WO2016053066A1 - 무선 통신 시스템에서 셀 단위 보고를 위한 방법 및 이를 위한 장치 - Google Patents
무선 통신 시스템에서 셀 단위 보고를 위한 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- WO2016053066A1 WO2016053066A1 PCT/KR2015/010517 KR2015010517W WO2016053066A1 WO 2016053066 A1 WO2016053066 A1 WO 2016053066A1 KR 2015010517 W KR2015010517 W KR 2015010517W WO 2016053066 A1 WO2016053066 A1 WO 2016053066A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- mbms
- terminal
- network
- changed
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/06—Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W60/00—Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
- H04W60/04—Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/02—Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
- H04W8/08—Mobility data transfer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/021—Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
- H04W48/12—Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/20—Selecting an access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/003—Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W68/00—User notification, e.g. alerting and paging, for incoming communication, change of service or the like
- H04W68/12—Inter-network notification
Definitions
- the present invention relates to a wireless communication system, and more particularly, to a method for supporting cell-by-cell reporting and an apparatus for supporting the same so that a network can recognize the location of an idle terminal in cell granularity. .
- Machine Type Communications refers to a communication method including one or more machines, and may also be referred to as machine-to-machine (M2M) communication or thing communication.
- M2M machine-to-machine
- a machine refers to an entity that does not require human direct manipulation or intervention.
- a device such as a meter or vending machine equipped with a mobile communication module, as well as a user device such as a smartphone that can automatically connect and communicate with a network without a user's operation / intervention, This may correspond to an example.
- MTC devices or terminals that is, MTC means communication performed by one or more machines (ie, MTC devices) without human intervention / intervention.
- the MTC may include communication between MTC devices (eg, device-to-device (D2D) communication), and communication between an MTC device and an MTC application server.
- MTC devices eg, device-to-device (D2D) communication
- Examples of the communication between the MTC device and the MTC application server may include a communication between an automatic selling price and a server, a point of sale (POS) device and a server, an electric, gas or water meter, and a server.
- applications based on MTC may include security, transportation, health care, and the like.
- An object of the present invention is to propose a method for a UE to perform a cell-by-cell report so that the network can recognize the position of the UE in an idle state by cell granularity.
- a method for performing granularity reporting by a terminal in an idle state in a wireless communication system comprising: receiving a cell granularity reporting configuration from a network; Detecting whether a cell camping in an idle state is changed and transmitting cell change information to the network when detecting that the camping cell has been changed;
- the setting includes an indication on whether to receive a multimedia broadcast and multicast service (MBMS), and when the indication on whether to receive the MBMS is activated, if the terminal does not receive MBMS data, the granularity report is performed.
- MBMS multimedia broadcast and multicast service
- a radio frequency (RF) unit for transmitting and receiving a radio signal and a control unit of the RF unit
- a processor configured to receive a cell granularity reporting configuration from a network, detect whether a cell camping in an idle state is changed, and the camping cell When the change is detected, it is configured to transmit cell change information to the network, wherein the cell-by-cell report setting includes an indication on whether to receive a multimedia broadcast and multicast service (MBMS), and the indication on whether to receive the MBMS is activated. If the terminal does not receive MBMS data, it may not perform the granularity report.
- MBMS multimedia broadcast and multicast service
- the terminal when the indication on whether to receive the MBMS is activated, when the terminal receives the MBMS data, it can transmit the cell change information to the network.
- whether to receive the MBMS data may be determined whether MBMS data corresponding to a Temporary Mobile Group Identity (TMGI) assigned to the terminal is received.
- TMGI Temporary Mobile Group Identity
- whether or not the MBMS data is received may be determined by whether the MSMS data is detected by the terminal.
- the cell change information may be transmitted to the network regardless of whether the MBMS data is received.
- the cell-by-cell report setting includes timer information, and when the timer expires, the cell change information may be transmitted to the network.
- the cell-by-cell report setting includes timer information. If the timer does not expire, the cell change information may not be transmitted to the network even if the camping cell is changed.
- the timer is a time when the timer information is received, a time when the terminal transitions from the connected state to the idle state (IDLE), a time when receiving the Multimedia Broadcast and Multicast Service (MBMS) data or the camping It can be driven from the point of time that the cell has been changed.
- IDLE a time when the terminal transitions from the connected state to the idle state
- MBMS Multimedia Broadcast and Multicast Service
- the cell change information may be transmitted through a tracking area update (TAU) request message or a cell change report message.
- TAU tracking area update
- the per-cell report setting may be received during an attach procedure or a tracking area update (TAU) procedure.
- TAU tracking area update
- the cell change information may include information indicating that the camping cell has been changed and / or a cell identity of the camping cell.
- the position of the terminal in the idle mode can be recognized by the cell granularity (cell granularity) in the network.
- MBMS multimedia broadcast and multicast service
- group communication / messaging service in a network, it may be determined whether to serve as an MBMS bearer or a unicast bearer on a cell basis.
- the number of terminals belonging to a specific cell may be accurately determined in a specific application such as an MTC application.
- the paging message when a paging message is transmitted to a terminal in an idle mode, the paging message may be transmitted only in a cell to which the terminal belongs.
- FIG. 1 is a view briefly illustrating an EPS (Evolved Packet System) to which the present invention can be applied.
- EPS Evolved Packet System
- E-UTRAN evolved universal terrestrial radio access network
- FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
- FIG. 4 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
- FIG. 5 shows an S1 interface protocol structure in a wireless communication system to which the present invention can be applied.
- FIG. 6 is a diagram exemplarily illustrating a structure of a physical channel in a wireless communication system to which the present invention can be applied.
- FIG. 7 is a diagram illustrating EMM and ECM states in a wireless communication system to which the present invention can be applied.
- FIG. 8 illustrates a bearer structure in a wireless communication system to which the present invention can be applied.
- FIG. 9 is a diagram illustrating a transmission path of a control plane and a user plane in an EMM registered state in a wireless communication system to which the present invention can be applied.
- FIG. 10 is a diagram illustrating a definition of MBMS in a wireless communication system to which the present invention can be applied.
- FIG. 11 is a diagram illustrating an MBMS logical structure in a wireless communication system to which the present invention can be applied.
- FIG. 12 is a diagram illustrating a GCSE reference model to which the present invention may be applied.
- FIG. 13 is a diagram illustrating a process of setting up a downlink media path for MBMS delivery in a wireless communication system to which the present invention can be applied.
- FIG. 14 is a diagram illustrating a process of setting up a downlink media path for MBMS delivery in a wireless communication system to which the present invention can be applied.
- 15 is a diagram illustrating a structure of a TMGI in a wireless communication system to which the present invention can be applied.
- 16 is a diagram illustrating an MBSFN region in a wireless communication system to which the present invention can be applied.
- 17 is a diagram exemplifying per-cell MBMS delivery in a wireless communication system to which the present invention can be applied.
- 18 to 25 are diagrams illustrating a cell-based reporting method according to an embodiment of the present invention.
- Figure 26 illustrates a block diagram of a communication device according to an embodiment of the present invention.
- a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
- the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
- a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
- a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
- UE user equipment
- MS mobile station
- UT user terminal
- MSS mobile subscriber station
- SS subscriber station
- AMS Advanced Mobile Station
- WT Wireless Terminal
- MTC Machine-Type Communication
- M2M Machine-to-Machine
- D2D Device-to-Device
- downlink means communication from a base station to a terminal
- uplink means communication from a terminal to a base station.
- a transmitter may be part of a base station, and a receiver may be part of a terminal.
- a transmitter may be part of a terminal and a receiver may be part of a base station.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- GSM global system for mobile communications
- GPRS general packet radio service
- EDGE enhanced data rates for GSM evolution
- OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
- UTRA is part of a universal mobile telecommunications system (UMTS).
- 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
- LTE-A (advanced) is the evolution of 3GPP LTE.
- Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
- UMTS Universal Mobile Telecommunications System
- GSM Global System for Mobile Communication
- Evolved Packet System A network system consisting of an Evolved Packet Core (EPC), which is a packet switched core network based on Internet Protocol (IP), and an access network such as LTE and UTRAN.
- EPC Evolved Packet Core
- IP Internet Protocol
- UMTS is an evolutionary network.
- NodeB base station of UMTS network. It is installed outdoors and its coverage is macro cell size.
- eNodeB base station of EPS network. It is installed outdoors and its coverage is macro cell size.
- a terminal may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
- the terminal may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smartphone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
- the term "terminal” or “terminal” in the MTC related content may refer to an MTC terminal.
- IMS IP Multimedia Subsystem
- IMSI International Mobile Subscriber Identity
- Machine Type Communication Communication performed by a machine without human intervention. It may also be referred to as M2M (Machine to Machine) communication.
- MTC terminal (MTC UE or MTC device or MTC device): a terminal having a communication function through a mobile communication network and performing an MTC function (for example, a vending machine, a meter reading device, etc.).
- MTC server A server on a network that manages an MTC terminal. It may exist inside or outside the mobile communication network. It may have an interface that an MTC user can access. In addition, the MTC server may provide MTC related services to other servers (Services Capability Server (SCS)), or the MTC server may be an MTC application server.
- SCS Services Capability Server
- MTC mobile broadband
- services e.g., remote meter reading, volume movement tracking, weather sensors, etc.
- (MTC) application server a server on a network where (MTC) applications run
- MTC feature A function of a network to support an MTC application.
- MTC monitoring is a feature for preparing for loss of equipment in an MTC application such as a remote meter reading
- low mobility is a feature for an MTC application for an MTC terminal such as a vending machine.
- MTC subscriber An entity having a connection relationship with a network operator and providing a service to one or more MTC terminals.
- MTC group A group of MTC terminals that share at least one MTC feature and belongs to an MTC subscriber.
- SCS Services Capability Server
- External Identifier An identifier used by an external entity (e.g., an SCS or application server) of a 3GPP network to point to (or identify) an MTC terminal (or a subscriber to which the MTC terminal belongs). Globally unique.
- the external identifier is composed of a domain identifier and a local identifier as follows.
- Domain Identifier An identifier for identifying a domain in a control term of a mobile communication network operator.
- One provider may use a domain identifier for each service to provide access to different services.
- Local Identifier An identifier used to infer or obtain an International Mobile Subscriber Identity (IMSI). Local identifiers must be unique within the application domain and are managed by the mobile telecommunications network operator.
- IMSI International Mobile Subscriber Identity
- RAN Radio Access Network: a unit including a Node B, a Radio Network Controller (RNC), and an eNodeB controlling the Node B in a 3GPP network. It exists at the terminal end and provides connection to the core network.
- RNC Radio Network Controller
- HLR Home Location Register
- HSS Home Subscriber Server
- RANAP RAN Application Part: between the RAN and the node in charge of controlling the core network (ie, Mobility Management Entity (MME) / Serving General Packet Radio Service (GPRS) Supporting Node) / MSC (Mobile Switching Center) Interface.
- MME Mobility Management Entity
- GPRS General Packet Radio Service
- MSC Mobile Switching Center
- PLMN Public Land Mobile Network
- Non-Access Stratum A functional layer for transmitting and receiving signaling and traffic messages between a terminal and a core network in a UMTS and EPS protocol stack. The main function is to support the mobility of the terminal and to support the session management procedure for establishing and maintaining an IP connection between the terminal and the PDN GW.
- FIG. 1 is a diagram briefly illustrating an EPS (Evolved Packet System) to which the present invention may be applied.
- EPS Evolved Packet System
- the network structure diagram of FIG. 1 briefly reconstructs a structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
- EPS Evolved Packet System
- EPC Evolved Packet Core
- EPC Evolved Packet Core
- SAE System Architecture Evolution
- SAE is a research project to determine network structure supporting mobility between various kinds of networks.
- SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing improved data transfer capability.
- the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
- a conventional mobile communication system i.e., a second generation or third generation mobile communication system
- the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
- CS circuit-switched
- PS packet-switched
- the function has been implemented.
- the sub-domains of CS and PS have been unified into one IP domain.
- the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
- SGW serving gateway
- PDN GW packet data network gateway
- MME mobility management entity
- SGRS serving general packet
- Radio Service Upporting Node
- ePDG Enhanced Packet Data Gateway
- the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
- the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
- E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
- SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
- GSM Global System for Mobile Communication
- EDGE Enhanced Data rates for Global Evolution
- the PDN GW corresponds to the termination point of the data interface towards the packet data network.
- the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
- untrusted networks such as 3GPP networks and non-3GPP networks (e.g., Interworking Wireless Local Area Networks (I-WLANs), trusted divisions such as Code Division Multiple Access (CDMA) networks or Wimax). It can serve as an anchor point for mobility management with the network.
- I-WLANs Interworking Wireless Local Area Networks
- CDMA Code Division Multiple Access
- FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
- the MME is an element that performs signaling and control functions for supporting access to a network connection, allocation of network resources, tracking, paging, roaming, handover, and the like.
- the MME controls the control plane functions related to subscriber and session management.
- the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
- the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
- SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
- 3GPP networks eg GPRS networks.
- the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
- untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
- a terminal having IP capability includes an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
- an operator ie, an operator
- 3GPP access based on 3GPP access as well as non-3GPP access.
- IMS IMS
- FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
- a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
- Table 1 below summarizes the reference points shown in FIG. 1.
- various reference points may exist according to the network structure.
- S2a and S2b correspond to non-3GPP interfaces.
- S2a is a reference point that provides the user plane with relevant control and mobility resources between trusted non-3GPP access and PDN GW.
- S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and the PDN GW.
- E-UTRAN evolved universal terrestrial radio access network
- the E-UTRAN system is an evolution from the existing UTRAN system and may be, for example, a 3GPP LTE / LTE-A system.
- Communication networks are widely deployed to provide various communication services, such as voice (eg, Voice over Internet Protocol (VoIP)) over IMS and packet data.
- voice eg, Voice over Internet Protocol (VoIP)
- VoIP Voice over Internet Protocol
- an E-UMTS network includes an E-UTRAN, an EPC, and one or more UEs.
- the E-UTRAN consists of eNBs providing a control plane and a user plane protocol to the UE, and the eNBs are connected through an X2 interface.
- X2 user plane interface (X2-U) is defined between eNBs.
- the X2-U interface provides non guaranteed delivery of user plane packet data units (PDUs).
- An X2 control plane interface (X2-CP) is defined between two neighboring eNBs.
- X2-CP performs functions such as context transfer between eNBs, control of user plane tunnel between source eNB and target eNB, delivery of handover related messages, and uplink load management.
- the eNB is connected to the terminal through a wireless interface and is connected to an evolved packet core (EPC) through the S1 interface.
- EPC evolved packet core
- the S1 user plane interface (S1-U) is defined between the eNB and the serving gateway (S-GW).
- the S1 control plane interface (S1-MME) is defined between the eNB and the mobility management entity (MME).
- the S1 interface performs an evolved packet system (EPS) bearer service management function, a non-access stratum (NAS) signaling transport function, network sharing, and MME load balancing function.
- EPS evolved packet system
- NAS non-access stratum
- the S1 interface supports a many-to-many-relation between eNB and MME / S-GW.
- MME provides NAS signaling security, access stratum (AS) security control, inter-CN inter-CN signaling to support mobility between 3GPP access networks, and performing and controlling paging retransmission.
- EWS Earthquake and Tsunami Warning System
- CMAS Commercial Mobile Alert System
- FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
- an eNB may select a gateway (eg, MME), route to the gateway during radio resource control (RRC) activation, scheduling of a broadcast channel (BCH), and the like. Dynamic resource allocation to the UE in transmission, uplink and downlink, and may perform the function of mobility control connection in the LTE_ACTIVE state.
- the gateway is responsible for paging initiation, LTE_IDLE state management, ciphering of the user plane, System Architecture Evolution (SAE) bearer control, and NAS signaling encryption. It can perform the functions of ciphering and integrity protection.
- FIG. 4 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
- FIG. 4 (a) shows the radio protocol structure for the control plane and FIG. 4 (b) shows the radio protocol structure for the user plane.
- the layers of the air interface protocol between the terminal and the E-UTRAN are based on the lower three layers of the open system interconnection (OSI) standard model known in the art of communication systems. It may be divided into a first layer L1, a second layer L2, and a third layer L3.
- the air interface protocol between the UE and the E-UTRAN consists of a physical layer, a data link layer, and a network layer horizontally, and vertically stacks a protocol stack for transmitting data information. (protocol stack) It is divided into a user plane and a control plane, which is a protocol stack for transmitting control signals.
- the control plane refers to a path through which control messages used by the terminal and the network to manage a call are transmitted.
- the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
- an application layer for example, voice data or Internet packet data
- a physical layer which is a first layer (L1), provides an information transfer service to a higher layer by using a physical channel.
- the physical layer is connected to a medium access control (MAC) layer located at a higher level through a transport channel, and data is transmitted between the MAC layer and the physical layer through the transport channel.
- Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
- data is transmitted between different physical layers through a physical channel between a physical layer of a transmitter and a physical layer of a receiver.
- the physical layer is modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
- OFDM orthogonal frequency division multiplexing
- a physical downlink control channel is a resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH) and uplink shared channel (UL-SCH) to the UE.
- PCH paging channel
- DL-SCH downlink shared channel
- UL-SCH uplink shared channel
- the PDCCH may carry an UL grant that informs the UE of resource allocation of uplink transmission.
- PDFICH physical control format indicator channel informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe.
- a physical HARQ indicator channel (PHICH) carries a HARQ acknowledgment (ACK) / non-acknowledge (NACK) signal in response to uplink transmission.
- the physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NACK, downlink request and channel quality indicator (CQI) for downlink transmission.
- a physical uplink shared channel (PUSCH) carries a UL-SCH.
- the MAC layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
- RLC radio link control
- the MAC layer multiplexes / demultiplexes into a transport block provided as a physical channel on a transport channel of a MAC service data unit (SDU) belonging to the logical channel and mapping between the logical channel and the transport channel.
- SDU MAC service data unit
- the RLC layer of the second layer supports reliable data transmission. Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
- the RLC layer In order to guarantee the various quality of service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM) and an acknowledgment mode (AM). There are three modes of operation: acknowledge mode.
- AM RLC provides error correction through an automatic repeat request (ARQ). Meanwhile, when the MAC layer performs an RLC function, the RLC layer may be included as a functional block of the MAC layer.
- the packet data convergence protocol (PDCP) layer of the second layer (L2) performs user data transmission, header compression, and ciphering functions in the user plane.
- Header compression is relatively large and large in order to allow efficient transmission of Internet protocol (IP) packets, such as IPv4 (internet protocol version 4) or IPv6 (internet protocol version 6), over a small bandwidth wireless interface. It means the function to reduce the IP packet header size that contains unnecessary control information.
- IP Internet protocol
- IPv4 Internet protocol version 4
- IPv6 Internet protocol version 6
- a radio resource control (RRC) layer located at the lowest part of the third layer L3 is defined only in the control plane.
- the RRC layer serves to control radio resources between the terminal and the network.
- the UE and the network exchange RRC messages with each other through the RRC layer.
- the RRC layer controls the logical channel, transport channel and physical channel with respect to configuration, re-configuration and release of radio bearers.
- the radio bearer means a logical path provided by the second layer (L2) for data transmission between the terminal and the network.
- Establishing a radio bearer means defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
- the radio bearer may be further divided into two signaling radio bearers (SRBs) and data radio bearers (DRBs).
- SRB is used as a path for transmitting RRC messages in the control plane
- DRB is used as a path for transmitting user data in the user plane.
- a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
- NAS non-access stratum
- One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
- Different cells may be configured to provide different bandwidths.
- a downlink transport channel for transmitting data from a network to a terminal includes a broadcast channel (BCH) for transmitting system information, a PCH for transmitting a paging message, and a DL-SCH for transmitting user traffic or control messages.
- BCH broadcast channel
- PCH for transmitting a paging message
- DL-SCH for transmitting user traffic or control messages.
- Traffic or control messages of the downlink multicast or broadcast service may be transmitted through the DL-SCH or may be transmitted through a separate downlink multicast channel (MCH).
- an uplink transport channel for transmitting data from a terminal to a network includes a random access channel (RACH) for transmitting an initial control message, and an UL-SCH (uplink shared) for transmitting user traffic or a control message. channel).
- RACH random access channel
- UL-SCH uplink shared
- the logical channel is on top of the transport channel and is mapped to the transport channel.
- the logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
- the control channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a dedicated control channel (DCCH), multicast And a control channel (MCCH: multicast control channel).
- Traffic channels include a dedicated traffic channel (DTCH) and a multicast traffic channel (MTCH).
- PCCH is a downlink channel that carries paging information and is used when the network does not know the cell to which the UE belongs.
- CCCH is used by a UE that does not have an RRC connection with the network.
- the DCCH is a point-to-point bi-directional channel used by a terminal having an RRC connection for transferring dedicated control information between the UE and the network.
- DTCH is a point-to-point channel dedicated to one terminal for transmitting user information that may exist in uplink and downlink.
- MTCH is a point-to-multipoint downlink channel for carrying traffic data from the network to the UE.
- the DCCH may be mapped to the UL-SCH
- the DTCH may be mapped to the UL-SCH
- the CCCH may be mapped to the UL-SCH.
- the BCCH may be mapped with the BCH or DL-SCH
- the PCCH may be mapped with the PCH
- the DCCH may be mapped with the DL-SCH.
- the DTCH may be mapped with the DL-SCH
- the MCCH may be mapped with the MCH
- the MTCH may be mapped with the MCH.
- FIG. 5 shows an S1 interface protocol structure in a wireless communication system to which the present invention can be applied.
- FIG. 5A illustrates a control plane protocol stack in an S1 interface
- FIG. 5B illustrates a user plane interface protocol structure in an S1 interface.
- the S1 control plane interface (S1-MME) is defined between the base station and the MME. Similar to the user plane, the transport network layer is based on IP transport. However, it is added to the SCTP (Stream Control Transmission Protocol) layer above the IP layer for reliable transmission of message signaling.
- SCTP Stream Control Transmission Protocol
- the application layer signaling protocol is referred to as S1-AP (S1 application protocol).
- the SCTP layer provides guaranteed delivery of application layer messages.
- Point-to-point transmission is used at the transport IP layer for protocol data unit (PDU) signaling transmission.
- PDU protocol data unit
- a single SCTP association per S1-MME interface instance uses a pair of stream identifiers for the S-MME common procedure. Only some pairs of stream identifiers are used for the S1-MME dedicated procedure.
- the MME communication context identifier is assigned by the MME for the S1-MME dedicated procedure, and the eNB communication context identifier is assigned by the eNB for the S1-MME dedicated procedure.
- the MME communication context identifier and the eNB communication context identifier are used to distinguish the UE-specific S1-MME signaling transmission bearer. Communication context identifiers are each carried in an S1-AP message.
- the MME changes the state of the terminal that used the signaling connection to the ECM-IDLE state. And, the eNB releases the RRC connection of the terminal.
- S1 user plane interface (S1-U) is defined between the eNB and the S-GW.
- the S1-U interface provides non-guaranteed delivery of user plane PDUs between the eNB and the S-GW.
- the transport network layer is based on IP transmission, and a GPRS Tunneling Protocol User Plane (GTP-U) layer is used above the UDP / IP layer to transfer user plane PDUs between the eNB and the S-GW.
- GTP-U GPRS Tunneling Protocol User Plane
- FIG. 6 is a diagram exemplarily illustrating a structure of a physical channel in a wireless communication system to which the present invention can be applied.
- a physical channel transmits signaling and data through a radio resource including one or more subcarriers in a frequency domain and one or more symbols in a time domain.
- One subframe having a length of 1.0 ms is composed of a plurality of symbols.
- the specific symbol (s) of the subframe eg, the first symbol of the subframe
- the PDCCH carries information about dynamically allocated resources (eg, a resource block, a modulation and coding scheme (MCS), etc.).
- MCS modulation and coding scheme
- EMM EPS mobility management
- ECM EPS connection management
- FIG. 7 is a diagram illustrating EMM and ECM states in a wireless communication system to which the present invention can be applied.
- an EMM registered state (EMM-REGISTERED) according to whether a UE is attached or detached from a network in order to manage mobility of the UE in a NAS layer located in a control plane of the UE and the MME.
- EMM deregistration state (EMM-DEREGISTERED) may be defined.
- the EMM-REGISTERED state and the EMM-DEREGISTERED state may be applied to the terminal and the MME.
- the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the access procedure is successfully performed, the UE and the MME are transitioned to the EMM-REGISTERED state. In addition, when the terminal is powered off or the radio link fails (when the packet error rate exceeds the reference value on the wireless link), the terminal is detached from the network and transitioned to the EMM-DEREGISTERED state.
- ECM-connected state and an ECM idle state may be defined to manage a signaling connection between the terminal and the network.
- ECM-CONNECTED state and ECM-IDLE state may also be applied to the UE and the MME.
- the ECM connection consists of an RRC connection established between the terminal and the base station and an S1 signaling connection established between the base station and the MME. In other words, when the ECM connection is set / released, it means that both the RRC connection and the S1 signaling connection are set / released.
- the RRC state indicates whether the RRC layer of the terminal and the RRC layer of the base station are logically connected. That is, when the RRC layer of the terminal and the RRC layer of the base station is connected, the terminal is in the RRC connected state (RRC_CONNECTED). If the RRC layer of the terminal and the RRC layer of the base station is not connected, the terminal is in the RRC idle state (RRC_IDLE).
- the network can grasp the existence of the terminal in the ECM-CONNECTED state in units of cells and can effectively control the terminal.
- the network cannot grasp the existence of the UE in the ECM-IDLE state, and manages the core network (CN) in a tracking area unit that is a larger area than the cell.
- the terminal When the terminal is in the ECM idle state, the terminal performs Discontinuous Reception (DRX) set by the NAS using an ID assigned only in the tracking area. That is, the UE may receive broadcast of system information and paging information by monitoring a paging signal at a specific paging occasion every UE-specific paging DRX cycle.
- DRX Discontinuous Reception
- the network does not have context information of the terminal. Accordingly, the UE in the ECM-IDLE state may perform a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
- the terminal In the ECM idle state, when the location of the terminal is different from the location known by the network, the terminal may inform the network of the location of the terminal through a tracking area update (TAU) procedure.
- TAU tracking area update
- the network knows the cell to which the UE belongs. Accordingly, the network may transmit and / or receive data to or from the terminal, control mobility such as handover of the terminal, and perform cell measurement on neighbor cells.
- the terminal needs to transition to the ECM-CONNECTED state in order to receive a normal mobile communication service such as voice or data.
- the initial terminal is in the ECM-IDLE state as in the EMM state.
- the terminal and the MME are in the ECM connection state. Transition is made.
- the terminal is registered in the network but the traffic is inactivated and the radio resources are not allocated, the terminal is in the ECM-IDLE state, and if a new traffic is generated uplink or downlink to the terminal, a service request procedure UE and MME is transitioned to the ECM-CONNECTED state through.
- FIG. 8 illustrates a bearer structure in a wireless communication system to which the present invention can be applied.
- PDN packet date network
- EPS Packet Data Network
- the EPS bearer is a transmission path of traffic generated between the UE and the PDN GW in order to deliver user traffic in EPS.
- One or more EPS bearers may be set per terminal.
- Each EPS bearer may be divided into an E-UTRAN radio access bearer (E-RAB) and an S5 / S8 bearer, and the E-RAB is divided into a radio bearer (RB: radio bearer) and an S1 bearer. Can lose. That is, one EPS bearer corresponds to one RB, S1 bearer, and S5 / S8 bearer, respectively.
- E-RAB E-UTRAN radio access bearer
- S5 / S8 bearer an S5 / S8 bearer
- RB radio bearer
- the E-RAB delivers the packet of the EPS bearer between the terminal and the EPC. If there is an E-RAB, the E-RAB bearer and the EPS bearer are mapped one-to-one.
- a data radio bearer (DRB) transfers a packet of an EPS bearer between a terminal and an eNB. If the DRB exists, the DRB and the EPS bearer / E-RAB are mapped one-to-one.
- the S1 bearer delivers the packet of the EPS bearer between the eNB and the S-GW.
- the S5 / S8 bearer delivers an EPS bearer packet between the S-GW and the P-GW.
- the UE binds a service data flow (SDF) to the EPS bearer in the uplink direction.
- SDF is an IP flow or collection of IP flows that classifies (or filters) user traffic by service.
- a plurality of SDFs may be multiplexed onto the same EPS bearer by including a plurality of uplink packet filters.
- the terminal stores mapping information between the uplink packet filter and the DRB in order to bind between the SDF and the DRB in the uplink.
- P-GW binds SDF to EPS bearer in downlink direction.
- a plurality of SDFs may be multiplexed on the same EPS bearer by including a plurality of downlink packet filters.
- the P-GW stores the mapping information between the downlink packet filter and the S5 / S8 bearer to bind between the SDF and the S5 / S8 bearer in the downlink.
- the eNB stores a one-to-one mapping between the DRB and the S1 bearer to bind between the DRB and the S1 bearer in the uplink / downlink.
- S-GW stores one-to-one mapping information between S1 bearer and S5 / S8 bearer in order to bind between S1 bearer and S5 / S8 bearer in uplink / downlink.
- EPS bearers are classified into two types: a default bearer and a dedicated bearer.
- the terminal may have one default bearer and one or more dedicated bearers per PDN.
- the minimum default bearer of the EPS session for one PDN is called a default bearer.
- the EPS bearer may be classified based on an identifier.
- EPS bearer identity is assigned by the terminal or the MME.
- the dedicated bearer (s) is combined with the default bearer by Linked EPS Bearer Identity (LBI).
- LBI Linked EPS Bearer Identity
- a PDN connection is generated by assigning an IP address and a default bearer is generated in the EPS section. Even if there is no traffic between the terminal and the corresponding PDN, the default bearer is not released unless the terminal terminates the PDN connection, and the default bearer is released when the corresponding PDN connection is terminated.
- the bearer of all sections constituting the terminal and the default bearer is not activated, the S5 bearer directly connected to the PDN is maintained, the E-RAB bearer (ie DRB and S1 bearer) associated with the radio resource is Is released. When new traffic is generated in the corresponding PDN, the E-RAB bearer is reset to deliver the traffic.
- the terminal uses a service (for example, the Internet, etc.) through a default bearer
- the terminal may use an insufficient service (for example, Videon on Demand (VOD), etc.) to receive a Quality of Service (QoS) with only the default bearer.
- Dedicated bearer is generated when the terminal requests (on-demand). If there is no traffic of the terminal dedicated bearer is released.
- the terminal or the network may generate a plurality of dedicated bearers as needed.
- the IP flow may have different QoS characteristics depending on what service the UE uses.
