WO2016054803A1 - 涡旋光束产生方法、器件及其制备方法 - Google Patents

涡旋光束产生方法、器件及其制备方法 Download PDF

Info

Publication number
WO2016054803A1
WO2016054803A1 PCT/CN2014/088293 CN2014088293W WO2016054803A1 WO 2016054803 A1 WO2016054803 A1 WO 2016054803A1 CN 2014088293 W CN2014088293 W CN 2014088293W WO 2016054803 A1 WO2016054803 A1 WO 2016054803A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
elliptical
low refractive
elliptical dielectric
index layer
Prior art date
Application number
PCT/CN2014/088293
Other languages
English (en)
French (fr)
Inventor
王健
杜竫
贺继方
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480081159.9A priority Critical patent/CN106575098B/zh
Priority to EP14903563.6A priority patent/EP3200028B1/en
Priority to PCT/CN2014/088293 priority patent/WO2016054803A1/zh
Publication of WO2016054803A1 publication Critical patent/WO2016054803A1/zh
Priority to US15/481,578 priority patent/US10101505B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0977Reflective elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/10Processes or apparatus for producing holograms using modulated reference beam
    • G03H1/12Spatial modulation, e.g. ghost imaging
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating

Definitions

  • the invention relates to the technical field of light modulation, in particular to a method and a device for generating a vortex beam and a preparation method thereof.
  • the beam can also carry angular momentum, which includes spin angular momentum (English: Spin Angular Momentum, referred to as SAM) and orbital angular momentum (English: Orbital Angular Momentum, abbreviation: OAM).
  • SAM spin angular momentum
  • OAM orbital angular momentum
  • SAM usually exhibits circular polarization in relation to the spin of a photon, and its value can be .
  • OAM is associated with a spiral phase wave.
  • Allen et al. discovered through experimental research a beam of spiral phase factor, the OAM carried by each photon is , the value is l times that of SAM, where Is the azimuth.
  • OAM applications have attracted widespread attention in the field of communications in recent years. Only two values with SAM Different, OAM It can be arbitrarily selected within (- ⁇ , + ⁇ ), and different OAMs are easy to distinguish, so the use of OAM communication can greatly improve communication capacity and spectral efficiency. For this reason, the generation and detection technology of vortex beams containing OAM has attracted more and more attention.
  • V-antenna array is used to generate a vortex beam.
  • the V antenna in the V antenna array is composed of a metal V-type structure and a silicon substrate, and the metal V-type structure is grown on the silicon substrate.
  • the incident light is irradiated onto the metal V antenna, surface plasma oscillation occurs, and the scattered light has a specific amplitude phase.
  • the amplitude phase of the scattered light is related to the arm length and the angle of the metal V antenna.
  • the size of the V antenna capable of generating a vortex beam is small, which is disadvantageous for process preparation.
  • the V antenna is a metal structure, the metal structure absorbs incident light, resulting in large loss.
  • the embodiment of the invention provides a method and a device for generating a vortex beam and a preparation method thereof.
  • the technical solution is as follows:
  • an embodiment of the present invention provides a vortex beam generating device, the device comprising:
  • a metal mirror a low refractive index layer overlying the metal mirror, the plurality of elliptical dielectric units embedded in the low refractive index layer, and a plurality of elliptical dielectric layers a plurality of elliptical dielectric cells arranged in an array, wherein a plurality of elliptical dielectric cells have parallel lines or coincident lines, and each of the elliptical dielectric cells has a major axis and a major axis greater than 50 nm.
  • the plurality of elliptical dielectric units have the same thickness, the low refractive index layer has a thickness greater than a thickness of the elliptical dielectric unit, and an outer surface of each of the elliptical dielectric units is flush with an outer surface of the low refractive index layer The outer surface of the elliptical dielectric unit and the outer surface of the low refractive index layer are both farther from the metal mirror.
  • the low refractive index layer has a refractive index that is less than a refractive index of the elliptical dielectric unit.
  • the metal mirror is a gold mirror, a silver mirror or an aluminum mirror, and the low refractive index layer is a polymethyl methacrylate layer or a SiO 2 layer,
  • the elliptical dielectric unit is a Si unit or a Si 3 N 4 unit.
  • the thickness of the metal mirror is greater than or equal to 100 nm
  • the thickness of the low refractive index layer is greater than or equal to 400 nm
  • the thickness of the elliptical dielectric unit is greater than or equal to 300 nm.
  • the center distance of any two of the elliptical dielectric units is greater than or equal to 1 ⁇ m.
  • the array size of the elliptical dielectric unit is 10 ⁇ 10.
  • an embodiment of the present invention further provides a method for fabricating a vortex beam generating device, the method comprising:
  • the straight axes of the dielectric unit are parallel or coincident, and the short axis and the long axis of each of the elliptical dielectric units are greater than 50 nm;
  • the low refractive index layer Forming a low refractive index layer on the etched dielectric layer, the low refractive index layer filling a void between the elliptical dielectric cells, and the low refractive index layer covering the elliptical dielectric cell, the low The thickness of the refractive index layer is greater than the elliptical dielectric unit, and the refractive index of the low refractive index layer is smaller than the refractive index of the elliptical dielectric unit;
  • a metal mirror is grown on the low refractive index layer.
  • the metal mirror is a gold mirror, a silver mirror or an aluminum mirror, and the low refractive index layer is a polymethyl methacrylate layer or a SiO 2 layer,
  • the elliptical dielectric unit is a Si unit or a Si 3 N 4 unit.
  • the thickness of the metal mirror is greater than or equal to 100 nm
  • the thickness of the low refractive index layer is greater than or equal to 400 nm
  • the thickness of the elliptical dielectric unit is greater than or equal to 300 nm.
  • the center distance of any two of the elliptical dielectric units is greater than or equal to 1 ⁇ m.
  • an embodiment of the present invention provides a vortex beam generating method, which is implemented by the vortex beam generating device according to any of the preceding claims, the method comprising:
  • the reflected light of the vortex beam generating device is separated by a polarization beam splitter or an analyzer to obtain a vortex beam.
  • the plurality of elliptical dielectric cells are arranged in an array by a low refractive index layer and a plurality of elliptical dielectric cells overlying the metal mirror, and the straight axes of the plurality of elliptical dielectric cells are parallel or coincident, that is, a plurality of elliptical
  • the dielectric unit has the same direction.
  • the polarization direction is perpendicular to the incident light, that is, the OAM beam is obtained; the dielectric material is used as the unit of the array, the absorption of the incident light is less, and the loss is small; in addition, the preparation method of the vortex beam generating device provided by the invention is simple and easy to produce. .
  • FIG. 1 is a schematic structural view of a vortex beam generating device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of a vortex beam generating device according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural view of a vortex beam generating device according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural view of a vortex beam generating device according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram showing relationship between a major axis size and a minor axis size of a vortex beam generating device according to Embodiment 2 of the present invention and an amplitude of a vortex beam;
  • FIG. 6 is a view showing a phase relationship between a major axis size and a minor axis size of a vortex beam generating device according to Embodiment 2 of the present invention.
  • FIG. 7 is a phase distribution diagram of a first-order vortex beam according to Embodiment 2 of the present invention.
  • FIG. 8 is a phase distribution diagram of a second-order vortex beam according to Embodiment 2 of the present invention.
  • FIG. 9 is a phase distribution diagram of a fourth-order vortex beam according to Embodiment 2 of the present invention.
  • Embodiment 10 is a phase distribution diagram of a nine-order vortex beam provided by Embodiment 2 of the present invention.
  • FIG. 11 is a flowchart of a method for preparing a vortex beam generating device according to Embodiment 3 of the present invention.
  • FIG. 12 is a flowchart of a method for preparing a vortex beam generating device according to Embodiment 4 of the present invention.
  • FIG. 13 is a schematic structural view of a vortex beam generating device after growing a dielectric layer according to Embodiment 4 of the present invention.
  • FIG. 14 is a schematic structural view of an vortex beam generating device after etching according to Embodiment 4 of the present invention.
  • FIG. 15 is a schematic structural view of a vortex beam generating device after growing a low refractive index layer according to Embodiment 4 of the present invention.
  • FIG. 16 is a schematic structural view of a vortex beam generating device after growing a metal mirror according to Embodiment 4 of the present invention.
  • FIG. 17 is a flowchart of a method for generating a vortex beam according to Embodiment 5 of the present invention.
  • FIG. 18 is a schematic diagram of an optical path according to Embodiment 5 of the present invention.
  • Embodiments of the present invention provide a vortex beam generating device.
  • the vortex beam generating device includes:
  • the dielectric units 103 are arranged in an array, and the lines of the long axes of the plurality of elliptical dielectric units 103 are parallel or coincident, and the short axis and the long axis of each of the elliptical dielectric units 103 are both larger than 50 nm.
  • the thickness of the plurality of elliptical dielectric units 103 is the same, the thickness of the low refractive index layer 102 is greater than the thickness of the elliptical dielectric unit 103, and the outer surface of each elliptical dielectric unit 103 is flush with the outer surface of the low refractive index layer 102, and the elliptical dielectric unit 103 The outer surface and the outer surface of the low refractive index layer 102 are both farther from the metal mirror 101.
  • the refractive index of the low refractive index layer 102 is smaller than the refractive index of the elliptical dielectric unit 103.
  • a plurality of elliptical dielectric cells are arranged in an array by a low refractive index layer and a plurality of elliptical dielectric cells covered on the metal mirror, and straight lines of the plurality of elliptical dielectric cells are parallel or coincident. That is, the directions of the plurality of elliptical dielectric units are the same, and when the incident light is irradiated on the vortex beam generating device, the resonance of the elliptical dielectric unit is caused, thereby changing the amplitude and phase of the reflected light, that is, the amplitude of a part of the reflected light.
  • the phase is modulated, and the polarization direction is perpendicular to the incident light, that is, the OAM beam is obtained; the dielectric material is used as the unit of the array, the absorption of the incident light is less, and the loss is small; in addition, the preparation method of the vortex beam generating device provided by the present invention Simple and easy to produce.
  • Embodiments of the present invention provide a vortex beam generating device.
  • the vortex beam generating device includes:
  • the dielectric units 203 are arranged in an array manner, and the lines of the long axes of the plurality of elliptical dielectric units 203 are parallel or coincident, and the short axis and the long axis of each of the elliptical dielectric units 203 are both larger than 50 nm.
  • the thickness of the plurality of elliptical dielectric units 203 is the same, and the thickness of the low refractive index layer 202 is greater than that of the elliptical
  • the thickness of the dielectric unit 203, the outer surface of each elliptical dielectric unit 203 is flush with the outer surface of the low refractive index layer 202, and the outer surface of the elliptical dielectric unit 203 and the outer surface of the low refractive index layer 202 are both distant from the metal mirror 201. Farther side.
