WO2016056114A1 - Differential device - Google Patents

Differential device Download PDF

Info

Publication number
WO2016056114A1
WO2016056114A1 PCT/JP2014/077149 JP2014077149W WO2016056114A1 WO 2016056114 A1 WO2016056114 A1 WO 2016056114A1 JP 2014077149 W JP2014077149 W JP 2014077149W WO 2016056114 A1 WO2016056114 A1 WO 2016056114A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
shaft
gear
differential device
ring frame
Prior art date
Application number
PCT/JP2014/077149
Other languages
French (fr)
Japanese (ja)
Inventor
功 廣田
雅彦 朝日
Original Assignee
Gkn ドライブライン ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gkn ドライブライン ジャパン株式会社 filed Critical Gkn ドライブライン ジャパン株式会社
Priority to PCT/JP2014/077149 priority Critical patent/WO2016056114A1/en
Priority to JP2016552778A priority patent/JP6306728B2/en
Publication of WO2016056114A1 publication Critical patent/WO2016056114A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/40Constructional details characterised by features of the rotating cases

Definitions

  • the present invention relates to a differential apparatus for distributing torque from a driving force source to a pair of axles in an automobile.
  • the differential device usually includes a cylindrical casing extending in the axial direction, the casing receives torque from the ring gear, and the differential gear set housed in the casing differentially transmits this torque to each axle.
  • the differential gear set a bevel gear type, a face gear type, a planetary gear type, or the like is practically used.
  • Patent Documents 1 and 2 disclose related technologies. Patent Document 1 relates to a bevel gear type and Patent Document 2 relates to a face gear type.
  • the gears that make up the differential gear set must withstand a large torque, and therefore require a certain size. Since the casing accommodates all such differential gear sets, the entire differential device tends to be large. The casing needs to firmly support the differential gear set, and the torque input to the casing generates a stress in the direction of twisting the casing. Therefore, the casing must have a sufficient thickness to have sufficient strength. Because of these factors, conventional differential devices have to be large and heavy. In particular, since the casing located on the outer periphery is thick and heavy, the moment of inertia significantly increases, which is a factor that impairs the vehicle response and fuel consumption.
  • the object of the present invention is to review the differential device from its basic structure and solve the above-mentioned problems.
  • a ring frame that receives the torque
  • a pair of side gears each having a structure that is rotatable about the shaft and is drivingly coupled to the axle, and a head and a shaft having a gear portion, respectively.
  • a plurality of pinion gears wherein the shaft is rotatably fitted in the recess to receive the torque from the ring frame and transmit the torque to the pair of side gears.
  • a plurality of pinion gears that are inwardly engaged with both of the pair of side gears and the pair of side gears to be coupled to the ring frame and to prevent falling off.
  • FIG. 1 is a perspective view of a differential apparatus according to an embodiment of the present invention, excluding a ring gear.
  • FIG. 2 is an exploded perspective view in which only the jacket and the ring frame that support the pinion gear are extracted from the differential device.
  • FIG. 3 is a sectional elevation view of the differential device, taken from a plane corresponding to the line III-III in FIG.
  • FIG. 4 is a partial cross-sectional side view showing a combination of a cross-section of the pinion gear and the jacket and a side surface of the ring frame.
  • FIG. 5A is a partial cross-sectional elevation view of the differential apparatus according to an example in which a ring gear is coupled to a ring frame.
  • FIG. 5B is a partial cross-sectional elevation view of the differential device according to an example in which a ring gear is coupled to a side cover.
  • FIG. 5C is a partial cross-sectional elevation view of the differential device according to an example in which one side cover is integrated with the ring gear.
  • FIGS. 1-5C Several exemplary embodiments of the present invention are described below with reference to FIGS. 1-5C.
  • the axis refers to the rotational axis of the differential device, and the circumferential and radial directions relate to such axis. Such an axis usually coincides with the rotational axis of the axle. Furthermore, the term ring does not exceed the meaning recognized in common sense, and thus does not include shapes such as cylinders having a substantial axial length with respect to diameter.
  • the differential device according to the present embodiment can be used, for example, in an automobile for distributing torque generated by a driving force source to left and right axles, or of course for a center differential apparatus in a four-wheel drive vehicle and other applications. Needless to say, it can also be used as part of a limited slip differential device, a lock-up differential device, or a free running differential device.
  • the differential apparatus generally includes a cage including a ring frame 10 and a pair of side covers 20, and a differential gear set housed in the cage. The whole is rotatably supported about the axis X by a carrier.
  • the differential gear set includes a pair of side gears 40 and a plurality of pinion gears 50.
  • the side gear 40 is a disc-shaped crown gear
  • the pinion gear 50 is a cylindrical gear. These teeth may be parallel to the shaft of the pinion gear 50, or a helical gear that is not parallel to the shaft may be used.
  • the face gear type is advantageous in that the dimension in the axial direction is reduced, and there is an advantage that no thrust reaction force is generated in each pinion gear.
  • a bevel gear type may be used instead.
  • the ring frame 10 is a member that receives torque from the driving force source and transmits the torque to the plurality of pinion gears 50. Although omitted in FIGS. 1-4, a ring gear for receiving torque is coupled to any of the cages. The ring gear will be described in detail later.
  • the ring frame 10 has a ring shape surrounding the axis X, and each includes a plurality of base portions 11 for supporting the pinion gear 50, and the base portions 11. And a plurality of bridge portions 13 that are coupled to each other.
  • the ring frame 10 can be integrally formed by casting, mold pressing, forging, or other appropriate manufacturing method. Depending on the strength considerations associated with the manufacturing method, reinforcing or stiffening structures such as ribs not shown in the figures can be added to this.
  • the number of the base portions 11 normally matches the number of the pinion gears 50 and is 4 in the illustrated example, but is not limited thereto.
  • the larger these numbers the smaller the force that each element must bear, and therefore each element can be made smaller. This is advantageous for downsizing the differential device.
  • the smaller the number the smaller the number of parts, which is advantageous in terms of cost. They are preferably arranged symmetrically about the axis X and equally spaced in the circumferential direction.
  • Each base portion 11 has a recess 15 formed in a substantially central recess in the radial direction, that is, each base portion 11 defines a recess 15.
  • Each recess 15 can have a cylindrical shape surrounded by a cylindrical surface, or a conical shape or a truncated conical shape surrounded by a conical surface. In this case, it can be directly fitted to and supported by the shaft 53 of the pinion gear 50.
  • a rectangular or trapezoidal shape surrounded by the bottom wall 17 and the pair of peripheral walls 18 can be used, or another shape can be adopted. In such a case, the pinion gear 50 can be supported using a jacket 30 described later.
  • the pair of peripheral walls 18 can each be a plane orthogonal to the circumferential direction. According to this, since the applied torque does not generate a component force deviating from the circumferential direction, it is advantageous in terms of correct torque transmission. Or you may incline the surrounding wall 18 with respect to an orthogonal surface so that a component force may be generated dare. Further alternatively, the pair of peripheral walls 18 may be parallel to each other.
  • Each recess 15 opens at least inward in the radial direction, and preferably each recess 15 opens in both directions in the axial direction, and more preferably the pinion gear 50 (and / or a jacket 30 described later) is the shaft. Dimensioned to pass in the direction. If the pinion gear 50 is opened in the axial direction, the pinion gear 50 can be slid in the axial direction instead of the radial direction and can be assembled in the recess 15, which is advantageous in terms of ease of assembly.
  • the jacket 30 may be used.
  • the jacket 30 is interposed between the shaft 53 of the pinion gear 50 and the recess 15.
  • the jacket 30 has an outer shape corresponding to the recess 15, for example, a substantially rectangular parallelepiped or a trapezoid, and can be fitted into the recess 15.
  • the pair of peripheral walls 32 corresponding to the peripheral wall 18 of the recess 15 may be any of a plane orthogonal to the circumferential direction, a plane inclined with respect to the orthogonal plane, and a plane parallel to each other.
  • the jacket 30 includes a race 31 that opens inward in the radial direction, and a shaft 53 of the pinion gear 50 is fitted therein.
  • the jacket 30 is fitted into the recess 15 together with the pinion gear 50, is seated on the bottom wall 17, and is restrained in the circumferential direction by the pair of peripheral walls 18.
  • the jacket 30 fitted in the recess 15 supports the shaft 53 in the radial direction so as to be rotatable.
  • the ring frame 10 transmits torque to the pinion gear 50 via the peripheral wall 18 that is in contact with the jacket 30 exclusively.
