WO2016054821A1 - 上行业务传输方法、装置及无线局域网的接入点 - Google Patents

上行业务传输方法、装置及无线局域网的接入点 Download PDF

Info

Publication number
WO2016054821A1
WO2016054821A1 PCT/CN2014/088394 CN2014088394W WO2016054821A1 WO 2016054821 A1 WO2016054821 A1 WO 2016054821A1 CN 2014088394 W CN2014088394 W CN 2014088394W WO 2016054821 A1 WO2016054821 A1 WO 2016054821A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource blocks
access point
pilot
data subcarriers
pilots
Prior art date
Application number
PCT/CN2014/088394
Other languages
English (en)
French (fr)
Inventor
颜敏
薛鑫
刘乐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480082600.5A priority Critical patent/CN106797568B/zh
Priority to EP14903571.9A priority patent/EP3197196B1/en
Priority to PCT/CN2014/088394 priority patent/WO2016054821A1/zh
Publication of WO2016054821A1 publication Critical patent/WO2016054821A1/zh
Priority to US15/483,811 priority patent/US10219258B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an uplink service transmission method and apparatus for an OFDMA system and an access point of a wireless local area network.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the OFDMA system divides the transmission bandwidth into orthogonal sets of subcarriers that do not overlap each other, and allocates different subcarrier sets to different users to implement multiple access.
  • the current IEEE 802.11ac standard for wireless LAN standards cannot meet the user's requirements for data transmission rates.
  • the UL-DMA (Up-Link Orthogonal Frequency Division Multiple Access) mechanism was introduced for the first time in a wireless communication system to increase the number of users whose bandwidth can be simultaneously transmitted.
  • the protocol of the wireless communication standard IEEE802.11ac is greatly changed. Therefore, the pilot structure and the subcarrier allocation scheme of the existing spectrum need to be redesigned.
  • the problem of subcarrier and pilot allocation for example, how many data subcarriers need to be allocated for one resource block (RB), how to set the pilot structure of each RB, and the bandwidth can simultaneously access several users, each How to allocate resource blocks for users, and so on.
  • An embodiment of the present invention provides an uplink service transmission method and apparatus, and an access point of a wireless local area network, so as to solve the problem that the wireless communication system in the prior art cannot be applied to a high-density application scenario.
  • the present invention provides an uplink service transmission method, which is applied to an orthogonal frequency division multiple access (OFDMA) system, where the method includes:
  • the access point of the WLAN accesses the entire access point according to the number of sites accessing the access point Channels are divided into multiple resource blocks;
  • the access point allocates a resource block for transmitting uplink information to each of the stations according to channel estimation information of the station;
  • the access point sends channel allocation indication information to each of the stations, where the channel allocation indication information is used to indicate information of resource blocks allocated for each of the stations.
  • the access point of the WLAN divides the entire channel where the access point is located according to the number of sites accessing the access point.
  • Multiple resource blocks including:
  • the access point allocates the data subcarriers evenly to each of the resource blocks according to the number of the resource blocks and the number of data subcarriers in the entire channel where the access point is located, where the The number of data subcarriers included in the 256 subcarriers included in the 20 MHz channel of the ingress includes 192, 208 or other preset numbers;
  • the access point allocates pilots for each of the resource blocks, and at least 12 data subcarriers are spaced between adjacent two pilots.
  • the access point determines, according to the number of the sites, resources in the entire channel where the access point is located
  • the number of blocks includes:
  • the number of resource blocks in the entire channel where the access point is located is 8 or 16;
  • the number of resource blocks in the entire channel where the access point is located is four, eight, or sixteen;
  • the number of resource blocks in the entire channel where the access point is located is two, four, eight, or sixteen.
  • the access point allocates pilots for each of the resource blocks, including:
  • the access point is configured according to the quantity of the resource block and the entire channel where the access point is located The number of data subcarriers, the data subcarriers are evenly distributed to each resource block, including:
  • each 20 MHz bandwidth channel contains 192 data subcarriers
  • each resource block is allocated 12 adjacent data subcarriers
  • each resource block is allocated 24 adjacent data subcarriers
  • when the number of resource blocks is 4, 48 adjacent data subcarriers are allocated for each resource block
  • when the number of resource blocks is 2 , allocating 96 adjacent data subcarriers for each resource block;
  • each 20 MHz bandwidth channel contains 208 data subcarriers
  • each resource block is allocated 13 adjacent data subcarriers; when the number of resource blocks is 8, Allocating 26 adjacent data subcarriers for each resource block; when the number of resource blocks is 4, allocate 52 adjacent data subcarriers for each resource block; when the number of resource blocks is 2,
  • Each resource block is assigned 104 adjacent data subcarriers.
  • the access point allocates a pilot for each of the resource blocks, and two adjacent pilots At least 12 data subcarriers are spaced apart, including:
  • the access point configures a pilot in the middle of the resource block, and 6 data subcarriers are respectively disposed on two sides of the pilot;
  • the access point configures a first pilot and a second pilot, and is disposed between the first pilot and the second pilot 12 data subcarriers, wherein the first pilot is disposed with 6 data subcarriers away from the side of the second pilot, and 6 of the second pilot is disposed away from the first pilot.
  • the access point configures a third pilot and a fourth pilot, and is disposed between the third pilot and the fourth pilot 12 data subcarriers, wherein the third pilot is disposed with 7 data subcarriers away from the side of the fourth pilot, and 7 of the fourth pilot is located away from the third pilot. Data subcarrier.
  • the accessing, by the access point, the resource block for transmitting the uplink information to each of the stations includes:
  • the access point allocates the target number of resource blocks for each of the stations.
  • the access point determines, according to the signal to noise ratio of the station, the number of pilots required by the station to transmit uplink information, including:
  • the access point determines that each station transmits data requiring at least 4 pilots;
  • the access point determines that each station transmits data requiring at least 2 pilots.
  • the access point according to the number of pilots required by each of the stations, and the pilot included in the resource block Quantity, determine the target number of resource blocks required for each site, including:
  • the total number of pilots included in the resource blocks allocated for each station is not less than the number of pilots required for the station to transmit data, and the total number of resource blocks allocated for all stations simultaneously accessing the channel is equal to the channel The total number of resource blocks included.
  • the present invention provides an access point of a wireless local area network, which is applied to an orthogonal frequency division multiple access (OFDMA) system, where the access point includes: a processor, and a transmitter connected to the processor ;
  • OFDMA orthogonal frequency division multiple access
  • the processor is configured to divide the entire channel where the access point is located into multiple resource blocks according to the number of sites accessing the access point; and, for estimating channel information according to each of the stations Allocating resource blocks for transmitting uplink information to each of the stations;
  • the transmitter is configured to send channel allocation indication information to each of the stations, where the channel allocation indication information is used to indicate information of resource blocks allocated for each of the stations, so that each of the stations uses its own corresponding Resource blocks run in parallel.
  • the processor is specifically configured to:
  • the number of data subcarriers in the 256 subcarriers included in the channel includes 192, 208 or other preset numbers;
  • a pilot is allocated for each of the resource blocks, and at least 12 data subcarriers are spaced between adjacent two pilots.
  • the processor is configured to determine, according to the number of sites, a resource block in an entire channel where the access point is located Quantity When specifically used to:
  • the number of resource blocks in the entire channel where the access point is located is 8 or 16;
  • the number of resource blocks in the entire channel where the access point is located is 4, 8, or 16;
  • the number of resource blocks in the entire channel where the access point is located is two, four, eight, or sixteen.
  • the processor is configured to allocate pilots for each of the resource blocks, specifically to:
  • the processor is configured to use, according to the number of the resource blocks, the entire channel in which the access point is located The number of data subcarriers is evenly distributed to each resource block, specifically for:
  • each 20 MHz bandwidth channel contains 192 data subcarriers
  • each resource block is allocated 12 adjacent data subcarriers
  • each resource block is allocated 24 adjacent data subcarriers
  • when the number of resource blocks is 4, 48 adjacent data subcarriers are allocated for each resource block
  • when the number of resource blocks is 2 , allocating 96 adjacent data subcarriers for each resource block;
  • each 20 MHz bandwidth channel contains 208 data subcarriers
  • each resource block is allocated 13 adjacent data subcarriers; when the number of resource blocks is 8, Allocating 26 adjacent data subcarriers for each resource block; when the number of resource blocks is 4, allocate 52 adjacent data subcarriers for each resource block; when the number of resource blocks is 2,
  • Each resource block is assigned 104 adjacent data subcarriers.
  • the processor is configured to allocate a pilot for each of the resource blocks, and two adjacent pilots At least 12 data subcarriers are separated between each other, specifically for:
  • each of the resource blocks includes 12 data subcarriers
  • the pilot is configured in the middle of the resource block, and 6 data subcarriers are respectively disposed on both sides of the pilot;
  • each of the resource blocks includes 24 data subcarriers, configuring a first pilot and a second pilot, and setting 12 data subcarriers between the first pilot and the second pilot a side of the first pilot that is away from the second pilot is configured with six data subcarriers, and a side of the second pilot that is far from the first pilot is configured with six data subcarriers.
  • each of the resource blocks includes 26 data subcarriers
  • configure a third pilot and a fourth pilot and set 12 data subcarriers between the third pilot and the fourth pilot
  • the side of the third pilot that is far from the fourth pilot is provided with seven data subcarriers
  • the fourth pilot is provided with seven data subcarriers away from the side of the third pilot.
  • the processor is configured to allocate a resource block for transmitting uplink information to each of the stations according to channel estimation information of each of the sites, specifically, to:
  • the target number of resource blocks are allocated for each of the sites.
  • the processor is configured to determine, according to a signal to noise ratio of the station, a pilot required to transmit uplink information by the station Quantity, specifically for:
  • the processor is configured to use, according to the number of pilots required by each of the stations, and the pilot included in the resource block Quantity, determine the target number of resource blocks required by each site, specifically for:
  • the total number of pilots included in the resource blocks allocated for each station is not less than the number of pilots required for the station to transmit data, and the total number of resource blocks allocated for all stations simultaneously accessing the channel is equal to the channel The total number of resource blocks included.
  • the present invention provides an uplink service transmission apparatus, which is applied to an orthogonal frequency division multiple access (OFDMA) system, where the apparatus includes:
  • a resource block dividing unit configured to divide the entire channel where the access point is located into multiple resource blocks according to the number of sites accessing the access point;
  • a resource block allocation unit configured to allocate a transmission to each of the stations according to channel estimation information of each of the stations a resource block for transmitting uplink information
  • a sending unit configured to send channel allocation indication information to each of the stations, where the channel allocation indication information is used to indicate information of resource blocks allocated for each of the stations, so that each of the stations utilizes a resource block corresponding to the same Run in parallel.
  • the resource block dividing unit includes:
  • a resource block quantity determining subunit configured to determine, according to the number of the stations, a quantity of resource blocks in an entire channel where the access point is located;
  • a data subcarrier allocation subunit configured to evenly allocate the data subcarriers into each of the resource blocks according to the number of the resource blocks and the number of data subcarriers in the entire channel where the access point is located, where The number of data subcarriers in the 256 subcarriers included in the 20 MHz channel where the access point is located includes 192, 208, or other preset numbers;
  • pilot allocation subunit configured to allocate pilots for each of the resource blocks, and at least 12 data subcarriers are spaced between adjacent two pilots.
  • the resource block quantity determining subunit is specifically configured to:
  • the number of resource blocks in the entire channel where the access point is located is 8 or 16;
  • the number of resource blocks in the entire channel where the access point is located is four, eight, or sixteen;
  • the number of resource blocks in the entire channel where the access point is located is two, four, eight, or sixteen.
  • the pilot allocation subunit is specifically configured to:
  • the data subcarrier allocation subunit is specifically configured to:
  • each 20MHz bandwidth channel contains 192 data subcarriers
  • the number of resource blocks is 16 For each resource block, allocate 12 adjacent data subcarriers; when the number of resource blocks is 8, allocate 24 adjacent data subcarriers for each resource block; when the number of resource blocks is 4 For each resource block, allocate 48 adjacent data subcarriers; when the number of resource blocks is 2, allocate 96 adjacent data subcarriers for each resource block;
  • each 20 MHz bandwidth channel contains 208 data subcarriers
  • each resource block is allocated 13 adjacent data subcarriers; when the number of resource blocks is 8, Allocating 26 adjacent data subcarriers for each resource block; when the number of resource blocks is 4, allocate 52 adjacent data subcarriers for each resource block; when the number of resource blocks is 2,
  • Each resource block is assigned 104 adjacent data subcarriers.
  • the pilot allocation subunit is specifically configured to:
  • the access point configures a pilot in the middle of the resource block, and 6 data subcarriers are respectively disposed on two sides of the pilot;
  • the access point configures a first pilot and a second pilot, and is disposed between the first pilot and the second pilot 12 data subcarriers, wherein the first pilot is disposed with 6 data subcarriers away from the side of the second pilot, and 6 of the second pilot is disposed away from the first pilot.
  • the access point configures a third pilot and a fourth pilot, and is disposed between the third pilot and the fourth pilot 12 data subcarriers, wherein the third pilot is disposed with 7 data subcarriers away from the side of the fourth pilot, and 7 of the fourth pilot is located away from the third pilot. Data subcarrier.
  • the resource block allocation unit includes:
  • a first determining subunit configured to determine, according to a signal to noise ratio of the station, a quantity of pilots required by the station to transmit uplink information
  • a second determining subunit configured to determine, according to the number of pilots required by each of the stations and the number of pilots included in the resource block, a target number of resource blocks required by each station;
  • An allocation subunit is configured to allocate the target number of resource blocks for each of the stations.
  • the first determining subunit is specifically configured to:
  • the access point determines that each station needs to transmit data at least 4 pilots;
  • the access point determines that each station transmits data requiring at least 2 pilots.
  • the second determining subunit is specifically configured to:
  • the total number of pilots included in the resource blocks allocated for each station is not less than the number of pilots required for the station to transmit data, and the total number of resource blocks allocated for all stations simultaneously accessing the channel is equal to the channel The total number of resource blocks included.
  • the access point divides the resource blocks of the entire channel according to the number of stations accessing the network, and then allocates the sites according to the channel estimation information of each station. a resource block for transmitting uplink information, and sending channel allocation indication information to each station, so that each station finds its own corresponding resource block according to the channel allocation indication information, and uses the resource block to transmit uplink information, thereby
  • multi-site parallel transmission of uplink information is realized, that is, divided resource blocks can be applied to multiple sites at the same time.
  • the uplink service transmission method determines the parameter of the resource block of the channel according to the number of different sites, that is, the finally configured resource block can be applied to multiple sites at the same time, so that multiple sites simultaneously transmit uplink information, and the channel is improved.