  • the refractive index of the low refractive index layer 202 is smaller than the refractive index of the elliptical dielectric unit 203.
  • the refractive index of the low refractive index layer 202 is greater than or equal to 1, that is, the refractive index of the low refractive index layer 202 is not less than the refractive index of air.
  • the low refractive index layer 202 is a dielectric material layer.
  • the arrangement in an array manner means that the center distance of each elliptical dielectric unit 203 and the adjacent elliptical dielectric unit 203 is equal.
  • the center distance between each elliptical dielectric unit 203 and the adjacent elliptical dielectric unit 203 is equal, the distribution of the elliptical dielectric elements on the vortex beam generating device is ensured to be uniform, and the intensity of the modulated vortex beam is equalized.
  • the metal mirror 201 may be a gold mirror, a silver mirror or an aluminum mirror.
  • the metal mirror 201 may also be a mirror made of other metal capable of reflecting incident light.
  • the low refractive index layer 202 may be an organic high molecular polymer, such as a polymethylmethacrylate (PMMA) layer or a SiO 2 layer.
  • PMMA polymethylmethacrylate
  • SiO 2 layer a polymethylmethacrylate
  • the low refractive index layer 202 can also be other materials having a lower refractive index than the dielectric layer.
  • the elliptical dielectric unit 203 may be a Si unit or a Si 3 N 4 unit. Elliptical dielectric unit 203 can also be other materials having a higher refractive index than the low refractive index layer.
  • the elliptical dielectric unit is made of a dielectric material such that the vortex beam generating device absorbs incident light less than metal (the metal resonates with light), so that the loss of light is small.
  • the thickness of the metal mirror 201 is greater than or equal to 100 nm
  • the thickness of the low refractive index layer 202 is greater than or equal to 400 nm
  • the thickness of the elliptical dielectric unit 203 is greater than or equal to 300 nm.
  • the thickness of the metal mirror 201 is between 100 and 1000 nm
  • the thickness of the low refractive index layer 202 is between 400 and 2000 nm
  • the thickness of the elliptical dielectric unit 203 is between 300 and 1000 nm.
  • the array of elliptical dielectric cells 203 is a minimum of 10 x 10 to ensure that incident light can be modulated to produce a vortex beam.
  • the short axis and the long axis of the elliptical dielectric unit 203 are both greater than 50 nm. Since the size of the elliptical dielectric unit 203 is small and the resolution of the vortex beam generating device is high, the resolution of the vortex beam generated by the vortex beam generating device is high.
  • the center distance of any two elliptical dielectric units 203 is greater than or equal to 1 ⁇ m.
  • the center distance is between 1 and 2 ⁇ m. It is easy to know that the long axis of the elliptical dielectric unit is smaller than the center distance of the two elliptical dielectric units.
  • the modulated reflected light is emitted perpendicularly from the surface of the vortex beam generating device.
  • the polarization direction of the incident light can be adjusted to an angle with the straight line of the ellipse long axis before modulation, so that the incident light is modulated.
  • the modulated vortex beam is orthogonal to the polarization direction of the incident light, and the unmodulated reflected light has the same polarization state as the incident light, so the vortex beam is orthogonal to the polarization direction of the unmodulated reflected light.
  • the angle can be selected to be ⁇ 45°, and when the angle is ⁇ 45°, it is not only convenient to separate the vortex beam from the unmodulated reflected light, but also because the incident light is along the linear direction of the major axis and the minor axis of the ellipse.
  • the polarization components are the same, such that the reflected light is modulated to the same extent by the elliptical dielectric unit in the vortex beam generating device subjected to the two polarization components, and at this time, the reflected light energy is modulated to the maximum extent, that is, the modulated vortex beam
  • the phase range is large.
  • the modulation process of the incident light by the vortex beam generating device is specifically as follows: when the linearly polarized incident light is irradiated onto the elliptical dielectric unit, the resonance of the elliptical dielectric unit is caused, thereby changing the amplitude and phase of the reflected light.
  • the angle between the polarization direction of the incident light and the long axis of the elliptical dielectric unit has a limited influence on the phase range of the modulated vortex beam
  • the phase of the vortex beam modulated is mainly related to the length of the elliptical dielectric unit.
  • 5 and 6 show the relationship between the major axis size a and the minor axis size b and phase (P) of the elliptical dielectric unit and the major axis size a and the minor axis size b and the amplitude (A), which can be obtained by simulation. .
  • each elliptical dielectric unit is determined according to the phase distribution map of the vortex beam, that is, the size of each elliptical dielectric unit and the phase distribution map of the vortex beam to be generated.
  • the phase of the point corresponding to the position corresponds.
  • determining the size of each elliptical dielectric unit according to the phase distribution map of the vortex beam the following manner may be adopted: determining the phase distribution map according to the order of the vortex beam, for example, FIG. 7 to FIG.
  • 10 are first-order, second-order, Phase distribution diagram of the fourth-order and nine-order vortex beams; corresponding to the array according to the array of elliptical dielectric elements, for example, the array on the vortex beam generating device is 10 ⁇ 10, then the phase distribution of the vortex beam The figure is taken as an array 10 ⁇ 10; then the values of a and b corresponding to the phase of each point are respectively found, that is, the major axis a and the short axis of each elliptical dielectric unit in the array on the vortex beam generating device are obtained. Size b.
  • a value of a and b which can ensure the uniformity of the vortex beam amplitude is selected among the plurality of values, wherein the order of the vortex beam corresponds to the phase, L
  • the phase of the stepped vortex beam is 2L ⁇ .
  • each elliptical dielectric unit is the same, and the angle between the polarization direction of the incident light and the long axis of each elliptical dielectric unit can be ensured, so that the incident light is received by each elliptical dielectric unit.
  • the degree of modulation is equal, thus ensuring that the device designed for the a and b values selected by the vortex beam phase profile can produce a vortex beam.
  • the conversion rate of the Gaussian beam (incident light) of different wavelengths into a vortex beam is different.
  • the wavelength of the Gaussian beam changes from 1500 nm to 1600 nm
  • the conversion rate from the Gaussian beam to the vortex beam is higher than 60%.
  • the low refractive index layer 202 has a thickness of 150 nm
  • the conversion rate from the Gaussian beam to the OAM beam can reach 90%.
  • the vortex beam generating device further includes a silicon dioxide substrate overlying the outer surfaces of the plurality of elliptical dielectric cells 203, which can protect the device.
  • a plurality of elliptical dielectric cells are arranged in an array by a low refractive index layer and a plurality of elliptical dielectric cells covered on the metal mirror, and straight lines of the plurality of elliptical dielectric cells are parallel or coincident. That is, the directions of the plurality of elliptical dielectric units are the same, and when the incident light is irradiated on the vortex beam generating device, the resonance of the elliptical dielectric unit is caused, thereby changing the amplitude and phase of the reflected light, that is, the amplitude of a part of the reflected light.
  • the phase is modulated, and the polarization direction is perpendicular to the incident light, that is, the OAM beam is obtained; the dielectric material is used as the unit of the array, and the incident light is less absorbed and the loss is small; the elliptical dielectric unit has small size and high resolution; The existence of the rate layer, the low refractive index layer is equivalent to adding a propagation distance between the elliptical dielectric unit and the metal mirror.
  • the modulation probability of the elliptical dielectric unit increases the conversion rate of the incident light into the modulated light, so the vortex beam conversion rate of the vortex beam generating device is high, and the wavelength of the vortex beam generating device for the incident light The requirement is lower, and the available wavelength range is increased; in addition, the scroll beam generating device provided by the invention has a simple preparation process and is easy to produce.
  • Embodiments of the present invention provide a method for fabricating a vortex beam generating device. Referring to FIG. 11, the method includes:
  • Step 301 growing a dielectric layer on the substrate.
  • Step 302 etching a plurality of elliptical patterns on the dielectric layer to obtain an elliptical dielectric unit, the thickness of the etching is equal to the thickness of the dielectric layer, and the plurality of elliptical dielectric units are arranged in an array, and the long axes of the plurality of elliptical dielectric units are arranged.
  • the straight lines are parallel or coincident, and each of the elliptical dielectric units has a major axis and a major axis greater than 50 nm.
  • Step 303 growing a low refractive index layer on the etched dielectric layer, the low refractive index layer filling the gap between the elliptical dielectric units, and the low refractive index layer covering the elliptical dielectric unit, the low refractive index layer having a thickness larger than the elliptical dielectric unit The refractive index of the low refractive index layer is smaller than the refractive index of the elliptical dielectric unit.
  • Step 304 growing a metal mirror on the low refractive index layer.
  • a plurality of elliptical dielectric cells are arranged in an array by a low refractive index layer and a plurality of elliptical dielectric cells covered on the metal mirror, and straight lines of the plurality of elliptical dielectric cells are parallel or coincident. That is, the directions of the plurality of elliptical dielectric units are the same, and when the incident light is irradiated on the vortex beam generating device, the resonance of the elliptical dielectric unit is caused, thereby changing the amplitude and phase of the reflected light, that is, the amplitude of a part of the reflected light.
  • the phase is modulated, and the polarization direction is perpendicular to the incident light, that is, the OAM beam is obtained; the dielectric material is used as the unit of the array, the absorption of the incident light is less, and the loss is small; in addition, the preparation method of the vortex beam generating device provided by the present invention Simple and easy to produce.
  • Embodiments of the present invention provide a method for fabricating a vortex beam generating device. Referring to FIG. 12, the method includes:
  • Step 401 A dielectric layer is grown on the silicon dioxide substrate by a plasma enhanced chemical vapor deposition (PECVD) process.
  • PECVD plasma enhanced chemical vapor deposition
  • a dielectric layer 501 is grown on the silicon dioxide substrate 500.
  • the substrate may be other materials, but the refractive index of the substrate must be less than the refractive index of the dielectric layer.
  • the dielectric layer may be a Si layer or a Si 3 N 4 layer.
  • the dielectric layer can also be other materials having a higher refractive index than the low refractive index layer.
  • the thickness of the elliptical dielectric unit is greater than or equal to 300 nm.
  • the thickness of the elliptical dielectric unit is between 300 and 1000 nm.
  • the dielectric layer has a thickness of 400 nm.
  • Step 402 etching a plurality of elliptical patterns on the dielectric layer by electron beam exposure (English: Electron Beam Lithography, EBL) and Inductive Coupled Plasma (ICP) to obtain an elliptical dielectric.
  • the thickness of the etch is equal to the thickness of the dielectric layer, and the plurality of elliptical dielectric cells are arranged in an array manner, and the long axes of the plurality of elliptical dielectric cells are parallel or coincident, and the short and long axes of each elliptical dielectric unit Both are greater than 50 nm.
  • a plurality of elliptical dielectric cells 502 are obtained by etching the dielectric layer 501.