  • Each bridge portion 13 integrally couples a pair of adjacent base portions 11 so that the entire ring frame 10 has a continuous structure in the circumferential direction.
  • Each bridge portion 13 may be narrower in the axial direction than the plurality of base portions 11, and the thinned portions 14 may be formed on both sides thereof.
  • each bridge portion 13 may be thinner in the radial direction, and the thinned portion 16 may be formed on the outer periphery thereof.
  • the inner periphery may also be formed with a lightening portion. These help reduce the weight and moment of inertia of the ring frame 10.
  • a gap is held between the bridge portion 13 and the side cover 20 by the lightening portions 14 and 16 and is exposed to the outer periphery in the radial direction, but this gap allows passage of the lubricating oil and contributes to its circulation. .
  • the center surfaces of the base portion 11 and the bridge portion 13 are aligned with the axial center of the shaft 53 in the axial direction. That is, the central plane and the central axis are arranged on a single plane orthogonal to the axis X. In this way, the torque received by the ring frame 10 is transmitted only to such a surface, and no force acts in the direction of twisting the ring frame 10, so that the ring frame 10 can be made thinner. That is, this also helps to reduce the weight and moment of inertia of the ring frame 10.
  • Each pinion gear 50 includes a gear portion 51 on its head and a shaft 53 on its leg, as best shown in FIGS.
  • the top portion 55 may slightly protrude from the gear portion 51.
  • the gear part 51, the shaft 53, and the top part 55 can be made into a single body.
  • the shaft 53 is inserted into the jacket 30 and is rotatably supported, and when the shaft 53 is inserted into the recess 15 together with the jacket 30, the shaft 53 is directed in the radial direction and the gear portion (head) 51 is moved in the radial direction. Directed inward.
  • Each side gear 40 is integrally provided with a gear portion 41 that expands in a radial shape in a flange shape and a cylindrical boss portion 43 that surrounds the axis X.
  • One side gear 40 meshes with the plurality of pinion gears 50 from one side in the axial direction, and the other side gear 40 meshes from the other side.
  • each side gear 40 has a structure that is coupled to an axle, which is, for example, a spline 45 formed on the inner surface of the boss 43.
  • the boss 43 is extended inward in the axial direction so as to sufficiently overlap the top 55 of the pinion gear 50. Since the spline 45 can be engaged with the axle with a sufficient length, the boss portion 43 does not need to be extended outward in the axial direction. This is advantageous in limiting the overall axial dimension of the differential gear set.
  • the pair of side covers 20 are dimensioned to cover the pair of side gears 40 and the plurality of pinion gears 50, and each include a cylindrical portion 21 that extends in the axial direction from each end thereof.
  • the cylinder part 21 is a structure for fitting to the bearing of a carrier and being rotatably supported.
  • the side cover 20 can be so-called hollowed out, and is, for example, a plurality of through holes 27 that penetrate the side cover 20. The through hole 27 also contributes to the circulation of the lubricating oil.
  • the ring frame 10 has a plurality of bolt holes 19, and each side cover 20 also has a plurality of bolt holes 23 corresponding thereto, and the pair of side covers 20 is attached to the ring frame by bolts 25 passed through them. 10 is fixed.
  • the pair of side gears 40 and the plurality of pinion gears 50 are exclusively covered with the pair of side covers 20, and thus are prevented from falling off.
  • Each pinion gear 50 can move in both directions in the axial direction as long as each jacket 30 is limited to the side cover 20.
  • the jacket 30 is slightly shorter than the axial length of the recess 15, and therefore, play is secured in the axial direction between the jacket 30 and the side cover 20 in the recess 15.
  • each pinion gear 50 is allowed to move in the axial direction, the meshing between each pinion gear 50 and the side gear 40 is automatically aligned. This eliminates the need for precise positional adjustment of each pinion gear 50 or each side gear 40, and helps to improve the durability and quietness of each gear.
  • Each pinion gear 50 is held in place in the axial direction exclusively by meshing with the side gear 40. In the radial direction, each pinion gear 50 is restricted from moving outward by being seated on each jacket 30 or each bottom wall 17 of the ring frame 10, but there is no special means for restricting it inward. Each pinion gear 50 is held at a fixed position by the top 55 being in contact with the boss 43 of the side gear 40. That is, this embodiment does not require any means other than the side gear 40 in order to hold the pinion gear 50 in a fixed position.
  • each pinion gear 50 is restrained to some extent by each jacket 30, but the head portion does not have to be restrained by any member.
  • the shaft 53 is supported by the jacket 30 on the radially outer side, but does not need to be supported by any member at the radially inner end. Needless to say, each shaft 53 is not fixed to the ring frame 10 by pin coupling or the like.
  • the torque input to the ring frame 10 is transmitted to the plurality of pinion gears 50 fitted in the recesses 15, further transmitted to the pair of side gears 40 engaged with the pinion gears 50, and distributed to both axles.
  • the ring gear 60 is coupled to one of the cages, but there are various variations in the relationship between the two as shown in FIGS. 5A to 5C.
  • the coupling can be performed by welding, for example, or the object to be coupled and the ring gear 60 may be integrally formed.
  • mechanical coupling such as spline coupling or bolt coupling may be used.
  • Each figure shows an example in which the ring gear 60 is a spur gear or a helical gear, but a hypoid gear or another type of gear may be used instead.
  • the ring gear 60 may be coupled to the ring frame 10.
  • the rotation surface F of the ring gear 60 may be aligned with the center surface of the ring frame 10 and the axial center of the shaft 53. Since no offset occurs between the input and output of the torque T, it is not necessary to consider the stress in the torsional direction, and all related parts can be designed smaller and thinner.
  • the differential device can be symmetric.
  • the right part and the corresponding left part may be compatible with each other, which is advantageous in terms of production cost.
  • the ring gear 60 is a helical gear or a hypoid gear
  • an appropriate offset is provided in the ring gear 60 according to the thrust force or other force generated in the ring gear 60, or any member is reinforced or A structure such as a rib for stiffening may be added.
  • the side cover 20 can also be designed to be thin. These help reduce the weight and moment of inertia of the differential device.
  • the ring gear 60 may be coupled to one side cover 20.
  • an offset S occurs between the rotation surface F of the ring gear 60 and the center C of the shaft 53, which is much smaller than the offset in the prior art. Therefore, there is no need to take special measures against torsional stress, which helps to reduce the weight and moment of inertia of the differential device.
  • the ring frame 10 may be integrated with one of the pair of side covers 20, and the ring gear 60 may be coupled thereto.
  • the ring gear 60 may be coupled to the other side cover 20 that is not integral with the ring frame 10.
  • the ring gear 60 may have an offset with respect to the center of the shaft 53, but may not have an offset as shown in the figure.
  • the assembly of the differential device is remarkably easy.
  • one side of the pair of side covers 20 is placed on a work table with one side laid down, one of the pair of side gears 40 is placed together with a washer, the ring frame 10 is then placed thereon, and each jacket is then placed.
  • the pinion gear 50 inserted into 30 into the recess 15, then placing the remaining side gear 40 together with the washer, then covering the remaining side cover 20 on it, and finally fastening them with bolts .
  • the target location of the part to be assembled is open upward, and the assembly is remarkably easy.
  • any of the embodiments has the following effects. Since the ring frame having a small dimension in the axial direction supports the pinion gear without using the casing extending in a cylindrical shape in the axial direction, the entire differential device can be made small. If the differential device is small, it is possible to reduce the size of the carrier that supports the differential device and the structure on the vehicle body side such as a transmission or transfer combined therewith.
  • the space in the vehicle that has been allocated to the differential device and the carrier in the prior art can be allocated to other uses.
  • the vehicle body design provides a great degree of freedom.
  • the ring frame There is little or no stress in the direction of twisting the ring frame, so it can be made thin and small, and it can be subjected to a lot of lightening, thus reducing its weight and moment of inertia. Can be reduced. Furthermore, since little or no stress based on the torque to be transmitted is applied to the pair of side covers, they can also be made thin and small, thus reducing their weight and moment of inertia. Further, as apparent from the above, the total weight including not only the differential device but also the carrier is reduced. This also contributes to reducing the total weight of the car body. These contribute to improving the response and fuel consumption of automobiles.
  • the cage can have many through holes and gaps that penetrate therethrough, and the lubricating oil can smoothly circulate in and out of the differential device through these. That is, this embodiment is also advantageous in terms of lubrication.
  • a small, light and small moment of inertia differential device is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