- the network determines the allocation of network resources or a control policy for QoS at the time of establishing / modifying an EPS session for the terminal and applies it while the EPS session is maintained. This is called PCC (Policy and Charging Control). PCC rules are determined based on operator policy (eg, QoS policy, gate status, charging method, etc.).
- PCC rules are determined in units of SDF. That is, the IP flow may have different QoS characteristics according to the service used by the terminal, IP flows having the same QoS are mapped to the same SDF, and the SDF becomes a unit for applying the PCC rule.
- PCC Policy and Charging Control Function
- PCEF Policy and Charging Enforcement Function
- PCRF determines PCC rules for each SDF when creating or changing EPS sessions and provides them to the P-GW (or PCEF). After setting the PCC rule for the SDF, the P-GW detects the SDF for each IP packet transmitted and received and applies the PCC rule for the SDF. When the SDF is transmitted to the terminal via the EPS, it is mapped to an EPS bearer capable of providing a suitable QoS according to the QoS rules stored in the P-GW.
- PCC rules are divided into dynamic PCC rules and pre-defined PCC rules. Dynamic PCC rules are provided dynamically from PCRF to P-GW upon EPS session establishment / modification. On the other hand, the predefined PCC rule is preset in the P-GW and activated / deactivated by the PCRF.
- the EPS bearer includes a QoS Class Identifier (QCI) and Allocation and Retention Priority (ARP) as basic QoS parameters.
- QCI QoS Class Identifier
- ARP Allocation and Retention Priority
- QCI is a scalar that is used as a reference to access node-specific parameters that control bearer level packet forwarding treatment, and the scalar value is pre-configured by the network operator.
- a scalar may be preset to any one of integer values 1-9.
- ARP The main purpose of ARP is to determine if a bearer's establishment or modification request can be accepted or rejected if resources are limited.
- ARP can be used to determine which bearer (s) to drop by the eNB in exceptional resource constraints (eg, handover, etc.).
- the EPS bearer is classified into a guaranteed bit rate (GBR) type bearer and a non-guaranteed bit rate (non-GBR) type bearer according to the QCI resource type.
- the default bearer may always be a non-GBR type bearer, and the dedicated bearer may be a GBR type or non-GBR type bearer.
- GBR bearer has GBR and Maximum Bit Rate (MBR) as QoS parameters in addition to QCI and ARP.
- MBR means that fixed resources are allocated to each bearer (bandwidth guarantee).
- MBR MBR: Aggregated MBR
- AMBR Aggregated MBR
- the QoS of the EPS bearer is determined as above, the QoS of each bearer is determined for each interface. Since the bearer of each interface provides QoS of the EPS bearer for each interface, the EPS bearer, the RB, and the S1 bearer all have a one-to-one relationship.
- FIG. 9 is a diagram illustrating a transmission path of a control plane and a user plane in an EMM registered state in a wireless communication system to which the present invention can be applied.
- FIG. 9 (a) illustrates the ECM-CONNECTED state
- FIG. 9 (b) illustrates the ECM-IDLE.
- the terminal When the terminal successfully attaches to the network and becomes the EMM-Registered state, the terminal receives the service using the EPS bearer.
- the EPS bearer is configured by divided into DRB, S1 bearer, S5 bearer for each interval.
- a NAS signaling connection that is, an ECM connection (that is, an RRC connection and an S1 signaling connection) is established.
- an S11 GTP-C (GPRS Tunneling Protocol Control Plane) connection is established between the MME and the SGW, and an S5 GTP-C connection is established between the SGW and the PDN GW.
- GTP-C GPRS Tunneling Protocol Control Plane
- the DRB, S1 bearer, and S5 bearer are all configured (ie, radio or network resource allocation).
- the ECM connection (that is, the RRC connection and the S1 signaling connection) is released.
- the S11 GTP-C connection between the MME and the SGW and the S5 GTP-C connection between the SGW and the PDN GW are maintained.
- both the DRB and the S1 bearer are released, but the S5 bearer maintains the configuration (ie, radio or network resource allocation).
- MBMS Multimedia Broadcast / Multicast Service
- Multicast broadcast single frequency network (MBSFN) synchronization area A network area in which all eNBs are synchronized and can perform MBSFN transmission.
- the MBSFN sync area may support one or more MBSFN areas.
- an eNB may belong to one MBSFN sync area.
- the MBSFN sync area is independent of the definition of the MBMS service area.
- MBSFN transmission or transmission in MBSFN mode Simulcast transmission technology realized by transmitting the same waveform from multiple cells simultaneously.
- MBSFN transmissions from multiple cells in the MBSFN region are seen by the UE as a single transmission.
- MBSFN area The MBSFN area consists of a group of cells in the MBSFN synchronization area of the network and cooperates to perform MBSFN transmission. Except for MBSFN area reserved cell (s), every cell in MBSFN area contributes to MBSFN transmission and advertises its validity. For example, if the UE knows which MBSFN area supports the service it wants to receive, it may need to consider only a subset of the set MBSFN area.
- MBSFN area reserved cell A cell in the MBSFM area that does not contribute to MBSFN transmission. This cell may be allowed to transmit for other services, but power is limited on resources allocated for MBSFN transmission.
- Each synchronization protocol data unit (SYNC PDU) includes a time stamp indicating the start time of the synchronization sequence.
- each synchronization sequence has a broadcast / multicast service center (BM-SC) and the same duration set in the MCE.
- BM-SC broadcast / multicast service center
- the synchronization period provides a time reference for indicating the start time of each synchronization sequence.
- the time stamp provided within each SYNC PDU is a relative value referring to the start time of the sync interval.
- the duration of the synchronization period may be set.
- FIG. 10 is a diagram illustrating a definition of MBMS in a wireless communication system to which the present invention can be applied.
- an MBMS Service Area is composed of one or more MBSFN areas.
- the MBMS SA consists of one or more MBMS Service Area Identifier (s) (MBMS Service Area Identity).
- MBMS SAI identifies a group of cells in one PLMN and is independent of the associated location / routing / service area and physical location of the cell (s).
- One cell may belong to one or more MBMS SA (s) and thus may be identified by one or more MBMS SAI (s).
- each MBSFN area there may be a plurality of cells including a plurality of MBSFN area reserved cells.
- MBMS is only supported within carriers that share unicast traffic.
- the cell (s) performing MBMS transmission refers to MBMS / Unicast-mixed cell (s).
- MTCH and MCCH are mapped to MCH for point-to-multipoint transmission, and the transmission of unicast and MBMS in a cell is co-ordinated manner Is performed.
- UE in RRC_CONNECTED or RRC_IDLE state may receive MBMS. Each time the MBMS service is received, the user receives an incoming call notification and an originating call is possible.
- FIG. 11 is a diagram illustrating an MBMS logical structure in a wireless communication system to which the present invention can be applied.
- Multi-cell / multicast coordinating entity is a logical entity and may be configured as part of other network elements.
- the function of MCS is as follows.
- Radio resource allocation and admission control used by all eNBs in the MBSFN area for multi-cell MBMS transmission using MBSFN operation According to Allocation and Retention Priority (ARP), the radio resource is not sufficient for the MBMS service (s) or the radio resource is previously obtained from other radio bearer (s) of the MBMS service (s) in progress. If preempt), the MCE decides not to establish radio bearer (s) of the new MBMS service (s). In addition to the allocation of time / frequency radio resources, the MCE also determines the setup of radio resources (eg, modulation and coding scheme).
- ARP Allocation and Retention Priority
- the MCE manages the aforementioned functionality for a single eNB of the MBSFN.
- MCE is involved in MBMS Session Control Signaling.
- the Multimedia Broadcast Multicast Services Gateway (MBMS GW) is a logical entity and may exist between the Broadcast / Multicast Service Center (BMSC) and the eNB (s).
- the main function of the MBMS GW is to transmit / broadcast the MBMS packet to each eNB that transmits the service.
- MBMS GW uses IP multicast as a means to deliver MBMS user data to the eNB.
- the MBMS GW performs MBMS Session Control Signaling (ie, session start / update / stop) to the E-UTRAN through the MME.
- the Broadcast / Multicast Service Center schedules MBMS services, reports MBMS services to the UE, and assigns bearer service identifiers.
- the BM-SC starts or terminates an MBMS bearer resource (ie, an MBMS session).
- the BM-SC entity may function as an interface point for a content provider.
- the BM-SC can function as a termination point of the SYNC protocol through the M1 interface.
- the SYNC protocol refers to a protocol for delivering additional information so that the eNB can identify timing for radio frame transmission and detect packet loss. Every enhanced MBMS (eMBMS) service uses the SYNC entity of the resource.
- eMBMS enhanced MBMS
- the SYNC protocol can be applied to downlink and is terminated in the BM-SC.
- eNB supporting eMBMS supports BM-SC and SYNC protocol.
- the eNB joins an IP multicast group for user plane data delivery, terminates the MCCH, and instructs the UE to start and stop the MBMS session.
- the MME provides a signaling path between the BM-SC and the eNB. That is, the BM-SC signals the eNB through the MME.
- the application part is defined as an M3 interface between the MME and the MCE.
- the application part allows MBMS session control signaling at the E-RAB level. That is, it does not carry radio setting data. This procedure includes, for example, starting and stopping an MBMS session.
- SCTP is used for signaling delivery and point-to-point signaling is applied.
- the application portion is defined for the M2 interface between the MCE and the eNB and carries radio configuration data for at least multi-cell transmission mode eNB and session control signaling.
- SCTP is used for signaling delivery and point-to-point signaling is applied.
- the M1 interface is a user plane interface between the MBMS GW and the eNB. As a result, a Control Plane Application Part is not defined for this interface. IP multicast is used for point-to-multipoint delivery of user packets.
- Sm is the control plane interface between MME and MBMS GW.
- SGmb / SGimb is the control / user plane interface between BM-SE and MBMS GW.
- control information associated with UE (s) supporting MBMS is possibly distinguished from unicast control information.
- Most of the MBMS control information is provided in a logical channel (ie, MCCH) specified for MBMS common control information.
- E-UTRA uses one MCCH logical channel per MBSFN region.
- the UE When the network configures multiple MBSFN areas, the UE obtains MBMS control information from the configured MCCH to identify whether a service that is desired to receive is in progress.
- the MCCH delivers an MBSFN AreaConfiguration (MBSFNAreaConfiguration) message indicating not only an ongoing MBMS session but also a corresponding radio resource configuration.
- MBSFN AreaConfiguration MBSFNAreaConfiguration
- the MCCH transmits an MBMS Counting Request (MBMSCountingRequest) message.
- SIB System Information Block
- the MBSFN area is identified by the MBSFN area identifier (mbsfn-AreaId) in SIB 13.
- the UE When the UE is moving, when the source cell and the target cell broadcast the same value in the MBSFN area identifier (mbsfn-AreaId), the UE considers the MBSFN area to be contiguous.
- MCCH information is periodically transmitted using the set repetition period.
- Scheduling information is not provided in the MCCH, and as defined in SIB 13, both the time domain scheduling and the lower layer configuration are set semi-statically.
- the E-UTRAN In the MBMS user data carried by the MTCH logical channel, the E-UTRAN periodically provides MCH scheduling information (MSI) in a lower layer (eg, MAC layer).
- MCH scheduling information (MSI) in a lower layer (eg, MAC layer).
- MSI MCH scheduling information
- MAC layer eg, MAC layer
- the periodicity of the MSI can be set and defined by the MCH scheduling period.
- Receiver Group Member A group member who wants to receive group communication in progress or in the future among group members of GCSE group.
- Transmitter Group Member A group member of a group member of a GCSE group who is authorized to transmit current or future group communications.
- Group Communication Communication from a Transmitter Group Member to a Receiver Group Member
- GCSE Group Communication System Enabler
- Multipoint Service A service used to distribute the same content to many UE (s) in a resource efficient manner.
- the Group Communication Service Application Server uses an EPS bearer service and may additionally use an MBMS bearer service to transfer application signaling and data between the GSC AS and the UE.
- the UE uses the EPS bearer service to exchange application signaling with the GCS AS or to transmit to the GCS AS.
- the GCS AS may carry application signaling and data through the individual EPS bearer service and / or MBMS bearer service of the UE.
- the GCS UE registers with the GCS AS using application signaling to join one or more GCS groups.
- the broadcast service area of the MBMS bearer service may be pre-configured for use by the GCS AS.
- the GCS AS may dynamically determine to use the MBMS bearer service when determining that the number of UEs for the GCS group is large enough in the region (eg, one or more cells). That is, when the number of UEs serviced in a specific cell (s) increases, it is possible to switch from the EPS bearer (ie, unicast bearer) to the MBMS bearer.
- the GCS AS may deliver data to different GCS groups through a single MBMS broadcast bearer.
- Application signaling and data delivered through the MBMS bearer (s) are transparent to the Broadcast Multicast Service Center (BM-SC) and the MBMS bearer service.
- the GCS AS provides all configuration information to the UEs through GCS application signaling.
- the configuration information means information necessary for the UE to receive the application data through the MBMS bearer service and to properly handle the data.
- the UE When a GCS UE moves from an area where an MBMS broadcast bearer is available to an area that is not available, the UE informs the GCS AS from MBMS broadcast bearer reception to non-reception via application signaling, The GCS AS enables downlink application signaling and data delivery through the UE individual EPS bearer. Or vice versa, the UE informs the GCS AS that it has changed from broadcast bearer non-reception to reception, and the GCS AS sends downlink application signaling and data delivery through the UE individual EPS bearer. Deactivate To ensure service continuity, the UE may temporarily receive the same GCS application signaling and data in parallel via the EPS bearer (s) and MBMS service (s).
- MBMS delivery refers to the mechanism by which application data and signaling are delivered using MBMS bearer services.
- GCS AS uses an MBMS bearer for MBMS delivery.
- the MBMS bearer is used to carry data in downlink from the GCS AS to the UE.
- MBMS bearer (s) used for MBMS delivery may be pre-established before the group communication session is set up or dynamically established after the group communication session is set up.
- Unicast delivery refers to the mechanism by which application data and signaling are delivered using EPS bearer services.
- the UE and the GCS AS use an EPS bearer for unicast delivery.
- EPS bearer is used for GC1 signaling exchange between UE and GCS AS, uplink data transmission from UE to GCS AS, downlink data transmission from GCS AS to UE when MBMS delivery is not available or undesirable. do.
- the GCS AS uses the Rx interface to specify and modify the priority level of the EPS bearer used for the group communication session.
- FIG. 12 is a diagram illustrating a GCSE reference model to which the present invention may be applied.
- the GCS AS supports the following functions.
- GC1 signaling exchange with UE including aspects of GCS session and group management
- GCS capable UE supports the following functions.
- BM-SC supports the following functions.
- FIG. 13 is a diagram illustrating a process of setting up a downlink media path for MBMS delivery in a wireless communication system to which the present invention can be applied.
- the GCS AS may pre-establish the MBMS bearer (s) within a specific pre-configured area before starting the group communication session. If the UE requests group communication within the above area, the pre-established MBMS bearer (s) is used for downlink traffic.
- the GCS AS pre-establishes the MBMS bearer (s) for the group communication session.
- the BM-SC delivers the MBMS service description associated with the MBMS bearer (s) to the GCS AS.
- the UE establishes a group communication session with the GCS AS.
- the GCS AS delivers a service description associated with the MBMS bearer (s) to the UE via the GC1 interface.
- the UE obtains a Temporary Mobile Group Identity (TMGI) from the service description to identify the MBMS bearer (s).
- TMGI Temporary Mobile Group Identity
- the UE begins to monitor the MCCH and MCH Scheduling Information (MSI) of the received MBSFN broadcast (s) for the TMGI (s) in the camping cell. That is, the UE monitors the MCH (ie, MCCH) in the camping cell.
- MCH configuration information may be obtained through system information.
- the UE detecting the TMGI on the MCCH monitors the MSI and receives downlink data on the MTCH corresponding to the TMGI.
- the UE when the UE decodes the MCH (ie, MCCH), the UE can read an eMBMS channel information element (IE). If there is a TMGI corresponding to the MBMS session information of the eMBMS channel IE (designated), the MTCH corresponding to the TMGI is decoded. That is, if the UE reads the MBMS session information and does not have its TMGI information, it is not necessary to read the MTCH and may determine that there is no group call broadcasted at the present time in the cell to which the UE belongs.
- IE eMBMS channel information element
- FIG. 14 is a diagram illustrating a process of setting up a downlink media path for MBMS delivery in a wireless communication system to which the present invention can be applied.
- the GCS AS uses a unicast bearer for communication with the UE in downlink when initiating a group communication session.
- the GCS AS decides to use the MBMS bearer for downlink data
- the GCS AS establishes MBMS bearer (s).
- the GCS AS provides the UE with a service description associated with the MBMS bearer (s) obtained from the BM-SC.
- the UE begins to receive downlink data using the MBMS bearer (s) and stops using the unicast bearer for the downlink data.
- the GCS AS can be implemented in various ways to determine to establish a new MBMS Delivery bearer. In one example, the GCS AS may determine establishment of an MBMS Delivery bearer bearer based on the location of the UE participating in the group communication session.
- the UE establishes a group communication session with the GCS AS.
- Downlink data is carried by the unicast Deliver.
- the GCS AS establishes MBMS bearer (s) for the group communication session.
- the BM-SC delivers the MBMS service description associated with the MBMS bearer (s) to the GCS AS.
- the GCS AS delivers a service description associated with the MBMS bearer (s) to the UE via the GC1 interface.
- the UE obtains a TMGI for identifying the MBMS bearer (s) from the service description.
- the UE begins monitoring the MCCH and MCH Scheduling Information (MSI) of the received MBSFN broadcast (s) for the TMGI (s) in the camping cell. That is, the UE monitors the MCH (ie, MCCH) in the camping cell.
- MCH configuration information may be obtained through system information.
- the UE detecting the TMGI on the MCCH monitors the MSI and receives downlink data on the MTCH corresponding to the TMGI.
- the UE when the UE decodes the MCH (ie, MCCH), the UE can read an eMBMS channel information element (IE). If there is a TMGI corresponding to the MBMS session information of the eMBMS channel IE (designated), the MTCH corresponding to the TMGI is decoded. That is, if the UE reads the MBMS session information and does not have its TMGI information, it is not necessary to read the MTCH and may determine that there is no group call broadcasted at the present time in the cell to which the UE belongs.
- IE eMBMS channel information element
- 15 is a diagram illustrating a structure of a TMGI in a wireless communication system to which the present invention can be applied.
- the TMGI may be configured of an MBMS Service ID (MBMS Service ID), a Mobile Country Code (MCC), and a Mobile Network Code (MNC).
- MBMS Service ID MBMS Service ID
- MCC Mobile Country Code
- MNC Mobile Network Code
- the MBMS service ID may consist of 3 octets.
- the MBMS service ID may be composed of hexadecimal numbers of 6 digit fixed length between '000000' and 'FFFFFF'.
- the MBMS Service ID uniquely identifies the MBMS Bearer Service within the PLMN.
- the UE When the UE performs a group call belonging to a specific GCS group, if the corresponding group call is made to the MBMS bearer, the UE receives a TMGI for the group call from the network through the GC1 interface. That is, the GCS group can be mapped to the TMGI.
- the mobile country code may consist of three digits.
- the MCC uniquely identifies the domicile country of the BM-SC.
- the mobile network code may consist of two or three digits.
- the MNC identifies the PLMN to which the BM-SC belongs.
- the present invention proposes a method in which a network can recognize the location of a terminal in an idle mode in cell granularity.
- the MBMS Multimedia Broadcast Multicast Service
- the network can be used for more applications by proposing a method that can be recognized in units of cells irrespective of whether the terminal is in an idle mode or a connected mode.
- 16 is a diagram illustrating an MBSFN region in a wireless communication system to which the present invention can be applied.
- MBSFN region 0 consists of cells 1 to 7
- MBSFN region 1 consists of cells 7, cell 9, cell 10, and cell 13, and MBSFN region 255 represents cell 8, cell 9, and cell 11.
- MBSFN region 0 consists of cells 1 to 7
- MBSFN region 1 consists of cells 7, cell 9, cell 10, and cell 13, and MBSFN region 255 represents cell 8, cell 9, and cell 11.
- MBSFN region 255 represents cell 8, cell 9, and cell 11.
- cell 4 represents a cell that belongs to the MBSFN area as an MBSFN area reserved cell but does not support MBMS transmission.
- Cell 7, cell 8 and cell 9 represent cells belonging to one or more MBSFN regions. It can belong to up to eight MBSFN areas per cell.
- the existing MBMS scheme has been operated in the form of an MBSFN region in which a plurality of eNBs are synchronized to broadcast the same contents by setting an area called a service area (SA).
- SA may be changed by the operator's operation to the static information, but it is not necessary to change frequently or in real time.
- the group communication (Release (Release) -12 GCSE) method (see 3GPP TS 22.468 and TS 23.468) is introduced to 3GPP LTE / LTE-A technology, and such group communication is used to replace the existing MBMS technology.
- 17 is a diagram exemplifying per-cell MBMS delivery in a wireless communication system to which the present invention can be applied.
- the resource can be used for unicast and other purposes.
- a terminal that transmits and receives a signal to and from a network is changed to a cell camped by the terminal because the eNB is aware of cell information in which the terminal is located in the ECM-CONNECTED state.
- Methods for reporting to MME, S-GW and P-GW groups eg, User Location Change Reporting have been proposed.
- N UEs in the cell A receive the MBMS bearer in the ECM-IDLE state, it is preferable to keep the MBMS bearer continuously. However, all the UEs move out of the cell or only a few UEs, such as one or two UEs. If it belongs to this cell A, it may be more efficient in terms of resource management to release the MBMS bearer or to transmit the data by converting the data into unicast.
- the number of UEs in an ECM-IDLE state must be determined to accurately determine the number of terminals belonging to a corresponding cell.
- the terminal needs to be woken up by transmitting paging.
- the network when trying to transmit paging to a UE in a specific ECM-IDLE state due to an incoming call or the like, the network does not know the location of the UE in units of cells, and thus the tracking area most recently reported by the UE. There is a disadvantage in that paging for a corresponding UE must be delivered to a cell belonging to the UE.
- the 3GPP core network may provide the following information to the terminal serviced by a third party service provider. (See 3GPP TS 22.101 Exposed Services and Capabilities).
- roaming state ie roaming and no roaming
- indication of the serving network ie roaming and no roaming
- MME Mobile Equipment
- UICC Universal IC Card
- the present invention proposes a method for the network to recognize the position of the terminal in the idle mode (Cell granularity).
- a cell to which the terminal belongs and a cell to which the terminal camps may be interpreted as the same meaning.
- the cell to which the terminal belongs or the cell camping (camping) the terminal will mean the cell selected by the terminal of the IDLE state (ie, ECM-IDLE / RRC_IDLE) completed the cell selection (reselection) procedure. Can be.
- the attach procedure and Command (or set) cell level reporting to a corresponding terminal (or terminal group) through a tracking area update (TAU) / routing area update (RAU) procedure Or "cell level reporting configuration" or "cell level / reporting configuration.” That is, the terminal may report the cell change information to the network by using the existing TAU procedure.
- TAU tracking area update
- RAU routing area update
- the cell level reporting configuration is dedicated to terminals determined according to terminal (s), MTC terminal (s) to receive group communication service, or characteristics of the terminal (for example, terminals with low mobility). May be transmitted as an enemy.
- the network may request (or configure) a cell level report from a terminal (or terminal group) as needed. For example, the following two cases may be included.
- the cell level reporting configuration may include a parameter for receiving an MBMS.
- a terminal (or terminal group) that performs cell level reporting may be determined based on a parameter value of whether to receive an MBMS. A more detailed description thereof will be described later.
- the cell level reporting configuration may include a parameter for a specific time (or timer).
- a time point at which the UE (or UE group) performs the cell level report may be determined based on a parameter value for a specific time (or timer). A more detailed description thereof will be described later.
- the TAU procedure may be classified into a case where the terminal is triggered by a specific condition and a periodic TAU for maintaining the accessibility of the terminal.
- the condition that the terminal triggers the TAU varies, such as when the tracking area to which the terminal belongs changes.
- the TAU procedure may be divided into a case where the MME to which the UE belongs, a case where the S-GW changes, or a case where both nodes change.
- FIG. 18 is a diagram illustrating a cell-based reporting method according to an embodiment of the present invention.
- a UE cell granularity / level reporting
- a TAU / RAU procedure ie, when a cell unit / level reporting setting is received
- the terminal detects whether a cell camping in the IDLE mode has been changed.
- the terminal receiving the cell unit / level report setting detects whether the cell camping in the IDLE state is changed.
- the cell level report setting (or cell level setting) may include one or more of the following parameters (or information).
- a terminal (or terminal group) that performs cell level reporting may be determined based on the value of this parameter (information). That is, the indication of whether to receive the MBMS indicates whether a condition of whether to receive the MBMS is applied to the terminal (or group of terminals) performing the cell unit / level report to determine whether to report the cell unit / level.
- an indication of whether the MBMS is received may be activated ('Yes') or deactivated ('No'). For example, if the indication of whether to receive the MBMS is activated ('yes'), cell-level / level reporting can be performed only when there is an MBMS receiving in the IDLE interval (that is, the terminal receiving the MBMS). have. On the other hand, if the indication of whether to receive the MBMS is disabled ('no'), all terminals (that is, all terminals that have received the cell unit / level report setting) perform the cell unit / level report regardless of whether the MBMS is received. can do.
- receiving the MBMS may mean that the UE detects the MBMS data (or signal) in a radio frequency (RF) unit. That is, when the MBMS data (or signal) is detected regardless of the TMGI assigned to the UE (or assigned to the group to which the UE belongs), the UE may determine that the MBMS is received.
- RF radio frequency
- receiving the MBMS may mean that the UE receives the MBMS data (or signal) on the MTCH corresponding to the TMGI assigned to the UE (or assigned to the group to which the UE belongs). That is, the UE may determine that the MBMS is received only when MBMS data (or a signal) corresponding to TMGI assigned to the UE (or assigned to the group to which the UE belongs) is received.
- Timer information (ie timer value indication)
- this parameter information
- the timer corresponds to a period value
- the terminal may not report information about the changed cell (that is, the cell to which the cell belongs) until the timer value expires even when the camping cell changes. That is, when the timer value expires, the terminal detects that the cell has changed, and transmits cell change information to the network.
- the timer may be driven from a time point at which the terminal receives timer information from the network (or a time point at which the network transmits a timer parameter) through an attach procedure or a TAU procedure.
- the timer By operating the timer from the time point at which the terminal receives the timer information, the number of terminals in the IDLE state belonging to a specific cell can be determined within a specific time from the time point at which the network transmits the cell unit / level report setting.
- the timer may be driven from the time when the terminal transitions from the CONNECTED state to the IDLE state.
- the terminal that has received the timer information through the attach procedure may be in the CONNECTED state, and since the terminal of the CONNECTED state is reported in units of cells to the network, the terminal in the CONNECTED state does not need to run the timer unnecessarily. have.
- the timer may be driven from the time when the terminal receives the MBMS. This is an advantage that the terminal other than the terminal that receives the MBMS may not need to run the timer unnecessarily when the indication on whether to receive the MBMS is activated ('yes').
- the timer may be driven from a time point when the terminal detects that the cell camped is changed. Since the timer is run from the time when the camping cell is changed, the network can determine the number of terminals staying in a specific cell for a predetermined time, and can eliminate the number of terminals ping-pongs located at cell boundaries. There is this.
- the timer value can be arbitrarily determined.
- a timer value may be arbitrarily determined within a different range according to an indication value for receiving MBMS. For example, if the parameter value for receiving MBMS is 'yes', the timer value may be determined within a range of 10 ms to 20 ms, but if it is 'no', the timer value may be determined within a range of 30 ms to 50 ms. .
- this timer value may correspond to a period for calculating switching between MBMS deliver and unicast delivery at the network end.
- step S1801 if the terminal detects that the cell camping (camping) has changed, the terminal transmits a TAU request message including the cell change information to the eNB (S1802).
- the cell change information may include information indicating that the cell to be camped has changed and / or a cell identity of the cell to be camped.
- the terminal when the cell level report configuration includes an indication on whether to receive the MBMS and / or timer information, when the terminal detects that the cell to which the cell belongs is changed, the terminal may include parameters included in the cell level report configuration. (Or information) may transmit a TAU request message to the eNB.
- the eNB transmits a TAU request message to the MME by including the cell change information in the received TAU request message (S1803).
- the cell change information may include information indicating that the cell camped by the terminal has been changed and / or a cell identifier of a cell camped by the terminal.
- the UE may include information indicating that the cell has been changed and / or a cell identifier of a camping cell in a TAU request message and transmit the same to the eNB.
- the eNB may transmit the same information. It may be included in a TAU request message and transmitted to the MME.
- the UE may transmit only the information indicating that the cell has been changed in the TAU request message to the eNB, and in this case, the eNB may transmit a cell ID (or cell identity) of the cell camped by the UE. Information indicating that this change is included) may be included in the TAU request message and transmitted to the MME.
- the UE may transmit only the information indicating that the cell has been changed to the eNB by including the TAU request message in the TAU request message, and the eNB may transmit a TAU request message received from the UE to the MME. . That is, the eNB may encapsulate a TAU request message to an MME in an initial UE message and transmit the encapsulated TAU request message to an MME, and the cell identifier of a cell received by the eNB in an initial UE message. Identity may be included, and a cell identifier may not be included in a TAU request message.
- the MME compares the Cell ID included in the TAU request message with the previous Cell ID for the corresponding UE, and transmits it to the network through the S-GW and P-GW. In this case, when the changed Cell ID of the terminal is finally transmitted to the PCRF, the application server may also inform whether the terminal has changed the cell.
- the existing TAU procedure may be performed after the step of receiving the TAU Request message from the eNB by the MME but before the step of transmitting the TAU Accept message to the UE, but the MME transmits to the SGW.
- the message, the message transmitted by the SGW to the PGW, and the message transmitted by the MME to the HSS may include the changed Cell ID of the terminal.
- the existing TAU procedure includes a TAU procedure when the MME to which the UE belongs, when the S-GW changes, or when both nodes change. This will be described later in more detail.
- the MME transmits a TAU accept message to the terminal (S1805).
- the MME may reconfigure the cell level report. That is, the cell level report setting may be included in a TAU accept message and transmitted to the eNB.
- the procedure illustrated in FIG. 18 is just one example, and steps or entities not illustrated in FIG. 18 may be added to perform the cell-based reporting method.
- FIG. 19 is a diagram illustrating a cell-based reporting method according to an embodiment of the present invention.
- step S1901 the mobile station detects whether a cell has changed.
- the terminal receiving the cell unit / level report setting detects whether the cell camping in the IDLE state is changed.