  • the arrangement according to the array means that the center distance of each elliptical dielectric unit and the adjacent elliptical dielectric unit are equal.
  • the center distance between each elliptical dielectric unit and the adjacent elliptical dielectric unit is equal, the distribution of the elliptical dielectric elements on the vortex beam generating device is ensured to be uniform, and the intensity of the modulated vortex beam is equalized.
  • the array of elliptical dielectric cells is at least 10 x 10 to ensure that the incident light can be modulated to produce a vortex beam.
  • Step 403 growing a low refractive index layer on the etched dielectric layer, the low refractive index layer filling the gap between the elliptical dielectric units, and the low refractive index layer covering the elliptical dielectric unit, the low refractive index layer having a thickness larger than the elliptical dielectric unit The refractive index of the low refractive index layer is smaller than the refractive index of the elliptical dielectric unit.
  • a low refractive index layer 503 is grown (eg, spin coated) on the etched elliptical dielectric cell 502.
  • the low refractive index layer 503 covers the plurality of elliptical dielectric cells 502 and is filled with a plurality of elliptical dielectrics. A gap between cells 502.
  • the refractive index of the low refractive index layer is greater than or equal to 1, that is, the refractive index of the low refractive index layer is not less than the refractive index of air.
  • the low refractive index layer is a dielectric material layer.
  • the low refractive index layer may be an organic high molecular polymer such as a PMMA layer or a SiO 2 layer.
  • the low refractive index layer may also be other materials having a lower refractive index than the dielectric layer.
  • the thickness of the low refractive index layer is greater than or equal to 400 nm.
  • the low refractive index layer has a thickness between 400 and 2000 nm.
  • the low refractive index layer has a thickness of 550 nm.
  • Step 404 growing a metal mirror on the low refractive index layer.
  • a metal mirror 504 is grown on the surface of the low refractive index layer 503.
  • the metal mirror may be a gold mirror, a silver mirror or an aluminum mirror.
  • the metal mirror can also be other metals that are capable of reflecting incident light.
  • the thickness of the metal mirror is greater than or equal to 100 nm. In order to facilitate manufacturing, The thickness of the metal mirror is between 100 and 1000 nm. Preferably, the metal mirror has a thickness of 100 nm.
  • the short axis and the long axis of the elliptical dielectric unit are both larger than 50 nm. Since the size of the elliptical dielectric unit is small and the resolution of the vortex beam generating device is high, the resolution of the vortex beam generated by the vortex beam generating device is high.
  • the center distance of any two elliptical dielectric units is greater than or equal to 1 ⁇ m. For ease of manufacturing, the center distance is between 1 and 2 ⁇ m. It is easy to know that the long axis of the elliptical dielectric unit is smaller than the center distance of the two elliptical dielectric units.
  • the size of the entire vortex beam generating device is related to the number of cell structures used.
  • the number of silicon elliptical dielectric cells is m ⁇ n
  • the entire vortex beam generating device has a size of at least m ⁇ n ⁇ m 2 .
  • the modulated reflected light is emitted perpendicularly from the surface of the vortex beam generating device.
  • the polarization direction of the incident light can be adjusted to an angle with the straight line of the ellipse long axis before modulation, so that the incident light is modulated.
  • the modulated vortex beam is orthogonal to the polarization direction of the incident light, and the unmodulated reflected light has the same polarization state as the incident light, so the vortex beam is orthogonal to the polarization direction of the unmodulated reflected light.
  • the angle can be selected to be ⁇ 45°, and when the angle is ⁇ 45°, it is not only convenient to separate the vortex beam from the unmodulated reflected light, but also because the incident light is along the linear direction of the major axis and the minor axis of the ellipse.
  • the polarization components are the same, such that the reflected light is modulated to the same extent by the elliptical dielectric unit in the vortex beam generating device subjected to the two polarization components, and at this time, the reflected light energy is modulated to the maximum extent, that is, the modulated vortex beam
  • the phase range is large.
  • the modulation process of the incident light by the vortex beam generating device is specifically as follows: when the linearly polarized incident light is irradiated onto the elliptical dielectric unit, the resonance of the elliptical dielectric unit is caused, thereby changing the amplitude and phase of the reflected light.
  • the angle between the polarization direction of the incident light and the long axis of the elliptical dielectric unit has a limited influence on the phase range of the modulated vortex beam, and the phase of the vortex beam modulated is mainly related to the length of the elliptical dielectric unit. See also Figures 5 and 6 again.
  • the size (length and length axis) of each elliptical dielectric unit is determined according to the phase distribution map of the vortex beam, that is, the size of each elliptical dielectric unit and the phase distribution map of the vortex beam to be generated. The phase of the point corresponding to the position corresponds.
  • determining the size of each elliptical dielectric unit according to the phase distribution map of the vortex beam the following manner may be adopted: determining the phase distribution map according to the order of the vortex beam; and correspondingly taking points on the phase distribution map according to the array of the elliptical dielectric unit , for example, a vortex beam generating device
  • the upper array is 10 ⁇ 10, and the points are taken according to the array 10 ⁇ 10 on the phase distribution diagram of the vortex beam; then the values of a and b corresponding to the phase of each point are respectively found, that is, the vortex beam generating device is obtained.
  • the major axis size a and the minor axis size b of each elliptical dielectric cell in the array The major axis size a and the minor axis size b of each elliptical dielectric cell in the array.
  • phase value corresponding to a plurality of values of a or b there may be a phase value corresponding to a plurality of values of a or b.
  • a and a plurality of values are selected to ensure a uniform amplitude of the vortex beam.
  • the value of b, wherein the order of the vortex beam corresponds to the phase, and the phase of the L-order vortex beam is 2L ⁇ .
  • each elliptical dielectric unit is the same, and the angle between the polarization direction of the incident light and the long axis of each elliptical dielectric unit can be ensured, so that the incident light is received by each elliptical dielectric unit.
  • the degree of modulation is equal, thus ensuring that the device designed for the a and b values selected by the vortex beam phase profile can produce a vortex beam.
  • the conversion rate of the Gaussian beam (incident light) of different wavelengths into a vortex beam is different.
  • the conversion rate from the Gaussian beam to the vortex beam is higher than 60%.
  • the conversion rate of the Gaussian beam to the OAM beam can reach 90% when the wavelength of the Gaussian beam is around 1550 nm.
  • a plurality of elliptical dielectric cells are arranged in an array by a low refractive index layer and a plurality of elliptical dielectric cells covered on the metal mirror, and straight lines of the plurality of elliptical dielectric cells are parallel or coincident. That is, the direction of the plurality of elliptical dielectric units is the same.
  • the amplitude phase of a part of the reflected light is modulated by the interaction of the elliptical dielectric unit and the beam, and the polarization direction is Vertically with the incident light, the OAM beam is obtained; the dielectric material is used as the unit of the array, and the incident light is less absorbed and the loss is small; the elliptical dielectric unit is small in size and high in resolution; due to the existence of the low refractive index layer, the low refractive index The layer is equivalent to adding a propagation distance between the elliptical dielectric unit and the metal mirror.
  • the incident light When the incident light is incident on the elliptical dielectric unit for the first time, a part of the reflection, a part of the transmission, and the transmitted light can pass back and forth between the low refractive index layers. Reflection, which increases the modulation of the elliptical dielectric unit when light is reflected back and forth between the low refractive index layers.
  • the probability that is, the conversion rate of the incident light into the modulated light is increased, so that the vortex beam conversion rate of the vortex beam generating device is high, and the vortex beam generating device has a lower requirement on the wavelength of the incident light, increasing
  • the scroll beam generating device provided by the invention has a simple preparation process and is easy to produce.
  • This embodiment provides a method for generating a vortex beam.
  • the method adopts an embodiment.
  • the vortex beam generating device of one or two is implemented, the method comprising:
  • Step 601 Vertically illuminating the vortex beam generating device with a polarized beam.
  • the polarization direction of the Gaussian beam is adjusted to a fixed angle to the line of the long axis of the elliptical dielectric unit to obtain the polarized beam.
  • the fixed angle may be an angle of ⁇ 45°, and when the angle is ⁇ 45°, it is not only convenient to separate the vortex beam from the unmodulated reflected light, but also because the incident light is along the long axis and the short axis of the ellipse.
  • the polarization components of the directions are the same, such that the reflected light is modulated to the same extent in the elliptical dielectric unit in the vortex beam generating device subjected to the two polarization components, and at this time, the reflected light energy is modulated to the maximum extent, that is, the modulated vortex beam
  • the phase range is large.
  • Step 602 Separating the reflected light of the vortex beam generating device by using a polarization beam splitter or an analyzer to obtain a vortex beam.
  • the polarizing beam splitter or the analyzer is disposed on the incident light path, and the incident light is vertically irradiated on the vortex beam generating device through the polarization beam splitter or the analyzer, and the incident light is modulated by the vortex beam generating device to obtain reflected light, and the reflection is
  • the light includes unmodulated reflected light and a modulated vortex beam, and the polarization beam splitter or analyzer separates the vortex beam in the reflected light to change its propagation direction. As shown in FIG.
  • the incident light 5A is irradiated onto the vortex beam generating device 5C through the polarization beam splitter or the analyzer 5B to generate reflected light 5D, and when the reflected light 5D passes through the polarization beam splitter or the analyzer 5B, The direction of the modulated reflected light 5E does not change, and the modulated vortex beam 5F changes direction, that is, is separated.
  • the modulated reflected light is emitted perpendicularly from the surface of the vortex beam generating device.
  • the angle of polarization of the incident light is ⁇ 45° with the line of the ellipse's long axis
  • the polarization of the incident light along the linear axis of the ellipse is the same, so that the two polarization components are modulated by the vortex beam generating device.
  • the reflected light energy is modulated to the maximum extent; and when the incident light is irradiated onto the vortex beam generating device, the modulated reflected light is orthogonal to the polarization direction of the incident light, and the modulated light is not modulated by the polarization state of the reflected light.
  • the incident light is the same, making it easier to separate it from the unmodulated reflected light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Polarising Elements (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种涡旋光束器件包括:金属反射镜(101)、低折射率层(102)以及多个椭圆电介质单元(103)。低折射率层(102)覆盖在金属反射镜(101)上,多个椭圆电介质单元(103)嵌在低折射率层(102)中。多个椭圆电介质单元(103)按阵列方式排布,多个椭圆电介质单元(103)的长轴所处直线平行或重合。多个椭圆电介质单元(103)的厚度相同,低折射率层(102)的厚度大于椭圆电介质单元(103)的厚度。每个椭圆电介质单元(103)的外表面与低折射率层(102)的外表面平齐,椭圆电介质单元(103)的外表面和低折射率层(102)的外表面均为距离金属反射镜(101)较远的一面,低折射率层(102)的折射率小于椭圆电介质单元(103)的折射率。还公开了一种涡旋光束器件制备方法以及一种涡旋光束产生方法。