A differential device for distributing torque to a pair of axles extending along an axis comprises: a ring frame (10) surrounding the shaft, the ring frame (10) receiving the torque and being provided with a plurality of recesses (15) open radially inward toward the axis; a pair of side gears (40) each rotatable about the axis, the pair of side gears (40) being provided with a structure in which the pair of side gears (40) joined to the axles in a driving manner; a plurality of pinion gears (50) each comprising a shaft (53) and a head, the head having a gear section (51), the plurality of pinion gears (50) being configured such that, in order that the pinion gears (50) may receive the torque from the ring frame (10) and transmit the torque to the pair of side gears (40), the gear sections (51) respectively mesh with the pair of side gears (40) while the shafts (53) are rotatably fitted in the recesses (15) and the heads are directed radially inward; and a pair of side covers (20) joined to the ring frame (10) and covering the pair of side gears (40) and the plurality of pinion gears (50) in order to prevent the pair of side gears (40) and the plurality of pinion gears (50) from coming out.

Description

デファレンシャル装置Differential equipment
 本発明は、自動車において、その駆動力源からトルクを一対の車軸に分配するためのデファレンシャル装置に関する。 The present invention relates to a differential apparatus for distributing torque from a driving force source to a pair of axles in an automobile.
 例えば転舵された自動車が進行するとき、左右の車輪に回転速度の差異が生じる必要がある。すなわち自動車は、一対の車軸の間で差動を許容しながら両車軸にトルクを伝えることを要する。かかる目的のために、従来からデファレンシャル装置が利用されている。 For example, when a steered car travels, there must be a difference in rotational speed between the left and right wheels. That is, the automobile needs to transmit torque to both axles while allowing a differential between the pair of axles. For this purpose, a differential apparatus has been conventionally used.
 車軸用のデファレンシャル装置には歴史的に確立された形態がある。すなわち、デファレンシャル装置は、通常、軸方向に延びる円筒状のケーシングを備え、かかるケーシングがリングギアよりトルクを受容し、ケーシング内に収容されたデファレンシャルギア組が各車軸にこのトルクを差動的に分配する。デファレンシャルギア組としては、ベベルギア式、フェースギア式、遊星ギア式等が実用的に利用されている。 There are historically established forms of differential devices for axles. That is, the differential device usually includes a cylindrical casing extending in the axial direction, the casing receives torque from the ring gear, and the differential gear set housed in the casing differentially transmits this torque to each axle. Distribute. As the differential gear set, a bevel gear type, a face gear type, a planetary gear type, or the like is practically used.
 特許文献1,2は関連する技術を開示しており、特許文献1はベベルギア式に、特許文献2はフェースギア式に関する。 Patent Documents 1 and 2 disclose related technologies. Patent Document 1 relates to a bevel gear type and Patent Document 2 relates to a face gear type.
日本国公開特許公報2013-100072号Japanese published patent publication 2013-100072 国際公開公報WO2005/040642A1International Publication WO2005 / 040642A1
 デファレンシャルギア組を構成する各ギアは、大きなトルクに耐えねばならないので、一定の大きさを必要とする。ケーシングはかかるデファレンシャルギア組の全てを収容するので、デファレンシャル装置の全体は大きくなりがちである。ケーシングはデファレンシャルギア組を強固に支持する必要があり、またケーシングに入力されたトルクはケーシングを捻る方向の応力を発生するので、十分な強度を有するべくケーシングは十分な厚さを持たねばならない。これらの要因のために、従来のデファレンシャル装置は、大きく、重くならざるを得なかった。特に、外周に位置するケーシングが厚く重いために、慣性モーメントが著しく増大し、これは自動車のレスポンスと燃費とを損なう要因だった。 The gears that make up the differential gear set must withstand a large torque, and therefore require a certain size. Since the casing accommodates all such differential gear sets, the entire differential device tends to be large. The casing needs to firmly support the differential gear set, and the torque input to the casing generates a stress in the direction of twisting the casing. Therefore, the casing must have a sufficient thickness to have sufficient strength. Because of these factors, conventional differential devices have to be large and heavy. In particular, since the casing located on the outer periphery is thick and heavy, the moment of inertia significantly increases, which is a factor that impairs the vehicle response and fuel consumption.
 本発明は、デファレンシャル装置をその基本構造から見直し、上述の問題を解決することを目的とする。 The object of the present invention is to review the differential device from its basic structure and solve the above-mentioned problems.
 本発明の一局面によれば、軸の方向に延びる一対の車軸にトルクを分配するデファレンシャル装置は、前記軸を囲み、前記軸に対して径方向に内方に開口した複数の凹所を備え、前記トルクを受容するリングフレームと、それぞれ前記軸の周りに回転可能であって、前記車軸に駆動的に結合する構造を備えた一対のサイドギアと、ギア部を有する頭部とシャフトとをそれぞれ備えた複数のピニオンギアであって、前記トルクを前記リングフレームから受容して前記一対のサイドギアに伝達するべく、前記シャフトが前記凹所に回転可能に嵌入して前記頭部を前記径方向に内方に向け、前記ギア部が前記一対のサイドギアの両方と噛み合った複数のピニオンギアと、前記リングフレームに結合し、脱落を防止するべく前記一対のサイドギアおよび前記複数のピニオンギアを覆う一対のサイドカバーと、を備える。 According to one aspect of the present invention, a differential device that distributes torque to a pair of axles that extend in the direction of the shaft includes a plurality of recesses that surround the shaft and that open radially inward with respect to the shaft. A ring frame that receives the torque, a pair of side gears each having a structure that is rotatable about the shaft and is drivingly coupled to the axle, and a head and a shaft having a gear portion, respectively. A plurality of pinion gears, wherein the shaft is rotatably fitted in the recess to receive the torque from the ring frame and transmit the torque to the pair of side gears. A plurality of pinion gears that are inwardly engaged with both of the pair of side gears and the pair of side gears to be coupled to the ring frame and to prevent falling off. Comprising a pair of side covers covering the fine said plurality of pinion gears, a.
図1は、本発明の一実施形態によるデファレンシャル装置であって、リングギアを除いた部分の斜視図である。FIG. 1 is a perspective view of a differential apparatus according to an embodiment of the present invention, excluding a ring gear. 図2は、前記デファレンシャル装置からピニオンギアを支持するジャケットおよびリングフレームのみを抽出した分解斜視図である。FIG. 2 is an exploded perspective view in which only the jacket and the ring frame that support the pinion gear are extracted from the differential device. 図3は、前記デファレンシャル装置の断面立面図であって、図4のIII-III線に対応する面から取られた断面立面図である。FIG. 3 is a sectional elevation view of the differential device, taken from a plane corresponding to the line III-III in FIG. 図4は、前記ピニオンギアおよび前記ジャケットの断面と前記リングフレームの側面とを組み合わせて見せる部分断面側面図である。FIG. 4 is a partial cross-sectional side view showing a combination of a cross-section of the pinion gear and the jacket and a side surface of the ring frame. 図5Aは、リングギアがリングフレームに結合した例による前記デファレンシャル装置の部分的な断面立面図である。FIG. 5A is a partial cross-sectional elevation view of the differential apparatus according to an example in which a ring gear is coupled to a ring frame. 図5Bは、リングギアがサイドカバーに結合した例による前記デファレンシャル装置の部分的な断面立面図である。FIG. 5B is a partial cross-sectional elevation view of the differential device according to an example in which a ring gear is coupled to a side cover. 図5Cは、一のサイドカバーが前記リングギアと一体となった例による前記デファレンシャル装置の部分的な断面立面図である。FIG. 5C is a partial cross-sectional elevation view of the differential device according to an example in which one side cover is integrated with the ring gear.
 図1ないし5Cを参照して以下に本発明の幾つかの例示的な実施形態を説明する。 Several exemplary embodiments of the present invention are described below with reference to FIGS. 1-5C.
 明細書および添付の請求の範囲を通じて、特段のことわりが無い限り、軸はデファレンシャル装置の回転軸を意味し、また周方向および径方向はかかる軸に関するものである。かかる軸は通常には車軸の回転軸とも一致する。さらに、リングの語は常識に認められた意味を越えるものではなく、従って径に対して相当程度の軸方向長さを有する円筒のごとき形状を含まない。 Throughout the description and the appended claims, unless otherwise specified, the axis refers to the rotational axis of the differential device, and the circumferential and radial directions relate to such axis. Such an axis usually coincides with the rotational axis of the axle. Furthermore, the term ring does not exceed the meaning recognized in common sense, and thus does not include shapes such as cylinders having a substantial axial length with respect to diameter.