  • FIG. 1 is a schematic flowchart diagram of an uplink service transmission method according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of the method of step S110 shown in FIG. 1 according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of allocation of subcarriers and pilots of a resource block according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing allocation of subcarriers and pilots of another resource block according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a spectrum structure of a 20 MHz bandwidth according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing another spectrum structure of a 20 MHz bandwidth according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a spectrum structure of another 20 MHz bandwidth according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a message format of channel allocation indication information according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing an uplink service transmission apparatus according to an embodiment of the present invention.
  • FIG. 10 is a block diagram showing an access point of a wireless local area network according to an embodiment of the present invention.
  • FIG. 1 a schematic flowchart of an uplink service transmission method according to an embodiment of the present invention is shown, which is applied to an access point of an OFDMA system.
  • the uplink service transmission method provided by the present invention can also be applied to a channel of 40 MHz, 80 MHz or 160 MHz bandwidth.
  • a 40 MHz bandwidth channel is divided into two 20 MHz bandwidth channels, and the two 20 MHz bandwidth channels are divided into resource blocks according to a 20 MHz bandwidth spectrum structure; and so on, an 80 MHz bandwidth channel first has an 80 MHz bandwidth channel.
  • the three 20MHz bandwidth channels can be divided into resource blocks according to the spectrum structure of 20MHz bandwidth; the 160MHz bandwidth channel is divided into four 20MHz bandwidth channels, the four 20MHz bandwidth channels
  • the resource blocks can be divided according to the spectrum structure of the 20 MHz bandwidth.
  • the method includes the following steps:
  • the access point divides the entire channel where the access point is located into multiple resource blocks according to the number of sites accessing the access point.
  • the access point first needs to determine the number of resource blocks that need to be allocated for the entire channel of the access point according to the number of sites accessing itself.
  • the entire channel of the access point refers to the entire communication channel in which the access point communicates with the station.
  • the access point communicates with the site accessing itself through a channel of 20 MHz bandwidth, and the entire access point
  • the channel is a channel of 20 MHz bandwidth.
  • the number of data subcarriers in the channel of the 20 MHz bandwidth is determined according to the spectrum template of the 20 MHz bandwidth and the coded modulation strategy corresponding to the preset number of stations, and then, according to the number of resource blocks. And the number of data subcarriers determines the division of each resource block. The specific process of dividing each resource block will be described in detail below, and the description is not described here.
  • the data subcarrier is a subcarrier used for transmitting data among all subcarriers included in the resource block.
  • the access point allocates a resource block for transmitting uplink information to the station according to channel estimation information of the station.
  • the access point can obtain channel estimation information of each site accessing itself, and then, according to the letter of each site
  • the channel estimation information determines a resource block used by each station to transmit uplink information, that is, a subchannel for transmitting uplink information.
  • the access point when the number of sites accessing the access point is four, and the entire channel is divided into 8 resource blocks, it is determined by the channel estimation information of each station which two resource blocks are allocated for each site.
  • the uplink information is transmitted to the access point.
  • the access point sends channel allocation indication information to each of the stations.
  • the channel allocation indication information is used to indicate information of resource blocks allocated for each of the stations, so that each of the stations runs in parallel with their own corresponding resource blocks.
  • the channel allocation indication information is sent to each station, and the channel allocation indication information is used to notify each station, and the information of the resource block for transmitting the uplink information, for example, the location of the resource block. information.
  • the access point may send the channel allocation indication information to the station in a multicast manner.
  • the access point divides the resource blocks of the entire channel according to the number of stations accessing the network, and then allocates, for each station, the uplink information according to the channel estimation information of each station.
  • the resource block sends the channel allocation indication information to each station, so that each station finds its own corresponding resource block according to the channel allocation indication information, and uses the resource block to transmit uplink information, thereby implementing multiple in the OFDMA system.
  • the station transmits uplink information in parallel, that is, the divided resource blocks can be applied to multiple sites at the same time.
  • step S110 in FIG. 1 may be implemented by the method flow shown in FIG. 2. As shown in FIG. 2, the method may include S111-S113:
  • the access point determines, according to the number of the stations, the number of resource blocks included in the entire channel where the access point is located.
  • the access point determines the number of resource blocks according to the number of sites accessing itself. For example, when the number of sites is 8, the number of resource blocks in the entire channel is 8 or 16; when the number of sites is 4 The number of resource blocks in the entire channel is 4, 8, or 16; when the number of stations is 2, the number of resource blocks in the entire channel is 2, 4, or 8 16
  • the number of resource blocks is an integer multiple of the number of stations, and the number of resource blocks is usually an even number, and the number of resource blocks can be two, four, eight, and sixteen. If the number of stations is an odd number, a value larger than the number of stations is selected from the 2, 4, 8, and 16 resource blocks as the number of resource blocks. For example, if the number of stations is three, the entire channel may be divided. Into 4, 8 or 16 resource blocks.
  • the number of resource blocks applicable to the number of stations is selected from the possible number of predetermined resource blocks according to the number of stations simultaneously accessing the channel of the 20 MHz bandwidth.
  • the access point equally allocates the data subcarriers to each of the resource blocks according to the number of the resource blocks and the number of data subcarriers in the entire channel. Wherein, the access point is located at 20 MHz.
  • the number of data subcarriers in the 256 subcarriers included in the channel includes 192, 208 or other preset numbers.
  • the following takes a channel with a bandwidth of 20 MHz as an example to describe the process of determining the number of data subcarriers in the entire channel:
  • a channel with a bandwidth of 20 MHz is taken as an example for description.
  • a 256-point FFT is used, that is, a channel of 20 MHz bandwidth is divided into 256 subcarriers, and a subcarrier spacing is calculated by taking 78.5 KHz as an example.
  • the embodiment of the present invention adopts a 20 MHz spectrum template specified by the IEEE 802.11 standard, wherein the transition bandwidth is 2500 KHz, and the intermediate zero-frequency position bandwidth is 650 KHz.
  • the subcarrier spacing is 78.5 KHz, and the 2500 KHz transition bandwidth includes 31 subcarriers.
  • the subcarriers located in the transition bandwidth are not used to transmit data, so it is called a null subcarrier.
  • the intermediate 650 kHz zero-frequency position bandwidth includes 7 sub-carriers, and the sub-carriers at the zero-frequency position are DC sub-carriers, also referred to as zero sub-carriers.
  • the maximum number of pilots used by the IEEE 802.11ac standard, 16 is still used, wherein the pilot is used to estimate the phase of the channel, which is a fixed sequence.
  • the MCS Modulation and Coding Scheme
  • the MCS of 3 5, 6 or 7 sites is associated with MCS of 2, 4 and 8 sites respectively. So that the final number of data subcarriers can be applied to the MCS of 2-8 sites at the same time.
  • the number of data subcarriers is 202, it is applicable to the scenario of 2 sites, but not applicable to the scenario of 4 sites and 8 sites; when the number of data subcarriers is 200, it is applicable to 2 sites and 4 site scenarios, but not applicable to 8 site scenarios; when the data subcarriers are 198, it is applicable to 2 site scenarios, but not for 4 sites and 8 sites; when data When the carrier is 196, it is applicable to the scenario of 2 sites and 4 sites, but it is not applicable to the scenario of 8 sites; when the data subcarrier is 194, it is applicable to the scenario of 2 sites, but not applicable to 4 scenarios. Scenes of 8 sites and 8 sites; when the data subcarriers are 192, the scenarios of 2, 4, and 8 sites are applicable. Therefore, this embodiment finally determines 192 data subcarriers in the 20 MHz channel.
  • the number of zero subcarriers in the middle can be 7, 9, or 11.
  • the number of null subcarriers at both ends is 20 and 21 respectively; when the number of zero subcarriers is 9, the number of null subcarriers at both ends is 19 and 20 respectively; when zero subcarriers When the number is 11, the number of empty subcarriers at both ends is 18 and 19.
  • the number of null subcarriers in order to further improve the utilization of the spectrum, can be reduced within a range allowed by the spectrum template of the 20 MHz bandwidth, and the number of intermediate zero subcarriers is still seven; Compatible with MCS of 2, 4, and 8 sites, the number of data subcarriers can be increased to 208, so that the number of null subcarriers at both ends is 12 and 13, respectively.
  • the number of data subcarriers and the number of resource blocks are further determined, and the number of data subcarriers included in each resource block is determined, and the data included in each resource block is guaranteed.
  • the number of subcarriers is equal.
  • the allocation of data subcarriers contained in each resource block is:
  • the number of data subcarriers in a channel with a bandwidth of 20 MHz is 192
  • each resource block includes 96 adjacent data subcarriers; when the 20 MHz spectrum includes 4 resource blocks, each resource block includes 48 adjacent data subcarriers; When the 20 MHz spectrum contains 8 resource blocks, each resource block contains 24 adjacent data subcarriers; when the 20 MHz spectrum contains 16 resource blocks, each resource block contains 12 adjacent data subcarriers.
  • each resource block includes 104 adjacent data subcarriers; when the 20 MHz spectrum includes 4 resource blocks, each resource block includes 52 adjacent data subcarriers; When the 20 MHz spectrum contains 8 resource blocks, each resource block contains 26 adjacent data subcarriers; when the 20 MHz spectrum contains 16 resource blocks, each resource block contains 13 adjacent data subcarriers.
  • the access point allocates pilots for each of the resource blocks, and at least 12 data subcarriers are separated between adjacent two pilots.
  • the IEEE 802.11ac standard specifies a maximum of 16 pilots, and the number of spectrums in the 20 MHz bandwidth spectrum can be less than 16. For example, when two stations are used, eight pilots can be configured.
  • the pilot 16 is configured as an example. If the number of the resource blocks is 16, one pilot is allocated for each resource block; if the number of the resource blocks is 8, for each of the foregoing The resource block allocates 2 pilots; if the number of the resource blocks is 4, 4 pilots are allocated for each of the resource blocks; if the number of the resource blocks is 2, for each of the resources The block allocates 8 pilots.
  • FIG. 3 a schematic diagram of allocation of data subcarriers and pilots of a resource block according to an embodiment of the present invention is shown.
  • a channel of 20 MHz bandwidth includes 192 data subcarriers and 16 pilots, as shown in FIG. 3, It includes the following distribution methods:
  • each resource block contains 96 data subcarriers and 8 pilots; when the number of resource blocks is 4, each resource block contains 48 data subcarriers and 4 pilots; resource blocks When the number is 8, each resource block contains 24 data subcarriers and 2 pilots; when the number of resource blocks is 16, each resource block contains 12 data subcarriers and 1 pilot.
  • FIG. 4 a schematic diagram of allocation of data subcarriers and pilots of another resource block according to an embodiment of the present invention is shown.
  • a channel of 20 MHz bandwidth includes 208 data subcarriers and 16 pilots, such as As shown in Figure 3, the following distribution methods are included:
  • each resource block contains 104 data subcarriers and 8 pilots; when the number of resource blocks is 4, each resource block contains 52 data subcarriers and 4 pilots; resource blocks When the number is 8, each resource block contains 26 data subcarriers and 2 pilots; when the number of resource blocks is 16, each resource block contains 13 data subcarriers and 1 pilot.
  • the access point configures pilots in the resource blocks.
  • the middle and 6 data subcarriers are respectively disposed on both sides of the pilot;
  • the number of resource blocks is eight, each of the resource blocks includes 24 data subcarriers, and when each resource block allocates 2 pilots, the two pilots are the first pilot and the second pilot, respectively. frequency. 12 data subcarriers are disposed between the first pilot and the second pilot, and 6 data subcarriers are disposed on a side of the first pilot that is away from the second pilot, The second pilot is disposed with 6 data subcarriers away from the side of the first pilot;
  • the number of resource blocks is eight, each of the resource blocks includes 26 data subcarriers, and when each resource block allocates two pilots, the two pilots are the third pilot and the fourth pilot, respectively. frequency. 12 data subcarriers are disposed between the third pilot and the fourth pilot, and 7 data subcarriers are disposed on a side of the third pilot remote from the fourth pilot, The fourth pilot is provided with 7 data subcarriers away from the side of the third pilot. Or, 14 data subcarriers are set between the third pilot and the fourth pilot, and the third pilot is disposed with 6 data subcarriers away from the fourth pilot, and the fourth pilot is away from the third pilot. There are also 6 data subcarriers set on one side.
  • the uplink service transmission method provided by the embodiment of the present invention determines the parameter of the resource block of the channel according to different numbers of stations, that is, the finally configured resource block can be applied to multiple sites, so that multiple sites simultaneously transmit uplink information.
  • the spectrum provided by the embodiment of the present invention can be applied to MCS tables corresponding to 1 to 8 sites, thereby enabling Flexible partitioning of resource blocks based on the number of sites.
  • the existing spectrum is only applicable to the MCS table corresponding to one number of stations, for example, only applicable to 2, or 3 sites corresponding to the MCS table.
  • FIG. 5 a schematic diagram of a 20 MHz bandwidth spectrum structure obtained by using the method shown in FIG. 1 is shown.
  • the spectrum of each 20 MHz bandwidth channel includes 256 subcarriers, and adjacent resources. There are no empty subcarriers between the blocks.
  • each 20MHz bandwidth channel contains 192 data subcarriers, and the intermediate zero frequency position contains 11 zero subcarriers; a total of 37 empty subcarriers are set at both ends, of which 19 are at one end and 18 are at the other end.
  • the 192 data subcarriers are equally divided into 8 resource blocks, each of which contains 24 data subcarriers.
  • Each resource block is allocated 2 pilots, for example, resource block 1 intermediate frequency point -103 and frequency point -90 are pilots of the resource block. At least 12 data subcarriers are spaced between adjacent two pilots in the spectrum.
  • the resource blocks are designed into a symmetric structure.
  • two pilots in each resource block are symmetric about an intermediate position of the resource block, assuming that each resource block includes a first pilot (eg, frequency point -77 in resource block 2) and 12 data subcarriers are disposed between the two pilots (eg, resource block 2 intermediate frequency point -64), and 6 data subcarriers are disposed on a side of the first pilot away from the second pilot, and the second pilot is far away
  • One side of the first pilot is provided with 6 data subcarriers.
  • FIG. 6 is a schematic diagram showing the spectrum structure of another 20 MHz bandwidth channel obtained by using the method shown in FIG. 1. As shown in FIG. 6, the spectrum of each 20 MHz bandwidth channel includes 256 subcarriers, and the phase There are no empty subcarriers between adjacent resource blocks.
  • the number of data subcarriers included in each 20 MHz bandwidth channel is increased to 208, 7 zero subcarriers, and 25 null subcarriers, wherein one end is 13 and the other end is 12 One.
  • the 208 data subcarriers are equally divided into 8 resource blocks, each of which contains 26 data subcarriers.
  • Each resource block is allocated 2 pilots, for example, resource block 1 intermediate frequency point -108 and frequency point -95 are pilots of the resource block.
  • At least 12 data subcarriers are spaced between adjacent two pilots in the spectrum, and 7 data subcarriers are disposed on a side of the first pilot (frequency point -108) away from the second pilot (frequency point -95) The side of the second pilot away from the first pilot is provided with 7 data subcarriers.
  • Resource block 2 IF-80 and frequency-67 are the pilots of the resource block, and the two pilots are separated by 12 data sub-carriers.
  • the resource blocks are designed into a symmetric structure.
  • the number of data subcarriers in each resource block is increased to 26, which improves spectrum utilization.
  • each 20 MHz bandwidth channel includes 256 subcarriers, and adjacent resource blocks are used. There are no empty subcarriers between them.
  • Each 20MHz bandwidth channel contains 192 data subcarriers, 11 zero subcarriers, and 37 null subcarriers, of which 19 are at one end and 18 at the other end.
