WO2016052307A1 - Siloxane resin composition, transparent cured product using said composition, transparent pixel, microlens, and solid-state imaging element - Google Patents

Siloxane resin composition, transparent cured product using said composition, transparent pixel, microlens, and solid-state imaging element Download PDF

Info

Publication number
WO2016052307A1
WO2016052307A1 PCT/JP2015/076971 JP2015076971W WO2016052307A1 WO 2016052307 A1 WO2016052307 A1 WO 2016052307A1 JP 2015076971 W JP2015076971 W JP 2015076971W WO 2016052307 A1 WO2016052307 A1 WO 2016052307A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
siloxane resin
resin composition
metal
Prior art date
Application number
PCT/JP2015/076971
Other languages
French (fr)
Japanese (ja)
Inventor
祐継 室
高桑 英希
久保田 誠
翔一 中村
貴規 田口
上村 哲也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55630345&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016052307(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2016052307A1 publication Critical patent/WO2016052307A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds

Definitions

  • the present invention relates to a siloxane resin composition, a transparent cured product using the siloxane resin composition, a transparent pixel, a microlens, and a solid-state imaging device.
  • Patent Document 1 proposes a positive photosensitive resin composition in which particles such as titanium oxide are contained in polyimide.
  • An object of the present invention is to provide a siloxane resin composition suitable as a material for transparent members such as lenses and transparent pixels. It can be used not only as positive type but also as thermosetting resin or negative type photosensitive resin, and can also be suitably applied to micro-processing of micro lenses and transparent pixels, and is cured as necessary.
  • An object of the present invention is to provide a siloxane resin composition capable of improving the characteristics of a film.
  • Another object of the present invention is to provide a transparent cured product, a transparent pixel, a microlens, and a solid-state imaging device using the siloxane resin composition.
  • a siloxane resin composition containing metal-containing particles, a siloxane resin, mesityl oxide, and a solvent [2] The siloxane resin composition according to [1], wherein the content of the mesityl oxide is 0.01% by mass or more and 15% by mass or less. [3] The siloxane resin composition according to [1] or [2], wherein the content of the mesityl oxide is 0.09% by mass or less. [4] The siloxane resin composition according to any one of [1] to [3], wherein the siloxane resin is a hydrolysis condensation reaction product of an alkoxysilane compound.
  • a metal selected from Ti, Ta, W, Y, Ba, Hf, Zr, Sn, Nb, V, and Si is contained.
  • Ti and Zr are contained. In the elements constituting the metal-containing particles, the ratio of Ti to Zr, Ti / Zr, in the elemental composition ratio is 1 to 40.
  • Ti and Zr are contained. In the elements constituting the metal-containing particles, the ratio of Ti to Zr, Ti / Zr, in terms of elemental composition ratio is 4 to 12
  • a transparent pixel comprising the transparent cured product according to [13].
  • a microlens comprising the transparent cured product according to [13].
  • a solid-state imaging device comprising the transparent pixel according to [14] and / or the microlens according to [15].
  • the description which does not describe substitution and non-substitution includes what does not have a substituent and what has a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • “radiation” in the present specification means, for example, an emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams, and the like. In the present invention, light means actinic rays or radiation.
  • exposure in this specification is not limited to exposure with an emission line spectrum of a mercury lamp, far ultraviolet rays typified by excimer laser, X-rays, EUV light, etc., but also particles such as electron beams and ion beams. Line drawing is also included in the exposure.
  • (meth) acrylate represents both and / or acrylate and methacrylate
  • (meth) acryl represents both and / or acryl and “(meth) acrylic”
  • Acryloyl represents both and / or acryloyl and methacryloyl.
  • “monomer” and “monomer” are synonymous.
  • the monomer in this specification is distinguished from an oligomer and a polymer, and refers to a compound having a weight average molecular weight of 2,000 or less.
  • the polymerizable compound means a compound having a polymerizable functional group, and may be a monomer or a polymer.
  • the polymerizable functional group refers to a group that participates in a polymerization reaction.
  • the weight average molecular weight and the number average molecular weight can be determined by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Me in the chemical formula represents a methyl group
  • Et represents an ethyl group
  • Pr represents a propyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • the siloxane resin composition of the present invention is suitable as a material for transparent members such as lenses and transparent pixels. Not only the positive type but also a thermosetting resin or a negative photosensitive resin can be used, and it can also be suitably applied to micro-processing of micro lenses and transparent pixels. Furthermore, according to a request
  • the siloxane resin composition of the present invention contains metal-containing particles, a siloxane resin, a solvent, and mesityl oxide.
  • metal-containing particles a siloxane resin
  • solvent a solvent
  • mesityl oxide a siloxane resin
  • the metal-containing particles widely include particles containing a metal as a constituent element.
  • the term “metal” is to be interpreted in the broadest sense, and includes semimetals such as boron, silicon, and arsenic.
  • the metal-containing particles When the metal-containing particles are configured to include oxygen atoms, they may be particularly referred to as metal oxide particles.
  • the metal-containing particles preferably contain a metal selected from Ti, Ta, W, Y, Ba, Hf, Zr, Sn, Nb, V, and Si. Especially, it is preferable that it is the oxide particle of the composite metal containing 2 or more types of them.
  • a combination of Ti and Zr (more Si if necessary), Ti and Sn (more Si if necessary), Ti, Zr and Sn (more Si if necessary) is preferable, and a combination having Ti, Zr, Sn and Si is preferable. Further preferred.
  • constituent material of the metal-containing particles examples include titanium oxide, zirconium oxide, silicon oxide, barium titanate, barium sulfate, barium oxide, hafnium oxide, tantalum oxide, tungsten oxide, and yttrium oxide. These constituent materials may contain two or more kinds, preferably contain at least titanium oxide and zirconium oxide, and more preferably contain titanium oxide, zirconium oxide, tin oxide and silicon oxide. In the case of containing titanium oxide as a constituent material, it is preferable to contain rutile type titanium oxide. Furthermore, it is preferable to contain 80% by mass or more of rutile type titanium oxide with respect to the total amount of titanium oxide, more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The upper limit is 100% by mass.
  • the refractive index of the metal-containing particles is preferably 1.75 to 2.70, more preferably 1.90 to 2.70, from the viewpoint of obtaining a high refractive index.
  • the number average particle size of the metal-containing particles is preferably 500 nm or less, more preferably 200 nm or less, further preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less.
  • the lower limit is preferably 1 nm or more, more preferably 3 nm or more, and particularly preferably 5 nm or more.
  • the metal-containing particles can be pulverized or dispersed using a dispersing machine such as a bead mill by procuring appropriate particle powder.
  • the refractive index of metal-containing particles can be measured by the following method.
  • the content rate of the metal-containing particles is adjusted to 0% by mass, 20% by mass, 30% by mass, 40% by mass, and 50% by mass to prepare a mixed solution sample in which the metal-containing particles and the matrix resin are mixed.
  • the solid content concentration of each mixed solution sample is 10%.
  • Each mixed solution sample was applied on a silicon wafer so as to have a thickness of 0.3 to 1.0 ⁇ m using a spin coater, and then heated and dried on a 200 ° C. hot plate for 5 minutes, A coating film is obtained.
  • the refractive index at a wavelength of 633 nm (25 ° C.) is obtained using an ellipsometer (manufactured by Otsuka Electronics Co., Ltd.), and the value of 100% by mass of the metal-containing particles can be extrapolated.
  • the number average particle size of the metal-containing particles (meaning the average particle size in the primary particle size) can be determined from the photograph obtained by observing the particles with a transmission electron microscope. The projected area of the particles is obtained, the equivalent circle diameter is obtained therefrom, and the number average particle diameter is calculated. In order to determine the average particle size, the particle size was measured for 100 particles, and the average value of 80 particles excluding the maximum 10 particles and the minimum 10 particles among the measured particle sizes was defined as the average particle size. .
  • metal-containing particles examples include T-BTO-020RF (barium titanate; manufactured by Toda Kogyo Co., Ltd.), UEP-100 (zirconium oxide; manufactured by Daiichi Rare Element Chemical Co., Ltd.), or STR-100N.
  • STR-100W, STR-100WLPT titanium oxide; both manufactured by Sakai Chemical Industry Co., Ltd.
  • the metal-containing particles can also be obtained as a dispersion dispersed in a liquid.
  • silicon oxide-titanium oxide particles examples include “OPTRAIK” (registered trademark) TR-502, “OPTRAIK” TR-503, “OPTRAIK” TR-504, “OPTRAIK” TR-513, “OPTRAIK” “TR-520", “Optlake” TR-527, “Optlake” TR-528, “Optlake” TR-529, “Optlake” TR-544 or “Optlake” TR-550 Kogyo Co., Ltd.).
  • the content ratio (element composition) of the metal element in the metal-containing particles includes Ti and Zr, and the ratio is preferably 1 to 40 in terms of the Ti / Zr ratio (ratio of Ti and Zr), more preferably 1 to 30. 3 to 20 is more preferable, 4 to 12 is still more preferable, and 4 to 9 is most preferable.
  • the thermocycle When the thermocycle is repeated, it is considered that the adsorption and separation of the metal-containing particles are repeated, and agglomeration is likely to form defects.
  • the behavior is expected to change depending on the ratio of metal elements.
  • the content ratio (element composition) of the metal element in the metal-containing particles includes Ti and Si, and the ratio is preferably 1 to 40 in terms of Ti / Si ratio (ratio of Ti and Si). Is more preferable, and 1 to 10 is more preferable.
  • the Ti / Sn ratio (ratio of Ti and Sn) is preferably 10 or more, more preferably 13 or more, further preferably 15 or more, further preferably 17 or more, further preferably 19 or more, and particularly preferably 20 or more. preferable. As an upper limit, it is preferable that it is 1000 or less, 500 or less is more preferable, 300 or less is more preferable, 100 or less is more preferable, 60 or less is further more preferable, 50 or less is further more preferable, 40 or less is especially preferable. By making the Ti / Sn ratio within this range, it is preferable that the compatibility with the organic component used together with the metal-containing fine particles can be expected.
  • grain is evaluated by the element composition (atomic%) quantified by the fluorescent X ray analysis (Rigaku's PrimusII type
  • the ratio of a plurality of elements is determined by obtaining each element composition (atomic%) and evaluating the ratio of each elemental composition (atomic%).
  • the elemental composition ratio is synonymous even if it is obtained as a mole ratio.
  • the surface treatment of the metal-containing particles may be in any form, for example, an aspect of treatment with a surfactant described later, an aspect of treatment with a treatment agent containing another metal, or the like.
  • a treatment agent containing another metal for example, the aspect which forms a specific metal containing particle
  • a coating of another type of gold-containing material or the like may be thick and core-shell type metal-containing particles may be used.
  • the ratio of the core to the shell is not particularly limited, but when the total particle is 100 parts by mass, the ratio of the core is preferably 85 parts by mass or more, more preferably 87 parts by mass or more, and particularly preferably 90 parts by mass or more.
  • the upper limit is practically 97 parts by mass or less.
  • the combination of materials constituting the core and the shell is not particularly limited, but the core is composed of particles containing Ti, Sn, etc., and the shell is coated with Zr, coated with Si, or contains Zr and Si. An example comprising a coating is given.
  • the content of the metal-containing particles is preferably 10% by mass or more in the solid component of the composition, more preferably 20% by mass or more, and particularly preferably 30% by mass or more. As an upper limit, it is preferable that it is 90 mass% or less, It is more preferable that it is 80 mass% or less, It is especially preferable that it is 70 mass% or less.
  • a metal containing particle may be used individually by 1 type, or may be used in combination of 2 or more type.
  • a solid component (solid content) means the component which does not lose
  • the siloxane resin is preferably a resin obtained by hydrolytic condensation reaction of an alkoxysilane compound represented by any of the following formulas (1) to (3). Furthermore, it is also preferable that the compound represented by the formula (1) and the compound represented by the formula (2) are both subjected to a hydrolytic condensation reaction. Alternatively, both the compound of formula (1) and the compound of formula (3) may be subjected to a hydrolytic condensation reaction. The compound of formula (2) and the compound of formula (3), or the compound of formula (1) and the formula The compound of (2) and the compound of formula (3) may be subjected to a hydrolytic condensation reaction. In addition, 1 type of compounds of each formula may be used, or 2 or more types may be used.