 本実施形態によるデファレンシャル装置は、例えば自動車において駆動力源によるトルクを左右の車軸に分配する用途に使用できるが、あるいは四輪駆動車におけるセンターデファレンシャル装置や他の用途にももちろん使用できる。また言うまでもなく、リミテッドスリップデファレンシャル装置、ロックアップデファレンシャル装置、またフリーランニングデファレンシャル装置の一部として利用することもできる。 The differential device according to the present embodiment can be used, for example, in an automobile for distributing torque generated by a driving force source to left and right axles, or of course for a center differential apparatus in a four-wheel drive vehicle and other applications. Needless to say, it can also be used as part of a limited slip differential device, a lock-up differential device, or a free running differential device.
 主に図1および図3を参照するに、本実施形態によるデファレンシャル装置は、概して、リングフレーム10および一対のサイドカバー20よりなるケージと、かかるケージに収容されたデファレンシャルギア組と、よりなり、その全体はキャリアによって軸Xの周りに回転可能に支持される。デファレンシャルギア組は、一対のサイドギア40と、複数のピニオンギア50と、よりなる。図中のフェースギア式の例によれば、サイドギア40は円盤状のクラウンギアであり、ピニオンギア50は円筒ギアである。これらの歯すじは、ピニオンギア50のシャフトに平行でもよく、あるいはこれに対して非平行なヘリカルギアを利用してもよい。フェースギア式は軸方向の寸法が小さくなる点で有利であり、また各ピニオンギアにスラスト反力が生じない利点がある。あるいはこれに代えてベベルギア式でもよい。 Referring mainly to FIG. 1 and FIG. 3, the differential apparatus according to the present embodiment generally includes a cage including a ring frame 10 and a pair of side covers 20, and a differential gear set housed in the cage. The whole is rotatably supported about the axis X by a carrier. The differential gear set includes a pair of side gears 40 and a plurality of pinion gears 50. According to the face gear type example in the figure, the side gear 40 is a disc-shaped crown gear, and the pinion gear 50 is a cylindrical gear. These teeth may be parallel to the shaft of the pinion gear 50, or a helical gear that is not parallel to the shaft may be used. The face gear type is advantageous in that the dimension in the axial direction is reduced, and there is an advantage that no thrust reaction force is generated in each pinion gear. Alternatively, a bevel gear type may be used instead.
 リングフレーム10は、駆動力源によるトルクを受容し、複数のピニオンギア50に伝えるための部材である。図1~4では省略されているが、トルクを受容するためのリングギアがケージの何れかに結合する。リングギアについては後に詳述する。 The ring frame 10 is a member that receives torque from the driving force source and transmits the torque to the plurality of pinion gears 50. Although omitted in FIGS. 1-4, a ring gear for receiving torque is coupled to any of the cages. The ring gear will be described in detail later.
 図1,3に組み合わせて図2,4を参照するに、リングフレーム10は、軸Xを囲むリング状であって、それぞれピニオンギア50を支持するための複数のベース部11と、ベース部11を互いに結合する複数のブリッジ部13と、を備え、これらは一体的である。リングフレーム10は、鋳造、鋳型プレス、鍛造、あるいは他の適宜の製造方法により、一体成型することができる。製造方法に伴う強度的考慮に応じて、図に示されていないリブ等の補強または補剛構造をこれに追加することができる。 2 and 4 in combination with FIGS. 1 and 3, the ring frame 10 has a ring shape surrounding the axis X, and each includes a plurality of base portions 11 for supporting the pinion gear 50, and the base portions 11. And a plurality of bridge portions 13 that are coupled to each other. The ring frame 10 can be integrally formed by casting, mold pressing, forging, or other appropriate manufacturing method. Depending on the strength considerations associated with the manufacturing method, reinforcing or stiffening structures such as ribs not shown in the figures can be added to this.
 言うまでもなくベース部11の数はピニオンギア50の数と通常には一致し、図示の例では4であるが必ずしもこれに限られない。これらの数は、多いほど各要素が負担すべき力が小さくなり、従って各要素を小さくすることができる。これはデファレンシャル装置の小型化に有利である。一方、これらの数が少ないほど部品点数が少なくなり、コストの点で有利である。これらは好ましくは軸Xに関して軸対称に、周方向に等間隔に配置される。 Needless to say, the number of the base portions 11 normally matches the number of the pinion gears 50 and is 4 in the illustrated example, but is not limited thereto. The larger these numbers, the smaller the force that each element must bear, and therefore each element can be made smaller. This is advantageous for downsizing the differential device. On the other hand, the smaller the number, the smaller the number of parts, which is advantageous in terms of cost. They are preferably arranged symmetrically about the axis X and equally spaced in the circumferential direction.
 各ベース部11は、その略中央が径方向に外方に窪んで凹所15を成しており、すなわち各ベース部11は凹所15を画定している。各凹所15は、円筒面に囲まれた円柱形や、円錐面に囲まれた円錐形ないし切頭円錐形にすることができる。この場合にはピニオンギア50のシャフト53と直接に嵌合してこれを支持することができる。あるいは図示のごとく、底壁17と、一対の周壁18とにより囲まれた直方形ないし台形にすることができ、あるいはまた別の形状を採用することもできる。かかる場合には、後述のジャケット30を利用してピニオンギア50を支持することができる。 Each base portion 11 has a recess 15 formed in a substantially central recess in the radial direction, that is, each base portion 11 defines a recess 15. Each recess 15 can have a cylindrical shape surrounded by a cylindrical surface, or a conical shape or a truncated conical shape surrounded by a conical surface. In this case, it can be directly fitted to and supported by the shaft 53 of the pinion gear 50. Alternatively, as shown in the figure, a rectangular or trapezoidal shape surrounded by the bottom wall 17 and the pair of peripheral walls 18 can be used, or another shape can be adopted. In such a case, the pinion gear 50 can be supported using a jacket 30 described later.
 一対の周壁18は、それぞれ周方向に対して直交する平面にすることができる。これによれば、印加されたトルクが周方向から外れた分力を生まないので、正しいトルクの伝達の点で有利である。あるいは敢えて分力を生ずるべく、直交面に対して周壁18を傾けてもよい。さらにあるいは、一対の周壁18を互いに平行にしてもよい。 The pair of peripheral walls 18 can each be a plane orthogonal to the circumferential direction. According to this, since the applied torque does not generate a component force deviating from the circumferential direction, it is advantageous in terms of correct torque transmission. Or you may incline the surrounding wall 18 with respect to an orthogonal surface so that a component force may be generated dare. Further alternatively, the pair of peripheral walls 18 may be parallel to each other.
 各凹所15は、少なくとも径方向に内方に開口し、また好ましくは各凹所15は軸方向に両方向にも開口し、より好ましくはピニオンギア50(および/または後述のジャケット30)が軸方向に通過しうるように寸法づけられる。軸方向に開口していれば、ピニオンギア50を、径方向でなく、軸方向にスライドして凹所15に組み付けることができるので、組み立ての容易さの点で有利である。 Each recess 15 opens at least inward in the radial direction, and preferably each recess 15 opens in both directions in the axial direction, and more preferably the pinion gear 50 (and / or a jacket 30 described later) is the shaft. Dimensioned to pass in the direction. If the pinion gear 50 is opened in the axial direction, the pinion gear 50 can be slid in the axial direction instead of the radial direction and can be assembled in the recess 15, which is advantageous in terms of ease of assembly.
 ピニオンギア50を支持する便宜のために、ジャケット30を利用してもよい。ジャケット30は、ピニオンギア50のシャフト53と凹所15との間に介在する。ジャケット30は、図2に最もよく示されているように、凹所15に応じた外形であり、例えば略直方体または台形体であって、凹所15に嵌入することができる。凹所15の周壁18に対応する一対の周壁32も、対応して周方向に対して直交する平面、直交面に対して傾いた平面、互いに平行な平面の何れでもよい。ジャケット30は、径方向に内方に開口するレース31を備え、ピニオンギア50のシャフト53がこれに嵌入する。 For the convenience of supporting the pinion gear 50, the jacket 30 may be used. The jacket 30 is interposed between the shaft 53 of the pinion gear 50 and the recess 15. As best shown in FIG. 2, the jacket 30 has an outer shape corresponding to the recess 15, for example, a substantially rectangular parallelepiped or a trapezoid, and can be fitted into the recess 15. The pair of peripheral walls 32 corresponding to the peripheral wall 18 of the recess 15 may be any of a plane orthogonal to the circumferential direction, a plane inclined with respect to the orthogonal plane, and a plane parallel to each other. The jacket 30 includes a race 31 that opens inward in the radial direction, and a shaft 53 of the pinion gear 50 is fitted therein.
 ジャケット30は、ピニオンギア50と共に凹所15に嵌入し、底壁17に着座し、一対の周壁18により周方向に拘束される。凹所15に嵌入したジャケット30は、シャフト53を径方向に向け、回転可能に支持する。リングフレーム10は、専らジャケット30に当接した周壁18を介して、トルクをピニオンギア50に伝える。 The jacket 30 is fitted into the recess 15 together with the pinion gear 50, is seated on the bottom wall 17, and is restrained in the circumferential direction by the pair of peripheral walls 18. The jacket 30 fitted in the recess 15 supports the shaft 53 in the radial direction so as to be rotatable. The ring frame 10 transmits torque to the pinion gear 50 via the peripheral wall 18 that is in contact with the jacket 30 exclusively.