- the cell level report setting may include one or more of an indication and / or timer information on whether to receive the MBMS, and the description thereof will be omitted. do.
- the terminal When the terminal detects that the cell camped (camping) is changed in step S1901, the terminal transmits a TAU request message including the cell change information to the eNB (S1902).
- the cell change information may include information indicating that the cell to be camped has changed and / or a cell identity of the cell to be camped.
- the terminal when the cell level report configuration includes an indication on whether to receive the MBMS and / or timer information, when the terminal detects that the cell to which the cell belongs is changed, the terminal may include parameters included in the cell level report configuration. (Or information) may transmit a TAU request message to the eNB.
- the eNB includes the cell change information in the received TAU request message and transmits a TAU request message to the MME (S1903).
- the cell change information may include information indicating that the cell camped by the terminal has been changed and / or a cell identifier of a cell camped by the terminal.
- the UE may transmit information indicating that the cell has been changed and / or a cell identity of the camping cell to the eNB by including it in a TAU request message, in which case the eNB may transmit the same information. It may be included in a TAU request message and transmitted to the MME.
- the UE may transmit only the information indicating that the cell has been changed to the eNB by including in the TAU request message, and in this case, the eNB may transmit a cell identifier (Cell Identity) (or cell) of the cell camped by the UE. Information indicating that this change is included) may be included in the TAU request message and transmitted to the MME.
- Cell Identity Cell identifier
- the UE may include only information indicating that the cell has been changed in the TAU request message and transmit the information to the eNB, and the eNB may transmit a TAU request message received from the UE to the MME. . That is, the eNB may encapsulate a TAU request message to an MME in an initial UE message and transmit the encapsulated TAU request message to an MME, and the cell identifier of a cell received by the eNB in an initial UE message. Identity may be included, and a cell identifier may not be included in a TAU request message.
- the new MME transmits a context request message to retrieve the user information to the old MME (S1904).
- the old MME transmits a context response message to the new MME in response to the context request message (S1905).
- the terminal performs an authentication / security procedure between the MME and the MME and the HSS (S1906).
- the new MME transmits a context acknowledge (Context Acknowledge) message to the old MME (S1907).
- the MME determines whether the SGW is relocated. When the previous SGW (Old SGW) can no longer serve the terminal, the SGW is relocated.
- the MME if the MME is changed, the new MME is expected that the new SGW can serve the terminal longer, or the new SGW is expected to have a path to a more suitable PGW with the terminal or the new SGW is the same as the PGW. (co-locate) to relocate the SGW. For the selection of new SGWs, see 3GPP TS 23.401.
- the MME (if the MME is changed, the new MME) transmits a Create Session Request message to the new SGW (S1908).
- the Create Session Request message may include information indicating that the cell camped by the terminal has been changed and / or a cell identity of a cell camped by the terminal.
- the new SGW transmits a Bearer Modify Request message to the PGW for each PDN connection (S1909).
- the bearer modification request message may include information indicating that the cell camped by the terminal has been changed and / or a cell identifier of a cell camped by the terminal.
- the PGW transmits a bearer modification response (Modify Bearer Response) message to the new SGW in response to the bearer modification request message (S1910).
- a bearer modification response Modify Bearer Response
- the PGW may report the position change of the terminal to the PCRF.
- the application server may also notify whether the terminal has changed the cell.
- the new SGW transmits a Create Session Response message to the MME (if the MME is changed, the new MME) in response to the Create Session Request message (S1911).
- the new MME transmits an Update Location Request message to the HSS (S1912).
- the update location request message may include a changed cell ID value of the terminal.
- the HSS transmits a Cancel Location message to the old MME (S1913).
- the previous MME transmits a Cancel Location Acknowledge (Ack) message to the HSS in response to the Cancel Location message (S1914).
- the HSS transmits a location update Ack (Update Location Acknowledge) message to the new MME in response to the Update Location Request message (S1915).
- a location update Ack Update Location Acknowledge
- the old MME (Old MME) transmits a Delete Session Request message to the previous SGW (S1916).
- the previous SGW transmits a Delete Session Response message to the old MME in response to a Delete Session Request message (S1917).
- the MME (when the MME is changed, the new MME) transmits a TAU Accept message in response to the TAU Request message to the UE (S1918).
- the MME may reconfigure the cell level report. That is, the cell level report setting may be included in a TAU accept message and transmitted to the UE through the eNB.
- steps S1904, S1905, S1907, S1913 to S1915 are omitted.
- the procedure illustrated in FIG. 19 is merely an example, and steps or entities not illustrated in FIG. 19 may be added to perform a cell-based reporting method.
- FIG. 20 is a diagram illustrating a cell-based reporting method according to an embodiment of the present invention.
- step S2001 a detection is performed on whether a cell has been changed.
- the terminal receiving the cell unit / level report setting detects whether the cell camping in the IDLE state is changed.
- the cell level report setting may include one or more of an indication and / or timer information on whether to receive the MBMS, and the description thereof will be omitted. do.
- the terminal When the terminal detects that the cell camped (camping) is changed in step S2001, the terminal transmits a TAU request message including the cell change information to the eNB (S2002).
- the cell change information may include information indicating that the cell to be camped has changed and / or a cell identity of the cell to be camped.
- the terminal when the cell level report configuration includes an indication on whether to receive the MBMS and / or timer information, when the terminal detects that the cell to which the cell belongs is changed, the terminal may include parameters included in the cell level report configuration. (Or information) may transmit a TAU request message to the eNB.
- the eNB transmits a TAU request message to the MME by including cell change information in the received TAU request message (S2003).
- the cell change information may include information indicating that the cell camped by the terminal has been changed and / or a cell identifier of a cell camped by the terminal.
- the UE may include information indicating that the cell has been changed and / or a cell ID of a camping cell in a TAU request message and transmit the same to the eNB.
- the eNB may transmit the same information. It may be included in a TAU request message and transmitted to the MME.
- the UE may transmit only the information indicating that the cell has been changed in the TAU request message to the eNB, and in this case, the eNB may transmit a cell identifier (or cell identity) of the cell camped by the UE. Information indicating that this change is included) may be included in the TAU request message and transmitted to the MME.
- the UE may include only information indicating that the cell has been changed in the TAU request message and transmit the information to the eNB, and the eNB may transmit a TAU request message received from the UE to the MME. . That is, the eNB may encapsulate a TAU request message to an MME in an initial UE message and transmit the encapsulated TAU request message to an MME, and the cell identifier of a cell received by the eNB in an initial UE message. Identity may be included, and a cell identifier may not be included in a TAU request message.
- the new MME transmits a context request message to retrieve the user information from the old MME (Old MME) (S2004).
- the old MME transmits a context response message to the new MME in response to the context request message (S2005).
- the terminal performs an authentication / security procedure between the MME and the MME and the HSS (S2006).
- the new MME sends a context acknowledge (Context Acknowledge) message to the old MME (S2007).
- the new MME transmits a bearer modification request message to the SGW for each PDN connection (S2008).
- the bearer modification request message may include information indicating that the cell camped by the terminal has been changed and / or a cell identifier of a cell camped by the terminal.
- the SGW transmits a bearer modification request message to the PGW for each PDN connection (S2009).
- the bearer modification request message may include information indicating that the cell camped by the terminal has been changed and / or a cell identifier of a cell camped by the terminal.
- the PGW transmits a bearer modification response message to the SGW in response to a bearer modification request message (S2010).
- the PGW may report the position change of the terminal to the PCRF.
- the application server may also notify whether the terminal has changed the cell.
- the SGW transmits a bearer modification response (Modify Bearer Response) message to the new MME in response to the bearer modification request (Modify Bearer Request) message (S2011).
- a bearer modification response Modify Bearer Response
- Modify Bearer Request Modify Bearer Request
- the new MME transmits an Update Location Request message to the HSS (S2012).
- the update location request message may include a changed cell ID value of the terminal.
- the HSS transmits a Cancel Location message to the old MME (S2013).
- the previous MME transmits a Location Cancel Ack (Cancel Location Acknowledge) message to the HSS in response to the Cancel Location message (S2014).
- the HSS transmits a location update Ack (Update Location Acknowledge) message to the new MME in response to the Update Location Request message (S2015).
- a location update Ack Update Location Acknowledge
- the MME (when the MME is changed, the new MME) transmits a TAU Accept message in response to the TAU Request message to the UE (S2016).
- the MME may reconfigure the cell level report. That is, the cell level report setting may be included in a TAU accept message and transmitted to the UE through the eNB.
- the procedure illustrated in FIG. 20 is just one example, and steps or entities not illustrated in FIG. 20 may be added to perform a cell-based reporting method.
- the terminal in the IDLE state may transmit the cell change information to the network through a simpler procedure than the procedure using the TAU procedure.
- This can be implemented using an existing TAU request message and including indication information requiring a simplified procedure or via a new message (eg, a cell change request message). This will be described with reference to the drawings below.
- 21 is a diagram illustrating a cell-based reporting method according to an embodiment of the present invention.
- the UE when cell granularity / level reporting is configured through an attach procedure or a TAU / RAU procedure (that is, when a cell unit / level reporting setting is received), the UE is IDLE.
- operation S2101 a detection operation is performed on whether a cell camping in the mode section is changed.
- the terminal receiving the cell unit / level report setting detects whether the cell camping in the IDLE state is changed.
- the cell level report setting may include one or more of an indication and / or timer information on whether to receive the MBMS, and the description thereof will be omitted. do.
- step S2101 if the UE detects that the cell camped (camping) has changed, the UE indicates to the eNB a Cell Change Report message (or Cell Change Report) message including the cell change information (or a simplified TAU procedure with the cell change information).
- a TAU request message including the indication information is transmitted (S2102).
- the cell change information may include information indicating that the cell to be camped has changed and / or a cell identity of the cell to be camped.
- the terminal when the cell level report configuration includes an indication on whether to receive the MBMS and / or timer information, when the terminal detects that the cell to which the cell belongs is changed, the terminal may include parameters included in the cell level report configuration. Based on (or information), a Cell Change Report message (or a TAU request message) may be transmitted to the eNB.
- a Cell Change Report message (or a TAU request message) may be transmitted to the eNB.
- the eNB includes the cell change information in the received Cell Change Report message (or TAU request message) and sends the Cell Change Report message (or TAU request message) to the MME. (S2103).
- the cell change information may include information indicating that the cell camped by the terminal has been changed and / or a cell identifier of a cell camped by the terminal.
- the mobile station includes information indicating that the cell has been changed and / or a cell identifier of a camping cell in a cell change report message (or a TAU request message).
- the eNB may transmit the same information to the MME by including the same information in a Cell Change Report message (or a TAU request message).
- the UE may transmit only the information indicating that the cell has been changed to the eNB by including it in a Cell Change Report message (or a TAU request message), in which case the eNB camps.
- the cell identifier (or cell indication) indicating that the cell is changed may be included in a cell change report message (or a TAU request message) and transmitted to the MME.
- the UE may transmit only the information indicating that the cell has been changed to the eNB by including it in a Cell Change Report message (or a TAU request message), and the eNB receives the cell from the UE.
- a change report message (or a TAU request message) may be transmitted to the MME. That is, the eNB may encapsulate a Cell Change Report message (or TAU request message) in an initial UE message to the MME and transmit the encapsulated cell to an initial UE message.
- the message may include a cell identifier of a cell received by the eNB, and may not include a cell identifier in a cell change report message (or a TAU request message). .
- the MME When the MME receives the Cell Change Report message, the MME stores whether the Cell ID is changed and the Cell ID value, and then transmits a Cell Change Report Acck (Ack) message to the eNB (S2104).
- Ack Cell Change Report Acck
- the TAU request message received by the MME is a message for a simplified TAU procedure for cell-level / level reporting, it does not perform a TAU operation and then changes the cell ID and the cell ID value. After storage, a TAU Accept message may be transmitted to the eNB.
- the MME may reconfigure the cell level report. That is, the cell level report configuration may be transmitted to the eNB by including the cell change report Ack (Cell Change Report Acknowledge) message (or TAU accept message).
- the cell change report Ack Cell Change Report Acknowledge
- the MME may transmit whether the cell of the corresponding terminal and the corresponding cell information to the application server through the PCRF through the S-GW, P-GW.
- the eNB transmits a Cell Change Report Acknowledge (Ack) message (or TAU accept message) received from the MME to the UE (S2105).
- Ack Cell Change Report Acknowledge
- the cell change report Ack (Cell Change Report Acknowledge) message may include a cell level report setting that is reset.
- the cell unit / level reporting operation of the same terminal may be performed at the application level. have.
- the application server instructs (or instructs) UE to perform cell granularity / level reporting (ie, transmit cell / level reporting configuration).
- the cell level report setting may include one or more of an indication and / or timer information on whether to receive the MBMS, and the description thereof will be omitted. do.
- the application server may transmit cell / level report configuration through a GC1 interface used for application signaling in group communication.
- the terminal When the application layer of the terminal performs cell-level / level reporting, the terminal sets the modem of the terminal to detect the cell change.
- the modem of the terminal ie, access stratum and non-access stratum
- detects a cell change and then transmits cell change information to the application layer.
- the terminal receiving the cell unit / level report setting detects whether the cell camping in the IDLE state is changed.
- the application layer of the terminal initiates data transmission to transmit the corresponding information, and after requesting a service request, establishes a user plane connection with the application server and transmits cell change information.
- the cell change information may include information indicating that the cell to be camped has changed and / or a cell identity of the cell to be camped.
- the terminal when the cell level report configuration includes an indication on whether to receive the MBMS and / or timer information, when the terminal detects that the cell to which the cell belongs is changed, the terminal may include parameters included in the cell level report configuration.
- the cell change information may be transmitted to the application server based on the (or the information).
- Cell-level / level reporting for monitoring an IDLE terminal is proposed to manage an MTC type terminal by a 3rd party application, which is likely to be in the IDLE mode during the period in which the terminal can communicate. Cell-level / level reporting of the terminal is required.
- FIG. 22 is a diagram illustrating a cell-based reporting method according to an embodiment of the present invention.
- the terminal receives a cell granularity reporting configuration from the network (S2201).
- the terminal may receive a cell-by-cell report setting from the network in an attach procedure or a TAU procedure.
- the cell-by-cell report setting means a setting for the UE to command (or indicate) the cell-by-cell report.
- the cell level report setting (or cell level setting) may include one or more of the following parameters (or information).
- a terminal (or terminal group) that performs cell level reporting may be determined based on the value of this parameter (information). That is, the indication of whether to receive the MBMS indicates whether the condition on whether to receive the MBMS is applied in order to determine by the UE (or terminal group) performing the cell unit / level report.
- an indication of whether the MBMS is received may be activated ('Yes') or deactivated ('No'). For example, if the indication of whether to receive the MBMS is activated ('yes'), cell-level / level reporting can be performed only when there is an MBMS receiving in the IDLE interval (that is, the terminal receiving the MBMS). have. On the other hand, if the indication of whether to receive the MBMS is disabled ('no'), all terminals (that is, all terminals that have received the cell unit / level report setting) perform the cell unit / level report regardless of whether the MBMS is received. can do.
- receiving the MBMS may mean that the UE detects the MBMS data (or signal) in a radio frequency (RF) unit. That is, when the MBMS data (or signal) is detected regardless of the TMGI assigned to the UE (or assigned to the group to which the UE belongs), the UE may determine that the MBMS is received.
- RF radio frequency
- receiving the MBMS may mean that the UE receives the MBMS data (or signal) on the MTCH corresponding to the TMGI assigned to the UE (or assigned to the group to which the UE belongs). That is, the UE may determine that the MBMS is received only when MBMS data (or a signal) corresponding to TMGI assigned to the UE (or assigned to the group to which the UE belongs) is received.
- Timer information (ie timer value indication)
- this parameter information
- the timer corresponds to a period value
- the terminal may not report information about the changed cell (that is, the cell to which the cell belongs) until the timer value expires even when the camping cell changes. That is, when the timer value expires, the terminal detects that the cell has changed, and transmits cell change information to the network.
- the timer may be driven from a time point at which the terminal receives timer information from the network (or a time point at which the network transmits a timer parameter) through an attach procedure or a TAU procedure.
- the timer By driving the timer from the time point at which the terminal receives the timer information, the number of terminals in the IDLE state belonging to a specific cell can be immediately known from the time point at which the network transmits the cell unit / level report setting.
- the timer may be driven from the time when the terminal transitions from the CONNECTED state to the IDLE state.
- the terminal that has received the timer information through the attach procedure may be in the CONNECTED state, and since the terminal of the CONNECTED state is reported in units of cells to the network, the terminal in the CONNECTED state does not need to run the timer unnecessarily. have.
- the timer may be driven from the time when the terminal receives the MBMS. This is an advantage that the terminal other than the terminal that receives the MBMS may not need to run the timer unnecessarily when the indication on whether to receive the MBMS is activated ('yes').
- the timer may be driven from a time point when the terminal detects that the cell camped is changed. Since the timer is run from the time when the camping cell is changed, the network can determine the number of terminals staying in a specific cell for a predetermined time, and can eliminate the number of terminals ping-pongs located at cell boundaries. There is this.
- the timer value can be arbitrarily determined.
- a timer value may be arbitrarily determined within a different range according to an indication value for receiving MBMS. For example, if the parameter value for receiving MBMS is 'yes', the timer value may be determined within a range of 10 ms to 20 ms, but if it is 'no', the timer value may be determined within a range of 30 ms to 50 ms. .
- this timer value may correspond to a period for calculating switching between MBMS deliver and unicast delivery at the network end.
- the terminal detects whether the cell camping in the idle state is changed (S2202).
- the terminal receiving the cell unit / level report setting detects whether the cell camping in the IDLE state is changed.
- cell change information is transmitted to the network (S2203).
- the cell change information may include information indicating that the cell to be camped has changed and / or a cell identity of the cell to be camped.
- the terminal when the cell level report configuration includes an indication on whether to receive the MBMS and / or timer information, when the terminal detects that the cell to which the cell belongs is changed, the terminal may include parameters included in the cell level report configuration.
- the cell change information can be transmitted to the network based on the (or the information).
- FIG. 23 is a diagram illustrating a cell-based reporting method according to an embodiment of the present invention.
- the terminal receives a cell granularity reporting configuration from the network (S2301).
- the terminal may receive a cell-by-cell report setting from the network in an attach procedure or a TAU procedure.
- the cell-by-cell report setting includes an indication of whether the MBMS is received.
- a terminal (or terminal group) that performs cell level reporting may be determined based on the value of this parameter (information). That is, the indication of whether to receive the MBMS indicates whether the condition on whether to receive the MBMS is applied in order to determine by the UE (or terminal group) performing the cell unit / level report. For example, an indication of whether the MBMS is received may be activated ('Yes') or deactivated ('No').
- the UE checks whether an indication on whether to receive the MBMS in the cell-by-cell report setting is activated ('yes') (S2302).
- step S2302 when the indication on whether to receive the MBMS is activated (that is, 'yes'), the terminal determines whether the MBMS data (or signal) is received (S2303).
- the reception of the MBMS data (or signal) may mean that the terminal detects the MBMS data (or signal) in a radio frequency (RF) unit. That is, when the MBMS data (or signal) is detected regardless of the TMGI assigned to the UE (or assigned to the group to which the UE belongs), the UE may determine that the MBMS is received.
- RF radio frequency
- reception of MBMS data may mean that the UE receives MBMS data (or signals) on an MTCH corresponding to TMGI assigned to itself (or to a group to which it belongs). That is, the UE may determine that the MBMS is received only when MBMS data (or a signal) corresponding to TMGI assigned to the UE (or assigned to the group to which the UE belongs) is received.
- step S2302 if the indication on whether to receive the MBMS is not activated (ie, 'no'), the terminal detects whether the camping (camping) cell in the idle state (IDLE) has been detected (detected) ( S2304).
- all terminals that is, all the terminals that have received the cell unit / level report setting
- step S2303 when the MBMS data (or signal) is received, the terminal detects whether the cell camping in the idle state is changed (S2304).
- the UE may perform cell unit / level reporting only when there is an MBMS received in the IDLE interval (ie, only the UE receiving the MBMS). have.
- step S2303 determines whether the MBMS data (or signal) is received.
- the terminal does not receive MBMS data (or signal), it does not perform granularity reporting.
- the terminal When the terminal detects that the camping cell is changed, the terminal transmits cell change information to the network (S2305).
- FIG. 24 is a diagram illustrating a cell-based reporting method according to an embodiment of the present invention.
- the terminal receives a cell granularity reporting configuration from the network (S2401).
- the terminal may receive a cell-by-cell report setting from the network in an attach procedure or a TAU procedure.
- the cell-by-cell report setting includes timer information. Based on the value of this parameter (information), it may be determined when the UE performs the unit / level report or whether the unit / level report is performed.
- the timer value may correspond to a cycle for calculating switching between MBMS deliver and unicast delivery in the network.
- the timer value can be arbitrarily determined.
- a timer value may be arbitrarily determined within a different range according to an indication value for receiving MBMS.
- the terminal detects whether the cell camping in the idle state is changed (S2402).
- the terminal determines whether the timer expires (S2403).
- step S2403 if the timer has not expired, the process returns to step S2403 again and the terminal determines whether the timer expires.
- the terminal does not report the cell change information to the network until the timer value expires.
- step S2403 when the timer value expires, the terminal detects that the cell has changed, and transmits the cell change information to the network (S2404).
- the timer may be driven from a time point at which the terminal receives timer information from the network (or a time point at which the network transmits a timer parameter) through an attach procedure or a TAU procedure.
- the timer may be driven from the time when the terminal transitions from the CONNECTED state to the IDLE state.
- the timer may be driven from the time when the terminal receives the MBMS.
- the timer may be driven from a time point when the terminal detects that the cell camped is changed.
- 25 is a diagram illustrating a cell-based reporting method according to an embodiment of the present invention.
- the terminal receives a cell granularity reporting configuration from the network (S2501).
- the terminal may receive a cell-by-cell report setting from the network in an attach procedure or a TAU procedure.
- the cell-by-cell report setting includes an indication of whether the MBMS is received.
- a terminal (or terminal group) that performs cell level reporting may be determined based on the value of this parameter (information). That is, the indication of whether to receive the MBMS indicates whether the condition on whether to receive the MBMS is applied in order to determine by the UE (or terminal group) performing the cell unit / level report. For example, an indication of whether the MBMS is received may be activated ('Yes') or deactivated ('No').
- the cell-by-cell report setting includes timer information. Based on the value of this parameter (information), it may be determined when the UE performs the unit / level report or whether the unit / level report is performed.
- the timer value may correspond to a cycle for calculating switching between MBMS deliver and unicast delivery in the network.
- the timer value can be arbitrarily determined.
- a timer value may be arbitrarily determined within a different range according to an indication value for receiving MBMS.
- the UE checks whether an indication on whether to receive the MBMS in the cell-by-cell report setting is activated ('yes') (S2502).
- step S2502 when the indication on whether to receive the MBMS is activated (that is, 'yes'), the terminal determines whether the MBMS data (or signal) is received (S2503).
- the reception of the MBMS data (or signal) may mean that the terminal detects the MBMS data (or signal) in a radio frequency (RF) unit. That is, when the MBMS data (or signal) is detected regardless of the TMGI assigned to the UE (or assigned to the group to which the UE belongs), the UE may determine that the MBMS is received.
- RF radio frequency
- reception of MBMS data may mean that the UE receives MBMS data (or signals) on an MTCH corresponding to TMGI assigned to itself (or to a group to which it belongs). That is, the UE may determine that the MBMS is received only when MBMS data (or a signal) corresponding to TMGI assigned to the UE (or assigned to the group to which the UE belongs) is received.
- step S2502 if the indication on whether to receive the MBMS is not activated (ie, 'no'), the terminal detects whether the camping (camping) cell in the idle state (IDLE) has been changed (detected) ( S2504).
- all terminals that is, all the terminals that have received the cell unit / level report setting
- step S2503 when the MBMS data (or signal) is received, the terminal detects whether the cell camping in the idle state is changed (S2504).
- step S2503 determines whether the MBMS data (or signal) is received.
- the terminal does not receive MBMS data (or signal), it does not perform granularity reporting.
- the terminal determines whether the timer expires (S2505).
- step S2505 if the timer has not expired, the process returns to step S2505 again and the terminal determines whether the timer expires.
- the terminal does not report the cell change information to the network until the timer value expires.
- step S2505 when the timer value expires as a result of the determination in step S2505, if the terminal detects that the cell has been changed, the terminal transmits cell change information to the network (S2506).
- the timer may be driven from a time point at which the terminal receives timer information from the network (or a time point at which the network transmits a timer parameter) through an attach procedure or a TAU procedure.
- the timer may be driven from the time when the terminal transitions from the CONNECTED state to the IDLE state.
- the timer may be driven from the time point at which the terminal receives the MBMS data.
- the timer may be driven from a time point when the terminal detects that the cell camped is changed.
- Figure 26 illustrates a block diagram of a communication device according to an embodiment of the present invention.
- a wireless communication system includes a network node 2610 and a plurality of terminals (UEs) 2620.
- UEs terminals
- the network node 2610 includes a processor 2611, a memory 2612, and a communication module 2613.
- the processor 2611 implements the functions, processes, and / or methods proposed in FIGS. 1 to 25. Layers of the wired / wireless interface protocol may be implemented by the processor 2611.
- the memory 2612 is connected to the processor 2611 and stores various information for driving the processor 2611.
- the communication module 2613 is connected to the processor 2611 to transmit and / or receive wired / wireless signals.
- a base station, an MME, an HSS, an SGW, a PGW, an application server, and the like may correspond thereto.
- the communication module 2613 may include a radio frequency unit (RF) unit for transmitting / receiving a radio signal.
- RF radio frequency unit
- the terminal 2620 includes a processor 2621, a memory 2622, and a communication module (or RF unit) 2623.
- the processor 2621 implements the functions, processes, and / or methods proposed in FIGS. 1 to 25. Layers of the air interface protocol may be implemented by the processor 2621.
- the memory 2622 is connected to the processor 2621 and stores various information for driving the processor 2621.
- the communication module 2623 is connected to the processor 2621 to transmit and / or receive a radio signal.
- the memories 2612 and 2622 may be inside or outside the processors 2611 and 2621 and may be connected to the processors 2611 and 2621 by various well-known means.
- the network node 2610 (when the base station) and / or the terminal 2620 may have a single antenna or multiple antennas.
- each component or feature is to be considered optional unless stated otherwise.
- Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
- the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
- Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
- an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- processors controllers, microcontrollers, microprocessors, and the like.
- an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
- the software code may be stored in memory and driven by the processor.
- the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
- the granularity reporting method has been described with reference to an example applied to the 3GPP LTE / LTE-A system, but it is applicable to various wireless communication systems in addition to the 3GPP LTE / LTE-A system. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Multimedia (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
무선 통신 시스템에서 셀 단위 보고를 위한 방법 및 이를 위한 장치가 개시된다. 구체적으로, 무선 통신 시스템에서 아이들(IDLE) 상태의 단말이 셀 단위(granularity) 보고를 수행하기 위한 방법에 있어서, 네트워크로부터 셀 단위 보고 설정(cell granularity reporting configuration)을 수신하는 단계, 아이들(IDLE) 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지(detection)하는 단계 및 상기 캠핑하는 셀이 변경되었음을 감지하면, 상기 네트워크로 셀 변경 정보를 전송하는 단계를 포함하고, 상기 셀 단위 보고 설정은 MBMS(Multimedia Broadcast and Multicast Service) 수신 여부에 대한 지시를 포함하고, 상기 MBMS 수신 여부에 대한 지시가 활성화된 경우, 상기 단말이 MBMS 데이터를 수신하지 않으면, 상기 셀 단위(granularity) 보고를 수행하지 않을 수 있다.
Description
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 아이들(IDLE) 상태의 단말의 위치를 셀 단위(cell granularity)로 네트워크가 인지할 수 있도록 셀 단위 보고를 위한 방법 및 이를 지원하는 장치에 관한 것이다.
MTC(Machine Type Communications)는 하나 이상의 머신(Machine)이 포함되는 통신 방식을 의미하며, M2M(Machin-to-Machine) 통신이나 사물 통신으로 지칭되기도 한다. 여기서, 머신이란 사람의 직접적인 조작이나 개입을 필요로 하지 않는 개체(entity)를 의미한다. 예를 들어, 이동 통신 모듈이 탑재된 검침기(meter)나 자동 판매기와 같은 장치는 물론, 사용자의 조작/개입 없이 자동으로 네트워크에 접속하여 통신을 수행할 수 있는 스마트폰과 같은 사용자 기기도 머신의 일례에 해당할 수 있다. 이러한 머신의 다양한 예시들은 본 문서에서는 MTC 장치(devie) 또는 단말이라고 지칭한다. 즉, MTC는 사람의 조작/개입 없이 하나 이상의 머신(즉, MTC 장치)에 의해서 수행되는 통신을 의미한다.
MTC는 MTC 장치 간의 통신(예를 들어, D2D(Device-to-Device) 통신), MTC 장치와 MTC 어플리케이션 서버(application server) 간의 통신을 포함할 수 있다. MTC 장치와 MTC 어플리케이션 서버 간의 통신의 예시로, 자동 판매가와 서버, POS(Point of Sale) 장치와 서버, 전기, 가스 또는 수도 검침기와 서버 간의 통신을 들 수 있다. 그 외에도 MTC에 기반한 어플리케이션(application)에는 보안(security), 운송(transportation), 헬스 케어(health care) 등이 포함될 수 있다.
본 발명의 목적은 아이들(IDLE) 상태의 단말의 위치를 셀 단위(cell granularity)로 네트워크가 인지할 수 있도록 단말이 셀 단위 보고를 수행하기 위한 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상은, 무선 통신 시스템에서 아이들(IDLE) 상태의 단말이 셀 단위(granularity) 보고를 수행하기 위한 방법에 있어서, 네트워크로부터 셀 단위 보고 설정(cell granularity reporting configuration)을 수신하는 단계, 아이들(IDLE) 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지(detection)하는 단계 및 상기 캠핑하는 셀이 변경되었음을 감지하면, 상기 네트워크로 셀 변경 정보를 전송하는 단계를 포함하고, 상기 셀 단위 보고 설정은 MBMS(Multimedia Broadcast and Multicast Service) 수신 여부에 대한 지시를 포함하고, 상기 MBMS 수신 여부에 대한 지시가 활성화된 경우, 상기 단말이 MBMS 데이터를 수신하지 않으면, 상기 셀 단위(granularity) 보고를 수행하지 않을 수 있다.