  • R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group is an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkenyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), alkynyl A group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, particularly preferably 6 to 10 carbon atoms), an aralkyl group (7 carbon atoms).
  • a is 0, 1 or 2.
  • R 3 is a functional group-containing group.
  • the functional group is preferably a group containing a hetero atom (S, O, N, P, Si, etc.) in the structure. Or it is preferable that a polymeric group, an acidic group, or a basic group is included.
  • the carboxyl group, sulfonic acid group, phosphoric acid group, and phosphonic acid group may form a salt, ester, or anhydride thereof.
  • the amino group may also form a salt.
  • the term “acryl” or “acryloyl” broadly refers to not only an acryloyl group but also a derivative structure thereof, and includes a structure having a specific substituent at the ⁇ -position of the acryloyl group. However, in a narrow sense, the case where the ⁇ -position is a hydrogen atom may be referred to as acryl or acryloyl.
  • R 4 and R 5 are each independently a group having the same meaning as R 1 .
  • c is 0 or 1;
  • R 6 and R 7 are each independently a group having the same meaning as R 1 above, or an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkenyloxy group.
  • R 6 and R 7 may be R 3 groups.
  • X is a divalent or higher linking group. When X is a divalent linking group, examples of the linking group L described below are given.
  • X is a trivalent linking group, for example, an isocyanuric skeleton is exemplified.
  • d is an integer of 1 to 4, preferably 1 or 2.
  • R 1 to R 7 may each independently have an arbitrary substituent T. Moreover, you may couple
  • Examples of the bifunctional silane compound include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylvinyldimethoxysilane, methylvinyldiethoxysilane, cyclohexylmethyldimethoxysilane, and the like. Can be mentioned.
  • Examples of the tetrafunctional silane compound include tetramethoxysilane and tetraethoxysilane.
  • Examples of silane compounds represented by formula (2) Examples of the trifunctional silane compound include 3-glycidoxypropyltrimethoxysilane, ⁇ -methacryloyloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ -acryloyloxytrimethoxysilane, and ⁇ -acryloyloxy.
  • bifunctional silane compound examples include ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -acryloyloxypropylmethyldimethoxysilane, ⁇ -acryloyloxypropylmethyldiethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, and ⁇ -methacrylic.
  • Examples of the silane compound represented by the formula (3) include 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (3-aminoethyl) tetramethyldisiloxane, 1,3 -Bis (3-aminopropyl) tetraethyldisiloxane and the like.
  • the siloxane resin can be obtained through the hydrolysis reaction and the condensation reaction using the above-described alkoxysilane compound.
  • a known method can be used as the hydrolysis-condensation reaction, and a catalyst such as an acid or a base may be used as necessary.
  • the catalyst is not particularly limited as long as the pH is changed.
  • examples of the acid (organic acid, inorganic acid) include nitric acid, phosphoric acid, oxalic acid, acetic acid, formic acid, hydrochloric acid and the like.
  • examples of the alkali include ammonia, triethylamine, ethylenediamine, and the like.
  • the amount to be used is not particularly limited as long as the siloxane resin satisfies a predetermined molecular weight.
  • a solvent may be added to the reaction system of the hydrolysis condensation reaction.
  • the solvent is not particularly limited as long as the hydrolysis-condensation reaction can be carried out, and examples of the solvent described below can be given.
  • alcohol compounds such as water, methanol, ethanol, propanol, diacetone alcohol (DAA), tetrahydrofurfuryl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, dipropylene glycol monomethyl
  • ether compounds such as ether (DPM), ester compounds such as methyl acetate, ethyl acetate, butyl acetate, ⁇ -butyrolactone, and propylene glycol monomethyl ether acetate
  • ketone compounds such as acetone, methyl ethyl ketone, and methyl isoamyl ketone.
  • the conditions (temperature, time, amount of solvent) for the hydrolysis-condensation reaction may be appropriately selected according to the type of material used.
  • the weight average molecular weight of the siloxane resin used in this embodiment is preferably 2,000 or more, particularly preferably 3,000 or more.
  • the upper limit is preferably 500,000 or less, more preferably 450,000 or less, and particularly preferably 250,000 or less.
  • the molecular weight of a polymer means a weight average molecular weight unless otherwise specified, and is measured by gel permeation chromatography (GPC) in terms of standard polystyrene.
  • GPC gel permeation chromatography
  • the measurement conditions are based on the following condition 1. However, depending on the polymer type, an appropriate carrier (eluent) and a column suitable for it may be selected and used.
  • an appropriate carrier eluent
  • a column suitable for it may be selected and used.
  • Carrier Tetrahydrofuran Measurement temperature: 40 ° C.
  • Carrier flow rate 1.0 ml / min Sample concentration: 0.1% by mass Detector: RI (refractive index) detector
  • preferred siloxane resins include the following.
  • alkoxysilane having four or more alkoxy groups include tetramethoxysilane, tetraethoxysilane, tetraacetoxysilane, tetraphenoxysilane, tetramethoxydisiloxane, tetraethoxydisiloxane, and bis (triethoxysilylpropyl) tetrasulfide.
  • Tris- (3-trimethoxysilylpropyl) isocyanurate
  • tris- (3-triethoxysilylpropyl) isocyanurate Tris- (3-triethoxysilylpropyl) isocyanurate.
  • a mixture of tetrafunctional silane and 9 functional silane is used in order to allow bulky 9 functional silane and tetrafunctional silane with less steric hindrance to react with each other. Is preferred.
  • the siloxane resin is also preferably a hydrolyzate condensation reaction product with a bifunctional or trifunctional alkoxysilane compound.
  • alkoxysilane compound constituting the siloxane resin include dimethoxydimethylsilane, diethoxydimethylsilane, dimethoxydiphenylsilane, diethoxydiphenylsilane, dihydroxydiphenylsilane, dimethoxy (methyl) (phenyl) silane, and diethoxy (methyl) (phenyl).
  • Silane dimethoxy (methyl) (phenethyl) silane, dicyclopentyldimethoxysilane or cyclohexyldimethoxy (methyl) silane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane Or 3-acryloxypropyltriethoxysilane, 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl anhydride Acid, 3-trimethoxysilylethyl succinic anhydride, 3-trimethoxysilylbutyl succinic anhydride, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3- (3,4-epoxy (Cyclohexyl) propyltrimethoxysilane, 3- (3,4-epoxy (C
  • the content of the siloxane resin is small when the alkali-soluble resin described later is contained, and is preferably increased when the alkali-soluble resin is not contained. That is, when the alkali-soluble resin is contained, the content of the siloxane resin is preferably 1% by mass or more, more preferably 2% by mass or more in the solid component of the composition, and 3% by mass. The above is particularly preferable. As an upper limit, it is preferable that it is 30 mass% or less, and it is more preferable that it is 20 mass% or less.
  • the content of the siloxane resin is preferably 10% by mass or more, more preferably 15% by mass or more, and more preferably 20% by mass or more in the solid component of the composition. It is particularly preferred that As an upper limit, it is preferable that it is 40 mass% or less, and it is more preferable that it is 35 mass% or less.
  • the amount is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and particularly preferably 30 parts by mass or more with respect to 100 parts by mass of the metal-containing particles. As an upper limit, it is preferable that it is 120 mass parts or less, It is more preferable that it is 100 mass parts or less, It is especially preferable that it is 80 mass parts or less.
  • the upper limit is preferably 70 parts by mass or less, more preferably 60 parts by mass or less, and particularly preferably 50 parts by mass or less.
  • siloxane resin basically means a polymer obtained through a hydrolytic condensation reaction of an alkoxysilane compound.
  • a polymer obtained by other reaction and a silane compound itself as a raw material are also included.
  • the siloxane resin is preferably a hydrolytic condensation reaction product of a silane compound.
  • the hydrolysis condensation reaction of the silane compound may be performed in the presence of metal-containing particles.
  • a particle-resin matrix in which the silane compound reacts with the metal-containing particles on the surface thereof, or a core-shell structure in which the core is the metal-containing particles and the shell is the silane compound may be formed.
  • the siloxane resin composition of the present invention contains mesityl oxide as an essential component.
  • the concentration of mesityl oxide in the siloxane resin composition is preferably 0.01% by mass or more, and more preferably 0.02% by mass or more. As an upper limit, it is preferable that it is 15 mass% or less, It is more preferable that it is 12 mass% or less, It is more preferable that it is 10 mass% or less, It is further more preferable that it is 8 mass% or less, 4 mass% More preferably, it is more preferably 1% by mass or less, further preferably 0.1% by mass or less, and particularly preferably 0.09% by mass or less.
  • the mesityl oxide is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and particularly preferably 5 parts by mass or more.
  • Mesityl oxide is a compound represented by the following formula.
  • mesityl oxide is an impurity that affects the optical properties on one side, it is preferably suppressed to a small amount.
  • the present invention is characterized in that the mesityl oxide is included even in a trace amount.
  • the reason why a specific effect is obtained by adding mesityl oxide is not clear, but it is presumed to be due to the interaction with the metal-containing particles described above. The action appears particularly prominently as an effect on the thermocycle characteristics (see Examples below).
  • the siloxane resin composition of the present invention contains a solvent.
  • the solvent used in the hydrolysis condensation reaction of the silane compound may be used as it is as the solvent of the composition, or the following solvent may be used in addition to or in place of the solvent.
  • the solvent include water, aliphatic compounds, halogenated hydrocarbon compounds, alcohol compounds, ether compounds, ester compounds, ketone compounds, nitrile compounds, amide compounds, sulfoxide compounds, and aromatic compounds. These solvents may be used as a mixture. Examples of each are listed below.
  • Ketone compounds Acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone, cyclopentanone, etc.
  • Nitrile compounds Acetonitrile, etc.
  • Amide compounds N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N-methylformamide, acetamide N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide, etc.
  • ⁇ Sulphoxide compound Dimethylsulfoxy Etc.
  • Aromatic compounds as benzene, toluene, etc.
  • an alcohol compound, an ester compound, or an ether compound is preferable from the viewpoint of uniformly dissolving each component of the composition and expressing the above-described action by the addition of mesityl oxide.
  • a solvent an alcohol compound, an ester compound, or an ether compound is preferable from the viewpoint of uniformly dissolving each component of the composition and expressing the above-described action by the addition of mesityl oxide.
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, diacetone alcohol, ethylene glycol mononormal butyl ether, 2-ethoxyethyl acetate, 1-methoxypropyl-2-acetate, 3-methoxy-3-methylbutanol, 3-methoxy -3-Methylbutanol acetate, 3-methoxybutyl acetate, 1,3-butylene glycol diacetate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, e
  • the amount of the solvent used is not particularly limited, but in the case of a coating solution, the solid component is preferably 5% by mass or more, more preferably 10% by mass or more, It is particularly preferable that the content be 15% by mass or more.
  • the upper limit is preferably 40% by mass or less, more preferably 35% by mass or less, and particularly preferably 30% by mass or less.
  • the solvent may be used alone or in combination of two or more.
  • About the siloxane resin composition of this invention it is preferable to mix 2 or more types of solvents, For example, the combination of alcohol compound (DAA etc.) and ester compound (PEGMEA etc.) is mentioned.
  • the mixing ratio is not particularly limited, but the alcohol compound (DAA or the like) is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and particularly preferably 30 parts by mass or more with respect to 100 parts by mass of the ester compound (PEGMEA or the like). preferable. As an upper limit, 100 mass parts or less are preferable, 90 mass parts or less are more preferable, and 80 mass parts or less are especially preferable. Mixing the above two solvents within this range is preferable because a cosolvent effect is obtained in combination with the addition of mesityl oxide.
  • a ultraviolet absorber for the siloxane resin composition of this invention.
  • a benzotriazole compound for the siloxane resin composition of this invention.
  • a benzotriazole compound for the siloxane resin composition of this invention.
  • a benzotriazole compound for the siloxane resin composition of this invention.
  • a benzotriazole compound for the siloxane resin composition of this invention.