 各ブリッジ部13は、隣り合う一対のベース部11を一体的に結合し、以ってリングフレーム10の全体は周方向に連続した構造をとる。各ブリッジ部13は、複数のベース部11より軸方向に狭く、その両側に肉抜き部14を形成してもよい。あるいはこれに代えて、または加えて、各ブリッジ部13は、径方向により薄く、その外周に肉抜き部16を形成してもよい。さらにあるいは、これらに代えて、または加えて、内周も肉抜き部を形成してもよい。これらはリングフレーム10の重量および慣性モーメントを減らすことに役立つ。また肉抜き部14,16により、ブリッジ部13とサイドカバー20との間には隙間が保持されて径方向外周に露出するが、かかる隙間は潤滑油の通過を許容し、その循環に寄与する。 Each bridge portion 13 integrally couples a pair of adjacent base portions 11 so that the entire ring frame 10 has a continuous structure in the circumferential direction. Each bridge portion 13 may be narrower in the axial direction than the plurality of base portions 11, and the thinned portions 14 may be formed on both sides thereof. Alternatively, or in addition to this, each bridge portion 13 may be thinner in the radial direction, and the thinned portion 16 may be formed on the outer periphery thereof. Furthermore or alternatively, in addition to or in addition, the inner periphery may also be formed with a lightening portion. These help reduce the weight and moment of inertia of the ring frame 10. Further, a gap is held between the bridge portion 13 and the side cover 20 by the lightening portions 14 and 16 and is exposed to the outer periphery in the radial direction, but this gap allows passage of the lubricating oil and contributes to its circulation. .
 好ましくはベース部11およびブリッジ部13の(すなわちリングフレーム10の)中央面を、シャフト53の軸中心に、軸方向に一致せしめる。すなわち、これらの中央面および中心軸は、軸Xに直交する単一の面上に並ぶ。このようにすると、リングフレーム10が受容したトルクは、かかる面にのみ伝わり、リングフレーム10を捻る方向に力が作用しないので、リングフレーム10をより薄肉にすることができる。すなわち、これもリングフレーム10の重量および慣性モーメントを減らすことに役立つ。 Preferably, the center surfaces of the base portion 11 and the bridge portion 13 (that is, the ring frame 10) are aligned with the axial center of the shaft 53 in the axial direction. That is, the central plane and the central axis are arranged on a single plane orthogonal to the axis X. In this way, the torque received by the ring frame 10 is transmitted only to such a surface, and no force acts in the direction of twisting the ring frame 10, so that the ring frame 10 can be made thinner. That is, this also helps to reduce the weight and moment of inertia of the ring frame 10.
 各ピニオンギア50は、図3,4に最もよく示されているように、その頭部にギア部51と、その脚部にシャフト53とを備える。その頭頂部55はギア部51より僅かに突出していてもよい。ギア部51、シャフト53および頭頂部55は、一体の単一体にすることができる。既に述べた通り、シャフト53がジャケット30に嵌入して回転可能に支持され、ジャケット30と共に凹所15に嵌入すると、シャフト53が径方向に向けられ、ギア部(頭部)51が径方向に内方に向けられる。 Each pinion gear 50 includes a gear portion 51 on its head and a shaft 53 on its leg, as best shown in FIGS. The top portion 55 may slightly protrude from the gear portion 51. The gear part 51, the shaft 53, and the top part 55 can be made into a single body. As already described, when the shaft 53 is inserted into the jacket 30 and is rotatably supported, and when the shaft 53 is inserted into the recess 15 together with the jacket 30, the shaft 53 is directed in the radial direction and the gear portion (head) 51 is moved in the radial direction. Directed inward.
 各サイドギア40は、径方向にフランジ状に展開するギア部41と、軸Xを囲む円筒状のボス部43とを一体的に備える。一のサイドギア40は複数のピニオンギア50に、軸方向に一方から噛み合い、他のサイドギア40は他方から噛み合う。また各サイドギア40は車軸に結合する構造を備え、それは例えばボス部43の内面に形成されたスプライン45である。ボス部43はピニオンギア50の頭頂部55と十分にオーバーラップするべく、軸方向に内方に延長される。スプライン45は十分な長さをもって車軸と係合できるので、ボス部43は軸方向に外方に延長される必要がない。これは、デファレンシャルギア組の全体の軸方向の寸法を制限するに有利である。 Each side gear 40 is integrally provided with a gear portion 41 that expands in a radial shape in a flange shape and a cylindrical boss portion 43 that surrounds the axis X. One side gear 40 meshes with the plurality of pinion gears 50 from one side in the axial direction, and the other side gear 40 meshes from the other side. Further, each side gear 40 has a structure that is coupled to an axle, which is, for example, a spline 45 formed on the inner surface of the boss 43. The boss 43 is extended inward in the axial direction so as to sufficiently overlap the top 55 of the pinion gear 50. Since the spline 45 can be engaged with the axle with a sufficient length, the boss portion 43 does not need to be extended outward in the axial direction. This is advantageous in limiting the overall axial dimension of the differential gear set.
 一対のサイドカバー20は、一対のサイドギア40および複数のピニオンギア50を覆うべく寸法づけられ、また、それぞれその端部から軸方向に延長された筒部21を備える。筒部21は、キャリアのベアリングに嵌合して回転可能に支持されるための構造である。またサイドカバー20には所謂肉抜きを施すことができ、それは例えばサイドカバー20を貫通する複数の貫通孔27である。貫通孔27は、潤滑油の循環にも寄与する。 The pair of side covers 20 are dimensioned to cover the pair of side gears 40 and the plurality of pinion gears 50, and each include a cylindrical portion 21 that extends in the axial direction from each end thereof. The cylinder part 21 is a structure for fitting to the bearing of a carrier and being rotatably supported. Further, the side cover 20 can be so-called hollowed out, and is, for example, a plurality of through holes 27 that penetrate the side cover 20. The through hole 27 also contributes to the circulation of the lubricating oil.
 リングフレーム10は複数のボルト穴19を有し、各サイドカバー20もこれに対応するように複数のボルト穴23を有し、これらに通されたボルト25により、一対のサイドカバー20はリングフレーム10に固定される。一対のサイドギア40および複数のピニオンギア50は、専ら一対のサイドカバー20に覆われることにより、その脱落が防止される。 The ring frame 10 has a plurality of bolt holes 19, and each side cover 20 also has a plurality of bolt holes 23 corresponding thereto, and the pair of side covers 20 is attached to the ring frame by bolts 25 passed through them. 10 is fixed. The pair of side gears 40 and the plurality of pinion gears 50 are exclusively covered with the pair of side covers 20, and thus are prevented from falling off.
 各ピニオンギア50は、各ジャケット30がサイドカバー20に制限される範囲において、軸方向に両方向に移動することができる。かかる移動を許容するべく、ジャケット30は凹所15の軸方向の長さよりも僅かに短く、従って、凹所15の中において、ジャケット30とサイドカバー20との間に軸方向に遊びが確保される。 Each pinion gear 50 can move in both directions in the axial direction as long as each jacket 30 is limited to the side cover 20. In order to allow such movement, the jacket 30 is slightly shorter than the axial length of the recess 15, and therefore, play is secured in the axial direction between the jacket 30 and the side cover 20 in the recess 15. The
 各ピニオンギア50が軸方向に移動することが許容されているために、各ピニオンギア50とサイドギア40との噛み合いは自動的に調心される。これは、各ピニオンギア50あるいは各サイドギア40を精密に位置的に調整する必要性を無くし、また各ギアの耐久性の向上や静粛性の向上に役立つ。 Since each pinion gear 50 is allowed to move in the axial direction, the meshing between each pinion gear 50 and the side gear 40 is automatically aligned. This eliminates the need for precise positional adjustment of each pinion gear 50 or each side gear 40, and helps to improve the durability and quietness of each gear.
 各ピニオンギア50は、軸方向には専らサイドギア40との噛み合いにより定位置に保持される。径方向には、各ジャケット30あるいはリングフレーム10の各底壁17に着座することにより各ピニオンギア50は外方に移動が制限されるが、内方に制限する特段の手段がない。その頭頂部55がサイドギア40のボス部43上に接することにより、各ピニオンギア50は定位置に保持される。すなわち本実施形態は、ピニオンギア50を定位置に保持するために、サイドギア40以外の他の手段を要しない。 Each pinion gear 50 is held in place in the axial direction exclusively by meshing with the side gear 40. In the radial direction, each pinion gear 50 is restricted from moving outward by being seated on each jacket 30 or each bottom wall 17 of the ring frame 10, but there is no special means for restricting it inward. Each pinion gear 50 is held at a fixed position by the top 55 being in contact with the boss 43 of the side gear 40. That is, this embodiment does not require any means other than the side gear 40 in order to hold the pinion gear 50 in a fixed position.
 各ピニオンギア50の脚部は各ジャケット30により、ある程度拘束されるが、頭部はいかなる部材にも拘束されなくてよい。またシャフト53は径方向に外方の側においてジャケット30に支持されるが、径方向に内方の端において何れの部材にも支持されることを要しない。言うまでもなく、各シャフト53がピン結合等によってリングフレーム10に固定されるわけではない。 The leg portion of each pinion gear 50 is restrained to some extent by each jacket 30, but the head portion does not have to be restrained by any member. The shaft 53 is supported by the jacket 30 on the radially outer side, but does not need to be supported by any member at the radially inner end. Needless to say, each shaft 53 is not fixed to the ring frame 10 by pin coupling or the like.
 以上のごとき組み合わせにより、リングフレーム10に入力されたトルクは、その凹所15に嵌入した複数のピニオンギア50に伝達され、さらにこれに噛み合った一対のサイドギア40に伝達され、両車軸へ分配される。ピニオンギア50とサイドギア40とはデファレンシャルギア組を構成するので、両車軸の間に差動が許容される。 With the combination as described above, the torque input to the ring frame 10 is transmitted to the plurality of pinion gears 50 fitted in the recesses 15, further transmitted to the pair of side gears 40 engaged with the pinion gears 50, and distributed to both axles. The Since the pinion gear 50 and the side gear 40 constitute a differential gear set, a differential is allowed between the two axles.