본 발명의 다른 일 양상은, 무선 통신 시스템에서 아이들(IDLE) 상태에서 셀 단위(granularity) 보고를 수행하기 위한 단말에 있어서, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛 및 상기 RF 유닛을 제어하는 프로세서를 포함하고, 상기 프로세서는 네트워크로부터 셀 단위 보고 설정(cell granularity reporting configuration)을 수신하고, 아이들(IDLE) 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지(detection)하고, 상기 캠핑하는 셀이 변경되었음을 감지하면, 상기 네트워크로 셀 변경 정보를 전송하도록 구성되고, 상기 셀 단위 보고 설정은 MBMS(Multimedia Broadcast and Multicast Service) 수신 여부에 대한 지시를 포함하고, 상기 MBMS 수신 여부에 대한 지시가 활성화된 경우, 상기 단말이 MBMS 데이터를 수신하지 않으면, 상기 셀 단위(granularity) 보고를 수행하지 않을 수 있다.
바람직하게, 상기 MBMS 수신 여부에 대한 지시가 활성화된 경우, 상기 단말이 MBMS 데이터를 수신하면, 상기 네트워크로 상기 셀 변경 정보를 전송할 수 있다.
바람직하게, 상기 MBMS 데이터의 수신 여부는 상기 단말에게 지정된 임시 모바일 그룹 식별자(TMGI: Temporary Mobile Group Identity)에 해당하는 MBMS 데이터가 수신되는지 여부로 판단될 수 있다.
바람직하게, 상기 MBMS 데이터의 수신 여부는 상기 단말에 의해 MBMS 데이터가 감지되는지 여부로 판단될 수 있다.
바람직하게, 상기 MBMS 수신 여부에 대한 지시가 활성화되지 않은 경우, MBMS 데이터의 수신 여부와 무관하게 상기 네트워크로 상기 셀 변경 정보를 전송할 수 있다.
바람직하게, 상기 셀 단위 보고 설정은 타이머 정보를 포함하고, 상기 타이머가 만료되면, 상기 네트워크로 상기 셀 변경 정보를 전송할 수 있다.
바람직하게, 상기 셀 단위 보고 설정은 타이머 정보를 포함하고, 상기 타이머가 만료되지 않으면, 상기 캠핑하는 셀이 변경되었음을 감지하더라도 상기 네트워크로 상기 셀 변경 정보를 전송하지 않을 수 있다.
바람직하게, 상기 타이머는 상기 타이머 정보를 수신한 시점, 상기 단말이 연결(CONNECTED) 상태에서 아이들(IDLE) 상태로 천이한 시점, MBMS(Multimedia Broadcast and Multicast Service) 데이터를 수신한 시점 또는 상기 캠핑하는 셀이 변경되었음을 감지한 시점으로부터 구동될 수 있다.
바람직하게, 상기 셀 변경 정보는 트래킹 영역 업데이트(TAU: Tracking Area Update) 요청 메시지 또는 셀 변경 보고(Cell Change Report) 메시지를 통해 전송될 수 있다.
바람직하게, 상기 셀 단위 보고 설정은 어태치(Attach) 절차 또는 트래킹 영역 업데이트(TAU: Tracking Area Update) 절차 중에 수신될 수 있다.
바람직하게, 상기 셀 변경 정보는 상기 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 상기 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함할 수 있다.
본 발명의 실시예에 따르면, 네트워크에서 셀 단위(cell granularity)로 아이들 모드(IDLE MODE)의 단말의 위치를 인지할 수 있다.
또한, 본 발명의 실시예에 따르면, 그룹 통신 및 MTC 그룹 메시징에 이용되는 MBMS 통신 및 장치 모니터링의 효율을 높일 수 있다.
또한, 본 발명의 실시예에 따르면, 네트워크에서 MBMS(Multimedia Broadcast and Multicast Service) 혹은 그룹 통신/메시징 서비스를 제공할 때, 셀 단위로 MBMS 베어러로 서비스할지 유니캐스트 베어러로 서비스할지 결정할 수 있다.
또한, 본 발명의 실시예에 따르면, MTC 어플리케이션 등과 같은 특정 어플리케이션에서 특정 셀에 속한 단말의 수를 정확히 파악할 수 있다.
또한, 본 발명의 실시예에 따르면, 아이들 모드의 단말에게 페이징 메시지를 전송할 때 해당 단말이 속한 셀에서만 페이징 메시지를 전송할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 EPS(Evolved Packet System)을 간략히 예시하는 도면이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 S1 인터페이스 프로토콜 구조를 나타낸다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 물리 채널의 구조를 간략히 예시하는 도면이다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 EMM 및 ECM 상태를 예시하는 도면이다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 베어러 구조를 예시한다.
도 9는 본 발명의 적용될 수 있는 무선 통신 시스템에서 EMM 등록 상태에서 제어 평면(control plane) 및 사용자 평면(user plane)의 전송 경로를 예시하는 도면이다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MBMS의 정의를 예시하는 도면이다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MBMS 논리적 구조를 예시하는 도면이다.
도 12는 본 발명이 적용될 수 있는 GCSE 참조 모델을 예시하는 도면이다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MBMS 전달을 위한 하향링크 미디어 경로를 셋업하는 과정을 예시하는 도면이다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 MBMS 전달을 위한 하향링크 미디어 경로를 셋업하는 과정을 예시하는 도면이다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 TMGI의 구조를 예시하는 도면이다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MBSFN 영역을 예시하는 도면이다.
도 17은 본 발명이 적용될 수 있는 무선 통신 시스템에서 셀 단위 MBMS 전달을 예시하는 도면이다.
도 18 내지 도 25는 본 발명의 일 실시예에 따른 셀 단위 보고 방법을 예시하는 도면이다.
도 26은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 문서에서 사용될 수 있는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 패킷 교환(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE, UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: UMTS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: EPS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- 단말(User Equipment): 사용자 기기. 단말은 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수 있다. 또한, 단말은 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 단말 또는 단말이라는 용어는 MTC 단말을 지칭할 수 있다.
- IMS(IP Multimedia Subsystem): 멀티미디어 서비스를 IP 기반으로 제공하는 서브시스템.
- IMSI(International Mobile Subscriber Identity): 이동 통신 네트워크에서 국제적으로 고유하게 할당되는 사용자 식별자.
- MTC(Machine Type Communication): 사람의 개입 없이 머신에 의해 수행되는 통신. M2M(Machine to Machine) 통신이라고 지칭할 수도 있다.
- MTC 단말(MTC UE 또는 MTC device 또는 MTC 장치): 이동 통신 네트워크를 통한 통신 기능을 가지고, MTC 기능을 수행하는 단말(예를 들어, 자판기, 검침기 등).
- MTC 서버(MTC server): MTC 단말을 관리하는 네트워크 상의 서버. 이동 통신 네트워크의 내부 또는 외부에 존재할 수 있다. MTC 사용자가 접근(access)할 수 있는 인터페이스를 가질 수 있다. 또한, MTC 서버는 다른 서버들에게 MTC 관련 서비스를 제공할 수도 있고(SCS(Services Capability Server) 형태), 자신이 MTC 어플리케이션 서버일 수도 있다.
- (MTC) 어플리케이션(application): (MTC가 적용되는) 서비스(예를 들어, 원격 검침, 물량 이동 추적, 기상 관측 센서 등)
- (MTC) 어플리케이션 서버: (MTC) 어플리케이션이 실행되는 네트워크 상의 서버
- MTC 특징(MTC feature): MTC 어플리케이션을 지원하기 위한 네트워크의 기능. 예를 들어, MTC 모니터링(monitoring)은 원격 검침 등의 MTC 어플리케이션에서 장비 분실 등을 대비하기 위한 특징이고, 낮은 이동성(low mobility)은 자판기와 같은 MTC 단말에 대한 MTC 어플리케이션을 위한 특징이다.
- MTC 가입자(MTC subscriber): 네트워크 오퍼레이터와 접속 관계를 가지고 있으며, 하나 이상의 MTC 단말에게 서비스를 제공하는 엔티티(entity)이다.
- MTC 그룹(MTC group): 적어도 하나 이상의 MTC 특징을 공유하며, MTC 가입자에 속한 MTC 단말의 그룹을 의미한다.
- 서비스 역량 서버(SCS: Services Capability Server): HPLMN(Home PLMN) 상의 MTC-IWF(MTC InterWorking Function) 및 MTC 단말과 통신하기 위한 엔티티로서, 3GPP 네트워크와 접속되어 있다.
- 외부 식별자(External Identifier): 3GPP 네트워크의 외부 엔티티(예를 들어, SCS 또는 어플리케이션 서버)가 MTC 단말(또는 MTC 단말이 속한 가입자)을 가리키기(또는 식별하기) 위해 사용하는 식별자(identifier)로서 전세계적으로 고유(globally unique)하다. 외부 식별자는 다음과 같이 도메인 식별자(Domain Identifier)와 로컬 식별자(Local Identifier)로 구성된다.
- 도메인 식별자(Domain Identifier): 이동 통신 네트워크 사업자의 제어 항에 있는 도메인을 식별하기 위한 식별자. 하나의 사업자는 서로 다른 서비스로의 접속을 제공하기 위해 서비스 별로 도메인 식별자를 사용할 수 있다.
- 로컬 식별자(Local Identifier): IMSI(International Mobile Subscriber Identity)를 유추하거나 획득하는데 사용되는 식별자. 로컬 식별자는 어플리케이션 도메인 내에서는 고유(unique)해야 하며, 이동 통신 네트워크 사업자에 의해 관리된다.
- RAN(Radio Access Network): 3GPP 네트워크에서 Node B 및 이를 제어하는 RNC(Radio Network Controller), eNodeB를 포함하는 단위. 단말 단에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 식별자 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- RANAP(RAN Application Part): RAN과 코어 네트워크의 제어를 담당하는 노드(즉, MME(Mobility Management Entity)/SGSN(Serving GPRS(General Packet Radio Service) Supporting Node)/MSC(Mobile Switching Center)) 사이의 인터페이스.
- PLMN(Public Land Mobile Network): 개인들에게 이동 통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- NAS(Non-Access Stratum): UMTS, EPS 프로토콜 스택에서 단말과 코어 네트워크 간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층. 단말의 이동성을 지원하고, 단말과 PDN GW 간의 IP 연결을 수립 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
이하, 위와 같이 정의된 용어를 바탕으로 본 발명에 대하여 기술한다.
본 발명이 적용될 수 있는 시스템 일반
도 1은 본 발명이 적용될 수 있는 EPS (Evolved Packet System)을 간략히 예시하는 도면이다.
도 1의 네트워크 구조도는 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 구조를 이를 간략하게 재구성 한 것이다.
EPC(Evolved Packet Core)는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 능력을 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 능력(capability)을 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS)을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종단점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP(non-3GPP) 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 Wimax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, 단말의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트(reference point)들이 존재할 수 있다.
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 자원을 사용자 플레인에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 플레인에 제공하는 레퍼런스 포인트이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
E-UTRAN 시스템은 기존 UTRAN 시스템에서 진화한 시스템으로, 예를 들어, 3GPP LTE/LTE-A 시스템일 수 있다. 통신 네트워크는 IMS 및 패킷 데이터를 통해 음성(voice)(예를 들어, VoIP(Voice over Internet Protocol))과 같은 다양한 통신 서비스를 제공하기 위하여 광범위하게 배치된다.
도 2를 참조하면, E-UMTS 네트워크는 E-UTRAN, EPC 및 하나 이상의 UE를 포함한다. E-UTRAN은 단말에게 제어 평면(control plane)과 사용자 평면(user plane) 프로토콜을 제공하는 eNB들로 구성되고, eNB들은 X2 인터페이스를 통해 연결된다.
X2 사용자 평면 인터페이스(X2-U)는 eNB들 사이에 정의된다. X2-U 인터페이스는 사용자 평면 PDU(packet data unit)의 보장되지 않은 전달(non guaranteed delivery)을 제공한다. X2 제어 평면 인터페이스(X2-CP)는 두 개의 이웃 eNB 사이에 정의된다. X2-CP는 eNB 간의 컨텍스트(context) 전달, 소스 eNB와 타겟 eNB 사이의 사용자 평면 터널의 제어, 핸드오버 관련 메시지의 전달, 상향링크 부하 관리 등의 기능을 수행한다.
eNB은 무선인터페이스를 통해 단말과 연결되고 S1 인터페이스를 통해 EPC(evolved packet core)에 연결된다.
S1 사용자 평면 인터페이스(S1-U)는 eNB와 서빙 게이트웨이(S-GW: serving gateway) 사이에 정의된다. S1 제어 평면 인터페이스(S1-MME)는 eNB와 이동성 관리 개체(MME: mobility management entity) 사이에 정의된다. S1 인터페이스는 EPS(evolved packet system) 베어러 서비스 관리 기능, NAS(non-access stratum) 시그널링 트랜스포트 기능, 네트워크 쉐어링, MME 부하 밸런싱 기능 등을 수행한다. S1 인터페이스는 eNB와 MME/S-GW 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.
MME는 NAS 시그널링 보안(security), AS(Access Stratum) 보안(security) 제어, 3GPP 액세스 네트워크 간 이동성을 지원하기 위한 CN(Core Network) 노드 간(Inter-CN) 시그널링, (페이징 재전송의 수행 및 제어 포함하여) 아이들(IDLE) 모드 UE 접근성(reachability), (아이들 및 액티브 모드 단말을 위한) 트래킹 영역 식별자(TAI: Tracking Area Identity) 관리, PDN GW 및 SGW 선택, MME가 변경되는 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN 선택, 로밍(roaming), 인증(authentication), 전용 베어러 확립(dedicated bearer establishment)를 포함하는 베어러 관리 기능, 공공 경고 시스템(PWS: Public Warning System)(지진 및 쓰나미 경고 시스템(ETWS: Earthquake and Tsunami Warning System) 및 상용 모바일 경고 시스템(CMAS: Commercial Mobile Alert System) 포함) 메시지 전송의 지원 등의 다양한 기능을 수행할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 3을 참조하면, eNB는 게이트웨이(예를 들어, MME)의 선택, 무선 자원 제어(RRC: radio resource control) 활성(activation) 동안 게이트웨이로의 라우팅, 방송 채널(BCH: broadcast channel)의 스케줄링 및 전송, 상향링크 및 하향링크에서 UE로 동적 자원 할당, 그리고 LTE_ACTIVE 상태에서 이동성 제어 연결의 기능을 수행할 수 있다. 상술한 바와 같이, EPC 내에서 게이트웨이는 페이징 개시(orgination), LTE_IDLE 상태 관리, 사용자 평면(user plane)의 암호화(ciphering), 시스템 구조 진화(SAE: System Architecture Evolution) 베어러 제어, 그리고 NAS 시그널링의 암호화(ciphering) 및 무결성(intergrity) 보호의 기능을 수행할 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 4(a)는 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타내고, 도 4(b)는 사용자 평면(user plane)에 대한 무선 프로토콜 구조를 나타낸다.
도 4를 참조하면, 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜의 계층들은 통신 시스템의 기술분야에 공지된 널리 알려진 개방형 시스템 간 상호접속(OSI: open system interconnection) 표준 모델의 하위 3 계층에 기초하여 제1 계층(L1), 제2 계층 (L2) 및 제3 계층 (L3)으로 분할될 수 있다. 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜은 수평적으로 물리계층(physical layer), 데이터링크 계층(data link layer) 및 네트워크 계층(network layer)으로 이루어지며, 수직적으로는 데이터 정보 전송을 위한 프로토콜 스택(protocol stack) 사용자 평면(user plane)과 제어신호(signaling) 전달을 위한 프로토콜 스택인 제어 평면(control plane)으로 구분된다.
제어평면은 단말과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자 평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다. 이하, 무선 프로토콜의 제어평면과 사용자평면의 각 계층을 설명한다.
제1 계층(L1)인 물리 계층(PHY: physical layer)은 물리 채널(physical channel)을 사용함으로써 상위 계층으로의 정보 송신 서비스(information transfer service)를 제공한다. 물리 계층은 상위 레벨에 위치한 매체 접속 제어(MAC: medium access control) 계층으로 전송 채널(transport channel)을 통하여 연결되고, 전송 채널을 통하여 MAC 계층과 물리 계층 사이에서 데이터가 전송된다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. 그리고, 서로 다른 물리 계층 사이, 송신단의 물리 계층과 수신단의 물리 계층 간에는 물리 채널(physical channel)을 통해 데이터가 전송된다. 물리 계층은 OFDM(orthogonal frequency division multiplexing) 방식으로 변조되며, 시간과 주파수를 무선 자원으로 활용한다.
물리 계층에서 사용되는 몇몇 물리 제어 채널들이 있다. 물리 하향링크 제어 채널(PDCCH: physical downlink control channel)는 단말에게 페이징 채널(PCH: paging channel)와 하향링크 공유 채널(DL-SCH: downlink shared channel)의 자원 할당 및 상향링크 공유 채널(UL-SCH: uplink shared channel)과 관련된 HARQ(hybrid automatic repeat request) 정보를 알려준다. 또한, PDCCH는 단말에게 상향링크 전송의 자원 할당을 알려주는 상향링크 승인(UL grant)를 나를 수 있다. 물리 제어 포맷 지시자 채널(PDFICH: physical control format indicator channel)는 단말에게 PDCCH들에 사용되는 OFDM 심볼의 수를 알려주고, 매 서브프레임마다 전송된다. 물리 HARQ 지시자 채널(PHICH: physical HARQ indicator channel)는 상향링크 전송의 응답으로 HARQ ACK(acknowledge)/NACK(non-acknowledge) 신호를 나른다. 물리 상향링크 제어 채널(PUCCH: physical uplink control channel)은 하향링크 전송에 대한 HARQ ACK/NACK, 스케줄링 요청 및 채널 품질 지시자(CQI: channel quality indicator) 등과 같은 상향링크 제어 정보를 나른다. 물리 상향링크 공유 채널(PUSCH: physical uplink shared channel)은 UL-SCH을 나른다.
제2 계층(L2)의 MAC 계층은 논리 채널(logical channel)을 통하여 상위 계층인 무선 링크 제어(RLC: radio link control) 계층에게 서비스를 제공한다. 또한, MAC 계층은 논리 채널과 전송 채널 간의 맵핑 및 논리 채널에 속하는 MAC 서비스 데이터 유닛(SDU: service data unit)의 전송 채널 상에 물리 채널로 제공되는 전송 블록(transport block)으로의 다중화/역다중화 기능을 포함한다.
제2 계층(L2)의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 포함한다. 무선 베어러(RB: radio bearer)가 요구하는 다양한 QoS(quality of service)를 보장하기 위해, RLC 계층은 투명 모드(TM: transparent mode), 비확인 모드(UM: unacknowledged mode) 및 확인 모드(AM: acknowledge mode)의 세 가지의 동작 모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다. 한편, MAC 계층이 RLC 기능을 수행하는 경우에 RLC 계층은 MAC 계층의 기능 블록으로 포함될 수 있다.
제2 계층(L2)의 패킷 데이터 컨버전스 프로토콜(PDCP: packet data convergence protocol) 계층은 사용자 평면에서 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering) 기능을 수행한다. 헤더 압축 기능은 작은 대역폭을 가지는 무선 인터페이스를 통하여 IPv4(internet protocol version 4) 또는 IPv6(internet protocol version 6)와 같은 인터넷 프로토콜(IP: internet protocol) 패킷을 효율적으로 전송되게 하기 위하여 상대적으로 크기가 크고 불필요한 제어 정보를 담고 있는 IP 패킷 헤더 사이즈를 줄이는 기능을 의미한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)을 포함한다.
제3 계층(L3)의 최하위 부분에 위치한 무선 자원 제어(RRC: radio resource control) 계층은 제어 평면에만 정의된다. RRC 계층은 단말과 네트워크 간의 무선 자원을 제어하는 역할을 수행한다. 이를 위해 단말과 네트워크는 RRC 계층을 통해 RRC 메시지를 서로 교환한다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련하여 논리 채널, 전송 채널 및 물리 채널을 제어한다. 무선 베어러는 단말과 네트워크 사이의 데이터 전송을 위하여 제2 계층(L2)에 의하여 제공되는 논리적인 경로를 의미한다. 무선 베어러가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 것을 의미한다. 무선 베어러는 다시 시그널링 무선 베어러(SRB: signaling RB)와 데이터 무선 베어러(DRB: data RB) 두 가지로 나눠 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
RRC 계층 상위에 위치하는 NAS(non-access stratum) 계층은 세션 관리(session management)와 이동성 관리(mobility management) 등의 기능을 수행한다.
기지국을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널(downlink transport channel)은 시스템 정보를 전송하는 방송 채널(BCH: broadcast channel), 페이징 메시지를 전송하는 PCH, 사용자 트래픽이나 제어메시지를 전송하는 DL-SCH 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어메시지의 경우 DL-SCH를 통해 전송될 수도 있고, 또는 별도의 하향 멀티캐스트 채널(MCH: multicast channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널(uplink transport channel)로는 초기 제어메시지를 전송하는 랜덤 액세스 채널(RACH: random access channel), 사용자 트래픽이나 제어메시지를 전송하는 UL-SCH(uplink shared channel)가 있다.
논리 채널(logical channel)은 전송 채널의 상위에 있으며, 전송 채널에 맵핑된다. 논리 채널은 제어 영역 정보의 전달을 위한 제어 채널과 사용자 영역 정보의 전달을 위한 트래픽 채널로 구분될 수 있다. 제어 채널로는 방송 제어 채널(BCCH: broadcast control channel), 페이징 제어 채널(PCCH: paging control channel), 공통 제어 채널(CCCH: common control channel), 전용 제어 채널(DCCH: dedicated control channel), 멀티캐스트 제어 채널(MCCH: multicast control channel) 등이 있다. 트래픽 채널로는 전용 트래픽 채널(DTCH: dedicated traffic channel), 멀티캐스트 트래픽 채널(MTCH: multicast traffic channel) 등이 있다. PCCH는 페이징 정보를 전달하는 하향링크 채널이고, 네트워크가 UE가 속한 셀을 모를 때 사용된다. CCCH는 네트워크와의 RRC 연결을 가지지 않는 UE에 의해 사용된다. MCCH 네트워크로부터 UE로의 MBMS(Multimedia Broadcast and Multicast Service) 제어 정보를 전달하기 위하여 사용되는 점-대-다점(point-to-multipoint) 하향링크 채널이다. DCCH는 UE와 네트워크 간에 전용 제어 정보를 전달하는 RRC 연결을 가지는 단말에 의해 사용되는 일-대-일(point-to-point) 양방향(bi-directional) 채널이다. DTCH는 상향링크 및 하향링크에서 존재할 수 있는 사용자 정보를 전달하기 위하여 하나의 단말에 전용되는 일-대-일(point-to-point) 채널이다. MTCH는 네트워크로부터 UE로의 트래픽 데이터를 전달하기 위하여 일-대-다(point-to-multipoint) 하향링크 채널이다.
논리 채널(logical channel)과 전송 채널(transport channel) 간 상향링크 연결의 경우, DCCH는 UL-SCH과 매핑될 수 있고, DTCH는 UL-SCH와 매핑될 수 있으며, CCCH는 UL-SCH와 매핑될 수 있다. 논리 채널(logical channel)과 전송 채널(transport channel) 간 하향링크 연결의 경우, BCCH는 BCH 또는 DL-SCH와 매핑될 수 있고, PCCH는 PCH와 매핑될 수 있으며, DCCH는 DL-SCH와 매핑될 수 있으며, DTCH는 DL-SCH와 매핑될 수 있으며, MCCH는 MCH와 매핑될 수 있으며, MTCH는 MCH와 매핑될 수 있다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 S1 인터페이스 프로토콜 구조를 나타낸다.
도 5(a)는 S1 인터페이스에서 제어 평면(control plane) 프로토콜 스택을 예시하고, 도 5(b)는 S1 인터페이스에서 사용자 평면(user plane) 인터페이스 프로토콜 구조를 나타낸다.
도 4를 참조하면, S1 제어 평면 인터페이스(S1-MME)는 기지국과 MME 간에 정의된다. 사용자 평면과 유사하게 전송 네트워크 계층(transport network layer)은 IP 전송에 기반한다. 다만, 메시지 시그널링의 신뢰성이 있는 전송을 위해 IP 계층 상위에 SCTP(Stream Control Transmission Protocol) 계층에 추가된다. 어플리케이션 계층(application layer) 시그널링 프로토콜은 S1-AP(S1 application protocol)로 지칭된다.
SCTP 계층은 어플리케이션 계층 메시지의 보장된(guaranteed) 전달을 제공한다.
프로토콜 데이터 유닛(PDU: Protocol Data Unit) 시그널링 전송을 위해 전송 IP 계층에서 점대점 (point-to-point) 전송이 사용된다.
S1-MME 인터페이스 인스턴스(instance) 별로 단일의 SCTP 연계(association)는 S-MME 공통 절차를 위한 한 쌍의 스트림 식별자(stream identifier)를 사용한다. 스트림 식별자의 일부 쌍만이 S1-MME 전용 절차를 위해 사용된다. MME 통신 컨텍스트 식별자는 S1-MME 전용 절차를 위한 MME에 의해 할당되고, eNB 통신 컨텍스트 식별자는 S1-MME 전용 절차를 위한 eNB에 의해 할당된다. MME 통신 컨텍스트 식별자 및 eNB 통신 컨텍스트 식별자는 단말 특정한 S1-MME 시그널링 전송 베어러를 구별하기 위하여 사용된다. 통신 컨텍스트 식별자는 각각 S1-AP 메시지 내에서 전달된다.
S1 시그널링 전송 계층이 S1AP 계층에게 시그널링 연결이 단절되었다고 통지한 경우, MME는 해당 시그널링 연결을 사용하였던 단말의 상태를 ECM-IDLE 상태로 변경한다. 그리고, eNB은 해당 단말의 RRC 연결을 해제한다.
S1 사용자 평면 인터페이스(S1-U)는 eNB과 S-GW 간에 정의된다. S1-U 인터페이스는 eNB와 S-GW 간에 사용자 평면 PDU의 보장되지 않은(non guaranteed) 전달을 제공한다. 전송 네트워크 계층은 IP 전송에 기반하고, eNB와 S-GW 간의 사용자 평면 PDU를 전달하기 위하여 UDP/IP 계층 상위에 GTP-U(GPRS Tunneling Protocol User Plane) 계층이 이용된다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 물리 채널의 구조를 간략히 예시하는 도면이다.
도 6을 참조하면, 물리 채널은 주파수 영역(frequency domain)에서 하나 이상의 서브캐리어와 시간 영역(time domain)에서 하나 이상의 심볼로 구성되는 무선 자원을 통해 시그널링 및 데이터를 전달한다.
1.0ms 길이를 가지는 하나의 서브프레임은 복수의 심볼로 구성된다. 서브프레임의 특정 심볼(들)(예를 들어, 서브프레임의 첫번째 심볼)은 PDCCH를 위해 사용될 수 있다. PDCCH는 동적으로 할당되는 자원에 대한 정보(예를 들어, 자원 블록(Resource Block), 변조 및 코딩 방식(MCS: Modulation and Coding Scheme) 등)를 나른다.
EMM
및 ECM 상태
EMM(EPS mobility management), ECM(EPS connection management) 상태에 대하여 살펴본다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 EMM 및 ECM 상태를 예시하는 도면이다.
도 7을 참조하면, 단말과 MME의 제어 평면에 위치한 NAS 계층에서 단말의 이동성을 관리하기 위하여 단말이 네트워크에 어태치(attach)되었는지 디태치(detach)되었는지에 따라 EMM 등록 상태(EMM-REGISTERED) 및 EMM 등록 해제 상태(EMM-DEREGISTERED)가 정의될 수 있다. EMM-REGISTERED 상태 및 EMM-DEREGISTERED 상태는 단말과 MME에게 적용될 수 있다.
단말의 전원을 최초로 켠 경우와 같이 초기 단말은 EMM-DEREGISTERED 상태에 있으며, 이 단말이 네트워크에 접속하기 위해서 초기 접속(initial attach) 절차를 통해 해당 네트워크에 등록하는 과정을 수행한다. 접속 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태로 천이(transition)된다. 또한, 단말의 전원이 꺼지거나 무선 링크 실패인 경우(무선 링크 상에서 패킷 에러율이 기준치를 넘은 경우), 단말은 네트워크에서 디태치(detach)되어 EMM-DEREGISTERED 상태로 천이된다.
또한, 단말과 네트워크 간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM 연결 상태(ECM-CONNECTED) 및 ECM 아이들 상태(ECM-IDLE)가 정의될 수 있다. ECM-CONNECTED 상태 및 ECM-IDLE 상태 또한 단말과 MME에게 적용될 수 있다. ECM 연결은 단말과 기지국 간에 설정되는 RRC 연결과 기지국과 MME 간에 설정되는 S1 시그널링 연결로 구성된다. 즉, ECM 연결이 설정/해제되었다는 것은 RRC 연결과 S1 시그널링 연결이 모두 설정/해제되었다는 것을 의미한다.
RRC 상태는 단말의 RRC 계층과 기지국의 RRC 계층이 논리적으로 연결(connection)되어 있는지 여부를 나타낸다. 즉, 단말의 RRC 계층과 기지국의 RRC 계층이 연결되어 있는 경우, 단말은 RRC 연결 상태(RRC_CONNECTED)에 있게 된다. 단말의 RRC 계층과 기지국의 RRC 계층이 연결되어 있지 않은 경우, 단말은 RRC 아이들 상태(RRC_IDLE)에 있게 된다.
네트워크는 ECM-CONNECTED 상태에 있는 단말의 존재를 셀 단위에서 파악할 수 있고, 단말을 효과적으로 제어할 수 있다.
반면, 네트워크는 ECM-IDLE 상태에 있는 단말의 존재를 파악할 수 없으며, 코어 네트워크(CN: core network)가 셀보다 더 큰 지역 단위인 트래킹 영역(tracking area) 단위로 관리한다. 단말이 ECM 아이들 상태에 있을 때에는 단말은 트래킹 영역에서 유일하게 할당된 ID를 이용하여 NAS에 의해 설정된 불연속 수신(DRX: Discontinuous Reception)을 수행한다. 즉, 단말은 단말-특정 페이징 DRX 사이클 마다 특정 페이징 시점(paging occasion)에 페이징 신호를 모니터링함으로써 시스템 정보 및 페이징 정보의 브로드캐스트를 수신할 수 있다.
또한, 단말이 ECM-IDLE 상태에 있을 때에는 네트워크는 단말의 컨텍스트(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(cell reselection)과 같은 단말 기반의 이동성 관련 절차를 수행할 수 있다. ECM 아이들 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라지는 경우, 단말은 트래킹 영역 업데이트(TAU: tracking area update) 절차를 통해 네트워크에 해당 단말의 위치를 알릴 수 있다.