  • a benzophenone compound preferably used as the ultraviolet absorber.
  • a triazine compound is preferably used as the ultraviolet absorber.
  • examples of the benzotriazole compounds include 2- (2H benzotriazol-2-yl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-tert-pentylphenol, and 2- (2H benzotriazole).
  • the siloxane resin composition of the present invention may contain a polymerization initiator.
  • the polymerization initiator may be either a thermal polymerization initiator or a photopolymerization initiator, but a photopolymerization initiator is preferred.
  • aminoacetophenone initiators described in JP-A-10-291969 and acylphosphine oxide initiators described in Japanese Patent No. 4225898 examples include aminoacetophenone initiators described in JP-A-10-291969 and acylphosphine oxide initiators described in Japanese Patent No. 4225898.
  • examples of the hydroxyacetophenone-based initiator include IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, IRGACURE-127 (trade names: all manufactured by BASF).
  • aminoacetophenone initiators IRGACURE-907, IRGACURE-369, IRGACURE-379 (trade names: all manufactured by BASF) and the like can be used.
  • a compound described in JP-A-2009-191179 in which an absorption wavelength is matched with a long wave light source such as 365 nm or 405 nm can also be used.
  • acylphosphine initiators IRGACURE-819, Darocur 4265, DAROCUR-TPO (trade names: all manufactured by BASF) can be used.
  • the azo compound include 2,2-azobisisobutyronitrile (AIBN), 3-carboxypropionitrile, azobismaleonitrile, dimethyl-2,2′-azobis (2-methylpropionate) [V -601] (manufactured by Wako).
  • an oxime compound In the present invention, it is preferable to use an oxime compound.
  • the oxime compound effectively functions as a polymerization initiator that initiates and accelerates polymerization in the siloxane resin composition of the present invention.
  • the oxime compound is less colored by post-heating and has good curability.
  • the addition of an oxime compound-based initiator is preferable because the characteristics after the thermocycle due to the action of the mesityl oxide and the metal-containing particles can be further improved.
  • commercially available products such as IRGACURE OXE01 (lower formula) and IRGACURE OXE02 (lower formula) can be suitably used.
  • oxime compound serving as a polymerization initiator those represented by the following formula (OX) are preferred, and those represented by the formula (OX-1) are more preferred.
  • ⁇ A 1 A 1 is preferably —AC or an alkyl group of the formula (OX-1).
  • the alkyl group preferably has 1 to 12 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • the alkyl group may have a substituent T described later. Further, the substituent T may be substituted via a linking group L described later.
  • ⁇ C C represents Ar, —SAr, or —COAr.
  • ⁇ R R represents a monovalent substituent, and is preferably a monovalent nonmetallic atomic group.
  • the monovalent nonmetallic atomic group include an alkyl group (preferably having a carbon number of 1 to 12, more preferably 1 to 6, particularly preferably 1 to 3), and an aryl group (preferably having a carbon number of 6 to 14, more preferably 6-10), an acyl group (preferably 2-12 carbon atoms, more preferably 2-6, particularly preferably 2-3), an aryloyl group (preferably 7-15 carbon atoms, more preferably 7-11).
  • An alkoxycarbonyl group (preferably having a carbon number of 2 to 12, more preferably 2 to 6, particularly preferably 2 to 3), an aryloxycarbonyl group (preferably having a carbon number of 7 to 15, more preferably 7 to 11), a complex A cyclic group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), an alkylthiocarbonyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 to 3 carbon atoms), Over thiocarbonyl group include (preferably having 7 to 15, more preferably from 7 to 11 carbon atoms) and the like. Moreover, these groups may have one or more substituents.
  • substituent T may be further substituted with another substituent T.
  • substituent T a halogen atom, an alkyl group (preferably having a carbon number of 1 to 12, more preferably 1 to 6, particularly preferably 1 to 3), an aryl group (preferably having a carbon number of 6 to 14, more preferably 6).
  • an arylthio group preferably having 6 to 14 carbon atoms, more preferably 6 to 10
  • an aryloyl group preferably having 7 to 15 carbon atoms, more preferably 7 to 11
  • the linking group L is preferably an alkylene group having 1 to 6 carbon atoms, O, S, CO, NR N , or a combination thereof.
  • ⁇ B B represents a monovalent substituent, and is an alkyl group (preferably having 1 to 12 carbon atoms), an aryl group (preferably having 6 to 14 carbon atoms, more preferably having 6 to 10 carbon atoms), a heterocyclic group (preferably having carbon atoms). 2 to 18, more preferably 2 to 12 carbon atoms. These groups may be bonded via a linking group L. In addition, these groups may have one or more substituents T. The substituent T may also be substituted through an arbitrary linking group L.
  • the linking group L is also preferably an alkylene group having 1 to 6 carbon atoms, O, S, CO, NR N , or a combination thereof. Specific examples of B include the following.
  • ⁇ A A is a single bond or a linking group.
  • the linking group include the linking group L or arylene group (preferably having 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms) or a heterocyclic linking group (preferably an aromatic heterocyclic linking group) (preferably Has 2 to 18 carbon atoms, more preferably 2 to 12 carbon atoms.
  • Ar Ar is an aryl group or heteroaryl (aromatic heterocyclic group).
  • the aryl group preferably has 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms, and is preferably a phenyl group or a naphthyl group.
  • the heteroaryl group is preferably a carbazolyl group having preferably 2 to 18 carbon atoms, more preferably 2 to 12 carbon atoms, and optionally having a substituent such as an alkyl group at the N-position.
  • the polymerization initiator preferably has a maximum absorption wavelength in a wavelength region of 350 nm to 500 nm, more preferably has an absorption wavelength in a wavelength region of 360 nm to 480 nm, and particularly has a high absorbance at 365 nm and 455 nm. preferable.
  • the molar extinction coefficient at 365 nm or 405 nm is preferably 1,000 to 300,000, more preferably 2,000 to 300,000, and 5,000 to 200,000. It is particularly preferred.
  • the content of the polymerization initiator (total content in the case of two or more) is preferably 0.1% by mass or more and 10% by mass or less, more preferably 0.3% by mass with respect to the total solid content of the composition. % To 8% by mass, more preferably 0.5% to 5% by mass. Within this range, good curability and transparency can be obtained. Moreover, a polymerization initiator can be used individually or in combination of 2 or more types.
  • the siloxane resin composition of the present invention may contain a polymerizable compound.
  • the polymerizable compound is preferably an addition polymerizable compound having a polymerizable group such as at least one ethylenically unsaturated double bond, an epoxy group, or an oxetanyl group.
  • it is selected from compounds having at least one polymerizable group, more preferably two or more.
  • it may have a chemical form such as a monomer, a prepolymer (that is, a polymer such as a dimer, a trimer, and an oligomer) or a mixture thereof and a copolymer thereof.
  • Examples of monomers and copolymers thereof include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, and amides.
  • unsaturated carboxylic acids for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters thereof and amides.
  • an ester of an unsaturated carboxylic acid and an aliphatic polyhydric alcohol compound, or an amide of an unsaturated carboxylic acid and an aliphatic polyvalent amine compound is used.
  • an addition reaction product of an unsaturated carboxylic acid ester or unsaturated carboxylic acid amide having a nucleophilic substituent such as a hydroxyl group, an amino group or a mercapto group with a monofunctional or polyfunctional isocyanate or epoxy, and A dehydration condensation reaction product with a monofunctional or polyfunctional carboxylic acid is also preferably used.
  • a substitution reaction product of an unsaturated carboxylic acid ester or unsaturated carboxylic acid amide having a leaving group such as a halogen group or a tosyloxy group and a monofunctional or polyfunctional alcohol, amine or thiol is also suitable. It is.
  • the compounds described in paragraph numbers 0095 to 0108 of JP-A-2009-288705 can be preferably used in the present invention.
  • the polymerizable compound is preferably further represented by the following formulas (MO-1) to (MO-6).
  • n 0 to 14, respectively, and m is 1 to 8, respectively.
  • a plurality of R, T and Z present in one molecule may be the same or different.
  • T is an oxyalkylene group
  • the terminal on the carbon atom side is bonded to R.
  • At least one of R is a polymerizable group.
  • n is preferably 0 to 5, and more preferably 1 to 3.
  • m is preferably 1 to 5, and more preferably 1 to 3.
  • dipentaerythritol triacrylate (as a commercially available product, KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (as a commercially available product, KAYARAD D-320; Nippon Kayaku) as the polymerizable compound, etc.
  • Dipentaerythritol penta (meth) acrylate (commercially available) KAYARAD D-310 (commercially available from Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (commercially available KAYARAD DPHA; Nippon Kayaku Co., Ltd.) And a structure in which these (meth) acryloyl groups are mediated by ethylene glycol and propylene glycol residues, diglycerin EO (ethylene oxide) -modified (meth) acrylate (commercially available product is M-460; Made sub-synthesis) is preferable. These oligomer types can also be used.
  • polymerizable compound a compound represented by the following formula (i) or (ii) can also be used.
  • E represents — ((CH 2 ) y CH 2 O) — or — ((CH 2 ) y CH (CH 3 ) O) —, and — ((CH 2 ) y CH 2 O)-is preferred.
  • Each y represents an integer of 1 to 10, preferably an integer of 1 to 5, and more preferably an integer of 1 to 3.
  • X represents a hydrogen atom, an acryloyl group, a methacryloyl group, or a carboxyl group, respectively.
  • the total number of acryloyl groups and methacryloyl groups is preferably 3 or 4, more preferably 4.
  • the total number of acryloyl groups and methacryloyl groups is 5 or 6, with 6 being preferred.
  • m represents an integer of 0 to 10 and is preferably an integer of 1 to 5.
  • n represents an integer of 0 to 10, and an integer of 1 to 5 is preferable.
  • the ethylenic compound may have an unreacted carboxyl group as in the case of a mixture, and this can be used as it is.
  • an acidic group may be introduced by reacting a hydroxyl group of the ethylenic compound with a non-aromatic carboxylic acid anhydride.
  • non-aromatic carboxylic acid anhydride examples include tetrahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, hexahydrophthalic anhydride, alkylated hexahydrophthalic anhydride, succinic anhydride, anhydrous Maleic acid is mentioned.
  • the molecular weight of the polymerizable compound is not particularly limited, but is preferably 300 or more and 1500 or less, and more preferably 400 or more and 700 or less.
  • the content of the polymerizable compound with respect to the total solid content in the composition is preferably in the range of 1% by mass to 50% by mass, more preferably in the range of 3% by mass to 40% by mass, The range of 5% by mass to 30% by mass is more preferable. Within this range, the curability is good and preferable without excessively reducing the refractive index and transparency.
  • a polymeric compound may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the siloxane resin composition of the present invention may contain an alkali-soluble resin.
  • the alkali-soluble resin is a linear organic polymer, and promotes at least one alkali-solubility in a molecule (preferably a molecule having an acrylic copolymer or a styrene copolymer as a main chain). It can be suitably selected from alkali-soluble resins having a group. From the viewpoint of heat resistance, polyhydroxystyrene resins, polysiloxane resins, acrylic resins, acrylamide resins, and acrylic / acrylamide copolymer resins are preferred.
  • acrylic resins acrylamide resins, and acrylic / acrylamide copolymer resins are preferred.
  • examples of the group that promotes alkali solubility include a carboxyl group, a phosphoric acid group, a sulfonic acid group, and a phenolic hydroxyl group. Those which are soluble in a solvent and can be developed with a weak alkaline aqueous solution are preferred, and (meth) acrylic acid is particularly preferred.
  • These acidic groups may be only one type or two or more types.
  • a polymer having a carboxylic acid in the side chain is preferable, such as a methacrylic acid copolymer, an acrylic acid copolymer, an itaconic acid copolymer, and a crotonic acid copolymer.
  • a copolymer of (meth) acrylic acid and another monomer copolymerizable therewith is suitable as the alkali-soluble resin.
  • examples of other monomers copolymerizable with (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds.