 リングフレーム10にトルクを入力するべく、リングギア60がケージの何れかに結合するが、図5Aないし図5Cにその幾つかの例を示すごとく、両者の関係には種々のバリエーションがありうる。何れの場合も、結合は例えば溶接によることができるし、あるいは結合する対象とリングギア60とが一体成型されていてもよい。あるいはスプライン結合やボルト結合のごとき機械的な結合を利用してもよい。各図はリングギア60が平歯車ないしヘリカルギアである例を示すが、これに代えてハイポイドギアやその他の形式のギアであってもよい。 In order to input torque to the ring frame 10, the ring gear 60 is coupled to one of the cages, but there are various variations in the relationship between the two as shown in FIGS. 5A to 5C. In any case, the coupling can be performed by welding, for example, or the object to be coupled and the ring gear 60 may be integrally formed. Alternatively, mechanical coupling such as spline coupling or bolt coupling may be used. Each figure shows an example in which the ring gear 60 is a spur gear or a helical gear, but a hypoid gear or another type of gear may be used instead.
 図5Aを参照するに、リングギア60はリングフレーム10に結合していてもよい。この場合において、特にリングギア60が平歯車である場合に、リングギア60の回転面Fと、リングフレーム10の中央面およびシャフト53の軸中心とを一致せしめてもよい。トルクTの入力と出力との間にオフセットが生じないので、捩じれ方向の応力を考慮する必要がなく、関連する全ての部品をより小さく薄く設計することができる。 Referring to FIG. 5A, the ring gear 60 may be coupled to the ring frame 10. In this case, particularly when the ring gear 60 is a spur gear, the rotation surface F of the ring gear 60 may be aligned with the center surface of the ring frame 10 and the axial center of the shaft 53. Since no offset occurs between the input and output of the torque T, it is not necessary to consider the stress in the torsional direction, and all related parts can be designed smaller and thinner.
 この例では、デファレンシャル装置を左右対称にすることができる。右側の部品と、対応する左側の部品とが互いに互換であってもよいので、生産コストの点で有利である。 In this example, the differential device can be symmetric. The right part and the corresponding left part may be compatible with each other, which is advantageous in terms of production cost.
 あるいは、特にリングギア60がヘリカルギアやハイポイドギアである場合に、リングギア60に生ずるスラスト力やその他の力に応じて、リングギア60に適宜のオフセットを設けたり、あるいは何れかの部材に補強あるいは補剛のためのリブ等の構造を追加してもよい。 Alternatively, particularly when the ring gear 60 is a helical gear or a hypoid gear, an appropriate offset is provided in the ring gear 60 according to the thrust force or other force generated in the ring gear 60, or any member is reinforced or A structure such as a rib for stiffening may be added.
 また図5Aの例では、トルクがサイドカバー20に印加されないので、サイドカバー20も薄く設計することができる。これらは、デファレンシャル装置の重量および慣性モーメントを減らすことに役立つ。 Further, in the example of FIG. 5A, since no torque is applied to the side cover 20, the side cover 20 can also be designed to be thin. These help reduce the weight and moment of inertia of the differential device.
 あるいは図5Bを参照するに、リングギア60は一方のサイドカバー20に結合していてもよい。この例ではリングギア60の回転面Fとシャフト53の中心Cとの間にオフセットSが生じるが、これは従来技術におけるオフセットに比べればはるかに小さい。従って捩じれ方向の応力に特段の対策をする必要がなく、これはデファレンシャル装置の重量および慣性モーメントを減らすことに役立つ。 Alternatively, referring to FIG. 5B, the ring gear 60 may be coupled to one side cover 20. In this example, an offset S occurs between the rotation surface F of the ring gear 60 and the center C of the shaft 53, which is much smaller than the offset in the prior art. Therefore, there is no need to take special measures against torsional stress, which helps to reduce the weight and moment of inertia of the differential device.
 さらにあるいは図5Cを参照するに、リングフレーム10は一対のサイドカバー20の一方に一体であってもよく、リングギア60はこれに結合されていてもよい。あるいは、リングフレーム10と一体ではない他方のサイドカバー20にリングギア60が結合されていてもよい。いずれの場合においても、リングギア60はシャフト53の中心に対してオフセットを有してもよいが、図示のごとくオフセットを持たなくてもよい。 Further or referring to FIG. 5C, the ring frame 10 may be integrated with one of the pair of side covers 20, and the ring gear 60 may be coupled thereto. Alternatively, the ring gear 60 may be coupled to the other side cover 20 that is not integral with the ring frame 10. In any case, the ring gear 60 may have an offset with respect to the center of the shaft 53, but may not have an offset as shown in the figure.
 上述の何れの実施形態によっても、デファレンシャル装置の組み立ては著しく容易である。例えば組み立ては、一対のサイドカバー20の一方を横に倒した状態で作業台に据え置き、一対のサイドギア40の一方をワッシャと共にその中に据え置き、次いでリングフレーム10をその上に据え置き、次いでそれぞれジャケット30に挿入したピニオンギア50を凹所15に嵌入せしめ、次いで残りのサイドギア40をワッシャと共にその上に据え置き、次いで残りのサイドカバー20をその上に被せ、最後にボルトでこれらを締結することによる。何れの段階においても、組み込もうとする部品の目標箇所は上に向かって開放されており、組み込みは著しく容易である。 In any of the above-described embodiments, the assembly of the differential device is remarkably easy. For example, in assembling, one side of the pair of side covers 20 is placed on a work table with one side laid down, one of the pair of side gears 40 is placed together with a washer, the ring frame 10 is then placed thereon, and each jacket is then placed. By inserting the pinion gear 50 inserted into 30 into the recess 15, then placing the remaining side gear 40 together with the washer, then covering the remaining side cover 20 on it, and finally fastening them with bolts . At any stage, the target location of the part to be assembled is open upward, and the assembly is remarkably easy.
 従来技術においては、例えばピニオンギアを組み込む際には、狭いケーシング内の奥深くにピニオンギアを組み込みながら、そのシャフトホールをケーシングの穴と位置合わせしつつ外部からシャフトを挿入することが必要である。そのような困難な工程は本実施形態には存在しない。 In the prior art, for example, when a pinion gear is incorporated, it is necessary to insert the shaft from the outside while aligning the shaft hole with the hole of the casing while incorporating the pinion gear deep inside the narrow casing. Such a difficult process does not exist in this embodiment.
 何れの実施形態も次のような効果を奏する。軸方向に円筒状に延びたケーシングによらずに、軸方向に小寸法なリングフレームがピニオンギアを支持するので、デファレンシャル装置の全体を小さくすることができる。デファレンシャル装置が小さければ、これを支持するキャリアや、これと組み合わされるトランスミッションあるいはトランスファ等の車体側の構造をも小さくすることができる。 Any of the embodiments has the following effects. Since the ring frame having a small dimension in the axial direction supports the pinion gear without using the casing extending in a cylindrical shape in the axial direction, the entire differential device can be made small. If the differential device is small, it is possible to reduce the size of the carrier that supports the differential device and the structure on the vehicle body side such as a transmission or transfer combined therewith.
 さらに、従来技術においてデファレンシャル装置およびキャリアに振り向けられていた車内のスペースを他の用途に振り向けることができる。すなわち、車体の設計により大きな自由度を提供する。 Furthermore, the space in the vehicle that has been allocated to the differential device and the carrier in the prior art can be allocated to other uses. In other words, the vehicle body design provides a great degree of freedom.
 リングフレームには、これを捻る方向の応力が、殆ど、あるいは全く生じないので、これを薄く小さくすることができ、またこれに多くの肉抜きを施すことができ、従ってその重量および慣性モーメントを減らすことができる。さらに伝達するトルクに基づく応力は、一対のサイドカバーには殆ど、あるいは全く印加されないので、これらも薄く小さくすることができ、従ってその重量および慣性モーメントを減らすことができる。また上述より明らかなように、デファレンシャル装置のみならずキャリアも含めた総重量が軽減される。これは車体の総重量の軽減にも寄与する。これらは自動車のレスポンスと燃費の改善に寄与する。 There is little or no stress in the direction of twisting the ring frame, so it can be made thin and small, and it can be subjected to a lot of lightening, thus reducing its weight and moment of inertia. Can be reduced. Furthermore, since little or no stress based on the torque to be transmitted is applied to the pair of side covers, they can also be made thin and small, thus reducing their weight and moment of inertia. Further, as apparent from the above, the total weight including not only the differential device but also the carrier is reduced. This also contributes to reducing the total weight of the car body. These contribute to improving the response and fuel consumption of automobiles.
 またケージは貫通した多くの肉抜き孔や隙間を有することができ、潤滑油はこれらを通ってデファレンシャル装置の内外に円滑に循環することができる。すなわち本実施形態は潤滑の点でも有利である。 Also, the cage can have many through holes and gaps that penetrate therethrough, and the lubricating oil can smoothly circulate in and out of the differential device through these. That is, this embodiment is also advantageous in terms of lubrication.
 好適な実施形態により本発明を説明したが、本発明は上記実施形態に限定されるものではない。上記開示内容に基づき、当該技術分野の通常の技術を有する者が、実施形態の修正ないし変形により本発明を実施することが可能である。 Although the present invention has been described with reference to preferred embodiments, the present invention is not limited to the above embodiments. Based on the above disclosure, a person having ordinary skill in the art can implement the present invention by modifying or modifying the embodiment.
 小型、軽量かつ小慣性モーメントのデファレンシャル装置が提供される。 A small, light and small moment of inertia differential device is provided.

