータソフトウエアプログラム | |
JP6675458B2 (ja) | 血管解析装置、血管解析方法及び血管解析プログラム | |
Pan et al. | A proposal of risk indicators for pathological development from hemodynamic simulation: application to aortic dissection | |
JP2015217113A (ja) | 血管解析装置、医用画像診断装置、血管解析方法及び血管解析プログラム | |
Mamatyukov et al. | Comprehensive research of human brain hemodynamics: Clinical monitoring and computer simulations | |
Florkow et al. | An integrated software application for non-invasive assessment of local aortic haemodynamic parameters | |
Bulant et al. | Impact of Boundary Conditions on the Computational Assessment of Fractional Flow Reserve | |
Crom | Right Ventricular Remodeling and Its Relationship with Clinically Relevant Pulmonary Hypertension Metrics | |
JP2022522951A (ja) | 電子患者データに基づく仮想ストレステスト | |
Wood et al. | 18 Modelling of haemodynamics in the cardiovascular system by integrating medical imaging techniques and computer modelling tools | |
Nagy et al. | Novel, Inverse Biomechanical Methods Supporting Abdominal Aortic Aneurysm Management | |
Kroon et al. | Image based hemodynamic modeling of cerebral aneurysms and the determination of the risk of rupture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15849557 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016553163 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15503618 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15849557 Country of ref document: EP Kind code of ref document: A1 |