  • alkyl (meth) acrylate and aryl (meth) acrylate examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and (iso) pentyl (Meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) ) Acrylate, naphthyl (meth) acrylate, cyclohexyl (meth) acrylate, and other vinyl compounds include styrene, ⁇ -methylstyrene, vinyltoluene, glycid
  • the other monomer copolymerizable with (meth) acrylic acid is preferably a repeating unit represented by the following formula (A1).
  • R 11 represents a hydrogen atom or a methyl group.
  • R 12 represents an alkylene group having 2 or 3 carbon atoms, and among them, 2 carbon atoms are preferable.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • n1 represents an integer of 1 to 15, and preferably 1 to 12.
  • the repeating unit represented by the above formula (A1) has good adsorption and / or orientation on the particle surface due to the effect of ⁇ electrons of the benzene ring present in the side chain. In particular, when this side chain portion has an ethylene oxide or propylene oxide structure of paracumylphenol, its steric effect is added, and a better adsorption and / or orientation plane can be formed.
  • R 13 is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms. This is because when R 13 has a large number of carbon atoms, this group becomes an obstacle to suppress the approach between the resins and promote adsorption and / or orientation, but if it is too large, the effect may be hindered. Because.
  • the alkyl group represented by R 13 is preferably an unsubstituted alkyl group or an alkyl group substituted with a phenyl group.
  • An alkali-soluble polyester resin may be used for the siloxane resin composition of the present invention. Although the action mechanism of the effect obtained by containing an alkali-soluble polyester resin is not clear, it is thought that those having an aromatic ring reduce the decomposability of the ester group and enable effective development.
  • a method for synthesizing the alkali-soluble polyester resin a method of undergoing a polyaddition reaction between a polyfunctional epoxy compound and a polycarboxylic acid compound or a polyaddition reaction between a polyol compound and a dianhydride is preferable.
  • a polyol compound what was obtained by reaction of a polyfunctional epoxy compound and a radically polymerizable group containing monobasic acid compound is preferable.
  • Examples of the catalyst used in the polyaddition reaction and the addition reaction include ammonium catalysts such as tetrabutylammonium acetate; amino catalysts such as 2,4,6-tris (dimethylaminomethyl) phenol or dimethylbenzylamine; triphenylphosphine And a phosphorus catalyst such as acetylacetonate chromium or chromium chloride.
  • ammonium catalysts such as tetrabutylammonium acetate
  • amino catalysts such as 2,4,6-tris (dimethylaminomethyl) phenol or dimethylbenzylamine
  • triphenylphosphine triphenylphosphine
  • a phosphorus catalyst such as acetylacetonate chromium or chromium chloride.
  • the alkali-soluble resin is preferably soluble in a tetramethylammonium hydroxide (TMAH) aqueous solution at a concentration of 0.1% by mass or more at 23 ° C. Furthermore, it is preferable that it is soluble in 1% by mass or more of TMAH aqueous solution, and further it is soluble in 2% or more of TMAH aqueous solution.
  • TMAH tetramethylammonium hydroxide
  • the acid value of the alkali-soluble resin is preferably 30 to 200 mgKOH / g, more preferably 50 to 150 mgKOH / g, still more preferably 70 to 120 mgKOH / g. By setting it as such a range, the image development residue of an unexposed part can be reduced effectively.
  • the weight average molecular weight (Mw) of the alkali-soluble resin is preferably 2,000 to 50,000, more preferably 5,000 to 30,000, and particularly preferably 7,000 to 20,000.
  • the content of the alkali-soluble resin is preferably 10 to 50% by mass, more preferably 15 to 40% by mass, and particularly preferably 20 to 35% by mass with respect to the total solid content of the composition.
  • An alkali-soluble resin may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the siloxane resin composition of the present invention may contain a polymerization inhibitor.
  • Polymerization inhibitors include phenolic hydroxyl group-containing compounds, N-oxide compounds, piperidine 1-oxyl free radical compounds, pyrrolidine 1-oxyl free radical compounds, N-nitrosophenylhydroxylamines, diazonium compounds, and cations Examples include dyes, sulfide group-containing compounds, nitro group-containing compounds, transition metal compounds such as FeCl 3 and CuCl 2 .
  • the description of JP 2010-106268 A paragraphs 0260 to 0280 (corresponding to [0284] to [0296] of the corresponding US Patent Application Publication No. 2011/0124824) can be referred to. The contents of which are incorporated herein by reference.
  • a preferable addition amount of the polymerization inhibitor is preferably 0.01 parts by mass or more and 10 parts by mass or less, and more preferably 0.01 parts by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the polymerization initiator. It is most preferable that it exists in the range of 0.05 mass part or more and 5 mass parts or less.
  • a polymerization inhibitor may be used individually by 1 type, or may be used in combination of 2 or more type.
  • ⁇ Dispersant> As the dispersant, a polymer compound represented by the general formula (1) of claim 1 (corresponding claim 1 of US2010 / 0233595) of JP-A-2007-277514 is preferable.
  • the description of JP 2007-277514 A (corresponding US 2010/0233595) can be referred to, and the contents thereof are incorporated in the present specification.
  • the polymer compound represented by the general formula (1) is not particularly limited, but can be synthesized according to the synthesis methods described in paragraphs 0114 to 0140 and 0266 to 0348 of JP-A-2007-277514.
  • the content of the dispersing agent is preferably 10 to 1000 parts by mass, more preferably 30 to 1000 parts by mass, and further preferably 50 to 800 parts by mass with respect to 100 parts by mass of the metal-containing particles.
  • the total solid content of the composition is preferably 10 to 30% by mass.
  • the siloxane resin composition of the present invention may contain a surfactant.
  • the surfactant include silicone surfactants, silicon surfactants such as organopolysiloxanes, fluorine surfactants, polyoxyethylene lauryl ether, polyoxyethylene oleyl ether, and polyoxyethylene octylphenyl ether.
  • Nonionic surfactants such as polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate or polyethylene glycol distearate, polyalkylene oxide surfactants, poly (meth) acrylate surfactants, acrylic or methacrylic surfactants
  • a surfactant made of a polymer is exemplified.
  • Examples of commercially available surfactants include “Megafac” (registered trademark) F142D, F172, F173, F183, F445, F470, F475 or F477 (all manufactured by Dainippon Ink & Chemicals, Inc.) or NBX- 15 or FTX-218 (both manufactured by Neos Co., Ltd.) and other fluorine-based surfactants, BYK-333, BYK-301, BYK-331, BYK-345 or BYK-307 (all of which are Big Chemie Japan Co., Ltd.) And the like.
  • surfactant is not specifically limited, 1 mass% or more is preferable in a solid component of a composition, 1.5 mass% or more is more preferable, and 5 mass% or more is especially preferable. Although an upper limit is not specifically limited, 30 mass% or less is preferable and 15 mass% or less is more preferable.
  • Surfactant may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the siloxane resin composition of the present invention may contain other additives such as a dissolution inhibitor, a stabilizer, or an antifoaming agent, if necessary.
  • an alkaline solution is preferably used.
  • the concentration of the alkaline compound is preferably 0.001 to 10% by mass, and more preferably 0.01 to 5% by mass.
  • Alkaline compounds include, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxy , Tetrabutylammonium hydroxy, benzyltrimethylammonium hydroxide, choline, pyrrole, piperidine, 1,8-diazabicyclo [5.4.0] -7-undecene and the like.
  • an organic alkali is preferable.
  • a washing treatment with water is generally performed after development.
  • quaternary ammonium salts are preferable, and tetramethylammonium hydroxide (TMAH) or choline is more preferable.
  • TMAH tetramethylammonium hydroxide
  • One developer may be used alone, or two or more developers may be used in combination.
  • alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc., but the alkyl
  • Aryloxy groups such as phenoxy, 1-naphthylo Si, 3-methylphenoxy, 4-methoxyphenoxy, etc.
  • alkoxycarbonyl groups preferably alkoxycarbonyl groups having 2 to 20 carbon atoms, such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.
  • aryloxycarbonyl groups preferably Is an aryloxycarbonyl group having 6 to 26 carbon atoms, such as phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-methylphenoxycarbonyl, 4-methoxyphenoxycarbonyl, etc., an amino group (preferably having 0 to 20 carbon atoms)
  • alkylamino group, arylamino group for example, amino, N, N-dimethylamino, N, N-diethylamino, N-ethylamino, anilino, etc.
  • sulfamoyl group preferably having 0 to 20
  • Phosphinyl groups such as —P (R P ) 2 ), (meth) acryloyl groups, (meth) acryloyloxy groups, (meth) acryloylimimino groups ((meth) acrylamido groups), hydroxyl groups, thiol groups, carboxyl groups , Phosphoric acid group, phosphonic acid group, sulfonic acid group, cyano group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom) Is mentioned.
  • each of the groups listed as the substituent T may be further substituted with the substituent T described above.
  • the salt may be formed.
  • a compound or a substituent / linking group includes an alkyl group / alkylene group, an alkenyl group / alkenylene group, an alkynyl group / alkynylene group, etc., these may be cyclic or linear, and may be linear or branched These may be substituted as described above or may be unsubstituted.
  • Each substituent defined in the present specification may be substituted through the following linking group L within the scope of the effects of the present invention, or the linking group L may be present in the structure thereof.
  • the alkyl group / alkylene group, alkenyl group / alkenylene group and the like may further have the following hetero-linking group interposed in the structure.
  • the linking group L includes a hydrocarbon linking group [an alkylene group having 1 to 10 carbon atoms (more preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), an alkenylene group having 2 to 10 carbon atoms (more preferably carbon atoms).
  • the said hydrocarbon coupling group may form the double bond and the triple bond suitably, and may connect.
  • the ring to be formed is preferably a 5-membered ring or a 6-membered ring.
  • a nitrogen-containing five-membered ring is preferable, and examples of the compound forming the ring include pyrrole, imidazole, pyrazole, indazole, indole, benzimidazole, pyrrolidine, imidazolidine, pyrazolidine, indoline, carbazole, or these And derivatives thereof.
  • 6-membered ring examples include piperidine, morpholine, piperazine, and derivatives thereof. Moreover, when an aryl group, a heterocyclic group, etc. are included, they may be monocyclic or condensed and may be similarly substituted or unsubstituted.
  • RN is a hydrogen atom or a substituent. Examples of the substituent include an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), and an alkenyl group (preferably having 2 to 24 carbon atoms and 2 carbon atoms).
  • To 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is particularly preferable, and an alkynyl group (2 to 24 carbon atoms is preferable, 2 to 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is Particularly preferred), an aralkyl group (preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, 6 to 14 carbon atoms). 10 is particularly preferred).
  • RP is a hydrogen atom, a hydroxyl group, or a substituent.
  • substituents examples include an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), and an alkenyl group (preferably having 2 to 24 carbon atoms and 2 carbon atoms).
  • To 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is particularly preferable, and an alkynyl group (2 to 24 carbon atoms is preferable, 2 to 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is Particularly preferred), an aralkyl group (preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, 6 to 14 carbon atoms).
  • an alkoxy group preferably having 1 to 24 carbon atoms, more preferably 1 to 12, more preferably 1 to 6 and particularly preferably 1 to 3
  • an alkenyloxy group having carbon number
  • More preferably 2 to 12, more preferably 2 to 6, particularly preferably 2 to 3, and an alkynyloxy group preferably having 2 to 24 carbon atoms, more preferably 2 to 12 and more preferably 2 to 6.
  • More preferably, 2 to 3 are particularly preferred
  • an aralkyloxy group preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms
  • an aryloxy group preferably 6 to 22 carbon atoms, 6 to 14 are more preferable, and 6 to 10 are particularly preferable.
  • the number of atoms constituting the linking group L is preferably 1 to 36, more preferably 1 to 24, still more preferably 1 to 12, and particularly preferably 1 to 6.
  • the number of linking atoms in the linking group is preferably 10 or less, and more preferably 8 or less.
  • the lower limit is 1 or more.
  • the number of connected atoms refers to the minimum number of atoms that are located in a path connecting predetermined structural portions and are involved in the connection. For example, in the case of —CH 2 —C ( ⁇ O) —O—, the number of atoms constituting the linking group is 6, but the number of linking atoms is 3. Specific examples of combinations of linking groups include the following.