Description

涡旋光束产生方法、器件及其制备方法 技术领域
本发明涉及光调制技术领域,特别涉及一种涡旋光束产生方法、器件及其制备方法。
背景技术
光束除携带线性动量外,还可以携带角动量,其中角动量又包括自旋角动量(英文:Spin Angular Momentum,简称:SAM)和轨道角动量(英文:Orbital Angular Momentum,简称:OAM)。SAM通常与光子的自旋相关表现为圆偏振,其取值可以为
Figure PCTCN2014088293-appb-000001
。相比之下,OAM与螺旋形相位波联系在一起。1992年,Allen等人通过实验研究发现具有
Figure PCTCN2014088293-appb-000002
螺旋相位因子的光束,其每个光子携带的OAM为
Figure PCTCN2014088293-appb-000003
,该值是SAM的l倍,其中
Figure PCTCN2014088293-appb-000004
为方位角。
近年来OAM应用在通信领域引起了广泛关注。与SAM只有两个取值
Figure PCTCN2014088293-appb-000005
不同,OAM的
Figure PCTCN2014088293-appb-000006
可以在(-∞,+∞)内任意取值,而且不同OAM之间易于区分,所以利用OAM通信可以极大提高通信容量和谱效率。为此,含有OAM的涡旋光束的产生和探测技术越来越受到人们的关注。
国内外的研究机构在涡旋光束产生领域已经进行了广泛而细致的研究,产生涡旋光束的方式也多种多样。例如,采用V天线阵列进行涡旋光束的产生。
V天线阵列中的V天线由金属V型结构和硅衬底构成,金属V型结构生长在硅村底上。当入射光照射到金属V天线上时会引起表面等离子震荡,散射光具有特定的振幅相位。散射光的振幅相位与金属V天线的臂长以及夹角相关,通过设计V天线的臂长以及夹角,可以使一束高斯光束入射到V天线阵列上时,散射出的散射光具有OAM,从而产生涡旋光束。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
能够产生涡旋光束的V天线结构尺寸较小,不利于工艺制备;同时由于V天线为金属结构,金属结构会对入射光产生吸收,造成较大损耗。
发明内容
为了解决V天线结构尺寸较小,不利于工艺制备,且会造成较大损耗的问题,本发明实施例提供了一种涡旋光束产生方法、器件及其制备方法。所述技术方案如下:
一方面,本发明实施例提供了一种涡旋光束产生器件,所述器件包括:
金属反射镜、低折射率层以及多个椭圆电介质单元,所述低折射率层覆盖在所述金属反射镜上,所述多个椭圆电介质单元嵌在所述低折射率层中,且所述多个椭圆电介质单元按阵列方式排布,所述多个椭圆电介质单元的长轴所处直线平行或重合,每个所述椭圆电介质单元的短轴和长轴均大于50nm,
所述多个椭圆电介质单元的厚度相同,所述低折射率层的厚度大于所述椭圆电介质单元的厚度,每个所述椭圆电介质单元的外表面与所述低折射率层的外表面平齐,所述椭圆电介质单元的外表面和所述低折射率层的外表面均为距离所述金属反射镜较远的一面,
所述低折射率层的折射率小于所述椭圆电介质单元的折射率。
在本发明实施例的一种实现方式中,所述金属反射镜为金反射镜、银反射镜或铝反射镜,所述低折射率层为聚甲基丙烯酸甲酯层或SiO2层,所述椭圆电介质单元为Si单元或Si3N4单元。
在本发明实施例的另一种实现方式中,所述金属反射镜的厚度大于或等于100nm,所述低折射率层的厚度大于或等于400nm,所述椭圆电介质单元的厚度大于或等于300nm。
在本发明实施例的另一种实现方式中,任意两个所述椭圆电介质单元的中心距离大于或等于1μm。
在本发明实施例的另一种实现方式中,所述椭圆电介质单元组成的阵列大小为10×10。
另一方面,本发明实施例还提供了一种涡旋光束产生器件制备方法,所述方法包括:
在衬底上生长一电介质层;
在所述电介质层上刻蚀出多个椭圆图案,得到椭圆电介质单元,刻蚀的厚度与所述电介质层的厚度相等,所述多个椭圆电介质单元按阵列方式排布,所述多个椭圆电介质单元的长轴所处直线平行或重合,每个所述椭圆电介质单元的短轴和长轴均大于50nm;
在刻蚀后的所述电介质层上生长一低折射率层,所述低折射率层充满所述椭圆电介质单元间的空隙,且所述低折射率层覆盖所述椭圆电介质单元,所述低折射率层的厚度大于所述椭圆电介质单元,所述低折射率层的折射率小于所述椭圆电介质单元的折射率;
在所述低折射率层上生长一金属反射镜。
在本发明实施例的一种实现方式中,所述金属反射镜为金反射镜、银反射镜或铝反射镜,所述低折射率层为聚甲基丙烯酸甲酯层或SiO2层,所述椭圆电介质单元为Si单元或Si3N4单元。
在本发明实施例的另一种实现方式中,所述金属反射镜的厚度大于或等于100nm,所述低折射率层的厚度大于或等于400nm,所述椭圆电介质单元的厚度大于或等于300nm。
在本发明实施例的另一种实现方式中,任意两个所述椭圆电介质单元的中心距离大于或等于1μm。
另一方面,本发明实施例还提供了一种涡旋光束产生方法,采用如前任一项所述的涡旋光束产生器件实现,所述方法包括:
采用偏振光束垂直照射到所述涡旋光束产生器件上;
采用偏振分光镜或检偏器分离所述涡旋光束产生器件的反射光,得到涡旋光束。
本发明实施例提供的技术方案的有益效果是:
通过覆盖在金属反射镜上的低折射率层和多个椭圆电介质单元,多个椭圆电介质单元按阵列方式排布,且多个椭圆电介质单元的长轴所处直线平行或重合,即多个椭圆电介质单元的方向相同,当入射光照射在涡旋光束产生器件上时,引起了椭圆电介质单元的谐振,从而改变了反射光的振幅和相位,即反射光中有一部分光的振幅相位会受到调制,且偏振方向与入射光垂直,即得到了OAM光束;采用电介质材料作为阵列的单元,对入射光吸收较少,损耗小;另外,本发明提供的涡旋光束产生器件制备工艺简单,易于生产。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的涡旋光束产生器件的结构示意图;
图2是本发明实施例一提供的涡旋光束产生器件的结构示意图;
图3是本发明实施例二提供的涡旋光束产生器件的结构示意图;
图4是本发明实施例二提供的涡旋光束产生器件的结构示意图;
图5是本发明实施例二提供的涡旋光束产生器件的长轴大小和短轴大小与涡旋光束的振幅关系图;
图6是本发明实施例二提供的涡旋光束产生器件的长轴大小和短轴大小与涡旋光束的相位关系图;
图7是本发明实施例二提供的一阶涡旋光束的相位分布图;
图8是本发明实施例二提供的二阶涡旋光束的相位分布图;
图9是本发明实施例二提供的四阶涡旋光束的相位分布图;
图10是本发明实施例二提供的九阶涡旋光束的相位分布图;
图11是本发明实施例三提供的涡旋光束产生器件制备方法的流程图;
图12是本发明实施例四提供的涡旋光束产生器件制备方法的流程图;
图13是本发明实施例四提供的生长电介质层后的涡旋光束产生器件的结构示意图;
图14是本发明实施例四提供的刻蚀后的涡旋光束产生器件的结构示意图;
图15是本发明实施例四提供的生长低折射率层后的涡旋光束产生器件的结构示意图;
图16是本发明实施例四提供的生长金属反射镜后的涡旋光束产生器件的结构示意图;
图17是本发明实施例五提供的涡旋光束产生方法的流程图;
图18是本发明实施例五提供的光路示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例一
本发明实施例提供了一种涡旋光束产生器件,参见图1和2,该涡旋光束产生器件包括:
金属反射镜101、低折射率层102以及多个椭圆电介质单元103,低折射率层102覆盖在金属反射镜101上,多个椭圆电介质单元103嵌在低折射率层102中,且多个椭圆电介质单元103按阵列方式排布,多个椭圆电介质单元103的长轴所处直线平行或重合,每个椭圆电介质单元103的短轴和长轴均大于50nm。