  • the 192 data subcarriers are equally divided into 16 resource blocks, each of which contains 12 data subcarriers.
  • Each resource block is allocated 1 pilot.
  • resource block 1 IF-103 is the pilot of the resource block
  • resource block 2 IF-90 is the pilot of the resource block.
  • At least 12 data subcarriers are spaced between adjacent two pilots in the spectrum.
  • Each of the resource blocks has six data subcarriers on both sides of the pilot, and two adjacent pilots are separated by 12 data subcarriers.
  • the access point After determining the specific partitioning of the resource blocks of the channel of 20 MHz bandwidth, the access point allocates resource blocks for each station.
  • step 11) to step 13) when an access point allocates a resource block for transmitting uplink information to each station, step 11) to step 13) can be implemented:
  • the access point determines that each station transmits data by using at least four pilots; wherein the preset value may be set according to actual conditions.
  • the access point determines that each station transmits data requiring at least 2 pilots.
  • Step 12 the access point determines the target number of resource blocks required by each station according to the number of pilots required by each of the stations and the number of pilots included in the resource block.
  • the total number of pilots included in the resource blocks allocated for each station is not less than the number of pilots required for the station to transmit data, and the total number of resource blocks allocated for all stations simultaneously accessing the channel is equal to the channel The total number of resource blocks included.
  • Step 13 the access point allocates the target number of resource blocks for each of the stations.
  • each station needs 4 pilots.
  • a channel of 20 MHz bandwidth can allow up to four stations to access at the same time.
  • the access point can allocate two resource blocks for each station according to channel estimation information of each station.
  • the spectrum structure shown in Figure 7 allows up to four stations to simultaneously access a channel with a bandwidth of 20 MHz. In this case, the access point can be based on each The channel estimation information of each station allocates two resource blocks for each station.
  • the subcarrier allocation shown in FIG. 5 and FIG. 6 is also applicable to scenarios of 2 or 3 sites, and resource blocks can be flexibly allocated for each site, as long as the pilot blocks included in the resource blocks allocated for each site are guaranteed.
  • the total number is not less than four, and the total number of resource blocks allocated by each station is the number of resource blocks included in the channel of 20 MHz bandwidth.
  • three resource blocks may be allocated to each of the two sites, and two resource blocks may be allocated to another site; or two resource blocks may be allocated to each of the two sites, The remaining one site allocates 4 resource blocks.
  • the subcarrier allocation shown in FIG. 7 is also applicable to the scenario of two or three sites.
  • the resource blocks can be flexibly allocated for each site according to the above principles, and are not described here.
  • each station may only need 2 pilots, so that the spectrum structure shown in FIG. 5 or FIG. 6 can allow up to 8 stations to simultaneously access.
  • the access point can allocate a resource block to each station according to the channel estimation information of each station.
  • the spectrum structure shown in Figure 7 allows up to 8 sites to access the channel at the same time.
  • the access point can allocate two resource blocks for each site according to the environment of the channel.
  • the channel allocation indication information includes: Frame Control, Duration, and RA. (received address) field, TA (Transmitter Address) field, AID MAP (associated identifier map) field, Sub-channel type (subchannel type) field, Sub-channel number (subchannel number) field, Total number of Sub-channel (subchannel total) field and FCS (check) field.
  • the AID MAP field is used to store the AID of the station that sends the uplink information.
  • the Sub-channel type field is used to represent the number of sub-channels (ie, resource blocks) of channel division of 20 MHz, and is represented by a two-digit binary number. For example, a binary number of 00 indicates that a sub-channel of 20 MHz is divided into two resource blocks, each of which The bandwidth of the resource block is 10 MHz; the binary number 01 indicates that the 20 MHz subchannel is divided into 4 resource blocks, and the bandwidth of each resource block is 5 MHz; the binary number 10 indicates that the 20 MHz subchannel is divided into 8 resource blocks, each The bandwidth of the resource block is 2.5 MHz; the binary number 11 indicates that the 20 MHz subchannel is divided into 16 resource blocks, and the bandwidth of each resource block is 1.25 MHz.
  • the Sub-channel number field is used to characterize the sequence number of the resource block allocated for the site, and is represented by 16 Bits. For example, a binary number 0000 indicates that the resource block has a sequence number of 1, a binary number 0001 indicates that the resource block has a sequence number of 2, and so on, a binary number 0111 indicates an eighth resource block, and a binary number 1111 indicates a 16th resource block. 16 bits can represent the sequence number of 4 resource blocks, that is, this format determines that each station can allocate up to 4 resource blocks. For example, the binary number 0000 1000 0010 0011 indicates that the resource blocks used by the station have the sequence numbers 1, 9 in sequence. Four resource blocks, 3 and 4.
  • the Total number of sub-channel field indicates the number of resource blocks allocated for the station. For example, the binary number 000001 indicates that one resource block is allocated.
  • the contents of the Sub-channel number field and the Total number of sub-channel field in the channel allocation indication information together indicate the specific location of the resource block allocated for the station.
  • the present invention also provides an uplink service transmission apparatus embodiment applied to an OFDMA system.
  • the apparatus may include: a resource block dividing unit 110, a resource block allocating unit 120, and a sending unit 130.
  • the resource block dividing unit 110 is configured to divide the entire channel where the access point is located into multiple resource blocks according to the number of stations accessing the access point.
  • the resource block dividing unit includes: a resource block number determining subunit, a data subcarrier allocation subunit, and a pilot allocation subunit.
  • the resource block quantity determining subunit is configured to determine, according to the number of the stations, a quantity of resource blocks in an entire channel where the access point is located.
  • the number of sites When the number of sites is 8, the number of resource blocks in the entire channel where the access point is located is 8 or 16; when the number of sites is 4, the resources in the entire channel where the access point is located The number of blocks is 4, 8, or 16; when the number of stations is 2, the number of resource blocks in the entire channel where the access point is located is 2, 4, 8, or 16.
  • the data subcarrier allocation subunit is configured to evenly distribute the data subcarriers into each of the resource blocks according to the number of the resource blocks and the number of data subcarriers in the entire channel where the access point is located.
  • the number of data subcarriers in the 256 subcarriers included in the 20 MHz channel where the access point is located includes 192, 208, or other preset numbers.
  • each 20 MHz bandwidth channel contains 192 data subcarriers
  • each resource block is allocated 12 adjacent data subcarriers
  • each resource block is allocated 24 adjacent data subcarriers
  • when the number of resource blocks is 4, for each resource block 48 adjacent data subcarriers are allocated
  • when the number of resource blocks is two, 96 adjacent data subcarriers are allocated for each resource block;
  • each 20 MHz bandwidth channel contains 208 data subcarriers
  • each resource block is allocated 13 adjacent data subcarriers; when the number of resource blocks is 8, Allocating 26 adjacent data subcarriers for each resource block; when the number of resource blocks is 4, allocate 52 adjacent data subcarriers for each resource block; when the number of resource blocks is 2,
  • Each resource block is assigned 104 adjacent data subcarriers.
  • the pilot allocation subunit is configured to allocate pilots for each of the resource blocks, and at least 12 data subcarriers are separated between adjacent two pilots.
  • determining the number of pilots included in each resource block when the number of the resource blocks is 16, assigning one pilot to each of the resource blocks; when the number of the resource blocks is eight, Allocating 2 pilots for each of the resource blocks; when the number of the resource blocks is 4, allocating 4 pilots for each of the resource blocks; when the number of the resource blocks is 2, Eight pilots are allocated for each of the resource blocks.
  • the access point After determining the number of pilots included in each resource block, further determining the location of the pilot in each resource block, when each of the resource blocks includes 12 data subcarriers, the access point configures the pilot In the middle of the resource block, six data subcarriers are respectively disposed on two sides of the pilot;
  • the access point configures a first pilot and a second pilot, and is disposed between the first pilot and the second pilot 12 data subcarriers, wherein the first pilot is disposed with 6 data subcarriers away from the side of the second pilot, and 6 of the second pilot is disposed away from the first pilot.
  • the access point configures a third pilot and a fourth pilot, and is disposed between the third pilot and the fourth pilot 12 data subcarriers, wherein the third pilot is disposed with 7 data subcarriers away from the side of the fourth pilot, and 7 of the fourth pilot is located away from the third pilot. Data subcarrier.
  • the resource block allocating unit 120 is configured to allocate a resource block for transmitting uplink information to each of the stations according to channel estimation information of each of the stations.
  • the resource block allocation unit includes: a first determining subunit, a second determining subunit, and an assigning subunit.
  • the first determining subunit is configured to determine, according to a signal to noise ratio of the station, a quantity of pilots required by the station to transmit uplink information.
  • the access point determines that each station needs to transmit data at least 4 pilots;
  • the access point determines that each station transmits data requiring at least 2 pilots.
  • the second determining subunit is configured to determine, according to the number of pilots required by each of the stations and the number of pilots included in the resource block, a target number of resource blocks required by each station.
  • the total number of pilots included in the resource blocks allocated for each station is not less than the number of pilots required for the station to transmit data, and the total number of resource blocks allocated for all stations simultaneously accessing the channel is equal to the channel The total number of resource blocks included.
  • the allocation subunit is configured to allocate the target number of resource blocks for each of the stations.
  • the sending unit 130 is configured to send channel allocation indication information to each of the stations, where the channel allocation indication information is used to indicate information of resource blocks allocated for each of the stations, so that each of the stations utilizes its own correspondence.
  • the resource blocks run in parallel.
  • the access point divides the resource blocks of the entire channel according to the number of stations accessing the network, and then allocates, for each station, the uplink information according to the channel estimation information of each station.
  • the resource block sends the channel allocation indication information to each station, so that each station finds its own corresponding resource block according to the channel allocation indication information, and uses the resource block to transmit uplink information, thereby implementing multiple in the OFDMA system.
  • the station transmits uplink information in parallel, that is, the divided resource blocks can be applied to multiple sites at the same time.
  • the present invention also provides an access point of a wireless local area network.
  • FIG. 10 a block diagram of an access point of a wireless local area network according to an embodiment of the present invention is shown.
  • the access point includes: a processor 210 and a transmitter 220, and the processor 210 and the The transmitter 220 is connected.
  • the processor 210 is configured to divide the entire channel where the access point is located into multiple resource blocks according to the number of sites accessing the access point.
  • the processor is specifically configured to: determine, according to the number of the stations, a quantity of resource blocks in an entire channel where the access point is located; and according to the number of the resource blocks and data in an entire channel where the access point is located.
  • the number of carriers, the data subcarriers are evenly distributed into each of the resource blocks, wherein the number of data subcarriers included in the 256 subcarriers of the 20 MHz channel where the access point is located includes 192, 208 or other a preset number; a pilot is allocated for each of the resource blocks, and at least 12 data subcarriers are spaced between adjacent two pilots.
  • Determining the number of resource blocks according to the number of stations when the number of stations is 8, the number of resource blocks in the entire channel where the access point is located is 8 or 16; when the number of stations is 4, The number of resource blocks in the entire channel where the access point is located is 4, 8, or 16; when the number of sites is 2, the number of resource blocks in the entire channel where the access point is located is 2 , 4, 8, or 16.
  • Dividing resource blocks according to the number of data subcarriers and the number of resource blocks when each channel of 20 MHz bandwidth contains 192 data subcarriers, when the number of resource blocks is 16, assign 12 phases for each resource block. Adjacent data subcarriers; when the number of resource blocks is 8, allocate 24 adjacent data subcarriers for each resource block; when the number of resource blocks is 4, allocate 48 phases for each resource block Adjacent data subcarriers; when the number of resource blocks is two, 96 adjacent data subcarriers are allocated for each resource block;
  • each 20 MHz bandwidth channel contains 208 data subcarriers
  • each resource block is allocated 13 adjacent data subcarriers; when the number of resource blocks is 8, Allocating 26 adjacent data subcarriers for each resource block; when the number of resource blocks is 4, allocate 52 adjacent data subcarriers for each resource block; when the number of resource blocks is 2,
  • Each resource block is assigned 104 adjacent data subcarriers.
  • Determining the number of pilots included in each resource block when the number of the resource blocks is 16, assigning 1 pilot to each of the resource blocks; when the number of the resource blocks is 8, Each of the resource blocks is allocated 2 pilots; when the number of the resource blocks is 4, 4 pilots are allocated for each of the resource blocks; when the number of the resource blocks is 2, Each of the resource blocks is allocated 8 pilots.
  • each of the resource blocks includes 12 data subcarriers
  • the pilot is configured in the middle of the resource block, and 6 data subcarriers are respectively disposed on both sides of the pilot;
  • each of the resource blocks includes 24 data subcarriers, configuring a first pilot and a second pilot, and setting 12 data subcarriers between the first pilot and the second pilot a side of the first pilot that is away from the second pilot is configured with six data subcarriers, and a side of the second pilot that is far from the first pilot is configured with six data subcarriers.
  • each of the resource blocks includes 26 data subcarriers
  • configure a third pilot and a fourth pilot and set 12 data subcarriers between the third pilot and the fourth pilot
  • the side of the third pilot that is far from the fourth pilot is provided with seven data subcarriers
  • the fourth pilot is provided with seven data subcarriers away from the side of the third pilot.
  • the processor 210 is further configured to allocate a resource block for transmitting uplink information to each of the stations according to channel estimation information of each of the stations.
  • the number of pilots required by the station to transmit uplink information is determined according to the signal to noise ratio of the station. Determining that each station transmits data requires at least 4 pilots when the signal to noise ratio of the station is lower than a preset value; determining each station when a signal to noise ratio of the station is not lower than the preset value At least 2 pilots are required to transmit data.
  • the target number of resource blocks required by each station is determined according to the number of pilots required by each of the stations and the number of pilots included in the resource blocks.
  • the total number of pilots included in the resource blocks allocated for each station is not less than the number of pilots required for the station to transmit data, and the total number of resource blocks allocated for all stations simultaneously accessing the channel is equal to the channel The total number of resource blocks included.
  • the target number of resource blocks are allocated for each of the sites.
  • the transmitter 220 is configured to send channel allocation indication information to each of the stations, where the channel allocation indication information is used to indicate information of resource blocks allocated for each of the stations, so that each of the stations utilizes its own correspondence.
  • the resource blocks run in parallel.
  • the invention may be described in the general context of computer-executable instructions executed by a computer, such as a program module.
  • program modules include routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types.
  • the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are connected through a communication network.
  • program modules can be located in both local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行业务传输方法、装置及无线局域网的接入点,其中,所述上行业务传输方法中,接入点根据接入自身的站点的数量来划分整个信道的资源块,然后,根据各个站点的信道估计信息,为各个站点分配用于传输上行信息的资源块,并分别向各个站点发送信道分配指示信息,以使各个站点依据所述信道分配指示信息找到自身对应的资源块,并利用资源块传输上行信息,从而在OFDMA系统中,实现多站点并行传输上行信息,即划分的资源块能够同时适用于多个站点。综上所述,所述上行业务传输方法根据不同的站点数量确定信道的资源块的参数,即最终配置的资源块能够同时适用于多个站点,使多个站点同时传输上行信息,提高了信道可以同时接入的用户的数量。