  • x is an integer of 1 or more, preferably 1 to 500, 1 to 100 is more preferable.
  • Lr is preferably an alkylene group, an alkenylene group or an alkynylene group.
  • the carbon number of Lr is preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 3.
  • a plurality of Lr, R N , R P , x, etc. need not be the same.
  • the direction of the linking group is not limited by the above description, and may be understood as appropriate according to a predetermined chemical formula.
  • ⁇ Formation of transparent cured product> An example is given and demonstrated about the formation method of transparent hardened
  • the siloxane resin composition When the siloxane resin composition is used as a coating solution, it can be applied on a base substrate by a known method such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating or slit coating. . Then, it can pre-bake with heating apparatuses, such as a hot plate or oven, and a film
  • pre-exposure baking may be performed by heating the film at 150 to 450 ° C. for about 1 hour using a heating device such as a hot plate or an oven. In the present invention, it is particularly preferable to use i-line.
  • the unexposed portion is dissolved by development, and a negative pattern can be obtained.
  • a developing method a method of immersing in a developing solution for 5 seconds to 10 minutes by a method such as shower, dipping or paddle is preferable. Examples of the developer include those exemplified above.
  • the film is preferably rinsed with water. Subsequently, dry baking may be performed at 50 to 150 ° C. Thereafter, the film is thermally cured at 120 to 280 ° C. for about 1 hour using a heating device such as a hot plate or an oven to obtain a cured product (film).
  • Transparent pixels and the like incorporated in the solid-state imaging device can be formed on the substrate in such a procedure.
  • the thickness of the resulting cured product (film) is preferably 0.1 to 10 ⁇ m.
  • the leakage current is preferably 10 ⁇ 6 A / cm 2 or less, and the relative dielectric constant is preferably 6.0 or more.
  • the refractive index of the cured product (film) of the siloxane resin composition of the present invention is preferably 1.65 or more, more preferably 1.70 or more, and particularly preferably 1.75 or more. Although there is no upper limit in particular, it is practical that it is 2.20 or less. Unless otherwise specified, the refractive index is based on the conditions measured in Examples described later.
  • the cured film of the siloxane resin composition of the present invention preferably has high transparency.
  • the visible light transmittance is preferably 90% or more, more preferably 93% or more, and particularly preferably 95% or more. There is no particular upper limit, but it is practical that it is 99% or less. Unless otherwise specified, the visible light transmittance is based on the conditions measured in the examples described later.
  • the cured film obtained by curing the siloxane resin composition of the present invention can be particularly suitably used as a microlens or a transparent pixel of a solid-state imaging device.
  • ⁇ Method for forming microlens array> An example of a microlens array forming process will be described as an embodiment of a microlens forming method. If necessary, the surface of an uneven element is filled with a transparent resin spin coat and planarized. A lens material is uniformly applied to the flattened surface. A resist is uniformly applied on the lens material. The stepper device irradiates ultraviolet rays using the reticle as a mask to expose the space between the lenses. A pattern is formed by disassembling and removing the portion exposed to the developer. A hemispherical pattern is obtained by heating. At this time, the resist melts into a liquid phase, becomes a hemispherical state, and then changes to a solid phase.
  • the lens material layer is etched by dry etching. In this way, a lens array in which hemispherical lenses are arranged can be formed.
  • the lens array forming step there is a method in which the use of the resist is omitted and the lens material is patterned by exposure. In this embodiment, the patterned lens material is melted as it is to obtain a hemispherical lens.
  • a solid-state imaging device includes a transparent pixel and / or a microlens made of a cured product of the siloxane resin composition of the present invention.
  • a lens unit is provided on the semiconductor light receiving unit, and the lens array member and the color filter are incorporated so as to be adjacent to each other.
  • the light receiving element receives light passing through the transparent resin film, the lens, and the color filter in this order, and functions as an image sensor.
  • the transparent resin film functions as an antireflection film, improves the light collection efficiency of the lens, and the light efficiently collected by the lens is detected by the light receiving element via the color filter. These function over the whole element which detects the light corresponding to RGB.
  • the cured product of the siloxane resin composition of the present invention can be suitably used as a transparent pixel interposed in the lens or RGB pixel array.
  • Examples of solid-state imaging devices to which a lens array is applied include those described in Japanese Patent Application Laid-Open No. 2007-119744. Specifically, a transfer electrode is provided between a CCD region and a photoelectric conversion unit formed on the surface of the semiconductor substrate, and a light shielding film is formed thereon via an interlayer film. On the light shielding film, an interlayer insulating film made of BPSG (Boro-Phospho-Silicate Glass), a passivation film, a transparent planarizing film having a low refractive index made of acrylic resin, and the like are laminated. G. B. Are combined to form a color filter. Further, a large number of microlenses are arranged so as to be positioned above the photoelectric conversion portion which is a light receiving region via a protective film.
  • BPSG Bo-Phospho-Silicate Glass
  • Example 1 and Comparative Example 1> (Preparation of fine particle water dispersion sol (E-1)) A white slurry liquid having a pH of 9.5 was prepared by mixing 7.60 kg of an aqueous titanium tetrachloride solution containing 7.75% by mass of titanium tetrachloride on a TiO 2 basis and 2.91 kg of aqueous ammonia containing 15% by mass of ammonia. . Next, this white slurry was filtered and then washed with ion-exchanged water to obtain 6.21 kg of a hydrous titanate cake having a solid content of 10% by mass.
  • the obtained mixed aqueous solution was cooled to room temperature and then concentrated with an ultrafiltration membrane device to obtain 7.02 kg of an aqueous dispersion sol (E-1) of fine particles having a solid content of 10% by mass. .
  • the water-dispersed sol (E-1) containing the metal oxide fine particles thus obtained was transparent and milky white.
  • aqueous dispersion sol (E-1) of fine particles obtained as described above was added to 7.02 kg of zirconium oxychloride octahydrochloride having a concentration of 3.6% in terms of ZrO 2 while adjusting the pH to 7.0 with an aqueous potassium hydroxide solution. 1.54 kg of the aqueous solution of the hydrate was gradually added and stirred and mixed at 40 ° C. for 1 hour to obtain an aqueous dispersion of metal oxide fine particles surface-treated with zirconium. At this time, the amount of zirconium was 5.0 mol% in terms of oxide with respect to the metal element contained in the fine particles.
  • 0.20 kg of the sintered powder of the surface-treated metal oxide particles obtained above was dispersed in 0.18 kg of pure water, and 0.13 kg of a 28.6% concentration tartaric acid aqueous solution and a 50% by mass KOH aqueous solution were added thereto. 0.06 kg was added and sufficiently stirred.
  • alumina beads having a particle diameter of 0.1 mm (Daimei Chemical Co., Ltd. high-purity alumina beads) were added, and this was subjected to a wet pulverizer (Batch type tabletop sand mill manufactured by Campe Co., Ltd.) for 180 minutes.
  • the fired powder of the surface-treated metal oxide fine particles was pulverized and dispersed.
  • alumina beads were separated and removed using a stainless steel filter having an opening of 44 ⁇ m, and further 1.38 kg of pure water was added and stirred, and the surface-treated metal oxide having a solid content of 11.0% by mass 1.70 kg of an aqueous dispersion of fine particles was obtained.
  • this aqueous dispersion was washed with ion exchange water using an ultrafiltration membrane, and then 0.09 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization treatment.
  • an anion exchange resin manufactured by Mitsubishi Chemical Corporation: SANUPC
  • the sample was subjected to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) for 1 hour at a speed of 11,000 rpm, and then ion-exchanged water was added to the surface-treated metal oxide having a solid content concentration of 10% by mass. 1.86 kg of water-dispersed sol (EZ-1) of fine particles was prepared. Furthermore, when the content of the metal component contained in the surface-treated metal oxide fine particles was measured, 82.6% by mass of TiO 2 , 10.3% by mass of SnO 2 , ZrO based on the oxide conversion standard of each metal component.
  • thermocycle test was performed on each sample of the siloxane resin composition produced above. The results are shown in Table 3.
  • thermocycle test [TC test]> Each completed sample was stored in a glass sealed container. Then, using a thermocycle tester (manufactured by Hutech, LTS-150-W [trade name]), a thermocycle at 5 ° C. for 4 hours and 25 ° C. for 2 hours was repeated for 90 days to obtain a sample for thermocycle test It was created. A sample for thermo cycle test was applied to high refractive index glass (SFLD-6 [trade name] manufactured by Sumita Optical Glass Co., Ltd.) with a spine coater (1H-360S (Mikasa Co., Ltd.)), and a hot plate And prebaked at 100 ° C. for 2 minutes to obtain a coating film.
  • SFLD-6 high refractive index glass
  • spine coater (1H-360S (Mikasa Co., Ltd.)
  • This coating film was further heated at 200 ° C. for 5 minutes on a hot plate in an air atmosphere to obtain a cured film having a thickness of 0.6 ⁇ m.
  • the 1 mm square of the central portion was magnified 100 times with an optical microscope, the defects were visually observed, and the number in 1 mm square was counted and used as an evaluation standard. The average value of five samples was adopted for evaluation.
  • Ti / Zr is the elemental composition ratio (molar ratio) Siloxane resin: Hydrolysis condensation of MTMS / PTMS MTMS: Methyltrimethoxysilane PTMS: Phenyltrimethoxysilane PGMEA: Propylene glycol monomethyl ether acetate DAA: Diacetone alcohol MeOH 20: Means that 20 parts of methanol was used instead of DAA To do.
  • OXE02 IRGACURE
  • OXE02 IR369 IRGACURE-369
  • Example 2 Preparation of fine particle water dispersion sol (E-21)
  • 7.6 kg of a 1.23% concentration zirconium oxychloride octahydrate aqueous solution was added dropwise over 24 hours to prepare a white slurry having a pH of 8.8.
  • the white slurry was diluted 5 times with ion-exchanged water, filtered, and further washed with ion-exchanged water to obtain 5.2 kg of a hydrous titanium zirconate cake having a solid content of 10% by mass. .
  • 7.10 kg of hydrogen peroxide containing 35% by mass of hydrogen peroxide and 20.0 kg of ion exchange water were added to the cake, and then heated at 80 ° C. for 1 hour with stirring. Further, 28.90 kg of ion-exchanged water was added to obtain 61.39 kg of an aqueous titanium zirconate solution containing 1% by mass of titanium zirconate in terms of TiO 2 .
  • This aqueous solution of titanium zirconate acid was transparent yellowish brown and had a pH of 8.9.
  • 4.00 kg of a cation exchange resin manufactured by Mitsubishi Chemical Corporation
  • 60.78 kg of the above titanium peroxide zirconate aqueous solution was mixed with 60.78 kg of the above titanium peroxide zirconate aqueous solution, and tin containing 1% by mass of potassium stannate in terms of SnO 2 conversion standard was added thereto. 8.01 kg of potassium acid aqueous solution was gradually added with stirring.
  • this mixed aqueous solution was heated in the autoclave at the temperature of 168 degreeC for 20 hours.
  • the obtained mixed aqueous solution was cooled to room temperature and then concentrated with an ultrafiltration membrane device to obtain 6.89 kg of a fine particle water dispersion sol (E-21) having a solid content of 10% by mass. .
  • the water-dispersed sol (E-21) containing the metal oxide fine particles thus obtained was transparent and milky white.
  • the content of the metal component contained in the metal oxide fine particles was measured, it was 90.0% by mass of TiO 2 , 4.2% by mass of SnO 2 , 0.2% by mass of K 2 O, based on the oxide conversion standard of each metal component. 5 wt%, and was ZrO 2 5.3% by mass.
  • alumina beads having a particle diameter of 0.1 mm were added, and this was subjected to a wet pulverizer (Batch type tabletop sand mill manufactured by Campe Co., Ltd.) for 180 minutes.
  • the fired powder of metal oxide fine particles was pulverized and dispersed.
  • the alumina beads were separated and removed using a stainless steel filter having an opening of 44 ⁇ m, and further 1.39 kg of pure water was added and stirred to obtain metal oxide fine particles having a solid content of 11.0% by mass. 1.70 kg of aqueous dispersion was obtained.