多个椭圆电介质单元103的厚度相同,低折射率层102的厚度大于椭圆电介质单元103的厚度,每个椭圆电介质单元103的外表面与低折射率层102的外表面平齐,椭圆电介质单元103的外表面和低折射率层102的外表面均为距离金属反射镜101较远的一面。
低折射率层102的折射率小于椭圆电介质单元103的折射率。
本发明实施例通过覆盖在金属反射镜上的低折射率层和多个椭圆电介质单元,多个椭圆电介质单元按阵列方式排布,且多个椭圆电介质单元的长轴所处直线平行或重合,即多个椭圆电介质单元的方向相同,当入射光照射在涡旋光束产生器件上时,引起了椭圆电介质单元的谐振,从而改变了反射光的振幅和相位,即反射光中有一部分光的振幅相位会受到调制,且偏振方向与入射光垂直,即得到了OAM光束;采用电介质材料作为阵列的单元,对入射光吸收较少,损耗小;另外,本发明提供的涡旋光束产生器件制备工艺简单,易于生产。
实施例二
本发明实施例提供了一种涡旋光束产生器件,参见图3和4,该涡旋光束产生器件包括:
金属反射镜201、低折射率层202以及多个椭圆电介质单元203,低折射率层202覆盖在金属反射镜201上,多个椭圆电介质单元203嵌在低折射率层202中,且多个椭圆电介质单元203按阵列方式排布,多个椭圆电介质单元203的长轴所处直线平行或重合,每个椭圆电介质单元203的短轴和长轴均大于50nm。
多个椭圆电介质单元203的厚度相同,低折射率层202的厚度大于椭圆电 介质单元203的厚度,每个椭圆电介质单元203的外表面与低折射率层202的外表面平齐,椭圆电介质单元203的外表面和低折射率层202的外表面均为距离金属反射镜201较远的一面。
低折射率层202的折射率小于椭圆电介质单元203的折射率。
低折射率层202的折射率大于或等于1,即低折射率层202的折射率不小于空气的折射率。
其中,低折射率层202为电介质材料层。
其中,按阵列方式排布是指每个椭圆电介质单元203与相邻的椭圆电介质单元203的中心距离相等。每个椭圆电介质单元203与相邻的椭圆电介质单元203的中心距离相等时,保证了涡旋光束产生器件上椭圆电介质单元分布均匀,使调制后的涡旋光束强度均衡。
在本发明实施例的一种实现方式中,金属反射镜201可以为金反射镜、银反射镜或铝反射镜。金属反射镜201也可以是由能够反射入射光的其他金属制成的反射镜。
在本发明实施例的一种实现方式中,低折射率层202可以是有机高分子聚合物,如聚甲基丙烯酸甲酯(英文:Polymethylmethacrylate,简称:PMMA)层或SiO2层。当然低折射率层202也可以是折射率小于电介质层的其他材料。
在本发明实施例的一种实现方式中,椭圆电介质单元203可以为Si单元或Si3N4单元。椭圆电介质单元203也可以是折射率大于低折射率层的其他材料。本实施例中,椭圆电介质单元采用电介质材料,使得该涡旋光束产生器件对入射光吸收比金属小(金属会对光产生共振吸收),使得光的损耗小。
在本发明实施例的一种实现方式中,金属反射镜201的厚度大于或等于100nm,低折射率层202的厚度大于或等于400nm,椭圆电介质单元203的厚度大于或等于300nm。为了方便生产制造,金属反射镜201的厚度在100至1000nm之间,低折射率层202的厚度在400至2000nm之间,椭圆电介质单元203的厚度在300至1000nm之间。
在本发明实施例的一种实现方式中,椭圆电介质单元203组成的阵列最小为10×10,以保证入射光可以被调制产生涡旋光束。
在本发明实施例的一种实现方式中,椭圆电介质单元203的短轴和长轴均大于50nm。由于椭圆电介质单元203的尺寸较小,涡旋光束产生器件的分辨率高,因此该涡旋光束产生器件产生的涡旋光束的分辨率高。
在本发明实施例的一种实现方式中,任意两个椭圆电介质单元203的中心距离大于或等于1μm。为了方便生产制造,其中心距离在1至2μm之间。容易知道,椭圆电介质单元的长轴小于两个椭圆电介质单元的中心距离。
当入射光垂直入射到涡旋光束产生器件上时,受调制的反射光垂直从涡旋光束产生器件表面射出。为了便于将调制得到的涡旋光束与未被调制的反射光分离开来,可以在调制前将入射光的偏振方向调节至与椭圆长轴所在的直线成一定夹角,这样当入射光受到调制后,被调制得到的涡旋光束与入射光的偏振方向正交,而未被调制的反射光偏振态与入射光是一样的,因此涡旋光束与未被调制的反射光的偏振方向正交,从而采用偏振分光镜或检偏器等器件实现分离。优选地,该夹角可以选用±45°,当夹角为±45°时,不仅便于将涡旋光束与未被调制的反射光分离,同时由于入射光沿椭圆长轴和短轴所在直线方向的偏振分量相同,使得反射光在这两个偏振分量所受涡旋光束产生器件中椭圆电介质单元的调制程度相同,且此时反射光能受到最大程度的调制,即调制出的涡旋光束的相位范围大。
其中,涡旋光束产生器件对入射光的调制过程具体如下:线偏振的入射光照射到椭圆电介质单元上时,引起了椭圆电介质单元的谐振,从而改变了反射光的振幅和相位。
当然,前述入射光的偏振方向与椭圆电介质单元长轴间夹角大小对调制出的涡旋光束的相位范围影响有限,调制出的涡旋光束的相位主要与椭圆电介质单元的长短轴大小相关,如图5和6所示为椭圆电介质单元的长轴大小a和短轴大小b与相位(P)以及长轴大小a和短轴大小b与振幅(A)的关系,该关系可以通过模拟得到。在实际制造涡旋光束产生器件时,各个椭圆电介质单元的大小(长短轴大小)根据涡旋光束的相位分布图确定,即各个椭圆电介质单元的大小与待产生的涡旋光束的相位分布图中对应位置的点的相位相对应。具体地,根据涡旋光束的相位分布图确定各个椭圆电介质单元的大小,可以采用以下方式:根据涡旋光束的阶数确定相位分布图,例如图7-图10依次为一阶、二阶、四阶和九阶涡旋光束的相位分布图;根据椭圆电介质单元的阵列在相位分布图上对应取点,例如涡旋光束产生器件上的阵列为10×10,则在涡旋光束的相位分布图上按阵列10×10取点;然后分别找出每个点的相位对应的a、b值,即得到涡旋光束产生器件上的阵列中每个椭圆电介质单元的长轴大小a和短轴大小b。选择选取椭圆电介质单元的长轴大小a和短轴大小b时,可能存 在一个相位值对应多个a或b的值,此时在多个取值中选取能够保证涡旋光束振幅一致的a和b的取值,其中,涡旋光束的阶数与相位对应,L阶涡旋光束的相位为2Lπ。
另外,在本实施例中,每个椭圆电介质单元的长轴方向相同,可以保证入射光的偏振方向与每个椭圆电介质单元的长轴的夹角固定,使得入射光受到每个椭圆电介质单元的调制的程度相等,从而保证了按涡旋光束相位分布图选取的a、b值所设计的器件可以产生涡旋光束。
另外,不同波长的高斯光束(入射光),其转化为涡旋光束的转化率也不相同,当高斯光束波长从1500nm变化到1600nm时,从高斯光束到涡旋光束的转化率高于60%,尤其当低折射率层202厚度为150nm时,高斯光束波长在1550nm附近时,从高斯光束到OAM光束的转化率能达到90%。
进一步地,该涡旋光束产生器件还包括覆盖在多个椭圆电介质单元203外表面上的二氧化硅衬底,该二氧化硅衬底可以对该器件起保护作用。
本发明实施例通过覆盖在金属反射镜上的低折射率层和多个椭圆电介质单元,多个椭圆电介质单元按阵列方式排布,且多个椭圆电介质单元的长轴所处直线平行或重合,即多个椭圆电介质单元的方向相同,当入射光照射在涡旋光束产生器件上时,引起了椭圆电介质单元的谐振,从而改变了反射光的振幅和相位,即反射光中有一部分光的振幅相位会受到调制,且偏振方向与入射光垂直,即得到了OAM光束;采用电介质材料作为阵列的单元,对入射光吸收较少,损耗小;椭圆电介质单元尺寸小,分辨率高;由于低折射率层的存在,低折射率层相当于在椭圆电介质单元与金属反射镜之间增加了一个传播距离,当入射光第一次入射到椭圆电介质单元时,一部分反射,一部分透射,透射的光能在低折射率层之间来回反射,当光在低折射率层之间来回反射时能增加受椭圆电介质单元的调制几率,也就提高了入射光转化为受调制光的转化率,因此该涡旋光束产生器件的涡旋光束转化率高,且该涡旋光束产生器件对入射光的波长要求较低,增大了可用波长范围;另外,本发明提供的涡旋光束产生器件制备工艺简单,易于生产。