Description

上行业务传输方法、装置及无线局域网的接入点 技术领域
本发明涉及通信技术领域,尤其涉及OFDMA系统的上行业务传输方法、装置及无线局域网的接入点。
背景技术
OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址接入)是无线通讯系统的标准,如,蜂窝网系统、Wi-Fi系统。OFDMA系统将传输带宽划分成正交的互不重叠的一系列子载波集,将不同的子载波集分配给不同的用户实现多址。
随着互联网的发展与应用,以及智能手机等便携站点的大量普及,这对未来数据通信的通道提出更高的要求。在高密度应用场景中,目前的无线局域网网络标准IEEE802.11ac标准无法满足用户对数据传输速率的要求。针对高密度应用场景问题,首次在无线通讯系统中引入UL OFDMA(Up-Link Orthogonal Frequency Division Multiple Access,上行链路正交频分多址接入)机制,增加带宽能够同时传输的用户数。但是,引入UL OFDMA机制后,对无线通讯标准IEEE802.11ac的协议改动很大,因此,需要对现有频谱的导频结构及子载波分配方案进行重新设计,以20MHz带宽为例,需要解决以下关于子载波、导频分配的问题,例如,一个资源块(Resource Block,RB)需要分配多少个数据子载波、每个RB的导频结构如何设置、该带宽可以同时接入几个用户,每个用户的资源块如何分配等。
发明内容
本发明实施例中提供了一种上行业务传输方法、装置及无线局域网的接入点,以解决现有技术中的无线通讯系统不能适用于高密度应用场景的问题。
为了解决上述技术问题,本发明实施例公开了如下技术方案:
第一方面,本发明提供一种上行业务传输方法,应用于正交频分多址接入OFDMA系统中,所述方法包括:
无线局域网的接入点根据接入所述接入点的站点的数量,将所述接入点所在的整 个信道划分成多个资源块;
所述接入点根据所述站点的信道估计信息为各个所述站点分配传输上行信息的资源块;
所述接入点分别向各个所述站点发送信道分配指示信息,所述信道分配指示信息用于指示为各个所述站点分配的资源块的信息。
结合第一方面,在第一方面的第一种可能的实现方式中,无线局域网的接入点根据接入所述接入点的站点的数量,将所述接入点所在的整个信道划分成多个资源块,包括:
所述接入点根据所述站点的数量确定所述接入点所在的整个信道中资源块的数量;
所述接入点根据所述资源块的数量及所述接入点所在的整个信道中数据子载波的数量,将所述数据子载波平均分配到各个所述资源块中,其中,所述接入点所在的20MHz信道包含的256个子载波中数据子载波的数量包括192个、208个或其它预设数量;
所述接入点为各个所述资源块分配导频,且相邻的两个导频之间至少间隔12个数据子载波。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述接入点根据所述站点的数量确定所述接入点所在的整个信道中资源块的数量包括:
当站点的数量为8个时,所述接入点所在的整个信道中资源块的数量为8个或16个;
当站点的数量为4个时,所述接入点所在的整个信道中资源块的数量为4个、8个或16个;
当站点的数量为2个时,所述接入点所在的整个信道中资源块的数量为2个、4个、8个或16个。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,在20MHz的信道中,所述接入点为各个所述资源块分配导频,包括:
当所述资源块的数量是16个时,为每个所述资源块分配1个导频;
当所述资源块的数量是8个时,为每个所述资源块分配2个导频;
当所述资源块的数量是4个时,为每个所述资源块分配4个导频;
当所述资源块的数量是2个时,为每个所述资源块分配8个导频。
结合第一方面的第二种可能的实现方式,在第一方面的第四种可能的实现方式中,所述接入点根据所述资源块的数量及所述接入点所在的整个信道中数据子载波的数量,将所述数据子载波平均分配到各个资源块中,包括:
当每个20MHz带宽的信道所包含192个数据子载波时,当资源块的数量为16个时,为每个资源块分配12个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配24个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分配48个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配96个相邻的数据子载波;
当每个20MHz带宽的信道包含208个数据子载波时,当资源块的数量为16个时,为每个资源块分配13个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配26个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分配52个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配104个相邻的数据子载波。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述接入点为各个所述资源块分配导频,且相邻的两个导频之间至少间隔12个数据子载波,包括:
当每个所述资源块包含12个数据子载波时,所述接入点将导频配置在所述资源块的中间,且在所述导频两侧分别设置有6个数据子载波;
当每个所述资源块包含24个数据子载波时,所述接入点配置第一导频和第二导频,并在所述第一导频和所述第二导频之间设置有12个数据子载波,所述第一导频远离所述第二导频的一侧设置有6个数据子载波,所述第二导频远离所述第一导频的一侧设置有6个数据子载波;
当每个所述资源块包含26个数据子载波时,所述接入点配置第三导频和第四导频,并在所述第三导频和所述第四导频之间设置有12个数据子载波,所述第三导频远离所述第四导频的一侧设置有7个数据子载波,所述第四导频远离所述第三导频的一侧设置有7个数据子载波。
结合第一方面,在第一方面的第六种可能的实现方式中,所述接入点为各个所述站点分配传输上行信息的资源块包括:
所述接入点根据站点的信噪比,确定所述站点传输上行信息需要的导频数量;
所述接入点根据每个所述站点需要的导频数量及资源块包含的导频数量,确定每个站点需要的资源块的目标数量;
所述接入点为每个所述站点分配所述目标数量的资源块。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中:
所述接入点根据站点的信噪比,确定所述站点传输上行信息需要的导频数量,包括:
当所述站点的信噪比低于预设值时,所述接入点确定每个站点传输数据需要至少4个导频;
当所述站点的信噪比不低于所述预设值时,所述接入点确定每个站点传输数据需要至少2个导频。
结合第一方面的第六种可能的实现方式,在第一方面的第八种可能的实现方式中,所述接入点根据每个所述站点需要的导频数量及资源块包含的导频数量,确定每个站点需要的资源块的目标数量,包括:
为每个站点分配的资源块所包含的导频总数不小于所述站点传输数据需要的导频数量,且为同时接入所述信道的全部站点所分配的资源块的总数等于所述信道所包含的资源块的总数。
第二方面,本发明提供一种无线局域网的接入点,应用于正交频分多址接入OFDMA系统中,所述接入点包括:处理器,以及与所述处理器连接的发送器;
所述处理器,用于根据接入所述接入点的站点的数量,将所述接入点所在的整个信道划分成多个资源块;以及,用于根据各个所述站点的信道估计信息为各个所述站点分配传输上行信息的资源块;
所述发送器,用于分别向各个所述站点发送信道分配指示信息,所述信道分配指示信息用于指示为各个所述站点分配的资源块的信息,以使各个所述站点利用自身对应的资源块并行运行。
结合第二方面,在第二方面的第一种可能的实现方式中,所述处理器具体用于:
根据所述站点的数量确定所述接入点所在的整个信道中资源块的数量;
根据所述资源块的数量及所述接入点所在的整个信道中数据子载波的数量,将所述数据子载波平均分配到各个所述资源块中,其中,所述接入点所在的20MHz信道包含的256个子载波中数据子载波的数量包括192个、208个或其它预设数量;
为各个所述资源块分配导频,且相邻的两个导频之间至少间隔12个数据子载波。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述处理器用于根据站点的数量确定所述接入点所在的整个信道中资源块的数量 时,具体用于:
当站点的数量为8个时,所述接入点所在的整个信道中资源块的数量为8个或16个;
当站点的数量为4个时,定所述接入点所在的整个信道中资源块的数量为4个、8个或16个;
当站点的数量为2个时,所述接入点所在的整个信道中资源块的数量为2个、4个、8个或16个。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,在20MHz的信道中,所述处理器用于为各个所述资源块分配导频,具体用于:
当所述资源块的数量是16个时,为每个所述资源块分配1个导频;
当所述资源块的数量是8个时,为每个所述资源块分配2个导频;
当所述资源块的数量是4个时,为每个所述资源块分配4个导频;
当所述资源块的数量是2个时,为每个所述资源块分配8个导频。
结合第二方面的第一种可能的实现方式,在第二方面的第四种可能的实现方式中,所述处理器用于根据所述资源块的数量及所述接入点所在的整个信道中数据子载波的数量,将所述数据子载波平均分配到各个资源块中,具体用于:
当每个20MHz带宽的信道所包含192个数据子载波时,当资源块的数量为16个时,为每个资源块分配12个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配24个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分配48个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配96个相邻的数据子载波;
当每个20MHz带宽的信道包含208个数据子载波时,当资源块的数量为16个时,为每个资源块分配13个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配26个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分配52个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配104个相邻的数据子载波。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述处理器用于为各个所述资源块分配导频,且相邻的两个导频之间至少间隔12个数据子载波,具体用于:
当每个所述资源块包含12个数据子载波时,将导频配置在所述资源块的中间,且在所述导频两侧分别设置有6个数据子载波;
当每个所述资源块包含24个数据子载波时,配置第一导频和第二导频,并在所述第一导频和所述第二导频之间设置有12个数据子载波,所述第一导频远离所述第二导频的一侧设置有6个数据子载波,所述第二导频远离所述第一导频的一侧设置有6个数据子载波;
当每个所述资源块包含26个数据子载波时,配置第三导频和第四导频,并在所述第三导频和所述第四导频之间设置有12个数据子载波,所述第三导频远离所述第四导频的一侧设置有7个数据子载波,所述第四导频远离所述第三导频的一侧设置有7个数据子载波。
结合第二方面,在第二方面的第六种可能的实现方式中,所述处理器用于根据各个所述站点的信道估计信息为各个所述站点分配传输上行信息的资源块,具体用于:
根据站点的信噪比,确定所述站点传输上行信息需要的导频数量;
根据每个所述站点需要的导频数量及资源块包含的导频数量,确定每个站点需要的资源块的目标数量;
为每个所述站点分配所述目标数量的资源块。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中:所述处理器用于根据站点的信噪比,确定所述站点传输上行信息需要的导频数量,具体用于:
当所述站点的信噪比低于预设值时,确定每个站点传输数据需要至少4个导频;
当所述站点的信噪比不低于所述预设值时,确定每个站点传输数据需要至少2个导频。
结合第二方面的第六种可能的实现方式,在第二方面的第八种可能的实现方式中,所述处理器用于根据每个所述站点需要的导频数量及资源块包含的导频数量,确定每个站点需要的资源块的目标数量,具体用于:
为每个站点分配的资源块所包含的导频总数不小于所述站点传输数据需要的导频数量,且为同时接入所述信道的全部站点所分配的资源块的总数等于所述信道所包含的资源块的总数。
第三方面,本发明提供一种上行业务传输装置,应用于正交频分多址接入OFDMA系统中,所述装置包括:
资源块划分单元,用于根据接入所述接入点的站点的数量,将所述接入点所在的整个信道划分成多个资源块;
资源块分配单元,用于根据各个所述站点的信道估计信息为各个所述站点分配传 输上行信息的资源块;
发送单元,用于分别向各个所述站点发送信道分配指示信息,所述信道分配指示信息用于指示为各个所述站点分配的资源块的信息,以使各个所述站点利用自身对应的资源块并行运行。
结合第三方面,在第三方面的第一种可能的实现方式中,所述资源块划分单元包括:
资源块数量确定子单元,用于根据所述站点的数量确定所述接入点所在的整个信道中资源块的数量;
数据子载波分配子单元,用于根据所述资源块的数量及所述接入点所在的整个信道中数据子载波的数量,将所述数据子载波平均分配到各个所述资源块中,其中,所述接入点所在的20MHz信道包含的256个子载波中数据子载波的数量包括192个、208个或其它预设数量;
导频分配子单元,用于为各个所述资源块分配导频,且相邻的两个导频之间至少间隔12个数据子载波。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述资源块数量确定子单元具体用于:
当站点的数量为8个时,所述接入点所在的整个信道中资源块的数量为8个或16个;
当站点的数量为4个时,所述接入点所在的整个信道中资源块的数量为4个、8个或16个;
当站点的数量为2个时,所述接入点所在的整个信道中资源块的数量为2个、4个、8个或16个。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,在20MHz的信道中,所述导频分配子单元,具体用于:
当所述资源块的数量是16个时,为每个所述资源块分配1个导频;
当所述资源块的数量是8个时,为每个所述资源块分配2个导频;
当所述资源块的数量是4个时,为每个所述资源块分配4个导频;
当所述资源块的数量是2个时,为每个所述资源块分配8个导频。
结合第三方面的第二种可能的实现方式,在第三方面的第四种可能的实现方式中,所述数据子载波分配子单元,具体用于:
当每个20MHz带宽的信道所包含192个数据子载波时,当资源块的数量为16 个时,为每个资源块分配12个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配24个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分配48个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配96个相邻的数据子载波;
当每个20MHz带宽的信道包含208个数据子载波时,当资源块的数量为16个时,为每个资源块分配13个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配26个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分配52个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配104个相邻的数据子载波。
结合第三方面的第四种可能的实现方式,在第三方面的第五种可能的实现方式中,所述导频分配子单元,具体用于:
当每个所述资源块包含12个数据子载波时,所述接入点将导频配置在所述资源块的中间,且在所述导频两侧分别设置有6个数据子载波;