반면, 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-CONNECTED 상태에서 네트워크는 단말이 속한 셀을 안다. 따라서, 네트워크는 단말로 또는 단말로부터 데이터를 전송 및/또는 수신하고, 단말의 핸드오버와 같은 이동성을 제어하고, 주변 셀에 대한 셀 측정을 수행할 수 있다.
위와 같이, 단말이 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 ECM-CONNECTED 상태로 천이하여야 한다. 단말의 전원을 최초로 켠 경우와 같이 초기 단말은 EMM 상태와 마찬가지로 ECM-IDLE 상태에 있으며, 단말이 초기 접속(initial attach) 절차를 통해 해당 네트워크에 성공적으로 등록하게 되면 단말 및 MME는 ECM 연결 상태로 천이(transition)된다. 또한, 단말이 네트워크에 등록되어 있으나 트래픽이 비활성화되어 무선 자원이 할당되어 있지 않은 경우 단말은 ECM-IDLE 상태에 있으며, 해당 단말에 상향링크 혹은 하향링크 새로운 트래픽이 발생되면 서비스 요청(service request) 절차를 통해 단말 및 MME는 ECM-CONNECTED 상태로 천이(transition)된다.
EPS
베어러
(bearer)
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 베어러 구조를 예시한다.
단말이 패킷 데이터 네트워크(PDN: Packet Date Network)(도 8에서 피어 엔티티(peer entity))에 연결될 때 PDN 연결(PDN connection)이 생성되고, PDN connection은 EPS 세션(session)으로도 불릴 수 있다. PDN은 사업자 외부 또는 내부 IP (internet protocol) 망으로 인터넷이나 IMS(IP Multimedia Subsystem)와 같은 서비스 기능을 제공한다.
EPS session은 하나 이상의 EPS 베어러(bearer)를 가진다. EPS bearer는 EPS에서 사용자 트래픽을 전달하기 위하여 단말과 PDN GW 간에 생성되는 트래픽의 전송 경로(transmission path)이다. EPS bearer는 단말 당 하나 이상 설정될 수 있다.
각 EPS bearer는 E-UTRAN 무선 액세스 베어러(E-RAB: E-UTRAN Radio Access Bearer) 및 S5/S8 bearer로 나누어질 수 있고, E-RAB 는 무선 베어러(RB: radio bearer), S1 bearer로 나누어질 수 있다. 즉, 하나의 EPS bearer는 각각 하나의 RB, S1 bearer, S5/S8 bearer 에 대응된다.
E-RAB 는 단말과 EPC 간에 EPS bearer의 패킷을 전달한다. E-RAB가 존재하면, E-RAB bearer와 EPS bearer는 일대일로 매핑된다. 데이터 무선 베어러(DRB: data radio bearer)는 단말과 eNB 간에 EPS bearer의 패킷을 전달한다. DRB가 존재하면, DRB와 EPS bearer/E-RAB 는 일대일로 매핑된다. S1 bearer는 eNB와 S-GW 간에 EPS bearer의 패킷을 전달한다. S5/S8 bearer는 S-GW와 P-GW 간에 EPS bearer 패킷을 전달한다.
단말은 상향링크 방향의 EPS bearer 에 서비스 데이터 플로우(SDF: service data flow)를 바인딩(binding) 한다. SDF는 사용자 트래픽을 서비스 별로 분류(또는 필터링) 한 IP 플로우(flow) 또는 IP flow들의 모임이다. 복수의 SDF들은 복수의 상향링크 패킷 필터들을 포함함으로써 동일한 EPS bearer에 다중화될 수 있다. 단말은 상향링크에서 SDF와 DRB 간 binding하기 위하여 상향링크 패킷 필터와 DRB 간 매핑 정보를 저장한다.
P-GW 은 하향링크 방향의 EPS bearer에 SDF를 binding한다. 복수의 SDF들은 복수의 하향링크 패킷 필터들을 포함함으로써 동일한 EPS bearer에 다중화될 수 있다. P-GW는 하향링크에서 SDF와 S5/S8 bearer 간 binding 하기 위하여 하향링크 패킷 필터와 S5/S8 bearer 간 매핑 정보를 저장한다.
eNB은 상/하향링크에서 DRB와 S1 bearer 간 binding 하기 위하여 DRB와 S1 bearer 간 일대일 매핑을 저장한다. S-GW는 상/하향링크에서 S1 bearer와 S5/S8 bearer 간 binding 하기 위하여 S1 bearer와 S5/S8 bearer 간 일대일 매핑 정보를 저장한다.
EPS bearer는 기본 베어러(default bearer)와 전용 베어러(dedicated bearer) 두 종류로 구분된다. 단말은 PDN 당 하나의 default bearer와 하나 이상의 dedicated bearer 를 가질 수 있다. 하나의 PDN에 대하여 EPS 세션이 갖는 최소한의 기본 베어러를 default bearer라 한다.
EPS bearer는 식별자(identity)를 기반으로 구분될 수 있다. EPS bearer identity는 단말 또는 MME에 의해 할당된다. dedicated bearer(s)은 LBI(Linked EPS Bearer Identity)에 의해 default bearer와 결합된다.
단말은 초기 어태치 절차(initial attach procedure)를 통해 네트워크에 초기 접속하면, IP 주소를 할당 받아 PDN connection이 생성되고, EPS 구간에서 default bearer가 생성된다. default bearer는 단말과 해당 PDN 간 트래픽이 없는 경우에도 단말이 PDN 연결이 종료되지 않는 한 해제되지 않고 유지되며, 해당 PDN 연결을 종료될 때 default bearer도 해제된다. 여기서, 단말과 default bearer를 구성하는 모든 구간의 bearer가 활성화되는 것은 아니고, PDN과 직접 연결되어 있는 S5 bearer는 유지되고, 무선 자원과 연관이 있는 E-RAB bearer (즉, DRB and S1 bearer)는 해제된다. 그리고, 해당 PDN에서 새로운 트래픽이 발생되면 E-RAB bearer가 재설정되어 트래픽을 전달한다.
단말이 default bearer를 통해 서비스(예를 들어, 인터넷 등)를 이용하는 중에, default bearer만으로 QoS(Quality of Service)를 제공 받기 불충분한 서비스(예를 들어, VoD(Videon on Demand) 등)를 이용하게 되면 단말에서 요구할 때(on-demand)로 dedicated bearer가 생성된다. 단말의 트래픽이 없는 경우 dedicated bearer는 해제된다. 단말이나 네트워크는 필요에 따라 복수의 dedicated bearer를 생성할 수 있다.
단말이 어떠한 서비스를 이용하는지에 따라 IP flow는 다른 QoS 특성을 가질 수 있다. 네트워크는 단말을 위한 EPS session을 확립/변경(establish/modification) 시 네트워크 자원의 할당 내지 QoS 에 대한 제어 정책을 결정하여 EPS session이 유지되는 동안 이를 적용한다. 이를 PCC (Policy and Charging Control)라 한다. PCC 규칙(PCC rule)은 오퍼레이터 정책(예를 들어, QoS 정책, 게이트 상태(gate status), 과금 방법 등)을 기반으로 결정된다.
PCC 규칙은 SDF 단위로 결정된다. 즉, 단말이 이용하는 서비스에 따라 IP flow는 다른 QoS 특성을 가질 수 있으며, 동일한 QoS를 가진 IP flow들은 동일한 SDF로 맵핑되고, SDF는 PCC 규칙을 적용하는 단위가 된다.
이와 같은 PCC 기능을 수행하는 주요 엔터티로 PCRF(Policy and Charging Control Function)와 PCEF(Policy and Charging Enforcement Function)가 이에 해당될 수 있다.
PCRF는 EPS session을 생성 또는 변경할 때 SDF 별로 대해 PCC 규칙을 결정하여 P-GW(또는 PCEF)로 제공한다. P-GW는 해당 SDF에 대해 PCC 규칙을 설정한 뒤, 송/수신되는 IP 패킷마다 SDF를 검출하여 해당 SDF에 대한 PCC 규칙을 적용한다. SDF가 EPS을 거쳐 단말에게 전송될 때 P-GW에 저장되어 있는 QoS 규칙에 따라 적합한 QoS를 제공해 줄 수 있는 EPS bearer로 맵핑된다.
PCC 규칙은 동적 PCC 규칙(dynamic PCC rule)과 미리 정의된 PCC 규칙(pre-defined PCC rule)으로 구분된다. 동적 PCC 규칙은 EPS session 확립/변경(establish/modification) 시 PCRF에서 P-GW로 동적으로 제공된다. 반면, 미리 정의된 PCC 규칙은 P-GW에 미리 설정되어 있어 PCRF에 의해 활성화/비활성화된다.
EPS 베어러는 기본 QoS 파라미터로 QoS 클래스 식별자(QCI: QoS Class Identifier)와 할당 및 보유 우선 순위(ARP: Allocation and Retention Priority)를 포함한다.
QCI는 bearer 레벨 패킷 포워딩 처리(treatment)를 제어하는 노드-특정(node-specific) 파라미터들에 접근하기 위한 기준으로 사용되는 스칼라(scalar)로서, 스칼라 값은 네트워크 오퍼레이터에 의하여 미리 설정(pre-configured)되어 있다. 예를 들어, 스칼라는 정수값 1 내지 9 중 어느 하나로 미리 설정될 수 있다.
ARP의 주된 목적은 자원이 제한되는 경우, bearer의 establishment 또는 modification 요청이 받아들여질 수 있는지 또는 거절되어야 하는지 결정하기 위함이다. 또한, ARP는 예외적인 자원 제한(예를 들어, 핸드오버 등) 상황에서, eNB에 의해 어떠한 bearer(s)를 드랍(drop)할 지 결정하는데 사용될 수 있다.
EPS bearer는 QCI 자원 형태에 따라 보장된 비트율(GBR: Guaranteed Bit Rate)형 bearer와 비 보장된 비트율(non-GBR) 형 bearer로 구분된다. Default bearer는 항상 non-GBR 형 bearer이고, dedicated bearer는 GBR형 또는 non-GBR형 bearer일 수 있다.
GBR 형 베어러는 QCI와 ARP 외에 QoS 파라미터로서 GBR과 최대 비트율(MBR: Maximum Bit Rate)를 가진다. MBR은 bearer별로 고정된 자원을 할당(대역폭 보장) 받는 것을 의미한다. 반면, non-GBR형 bearer는 QCI와 ARP 이외에 QoS 파라미터로서 결합된 MBR(AMBR: Aggregated MBR)을 가진다. AMBR은 자원을 bearer 별로 할당 받지 못하는 대신 다른 non-GBR형 bearer들과 같이 사용할 수 있는 최대 대역폭을 할당 받는 것을 의미한다.
위와 같이 EPS bearer의 QoS가 정해지면, 각 인터페이스마다 각각의 bearer의 QoS가 정해진다. 각 인터페이스의 bearer는 EPS bearer의 QoS를 인터페이스 별로 제공하므로, EPS bearer와 RB, S1 bearer 등은 모두 일대일 관계를 가진다.
단말이 default bearer를 통해 서비스를 이용하는 중에, default bearer만으로 QoS를 제공 받기 불충분한 서비스를 이용하게 되면 단말의 요청에 의해(on-demand)로 dedicated bearer가 생성된다.
도 9는 본 발명의 적용될 수 있는 무선 통신 시스템에서 EMM 등록 상태에서 제어 평면(control plane) 및 사용자 평면(user plane)의 전송 경로를 예시하는 도면이다.
도 9(a)는 ECM-CONNECTED 상태를 예시하고, 도 9(b)는 ECM-IDLE를 예시한다.
단말이 네트워크에 성공적으로 어태치(attach)하여 EMM-Registered 상태가 되면 EPS 베어러를 이용하여 서비스를 제공받는다. 상술한 바와 같이, EPS 베어러는 구간 별로 DRB, S1 베어러, S5 베어러로 나뉘어져 구성된다.
도 9(a)와 같이, 사용자 트래픽이 있는 ECM-CONNECTED 상태에서는 NAS 시그널링 연결 즉, ECM 연결(즉, RRC 연결과 S1 시그널링 연결)이 설정된다. 또한, MME와 SGW 간에 S11 GTP-C(GPRS Tunneling Protocol Control Plane) 연결이 설정되고, SGW와 PDN GW 간에 S5 GTP-C 연결이 설정된다.
또한, ECM-CONNECTED 상태에서는 DRB, S1 베어러 및 S5 베어러가 모두 설정(즉, 무선 또는 네트워크 자원 할당)된다.
도 9(b)와 같이, 사용자 트래픽이 없는 ECM-IDLE 상태에서는 ECM 연결(즉, RRC 연결과 S1 시그널링 연결)은 해제된다. 다만, MME와 SGW 간의 S11 GTP-C 연결 및 SGW와 PDN GW 간의 S5 GTP-C 연결은 설정이 유지된다.
또한, ECM-IDLE 상태에서는 DRB와 S1 베어러는 모두 해제되나, S5 베어러는 설정(즉, 무선 또는 네트워크 자원 할당)을 유지한다.
MBMS
(Multimedia Broadcast/
Multicast
Service)
MBMS에서 사용될 수 있는 용어들은 다음과 같이 정의된다.
- MBSFN(Multicast broadcast single frequency network) 동기화(synchronization) 영역: 모든 eNB들이 동기화되고, MBSFN 전송을 수행할 수 있는 네트워크 영역. MBSFN 동기 영역은 하나 이상의 MBSFN 영역을 지원할 수 있다. 주어진 주파수 계층(layer)에서, eNB는 하나의 MBSFN 동기 영역에 속할 수 있다. MBSFN 동기 영역은 MBMS 서비스 영역의 정의와 무관하다.
- MBSFN 전송 또는 MBSFN 모드에서 전송: 다중 셀로부터 동시에 동일한 파형(waveform)을 전송에 의해 실현되는 동시방송(simulcast) 전송 기술. MBSFN 영역 내 다중 셀로부터 MBSFN 전송은 UE에게 단일 전송으로 보여진다.
- MBSFN 영역: MBSFN 영역은 네트워크의 MBSFN 동기화 영역 내 셀의 그룹으로 구성되고, 협동하여 MBSFN 전송을 수행한다. MBSFN 영역 예비 셀(들)(MBSFN area reserved cell)을 제외하고, MBSFN 영역 내 모든 셀은 MBSFN 전송에 기여하고, 자신의 유효성을 광고한다. UE는 예를 들어 어느 MBSFN 영역이 자신이 수신하길 원하는 서비스를 지원하는지 알고 있는 경우, 설정된 MBSFN 영역의 서브셋만으로 고려할 필요가 있을 수 있다.
- MBSFN 영역 예비 셀(MBSFN area reserved cell): MBSFN 전송에 기여하지 않는 MBSFM 영역 내 셀. 이 셀은 다른 서비스를 위한 전송이 허용될 수 있으나, MBSFN 전송을 위해 할당된 자원 상에는 파워가 제한된다.
- 동기 시퀀스(synchronization sequence): 각 동기화 프로토콜 데이터 유닛(SYNC PDU: synchronization protocol data unit)는 동기 시퀀스의 시작 시간을 지시하는 시간 스탬프(time stamp)를 포함한다. MBMS 서비스에 있어서, 각 동기 시퀀스는 브로드캐스트/멀티캐스트 서비스 센터(BM-SC: broadcast/multicast service center) 및 MCE 내 설정된 동일한 지속 기간(duration)을 가진다.
- 동기 구간(Synchronization Period): 동기 구간은 각 동기 시퀀스의 시작 시간의 지시를 위한 시간 참조를 제공한다. 각 SYNC PDU 내에서 제공되는 시간 스탬프는 동기 구간의 시작 시간을 참조하는 상대적인 값이다. 동기 구간(synchronization period)의 지속 기간(duration)은 설정될 수 있다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MBMS의 정의를 예시하는 도면이다.
도 10을 참조하면, MBMS 서비스 영역(MBMS SA: MBMS Service Area)은 하나 이상의 MBSFN 영역으로 구성된다. MBMS SA는 하나 이상의 MBMS 서비스 영역 식별자(들)(MBMS SAI: MBMS Service Area Identity)로 구성된다.
MBMS SAI는 하나의 PLMN 내 셀들의 그룹을 식별하고, 연관된 위치 / 라우팅 / 서비스 영역 및 셀(들)의 물리적 위치와 독립적이다. 하나의 셀은 하나 이상의 MBMS SA(s)에 속할 수 있으므로, 하나 이상의 MBMS SAI(s)에 의해 식별될 수 있다.
각 MBSFN 영역 내에서, 복수의 MBSFN 영역 예비 셀(MBSFN area reserved cell)들을 포함하는 복수의 셀들이 존재할 수 있다.
E-UTRAN에서 MBMS는 유니캐스트 트래픽과 공유하는 캐리어 내에서만 지원된다. MBMS 전송을 수행하는 셀(들)은 MBMS/유니캐스트 혼합 셀(들)(MBMS/Unicast-mixed cell)을 나타낸다.
MBMS/유니캐스트 혼합 셀에 있어서, MTCH 및 MCCH는 점-대-다점(point-to-multipoint) 전송을 위해 MCH에 매핑되고, 셀 내 유니캐스트 및 MBMS의 전송은 통합된 방법(co-ordinated manner)로 수행된다.
RRC_CONNECTED 또는 RRC_IDLE 상태인 UE은 MBMS 수신할 수 있다. MBMS 서비스를 수신할 때마다, 사용자는 수신 호(incoming call) 통지를 받으며, 발신 호(originating call)가 가능하다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MBMS 논리적 구조를 예시하는 도면이다.
다중 셀/멀티캐스트 조정 개체(MCE: Multi-cell/multicast Coordinating Entity)는 논리적 개체이며, 다른 네트워크 요소의 일부분으로 구성될 수 있다. MCS의 기능은 다음과 같다.
- MBSFN 동작을 이용하여 다중 셀 MBMS 전송을 위한 MBSFN 영역 내 모든 eNB에 의해 사용되는 무선 자원 할당 및 가입 제어(admission control). 할당 및 유지 우선순위(ARP: Allocation and Retention Priority)에 따라 무선 자원이 해당 MBMS 서비스(들)을 위해 충분하지 않거나 진행 중인 MBMS 서비스(들)의 다른 무선 베어러(들)로부터 무선 자원이 미리 획득(preempt)되면, MCE는 새로운 MBMS 서비스(들)의 무선 베어러(들)을 확립하지 않도록 결정한다. 또한, 시간/주파수 무선 자원의 할당과 함께, MCE는 무선 자원의(예를 들어, 변조 및 코딩 방법(modulation and coding scheme)의 설정을 결정한다.
- MBMS 서비스(들)을 위한 카운팅 및 카운팅 결과의 획득
- 예를 들어, ARP 및/또는 해당 MBMS 서비스(들)을 위한 카운팅 결과 등에 기반한 MBSFN 영역(들) 내 MBMS 세션(들)의 재개(resumption)
- 예를 들어, ARP 및/또는 해당 MBMS 서비스(들)을 위한 카운팅 결과 등에 기반한 MBSFN 영역(들) 내 MBMS 세션(들)의 보류(suspension)
분배 MCE 구조(distributed MCE architecture)의 경우, MCE는 MBSFN의 단일 eNB을 위한 상술한 기능을 관리한다.
MCE는 MBMS 세션 제어 시그널링(MBMS Session Control Signalling) 내 관여된다.
멀티미디어 브로드캐스트 멀티캐스트 서비스 게이트웨이(MBMS GW: Multimedia Broadcast Multicast Services Gateway)는 논리적 개체이며, 브로드캐스트/멀티캐스트 서비스 센터(BMSC: Broadcast/Multicast Service Center)와 eNB(들) 사이에 존재할 수 있다. MBMS GW의 주요 기능은 서비스를 전송하는 각 eNB에게 MBMS 패킷을 전송/브로드캐스팅한다. MBMS GW는 MBMS 사용자 데이터를 eNB에게 전달하기 위한 수단으로써 IP 멀티캐스트를 이용한다. MBMS GW는 MME를 통해 E-UTRAN에게 MBMS 세션 제어 시그널링(MBMS Session Control Signalling)(즉, 세션 시작/업데이트/중단)을 수행한다.
브로드캐스트/멀티캐스트 서비스 센터(BM-SC: Broadcast/Multicast Service Center)는 MBMS 서비스를 스케줄링하고, UE에게 MBMS 서비스를 보고하고, 베어러 서비스 식별자를 할당한다. 또한, BM-SC는 MBMS 베어러 자원(즉, MBMS 세션)을 시작하거나 중단(terminate)한다. BM-SC 개체는 컨텐츠 제공자(content provider)를 위한 인터페이스 지점(interface point)으로서 기능할 수 있다. BM-SC는 M1 인터페이스를 통해 SYNC 프로토콜의 종단점(termination point)으로서 기능할 수 있다.
SYNC 프로토콜은 eNB가 무선 프레임 전송을 위한 타이밍을 식별 및 패킷 손실을 감지할 수 있도록 추가적인 정보를 전달하기 위한 프로토콜을 의미한다. 매 진보된 MBMS(eMBMS: enhanced MBMS) 서비스는 자원의 SYNC 개체를 이용한다. SYNC 프로토콜은 하향링크에 적용될 수 있으며, BM-SC에서 종단(terminate)된다.
eMBMS를 지원하는 eNB는 BM-SC와 SYNC 프로토콜을 지원한다. eNB는 사용자 평면(user plane) 데이터 전달을 위한 IP 멀티캐스트 그룹에 참여(join)하고, MCCH를 종단(terminate)하고, MBMS 세션의 시작 및 중단을 UE에게 지시한다.
MME는 BM-SC와 eNB 간에 시그널링 경로를 제공한다. 즉, BM-SC는 MME를 통해 eNB에게 시그널링한다.
어플리케이션 부분(Application Part)는 MME와 MCE 간의 M3 인터페이스로 정의된다. 어플리케이션 부분은 E-RAB 레벨에서 MBMS 세션 제어 시그널링을 허용한다. 즉, 무선 설정 데이터를 전달하지 않는다. 이 절차는 예를 들어, MBMS 세션 시작 및 중단 등을 포함한다. SCTP는 시그널링 전달로 사용되고, 점-대-점 시그널링이 적용된다.
어플리케이션 부분은 MCE 및 eNB 간 M2 인터페이스를 위해 정의되고, 적어도 다중 셀 전송 모드 eNB 및 세션 제어 시그널링(Session Control Signalling)을 위한 무선 설정 데이터를 전달한다. SCTP는 시그널링 전달로 사용되고, 점-대-점 시그널링이 적용된다.
M1 인터페이스는 MBMS GW 및 eNB 간 사용자 평면 인터페이스이다. 그 결과, 제어 평면 어플리케이션 부분(Control Plane Application Part)이 이 인터페이스를 위해 정의되지 않는다. IP 멀티캐스트는 사용자 패킷의 점-대-다점 전달을 위해 사용된다.
Sm은 MME 및 MBMS GW 간 제어 평면 인터페이스이다.
SGmb/SGimb는 BM-SE 및 MBMS GW 간 제어/사용자 평면 인터페이스이다.
이하, MBSFN을 위한 무선 채널을 살펴본다.
일반적으로, MBMS를 지원하는 UE(들)과 관련된 제어 정보는 유니캐스트 제어 정보와 가능한 구분된다. 대부분의 MBMS 제어 정보는 MBMS 공통 제어 정보를 위해 특정된 논리 채널(logical channel)(즉, MCCH)에서 제공된다.
E-UTRA는 MBSFN 영역 별로 하나의 MCCH 논리 채널을 이용한다.
네트워크가 다중의 MBSFN 영역을 설정하는 경우, UE는 수신하길 원하는 서비스가 진행 중인지 식별하기 위하여 설정된 MCCH로부터 MBMS 제어 정보를 획득한다. MCCH는 진행 중인 MBMS 세션 뿐만 아니라 해당 무선 자원 설정을 지시하는 MBSFN 영역 설정(MBSFNAreaConfiguration) 메시지를 전달한다.
또한 E-UTRAN이 하나 이상의 특정 MBMS 서비스를 수신하고 있거나 수신하길 원하는 RRC_CONNECTED 상태의 단말의 수를 카운트하길 원할 때, MCCH는 MBMS 카운팅 요청(MBMSCountingRequest) 메시지를 전달한다.
MBMS 제어 정보 중 일부가 BCCH 상에서 제공된다. 이는 주로 MCCH(들)을 획득하기 위하여 필요한 정보와 관련된다. 이 정보는 단일의 MBMS 특정 시스템 정보 블록(SIB: SystemInformationBlock)(예를 들어, SIB 13)을 통해 전달된다.
MBSFN 영역은 SIB 13 내 MBSFN 영역 식별자(mbsfn-AreaId)에 의해 식별된다.
UE가 이동 중일 때, 소스 셀 및 타겟 셀이 MBSFN 영역 식별자(mbsfn-AreaId) 내 동일한 값을 브로드캐스트할 때, UE는 MBSFN 영역은 연속적이라고 간주한다.
MCCH 정보는 설정된 반복 주기를 이용하여 주기적으로 전송된다. MCCH에서 스케줄링 정보는 제공되지 않으며, SIB 13에서 정의된 바와 같이 시간 영역 스케줄링 뿐만 아니라 하위 계층 설정 모두 반정적(semi-statically)으로 설정된다.
MTCH 논리 채널에 의해 전달되는 MBMS 사용자 데이터에 있어서, E-UTRAN은 하위 계층(예를 들어, MAC 계층)에서 MCH 스케줄링 정보(MSI: MCH scheduling information)를 주기적으로 제공한다. 이 MCH 정보는 시간 영역 스케줄링과 관련된다. 즉, 주파수 영역 스케줄링 및 하위 계층 설정은 반정적(semi-statically)으로 설정된다.
MSI의 주기성은 설정될 수 있으며, MCH 스케줄링 주기에 의해 정의된다.
GCSE
(Group Communication System
Enablers
)
그룹 통신 서비스에 있어서, 다음과 같은 정의가 도입될 수 있다.
- 그룹 멤버(Group Member): GCSE 그룹에 지정된 사용자
- GCSE 그룹(GCSE Group): 그룹 멤버의 세트
- 수신 그룹 멤버(Receiver Group Member): GCSE 그룹의 그룹 멤버 중에서 현재 진행 중이거나 향후 진행 될 그룹 통신의 수신하길 원하는 그룹 멤버
- 전송 그룹 멤버(Transmitter Group Member): GCSE 그룹의 그룹 멤버 중에서 현재 진행 중이거나 향후 진행 될 그룹 통신을 전송하도록 권한을 부여 받은 그룹 멤버
- 그룹 통신(Group Communication): 전송 그룹 멤버(Transmitter Group Member)로부터 수신 그룹 멤버(Receiver Group Member)로의 통신
- 그룹 통신 시스템 조력자(GCSE: Group Communication System Enabler): E-UTRAN을 통해 어플리케이션 계층 기능이 그룹 통신을 제공할 수 있도록 하는 개체
- 다중 점 서비스(Multipoint Service): 자원 효율적인 방법으로 많은 UE(들)에게 동일한 컨텐츠를 분배하기 위해 사용되는 서비스
그룹 통신 서비스 어플리케이션 서버(GSC AS: Group Communication Service Application Server)는 EPS 베어러 서비스를 사용하고, GSC AS와 UE 간에 어플리케이션 시그널링 및 데이터를 전달하기 위하여 추가적으로 MBMS 베어러 서비스를 사용할 수 있다.
상향링크 방향에서, UE는 GCS AS와 어플리케이션 시그널링을 교환하기 위하여 또는 GCS AS에게 전송하길 원할 때 EPS 베어러 서비스를 사용한다. 하향링크 방향에서, GCS AS는 UE의 개별적인(individual) EPS 베어러 서비스 및/또는 MBMS 베어러 서비스를 통해 어플리케이션 시그널링 및 데이터를 전달할 수 있다. GCS UE는 하나 이상의 GCS 그룹에 참여하기 위하여 어플리케이션 시그널링을 이용하여 GCS AS에게 등록한다.
MBMS 베어러 서비스가 이용될 때, MBMS 베어러 서비스의 브로드캐스트 서비스 영역은 GCS AS에 의해 사용되기 위하여 미리 설정(pre-configure)될 수 있다. 또한, GCS AS는 영역(예를 들어, 하나 이상의 셀) 내에서 GCS 그룹을 위한 UE의 수가 충분히 많다고 결정할 때, MBMS 베어러 서비스를 사용하도록 동적으로 결정할 수도 있다. 즉, 특정 셀(들)에서 서비스 받는 UE의 수가 많아지는 경우, EPS 베어러(즉, 유니캐스트 베어러)에서 MBMS 베어러로 전환할 수 있다.
MBMS 베어러 서비스가 이용될 때, GCS AS는 단일의 MBMS 브로드캐스트 베어러를 통해 서로 다른 GCS 그룹으로 데이터를 전달할 수 있다. MBMS 베어러(들)을 통해 전달되는 어플리케이션 시그널링 및 데이터는 BM-SC(Broadcast Multicast - Service Centre)와 MBMS 베어러 서비스에게 트랜스패런트(transparent)하다. GCS AS는 GCS 어플리케이션 시그널링을 통해 UE들에게 모든 설정 정보(configuration information)를 제공한다. 여기서, 설정 정보는 UE가 어플리케이션 데이터를 MBMS 베어러 서비스를 통해 수신하고, 데이터를 적절하게 제어(handle)하기 위하여 필요한 정보를 의미한다.
GCS UE가 MBMS 브로드캐스트 베어러가 이용 가능한 영역에서 이용 가능하지 않은 영역으로 이동할 때, UE는 어플리케이션 시그널링을 통해 GCS AS에게 MBMS 브로드캐스트 베어러 수신(reception)으로부터 미수신(non-reception)으로 변경되었음을 알려주고, GCS AS는 UE 개별적인(individual) EPS 베어러를 통해 하향링크 어플리케이션 시그널링 및 데이터 전달을 활성화한다. 또는 그 반대의 경우, UE는 GCS AS에게 브로드캐스트 베어러 미수신(non-reception)으로부터 수신(reception)으로 변경되었음을 알려주고, GCS AS는 UE 개별적인(individual) EPS 베어러를 통해 하향링크 어플리케이션 시그널링 및 데이터 전달을 비활성화한다. 서비스 연속성을 보장하기 위하여, UE는 일시적으로 EPS 베어러(들) 및 MBMS 서비스(들)을 통해 병렬적으로 동일한 GCS 어플리케이션 시그널링 및 데이터를 수신할 수 있다.
MBMS 전달(MBMS delivery)은 어플리케이션 데이터 및 시그널링이 MBMS 베어러 서비스를 이용하여 전달되는 매커니즘(mechanism)을 지칭한다.