实施例三
本发明实施例提供了一种涡旋光束产生器件制备方法,参见图11,该方法包括:
步骤301:在衬底上生长一电介质层。
步骤302:在电介质层上刻蚀出多个椭圆图案,得到椭圆电介质单元,刻蚀的厚度与电介质层的厚度相等,多个椭圆电介质单元按阵列方式排布,多个椭圆电介质单元的长轴所处直线平行或重合,每个椭圆电介质单元的短轴和长轴均大于50nm。
步骤303:在刻蚀后的电介质层上生长一低折射率层,低折射率层充满椭圆电介质单元间的空隙,且低折射率层覆盖椭圆电介质单元,低折射率层的厚度大于椭圆电介质单元,低折射率层的折射率小于椭圆电介质单元的折射率。
步骤304:在低折射率层上生长一金属反射镜。
本发明实施例通过覆盖在金属反射镜上的低折射率层和多个椭圆电介质单元,多个椭圆电介质单元按阵列方式排布,且多个椭圆电介质单元的长轴所处直线平行或重合,即多个椭圆电介质单元的方向相同,当入射光照射在涡旋光束产生器件上时,引起了椭圆电介质单元的谐振,从而改变了反射光的振幅和相位,即反射光中有一部分光的振幅相位会受到调制,且偏振方向与入射光垂直,即得到了OAM光束;采用电介质材料作为阵列的单元,对入射光吸收较少,损耗小;另外,本发明提供的涡旋光束产生器件制备工艺简单,易于生产。
实施例四
本发明实施例提供了一种涡旋光束产生器件制备方法,参见图12,该方法包括:
步骤401:采用等离子体增强化学气相沉积法(英文:Plasma Enhanced Chemical Vapor Deposition,简称:PECVD)工艺在二氧化硅衬底上生长一电介质层。
如图13所示,在二氧化硅衬底500上生长一层电介质层501。在其他实施例中,衬底还可以是其他材料,但衬底的折射率必须小于电介质层的折射率。
其中,电介质层可以为Si层或Si3N4层。电介质层也可以是折射率大于低折射率层的其他材料。
在本实施例中,椭圆电介质单元的厚度大于或等于300nm。为了方便生产制造,椭圆电介质单元的厚度在300至1000nm之间。优选地,该电介质层的厚度为400nm。
步骤402:采用电子束曝光(英文:Electron Beam Lithography,简称:EBL)和电感耦合等离子体(英文:Inductive Coupled Plasma,简称:ICP)工艺在电介质层上刻蚀出多个椭圆图案,得到椭圆电介质单元,刻蚀的厚度与电介质层的厚度相等,多个椭圆电介质单元按阵列方式排布,多个椭圆电介质单元的长轴所处直线平行或重合,每个椭圆电介质单元的短轴和长轴均大于50nm。
如图14所示,对电介质层501进行刻蚀后得到多个椭圆电介质单元502。
其中,按阵列方式排布是指每个椭圆电介质单元与相邻的椭圆电介质单元的中心距离相等。每个椭圆电介质单元与相邻的椭圆电介质单元的中心距离相等时,保证了涡旋光束产生器件上椭圆电介质单元分布均匀,使调制后的涡旋光束强度均衡。
在本发明实施例的一种实现方式中,椭圆电介质单元组成的阵列最小为10×10,以保证入射光可以被调制产生涡旋光束。
步骤403:在刻蚀后的电介质层上生长一低折射率层,低折射率层充满椭圆电介质单元间的空隙,且低折射率层覆盖椭圆电介质单元,低折射率层的厚度大于椭圆电介质单元,低折射率层的折射率小于椭圆电介质单元的折射率。
如图15所示,在刻蚀后的椭圆电介质单元502上生长(例如采用旋涂)一层低折射率层503,低折射率层503覆盖多个椭圆电介质单元502,且充满多个椭圆电介质单元502间空隙。
低折射率层的折射率大于或等于1,即低折射率层的折射率不小于空气的折射率。
其中,低折射率层为电介质材料层。
其中,低折射率层可以是有机高分子聚合物,如PMMA层或SiO2层。当然低折射率层也可以是折射率小于电介质层的其他材料。
在本实施例中,低折射率层的厚度大于或等于400nm。为了方便生产制造,低折射率层的厚度在400至2000nm之间。优选地,该低折射率层的厚度为550nm。
步骤404:在低折射率层上生长一金属反射镜。
如图16所示,在低折射率层503表面生长一层金属反射镜504。
其中,金属反射镜可以为金反射镜、银反射镜或铝反射镜。金属反射镜也可以是能够反射入射光的其他金属。
在本实施例中,金属反射镜的厚度大于或等于100nm。为了方便生产制造, 金属反射镜的厚度在100至1000nm之间。优选地,该金属反射镜的厚度为100nm。
在本实施例中,椭圆电介质单元的短轴和长轴均大于50nm。由于椭圆电介质单元的尺寸较小,涡旋光束产生器件的分辨率高,因此该涡旋光束产生器件产生的涡旋光束的分辨率高。任意两个椭圆电介质单元的中心距离大于或等于1μm。为了方便生产制造,其中心距离在1至2μm之间。容易知道,椭圆电介质单元的长轴小于两个椭圆电介质单元的中心距离。
整个涡旋光束产生器件尺寸与所用单元结构数量有关,例如硅椭圆电介质单元数量为m×n个,则整个涡旋光束产生器件尺寸至少为m×nμm2
当入射光垂直入射到涡旋光束产生器件上时,受调制的反射光垂直从涡旋光束产生器件表面射出。为了便于将调制得到的涡旋光束与未被调制的反射光分离开来,可以在调制前将入射光的偏振方向调节至与椭圆长轴所在的直线成一定夹角,这样当入射光受到调制后,被调制得到的涡旋光束与入射光的偏振方向正交,而未被调制的反射光偏振态与入射光是一样的,因此涡旋光束与未被调制的反射光的偏振方向正交,从而采用偏振分光镜或检偏器等器件实现分离。优选地,该夹角可以选用±45°,当夹角为±45°时,不仅便于将涡旋光束与未被调制的反射光分离,同时由于入射光沿椭圆长轴和短轴所在直线方向的偏振分量相同,使得反射光在这两个偏振分量所受涡旋光束产生器件中椭圆电介质单元的调制程度相同,且此时反射光能受到最大程度的调制,即调制出的涡旋光束的相位范围大。
其中,涡旋光束产生器件对入射光的调制过程具体如下:线偏振的入射光照射到椭圆电介质单元上时,引起了椭圆电介质单元的谐振,从而改变了反射光的振幅和相位。
当然,前述入射光的偏振方向与椭圆电介质单元长轴间夹角大小对调制出的涡旋光束的相位范围影响有限,调制出的涡旋光束的相位主要与椭圆电介质单元的长短轴大小相关,再次参见图5和6所示。在实际制造涡旋光束产生器件时,各个椭圆电介质单元的大小(长短轴大小)根据涡旋光束的相位分布图确定,即各个椭圆电介质单元的大小与待产生的涡旋光束的相位分布图中对应位置的点的相位相对应。具体地,根据涡旋光束的相位分布图确定各个椭圆电介质单元的大小,可以采用以下方式:根据涡旋光束的阶数确定相位分布图;根据椭圆电介质单元的阵列在相位分布图上对应取点,例如涡旋光束产生器件 上的阵列为10×10,则在涡旋光束的相位分布图上按阵列10×10取点;然后分别找出每个点的相位对应的a、b值,即得到涡旋光束产生器件上的阵列中每个椭圆电介质单元的长轴大小a和短轴大小b。选择选取椭圆电介质单元的长轴大小a和短轴大小b时,可能存在一个相位值对应多个a或b的值,此时在多个取值中选取能够保证涡旋光束振幅一致的a和b的取值,其中,涡旋光束的阶数与相位对应,L阶涡旋光束的相位为2Lπ。
另外,在本实施例中,每个椭圆电介质单元的长轴方向相同,可以保证入射光的偏振方向与每个椭圆电介质单元的长轴的夹角固定,使得入射光受到每个椭圆电介质单元的调制的程度相等,从而保证了按涡旋光束相位分布图选取的a、b值所设计的器件可以产生涡旋光束。
另外,不同波长的高斯光束(入射光),其转化为涡旋光束的转化率也不相同,当高斯光束波长从1500nm变化到1600nm时,从高斯光束到涡旋光束的转化率高于60%,尤其当低折射率层厚度为150nm时,高斯光束波长在1550nm附近时,从高斯光束到OAM光束的转化率能达到90%。