  • this aqueous dispersion was washed with ion exchange water using an ultrafiltration membrane, and then 0.09 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization treatment.
  • an anion exchange resin manufactured by Mitsubishi Chemical Corporation: SANUPC
  • the resultant was subjected to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) for 1 hour at a speed of 11,000 rpm, and then ion-exchanged water was added to form metal oxide fine particles having a solid content concentration of 10% by mass. 1.86 kg of an aqueous dispersion sol (EZ-21) was prepared.
  • thermocycle test was conducted in the same manner as in Example 1 for each sample of the siloxane resin composition produced above. The results are shown in Table 6.
  • Example 3> Preparation of PGMEA / DAA dispersions (EP-31) to (EP-35) with different number average particle diameters
  • the average particle size was adjusted by increasing the heat treatment temperature and treatment time of the metal oxide fine particles.
  • the dispersions shown in Table 7 below were prepared by changing the amount of ZrO 2 in accordance with the method for preparing the PEGMEA / DAA dispersion (EP-21).
  • Table 7 shows the number average particle diameter (Mn) of the particles contained in each dispersion. The measuring method is as described above.
  • thermocycle test was conducted in the same manner as in Example 1 for each sample of the siloxane resin composition produced above. The results are shown in Table 9.
  • aqueous dispersion sol (E-41) of core (Ti and Zr) shell (Si) type inorganic oxide fine particles After adding 12.3 kg of pure water to 1.80 kg of water-dispersed sol (E-21) containing metal oxide fine particles, stirring and heating to 90 ° C., 2.39 kg of aqueous silicic acid solution is gradually added thereto. After the addition, this mixed solution was aged for 10 hours under stirring while maintaining the temperature at 90 ° C. At this time, the amount of the composite oxide covering the metal oxide fine particles was 12 parts by mass with respect to 100 parts by mass of the metal oxide fine particles. Next, this mixed solution was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd.) and subjected to heat treatment at a temperature of 165 ° C. for 18 hours.
  • an autoclave manufactured by Pressure Glass Industrial Co., Ltd.
  • the obtained mixed solution was cooled to room temperature and then concentrated with an ultrafiltration device to obtain an aqueous dispersion sol (E-41).
  • This water-dispersed sol (E-41) was subjected to ultrafiltration membrane (SIP-1013, manufactured by Asahi Kasei Co., Ltd.), and the dispersion medium was replaced with water to methanol to obtain a metal oxide fine particle methanol dispersion (EM- 41) 0.31 kg was obtained.
  • SIP-1013 ultrafiltration membrane
  • EM- 41 metal oxide fine particle methanol dispersion
  • core (Ti and Zr) shell (Si) type metal oxide fine particles obtained by coating the surface of the metal oxide fine particles with an oxide containing silicon were obtained.
  • TiO 2 was 86.3% by mass, SnO 2 5.1% by mass, ZrO based on the oxide conversion standard of each metal component. 2 5.1% by mass and K 2 O 0.5% by mass (TiO 2 was 79.87 g / mol, ZrO 2 was 123.2 g / mol, Ti / Zr (molar ratio) in the above formulation) Becomes 26).
  • thermocycle test was conducted in the same manner as in Example 1 for each sample of the siloxane resin composition produced above. The results are shown in Table 12.
  • Example 5 Preparation of PGMEA / DAA dispersions (EP-51) to (EP-55) with different number average particle diameters
  • the average particle size was adjusted by increasing the heat treatment temperature and treatment time of the metal oxide fine particles. Except for adjusting the average particle diameter, a dispersion shown in Table 13 below was prepared in which the amount of ZrO 2 was changed in accordance with the method for preparing a PEGMEA / DAA dispersion (EP-41). Table 13 shows the number average particle diameter (Mn) of the particles contained in each dispersion. The measuring method is as described above.
  • thermocycle test was conducted in the same manner as in Example 1 for each sample of the siloxane resin composition produced above. The results are shown in Table 15.
  • the siloxane resin composition of the present invention achieves excellent thermocycle characteristics and contributes to improving the manufacturing suitability and manufacturing quality.
  • the refractive index was 1.8 and the light transmittance was 90% or more.
  • the optical characteristics of other test films were confirmed in the same manner, and it was confirmed that all of the films of the examples exhibited a desired high refractive index and high light transmittance.
  • the refractive index and light transmittance were measured as follows.
  • the refractive index in wavelength 633nm in 25 degreeC room temperature was measured using the ellipsometer (made by Otsuka Electronics Co., Ltd.).
  • the light transmittance of this coating film was measured from 400 nm to 700 nm.
  • a minimum transmittance value of 400 to 700 nm was adopted. The test was performed 5 times for each sample, and the average value of 3 results excluding the maximum and minimum values was adopted.
  • a resin composition was similarly prepared by replacing methyltrimethoxysilane with ethyltrimethoxysilane. Further, a siloxane resin composition was similarly prepared by replacing part of methyltrimethoxysilane with tetramethoxysilane. When the thermocycle test was implemented using these siloxane resin compositions, it was confirmed that good results were obtained in all cases.

Abstract

Provided is a siloxane resin composition containing a siloxane resin, mesityl oxide, a solvent, and metal-containing particles. Also provided are a transparent cured product, a transparent pixel, a microlens, and a solid-state imaging element that use the siloxane resin composition.

Description

シロキサン樹脂組成物、これを用いた透明硬化物、透明画素、マイクロレンズ、固体撮像素子Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same
 本発明は、シロキサン樹脂組成物、これを用いた透明硬化物、透明画素、マイクロレンズ、固体撮像素子に関する。 The present invention relates to a siloxane resin composition, a transparent cured product using the siloxane resin composition, a transparent pixel, a microlens, and a solid-state imaging device.
 固体撮像素子などに組み込まれる透明材料として、ウエハレベルレンズや、マイクロレンズが挙げられる。あるいは、これらを被覆する反射防止膜、その下部に位置する透明画素、透明絶縁膜、平坦化膜などが挙げられる。それぞれの部材には、その機能に応じた特性が求められる。例えば、上記のマイクロレンズや透明画素には、高い屈折率と、高い光透過率が求められる。また、昨今、益々進む素子の微小化を実現するために、各材料には、微細な加工精度に適合する製造適性が要求される。
 具体的に、透明樹脂に高屈折率粒子を導入する技術が検討されている。特許文献1では、ポリイミドに酸化チタン等の粒子を含有させたポジ型の感光性樹脂組成物を提案している。
As a transparent material incorporated in a solid-state imaging device or the like, a wafer level lens or a microlens can be given. Alternatively, an antireflection film covering these, a transparent pixel located under the film, a transparent insulating film, a planarizing film, and the like can be given. Each member is required to have characteristics corresponding to its function. For example, the above-described microlens and transparent pixel are required to have a high refractive index and a high light transmittance. Also, in recent years, in order to realize ever-increasing miniaturization of elements, each material is required to have manufacturability suitable for fine processing accuracy.
Specifically, a technique for introducing high refractive index particles into a transparent resin has been studied. Patent Document 1 proposes a positive photosensitive resin composition in which particles such as titanium oxide are contained in polyimide.
国際公開第2005/088396号International Publication No. 2005/088396
 本発明は、レンズや透明画素などの透明部材の材料として適合するシロキサン樹脂組成物の提供を目的とする。ポジ型に限らず、加熱硬化型の樹脂や、ネガ型の感光性樹脂としても対応することが可能であり、マイクロレンズや透明画素の微細加工にも好適に対応することができ、必要により硬化膜の特性を良化することができるシロキサン樹脂組成物の提供を目的とする。また、上記シロキサン樹脂組成物を用いた透明硬化物、透明画素、マイクロレンズ、固体撮像素子の提供を目的とする。 An object of the present invention is to provide a siloxane resin composition suitable as a material for transparent members such as lenses and transparent pixels. It can be used not only as positive type but also as thermosetting resin or negative type photosensitive resin, and can also be suitably applied to micro-processing of micro lenses and transparent pixels, and is cured as necessary. An object of the present invention is to provide a siloxane resin composition capable of improving the characteristics of a film. Another object of the present invention is to provide a transparent cured product, a transparent pixel, a microlens, and a solid-state imaging device using the siloxane resin composition.
 上記の課題は下記の手段により解決された。
〔1〕金属含有粒子とシロキサン樹脂とメシチルオキシドと溶媒とを含有するシロキサン樹脂組成物。
〔2〕上記メシチルオキシドの含有率が0.01質量%以上15質量%以下である〔1〕に記載のシロキサン樹脂組成物。
〔3〕上記メシチルオキシドの含有率が0.09質量%以下である〔1〕または〔2〕に記載のシロキサン樹脂組成物。
〔4〕上記シロキサン樹脂がアルコキシシラン化合物の加水分解縮合反応物である〔1〕~〔3〕のいずれか1つに記載のシロキサン樹脂組成物。
〔5〕上記金属含有粒子100質量部に対してシロキサン樹脂を30質量部以上80質量部以下含む〔1〕~〔4〕のいずれか1つに記載のシロキサン樹脂組成物。
〔6〕上記シロキサン樹脂組成物の固形成分中、上記金属含有粒子の含有量が10質量%以上90質量%以下である〔1〕~〔5〕のいずれか1つに記載のシロキサン樹脂組成物。
〔7〕上記金属含有粒子を構成する元素として、Ti、Ta、W、Y、Ba、Hf、Zr、Sn、Nb、V、およびSiから選ばれる金属を含有する〔1〕~〔6〕のいずれか1つに記載のシロキサン樹脂組成物。
〔8〕上記金属含有粒子を構成する元素として、Ti及びZrを含有し、上記金属含有粒子を構成する元素において、元素組成比で、TiとZrとの比率、Ti/Zr、が1~40である〔1〕~〔7〕のいずれか1つに記載のシロキサン樹脂組成物。
〔9〕上記金属含有粒子を構成する元素として、Ti及びZrを含有し、上記金属含有粒子を構成する元素において、元素組成比で、TiとZrとの比率、Ti/Zr、が4~12である〔1〕~〔8〕のいずれか1つに記載のシロキサン樹脂組成物。
〔10〕上記金属含有粒子の数平均粒子径が5nm以上30nm以下である〔1〕~〔9〕のいずれか1つに記載のシロキサン樹脂組成物。
〔11〕上記溶媒がジアセトンアルコールを含む〔1〕~〔10〕のいずれか1つに記載のシロキサン樹脂組成物。
〔12〕上記シロキサン樹脂が上記金属含有粒子の存在下で加水分解縮合反応させて得たものである〔1〕~〔11〕のいずれか1つに記載のシロキサン樹脂組成物。
〔13〕〔1〕~〔12〕のいずれか1つに記載のシロキサン樹脂組成物を硬化させてなる透明硬化物。
〔14〕〔13〕に記載の透明硬化物からなる透明画素。
〔15〕〔13〕に記載の透明硬化物からなるマイクロレンズ。
〔16〕〔14〕に記載の透明画素、及び/または、〔15〕に記載のマイクロレンズを具備する固体撮像素子。
The above problems have been solved by the following means.
[1] A siloxane resin composition containing metal-containing particles, a siloxane resin, mesityl oxide, and a solvent.
[2] The siloxane resin composition according to [1], wherein the content of the mesityl oxide is 0.01% by mass or more and 15% by mass or less.
[3] The siloxane resin composition according to [1] or [2], wherein the content of the mesityl oxide is 0.09% by mass or less.
[4] The siloxane resin composition according to any one of [1] to [3], wherein the siloxane resin is a hydrolysis condensation reaction product of an alkoxysilane compound.
[5] The siloxane resin composition according to any one of [1] to [4], which contains 30 to 80 parts by mass of a siloxane resin with respect to 100 parts by mass of the metal-containing particles.
[6] The siloxane resin composition according to any one of [1] to [5], wherein the content of the metal-containing particles in the solid component of the siloxane resin composition is 10% by mass or more and 90% by mass or less. .
[7] As an element constituting the metal-containing particles, a metal selected from Ti, Ta, W, Y, Ba, Hf, Zr, Sn, Nb, V, and Si is contained. The siloxane resin composition according to any one of the above.