当每个所述资源块包含24个数据子载波时,所述接入点配置第一导频和第二导频,并在所述第一导频和所述第二导频之间设置有12个数据子载波,所述第一导频远离所述第二导频的一侧设置有6个数据子载波,所述第二导频远离所述第一导频的一侧设置有6个数据子载波;
当每个所述资源块包含26个数据子载波时,所述接入点配置第三导频和第四导频,并在所述第三导频和所述第四导频之间设置有12个数据子载波,所述第三导频远离所述第四导频的一侧设置有7个数据子载波,所述第四导频远离所述第三导频的一侧设置有7个数据子载波。
结合第三方面,在第三方面的第六种可能的实现方式中,所述资源块分配单元,包括:
第一确定子单元,用于根据站点的信噪比,确定所述站点传输上行信息需要的导频数量;
第二确定子单元,用于根据每个所述站点需要的导频数量及资源块包含的导频数量,确定每个站点需要的资源块的目标数量;
分配子单元,用于为每个所述站点分配所述目标数量的资源块。
结合第三方面的第六种可能的实现方式,在第三方面的第七种可能的实现方式中:所述第一确定子单元,具体用于:
当所述站点的信噪比低于预设值时,所述接入点确定每个站点传输数据需要至少 4个导频;
当所述站点的信噪比不低于所述预设值时,所述接入点确定每个站点传输数据需要至少2个导频。
结合第三方面的第六种可能的实现方式,在第三方面的第八种可能的实现方式中,所述第二确定子单元,具体用于:
为每个站点分配的资源块所包含的导频总数不小于所述站点传输数据需要的导频数量,且为同时接入所述信道的全部站点所分配的资源块的总数等于所述信道所包含的资源块的总数。
由以上技术方案可见,本发明实施例提供的上行业务传输方法,接入点根据接入自身的站点的数量来划分整个信道的资源块,然后,根据各个站点的信道估计信息,为各个站点分配用于传输上行信息的资源块,并分别向各个站点发送信道分配指示信息,以使各个站点依据所述信道分配指示信息找到自身对应的资源块,并利用所述资源块传输上行信息,从而在OFDMA系统中,实现多站点并行传输上行信息,即划分的资源块能够同时适用于多个站点。综上所述,所述上行业务传输方法根据不同的站点数量确定信道的资源块的参数,即最终配置的资源块能够同时适用于多个站点,使多个站点同时传输上行信息,提高了信道可以同时接入的用户的数量。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明实施例一种上行业务传输方法的流程示意图;
图2示出了本发明实施例图1所示步骤S110的方法流程示意图;
图3示出了本发明实施例一种资源块的子载波和导频的分配示意图;
图4示出了本发明实施例另一种资源块的子载波和导频的分配示意图;
图5示出了本发明实施例一种20MHz带宽的频谱结构的示意图;
图6示出了本发明实施例另一种20MHz带宽的频谱结构的示意图;
图7示出了本发明实施例又一种20MHz带宽的频谱结构的示意图;
图8示出了本发明实施例一种信道分配指示信息的消息格式示意图;
图9示出了本发明实施例一种上行业务传输装置的框图;
图10示出了本发明实施例一种无线局域网的接入点的框图。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人 员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
具体实施方式
为了使本领域技术人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所述描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参见图1,示出了本发明实施例一种上行业务传输方法的流程示意图,该方法应用于OFDMA系统的接入点中。
需要说明的是,本发明提供的上行业务传输方法也可以适用于40MHz、80MHz或160MHz带宽的信道。例如,将40MHz带宽的信道分成两个20MHz带宽的信道,这两个20MHz带宽的信道都按照20MHz带宽的频谱结构划分资源块即可;依此类推,80MHz带宽的信道,首先将80MHz带宽的信道划分成三个20MHz带宽的信道,这三个20MHz带宽的信道都按照20MHz带宽的频谱结构划分资源块即可;将160MHz带宽的信道划分成四个20MHz带宽的信道,这四个20MHz带宽的信道都按照20MHz带宽的频谱结构划分资源块即可。
如图1所示,所述方法包括以下步骤:
S110,接入点根据接入所述接入点的站点的数量,将所述接入点所在的整个信道划分成多个资源块。
接入点首先需要根据接入自身的站点的数量,确定接入点的整个信道需要划分的资源块的数量。所述接入点的整个信道是指所述接入点与站点进行通信的整个的通信信道,例如,接入点通过20MHz带宽的信道与接入自身的站点进行通信,则接入点的整个信道即20MHz带宽的信道。
在将所述整个信道划分资源块时,首先根据20MHz带宽的频谱模板,以及预设数量的站点对应的编码调制策略,确定20MHz带宽的信道中数据子载波的数量,然后,根据资源块的数量及数据子载波的数量确定各个资源块的划分情况,下文将详细阐述划分各个资源块的具体过程,此处不展开描述。
其中,数据子载波是资源块所包含的全部子载波中用于传输数据的子载波。
S120,接入点根据所述站点的信道估计信息为所述站点分配传输上行信息的资源块。
接入点能够获取接入自身的各个站点的信道估计信息,然后,根据各个站点的信 道估计信息确定各个站点用于传输上行信息的资源块,即用于传输上行信息的子信道。
例如,接入所述接入点的站点的数量为4个,且所述整个信道划分成8个资源块时,通过各个站点的信道估计信息,确定为各个站点分配哪两个资源块用于向接入点传输上行信息。
S130,接入点分别向各个所述站点发送信道分配指示信息。
所述信道分配指示信息用于指示为各个所述站点分配的资源块的信息,以使各个所述站点利用自身对应的资源块并行运行。
接入点确定为各个站点分配的资源块后,分别向各个站点发送信道分配指示信息,通过该信道分配指示信息通知各个站点,用于发送上行信息的资源块的信息,例如,资源块的位置信息。
其中,接入点可以通过组播方式向站点发送所述信道分配指示信息。
本发明实施例提供的上行业务传输方法,接入点根据接入自身的站点的数量来划分整个信道的资源块,然后,根据各个站点的信道估计信息,为各个站点分配用于传输上行信息的资源块,并分别向各个站点发送信道分配指示信息,以使各个站点依据所述信道分配指示信息找到自身对应的资源块,并利用所述资源块传输上行信息,从而在OFDMA系统中,实现多站点并行传输上行信息,即划分的资源块能够同时适用于多个站点。
在本发明的一个实施例中,图1中的步骤S110可以通过图2所示的方法流程实现,如图2所示,所述方法可以包括S111~S113:
S111,接入点根据所述站点的数量确定所述接入点所在的整个信道所包含的资源块的数量。
接入点根据接入自身的站点的数量,确定资源块的数量,例如,站点的数量为8个时,所述整个信道中资源块的数量为8个或16个;当站点的数量为4个时,所述整个信道中资源块的数量为4个、8个或16个;当站点的数量为2个时,所述整个信道中资源块的数量为2个、4个、8个或16个。
综上可知,资源块的数量是站点数量的整数倍,而且,资源块的数量通常是偶数个,资源块的数量可以是2个、4个、8个和16个这四种情况。如果站点的数量是奇数,则从2、4、8、16个资源块中选择一个大于站点数量的数值作为资源块的数量,例如,站点的数量是3个,则可以将所述整个信道划分成4、8或16个资源块。
具体实施时,确定好20MHz带宽的信道可以划分的资源块的几种可能的数量, 然后,根据同时接入20MHz带宽的信道的站点数量,从预先确定的资源块的可能的数量中选择适用于所述站点数量的资源块的数量。
S112,接入点根据所述资源块的数量及所述整个信道中数据子载波的数量,将所述数据子载波平均分配到各个所述资源块中;其中,所述接入点所在的20MHz信道包含的256个子载波中数据子载波的数量包括192个、208个或其它预设数量。
下面以20MHz带宽的信道为例,介绍确定整个信道中数据子载波的数量的过程:
本实施例以20MHz带宽的信道为例进行说明,采用256点的FFT,即将20MHz带宽的信道划分成256个子载波,子载波间隔以78.5KHz为例进行计算。为了兼容IEEE802.11标准,本发明实施例采用IEEE802.11标准规定的20MHz的频谱模板,其中,过渡带宽为2500KHz,中间的零频位置带宽650KHz。
子载波间隔为78.5KHz,则2500KHz的过渡带宽包含31个子载波,位于过渡带宽的子载波不用来传输数据,故称为空子载波。中间650KHz的零频位置带宽包含7个子载波,零频位置的子载波是直流子载波,也称为零子载波。
为避免增加导频的开销(即,导频的overhead),仍延用IEEE802.11ac标准所使用的最大导频数——16个,其中,导频用于估计信道的相位,是一个固定的序列。这样,20MHz带宽的信道中能够用于数据传输的数据子载波的数量是256-31-7-16=202个。
由于不同数量的站点对应的MCS(Modulation and Coding Scheme,调制与编码策略)也不相同。考虑多个站点的MCS兼容的问题,结合2个、4个和8个站点的MCS,最终确定用于传输数据的数据子载波的数量。3个、5个、6个或7个站点的MCS分别与2个、4个和8个站点的MCS。以使最终确定的数据子载波的数量能够同时适用于2~8个站点的MCS。
当数据子载波的数量是202个时,适用于2个站点的场景,但不适用于4个站点和8个站点的场景;当数据子载波的数量是200个时,适用于2个站点和4个站点的场景,但不适用于8个站点的场景;当数据子载波是198个时,适用于2个站点的场景,但不适用于4个站点和8个站点的场景;当数据子载波是196个时,适用于2个站点和4个站点的场景,但不适用于8个站点的场景;当数据子载波是194个时,适用于2个站点的场景,但不适用于4个和8个站点的场景;当数据子载波是192个时,2、4和8个站点的场景均适用,因此,本实施例最终确定20MHz信道中有192个数据子载波。
当20MHz信道中的数据子载波的数量是192个时,频谱两端的空子载波和中间 的零子载波的总数为256-192-16=48个。为保证频谱的对称性,中间的零子载波数量可以为7个、9个或11个。当零子载波的数量为7个时,两端的空子载波分别为20个和21个;当零子载波的数量是9个时,两端的空子载波分别为19个和20个;当零子载波的数量是11个时,两端的空子载波分别为18个和19个。
在本发明的另一个实施例中,为了进一步提高频谱的利用率,可以在20MHz带宽的频谱模板允许的范围内减少空子载波的数量,中间零子载波的数量仍为7个;考虑到能够同时兼容2、4和8个站点的MCS,数据子载波的数量可以增加至208个,这样,两端空子载波的数量分别是12和13个。
确定20MHz带宽的信道中数据子载波的数量后,进一步将数据子载波的数量及资源块的数量,确定每个资源块所包含的数据子载波的数量,且保证每个资源块所包含的数据子载波的数量相等。每个资源块包含的数据子载波的分配情况分别为:
1)20MHz带宽的信道中数据子载波的数量是192个
当20MHz的频谱包含2个资源块时,每个资源块包含96个相邻的数据子载波;当20MHz的频谱包含4个资源块时,每个资源块包含48个相邻的数据子载波;当20MHz的频谱包含8个资源块时,每个资源块包含24个相邻的数据子载波;当20MHz的频谱包含16个资源块时,每个资源块包含12个相邻的数据子载波。
2)20MHz带宽的信道中数据子载波的数量是208个
当20MHz的频谱包含2个资源块时,每个资源块包含104个相邻的数据子载波;当20MHz的频谱包含4个资源块时,每个资源块包含52个相邻的数据子载波;当20MHz的频谱包含8个资源块时,每个资源块包含26个相邻的数据子载波;当20MHz的频谱包含16个资源块时,每个资源块包含13个相邻的数据子载波。
S113,接入点为各个所述资源块分配导频,且相邻的两个导频之间至少间隔12个数据子载波。
IEEE802.11ac标准规定导频最多为16个,20MHz带宽的频谱中频谱的数量可以少于16个,例如,2个站点时,可以配置8个导频。
下面以配置16给导频为例,若所述资源块的数量是16个,为每个所述资源块分配1个导频;若所述资源块的数量是8个,为每个所述资源块分配2个导频;若所述资源块的数量是4个,为每个所述资源块分配4个导频;若所述资源块的数量是2个时,为每个所述资源块分配8个导频。
请参见图3,示出了本发明实施例一种资源块的数据子载波和导频的分配示意图,本实施例中20MHz带宽的信道中包含192个数据子载波和16个导频,如图3所示, 包括以下几种分配方式:
资源块数量为2个时,每个资源块包含96个数据子载波和8个导频;资源块数量为4个时,每个资源块包含48个数据子载波和4个导频;资源块数量为8个时,每个资源块包含24个数据子载波和2个导频;资源块数量为16个时,每个资源块包含12个数据子载波和1个导频。
请参见图4,示出了本发明实施例另一种资源块的数据子载波和导频的分配示意图,本实施例中20MHz带宽的信道中包含208个数据子载波和16个导频,如图3所示,包括以下几种分配方式:
资源块数量为2个时,每个资源块包含104个数据子载波和8个导频;资源块数量为4个时,每个资源块包含52个数据子载波和4个导频;资源块数量为8个时,每个资源块包含26个数据子载波和2个导频;资源块数量为16个时,每个资源块包含13个数据子载波和1个导频。
确定每个资源块分配导频的数量后,进一步确定每个资源块中导频的具体位置,考虑到信道的相干性,两个相邻的导频之间至少间隔12个数据子载波时,两个信道之间的相干性较小。
例如,资源块的数量是16个,为每个资源块分配1个导频,且每个所述资源块包含12个数据子载波时,所述接入点将导频配置在所述资源块的中间,且在所述导频两侧分别设置有6个数据子载波;
例如,资源块的数量是8个,每个所述资源块包含24个数据子载波,且每个资源块分配2个导频时,这2个导频分别是第一导频和第二导频。在所述第一导频和所述第二导频之间设置有12个数据子载波,所述第一导频远离所述第二导频的一侧设置有6个数据子载波,所述第二导频远离所述第一导频的一侧设置有6个数据子载波;
例如,资源块的数量是8个,每个所述资源块包含26个数据子载波,且每个资源块分配2个导频时,这2个导频分别是第三导频和第四导频。在所述第三导频和所述第四导频之间设置有12个数据子载波,所述第三导频远离所述第四导频的一侧设置有7个数据子载波,所述第四导频远离所述第三导频的一侧设置有7个数据子载波。或者,在第三导频和第四导频之间设置14个数据子载波,第三导频远离第四导频的一侧设置有6个数据子载波,第四导频远离第三导频的一侧也设置有6个数据子载波。
本发明实施例提供的上行业务传输方法,根据不同数量的站点确定信道的资源块的参数,即最终配置的资源块能够适用于多个站点,以实现多个站点同时传输上行信息。而且,本发明实施例提供的频谱能够适用于1~8个站点对应的MCS表,从而能 够根据站点数量灵活划分资源块。而现有的频谱仅适用于一种数量的站点对应的MCS表,例如,仅适用于2个,或3个站点对应的MCS表。
请参见图5,示出了利用图1所示的方法得到的一种20MHz带宽的频谱结构示意图,如图5所示,每个20MHz带宽的信道的频谱包含256个子载波,且相邻的资源块之间没有空子载波。
每个20MHz带宽的信道的频谱包含192个数据子载波,中间零频位置包含11个零子载波;两端总共设置37个空子载波,其中,一端为19个,另一端为18个。
将192个数据子载波平均划分成8个资源块,每个资源块包含24个数据子载波。每个资源块分配2个导频,例如,资源块1中频点-103和频点-90为该资源块的导频。频谱中相邻两个导频之间至少间隔12个数据子载波。
优选地,为了使接入点在调度资源块时,能够为用户自由分配资源块,将资源块设计成对称结构。如图5所示,每个资源块中的两个导频关于该资源块的中间位置对称,假设每个资源块包括第一导频(例如,资源块2中的频点-77)和第二导频(例如,资源块2中频点-64)之间设置有12个数据子载波,且第一导频远离第二导频的一侧设置有6个数据子载波,第二导频远离第一导频的一侧设置有6个数据子载波。
图6示出了示出了利用图1所示的方法得到的另一种20MHz带宽的信道的频谱结构示意图,如图6所示,每个20MHz带宽的信道的频谱包含256个子载波,且相邻的资源块之间没有空子载波。