本发明实施例通过覆盖在金属反射镜上的低折射率层和多个椭圆电介质单元,多个椭圆电介质单元按阵列方式排布,且多个椭圆电介质单元的长轴所处直线平行或重合,即多个椭圆电介质单元的方向相同,当入射光照射在涡旋光束产生器件上时,受椭圆电介质单元与光束相互作用的影响,反射光中有一部分光的振幅相位会受到调制,且偏振方向与入射光垂直,即得到了OAM光束;采用电介质材料作为阵列的单元,对入射光吸收较少,损耗小;椭圆电介质单元尺寸小,分辨率高;由于低折射率层的存在,低折射率层相当于在椭圆电介质单元与金属反射镜之间增加了一个传播距离,当入射光第一次入射到椭圆电介质单元时,一部分反射,一部分透射,透射的光能在低折射率层之间来回反射,当光在低折射率层之间来回反射时能增加受椭圆电介质单元的调制几率,也就提高了入射光转化为受调制光的转化率,因此该涡旋光束产生器件的涡旋光束转化率高,且该涡旋光束产生器件对入射光的波长要求较低,增大了可用波长范围;另外,本发明提供的涡旋光束产生器件制备工艺简单,易于生产。
实施例五
本实施例提供了一种涡旋光束产生方法,参见图17,该方法采用如实施例 一或二中的涡旋光束产生器件实现,该方法包括:
步骤601:采用偏振光束垂直照射到所述涡旋光束产生器件上。
将高斯光束的偏振方向调节至与椭圆电介质单元的长轴所在直线成固定角度,得到上述偏振光束。优选地,该固定角度可以为±45°角,当夹角为±45°时,不仅便于将涡旋光束与未被调制的反射光分离,同时由于入射光沿椭圆长轴和短轴所在直线方向的偏振分量相同,使得反射光在这两个偏振分量所受涡旋光束产生器件中椭圆电介质单元的调制程度相同,且此时反射光能受到最大程度的调制,即调制出的涡旋光束的相位范围大。
步骤602:采用偏振分光镜或检偏器分离涡旋光束产生器件的反射光,得到涡旋光束。
偏振分光镜或检偏器设置在入射光光路上,入射光穿过偏振分光镜或检偏器垂直照射在涡旋光束产生器件上,入射光经过涡旋光束产生器件调制得到反射光,该反射光包括未被调制的反射光和被调制的涡旋光束,偏振分光镜或检偏器对反射光中的涡旋光束进行分离,改变其传播方向。如图18所示,入射光5A穿过偏振分光镜或检偏器5B照射在涡旋光束产生器件5C上,产生反射光5D,反射光5D通过偏振分光镜或检偏器5B时,其中未被调制的反射光5E方向不变,被调制的涡旋光束5F改变方向,即被分离出来。
本实施例中,当入射光垂直入射到涡旋光束产生器件上时,受调制的反射光垂直从涡旋光束产生器件表面射出。当入射光的偏振方向与椭圆长轴所在的直线夹角为±45°时,入射光沿椭圆长短轴所在直线方向的偏振分量相同,因而这两个偏振分量所受涡旋光束产生器件的调制程度相同,反射光能受到最大程度的调制;且当入射光照射到涡旋光束产生器件后,受到调制后的反射光与入射光的偏振方向正交,而没有受调制的反射光偏振态与入射光是一样的,从而便于将其与未被调制的反射光分离开来。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种涡旋光束产生器件,其特征在于,所述器件包括:
    金属反射镜、低折射率层以及多个椭圆电介质单元,所述低折射率层覆盖在所述金属反射镜上,所述多个椭圆电介质单元嵌在所述低折射率层中,且所述多个椭圆电介质单元按阵列方式排布,所述多个椭圆电介质单元的长轴所处直线平行或重合,每个所述椭圆电介质单元的短轴和长轴均大于50nm,
    所述多个椭圆电介质单元的厚度相同,所述低折射率层的厚度大于所述椭圆电介质单元的厚度,每个所述椭圆电介质单元的外表面与所述低折射率层的外表面平齐,所述椭圆电介质单元的外表面和所述低折射率层的外表面均为距离所述金属反射镜较远的一面,
    所述低折射率层的折射率小于所述椭圆电介质单元的折射率。
  2. 根据权利要求1所述的器件,其特征在于,所述金属反射镜为金反射镜、银反射镜或铝反射镜,所述低折射率层为聚甲基丙烯酸甲酯层或SiO2层,所述椭圆电介质单元为Si单元或Si3N4单元。
  3. 根据权利要求1所述的器件,其特征在于,所述金属反射镜的厚度大于或等于100nm,所述低折射率层的厚度大于或等于400nm,所述椭圆电介质单元的厚度大于或等于300nm。
  4. 根据权利要求1所述的器件,其特征在于,任意两个所述椭圆电介质单元的中心距离大于或等于1μm。
  5. 根据权利要求1所述的器件,其特征在于,所述椭圆电介质单元组成的阵列大小为10×10。
  6. 一种涡旋光束产生器件制备方法,其特征在于,所述方法包括:
    在衬底上生长一电介质层;
    在所述电介质层上刻蚀出多个椭圆图案,得到椭圆电介质单元,刻蚀的厚度与所述电介质层的厚度相等,所述多个椭圆电介质单元按阵列方式排布,所述多个椭圆电介质单元的长轴所处直线平行或重合,每个所述椭圆电介质单元的短轴和长轴均大于50nm;
    在刻蚀后的所述电介质层上生长一低折射率层,所述低折射率层充满所述椭圆电介质单元间的空隙,且所述低折射率层覆盖所述椭圆电介质单元,所述 低折射率层的厚度大于所述椭圆电介质单元,所述低折射率层的折射率小于所述椭圆电介质单元的折射率;
    在所述低折射率层上生长一金属反射镜。
  7. 根据权利要求6所述的方法,其特征在于,所述金属反射镜为金反射镜、银反射镜或铝反射镜,所述低折射率层为聚甲基丙烯酸甲酯层或SiO2层,所述椭圆电介质单元为Si单元或Si3N4单元。
  8. 根据权利要求6所述的方法,其特征在于,所述金属反射镜的厚度大于或等于100nm,所述低折射率层的厚度大于或等于400nm,所述椭圆电介质单元的厚度大于或等于300nm。
  9. 根据权利要求6所述的方法,其特征在于,任意两个所述椭圆电介质单元的中心距离大于或等于1μm。
  10. 一种涡旋光束产生方法,其特征在于,采用如权利要求1-5任一项所述的涡旋光束产生器件实现,所述方法包括:
    采用偏振光束垂直照射到所述涡旋光束产生器件上;
    采用偏振分光镜或检偏器分离所述涡旋光束产生器件的反射光,得到涡旋光束。
PCT/CN2014/088293 2014-10-10 2014-10-10 涡旋光束产生方法、器件及其制备方法 WO2016054803A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480081159.9A CN106575098B (zh) 2014-10-10 2014-10-10 涡旋光束产生方法、器件及其制备方法
EP14903563.6A EP3200028B1 (en) 2014-10-10 2014-10-10 Method for generating vortex light beam, and vortex light beam device and preparation method thereof
PCT/CN2014/088293 WO2016054803A1 (zh) 2014-10-10 2014-10-10 涡旋光束产生方法、器件及其制备方法
US15/481,578 US10101505B2 (en) 2014-10-10 2017-04-07 Device and method for generating vortex beam generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088293 WO2016054803A1 (zh) 2014-10-10 2014-10-10 涡旋光束产生方法、器件及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/481,578 Continuation US10101505B2 (en) 2014-10-10 2017-04-07 Device and method for generating vortex beam generation