[8] As an element constituting the metal-containing particles, Ti and Zr are contained. In the elements constituting the metal-containing particles, the ratio of Ti to Zr, Ti / Zr, in the elemental composition ratio is 1 to 40. The siloxane resin composition according to any one of [1] to [7].
[9] As an element constituting the metal-containing particles, Ti and Zr are contained. In the elements constituting the metal-containing particles, the ratio of Ti to Zr, Ti / Zr, in terms of elemental composition ratio is 4 to 12 The siloxane resin composition according to any one of [1] to [8].
[10] The siloxane resin composition according to any one of [1] to [9], wherein the metal-containing particles have a number average particle diameter of 5 nm to 30 nm.
[11] The siloxane resin composition according to any one of [1] to [10], wherein the solvent contains diacetone alcohol.
[12] The siloxane resin composition according to any one of [1] to [11], wherein the siloxane resin is obtained by a hydrolytic condensation reaction in the presence of the metal-containing particles.
[13] A transparent cured product obtained by curing the siloxane resin composition according to any one of [1] to [12].
[14] A transparent pixel comprising the transparent cured product according to [13].
[15] A microlens comprising the transparent cured product according to [13].
[16] A solid-state imaging device comprising the transparent pixel according to [14] and / or the microlens according to [15].
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 また、本明細書中における「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等を意味する。また、本発明において光とは、活性光線または放射線を意味する。本明細書中における「露光」とは、特に断らない限り、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、X線、EUV光などによる露光のみならず、電子線、イオンビーム等の粒子線による描画も露光に含める。
 また、本明細書において、“(メタ)アクリレート”はアクリレートおよびメタクリレートの双方、または、いずれかを表し、“(メタ)アクリル”はアクリルおよびメタクリルの双方、または、いずれかを表し、“(メタ)アクリロイル”はアクリロイルおよびメタクリロイルの双方、または、いずれかを表す。
 また、本明細書において、“単量体”と“モノマー”とは同義である。本明細書における単量体は、オリゴマーおよびポリマーと区別され、重量平均分子量が2,000以下の化合物をいう。本明細書において、重合性化合物とは、重合性官能基を有する化合物のことをいい、単量体であっても、ポリマーであってもよい。重合性官能基とは、重合反応に関与する基を言う。
 重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により求めることができる。
 本明細書において、化学式中のMeはメチル基を、Etはエチル基を、Prはプロピル基を、Buはブチル基を、Phはフェニル基をそれぞれ示す。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
In the description of the group (atomic group) in this specification, the description which does not describe substitution and non-substitution includes what does not have a substituent and what has a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
In addition, “radiation” in the present specification means, for example, an emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams, and the like. In the present invention, light means actinic rays or radiation. Unless otherwise specified, “exposure” in this specification is not limited to exposure with an emission line spectrum of a mercury lamp, far ultraviolet rays typified by excimer laser, X-rays, EUV light, etc., but also particles such as electron beams and ion beams. Line drawing is also included in the exposure.
In this specification, “(meth) acrylate” represents both and / or acrylate and methacrylate, “(meth) acryl” represents both and / or acryl and “(meth) acrylic” ) "Acryloyl" represents both and / or acryloyl and methacryloyl.
In the present specification, “monomer” and “monomer” are synonymous. The monomer in this specification is distinguished from an oligomer and a polymer, and refers to a compound having a weight average molecular weight of 2,000 or less. In the present specification, the polymerizable compound means a compound having a polymerizable functional group, and may be a monomer or a polymer. The polymerizable functional group refers to a group that participates in a polymerization reaction.
The weight average molecular weight and the number average molecular weight can be determined by gel permeation chromatography (GPC).
In the present specification, Me in the chemical formula represents a methyl group, Et represents an ethyl group, Pr represents a propyl group, Bu represents a butyl group, and Ph represents a phenyl group.
In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
 本発明のシロキサン樹脂組成物は、レンズや透明画素などの透明部材の材料として適合する。ポジ型に限らず、加熱硬化型の樹脂や、ネガ型の感光性樹脂としても対応することが可能であり、マイクロレンズや透明画素の微細加工にも好適に対応することができる。さらに、要求に応じて、硬化膜の特性(製造時の面状に起因する品質)を良化することができる。また、上記シロキサン樹脂組成物を用いた良質の透明硬化物、透明画素、マイクロレンズ、固体撮像素子を提供することができる。 The siloxane resin composition of the present invention is suitable as a material for transparent members such as lenses and transparent pixels. Not only the positive type but also a thermosetting resin or a negative photosensitive resin can be used, and it can also be suitably applied to micro-processing of micro lenses and transparent pixels. Furthermore, according to a request | requirement, the characteristic (quality resulting from the surface condition at the time of manufacture) of a cured film can be improved. In addition, a high-quality transparent cured product, a transparent pixel, a microlens, and a solid-state imaging device using the siloxane resin composition can be provided.
 本発明のシロキサン樹脂組成物は、金属含有粒子とシロキサン樹脂と溶媒とメシチルオキシドとを含有する。以下、その好ましい実施形態について詳細に説明する。 The siloxane resin composition of the present invention contains metal-containing particles, a siloxane resin, a solvent, and mesityl oxide. Hereinafter, the preferred embodiment will be described in detail.
<金属含有粒子>
 金属含有粒子は、金属を構成元素として含む粒子を広く包含する。ここでは「金属」の語は最も広義に解釈されるべきものであり、ホウ素、ケイ素、ヒ素などの半金属もここに含まれるものとする。金属含有粒子が、酸素原子を含んで構成されているとき、特に金属酸化物粒子と呼ぶことがある。
 本発明において、金属含有粒子は、Ti、Ta、W、Y、Ba、Hf、Zr、Sn、Nb、V、およびSiから選ばれる金属を含有することが好ましい。なかでも、そのうちの2種以上を含む複合金属の酸化物粒子であることが好ましい。例えば、TiとZr(必要によりさらにSi)、TiとSn(必要によりさらにSi)、TiとZrとSn(必要によりさらにSi)の組み合わせが好ましく、TiとZrとSnとSiとを有する組み合わせがさらに好ましい。
<Metal-containing particles>
The metal-containing particles widely include particles containing a metal as a constituent element. Here, the term “metal” is to be interpreted in the broadest sense, and includes semimetals such as boron, silicon, and arsenic. When the metal-containing particles are configured to include oxygen atoms, they may be particularly referred to as metal oxide particles.
In the present invention, the metal-containing particles preferably contain a metal selected from Ti, Ta, W, Y, Ba, Hf, Zr, Sn, Nb, V, and Si. Especially, it is preferable that it is the oxide particle of the composite metal containing 2 or more types of them. For example, a combination of Ti and Zr (more Si if necessary), Ti and Sn (more Si if necessary), Ti, Zr and Sn (more Si if necessary) is preferable, and a combination having Ti, Zr, Sn and Si is preferable. Further preferred.
 金属含有粒子の構成材料としては、例えば、酸化チタン、酸化ジルコニウム、酸化シリコン、チタン酸バリウム、硫酸バリウム、酸化バリウム、酸化ハフニウム、酸化タンタル、酸化タングステン、酸化イットリウムが挙げられる。これらの構成材料は、2種以上を含有していてもよく、酸化チタンおよび酸化ジルコニウムを少なくとも含有することが好ましく、酸化チタンと酸化ジルコニウムと酸化スズと酸化シリコンとを含有することがさらに好ましい。 構成材料として、酸化チタンを含有する場合、ルチル型の酸化チタンを含有することが好ましい。さらに、酸化チタンの全量に対してルチル型の酸化チタンを80質量%以上含有することが好ましく、90質量%以上含有することがより好ましく、95質量%以上含有することが特に好ましい。上限は、100質量%である。 Examples of the constituent material of the metal-containing particles include titanium oxide, zirconium oxide, silicon oxide, barium titanate, barium sulfate, barium oxide, hafnium oxide, tantalum oxide, tungsten oxide, and yttrium oxide. These constituent materials may contain two or more kinds, preferably contain at least titanium oxide and zirconium oxide, and more preferably contain titanium oxide, zirconium oxide, tin oxide and silicon oxide. In the case of containing titanium oxide as a constituent material, it is preferable to contain rutile type titanium oxide. Furthermore, it is preferable to contain 80% by mass or more of rutile type titanium oxide with respect to the total amount of titanium oxide, more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The upper limit is 100% by mass.
 金属含有粒子の屈折率は、高屈折率を得る観点から、1.75~2.70が好ましく、1.90~2.70がより好ましい。
 金属含有粒子の数平均粒子径としては、500nm以下が好ましく、200nm以下がより好ましく、100nm以下がさらに好ましく、50nm以下がより好ましく、30nm以下が特に好ましい。下限値としては、1nm以上が好ましく、3nm以上がより好ましく、5nm以上が特に好ましい。上記数平均粒子径の範囲とすることで、硬化膜の透明度が向上し好ましい。また、硬化膜等の均質性、および必要により絶縁性や耐久性を付与することができ好ましい。金属含有粒子は適当な粒子の粉体を調達し、ビーズミル等の分散機を用いて粉砕又は分散することができる。
The refractive index of the metal-containing particles is preferably 1.75 to 2.70, more preferably 1.90 to 2.70, from the viewpoint of obtaining a high refractive index.
The number average particle size of the metal-containing particles is preferably 500 nm or less, more preferably 200 nm or less, further preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less. The lower limit is preferably 1 nm or more, more preferably 3 nm or more, and particularly preferably 5 nm or more. By making it the range of the said number average particle diameter, the transparency of a cured film improves and it is preferable. Moreover, the homogeneity of a cured film etc., and insulation and durability can be imparted if necessary, which is preferable. The metal-containing particles can be pulverized or dispersed using a dispersing machine such as a bead mill by procuring appropriate particle powder.
~粒子の屈折率の測定~
 金属含有粒子の屈折率は以下の方法で測定することができる。金属含有粒子の含有率を0質量%、20質量%、30質量%、40質量%、50質量%に調製して、金属含有粒子とマトリックス樹脂とを混合した混合溶液サンプルを作製する。各混合溶液サンプルの固形分濃度は10%とする。それぞれの混合溶液サンプルを、シリコンウェハー上に、厚さが0.3~1.0μmとなるように、スピンコーターを用いて塗布し、ついで200℃のホットプレートで5分間、加熱、乾燥させ、コーティング膜を得る。次に例えばエリプソメータ(大塚電子(株)社製)を用いて波長633nm(25℃)での屈折率を求め、金属含有粒子100質量%の値を外挿して求めることができる。
-Measurement of refractive index of particles-
The refractive index of metal-containing particles can be measured by the following method. The content rate of the metal-containing particles is adjusted to 0% by mass, 20% by mass, 30% by mass, 40% by mass, and 50% by mass to prepare a mixed solution sample in which the metal-containing particles and the matrix resin are mixed. The solid content concentration of each mixed solution sample is 10%. Each mixed solution sample was applied on a silicon wafer so as to have a thickness of 0.3 to 1.0 μm using a spin coater, and then heated and dried on a 200 ° C. hot plate for 5 minutes, A coating film is obtained. Next, for example, the refractive index at a wavelength of 633 nm (25 ° C.) is obtained using an ellipsometer (manufactured by Otsuka Electronics Co., Ltd.), and the value of 100% by mass of the metal-containing particles can be extrapolated.
~平均粒子径の測定~
 金属含有粒子の数平均粒子径(一次粒子径における平均粒子径を意味する)は、粒子を透過型電子顕微鏡により観察し、得られた写真から求めることができる。粒子の投影面積を求め、そこから円相当径を求めて、数平均粒子径を算出する。なお、平均粒子径を求めるために100個の粒子について粒子径を測定し、測定した粒子径のうち最大側10個および最小側10個をのぞいた、80個の平均値を平均粒子径とする。
-Measurement of average particle size-
The number average particle size of the metal-containing particles (meaning the average particle size in the primary particle size) can be determined from the photograph obtained by observing the particles with a transmission electron microscope. The projected area of the particles is obtained, the equivalent circle diameter is obtained therefrom, and the number average particle diameter is calculated. In order to determine the average particle size, the particle size was measured for 100 particles, and the average value of 80 particles excluding the maximum 10 particles and the minimum 10 particles among the measured particle sizes was defined as the average particle size. .