为了进一步提高子载波的利用率,将每个20MHz带宽的信道包含的数据子载波的数量增加至208个,7个零子载波,25个空子载波,其中,一端为13个,另一端为12个。
将208个数据子载波平均划分成8个资源块,每个资源块包含26个数据子载波。每个资源块分配2个导频,例如,资源块1中频点-108和频点-95为该资源块的导频。频谱中相邻两个导频之间至少间隔12个数据子载波,且第一导频(频点-108)远离第二导频(频点-95)的一侧设置有7个数据子载波,第二导频远离第一导频的一侧设置有7个数据子载波。。资源块2中频点-80和频点-67为该资源块的导频,这两个导频之间间隔12个数据子载波。
优选地,为了使接入点在调度资源块时,能够为用户自由分配资源块,将资源块设计成对称结构。
本实施例提供的频谱结构,每个资源块中数据子载波的数量增加至26个,提高了频谱利用率。
请参见图7,示出了利用图1所示的方法得到的一种20MHz带宽的频谱结构示意图,如图7所示,每个20MHz带宽的信道包含256个子载波,且相邻的资源块之间没有空子载波。
每个20MHz带宽的信道包含192个数据子载波,11个零子载波,以及37个空子载波,其中,一端为19个,另一端为18个。
将192个数据子载波平均划分成16个资源块,每个资源块包含12个数据子载波。每个资源块分配1个导频,例如,资源块1中频点-103为该资源块的导频,资源块2中频点-90为该资源块的导频。频谱中相邻两个导频之间至少间隔12个数据子载波。每个资源块中导频两侧的数据子载波均为6个,两个相邻的导频之间间隔12个数据子载波。
在确定好20MHz带宽的信道的资源块的具体划分情况后,接入点为各个站点分配资源块。
图1所示实施例中接入点为各个站点分配传输上行信息的资源块时,可以通过步骤11)~步骤13)实现:
步骤11),接入点根据站点的信噪比,确定所述站点传输上行信息需要的导频数量。
当所述站点的信噪比低于预设值时,所述接入点确定每个站点传输数据需要至少4个导频;其中,所述预设值可以根据实际情况需要自行设定。
当所述站点的信噪比不低于所述预设值时,所述接入点确定每个站点传输数据需要至少2个导频。
步骤12),接入点根据每个所述站点需要的导频数量及资源块包含的导频数量,确定每个站点需要的资源块的目标数量。
为每个站点分配的资源块所包含的导频总数不小于所述站点传输数据需要的导频数量,且为同时接入所述信道的全部站点所分配的资源块的总数等于所述信道所包含的资源块的总数。
步骤13),接入点为每个所述站点分配所述目标数量的资源块。
当站点传输数据的信噪比低于所述预设值时,每个站点需要4个导频。图5或图6所示的频谱结构,20MHz带宽的信道最多可以允许4个站点同时接入,此时,接入点可以根据各个站点的信道估计信息为每个站点分配两个资源块。图7所示的频谱结构,最多可以允许4个站点同时接入20MHz带宽的信道,此时,接入点可以根据各 个站点的信道估计信息为每个站点分配两个资源块。
当然,图5和图6所示的子载波分配,也适用于2个或3个站点的场景,可以为每个站点灵活分配资源块,只要保证为各个站点所分配的资源块包含的导频总数不低于4个,且各个站点所分配的资源块的总数为20MHz带宽的信道所包含的资源块的数量即可。
例如,当应用于2个站点的场景时,为每个站点自由分配4个资源块;或者,为其中1个站点分配5个资源块,另一个站点分配3个资源块;或者,为其中一个站点分配6个资源块,另外一个站点分配2个资源块;
当应用于3个站点的场景时,可以为其中的2个站点各分配3个资源块,为另一站点分配2个资源块;或者,为其中的2个站点各分配2个资源块,为剩余的一个站点分配4个资源块。
同理,图7所示的子载波分配也适用于2个或3个站点的场景,可以按照上述原则为每个站点灵活分配资源块,此处不再一一描述。
当站点传输数据的信噪比高于所述预设值时,每个站点可以只需要2个导频,这样,图5或图6所示的频谱结构,最多可以允许8个站点同时接入20MHz带宽的信道,此时,接入点可以根据各个站点的信道估计信息为每个站点分配一个资源块。
图7所示的频谱结构,最多可以允许8个站点同时接入信道,此时,接入点可以根据信道的环境为每个站点分配两个资源块。
请参见图8,示出了本发明实施例一种信道分配指示信息的消息格式示意图,如图8所示,该信道分配指示信息包括:Frame Control(控制域)、Duration(宽度)域、RA(接收地址)域、TA(Transmitter Address,发送地址)域、AID MAP(关联标识图)域、Sub-channel type(子信道类型)域、Sub-channel number(子信道序号)域、Total number of sub-channel(子信道总数)域和FCS(校验)域。
其中,AID MAP域用于存储发送上行信息的站点的AID。
Sub-channel type域用于表征20MHz的信道划分的子信道(即资源块)的数量,用两位二进制数表示,例如,二进制数00表示将20MHz的子信道划分成2个资源块,每个资源块的带宽为10MHz;二进制数01表示将20MHz的子信道划分成4个资源块,每个资源块的带宽为5MHz;二进制数10表示将20MHz的子信道划分成8个资源块,每个资源块的带宽为2.5MHz;二进制数11表示将20MHz的子信道划分成16个资源块,每个资源块的带宽为1.25MHz。
Sub-channel number域用于表征为该站点分配的资源块的序号,用16个Bit表示, 例如,二进制数0000表示资源块的序号为1,二进制数0001表示资源块的序号为2,依此类推,二进制数0111表示第8个资源块,二进制数1111表示第16个资源块。16个bit可以表示4个资源块的序号,即此种格式决定每个站点最多可以分配4个资源块,例如,二进制数0000 1000 0010 0011表示该站点使用的资源块的序号依次为1、9、3和4这四个资源块。
Total number of sub-channel域表示为该站点分配的资源块的个数,例如,二进制数000001表示分配了1个资源块。
所述信道分配指示信息中的Sub-channel number域和Total number of sub-channel域的内容共同表示了为该站点分配的资源块的具体位置。
相应于上述的应用于OFDMA系统的上行业务传输方法实施例,本发明还提供了应用于OFDMA系统的上行业务传输装置实施例。
请参见图9,示出了本发明实施例一种上行业务传输装置的框图,如图9所示,该装置可以包括:资源块划分单元110、资源块分配单元120和发送单元130。
所述资源块划分单元110,用于根据接入所述接入点的站点的数量,将所述接入点所在的整个信道划分成多个资源块。
在本发明的一个实施例中,所述资源块划分单元包括:资源块数量确定子单元、数据子载波分配子单元和导频分配子单元。
所述资源块数量确定子单元,用于根据所述站点的数量确定所述接入点所在的整个信道中资源块的数量。
当站点的数量为8个时,所述接入点所在的整个信道中资源块的数量为8个或16个;当站点的数量为4个时,所述接入点所在的整个信道中资源块的数量为4个、8个或16个;当站点的数量为2个时,所述接入点所在的整个信道中资源块的数量为2个、4个、8个或16个。
所述数据子载波分配子单元,用于根据所述资源块的数量及所述接入点所在的整个信道中数据子载波的数量,将所述数据子载波平均分配到各个所述资源块中,其中,所述接入点所在的20MHz信道包含的256个子载波中数据子载波的数量包括192个、208个或其它预设数量。
当每个20MHz带宽的信道所包含192个数据子载波时,当资源块的数量为16个时,为每个资源块分配12个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配24个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分 配48个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配96个相邻的数据子载波;
当每个20MHz带宽的信道包含208个数据子载波时,当资源块的数量为16个时,为每个资源块分配13个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配26个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分配52个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配104个相邻的数据子载波。
所述导频分配子单元,用于为各个所述资源块分配导频,且相邻的两个导频之间至少间隔12个数据子载波。
首先,确定每个资源块包含的导频的数量当所述资源块的数量是16个时,为每个所述资源块分配1个导频;当所述资源块的数量是8个时,为每个所述资源块分配2个导频;当所述资源块的数量是4个时,为每个所述资源块分配4个导频;当所述资源块的数量是2个时,为每个所述资源块分配8个导频。
确定每个资源块所包含的导频数量后,进一步确定每个资源块中导频的位置,当每个所述资源块包含12个数据子载波时,所述接入点将导频配置在所述资源块的中间,且在所述导频两侧分别设置有6个数据子载波;
当每个所述资源块包含24个数据子载波时,所述接入点配置第一导频和第二导频,并在所述第一导频和所述第二导频之间设置有12个数据子载波,所述第一导频远离所述第二导频的一侧设置有6个数据子载波,所述第二导频远离所述第一导频的一侧设置有6个数据子载波;
当每个所述资源块包含26个数据子载波时,所述接入点配置第三导频和第四导频,并在所述第三导频和所述第四导频之间设置有12个数据子载波,所述第三导频远离所述第四导频的一侧设置有7个数据子载波,所述第四导频远离所述第三导频的一侧设置有7个数据子载波。
所述资源块分配单元120,用于根据各个所述站点的信道估计信息为各个所述站点分配传输上行信息的资源块。
在本发明的一个实施例中,所述资源块分配单元包括:第一确定子单元、第二确定子单元和分配子单元。
所述第一确定子单元,用于根据站点的信噪比,确定所述站点传输上行信息需要的导频数量。
当所述站点的信噪比低于预设值时,所述接入点确定每个站点传输数据需要至少 4个导频;
当所述站点的信噪比不低于所述预设值时,所述接入点确定每个站点传输数据需要至少2个导频。
所述第二确定子单元,用于根据每个所述站点需要的导频数量及资源块包含的导频数量,确定每个站点需要的资源块的目标数量。
为每个站点分配的资源块所包含的导频总数不小于所述站点传输数据需要的导频数量,且为同时接入所述信道的全部站点所分配的资源块的总数等于所述信道所包含的资源块的总数。
所述分配子单元,用于为每个所述站点分配所述目标数量的资源块。
所述发送单元130,用于分别向各个所述站点发送信道分配指示信息,所述信道分配指示信息用于指示为各个所述站点分配的资源块的信息,以使各个所述站点利用自身对应的资源块并行运行。
本发明实施例提供的上行业务传输装置,接入点根据接入自身的站点的数量来划分整个信道的资源块,然后,根据各个站点的信道估计信息,为各个站点分配用于传输上行信息的资源块,并分别向各个站点发送信道分配指示信息,以使各个站点依据所述信道分配指示信息找到自身对应的资源块,并利用所述资源块传输上行信息,从而在OFDMA系统中,实现多站点并行传输上行信息,即划分的资源块能够同时适用于多个站点。
相应于上述的上行业务传输装置实施例,本发明还提供一种无线局域网的接入点。
请参见图10,示出了本发明实施例一种无线局域网的接入点的框图,如图10所示,该接入点包括:处理器210和发送器220,所述处理器210与所述发送器220连接。
所述处理器210,用于根据接入所述接入点的站点的数量,将所述接入点所在的整个信道划分成多个资源块。
所述处理器具体用于:根据所述站点的数量确定所述接入点所在的整个信道中资源块的数量;根据所述资源块的数量及所述接入点所在的整个信道中数据子载波的数量,将所述数据子载波平均分配到各个所述资源块中,其中,所述接入点所在的20MHz信道包含的256个子载波中数据子载波的数量包括192个、208个或其它预设数量;为各个所述资源块分配导频,且相邻的两个导频之间至少间隔12个数据子载波。
根据站点的数量确定资源块的数量:当站点的数量为8个时,所述接入点所在的整个信道中资源块的数量为8个或16个;当站点的数量为4个时,定所述接入点所在的整个信道中资源块的数量为4个、8个或16个;当站点的数量为2个时,所述接入点所在的整个信道中资源块的数量为2个、4个、8个或16个。
根据数据子载波的数量和资源块的数量划分资源块:当每个20MHz带宽的信道所包含192个数据子载波时,当资源块的数量为16个时,为每个资源块分配12个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配24个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分配48个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配96个相邻的数据子载波;
当每个20MHz带宽的信道包含208个数据子载波时,当资源块的数量为16个时,为每个资源块分配13个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配26个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分配52个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配104个相邻的数据子载波。
确定每个资源块包含的导频的数量:当所述资源块的数量是16个时,为每个所述资源块分配1个导频;当所述资源块的数量是8个时,为每个所述资源块分配2个导频;当所述资源块的数量是4个时,为每个所述资源块分配4个导频;当所述资源块的数量是2个时,为每个所述资源块分配8个导频。
确定每个资源块中包含的导频的数量后,进一步确定每个资源块中导频的位置:
当每个所述资源块包含12个数据子载波时,将导频配置在所述资源块的中间,且在所述导频两侧分别设置有6个数据子载波;
当每个所述资源块包含24个数据子载波时,配置第一导频和第二导频,并在所述第一导频和所述第二导频之间设置有12个数据子载波,所述第一导频远离所述第二导频的一侧设置有6个数据子载波,所述第二导频远离所述第一导频的一侧设置有6个数据子载波;
当每个所述资源块包含26个数据子载波时,配置第三导频和第四导频,并在所述第三导频和所述第四导频之间设置有12个数据子载波,所述第三导频远离所述第四导频的一侧设置有7个数据子载波,所述第四导频远离所述第三导频的一侧设置有7个数据子载波。
所述处理器210,还用于根据各个所述站点的信道估计信息为各个所述站点分配传输上行信息的资源块。
根据站点的信噪比,确定所述站点传输上行信息需要的导频数量。当所述站点的信噪比低于预设值时,确定每个站点传输数据需要至少4个导频;当所述站点的信噪比不低于所述预设值时,确定每个站点传输数据需要至少2个导频。
根据每个所述站点需要的导频数量及资源块包含的导频数量,确定每个站点需要的资源块的目标数量。为每个站点分配的资源块所包含的导频总数不小于所述站点传输数据需要的导频数量,且为同时接入所述信道的全部站点所分配的资源块的总数等于所述信道所包含的资源块的总数。
为每个所述站点分配所述目标数量的资源块。
所述发送器220,用于分别向各个所述站点发送信道分配指示信息,所述信道分配指示信息用于指示为各个所述站点分配的资源块的信息,以使各个所述站点利用自身对应的资源块并行运行。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的装置及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本发明可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本发明,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语 句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本发明的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (27)