Publications (1)

Publication Number Publication Date
WO2016054803A1 true WO2016054803A1 (zh) 2016-04-14

Family

ID=55652491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088293 WO2016054803A1 (zh) 2014-10-10 2014-10-10 涡旋光束产生方法、器件及其制备方法

Country Status (4)

Country Link
US (1) US10101505B2 (zh)
EP (1) EP3200028B1 (zh)
CN (1) CN106575098B (zh)
WO (1) WO2016054803A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12038525B2 (en) * 2018-07-16 2024-07-16 Or-Ment Llc Electromagnetic wave medical imaging system, device and methods
CN109216943B (zh) * 2018-08-03 2022-07-26 西安电子科技大学 基于调相的方向可控混合模态涡旋波束产生装置
CN109066279B (zh) * 2018-09-07 2024-03-26 华南理工大学 一种基于轨道角动量模式谐振的全光纤涡旋光激光器
CN110703436B (zh) * 2019-10-18 2021-08-10 河南科技大学 一种方向可控的椭圆光学涡旋阵列掩模板的设计方法
CN114336075B (zh) * 2022-01-10 2022-11-22 安徽师范大学 一种涡旋电磁超表面结构及其涡旋电磁波产生方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201673690U (zh) * 2010-03-25 2010-12-15 西北工业大学 一种复合光学涡旋的产生装置
US20130250389A1 (en) * 2012-03-24 2013-09-26 Defence Research Development Organization Device for generating optical vortex
CN103792605A (zh) * 2013-12-11 2014-05-14 南京大学 叉形液晶光栅的制备及其在生成涡旋光束中的应用
CN103969738A (zh) * 2013-01-28 2014-08-06 无锡万润光子技术有限公司 基于螺旋偏孔融嵌芯涡旋光纤及其制备方法
CN103984103A (zh) * 2014-02-18 2014-08-13 上海大学 一种利用计算全息图产生涡旋光束的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012103289A1 (en) * 2011-01-27 2012-08-02 Trustees Of Boston University Optical devices with spiral aperiodic structures for circularly symmetric light scattering
US20120307247A1 (en) * 2011-05-31 2012-12-06 Nanyang Technological University Fluorescence Microscopy Method And System
WO2013033591A1 (en) * 2011-08-31 2013-03-07 President And Fellows Of Harvard College Amplitude, phase and polarization plate for photonics
WO2014039487A1 (en) * 2012-09-04 2014-03-13 Purdue Research Foundation Ultra-thin, planar, plasmonic metadevices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201673690U (zh) * 2010-03-25 2010-12-15 西北工业大学 一种复合光学涡旋的产生装置
US20130250389A1 (en) * 2012-03-24 2013-09-26 Defence Research Development Organization Device for generating optical vortex
CN103969738A (zh) * 2013-01-28 2014-08-06 无锡万润光子技术有限公司 基于螺旋偏孔融嵌芯涡旋光纤及其制备方法
CN103792605A (zh) * 2013-12-11 2014-05-14 南京大学 叉形液晶光栅的制备及其在生成涡旋光束中的应用
CN103984103A (zh) * 2014-02-18 2014-08-13 上海大学 一种利用计算全息图产生涡旋光束的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3200028A4 *
YANG, YUANMU ET AL.: "Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation", NANO LETTERS, vol. 14, no. 3, 18 February 2014 (2014-02-18), pages 1394 - 1399, XP055369896 *

Also Published As

Publication number Publication date
EP3200028A1 (en) 2017-08-02
US20170212282A1 (en) 2017-07-27
US10101505B2 (en) 2018-10-16
EP3200028B1 (en) 2018-12-12
EP3200028A4 (en) 2017-10-11
CN106575098B (zh) 2019-05-24
CN106575098A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
WO2016054803A1 (zh) 涡旋光束产生方法、器件及其制备方法
Yang et al. Spin-selective transmission in chiral folded metasurfaces
CN105629364B (zh) 一种波长选择型超表面器件
KR102436892B1 (ko) 입사 전자기파로부터, 근거리 구역에서 적어도 하나의 집속된 빔을 형성하는 디바이스
Ju et al. Ultra‐broadband high‐efficiency Airy optical beams generated with all‐silicon metasurfaces
Wang et al. Large-scale broadband absorber based on metallic tungsten nanocone structure
Zhou et al. All‐dielectric fiber meta‐tip enabling vortex generation and beam collimation for optical interconnect
CN107121715B (zh) 一种基于耦合米氏共振的超表面完全吸收体及其制备方法
Molet et al. Ultrathin Semiconductor Superabsorbers from the Visible to the Near‐Infrared
CN105891609A (zh) 一种热机械式电磁辐射探测器
CN103389537B (zh) 宽带反射型亚波长矩形环阵列四分之一波片及其制作方法
CN104597562A (zh) 近红外宽波段定向传播和聚焦的表面等离激元透镜
CN115437040B (zh) 一种具有局域场增强效果的介电超表面结构及其应用
Dhindsa et al. Adjustable optical response of amorphous silicon nanowires integrated with thin films
Hao et al. Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process
Yang et al. Terahertz Silicon Metagratings: High‐Efficiency Dispersive Beam Manipulation above Diffraction Cone
Prajapati et al. Broadband and omnidirectional antireflection surfaces based on deep subwavelength features for harvesting of the solar energy
Ni et al. Selective angular momentum generator based on a graphene hybrid plasmonic waveguide
Zhang et al. Multi-spectral optical absorption in substrate-free nanowire arrays
CN110426772B (zh) 一种可实现椭圆偏振光单向传输的光子晶体异质结构
CN107390305A (zh) 双频带全光吸收器结构
Benzaouia et al. From solar cells to ocean buoys: Wide-bandwidth limits to absorption by metaparticle arrays
CN103018806A (zh) 一种亚波长极紫外金属透射光栅及其制作方法
Zhou et al. Directional phase and polarization manipulation using Janus metasurfaces
Chen et al. Quasi-hemispherical pit array textured surface for increasing the efficiency of thin-film solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014903563

Country of ref document: EP