GCS AS는 MBMS 전달(MBMS delivery)을 위해 MBMS 베어러를 이용한다. MBMS 베어러는 GCS AS로부터 UE에게 하향링크로 데이터를 전달하기 위하여 이용된다. MBMS 전달(MBMS delivery)을 위해 사용되는 MBMS 베어러(들)은 그룹 통신 세션이 셋업되기 전에 미리 확립(pre-established)되거나 그룹 통신 세션이 셋업된 후 동적으로 확립될 수 있다.
유니캐스트 전달(Unicast delivery)은 어플리케이션 데이터 및 시그널링이 EPS 베어러 서비스를 이용하여 전달되는 매커니즘(mechanism)을 지칭한다.
UE와 GCS AS는 유니캐스트 전달(Unicast delivery)을 위해 EPS 베어러를 이용한다. EPS 베어러는 UE와 GCS AS 간에 GC1 시그널링 교환, UE로부터 GCS AS에게 상향링크로 데이터 전송, MBMS 전달(MBMS delivery)이 가능하지 않거나 바람직하지 않을 때 GCS AS로부터 UE에게 하향링크로 데이터 전송을 위해 이용된다. GCS AS는 그룹 통신 세션을 위해 사용되는 EPS 베어러의 우선순위 레벨(priority level)을 특정하고 수정하기 위하여 Rx 인터페이스를 이용한다.
도 12는 본 발명이 적용될 수 있는 GCSE 참조 모델을 예시하는 도면이다.
도 12를 참조하면, GCS AS는 다음과 같은 기능을 지원한다.
- UE와 GC1 시그널링 교환(GCS 세션 및 그룹 관리 측면 포함)
- 유니캐스트를 통해 UE로부터 상향링크 데이터 수신
- 유니캐스트 전달(Unicast Delivery) 및/또는 MBMS 전달(MBMS Delivery)을 이용하여 그룹에 속한 모든 UE(들)에게 데이터 전달
- PCRF 방향으로 Rx 인터페이스를 통해 어플리케이션 레벨 세션 정보의 전송
UE가 유니캐스트 전달(Unicast Delivery) 및 MBMS 전달(MBMS Delivery) 간의 스위치할 수 있도록 서비스 연속성 절차(service continuity procedures) 지원
GCS 지원 가능한 UE는 다음과 같은 기능을 지원한다.
- GCS AS와의 GC1 시그널링 교환(GCS 세션 및 그룹 관리 측면 포함)
- 코어 네트워크에 UE 특정 아이드 모드 DRX 사이클 길이의 제공(provision)
- 유니캐스트 전달(Unicast Delivery) 또는 MBMS 전달(MBMS Delivery) 또는 두 방식 모두 동시에 이용하여 GCS AS로부터 데이터 수신
- 유니캐스트를 이용하여 GCS로의 상향링크 데이터 전송
- 유니캐스트 전달(Unicast Delivery) 및 MBMS 전달(MBMS Delivery) 간의 스위치를 위한 서비스 연속성 절차(service continuity procedures) 지원
- 하나 이상의 MBMS 베어러(들)의 동시 모니터링 및 수신
BM-SC는 아래와 같은 기능을 지원한다.
- MBMS 브로드캐스트 모드 절차
- MBMS 베어러의 활성화(activating), 비활성화(deactivating) 및 수정(modifying)을 위한 MB2 절차
이하, 하향링크에서 MBMS 전달(MBMS Delivery)을 확립하기 위한 절차를 살펴본다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MBMS 전달을 위한 하향링크 미디어 경로를 셋업하는 과정을 예시하는 도면이다.
GCS AS는 그룹 통신 세션을 시작하기 전에 특정 미리 설정된(pre-configured) 영역 내에서 MBMS 베어러(들)을 미리 확립(pre-establish)할 수 있다. UE가 위의 영역 내에서 그룹 통신을 요청하면, 미리 확립된(pre-established) MBMS 베어러(들)이 하향링크 트래픽을 위해 사용된다.
1. GCS AS는 그룹 통신 세션을 위한 MBMS 베어러(들)을 미리 확립(pre-establish)한다. BM-SC는 GCS AS에게 MBMS 베어러(들)과 연관된 MBMS 서비스 설명(description)을 전달한다.
2. UE는 GCS AS와 그룹 통신 세션을 확립한다. GCS AS는 GC1 인터페이스를 통해 MBMS 베어러(들)과 연관된 서비스 설명(description)을 UE에게 전달한다. UE는 서비스 설명(description)으로부터 MBMS 베어러(들)을 식별하기 위한 임시 모바일 그룹 식별자(들)(TMGI: Temporary Mobile Group Identity)을 획득한다.
3. UE는 캠핑(camping) 셀에서 TMGI(들)에 대한 수신한 MBSFN 브로드캐스트(들)의 MCCH 및 MCH 스케줄링 정보(MSI)를 모니터링하기 시작한다. 즉, UE는 캠핑(camping) 셀에서 MCH(즉, MCCH)를 모니터링한다. MCH 설정 정보는 시스템 정보를 통해 획득할 수 있다.
4. MCCH 상에서 TMGI를 검출한 UE는 MSI를 모니터링하고, TMGI에 해당하는 MTCH 상에서 하향링크 데이터를 수신한다.
보다 구체적으로, UE는 MCH(즉, MCCH)를 디코딩하면, eMBMS 채널 정보 요소(IE: Information Element)를 읽을 수 있다. 그리고, eMBMS 채널 IE의 MBMS 세션 정보에 자신에게 해당하는(지정된) TMGI가 있으면, TMGI에 해당하는 MTCH를 디코딩한다. 즉, 단말이 MBMS 세션 정보를 읽고 여기에 자신의 TMGI 정보가 없다면 MTCH를 읽을 필요가 없고 자신이 속한 셀에서 현재 시점에 브로드캐스트되는 그룹 콜이 없다고 판단할 수 있다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 MBMS 전달을 위한 하향링크 미디어 경로를 셋업하는 과정을 예시하는 도면이다.
GCS AS는 그룹 통신 세션을 시작할 때 하향링크에서 UE와의 통신을 위한 유니캐스트 베어러를 사용한다. GCS AS가 하향링크 데이터를 위해 MBMS 베어러를 사용하기로 결정할 때, GCS AS는 MBMS 베어러(들)을 확립한다. GCS AS는 BM-SC로부터 획득한 MBMS 베어러(들)과 연관된 서비스 설명(description)을 UE에게 제공한다. UE는 MBMS 베어러(들)을 이용하여 하향링크 데이터를 수신하길 시작하고, 하향링크 데이터를 위한 유니캐스트 베어러의 이용을 중단한다. GCS AS는 새로운 MBMS 전달(MBMS Delivery) 베어러를 확립하도록 결정하는 방법을 다양하게 구현될 수 있다. 일례로, GCS AS는 그룹 통신 세션에 참여하는 UE의 위치에 기반하여 MBMS 전달(MBMS Delivery bearer) 베어러의 확립을 결정할 수 있다.
1. UE는 GCS AS와 그룹 통신 세션을 확립한다.
2. 하향링크 데이터가 유니캐스트 전달(Unicast Deliver)에 의해 전달된다.
3. GCS AS는 그룹 통신 세션을 위한 MBMS 베어러(들)을 확립한다. BM-SC는 GCS AS에게 MBMS 베어러(들)과 연관된 MBMS 서비스 설명(description)을 전달한다.
4. GCS AS는 GC1 인터페이스를 통해 MBMS 베어러(들)과 연관된 서비스 설명(description)을 UE에게 전달한다. UE는 서비스 설명(description)으로부터 MBMS 베어러(들)을 식별하기 위한 TMGI를 획득한다.
5. UE는 캠핑(camping) 셀에서 TMGI(들)에 대한 수신한 MBSFN 브로드캐스트(들)의 MCCH 및 MCH 스케줄링 정보(MSI)를 모니터링하기 시작한다. 즉, UE는 캠핑(camping) 셀에서 MCH(즉, MCCH)를 모니터링한다. MCH 설정 정보는 시스템 정보를 통해 획득할 수 있다.
6. MCCH 상에서 TMGI를 검출한 UE는 MSI를 모니터링하고, TMGI에 해당하는 MTCH 상에서 하향링크 데이터를 수신한다.
보다 구체적으로, UE는 MCH(즉, MCCH)를 디코딩하면, eMBMS 채널 정보 요소(IE: Information Element)를 읽을 수 있다. 그리고, eMBMS 채널 IE의 MBMS 세션 정보에 자신에게 해당하는(지정된) TMGI가 있으면, TMGI에 해당하는 MTCH를 디코딩한다. 즉, 단말이 MBMS 세션 정보를 읽고 여기에 자신의 TMGI 정보가 없다면 MTCH를 읽을 필요가 없고 자신이 속한 셀에서 현재 시점에 브로드캐스트되는 그룹 콜이 없다고 판단할 수 있다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 TMGI의 구조를 예시하는 도면이다.
도 15를 참조하면, TMGI는 MBMS 서비스 ID(MBMS Service ID), 모바일 국가 코드(MCC: Mobile Country Code) 및 모바일 네트워크 코드(MNC: Mobile Network Code)로 구성될 수 있다.
MBMS 서비스 ID는 3 옥텟(octet)으로 구성될 수 있다. MBMS 서비스 ID는 '000000' 내지 'FFFFFF' 사이의 6 디지트(digit) 고정된 길이의 16진수(hexadecimal number)로 구성될 수 있다. MBMS 서비스 ID는 PLMN 내에서 MBMS 베어러 서비스를 고유하게 식별한다.
단말이 특정 GCS 그룹에 속하여 그룹 콜을 수행하는 경우, 만약 해당 그룹 콜이 MBMS 베어러로 이루어진다면, 단말을 네트워크로부터 GC1 인터페이스를 통해 해당 그룹 콜을 위한 TMGI를 수신 받는다. 즉, GCS 그룹을 TMGI로 매핑할 수 있다.
모바일 국가 코드(MCC)는 3 디지트(digit)로 구성될 수 있다. MCC는 BM-SC의 위치(domicile) 국가를 고유하게 식별한다.
모바일 네트워크 코드(MNC)는 2 또는 3 디지트(digit)로 구성될 수 있다. MNC는 BM-SC가 속한 PLMN를 식별한다.
셀 단위(cell granularity) 보고 방법
본 발명은 아이들 모드(Idle Mode)인 단말의 위치를 셀 단위(Cell granularity)로 네트워크가 인지할 수 있는 방법을 제안한다. 특히, 기존 방송용으로 제안된 MBMS(Multimedia Broadcast Multicast Service) 기술이 그룹 통신(Group Communication) 및 MTC 장치를 위한 그룹 메시징(Group messaging) 용으로 사용되면서 발생하는 비효율적인 동작을 개선하는 목적으로 사용될 수 있다. 또한, MTC 장치의 모니터링 시 네트워크가 단말의 아이들 모드(Idle Mode) 또는 연결 모드(Connected Mode) 여부와 상관없이 셀 단위로 인지할 수 있는 방법을 제안함으로써 더 많은 어플리케이션에 사용될 수 있다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MBSFN 영역을 예시하는 도면이다.
도 16을 참조하면, MBSFN 영역 0는 셀 1 내지 셀 7로 구성되고, MBSFN 영역 1은 셀 7, 셀 9, 셀 10 및 셀 13으로 구성되며, MBSFN 영역 255는 셀 8, 셀 9, 셀 11 내지 셀 15로 구성될 수 있다.
MBSFN 영역 0에 속한 셀 중에서 셀 4는 MBSFN 영역 예비 셀(MBSFN area reserved cell)로서 MBSFN 영역에 속하나, MBMS 전송을 지원하지 않는 셀을 나타낸다.
셀 7, 셀 8 및 셀 9는 하나 이상의 MBSFN 영역에 속한 셀을 나타낸다. 하나의 셀 당 최대 8개까지의 MBSFN 영역에 속할 수 있다.
앞서 살펴본 바와 같이, 기존 MBMS 방식은 서비스 영역(SA: Service Area)라는 지역을 설정하여 여러 eNB가 동기를 맞추어 동일 콘텐츠(contents)를 방송하게 하는 MBSFN 영역 형태로 운용되었다. 이때, SA는 정적(Static)인 정보로 사업자의 운용에 의해 변경될 수 있지만 빈번히 또는 실시간(real time)으로 변경이 필요하지 않았다.
다만, 앞서 살펴본 바와 같이 그룹 통신(릴리즈(Rel: Release)-12 GCSE)(3GPP TS 22.468 및 TS 23.468 참고) 방식이 3GPP LTE/LTE-A 기술에 소개되고 또한 이와 같은 그룹 통신이 기존 MBMS 기술을 차용하면서 정적(Static)이고, 다수의 셀이 동기화되어 방송하는 기존 MBMS의 비효율성 문제점이 동일하게 야기되었다.
이에 따라, 네트워크가 보다 더 효율적으로 단말의 위치 및 소속된 그룹의 정보를 인지하여 셀 단위로 MBMS 전달(MBMS delivery)을 운용할 수 있도록 하는 방식이 제안되었다(3GPP TR.23.768 솔루션(Solution) 2 참조).
이 솔루션에 따르면, 셀 단위로 MBMS 전달(MBMS delivery)을 운용하기 위하여 동일 셀 내 동일 그룹 내 사용자의 수가 현저하게 크지 않으면(해당 셀에서 eMBMS 사용이 트리거된 경우), 하향링크 데이터를 분배하기 위하여 유니캐스트 베어러를 사용할 수 있다. 이에 대하여 아래 도면을 참조하여 살펴본다.
도 17은 본 발명이 적용될 수 있는 무선 통신 시스템에서 셀 단위 MBMS 전달을 예시하는 도면이다.
도 17에서는 4개의 셀이 모두 동일 MBSFN 영역에 속한다고 가정한다.
도 17(a)와 같이 MBSFN 영역 단위로 MBMS 서비스를 제공하는 경우, MBSFN 영역에 속한 셀 중에서 MBMS를 수신하는 단말이 속하지 않은 셀이 존재하더라도 MBSFN 영역에 속한 셀(MBSFN 영역 예비 셀(MBSFN area reserved cell) 제외)은 MBMS 전송을 수행한다.
반면, 상술한 솔루션에 의하면, 도 17(b)와 같이, MBMS를 수신하는 단말이 속하지 않은 셀에서는 해당 MBMS 방송하는 것은 비효율적이면 해당 자원을 유니캐스트 및 다른 용도로 사용될 수 있다.
일반적으로 네트워크(예를 들어, eNB 등)와 신호를 송수신을 하는 단말은 ECM-CONNECTED 상태로 eNB가 단말이 위치한 셀 정보를 인지하고 있기 때문에 단말이 캠핑(camping)한 셀을 변경한 경우, 이를 MME, S-GW 그리고 P-GW 단에게 보고할 수 있는 방법(예를 들어, 사용자 위치 변경 보고(User Location Change Reporting) 등)이 제안되었다.
하지만, MBMS를 이용하여 브로드캐스트 데이터를 수신하는 단말의 경우, ECM-IDLE 상태인 경우에도 단방향 데이터 수신은 가능하다. 다만, 이 경우 단말은 eNB와 전용 연결(dedicated connection)이 없기 때문에, 네트워크는 기존에 정의된 방법으로는 정확한 단말의 위치 정보, 즉 셀 변경 정보의 획득이 불가능하다.
특히, 네트워크에서 MBMS 전달(MBMS delivery)와 유니캐스트 전달(Unicast delivery)로의 송신 여부를 판단하는 경우(즉, N개의 단말에 특정 정보를 송신하는 경우 MBMS 베어러를 이용하여 브로드캐스트 방식으로 송신할지 N개의 유니캐스트 베어러를 이용하여 송신할지 여부를 판단하는 경우), ECM-IDLE 상태의 단말이더라도 해당 MBMS 베어러를 수신하는 경우 그 판단에 포함되어야 하기 때문에 ECM-IDLE 상태의 단말이 셀을 변경할 경우 네트워크가 이를 인지할 수 있는 방법이 필요하다.
즉, 셀 A에 N개의 단말이 ECM-IDLE 상태로 MBMS 베어러를 수신하고 있다면 계속 해당 MBMS 베어러를 유지하는 것이 바람직하나, 해당 단말이 모두 셀 밖으로 이동했거나 1개, 2개 등과 같이 소수의 단말만이 셀 A에 속하는 경우라면 MBMS 베어러를 해제(release)하거나 해당 데이터를 유니캐스트로 전환하여 송신하는 것이 더 자원 관리 측면에서 효율적일 수 있다.
또한, 그룹 통신/그룹 메시징의 경우 특정 셀 내에 단말 그룹이 속할 가능성이 높다. 이 경우, 단말 그룹이 속한 셀에서만 그룹 통신/그룹 메시징 서비스를 MBMS를 통해 제공하는 것이 바람직하다. 따라서, ECM-IDLE 상태의 단말이더라도 해당 MBMS를 통해 그룹 통신/그룹 메시징 서비스를 제공 받는 경우 네트워크가 셀 단위로 단말의 위치를 인지할 수 있는 방법이 필요하다.
또한, 특정 어플리케이션(예를 들어, MTC 어플리케이션)에서 어느 셀에 속한 단말의 수를 파악하고자 할 때, 해당 셀에 속한 단말의 수를 정확하게 파악하기 위해서는 ECM-IDLE 상태의 단말의 수도 파악해야 한다. 기존의 방식에 따르면, ECM-IDLE 상태의 단말의 수를 파악하기 위해서는 페이징을 전송하여 단말을 웨이크업(wake-up)시켜야 하는 단점이 있다.
또한, 수신 호(incoming call) 등을 이유로 특정 ECM-IDLE 상태의 단말에게 페이징을 전송하고자 할 때, 네트워크는 셀 단위로 해당 단말의 위치를 알고 있지 않으므로, 해당 단말이 가장 최근에 보고한 트래킹 영역에 속한 셀에 해당 단말을 위한 페이징을 전달하여야 하는 단점이 있다.
또한, 현재 Rel-13 모니터링 진보(MONTE: Monitoring Enhancement)에서 요구하는 요구 사항(Requirement) 중에서 특히 3GPP 코어 네트워크는 서드 파티(3rd party) 서비스 제공자에 의해 서비스 받는 단말에 대하여 아래와 같은 정보를 제공할 수 있어야 한다(3GPP TS 22.101 노출된(Exposed) 서비스 및 능력(capabilities) 참조).
- 단말이 로밍(roaming)을 시작/중단할 때, 로밍 상태(즉, 로밍(Roaming) 및 비-로밍(No Roaming)) 및 서빙 네트워크의 지시
- 단말의 연결성(connectivity) 손실
- ME(Mobile Equipment)와 UICC(Universal IC Card) 간의 연관의 변경 또는 손실
- 단말의 통신 실패 이벤트(예를 들어, 트러블 슈팅(troubleshooting))
- 단말이 서드 파티(3rd party)에 의해 지시된 지리적 영역(geographic area)으로 진입(move in)/이탈(move out)할 때 보고
- 단말이 라우팅 영역(Routing Area) / 트래킹 영역(Tracking Area) / 위치 영역(Location Area) / 셀(Cell)을 변경할 때 보고
상술한 요구 사항 중 셀 레벨 변경을 모니터링하기 위해서는, 특히 아이들 모드(예를 들어, ECM-IDLE)인 단말의 위치를 인지하기 위한 방법이 필요하다.
이에 따라, 본 발명에서는 아이들 모드(Idle Mode)인 단말의 위치를 셀 단위(Cell granularity)로 네트워크가 인지할 수 있는 방법을 제안한다.
이하, 본 발명의 설명에 있어서, 단말이 속한 셀과 단말이 캠핑(camping)하는 셀은 동일한 의미로 해석될 수 있다. 그리고, 단말이 속한 셀 또는 단말이 캠핑(camping)하는 셀은 IDLE 상태(즉, ECM-IDLE/RRC_IDLE)의 단말이 셀 선택(selection)/재선택(reselection) 절차를 완료하여 선택된 셀을 의미할 수 있다.
본 발명의 일 실시예에 있어서, 네트워크는 특정 단말(혹은 단말 그룹)에 대하여 셀 레벨 보고(Cell level reporting)(또는 셀 단위 보고(Cell granularity reporting))가 필요한 경우, 어태치(Attach) 절차 및 트래킹 영역 업데이트(TAU: Tracking Area Update)/라우팅 영역 업데이트(RAU: Routing Area Update) 절차 등을 통해 셀 레벨 보고(Cell level reporting)를 해당 단말(혹은 단말 그룹)에게 명령(혹은 설정)(이하, '셀 레벨 보고 설정(cell level reporting configuration)' 또는 '셀 레벨/보고 설정(cell level/reporting configuration)'으로 지칭함)할 수 있다. 즉, 단말은 기존의 TAU 절차를 이용하여 셀 변경 정보를 네트워크에게 보고할 수 있다.
이때, 셀 레벨 보고 설정(cell level reporting configuration)은 그룹 통신 서비스를 받을 단말(들), MTC 단말(들) 또는 단말의 특성(예를 들어, 이동성이 낮은 단말 등)에 따라 결정된 단말들에게 전용적(dedicate)으로 전송될 수 있다.
네트워크는 필요에 따라 셀 레벨 보고를 단말(혹은 단말 그룹)에게 요청(혹은 설정)할 수 있다. 예를 들어, 아래 2가지 경우를 포함할 수 있다.
- 그룹 콜(Group Call) 및 그룹 기반 메시징(Group based messaging)의 효율적인 동작을 위해 MBMS 전달(MBMS delivery)과 유니캐스트 전달(Unicast Delivery)를 셀 레벨(즉, 셀 단위(Cell granularity))로 유연(Flexible)하게 운용하고 싶은 경우
- 어플리케이션 서버가 단말의 셀 단위의 위치 변화를 모니터링하고 싶은 경우
일례로, 셀 레벨 보고 설정(cell level reporting configuration)은 MBMS 수신 여부에 대한 파라미터를 포함할 수 있다. MBMS 수신 여부에 대한 파라미터 값에 기반하여 셀 레벨 보고를 수행하는 단말(혹은 단말 그룹)이 결정될 수 있다. 이에 대한 보다 상세한 설명은 후술한다.
또 다른 일례로, 셀 레벨 보고 설정(cell level reporting configuration)은 특정 시간(또는 타이머)에 대한 파라미터를 포함할 수 있다. 특정 시간(또는 타이머)에 대한 파라미터 값에 기반하여 단말(혹은 단말 그룹)이 셀 레벨 보고를 수행하는 시점이 결정될 수 있다. 이에 대한 보다 상세한 설명은 후술한다.
단말이 속한 셀이 변경된 경우, 기존의 TAU 절차를 이용하여 셀 변경 여부 및 해당 단말이 속한 셀 정보를 네트워크(즉, eNB를 통해 MME에게) 보고(또는 통보)할 수 있다. 이에 대하여 아래 도면을 참조하여 설명한다.
TAU 절차는 특정 조건에 의해서 단말이 트리거링(triggering)하는 경우와 단말의 접근성(reachability)를 유지하기 위한 주기적 TAU(periodic TAU)로 분류될 수 있다. 여기서, 단말이 TAU를 트리거링(triggering)하는 조건은 단말이 속한 트래킹 영역(Tracking Area)이 변경되는 경우 등 다양하다.
또한, TAU 절차는 단말이 속한 MME가 변경되는 경우 혹은 S-GW가 변경되는 경우 혹은 두 노드가 모두 변경되는 경우로 구분할 수 있다.
도 18은 본 발명의 일 실시예에 따른 셀 단위 보고 방법을 예시하는 도면이다.
도 18을 참조하면, 단말(UE)은 어태치 절차 또는 TAU/RAU 절차 등을 통해 셀 단위/레벨 보고(Cell granularity/level reporting)가 설정된 경우(즉, 셀 단위/레벨 보고 설정을 수신한 경우), 단말은 IDLE 모드 구간에서 캠핑(camping)하는 셀이 변경되었는지 여부를 감지(detection) 동작을 수행한다(S1801).
즉, 셀 단위/레벨 보고 설정을 수신한 단말은 IDLE 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지한다.
또한, 추가적으로, 셀 레벨 보고 설정(또는 셀 레벨 설정)은 다음 중 하나 이상의 파라미터(또는 정보)를 포함할 수 있다.
- MBMS 수신 여부(즉, MBMS 수신 여부에 대한 지시)
이 파라미터(정보)의 값에 기반하여 셀 레벨 보고를 수행하는 단말(혹은 단말 그룹)이 결정될 수 있다. 즉, MBMS 수신 여부에 대한 지시는 셀 단위/레벨 보고를 수행하는 단말(혹은 단말 그룹)이 셀 단위/레벨 보고 여부를 결정하기 위하여 MBMS 수신 여부에 대한 조건이 적용되는지 여부를 지시한다.
예를 들어, MBMS 수신 여부에 대한 지시는 활성화('Yes') 또는 비활성화('No')될 수 있다. 예를 들어, MBMS 수신 여부에 대한 지시가 활성화된 경우('yes'), IDLE 구간에서 수신하는 MBMS가 있는 경우에만(즉, MBMS를 수신하는 단말에 한해) 셀 단위/레벨 보고를 수행할 수 있다. 반면, MBMS 수신 여부에 대한 지시가 비활성화된 경우('no'), MBMS를 수신 여부와 무관하게 모든 단말(즉, 셀 단위/레벨 보고 설정을 수신한 모든 단말)은 셀 단위/레벨 보고를 수행할 수 있다.
이때, MBMS를 수신한다는 것은 단말이 MBMS 데이터(또는 신호)를 RF(Radio Frequency) 유닛에서 감지한다는 것을 의미할 수 있다. 즉, 단말이 자신에게 지정된(또는 자신이 속한 그룹에 지정된) TMGI와 무관하게 MBMS 데이터(또는 신호)가 감지되면 단말이 MBMS가 수신된다고 판단할 수 있다.
또한, MBMS를 수신한다는 것은 단말이 자신에게 지정된(또는 자신이 속한 그룹에 지정된) TMGI에 해당하는 MTCH 상에서 MBMS 데이터(또는 신호)를 수신한다는 것을 의미할 수 있다. 즉, 단말은 자신에게 지정된(또는 자신이 속한 그룹에 지정된) TMGI에 해당하는 MBMS 데이터(또는 신호)가 수신되어야 MBMS가 수신된다고 판단할 수 있다.
- 타이머(Timer) 정보(즉, 타이머 값 지시)
이 파라미터(정보)의 값에 기반하여 단말이 셀 단위/레벨 보고를 수행하는 시점 또는 셀 단위/레벨 보고의 수행 여부가 결정될 수 있다.
이때, 타이머는 주기 값에 해당하며, 단말은 캠핑(camping)한 셀이 바뀌어도 타이머 값이 만료되기 전에는 변경된 셀(즉, 현재 속한 셀)에 대한 정보를 네트워크에 보고하지 않을 수 있다. 즉, 타이머 값이 만료되었을 때, 단말은 셀이 변경된 것을 감지(detection)하면, 네트워크로 셀 변경 정보를 전송한다.
여기서, 타이머는 단말이 어태치(Attach) 절차 또는 TAU 절차를 통해 네트워크로부터 타이머 정보를 수신한 시점(혹은 네트워크가 타이머 파라미터를 전송한 시점)으로부터 구동될 수 있다. 단말이 타이머 정보를 수신한 시점으로부터 타이머를 구동함으로써 네트워크가 셀 단위/레벨 보고 설정을 전송한 시점으로부터 특정 시간 이내에 특정 셀 내 속하는 IDLE 상태의 단말의 수를 파악할 수 있다는 장점이 있다.
또는, 타이머는 단말이 CONNECTED 상태에서 IDLE 상태로 천이하는 시점으로부터 구동될 수 있다. 어태치(Attach) 절차를 통해 타이머 정보를 수신한 단말은 CONNECTED 상태에 있을 수 있으며, CONNECTED 상태의 단말은 네트워크로 셀 단위로 보고하게 되므로 CONNECTED 상태의 단말이 불필요하게 타이머를 구동하지 않게 되는 장점이 있다.
또는, 타이머는 단말이 MBMS를 수신하는 시점으로부터 구동될 수 있다. 이는 앞서 MBMS 수신 여부에 대한 지시가 활성화('yes')된 경우, MBMS를 수신하는 단말 이외의 단말이 불필요하게 타이머를 구동시키지 않을 수 있는 장점이 있다.
또는, 타이머는 단말이 캠핑(camping)하는 셀이 변경되었음을 감지하는 시점으로부터 구동될 수 있다. 캠핑(camping)하는 셀이 변경된 시점으로부터 타이머가 구동됨으로써, 네트워크는 일정 시간 동안 특정 셀에 머문 단말의 수를 파악할 수 있으며, 셀 경계에 위치하여 셀 간 핑퐁하는 단말의 수를 배제할 수 있는 장점이 있다.
또는, 타이머 값은 임의로 정해질 수 있다. 특히, 이때 MBMS 수신 여부에 대한 지시 값에 따라 상이한 범위 내에서 타이머 값이 임의로 정해질 수도 있다. 예를 들어, MBMS 수신 여부에 대한 파라미터 값이 'yes'인 경우, 10ms 내지 20ms 범위 내에서 타이머 값이 정해질 수 있으나, 'no'인 경우 30ms 내지 50ms 범위 내에서 타이머 값이 정해질 수 있다.
또한, 이 타이머 값은 네트워크 단에서 MBMS 전달(MBMS deliver)와 유니캐스트 전달(Unicast Delivery)의 전환을 연산하는 주기에 해당할 수 있다.
S1801 단계에서, 단말이 캠핑(camping)하는 셀이 변경되었음을 감지하면, 단말은 eNB로 셀 변경 정보를 포함하는 TAU 요청(TAU request) 메시지를 송신한다(S1802).
여기서, 셀 변경 정보는 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함할 수 있다.
이때, 상술한 바와 같이, 셀 레벨 보고 설정이 MBMS 수신 여부에 대한 지시 및/또는 타이머 정보를 포함하는 경우, 단말이 자신이 속한 셀이 변경되었음을 감지하면, 단말은 셀 레벨 보고 설정에 포함된 파라미터(또는 정보)에 기반하여 eNB로 TAU 요청(TAU request) 메시지를 송신할 수 있다.
eNB는 수신한 TAU 요청(TAU request) 메시지에 셀 변경 정보를 포함시켜 MME로 TAU 요청(TAU request) 메시지를 전달한다(S1803).
여기서, 셀 변경 정보는 단말이 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 단말이 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함할 수 있다.
앞서 S1802 단계에서 단말이 셀이 변경되었음을 지시하는 정보 및/또는 캠핑하는 셀의 셀 식별자(Cell Identity)를 TAU 요청(TAU request) 메시지에 포함시켜 eNB에게 전송할 수 있으며, 이 경우 eNB은 동일한 정보를 TAU 요청(TAU request) 메시지에 포함시켜 MME에게 전송할 수 있다.