  1. 一种上行业务传输方法,其特征在于,应用于正交频分多址接入OFDMA系统中,所述方法包括:
    无线局域网的接入点根据接入所述接入点的站点的数量,将所述接入点所在的整个信道划分成多个资源块;
    所述接入点根据所述站点的信道估计信息为各个所述站点分配传输上行信息的资源块;
    所述接入点分别向各个所述站点发送信道分配指示信息,所述信道分配指示信息用于指示为各个所述站点分配的资源块的信息。
  2. 根据权利要求1所述的方法,其特征在于,无线局域网的接入点根据接入所述接入点的站点的数量,将所述接入点所在的整个信道划分成多个资源块,包括:
    所述接入点根据所述站点的数量确定所述接入点所在的整个信道中资源块的数量;
    所述接入点根据所述资源块的数量及所述接入点所在的整个信道中数据子载波的数量,将所述数据子载波平均分配到各个所述资源块中,其中,所述接入点所在的20MHz信道包含的256个子载波中数据子载波的数量包括192个、208个或其它预设数量;
    所述接入点为各个所述资源块分配导频,且相邻的两个导频之间至少间隔12个数据子载波。
  3. 根据权利要求2所述的方法,其特征在于,所述接入点根据所述站点的数量确定所述接入点所在的整个信道中资源块的数量包括:
    当站点的数量为8个时,所述接入点所在的整个信道中资源块的数量为8个或16个;
    当站点的数量为4个时,所述接入点所在的整个信道中资源块的数量为4个、8个或16个;
    当站点的数量为2个时,所述接入点所在的整个信道中资源块的数量为2个、4个、8个或16个。
  4. 根据权利要求3所述的方法,其特征在于,在20MHz的信道中,所述接入点为各个所述资源块分配导频,包括:
    当所述资源块的数量是16个时,为每个所述资源块分配1个导频;
    当所述资源块的数量是8个时,为每个所述资源块分配2个导频;
    当所述资源块的数量是4个时,为每个所述资源块分配4个导频;
    当所述资源块的数量是2个时,为每个所述资源块分配8个导频。
  5. 根据权利要求3所述的方法,其特征在于,所述接入点根据所述资源块的数量及所述接入点所在的整个信道中数据子载波的数量,将所述数据子载波平均分配到各个资源块中,包括:
    当每个20MHz带宽的信道所包含192个数据子载波时,当资源块的数量为16个时,为每个资源块分配12个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配24个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分配48个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配96个相邻的数据子载波;
    当每个20MHz带宽的信道包含208个数据子载波时,当资源块的数量为16个时,为每个资源块分配13个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配26个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分配52个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配104个相邻的数据子载波。
  6. 根据权利要求5所述的方法,其特征在于,所述接入点为各个所述资源块分配导频,且相邻的两个导频之间至少间隔12个数据子载波,包括:
    当每个所述资源块包含12个数据子载波时,所述接入点将导频配置在所述资源块的中间,且在所述导频两侧分别设置有6个数据子载波;
    当每个所述资源块包含24个数据子载波时,所述接入点配置第一导频和第二导频,并在所述第一导频和所述第二导频之间设置有12个数据子载波,所述第一导频远离所述第二导频的一侧设置有6个数据子载波,所述第二导频远离所述第一导频的一侧设置有6个数据子载波;
    当每个所述资源块包含26个数据子载波时,所述接入点配置第三导频和第四导频,并在所述第三导频和所述第四导频之间设置有12个数据子载波,所述第三导频远离所述第四导频的一侧设置有7个数据子载波,所述第四导频远离所述第三导频的一侧设置有7个数据子载波。
  7. 根据权利要求1所述的方法,其特征在于,所述接入点为各个所述站点分配传输上行信息的资源块包括:
    所述接入点根据站点的信噪比,确定所述站点传输上行信息需要的导频数量;
    所述接入点根据每个所述站点需要的导频数量及资源块包含的导频数量,确定每个站点需要的资源块的目标数量;
    所述接入点为每个所述站点分配所述目标数量的资源块。
  8. 根据权利要求7所述的方法,其特征在于:所述接入点根据站点的信噪比,确 定所述站点传输上行信息需要的导频数量,包括:
    当所述站点的信噪比低于预设值时,所述接入点确定每个站点传输数据需要至少4个导频;
    当所述站点的信噪比不低于所述预设值时,所述接入点确定每个站点传输数据需要至少2个导频。
  9. 根据权利要求7所述的方法,其特征在于,所述接入点根据每个所述站点需要的导频数量及资源块包含的导频数量,确定每个站点需要的资源块的目标数量,包括:
    为每个站点分配的资源块所包含的导频总数不小于所述站点传输数据需要的导频数量,且为同时接入所述信道的全部站点所分配的资源块的总数等于所述信道所包含的资源块的总数。
  10. 一种无线局域网的接入点,其特征在于,应用于正交频分多址接入OFDMA系统中,所述接入点包括:处理器,以及与所述处理器连接的发送器;
    所述处理器,用于根据接入所述接入点的站点的数量,将所述接入点所在的整个信道划分成多个资源块;以及,用于根据各个所述站点的信道估计信息为各个所述站点分配传输上行信息的资源块;
    所述发送器,用于分别向各个所述站点发送信道分配指示信息,所述信道分配指示信息用于指示为各个所述站点分配的资源块的信息,以使各个所述站点利用自身对应的资源块并行运行。
  11. 根据权利要求10所述的无线局域网的接入点,其特征在于,所述处理器具体用于:
    根据所述站点的数量确定所述接入点所在的整个信道中资源块的数量;
    根据所述资源块的数量及所述接入点所在的整个信道中数据子载波的数量,将所述数据子载波平均分配到各个所述资源块中,其中,所述接入点所在的20MHz信道包含的256个子载波中数据子载波的数量包括192个、208个或其它预设数量;
    为各个所述资源块分配导频,且相邻的两个导频之间至少间隔12个数据子载波。
  12. 根据权利要求11所述的无线局域网的接入点,其特征在于,所述处理器用于根据站点的数量确定所述接入点所在的整个信道中资源块的数量时,具体用于:
    当站点的数量为8个时,所述接入点所在的整个信道中资源块的数量为8个或16个;
    当站点的数量为4个时,定所述接入点所在的整个信道中资源块的数量为4个、8个或16个;
    当站点的数量为2个时,所述接入点所在的整个信道中资源块的数量为2个、4个、8个或16个。
  13. 根据权利要求12所述的无线局域网的接入点,其特征在于,在20MHz的信道中,所述处理器用于为各个所述资源块分配导频,具体用于:
    当所述资源块的数量是16个时,为每个所述资源块分配1个导频;
    当所述资源块的数量是8个时,为每个所述资源块分配2个导频;
    当所述资源块的数量是4个时,为每个所述资源块分配4个导频;
    当所述资源块的数量是2个时,为每个所述资源块分配8个导频。
  14. 根据权利要求12所述的无线局域网的接入点,其特征在于,所述处理器用于根据所述资源块的数量及所述接入点所在的整个信道中数据子载波的数量,将所述数据子载波平均分配到各个资源块中,具体用于:
    当每个20MHz带宽的信道所包含192个数据子载波时,当资源块的数量为16个时,为每个资源块分配12个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配24个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分配48个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配96个相邻的数据子载波;
    当每个20MHz带宽的信道包含208个数据子载波时,当资源块的数量为16个时,为每个资源块分配13个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配26个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分配52个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配104个相邻的数据子载波。
  15. 根据权利要求14所述的无线局域网的接入点,其特征在于,所述处理器用于为各个所述资源块分配导频,且相邻的两个导频之间至少间隔12个数据子载波,具体用于:
    当每个所述资源块包含12个数据子载波时,将导频配置在所述资源块的中间,且在所述导频两侧分别设置有6个数据子载波;
    当每个所述资源块包含24个数据子载波时,配置第一导频和第二导频,并在所述第一导频和所述第二导频之间设置有12个数据子载波,所述第一导频远离所述第二导频的一侧设置有6个数据子载波,所述第二导频远离所述第一导频的一侧设置有6个数据子载波;
    当每个所述资源块包含26个数据子载波时,配置第三导频和第四导频,并在所述第三导频和所述第四导频之间设置有12个数据子载波,所述第三导频远离所述第四导频的一侧设置有7个数据子载波,所述第四导频远离所述第三导频的一侧设置有7个数据子载波。
  16. 根据权利要求10所述的无线局域网的接入点,其特征在于,所述处理器用于 根据各个所述站点的信道估计信息为各个所述站点分配传输上行信息的资源块,具体用于:
    根据站点的信噪比,确定所述站点传输上行信息需要的导频数量;
    根据每个所述站点需要的导频数量及资源块包含的导频数量,确定每个站点需要的资源块的目标数量;
    为每个所述站点分配所述目标数量的资源块。
  17. 根据权利要求16所述的无线局域网的接入点,其特征在于:所述处理器用于根据站点的信噪比,确定所述站点传输上行信息需要的导频数量,具体用于:
    当所述站点的信噪比低于预设值时,确定每个站点传输数据需要至少4个导频;
    当所述站点的信噪比不低于所述预设值时,确定每个站点传输数据需要至少2个导频。
  18. 根据权利要求16所述的无线局域网的接入点,其特征在于,所述处理器用于根据每个所述站点需要的导频数量及资源块包含的导频数量,确定每个站点需要的资源块的目标数量,具体用于:
    为每个站点分配的资源块所包含的导频总数不小于所述站点传输数据需要的导频数量,且为同时接入所述信道的全部站点所分配的资源块的总数等于所述信道所包含的资源块的总数。
  19. 一种上行业务传输装置,其特征在于,应用于正交频分多址接入OFDMA系统中,所述装置包括:
    资源块划分单元,用于根据接入所述接入点的站点的数量,将所述接入点所在的整个信道划分成多个资源块;
    资源块分配单元,用于根据各个所述站点的信道估计信息为各个所述站点分配传输上行信息的资源块;
    发送单元,用于分别向各个所述站点发送信道分配指示信息,所述信道分配指示信息用于指示为各个所述站点分配的资源块的信息,以使各个所述站点利用自身对应的资源块并行运行。
  20. 根据权利要求19所述的装置,其特征在于,所述资源块划分单元包括:
    资源块数量确定子单元,用于根据所述站点的数量确定所述接入点所在的整个信道中资源块的数量;
    数据子载波分配子单元,用于根据所述资源块的数量及所述接入点所在的整个信道中数据子载波的数量,将所述数据子载波平均分配到各个所述资源块中,其中,所述接入点所在的20MHz信道包含的256个子载波中数据子载波的数量包括192个、208个或其它预设数量;
    导频分配子单元,用于为各个所述资源块分配导频,且相邻的两个导频之间至少间隔12个数据子载波。
  21. 根据权利要求20所述的装置,其特征在于,所述资源块数量确定子单元具体用于:
    当站点的数量为8个时,所述接入点所在的整个信道中资源块的数量为8个或16个;
    当站点的数量为4个时,所述接入点所在的整个信道中资源块的数量为4个、8个或16个;
    当站点的数量为2个时,所述接入点所在的整个信道中资源块的数量为2个、4个、8个或16个。
  22. 根据权利要求21所述的方法,其特征在于,在20MHz的信道中,所述导频分配子单元,具体用于:
    当所述资源块的数量是16个时,为每个所述资源块分配1个导频;
    当所述资源块的数量是8个时,为每个所述资源块分配2个导频;
    当所述资源块的数量是4个时,为每个所述资源块分配4个导频;
    当所述资源块的数量是2个时,为每个所述资源块分配8个导频。
  23. 根据权利要求21所述的装置,其特征在于,所述数据子载波分配子单元,具体用于:
    当每个20MHz带宽的信道所包含192个数据子载波时,当资源块的数量为16个时,为每个资源块分配12个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配24个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分配48个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配96个相邻的数据子载波;
    当每个20MHz带宽的信道包含208个数据子载波时,当资源块的数量为16个时,为每个资源块分配13个相邻的数据子载波;当资源块的数量为8个时,为每个资源块分配26个相邻的数据子载波;当资源块的数量为4个时,为每个资源块分配52个相邻的数据子载波;当资源块的数量为2个时,为每个资源块分配104个相邻的数据子载波。
  24. 根据权利要求23所述的装置,其特征在于,所述导频分配子单元,具体用于:
    当每个所述资源块包含12个数据子载波时,所述接入点将导频配置在所述资源块的中间,且在所述导频两侧分别设置有6个数据子载波;
    当每个所述资源块包含24个数据子载波时,所述接入点配置第一导频和第二导频,并在所述第一导频和所述第二导频之间设置有12个数据子载波,所述第一导频远离所 述第二导频的一侧设置有6个数据子载波,所述第二导频远离所述第一导频的一侧设置有6个数据子载波;
    当每个所述资源块包含26个数据子载波时,所述接入点配置第三导频和第四导频,并在所述第三导频和所述第四导频之间设置有12个数据子载波,所述第三导频远离所述第四导频的一侧设置有7个数据子载波,所述第四导频远离所述第三导频的一侧设置有7个数据子载波。
  25. 根据权利要求19所述的装置,其特征在于,所述资源块分配单元,包括:
    第一确定子单元,用于根据站点的信噪比,确定所述站点传输上行信息需要的导频数量;
    第二确定子单元,用于根据每个所述站点需要的导频数量及资源块包含的导频数量,确定每个站点需要的资源块的目标数量;
    分配子单元,用于为每个所述站点分配所述目标数量的资源块。
  26. 根据权利要求25所述的装置,其特征在于:所述第一确定子单元,具体用于:
    当所述站点的信噪比低于预设值时,所述接入点确定每个站点传输数据需要至少4个导频;
    当所述站点的信噪比不低于所述预设值时,所述接入点确定每个站点传输数据需要至少2个导频。
  27. 根据权利要求25所述的装置,其特征在于,所述第二确定子单元,具体用于:
    为每个站点分配的资源块所包含的导频总数不小于所述站点传输数据需要的导频数量,且为同时接入所述信道的全部站点所分配的资源块的总数等于所述信道所包含的资源块的总数。
PCT/CN2014/088394 2014-10-11 2014-10-11 上行业务传输方法、装置及无线局域网的接入点 WO2016054821A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480082600.5A CN106797568B (zh) 2014-10-11 2014-10-11 上行业务传输方法、装置及无线局域网的接入点
EP14903571.9A EP3197196B1 (en) 2014-10-11 2014-10-11 Uplink service transmission method and apparatus, and access point of wireless local area network
PCT/CN2014/088394 WO2016054821A1 (zh) 2014-10-11 2014-10-11 上行业务传输方法、装置及无线局域网的接入点
US15/483,811 US10219258B2 (en) 2014-10-11 2017-04-10 Uplink service transmission method and apparatus and wireless local area network access point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088394 WO2016054821A1 (zh) 2014-10-11 2014-10-11 上行业务传输方法、装置及无线局域网的接入点