Claims (11)

  1.  軸の方向に延びる一対の車軸にトルクを分配するデファレンシャル装置であって、
     前記軸を囲み、前記軸に対して径方向に内方に開口した複数の凹所を備え、前記トルクを受容するリングフレームと、
     それぞれ前記軸の周りに回転可能であって、前記車軸に駆動的に結合する構造を備えた一対のサイドギアと、
     ギア部を有する頭部とシャフトとをそれぞれ備えた複数のピニオンギアであって、前記トルクを前記リングフレームから受容して前記一対のサイドギアに伝達するべく、前記シャフトが前記凹所に回転可能に嵌入して前記頭部を前記径方向に内方に向け、前記ギア部が前記一対のサイドギアの両方と噛み合った複数のピニオンギアと、
     前記リングフレームに結合し、脱落を防止するべく前記一対のサイドギアおよび前記複数のピニオンギアを覆う一対のサイドカバーと、
     を備えたデファレンシャル装置。
    A differential device that distributes torque to a pair of axles extending in a shaft direction,
    A ring frame that surrounds the shaft and includes a plurality of recesses that are radially inwardly open with respect to the shaft and receive the torque;
    A pair of side gears each capable of rotating about the shaft and having a structure for drivingly coupling to the axle;
    A plurality of pinion gears each having a head portion having a gear portion and a shaft, wherein the shaft is rotatable in the recess so as to receive the torque from the ring frame and transmit the torque to the pair of side gears. A plurality of pinion gears that are fitted and faced inward in the radial direction, and the gear portion meshes with both of the pair of side gears;
    A pair of side covers that are coupled to the ring frame and cover the pair of side gears and the plurality of pinion gears to prevent falling off;
    A differential device with
  2.  請求項1のデファレンシャル装置であって、前記ピニオンギアの前記頭部は前記サイドギア以外の部材に拘束されない、デファレンシャル装置。 The differential device according to claim 1, wherein the head portion of the pinion gear is not restrained by a member other than the side gear.
  3.  請求項1のデファレンシャル装置であって、前記シャフトは、それぞれ、前記凹所により前記軸に対して周方向および前記径方向に外方に移動が制限され、前記軸の方向に両方向に移動しうる、デファレンシャル装置。 2. The differential device according to claim 1, wherein each of the shafts is restricted to move outwardly in a circumferential direction and a radial direction with respect to the shaft by the recess, and can move in both directions in the direction of the shaft. , Differential equipment.
  4.  請求項3のデファレンシャル装置であって、前記凹所は、前記シャフトが前記軸の方向に通過することを許容するべく、前記軸の方向にも開口している、デファレンシャル装置。 4. The differential device according to claim 3, wherein the recess is also opened in the direction of the shaft so as to allow the shaft to pass in the direction of the shaft.
  5.  請求項3のデファレンシャル装置であって、
     それぞれ前記シャフトと前記凹所との間に介在し、前記シャフトを回転可能に前記径方向に向けて支持するジャケットをさらに備え、
     前記凹所は、前記周方向に前記ジャケットに当接し、前記軸の方向に前記ジャケットに当接しないように寸法づけられている、デファレンシャル装置。
    The differential device according to claim 3, comprising:
    Each further comprising a jacket interposed between the shaft and the recess and rotatably supporting the shaft in the radial direction;
    The differential device, wherein the recess is dimensioned to abut against the jacket in the circumferential direction and not abut against the jacket in the axial direction.
  6.  請求項5のデファレンシャル装置であって、前記ジャケットは、前記凹所の中において前記サイドカバーとの間に前記軸の方向に遊びを有するべく寸法づけられている、デファレンシャル装置。 6. The differential device of claim 5, wherein the jacket is dimensioned to have play in the axial direction between the jacket and the side cover in the recess.
  7.  請求項1乃至6の何れか1項のデファレンシャル装置であって、前記リングフレームは、前記凹所を画定し前記一対のサイドカバーにそれぞれ当接する複数のベース部と、前記複数のベース部を互いに結合し前記ベース部より前記軸の方向に狭い或いは前記径方向に薄い複数のブリッジ部と、を備えた、デファレンシャル装置。 7. The differential device according to claim 1, wherein the ring frame includes a plurality of base portions that define the recess and abut against the pair of side covers, and the plurality of base portions. And a plurality of bridge portions that are coupled and narrower in the axial direction than the base portion or thinner in the radial direction.
  8.  請求項1のデファレンシャル装置であって、前記リングフレームは、前記一対のサイドカバーより選択された何れか一と一体である、デファレンシャル装置。 The differential apparatus according to claim 1, wherein the ring frame is integral with any one selected from the pair of side covers.
  9.  請求項1のデファレンシャル装置であって、
     前記リングフレームと一体であるリングギアをさらに備えた、デファレンシャル装置。
    The differential device of claim 1, comprising:
    A differential device further comprising a ring gear integral with the ring frame.
  10.  請求項1のデファレンシャル装置であって、前記リングフレームは軸方向にその中央面に対して面対称である、デファレンシャル装置。 2. The differential apparatus according to claim 1, wherein the ring frame is symmetrical with respect to the center plane in the axial direction.
  11.  請求項1のデファレンシャル装置であって、前記一対のサイドカバーは軸方向に前記リングフレームの中央面に対して面対称である、デファレンシャル装置。 2. The differential apparatus according to claim 1, wherein the pair of side covers are symmetrical with respect to the center plane of the ring frame in the axial direction.
PCT/JP2014/077149 2014-10-10 2014-10-10 Differential device WO2016056114A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/077149 WO2016056114A1 (en) 2014-10-10 2014-10-10 Differential device
JP2016552778A JP6306728B2 (en) 2014-10-10 2014-10-10 Differential device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077149 WO2016056114A1 (en) 2014-10-10 2014-10-10 Differential device