또한, S1802 단계에서 단말이 셀이 변경되었음을 지시하는 정보만을 TAU 요청(TAU request) 메시지에 포함시켜 eNB에게 전송할 수 있으며, 이 경우 eNB은 단말이 캠핑하는 셀의 셀 식별자(Cell Identity)(또는 셀이 변경되었음을 지시하는 정보도 함께)를 TAU 요청(TAU request) 메시지에 포함시켜 MME에게 전송할 수 있다.
또한, S1802 단계에서 단말이 셀이 변경되었음을 지시하는 정보만을 TAU 요청(TAU request) 메시지에 포함시켜 eNB에게 전송할 수 있으며, eNB는 단말로부터 수신한 TAU 요청(TAU request) 메시지를 MME에게 전송할 수 있다. 즉, eNB는 MME에게 TAU 요청(TAU request) 메시지를 초기 UE(Initial UE) 메시지에 캡슐레이션(capsulation)하여 전송할 수 있으며, 초기 UE(Initial UE) 메시지에 eNB가 수신한 셀의 셀 식별자(Cell Identity)가 포함되고, TAU 요청(TAU request) 메시지에 셀 식별자(Cell Identity)가 포함되지 않을 수 있다.
MME는 TAU 요청(TAU request) 메시지에 포함된 Cell ID와 해당 단말에 대한 이전 Cell ID를 비교해서 변경된 경우, S-GW, P-GW를 통해 Network으로 송신한다. 이때, PCRF로 단말의 변경된 Cell ID가 최종적으로 송신되는 경우 어플리케이션 서버로도 해당 단말의 셀 변경 여부를 알릴 수 있다.
기존의 TAU 절차를 수행한다(S1804)(3GPP TS 23.401 참조).
즉, MME가 eNB로부터 TAU 요청(TAU Request) 메시지를 수신한 단계 이후 TAU 승인(TAU Accept) 메시지를 단말에게 전송하는 단계 이전에 수행되는 기존의 TAU 절차가 수행될 수 있으나, MME가 SGW에게 전송하는 메시지, SGW가 PGW에게 전송하는 메시지, MME가 HSS에게 전송하는 메시지는 단말의 변경된 Cell ID를 포함할 수 있다.
여기서, 기존의 TAU 절차는 단말이 속한 MME가 변경되는 경우 혹은 S-GW가 변경되는 경우 혹은 두 노드가 모두 변경되는 경우의 TAU 절차를 포함한다. 이에 대하여 보다 상세한 설명은 후술한다.
MME는 TAU 승인(TAU accept) 메시지를 단말로 전송한다(S1805).
이때, MME는 셀 레벨 보고에 대하여 다시 설정할 수 있다. 즉, 셀 레벨 보고 설정을 TAU 승인(TAU accept) 메시지에 포함시켜 eNB에게 전송할 수 있다.
앞서 도 18에서 예시한 절차는 하나의 예시에 불과하며, 셀 단위 보고 방법을 수행하기 위하여 도 18에서 예시되지 않은 단계 또는 개체가 추가될 수 있다.
도 19는 본 발명의 일 실시예에 따른 셀 단위 보고 방법을 예시하는 도면이다.
도 19에서는 SGW가 변경되는 경우, 앞서 도 18에 따른 셀 단위 보고 방법을 보다 구체적으로 예시하는 도면이다.
도 19를 참조하면, 단말(UE)은 어태치 절차 또는 TAU/RAU 절차 등을 통해 셀 단위/레벨 보고 설정(Cell granularity/level reporting configuration)을 수신한 경우, 단말은 IDLE 모드 구간에서 캠핑(camping)하는 셀이 변경되었는지 여부를 감지(detection)하는 동작을 수행한다(S1901).
즉, 셀 단위/레벨 보고 설정을 수신한 단말은 IDLE 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지한다.
이때, 앞서 도 18의 예시에 따른 설명과 같이 셀 레벨 보고 설정(또는 셀 레벨 설정)은 MBMS 수신 여부에 대한 지시 및/또는 타이머 정보 중 하나 이상을 포함할 수 있으며, 동일한 설명이므로 이하 설명을 생략한다.
S1901 단계에서 단말이 캠핑(camping)하는 셀이 변경되었음을 감지하면, 단말은 eNB로 셀 변경 정보를 포함하는 TAU 요청(TAU request) 메시지를 송신한다(S1902).
여기서, 셀 변경 정보는 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함할 수 있다.
이때, 상술한 바와 같이, 셀 레벨 보고 설정이 MBMS 수신 여부에 대한 지시 및/또는 타이머 정보를 포함하는 경우, 단말이 자신이 속한 셀이 변경되었음을 감지하면, 단말은 셀 레벨 보고 설정에 포함된 파라미터(또는 정보)에 기반하여 eNB로 TAU 요청(TAU request) 메시지를 송신할 수 있다.
eNB는 수신한 TAU 요청(TAU request) 메시지에 셀 변경 정보를 포함시켜 MME로 TAU 요청(TAU request) 메시지를 전달한다(S1903).
여기서, 셀 변경 정보는 단말이 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 단말이 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함할 수 있다.
앞서 S1902 단계에서 단말이 셀이 변경되었음을 지시하는 정보 및/또는 캠핑하는 셀의 셀 식별자(Cell Identity)를 TAU 요청(TAU request) 메시지에 포함시켜 eNB에게 전송할 수 있으며, 이 경우 eNB은 동일한 정보를 TAU 요청(TAU request) 메시지에 포함시켜 MME에게 전송할 수 있다.
또한, S1902 단계에서 단말이 셀이 변경되었음을 지시하는 정보만을 TAU 요청(TAU request) 메시지에 포함시켜 eNB에게 전송할 수 있으며, 이 경우 eNB은 단말이 캠핑하는 셀의 셀 식별자(Cell Identity)(또는 셀이 변경되었음을 지시하는 정보도 함께)를 TAU 요청(TAU request) 메시지에 포함시켜 MME에게 전송할 수 있다.
또한, S1902 단계에서 단말이 셀이 변경되었음을 지시하는 정보만을 TAU 요청(TAU request) 메시지에 포함시켜 eNB에게 전송할 수 있으며, eNB는 단말로부터 수신한 TAU 요청(TAU request) 메시지를 MME에게 전송할 수 있다. 즉, eNB는 MME에게 TAU 요청(TAU request) 메시지를 초기 UE(Initial UE) 메시지에 캡슐레이션(capsulation)하여 전송할 수 있으며, 초기 UE(Initial UE) 메시지에 eNB가 수신한 셀의 셀 식별자(Cell Identity)가 포함되고, TAU 요청(TAU request) 메시지에 셀 식별자(Cell Identity)가 포함되지 않을 수 있다.
MME가 변경된 경우, 새로운 MME는 이전 MME(Old MME)에게 사용자 정보를 획득(retrieve)하기 위하여 컨텍스트 요청(Context Request) 메시지를 전송한다(S1904).
MME가 변경된 경우, 이전 MME(Old MME)는 컨텍스트 요청(Context Request) 메시지에 대한 응답으로 컨텍스트 응답(Context Response) 메시지를 새로운 MME에게 전송한다(S1905).
단말과 MME 간, MME와 HSS 간 인증(Authentication)/보안(Security) 절차를 수행한다(S1906).
MME가 변경된 경우, 새로운 MME는 이전 MME(Old MME)에게 컨텍스트 Acknowledge(Context Acknowledge) 메시지를 전송한다(S1907).
이때, MME(MME가 변경된 경우, 새로운 MME)는 SGW가 이전(relocate)되는지 결정한다. 이전 SGW(Old SGW)가 해당 단말에 대하여 더 이상 서비스할 수 없을 때 SGW는 이전(relocate)된다. MME(MME가 변경된 경우, 새로운 MME)는 새로운 SGW가 해당 단말에게 더 오래 서비스할 수 있다고 예상되거나 새로운 SGW가 해당 단말과 보다 더 적합한 PGW로의 경로를 가진다고 예상되거나 또는 새로운 SGW가 PGW와 동일하게 위치(co-locate)하면 SGW를 이전(relocate)할 수 있다. 새로운 SGW의 선택은 3GPP TS 23.401 절을 참조할 수 있다.
MME(MME가 변경된 경우, 새로운 MME)는 새로운 SGW에게 세션 생성 요청(Create Session Request) 메시지를 전송한다(S1908).
이때, 세션 생성 요청(Create Session Request) 메시지는 단말이 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 단말이 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함할 수 있다.
새로운 SGW는 PDN 연결(connection) 별로 PGW에게 베어러 수정 요청(Modify Bearer Request) 메시지를 전송한다(S1909).
이때, 베어러 수정 요청(Modify Bearer Request) 메시지는 단말이 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 단말이 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함할 수 있다.
PGW는 베어러 수정 요청(Modify Bearer Request) 메시지에 대한 응답으로 새로운 SGW에게 베어러 수정 응답(Modify Bearer Response) 메시지를 전송한다(S1910).
여기서, PGW는 PCRF로 단말의 위치 변경 사실을 보고할 수 있다. 상술한 바와 같이, PCRF로 단말의 변경된 Cell ID가 최종적으로 송신되는 경우 어플리케이션 서버로도 해당 단말의 셀 변경 여부를 알릴 수 있다.
새로운 SGW는 세션 생성 요청(Create Session Request) 메시지에 대한 응답으로 MME(MME가 변경된 경우, 새로운 MME)에게 세션 생성 응답(Create Session Response) 메시지를 전송한다(S1911).
MME가 변경된 경우, 새로운 MME는 HSS에게 위치 업데이트 요청(Update Location Request) 메시지를 전송한다(S1912).
이때, 위치 업데이트 요청(Update Location Request) 메시지는 단말의 변경된 셀 식별자(Cell ID) 값을 포함할 수 있다.
MME가 변경된 경우, HSS는 이전 MME(Old MME)에게 위치 취소(Cancel Location) 메시지를 전송한다(S1913).
MME가 변경된 경우, 이전 MME(Old MME)는 위치 취소(Cancel Location) 메시지에 대한 응답으로 HSS에게 위치 취소 Ack(Cancel Location Acknowledge) 메시지를 전송한다(S1914).
MME가 변경된 경우, HSS는 위치 업데이트 요청(Update Location Request) 메시지에 대한 응답으로 새로운 MME에게 위치 업데이트 Ack(Update Location Acknowledge) 메시지를 전송한다(S1915).
MME가 변경된 경우, 이전 MME(Old MME)는 이전 SGW에게 세션 삭제 요청(Delete Session Request) 메시지를 전송한다(S1916).
이때, MME가 변경되지 않은 경우, 이전 SGW에서 베어러 자원의 해제가 트리거된다.
이전 SGW는 세션 삭제 요청(Delete Session Request) 메시지에 대한 응답으로 이전 MME(Old MME)에게 세션 삭제 응답(Delete Session Response) 메시지를 전송한다(S1917).
MME(MME가 변경된 경우, 새로운 MME)는 단말에게 TAU 요청(TAU Request) 메시지에 대한 응답으로 TAU 승인(TAU Accept) 메시지를 전송한다(S1918).
이때, MME는 셀 레벨 보고에 대하여 다시 설정할 수 있다. 즉, 셀 레벨 보고 설정을 TAU 승인(TAU accept) 메시지에 포함시켜 eNB를 통해 단말에게 전송할 수 있다.
한편, MME가 변경되지 않은 경우, 앞서 S1904 단계, S1905 단계, S1907 단계, S1913 단계 내지 S1915 단계는 생략된다.
앞서 도 19에서 예시한 절차는 하나의 예시에 불과하며, 셀 단위 보고 방법을 수행하기 위하여 도 19에서 예시되지 않은 단계 또는 개체가 추가될 수 있다.
도 20은 본 발명의 일 실시예에 따른 셀 단위 보고 방법을 예시하는 도면이다.
도 20에서는 SGW가 변경되지 않는 경우, 앞서 도 18에 따른 셀 단위 보고 방법을 보다 구체적으로 예시하는 도면이다.
도 20을 참조하면, 단말(UE)은 어태치 절차 또는 TAU/RAU 절차 등을 통해 셀 단위/레벨 보고 설정(Cell granularity/level reporting configuration)을 수신한 경우, 단말은 IDLE 모드 구간에서 캠핑(camping)하는 셀이 변경되었는지 여부를 감지(detection)하는 동작을 수행한다(S2001).
즉, 셀 단위/레벨 보고 설정을 수신한 단말은 IDLE 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지한다.
이때, 앞서 도 18의 예시에 따른 설명과 같이 셀 레벨 보고 설정(또는 셀 레벨 설정)은 MBMS 수신 여부에 대한 지시 및/또는 타이머 정보 중 하나 이상을 포함할 수 있으며, 동일한 설명이므로 이하 설명을 생략한다.
S2001 단계에서 단말이 캠핑(camping)하는 셀이 변경되었음을 감지하면, 단말은 eNB로 셀 변경 정보를 포함하는 TAU 요청(TAU request) 메시지를 송신한다(S2002).
여기서, 셀 변경 정보는 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함할 수 있다.
이때, 상술한 바와 같이, 셀 레벨 보고 설정이 MBMS 수신 여부에 대한 지시 및/또는 타이머 정보를 포함하는 경우, 단말이 자신이 속한 셀이 변경되었음을 감지하면, 단말은 셀 레벨 보고 설정에 포함된 파라미터(또는 정보)에 기반하여 eNB로 TAU 요청(TAU request) 메시지를 송신할 수 있다.
eNB는 수신한 TAU 요청(TAU request) 메시지에 셀 변경 정보를 포함시켜 MME로 TAU 요청(TAU request) 메시지를 전달한다(S2003).
여기서, 셀 변경 정보는 단말이 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 단말이 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함할 수 있다.
앞서 S2002 단계에서 단말이 셀이 변경되었음을 지시하는 정보 및/또는 캠핑하는 셀의 셀 식별자(Cell Identity)를 TAU 요청(TAU request) 메시지에 포함시켜 eNB에게 전송할 수 있으며, 이 경우 eNB은 동일한 정보를 TAU 요청(TAU request) 메시지에 포함시켜 MME에게 전송할 수 있다.
또한, S2002 단계에서 단말이 셀이 변경되었음을 지시하는 정보만을 TAU 요청(TAU request) 메시지에 포함시켜 eNB에게 전송할 수 있으며, 이 경우 eNB은 단말이 캠핑하는 셀의 셀 식별자(Cell Identity)(또는 셀이 변경되었음을 지시하는 정보도 함께)를 TAU 요청(TAU request) 메시지에 포함시켜 MME에게 전송할 수 있다.
또한, S2002 단계에서 단말이 셀이 변경되었음을 지시하는 정보만을 TAU 요청(TAU request) 메시지에 포함시켜 eNB에게 전송할 수 있으며, eNB는 단말로부터 수신한 TAU 요청(TAU request) 메시지를 MME에게 전송할 수 있다. 즉, eNB는 MME에게 TAU 요청(TAU request) 메시지를 초기 UE(Initial UE) 메시지에 캡슐레이션(capsulation)하여 전송할 수 있으며, 초기 UE(Initial UE) 메시지에 eNB가 수신한 셀의 셀 식별자(Cell Identity)가 포함되고, TAU 요청(TAU request) 메시지에 셀 식별자(Cell Identity)가 포함되지 않을 수 있다.
MME가 변경된 경우, 새로운 MME는 이전 MME(Old MME)에게 사용자 정보를 획득(retrieve)하기 위하여 컨텍스트 요청(Context Request) 메시지를 전송한다(S2004).
MME가 변경된 경우, 이전 MME(Old MME)는 컨텍스트 요청(Context Request) 메시지에 대한 응답으로 컨텍스트 응답(Context Response) 메시지를 새로운 MME에게 전송한다(S2005).
단말과 MME 간, MME와 HSS 간 인증(Authentication)/보안(Security) 절차를 수행한다(S2006).
MME가 변경된 경우, 새로운 MME는 이전 MME(Old MME)에게 컨텍스트 Acknowledge(Context Acknowledge) 메시지를 전송한다(S2007).
MME가 변경된 경우, 새로운 MME는 PDN 연결(connection) 별로 SGW에게 베어러 수정 요청(Modify Bearer Request) 메시지를 전송한다(S2008).
이때, 베어러 수정 요청(Modify Bearer Request) 메시지는 단말이 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 단말이 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함할 수 있다.
SGW는 PDN 연결(connection) 별로 PGW에게 베어러 수정 요청(Modify Bearer Request) 메시지를 전송한다(S2009).
이때, 베어러 수정 요청(Modify Bearer Request) 메시지는 단말이 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 단말이 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함할 수 있다.
PGW는 베어러 수정 요청(Modify Bearer Request) 메시지에 대한 응답으로 SGW에게 베어러 수정 응답(Modify Bearer Response) 메시지를 전송한다(S2010).
여기서, PGW는 PCRF로 단말의 위치 변경 사실을 보고할 수 있다. 상술한 바와 같이, PCRF로 단말의 변경된 Cell ID가 최종적으로 송신되는 경우 어플리케이션 서버로도 해당 단말의 셀 변경 여부를 알릴 수 있다.
SGW는 베어러 수정 요청(Modify Bearer Request) 메시지에 대한 응답으로 새로운 MME에게 베어러 수정 응답(Modify Bearer Response) 메시지를 전송한다(S2011).
MME가 변경된 경우, 새로운 MME는 HSS에게 위치 업데이트 요청(Update Location Request) 메시지를 전송한다(S2012).
이때, 위치 업데이트 요청(Update Location Request) 메시지는 단말의 변경된 셀 식별자(Cell ID) 값을 포함할 수 있다.
MME가 변경된 경우, HSS는 이전 MME(Old MME)에게 위치 취소(Cancel Location) 메시지를 전송한다(S2013).
MME가 변경된 경우, 이전 MME(Old MME)는 위치 취소(Cancel Location) 메시지에 대한 응답으로 HSS에게 위치 취소 Ack(Cancel Location Acknowledge) 메시지를 전송한다(S2014).
MME가 변경된 경우, HSS는 위치 업데이트 요청(Update Location Request) 메시지에 대한 응답으로 새로운 MME에게 위치 업데이트 Ack(Update Location Acknowledge) 메시지를 전송한다(S2015).
MME(MME가 변경된 경우, 새로운 MME)는 단말에게 TAU 요청(TAU Request) 메시지에 대한 응답으로 TAU 승인(TAU Accept) 메시지를 전송한다(S2016).
이때, MME는 셀 레벨 보고에 대하여 다시 설정할 수 있다. 즉, 셀 레벨 보고 설정을 TAU 승인(TAU accept) 메시지에 포함시켜 eNB를 통해 단말에게 전송할 수 있다.
한편, MME가 변경되지 않은 경우, 앞서 S2004 단계, S2005 단계, S2007 단계, S2008 단계 내지 S2015 단계는 생략된다.
앞서 도 20에서 예시한 절차는 하나의 예시에 불과하며, 셀 단위 보고 방법을 수행하기 위하여 도 20에서 예시되지 않은 단계 또는 개체가 추가될 수 있다.
또한, 본 발명의 다른 일 실시예에 있어서, 단말이 속한 셀이 변경된 경우, 새로운 절차를 이용하여 셀 변경 여부 및 해당 단말이 속한 셀 정보를 네트워크(즉, eNB를 통해 MME에게) 보고(또는 통보)할 수 있다. 이에 대하여 아래 도면을 참조하여 설명한다.
즉, 앞서 TAU 절차를 이용하는 절차 보다 간략한 절차를 통해 IDLE 상태의 단말이 셀 변경 정보를 네트워크로 전송할 수 있다. 이는 기존 TAU 요청(TAU request) 메시지를 이용하고 간략화된 절차를 요구하는 지시 정보를 포함하거나 혹은 새로운 메시지(예를 들어, 셀 변경 요청(Cell change request) 메시지)를 통해서 구현 가능하다. 이에 대하여 아래 도면을 참조하여 설명한다.
도 21은 본 발명의 일 실시예에 따른 셀 단위 보고 방법을 예시하는 도면이다.
도 21을 참조하면, 어태치 절차 또는 TAU/RAU 절차 등을 통해 셀 단위/레벨 보고(Cell granularity/level reporting)가 설정된 경우(즉, 셀 단위/레벨 보고 설정을 수신한 경우), 단말은 IDLE 모드 구간에서 캠핑(camping)하는 셀이 변경되었는지 여부를 감지(detection) 동작을 수행한다(S2101).
즉, 셀 단위/레벨 보고 설정을 수신한 단말은 IDLE 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지한다.
이때, 앞서 도 18의 예시에 따른 설명과 같이 셀 레벨 보고 설정(또는 셀 레벨 설정)은 MBMS 수신 여부에 대한 지시 및/또는 타이머 정보 중 하나 이상을 포함할 수 있으며, 동일한 설명이므로 이하 설명을 생략한다.
S2101 단계에서 단말이 캠핑(camping)하는 셀이 변경되었음을 감지하면, 단말은 eNB로 셀 변경 정보를 포함하는 셀 변경 보고(Cell Change Report) 메시지(또는 셀 변경 정보와 함께 간략화된 TAU 절차임을 지시하는 지시 정보를 포함하는 TAU 요청(TAU request) 메시지)를 송신한다(S2102).
여기서, 셀 변경 정보는 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함할 수 있다.
이때, 상술한 바와 같이, 셀 레벨 보고 설정이 MBMS 수신 여부에 대한 지시 및/또는 타이머 정보를 포함하는 경우, 단말이 자신이 속한 셀이 변경되었음을 감지하면, 단말은 셀 레벨 보고 설정에 포함된 파라미터(또는 정보)에 기반하여 eNB로 셀 변경 보고(Cell Change Report) 메시지(또는 TAU 요청(TAU request) 메시지)를 송신할 수 있다.
eNB는 수신한 셀 변경 보고(Cell Change Report) 메시지(또는 TAU 요청(TAU request) 메시지)에 셀 변경 정보를 포함시켜 MME로 셀 변경 보고(Cell Change Report) 메시지(또는 TAU 요청(TAU request) 메시지)를 전달한다(S2103).
여기서, 셀 변경 정보는 단말이 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 단말이 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함할 수 있다.
앞서 S2102 단계에서 단말이 셀이 변경되었음을 지시하는 정보 및/또는 캠핑하는 셀의 셀 식별자(Cell Identity)를 셀 변경 보고(Cell Change Report) 메시지(또는 TAU 요청(TAU request) 메시지)에 포함시켜 eNB에게 전송할 수 있으며, 이 경우 eNB은 동일한 정보를 셀 변경 보고(Cell Change Report) 메시지(또는 TAU 요청(TAU request) 메시지)에 포함시켜 MME에게 전송할 수 있다.
또한, S2102 단계에서 단말이 셀이 변경되었음을 지시하는 정보만을 셀 변경 보고(Cell Change Report) 메시지(또는 TAU 요청(TAU request) 메시지)에 포함시켜 eNB에게 전송할 수 있으며, 이 경우 eNB은 단말이 캠핑하는 셀의 셀 식별자(Cell Identity)(또는 셀이 변경되었음을 지시하는 정보도 함께)를 셀 변경 보고(Cell Change Report) 메시지(또는 TAU 요청(TAU request) 메시지)에 포함시켜 MME에게 전송할 수 있다.
또한, S2102 단계에서 단말이 셀이 변경되었음을 지시하는 정보만을 셀 변경 보고(Cell Change Report) 메시지(또는 TAU 요청(TAU request) 메시지)에 포함시켜 eNB에게 전송할 수 있으며, eNB는 단말로부터 수신한 셀 변경 보고(Cell Change Report) 메시지(또는 TAU 요청(TAU request) 메시지)를 MME에게 전송할 수 있다. 즉, eNB는 MME에게 셀 변경 보고(Cell Change Report) 메시지(또는 TAU 요청(TAU request) 메시지)를 초기 UE(Initial UE) 메시지에 캡슐레이션(capsulation)하여 전송할 수 있으며, 초기 UE(Initial UE) 메시지에 eNB가 수신한 셀의 셀 식별자(Cell Identity)가 포함되고, 셀 변경 보고(Cell Change Report) 메시지(또는 TAU 요청(TAU request) 메시지)에 셀 식별자(Cell Identity)가 포함되지 않을 수 있다.
MME는 셀 변경 보고(Cell Change Report) 메시지를 수신한 경우, Cell ID의 변경 여부 및 Cell ID 값을 저장 후, 셀 변경 보고 Ack(Cell Change Report Acknowledge) 메시지를 eNB로 전송한다(S2104).
또는, MME가 수신한 TAU 요청(TAU request) 메시지가 셀 단위/레벨 보고를 위한 간략화된 TAU 절차를 위한 메시지임을 인지한 경우, 이후 TAU 동작을 수행하지 않고 Cell ID의 변경 여부 및 Cell ID 값을 저장 후, TAU 승인(TAU Accept) 메시지를 eNB에게 전송할 수 있다.
이때, MME는 셀 레벨 보고에 대하여 다시 설정할 수 있다. 즉, 셀 레벨 보고 설정을 셀 변경 보고 Ack(Cell Change Report Acknowledge) 메시지(또는 TAU 승인(TAU accept) 메시지)에 포함시켜 eNB에게 전송할 수 있다.
또한, MME는 S-GW, P-GW를 통해서 PCRF를 통해 어플리케이션 서버에 해당 단말의 셀 변경 여부와 해당 셀 정보를 전송할 수 있다.
eNB는 MME로부터 수신한 셀 변경 보고 Ack(Cell Change Report Acknowledge) 메시지(또는 TAU 승인(TAU accept) 메시지)를 단말에게 전송한다(S2105).
상술한 바와 같이, 셀 변경 보고 Ack(Cell Change Report Acknowledge) 메시지(또는 TAU 승인(TAU accept) 메시지)는 다시 설정된 셀 레벨 보고 설정을 포함할 수 있다.
또한, 본 발명의 또 다른 실시예에 있어서, 앞서 도 18 내지 도 21에 따른 실시예를 EPC 레벨의 셀 단위/레벨 보고라고 하면, 어플리케이션 레벨에서도 동일한 단말의 셀 단위/레벨 보고 동작이 수행될 수 있다.
먼저, 어플리케이션 서버는 셀 단위/레벨 보고(Cell granularity/level reporting)을 할 것을 단말에 명령(또는 지시)한다(즉, 셀 단위/레벨 보고 설정을 전송).
이때, 앞서 도 18의 예시에 따른 설명과 같이 셀 레벨 보고 설정(또는 셀 레벨 설정)은 MBMS 수신 여부에 대한 지시 및/또는 타이머 정보 중 하나 이상을 포함할 수 있으며, 동일한 설명이므로 이하 설명을 생략한다.
어플리케이션 서버(예를 들어, GCS AS)는 그룹 통신에서 어플리케이션 시그널링을 위해 사용되는 GC1 인터페이스 등을 통해 셀 단위/레벨 보고 설정을 전송할 수 있다.
단말의 어플리케이션 계층은 셀 단위/레벨 보고를 수행하는 경우, 단말의 모뎀에 셀 변경에 대하여 감지할 것을 설정한다. 이에 단말의 모뎀(즉, 액세스 스트라텀(Access Stratum), 넌-액세스 스트라텀(Non Access Stratum))이 셀 변경을 감지한 후, 셀 변경 정보를 어플리케이션 계층으로 송신한다.
즉, 셀 단위/레벨 보고 설정을 수신한 단말은 IDLE 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지한다.
이후, 단말의 어플리케이션 계층은 해당 정보 송신을 위해 데이터 송신을 시작하고, 서비스 요청(Service Request)를 요청 후 어플리케이션 서버와 사용자 평면 연결을 맺어 셀 변경 정보를 전송한다.
여기서, 셀 변경 정보는 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함할 수 있다.
이때, 상술한 바와 같이, 셀 레벨 보고 설정이 MBMS 수신 여부에 대한 지시 및/또는 타이머 정보를 포함하는 경우, 단말이 자신이 속한 셀이 변경되었음을 감지하면, 단말은 셀 레벨 보고 설정에 포함된 파라미터(또는 정보)에 기반하여 어플리케이션 서버에게 셀 변경 정보를 송신할 수 있다.
IDLE 단말을 모니터링 하기 위한 셀 단위/레벨 보고는 MTC 타입의 단말을 서드 파티(3rd party) 어플리케이션이 관리하기 위해 제안된 것으로서, 해당 단말이 통신이 가능한 구간 동안 IDLE 모드일 가능성 크므로 이에 IDLE 상태인 단말의 셀 단위/레벨 보고가 필요하다.
도 22는 본 발명의 일 실시예에 따른 셀 단위 보고 방법을 예시하는 도면이다.
도 22를 참조하면, 단말은 네트워크로부터 셀 단위 보고 설정(cell granularity reporting configuration)을 수신한다(S2201).
이때, 단말은 어태치(Attach) 절차 또는 TAU 절차 내에서 네트워크로부터 셀 단위 보고 설정을 수신할 수 있다.
여기서, 셀 단위 보고 설정은 단말이 셀 단위 보고를 명령(또는 지시)하기 위한 설정을 의미한다.
추가적으로, 셀 레벨 보고 설정(또는 셀 레벨 설정)은 다음 중 하나 이상의 파라미터(또는 정보)를 포함할 수 있다.
- MBMS 수신 여부(즉, MBMS 수신 여부에 대한 지시)
이 파라미터(정보)의 값에 기반하여 셀 레벨 보고를 수행하는 단말(혹은 단말 그룹)이 결정될 수 있다. 즉, MBMS 수신 여부에 대한 지시는 셀 단위/레벨 보고를 수행하는 단말(혹은 단말 그룹)이 결정하기 위하여 MBMS 수신 여부에 대한 조건이 적용되는지 여부를 지시한다.
예를 들어, MBMS 수신 여부에 대한 지시는 활성화('Yes') 또는 비활성화('No')될 수 있다. 예를 들어, MBMS 수신 여부에 대한 지시가 활성화된 경우('yes'), IDLE 구간에서 수신하는 MBMS가 있는 경우에만(즉, MBMS를 수신하는 단말에 한해) 셀 단위/레벨 보고를 수행할 수 있다. 반면, MBMS 수신 여부에 대한 지시가 비활성화된 경우('no'), MBMS를 수신 여부와 무관하게 모든 단말(즉, 셀 단위/레벨 보고 설정을 수신한 모든 단말)은 셀 단위/레벨 보고를 수행할 수 있다.