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/483,811 Continuation US10219258B2 (en) 2014-10-11 2017-04-10 Uplink service transmission method and apparatus and wireless local area network access point

Publications (1)

Publication Number Publication Date
WO2016054821A1 true WO2016054821A1 (zh) 2016-04-14

Family

ID=55652509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088394 WO2016054821A1 (zh) 2014-10-11 2014-10-11 上行业务传输方法、装置及无线局域网的接入点

Country Status (4)

Country Link
US (1) US10219258B2 (zh)
EP (1) EP3197196B1 (zh)
CN (1) CN106797568B (zh)
WO (1) WO2016054821A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160118842A (ko) * 2015-04-03 2016-10-12 한국전자통신연구원 Mimo를 이용한 통신 방법과 이를 수행할 수 있는 통신 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026577A (zh) * 2007-01-19 2007-08-29 北京邮电大学 在ofdma系统中保证非实时业务数据包时延稳定性的调度方法
CN101127576A (zh) * 2006-08-15 2008-02-20 中兴通讯股份有限公司 一种正交频分复用通信系统资源调度方法
CN101184318A (zh) * 2007-12-11 2008-05-21 广州杰赛科技股份有限公司 一种正交频分多址系统无线资源分配方法及其装置
CN102045761A (zh) * 2009-10-26 2011-05-04 中国移动通信集团公司 一种在中继系统中进行数据传输的方法和设备
US8270435B2 (en) * 2008-03-10 2012-09-18 Zte (Usa) Inc. Method and system for variable-sized resource block allocation within OFDMA communication systems

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221821B1 (ko) * 2006-04-21 2013-01-14 삼성전자주식회사 주파수 분할 다중 접속 시스템에서 자원 할당 정보 시그널링 방법
JP5633929B2 (ja) * 2008-03-19 2014-12-03 日本電気株式会社 無線通信システム、基地局、リソースブロック割当方法及びプログラム
US8194604B2 (en) * 2008-09-08 2012-06-05 Motorola Mobility, Inc. Wireless local area network
CN102685753B (zh) * 2011-03-07 2016-08-31 北京邮电大学 Lte保护频带的使用方法和装置
SG10201608339UA (en) * 2012-04-22 2016-11-29 Elta Systems Ltd Apparatus and methods for moving relay interference mitigation in mobile e.g. cellular communication networks
WO2014088271A1 (ko) * 2012-12-09 2014-06-12 엘지전자 주식회사 다중 셀 협력 통신 시스템에서 신호 송수신하는 방법 및 이를 위한 장치
KR102136288B1 (ko) * 2013-07-17 2020-07-22 삼성전자주식회사 무선 통신 시스템에서 채널 추정 방법 및 그 장치
CN103986566B (zh) * 2014-05-29 2017-11-24 上海华为技术有限公司 一种上行数据的发送方法、基站、用户设备及通信网络

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127576A (zh) * 2006-08-15 2008-02-20 中兴通讯股份有限公司 一种正交频分复用通信系统资源调度方法
CN101026577A (zh) * 2007-01-19 2007-08-29 北京邮电大学 在ofdma系统中保证非实时业务数据包时延稳定性的调度方法
CN101184318A (zh) * 2007-12-11 2008-05-21 广州杰赛科技股份有限公司 一种正交频分多址系统无线资源分配方法及其装置
US8270435B2 (en) * 2008-03-10 2012-09-18 Zte (Usa) Inc. Method and system for variable-sized resource block allocation within OFDMA communication systems
CN102045761A (zh) * 2009-10-26 2011-05-04 中国移动通信集团公司 一种在中继系统中进行数据传输的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3197196A4 *

Also Published As

Publication number Publication date
CN106797568B (zh) 2019-09-20
US20170215182A1 (en) 2017-07-27
EP3197196B1 (en) 2020-04-15
US10219258B2 (en) 2019-02-26
EP3197196A1 (en) 2017-07-26
CN106797568A (zh) 2017-05-31
EP3197196A4 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
US10567126B2 (en) System and method for WLAN OFDMA design of subcarrier groups and frame format
CN102256358B (zh) 一种数据传输和接收方法、装置及系统
WO2018228500A1 (zh) 一种调度信息传输方法及装置
US11184915B2 (en) Sidelink communication method, terminal and network equipment
KR101767021B1 (ko) 물리적 다운링크 제어 채널의 검색 공간의 매핑 방법 및 장치
WO2017035762A1 (zh) 资源分配方法及装置
US9031015B2 (en) Method and device for allocating downlink resource and receiving downlink data
EP3952185A1 (en) Method for transmission configuration indication of dmrs port and related apparatus, and storage medium
CN101998526B (zh) 控制信道映射的方法、控制信道检测的方法和装置
IL267415B (en) A method for transmitting data, a network device and a terminal device
CN108540985A (zh) 一种nr系统中pdsch与pdcch资源共享的方法
JP7407244B2 (ja) 帯域幅分割の構成方法及びネットワーク装置、端末
US20200177355A1 (en) Downlink Control Information Transmission Method, Apparatus, and System
CN103166896B (zh) Ofdm系统中基于子信道划分实现双向通信的传输方法
WO2012119441A1 (zh) 一种资源分配指示方法、装置和系统
WO2016054821A1 (zh) 上行业务传输方法、装置及无线局域网的接入点
CN110495119B (zh) 下行控制信道的配置方法及网络设备、终端
CN107534999B (zh) 一种数据传输方法及接入点、站点
AU2020234382B2 (en) Communications in spatial streams
CN105813141A (zh) 一种下行多用户传输方法和装置
CN106465405B (zh) 用于ofdma系统中的信道分配方法、装置和系统
CN107409385A (zh) 一种资源调度方法及设备
KR20160053835A (ko) 고효율 무선랜 통신 장치 및 고효율 무선랜 통신 방법
WO2014047897A1 (zh) 资源分配方法、设备和系统,资源获取方法及设备
CN116939838A (zh) 资源配置方法、通信装置及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014903571

Country of ref document: EP