Publications (1)

Publication Number Publication Date
WO2016056114A1 true WO2016056114A1 (en) 2016-04-14

Family

ID=55652770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077149 WO2016056114A1 (en) 2014-10-10 2014-10-10 Differential device

Country Status (2)

Country Link
JP (1) JP6306728B2 (en)
WO (1) WO2016056114A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1445864A (en) * 1921-06-29 1923-02-20 Timken Axle Co Detroit Differential construction
JPS6276727U (en) * 1985-10-30 1987-05-16
US5980416A (en) * 1997-08-06 1999-11-09 Sven B. Gafvert Differential for a vehicle
JP2005106196A (en) * 2003-09-30 2005-04-21 Musashi Seimitsu Ind Co Ltd Differential gear
US20100056320A1 (en) * 2008-09-04 2010-03-04 Ziech James F Spider-less vehicle differential

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164124A (en) * 2006-12-28 2008-07-17 Gkn ドライブライン トルクテクノロジー株式会社 Differential gear

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1445864A (en) * 1921-06-29 1923-02-20 Timken Axle Co Detroit Differential construction
JPS6276727U (en) * 1985-10-30 1987-05-16
US5980416A (en) * 1997-08-06 1999-11-09 Sven B. Gafvert Differential for a vehicle
JP2005106196A (en) * 2003-09-30 2005-04-21 Musashi Seimitsu Ind Co Ltd Differential gear
US20100056320A1 (en) * 2008-09-04 2010-03-04 Ziech James F Spider-less vehicle differential

Also Published As

Publication number Publication date
JP6306728B2 (en) 2018-04-04
JPWO2016056114A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
US9797495B2 (en) Clutch and differential device with same
EP3135958B1 (en) Power transmission apparatus
EP3144561B1 (en) Bogie axle assembly
JP2005231564A (en) Electric wheel driving device
US8043188B2 (en) Spider-less vehicle differential
JP2008265517A (en) Vehicular power transmission device
CN109421432B (en) Axle assembly with drive pinion assembly
CN109070729B (en) In-wheel motor drive device
JP6168236B2 (en) Final drive device
CN102123881A (en) Final drive for a work machine
US20180128361A1 (en) Axle Assembly with Interaxle Differential Support
JP6487664B2 (en) Differential
JP2016080152A5 (en)
CN107304802B (en) Differential gear
JP6306728B2 (en) Differential device
JP2016136054A (en) Planetary gear device
US20180128362A1 (en) Axle Assembly and Differential Assembly with Spider Shaft Retention
JP5466925B2 (en) Case structure of final reduction gear for vehicle
US20190346025A1 (en) Transmission for a Motor Vehicle
JP5187170B2 (en) Torque limiter and driving force transmission device
EP3847046B1 (en) Wheel hub arrangement for a driving wheel of a vehicle
EP3922881A1 (en) Power transmission device
JP6587892B2 (en) Differential
JP4553582B2 (en) Case structure
JP2003294109A (en) Differential limiting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552778

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903674

Country of ref document: EP

Kind code of ref document: A1