이때, MBMS를 수신한다는 것은 단말이 MBMS 데이터(또는 신호)를 RF(Radio Frequency) 유닛에서 감지한다는 것을 의미할 수 있다. 즉, 단말이 자신에게 지정된(또는 자신이 속한 그룹에 지정된) TMGI와 무관하게 MBMS 데이터(또는 신호)가 감지되면 단말이 MBMS가 수신된다고 판단할 수 있다.
또한, MBMS를 수신한다는 것은 단말이 자신에게 지정된(또는 자신이 속한 그룹에 지정된) TMGI에 해당하는 MTCH 상에서 MBMS 데이터(또는 신호)를 수신한다는 것을 의미할 수 있다. 즉, 단말은 자신에게 지정된(또는 자신이 속한 그룹에 지정된) TMGI에 해당하는 MBMS 데이터(또는 신호)가 수신되어야 MBMS가 수신된다고 판단할 수 있다.
- 타이머(Timer) 정보(즉, 타이머 값 지시)
이 파라미터(정보)의 값에 기반하여 단말이 셀 단위/레벨 보고를 수행하는 시점 또는 셀 단위/레벨 보고의 수행 여부가 결정될 수 있다.
이때, 타이머는 주기 값에 해당하며, 단말은 캠핑(camping)한 셀이 바뀌어도 타이머 값이 만료되기 전에는 변경된 셀(즉, 현재 속한 셀)에 대한 정보를 네트워크에 보고하지 않을 수 있다. 즉, 타이머 값이 만료되었을 때, 단말은 셀이 변경된 것을 감지(detection)하면, 네트워크로 셀 변경 정보를 전송한다.
여기서, 타이머는 단말이 어태치(Attach) 절차 또는 TAU 절차를 통해 네트워크로부터 타이머 정보를 수신한 시점(혹은 네트워크가 타이머 파라미터를 전송한 시점)으로부터 구동될 수 있다. 단말이 타이머 정보를 수신한 시점으로부터 타이머를 구동함으로써 네트워크가 셀 단위/레벨 보고 설정을 전송한 시점으로부터 즉시 특정 셀 내 속하는 IDLE 상태의 단말의 수를 파악할 수 있다는 장점이 있다.
또는, 타이머는 단말이 CONNECTED 상태에서 IDLE 상태로 천이하는 시점으로부터 구동될 수 있다. 어태치(Attach) 절차를 통해 타이머 정보를 수신한 단말은 CONNECTED 상태에 있을 수 있으며, CONNECTED 상태의 단말은 네트워크로 셀 단위로 보고하게 되므로 CONNECTED 상태의 단말이 불필요하게 타이머를 구동하지 않게 되는 장점이 있다.
또는, 타이머는 단말이 MBMS를 수신하는 시점으로부터 구동될 수 있다. 이는 앞서 MBMS 수신 여부에 대한 지시가 활성화('yes')된 경우, MBMS를 수신하는 단말 이외의 단말이 불필요하게 타이머를 구동시키지 않을 수 있는 장점이 있다.
또는, 타이머는 단말이 캠핑(camping)하는 셀이 변경되었음을 감지하는 시점으로부터 구동될 수 있다. 캠핑(camping)하는 셀이 변경된 시점으로부터 타이머가 구동됨으로써, 네트워크는 일정 시간 동안 특정 셀에 머문 단말의 수를 파악할 수 있으며, 셀 경계에 위치하여 셀 간 핑퐁하는 단말의 수를 배제할 수 있는 장점이 있다.
또는, 타이머 값은 임의로 정해질 수 있다. 특히, 이때 MBMS 수신 여부에 대한 지시 값에 따라 상이한 범위 내에서 타이머 값이 임의로 정해질 수도 있다. 예를 들어, MBMS 수신 여부에 대한 파라미터 값이 'yes'인 경우, 10ms 내지 20ms 범위 내에서 타이머 값이 정해질 수 있으나, 'no'인 경우 30ms 내지 50ms 범위 내에서 타이머 값이 정해질 수 있다.
또한, 이 타이머 값은 네트워크 단에서 MBMS 전달(MBMS deliver)와 유니캐스트 전달(Unicast Delivery)의 전환을 연산하는 주기에 해당할 수 있다.
단말은 아이들(IDLE) 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지(detection)한다(S2202).
즉, 셀 단위/레벨 보고 설정을 수신한 단말은 IDLE 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지한다.
단말이 캠핑하는 셀이 변경되었음을 감지하면, 네트워크로 셀 변경 정보를 전송한다(S2203).
여기서, 셀 변경 정보는 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함할 수 있다.
이때, 상술한 바와 같이, 셀 레벨 보고 설정이 MBMS 수신 여부에 대한 지시 및/또는 타이머 정보를 포함하는 경우, 단말이 자신이 속한 셀이 변경되었음을 감지하면, 단말은 셀 레벨 보고 설정에 포함된 파라미터(또는 정보)에 기반하여 네트워크로 셀 변경 정보를 송신할 수 있다.
도 23은 본 발명의 일 실시예에 따른 셀 단위 보고 방법을 예시하는 도면이다.
도 23을 참조하면, 단말은 네트워크로부터 셀 단위 보고 설정(cell granularity reporting configuration)을 수신한다(S2301).
이때, 단말은 어태치(Attach) 절차 또는 TAU 절차 내에서 네트워크로부터 셀 단위 보고 설정을 수신할 수 있다.
여기서, 셀 단위 보고 설정은 MBMS 수신 여부에 대한 지시를 포함한다. 이 파라미터(정보)의 값에 기반하여 셀 레벨 보고를 수행하는 단말(혹은 단말 그룹)이 결정될 수 있다. 즉, MBMS 수신 여부에 대한 지시는 셀 단위/레벨 보고를 수행하는 단말(혹은 단말 그룹)이 결정하기 위하여 MBMS 수신 여부에 대한 조건이 적용되는지 여부를 지시한다. 예를 들어, MBMS 수신 여부에 대한 지시는 활성화('Yes') 또는 비활성화('No')될 수 있다.
단말은 셀 단위 보고 설정 내 MBMS 수신 여부에 대한 지시가 활성화('yes')되었는지 확인한다(S2302).
S2302 단계에서 확인한 결과, MBMS 수신 여부에 대한 지시가 활성화된 경우(즉, 'yes'), 단말은 MBMS 데이터(또는 신호)가 수신되는지 판단한다(S2303).
여기서, MBMS 데이터(또는 신호)가 수신된다는 것은 단말이 MBMS 데이터(또는 신호)를 RF(Radio Frequency) 유닛에서 감지한다는 것을 의미할 수 있다. 즉, 단말이 자신에게 지정된(또는 자신이 속한 그룹에 지정된) TMGI와 무관하게 MBMS 데이터(또는 신호)가 감지되면 단말이 MBMS가 수신된다고 판단할 수 있다.
또한, MBMS 데이터(또는 신호)가 수신된다는 것은 단말이 자신에게 지정된(또는 자신이 속한 그룹에 지정된) TMGI에 해당하는 MTCH 상에서 MBMS 데이터(또는 신호)를 수신한다는 것을 의미할 수 있다. 즉, 단말은 자신에게 지정된(또는 자신이 속한 그룹에 지정된) TMGI에 해당하는 MBMS 데이터(또는 신호)가 수신되어야 MBMS가 수신된다고 판단할 수 있다.
반면, S2302 단계에서 확인한 결과, MBMS 수신 여부에 대한 지시가 활성화되지 않은 경우(즉, 'no'), 단말은 아이들(IDLE) 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지(detection)한다(S2304).
즉, MBMS 수신 여부에 대한 지시가 비활성화된 경우('no'), MBMS를 수신 여부와 무관하게 모든 단말(즉, 셀 단위/레벨 보고 설정을 수신한 모든 단말)은 셀 단위/레벨 보고를 수행할 수 있다.
S2303 단계에서 판단한 결과, MBMS 데이터(또는 신호)가 수신되는 경우, 단말은 아이들(IDLE) 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지(detection)한다(S2304).
즉, MBMS 수신 여부에 대한 지시가 활성화된 경우('yes'), 단말은 IDLE 구간에서 수신하는 MBMS가 있는 경우에만(즉, MBMS를 수신하는 단말에 한해) 셀 단위/레벨 보고를 수행할 수 있다.
반면, S2303 단계에서 판단한 결과, MBMS 데이터(또는 신호)가 수신되지 않는 경우, S2303 단계로 다시 회귀하여 단말은 MBMS 데이터(또는 신호)가 수신되는지 판단한다.
즉, 단말은 MBMS 데이터(또는 신호)를 수신하지 않으면, 셀 단위(granularity) 보고를 수행하지 않는다.
단말은 캠핑(camping)하는 셀이 변경되었음을 감지하면, 네트워크로 셀 변경 정보를 전송한다(S2305).
도 24는 본 발명의 일 실시예에 따른 셀 단위 보고 방법을 예시하는 도면이다.
도 24를 참조하면, 단말은 네트워크로부터 셀 단위 보고 설정(cell granularity reporting configuration)을 수신한다(S2401).
이때, 단말은 어태치(Attach) 절차 또는 TAU 절차 내에서 네트워크로부터 셀 단위 보고 설정을 수신할 수 있다.
여기서, 셀 단위 보고 설정은 타이머 정보를 포함한다. 이 파라미터(정보)의 값에 기반하여 단말이 셀 단위/레벨 보고를 수행하는 시점 또는 셀 단위/레벨 보고의 수행 여부가 결정될 수 있다.
이때, 이 타이머 값은 네트워크 단에서 MBMS 전달(MBMS deliver)와 유니캐스트 전달(Unicast Delivery)의 전환을 연산하는 주기에 해당할 수 있다.
또한, 타이머 값은 임의로 정해질 수 있다. 특히, 이때 MBMS 수신 여부에 대한 지시 값에 따라 상이한 범위 내에서 타이머 값이 임의로 정해질 수도 있다.
단말은 아이들(IDLE) 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지(detection)한다(S2402).
단말은 타이머가 만료되는지 여부를 판단한다(S2403).
S2403 단계에서 판단한 결과, 타이머가 만료되지 않은 경우 S2403 단계로 다시 회귀하여 단말은 타이머가 만료되는지 여부를 판단한다.
즉, 단말은 캠핑(camping)한 셀이 변경되었음을 감지하더라도 타이머 값이 만료되기 전에는 셀 변경 정보를 네트워크에 보고하지 않는다.
반면, S2403 단계에서 판단한 결과, 타이머 값이 만료된 경우, 단말은 셀이 변경된 것을 감지(detection)하면, 네트워크로 셀 변경 정보를 전송한다(S2404).
여기서, 타이머는 단말이 어태치(Attach) 절차 또는 TAU 절차를 통해 네트워크로부터 타이머 정보를 수신한 시점(혹은 네트워크가 타이머 파라미터를 전송한 시점)으로부터 구동될 수 있다.
또는, 타이머는 단말이 CONNECTED 상태에서 IDLE 상태로 천이하는 시점으로부터 구동될 수 있다.
또는, 타이머는 단말이 MBMS를 수신하는 시점으로부터 구동될 수 있다.
또는, 타이머는 단말이 캠핑(camping)하는 셀이 변경되었음을 감지하는 시점으로부터 구동될 수 있다.
도 25는 본 발명의 일 실시예에 따른 셀 단위 보고 방법을 예시하는 도면이다.
도 25를 참조하면, 단말은 네트워크로부터 셀 단위 보고 설정(cell granularity reporting configuration)을 수신한다(S2501).
이때, 단말은 어태치(Attach) 절차 또는 TAU 절차 내에서 네트워크로부터 셀 단위 보고 설정을 수신할 수 있다.
여기서, 셀 단위 보고 설정은 MBMS 수신 여부에 대한 지시를 포함한다. 이 파라미터(정보)의 값에 기반하여 셀 레벨 보고를 수행하는 단말(혹은 단말 그룹)이 결정될 수 있다. 즉, MBMS 수신 여부에 대한 지시는 셀 단위/레벨 보고를 수행하는 단말(혹은 단말 그룹)이 결정하기 위하여 MBMS 수신 여부에 대한 조건이 적용되는지 여부를 지시한다. 예를 들어, MBMS 수신 여부에 대한 지시는 활성화('Yes') 또는 비활성화('No')될 수 있다.
또한, 셀 단위 보고 설정은 타이머 정보를 포함한다. 이 파라미터(정보)의 값에 기반하여 단말이 셀 단위/레벨 보고를 수행하는 시점 또는 셀 단위/레벨 보고의 수행 여부가 결정될 수 있다.
이때, 이 타이머 값은 네트워크 단에서 MBMS 전달(MBMS deliver)와 유니캐스트 전달(Unicast Delivery)의 전환을 연산하는 주기에 해당할 수 있다.
또한, 타이머 값은 임의로 정해질 수 있다. 특히, 이때 MBMS 수신 여부에 대한 지시 값에 따라 상이한 범위 내에서 타이머 값이 임의로 정해질 수도 있다.
단말은 셀 단위 보고 설정 내 MBMS 수신 여부에 대한 지시가 활성화('yes')되었는지 확인한다(S2502).
S2502 단계에서 확인한 결과, MBMS 수신 여부에 대한 지시가 활성화된 경우(즉, 'yes'), 단말은 MBMS 데이터(또는 신호)가 수신되는지 판단한다(S2503).
여기서, MBMS 데이터(또는 신호)가 수신된다는 것은 단말이 MBMS 데이터(또는 신호)를 RF(Radio Frequency) 유닛에서 감지한다는 것을 의미할 수 있다. 즉, 단말이 자신에게 지정된(또는 자신이 속한 그룹에 지정된) TMGI와 무관하게 MBMS 데이터(또는 신호)가 감지되면 단말이 MBMS가 수신된다고 판단할 수 있다.
또한, MBMS 데이터(또는 신호)가 수신된다는 것은 단말이 자신에게 지정된(또는 자신이 속한 그룹에 지정된) TMGI에 해당하는 MTCH 상에서 MBMS 데이터(또는 신호)를 수신한다는 것을 의미할 수 있다. 즉, 단말은 자신에게 지정된(또는 자신이 속한 그룹에 지정된) TMGI에 해당하는 MBMS 데이터(또는 신호)가 수신되어야 MBMS가 수신된다고 판단할 수 있다.
반면, S2502 단계에서 확인한 결과, MBMS 수신 여부에 대한 지시가 활성화되지 않은 경우(즉, 'no'), 단말은 아이들(IDLE) 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지(detection)한다(S2504).
즉, MBMS 수신 여부에 대한 지시가 비활성화된 경우('no'), MBMS를 수신 여부와 무관하게 모든 단말(즉, 셀 단위/레벨 보고 설정을 수신한 모든 단말)은 셀 단위/레벨 보고를 수행할 수 있다.
S2503 단계에서 판단한 결과, MBMS 데이터(또는 신호)가 수신되는 경우, 단말은 아이들(IDLE) 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지(detection)한다(S2504).
반면, S2503 단계에서 판단한 결과, MBMS 데이터(또는 신호)가 수신되지 않는 경우, S2503 단계로 다시 회귀하여 단말은 MBMS 데이터(또는 신호)가 수신되는지 판단한다.
즉, 단말은 MBMS 데이터(또는 신호)를 수신하지 않으면, 셀 단위(granularity) 보고를 수행하지 않는다.
단말은 타이머가 만료되는지 여부를 판단한다(S2505).
S2505 단계에서 판단한 결과, 타이머가 만료되지 않은 경우 S2505 단계로 다시 회귀하여 단말은 타이머가 만료되는지 여부를 판단한다.
즉, 단말은 캠핑(camping)한 셀이 변경되었음을 감지하더라도 타이머 값이 만료되기 전에는 셀 변경 정보를 네트워크에 보고하지 않는다.
반면, S2505 단계에서 판단한 결과, 타이머 값이 만료된 경우, 단말은 셀이 변경된 것을 감지(detection)하면, 네트워크로 셀 변경 정보를 전송한다(S2506).
여기서, 타이머는 단말이 어태치(Attach) 절차 또는 TAU 절차를 통해 네트워크로부터 타이머 정보를 수신한 시점(혹은 네트워크가 타이머 파라미터를 전송한 시점)으로부터 구동될 수 있다.
또는, 타이머는 단말이 CONNECTED 상태에서 IDLE 상태로 천이하는 시점으로부터 구동될 수 있다.
또는, 타이머는 단말이 MBMS 데이터를 수신하는 시점으로부터 구동될 수 있다.
또는, 타이머는 단말이 캠핑(camping)하는 셀이 변경되었음을 감지하는 시점으로부터 구동될 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 26은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 26을 참조하면, 무선 통신 시스템은 네트워크 노드(2610)와 다수의 단말(UE)(2620)을 포함한다.
네트워크 노드(2610)는 프로세서(processor, 2611), 메모리(memory, 2612) 및 통신 모듈(communication module, 2613)을 포함한다. 프로세서(2611)는 앞서 도 1 내지 도 25에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(2611)에 의해 구현될 수 있다. 메모리(2612)는 프로세서(2611)와 연결되어, 프로세서(2611)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(2613)은 프로세서(2611)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다. 네트워크 노드(2610)의 일례로, 기지국, MME, HSS, SGW, PGW, 어플리케이션 서버 등이 이에 해당될 수 있다. 특히, 네트워크 노드(2610)가 기지국인 경우, 통신 모듈(2613)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(2620)은 프로세서(2621), 메모리(2622) 및 통신 모듈(또는 RF부)(2623)을 포함한다. 프로세서(2621)는 앞서 도 1 내지 도 25에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(2621)에 의해 구현될 수 있다. 메모리(2622)는 프로세서(2621)와 연결되어, 프로세서(2621)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(2623)는 프로세서(2621)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(2612, 2622)는 프로세서(2611, 2621) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2611, 2621)와 연결될 수 있다. 또한, 네트워크 노드(2610)(기지국인 경우) 및/또는 단말(2620)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 셀 단위(granularity) 보고 방안은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.
Claims (12)
- 무선 통신 시스템에서 아이들(IDLE) 상태의 단말이 셀 단위(granularity) 보고를 수행하기 위한 방법에 있어서,네트워크로부터 셀 단위 보고 설정(cell granularity reporting configuration)을 수신하는 단계;아이들(IDLE) 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지(detection)하는 단계; 및상기 캠핑하는 셀이 변경되었음을 감지하면, 상기 네트워크로 셀 변경 정보를 전송하는 단계를 포함하고,상기 셀 단위 보고 설정은 MBMS(Multimedia Broadcast and Multicast Service) 수신 여부에 대한 지시를 포함하고,상기 MBMS 수신 여부에 대한 지시가 활성화된 경우, 상기 단말이 MBMS 데이터를 수신하지 않으면, 상기 셀 단위(granularity) 보고를 수행하지 않는 셀 단위 보고 방법.
- 제1항에 있어서,상기 MBMS 수신 여부에 대한 지시가 활성화된 경우, 상기 단말이 MBMS 데이터를 수신하면, 상기 네트워크로 상기 셀 변경 정보를 전송하는 셀 단위 보고 방법.
- 제1항 또는 제2항에 있어서,상기 MBMS 데이터의 수신 여부는 상기 단말에게 지정된 임시 모바일 그룹 식별자(TMGI: Temporary Mobile Group Identity)에 해당하는 MBMS 데이터가 수신되는지 여부로 판단되는 셀 단위 보고 방법.
- 제1항 또는 제2항에 있어서,상기 MBMS 데이터의 수신 여부는 상기 단말에 의해 MBMS 데이터가 감지되는지 여부로 판단되는 셀 단위 보고 방법.
- 제1항에 있어서,상기 MBMS 수신 여부에 대한 지시가 활성화되지 않은 경우, MBMS 데이터의 수신 여부와 무관하게 상기 네트워크로 상기 셀 변경 정보를 전송하는 셀 단위 보고 방법.
- 제1항에 있어서,상기 셀 단위 보고 설정은 타이머 정보를 포함하고,상기 타이머가 만료되면, 상기 네트워크로 상기 셀 변경 정보를 전송하는 셀 단위 보고 방법.
- 제1항에 있어서,상기 셀 단위 보고 설정은 타이머 정보를 포함하고,상기 타이머가 만료되지 않으면, 상기 캠핑하는 셀이 변경되었음을 감지하더라도 상기 네트워크로 상기 셀 변경 정보를 전송하지 않는 셀 단위 보고 방법.
- 제6항 또는 제7항에 있어서,상기 타이머는 상기 타이머 정보를 수신한 시점, 상기 단말이 연결(CONNECTED) 상태에서 아이들(IDLE) 상태로 천이한 시점, MBMS(Multimedia Broadcast and Multicast Service) 데이터를 수신한 시점 또는 상기 캠핑하는 셀이 변경되었음을 감지한 시점으로부터 구동되는 셀 단위 보고 방법.
- 제1항에 있어서,상기 셀 변경 정보는 트래킹 영역 업데이트(TAU: Tracking Area Update) 요청 메시지 또는 셀 변경 보고(Cell Change Report) 메시지를 통해 전송되는 셀 단위 보고 방법.
- 제1항에 있어서,상기 셀 단위 보고 설정은 어태치(Attach) 절차 또는 트래킹 영역 업데이트(TAU: Tracking Area Update) 절차 중에 수신되는 셀 단위 보고 방법.
- 제1항에 있어서상기 셀 변경 정보는 상기 캠핑하는 셀이 변경되었음을 지시하는 정보 및/또는 상기 캠핑하는 셀의 셀 식별자(Cell Identity)를 포함하는 셀 단위 보고 방법.
- 무선 통신 시스템에서 아이들(IDLE) 상태에서 셀 단위(granularity) 보고를 수행하기 위한 단말에 있어서,무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및상기 RF 유닛을 제어하는 프로세서를 포함하고,상기 프로세서는 네트워크로부터 셀 단위 보고 설정(cell granularity reporting configuration)을 수신하고,아이들(IDLE) 상태에서 캠핑(camping)하는 셀이 변경되었는지 감지(detection)하고,상기 캠핑하는 셀이 변경되었음을 감지하면, 상기 네트워크로 셀 변경 정보를 전송하도록 구성되고,상기 셀 단위 보고 설정은 MBMS(Multimedia Broadcast and Multicast Service) 수신 여부에 대한 지시를 포함하고,상기 MBMS 수신 여부에 대한 지시가 활성화된 경우, 상기 단말이 MBMS 데이터를 수신하지 않으면, 상기 셀 단위(granularity) 보고를 수행하지 않는 단말.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/516,600 US10313909B2 (en) | 2014-10-03 | 2015-10-05 | Method and device for cell granularity reporting in wireless communication system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462059165P | 2014-10-03 | 2014-10-03 | |
US62/059,165 | 2014-10-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016053066A1 true WO2016053066A1 (ko) | 2016-04-07 |
Family
ID=55631007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/010517 WO2016053066A1 (ko) | 2014-10-03 | 2015-10-05 | 무선 통신 시스템에서 셀 단위 보고를 위한 방법 및 이를 위한 장치 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10313909B2 (ko) |
WO (1) | WO2016053066A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111132312A (zh) * | 2018-10-30 | 2020-05-08 | 大唐移动通信设备有限公司 | 一种资源分配方法和装置 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104301931A (zh) * | 2014-09-24 | 2015-01-21 | 中兴通讯股份有限公司 | 拥塞/过载的控制方法,系统,装置和基站 |
US10396945B2 (en) * | 2014-11-07 | 2019-08-27 | Nokia Technologies Oy | Packet number representation for multicast channel block error rate reporting |
WO2016115729A1 (zh) * | 2015-01-23 | 2016-07-28 | 华为技术有限公司 | 一种集群通信方法、装置和系统 |
WO2016163777A1 (ko) * | 2015-04-08 | 2016-10-13 | 삼성전자 주식회사 | 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 |
US10505650B2 (en) * | 2015-04-27 | 2019-12-10 | Kyocera Corporation | Radio terminal and network apparatus |
CN106658424B (zh) * | 2015-11-02 | 2019-01-25 | 中兴通讯股份有限公司 | 车联网v2x业务的发送方法及装置 |
WO2017178944A1 (en) * | 2016-04-11 | 2017-10-19 | Telefonaktiebolaget Lm Ericsson (Publ) | A method and a first node for decoupling sctp and s1ap |
CN105979597B (zh) * | 2016-06-27 | 2020-02-21 | 宇龙计算机通信科技(深圳)有限公司 | 通信资源的分配方法、分配装置、基站和终端 |
US10750432B2 (en) * | 2016-10-25 | 2020-08-18 | Blackberry Limited | Group-addressed transmission of information relating to an access network |
WO2018076280A1 (en) * | 2016-10-28 | 2018-05-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Advanced switching policies for embms mood |
CN108024269B (zh) * | 2016-11-04 | 2021-05-07 | 中国移动通信有限公司研究院 | 一种小区测量配置信息发送、接收方法及装置 |
CN110313202B (zh) * | 2017-02-13 | 2024-03-08 | 瑞典爱立信有限公司 | 控制具有增强型多媒体广播组播服务的用户设备载波聚合配置 |
WO2021069664A1 (en) * | 2019-10-09 | 2021-04-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Mbsfn area inner and outer sai for seamless mobility |
CN116567603A (zh) * | 2022-01-30 | 2023-08-08 | 中国移动通信有限公司研究院 | 终端的移动性管理方法、装置及设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100002294A (ko) * | 2007-04-27 | 2010-01-06 | 인터디지탈 테크날러지 코포레이션 | 멀티미디어 브로드캐스트 멀티캐스트 서비스들을 위한 자원 관리 방법 및 장치 |
KR20100100017A (ko) * | 2009-03-05 | 2010-09-15 | 엘지에릭슨 주식회사 | 아이들 상태에서 측정 보고 메시지 수집 방법 및 그를 위한이동통신 시스템 |
WO2013009127A2 (ko) * | 2011-07-14 | 2013-01-17 | 엘지전자 주식회사 | 무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치 |
WO2013113268A1 (zh) * | 2012-01-30 | 2013-08-08 | 电信科学技术研究院 | 一种mbms接收和能力传输方法及其装置 |
WO2014126421A1 (ko) * | 2013-02-14 | 2014-08-21 | 엘지전자 주식회사 | 무선 통신 시스템에서 mbms 정보 보고 방법 및 이를 지원하는 장치 |
-
2015
- 2015-10-05 WO PCT/KR2015/010517 patent/WO2016053066A1/ko active Application Filing
- 2015-10-05 US US15/516,600 patent/US10313909B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100002294A (ko) * | 2007-04-27 | 2010-01-06 | 인터디지탈 테크날러지 코포레이션 | 멀티미디어 브로드캐스트 멀티캐스트 서비스들을 위한 자원 관리 방법 및 장치 |
KR20100100017A (ko) * | 2009-03-05 | 2010-09-15 | 엘지에릭슨 주식회사 | 아이들 상태에서 측정 보고 메시지 수집 방법 및 그를 위한이동통신 시스템 |
WO2013009127A2 (ko) * | 2011-07-14 | 2013-01-17 | 엘지전자 주식회사 | 무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치 |
WO2013113268A1 (zh) * | 2012-01-30 | 2013-08-08 | 电信科学技术研究院 | 一种mbms接收和能力传输方法及其装置 |
WO2014126421A1 (ko) * | 2013-02-14 | 2014-08-21 | 엘지전자 주식회사 | 무선 통신 시스템에서 mbms 정보 보고 방법 및 이를 지원하는 장치 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111132312A (zh) * | 2018-10-30 | 2020-05-08 | 大唐移动通信设备有限公司 | 一种资源分配方法和装置 |
CN111132312B (zh) * | 2018-10-30 | 2022-05-17 | 大唐移动通信设备有限公司 | 一种资源分配方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
US20180206137A1 (en) | 2018-07-19 |
US10313909B2 (en) | 2019-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016053066A1 (ko) | 무선 통신 시스템에서 셀 단위 보고를 위한 방법 및 이를 위한 장치 | |
WO2018008980A1 (ko) | 무선 통신 시스템에서 사용자가 선호하는 자원 운용 선택 방법 및 이를 위한 장치 | |
WO2018066876A1 (ko) | 무선 통신 시스템에서 v2x 통신 지원 방법 | |
WO2018131984A1 (ko) | 무선 통신 시스템에서 ue 설정 업데이트 방법 및 이를 위한 장치 | |
WO2018110939A1 (ko) | 무선 통신 시스템에서의 트래킹 영역 할당 방법 및 이를 위한 장치 | |
WO2018231028A1 (ko) | 무선 통신 시스템에서 단말의 등록 방법 및 이를 위한 장치 | |
WO2018044144A1 (ko) | 무선 통신 시스템에서 서비스 요청 절차를 수행하기 위한 방법 및 이를 위한 장치 | |
WO2018070689A1 (ko) | 무선 통신 시스템에서의 반영형 서비스 퀄리티 적용 방법 및 이를 위한 장치 | |
WO2018097601A1 (ko) | 무선 통신 시스템에서의 등록 해제 방법 및 이를 위한 장치 | |
WO2018155908A1 (ko) | 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치 | |
WO2018164552A1 (ko) | 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치 | |
WO2016024789A1 (ko) | 무선 통신 시스템에서 단말 접근성 모니터링을 위한 방법 및 이를 위한 장치 | |
WO2018128528A1 (ko) | 무선 통신 시스템에서 pdu 세션 관리 방법 및 이를 위한 장치 | |
WO2018169244A1 (ko) | 무선 통신 시스템에서 이동성 이벤트 통지 방법 및 이를 위한 장치 | |
WO2017164679A1 (ko) | 무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치 | |
WO2016208997A1 (ko) | 무선 통신 시스템에서 단말의 영역 관리 방법 및 이를 위한 장치 | |
WO2018174525A1 (ko) | 무선 통신 시스템에서 계층간 상호작용 방법 및 이를 위한 장치 | |
WO2017200269A1 (ko) | 무선 통신 시스템에서 착신 데이터 제어 방법 및 이를 위한 장치 | |
WO2017003235A1 (ko) | 무선 통신 시스템에서 그룹 메시지를 전송하기 위한 방법 및 이를 위한 장치 | |
WO2018128529A1 (ko) | 무선 통신 시스템에서 네트워크간 상호연동 방법 및 이를 위한 장치 | |
WO2016111591A1 (ko) | 무선 통신 시스템에서 페이징 전송 방법 및 이를 위한 장치 | |
WO2018093168A1 (ko) | 무선 통신 시스템에서의 네트워크 노드 선택 방법 및 이를 위한 장치 | |
WO2017078485A1 (ko) | 무선 통신 시스템에서 서빙 노드 이전 방법 및 이를 위한 장치 | |
WO2016190641A1 (ko) | 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치 | |
WO2017119802A1 (ko) | 무선 통신 시스템에서 nidd(non-ip data delivery) 구성 설정 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15847294 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15516600 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15847294 Country of ref document: EP Kind code of ref document: A1 |