 市販の金属含有粒子としては、例えば、T-BTO-020RF(チタン酸バリウム;戸田工業株式会社製)、UEP-100(酸化ジルコニウム;第一稀元素化学工業株式会社製)、又はSTR-100N、STR-100W、STR-100WLPT(酸化チタン;いずれも堺化学工業株式会社製)が挙げられる。
 金属含有粒子は、液中に分散した分散体としても入手することができる。酸化ケイ素-酸化チタン粒子としては、例えば、“オプトレイク”(登録商標)TR-502、“オプトレイク”TR-503、“オプトレイク”TR-504、“オプトレイク”TR-513、“オプトレイク”TR-520、“オプトレイク”TR-527、“オプトレイク”TR-528、“オプトレイク”TR-529、“オプトレイク”TR-544又は“オプトレイク”TR-550(いずれも日揮触媒化成工業(株)製)が挙げられる。酸化ジルコニウム粒子としては、例えば、“バイラール”登録商標Zr-C20(平均粒径=20nm;多木化学(株)製)、ZSL-10A(平均粒径=60-100nm;第一稀元素株式会社製)、“ナノユース”(登録商標)OZ-30M(平均粒径=7nm;日産化学工業(株)製)、SZR-M(堺化学(株)製)又はHXU-120JC(住友大阪セメント(株)製)が挙げられる。
Examples of commercially available metal-containing particles include T-BTO-020RF (barium titanate; manufactured by Toda Kogyo Co., Ltd.), UEP-100 (zirconium oxide; manufactured by Daiichi Rare Element Chemical Co., Ltd.), or STR-100N. STR-100W, STR-100WLPT (titanium oxide; both manufactured by Sakai Chemical Industry Co., Ltd.).
The metal-containing particles can also be obtained as a dispersion dispersed in a liquid. Examples of the silicon oxide-titanium oxide particles include “OPTRAIK” (registered trademark) TR-502, “OPTRAIK” TR-503, “OPTRAIK” TR-504, “OPTRAIK” TR-513, “OPTRAIK” "TR-520", "Optlake" TR-527, "Optlake" TR-528, "Optlake" TR-529, "Optlake" TR-544 or "Optlake" TR-550 Kogyo Co., Ltd.). Zirconium oxide particles include, for example, “Vilar” registered trademark Zr-C20 (average particle size = 20 nm; manufactured by Taki Chemical Co., Ltd.), ZSL-10A (average particle size = 60-100 nm; Daiichi Rare Element Co., Ltd.) ), “Nanouse” (registered trademark) OZ-30M (average particle size = 7 nm; manufactured by Nissan Chemical Industries, Ltd.), SZR-M (manufactured by Sakai Chemical Co., Ltd.) or HXU-120JC (Sumitomo Osaka Cement Co., Ltd.) ))).
 金属含有粒子における金属元素の含有比率(元素組成)としては、Ti及びZrを含有しその割合が、Ti/Zr比(TiとZrとの比率)で1~40が好ましく、1~30がより好ましく、3~20がさらに好ましく、4~12がよりさらに好ましく、4~9が最も好ましい。このような数値範囲を満たす場合には、屈折率を維持しつつ、組成物の保存性を高めることができるため好ましい。特に本発明では、メシチルオキシドと上記特定の比率のTiおよびZrの含有微粒子とを組み合わせることが、サーモサイクル特性を良化させる点で好ましい。その理由は定かではないが、以下のように推定される。サーモサイクルを繰り返すと、金属含有粒子の吸着と分離が繰り返され、凝集を起こして欠陥を形成しやすくなることが考えられる。その挙動は金属元素の比率によって変化することが予想される。このとき、微量のメシチルオキシドを共存させることで、これが金属含有粒子表面に特有の状態で配位するなどして、凝集抑制作用等を発現するものと予想される。
 また、金属含有粒子における金属元素の含有比率(元素組成)としては、Ti及びSiを含有しその割合が、Ti/Si比(TiとSiとの比率)で1~40が好ましく、1~30がより好ましく、1~10がさらに好ましい。
 Ti/Sn比(TiとSnとの比率)は、10以上であることが好ましく、13以上がより好ましく、15以上がさらに好ましく、17以上がさらに好ましく、19以上がさらに好ましく、20以上が特に好ましい。上限としては、1000以下であることが好ましく、500以下がより好ましく、300以下がさらに好ましく、100以下がさらに好ましく、60以下がさらに好ましく、50以下がさらに好ましく、40以下が特に好ましい。Ti/Sn比をこの範囲とすることで、金属含有微粒子と共に使用される有機成分とのなじみが良好となるという作用が期待でき好ましい。
The content ratio (element composition) of the metal element in the metal-containing particles includes Ti and Zr, and the ratio is preferably 1 to 40 in terms of the Ti / Zr ratio (ratio of Ti and Zr), more preferably 1 to 30. 3 to 20 is more preferable, 4 to 12 is still more preferable, and 4 to 9 is most preferable. When satisfying such a numerical range, it is preferable because the storage stability of the composition can be enhanced while maintaining the refractive index. In particular, in the present invention, it is preferable to combine mesityl oxide and fine particles containing Ti and Zr at the specific ratios from the viewpoint of improving the thermocycle characteristics. The reason is not clear, but is estimated as follows. When the thermocycle is repeated, it is considered that the adsorption and separation of the metal-containing particles are repeated, and agglomeration is likely to form defects. The behavior is expected to change depending on the ratio of metal elements. At this time, by coexisting a small amount of mesityl oxide, it is expected that this will coordinate with the surface of the metal-containing particle in a state peculiar, thereby exhibiting an aggregation suppressing action and the like.
Further, the content ratio (element composition) of the metal element in the metal-containing particles includes Ti and Si, and the ratio is preferably 1 to 40 in terms of Ti / Si ratio (ratio of Ti and Si). Is more preferable, and 1 to 10 is more preferable.
The Ti / Sn ratio (ratio of Ti and Sn) is preferably 10 or more, more preferably 13 or more, further preferably 15 or more, further preferably 17 or more, further preferably 19 or more, and particularly preferably 20 or more. preferable. As an upper limit, it is preferable that it is 1000 or less, 500 or less is more preferable, 300 or less is more preferable, 100 or less is more preferable, 60 or less is further more preferable, 50 or less is further more preferable, 40 or less is especially preferable. By making the Ti / Sn ratio within this range, it is preferable that the compatibility with the organic component used together with the metal-containing fine particles can be expected.
~金属元素の含有率の測定~
 なお、金属含有粒子の金属元素の含有率は、蛍光X線分析(リガク製 PrimusII型蛍光X線分析装置)で定量した元素組成(原子%)で評価する。複数の元素の比率は各元素組成(原子%)を求め、それぞれの元素組成(原子%)の比率で評価する。なお、元素組成比は、モル数の比率として求めても同義である。
~ Measurement of metal element content ~
In addition, the content rate of the metal element of a metal containing particle | grain is evaluated by the element composition (atomic%) quantified by the fluorescent X ray analysis (Rigaku's PrimusII type | mold fluorescent X ray analyzer). The ratio of a plurality of elements is determined by obtaining each element composition (atomic%) and evaluating the ratio of each elemental composition (atomic%). The elemental composition ratio is synonymous even if it is obtained as a mole ratio.
 金属含有粒子の表面処理はどのような態様であってもよいが、例えば後述する界面活性剤により処理する態様や、別の金属を含有する処理剤で処理する態様などが挙げられる。例えば、特定の金属含有粒子を形成し、その表面に別種の金属含有物等の被膜を形成する態様が挙げられる。あるいは、別種の金含有物等の被膜を厚みのあるものとし、コアシェル型の金属含有粒子としてもよい。コアとシェルの比率は特に限定されないが、粒子全体を100質量部としたときに、コアの比率は85質量部以上が好ましく、87質量部以上がより好ましく、90質量部以上が特に好ましい。上限は97質量部以下が実際的である。コアとシェルを構成する材料の組合せは特に限定されないが、コアをTi,Sn等を含有する粒子で構成し、シェルをZrを含有する被覆、Siを含有する被覆、あるいはZr及びSiを含有する被覆で構成する例が挙げられる。 The surface treatment of the metal-containing particles may be in any form, for example, an aspect of treatment with a surfactant described later, an aspect of treatment with a treatment agent containing another metal, or the like. For example, the aspect which forms a specific metal containing particle | grain and forms a film, such as another kind of metal containing material, on the surface is mentioned. Alternatively, a coating of another type of gold-containing material or the like may be thick and core-shell type metal-containing particles may be used. The ratio of the core to the shell is not particularly limited, but when the total particle is 100 parts by mass, the ratio of the core is preferably 85 parts by mass or more, more preferably 87 parts by mass or more, and particularly preferably 90 parts by mass or more. The upper limit is practically 97 parts by mass or less. The combination of materials constituting the core and the shell is not particularly limited, but the core is composed of particles containing Ti, Sn, etc., and the shell is coated with Zr, coated with Si, or contains Zr and Si. An example comprising a coating is given.
 金属含有粒子の含有量は、組成物の固形成分中で10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが特に好ましい。上限としては、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることが特に好ましい。
 金属含有粒子は1種を単独で用いても2種以上を組み合わせて用いてもよい。
 なお、本明細書において固形成分(固形分)とは、100℃で乾燥処理を行ったときに、揮発又は蒸発して消失しない成分を言う。典型的には、溶媒や分散媒体以外の成分を指す。
The content of the metal-containing particles is preferably 10% by mass or more in the solid component of the composition, more preferably 20% by mass or more, and particularly preferably 30% by mass or more. As an upper limit, it is preferable that it is 90 mass% or less, It is more preferable that it is 80 mass% or less, It is especially preferable that it is 70 mass% or less.
A metal containing particle may be used individually by 1 type, or may be used in combination of 2 or more type.
In addition, in this specification, a solid component (solid content) means the component which does not lose | disappear by volatilizing or evaporating, when a drying process is performed at 100 degreeC. Typically, it refers to components other than solvents and dispersion media.
<シロキサン樹脂>
 シロキサン樹脂は、下記の式(1)~(3)のいずれかで表されるアルコキシシラン化合物を加水分解縮合反応させた樹脂であることが好ましい。さらに、式(1)で表される化合物と式(2)で表される化合物をともに加水分解縮合反応させたものであることも好ましい。あるいは、式(1)の化合物と式(3)の化合物とをともに加水分解縮合反応させてもよく、式(2)の化合物と式(3)の化合物、あるいは式(1)の化合物と式(2)の化合物と式(3)の化合物とをともに加水分解縮合反応させたものとしてもよい。なお、各式の化合物を1種ずつ用いても、2種以上用いてもよい。
<Siloxane resin>
The siloxane resin is preferably a resin obtained by hydrolytic condensation reaction of an alkoxysilane compound represented by any of the following formulas (1) to (3). Furthermore, it is also preferable that the compound represented by the formula (1) and the compound represented by the formula (2) are both subjected to a hydrolytic condensation reaction. Alternatively, both the compound of formula (1) and the compound of formula (3) may be subjected to a hydrolytic condensation reaction. The compound of formula (2) and the compound of formula (3), or the compound of formula (1) and the formula The compound of (2) and the compound of formula (3) may be subjected to a hydrolytic condensation reaction. In addition, 1 type of compounds of each formula may be used, or 2 or more types may be used.
 
  (RSi(OR4-a (1)
 
 RおよびRはそれぞれ独立に水素原子または炭化水素基を表す。炭化水素基はアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましい)、アルキニル基(炭素数2~12が好ましく、2~6がより好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、アラルキル基(炭素数7~23が好ましく、7~15がより好ましく、7~11が特に好ましい)が好ましく、アルキル基、アリール基、またはアルケニル基がより好ましい。
 aは0、1または2である。

(R 1 ) a Si (OR 2 ) 4-a (1)

R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group. The hydrocarbon group is an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkenyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), alkynyl A group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, particularly preferably 6 to 10 carbon atoms), an aralkyl group (7 carbon atoms). To 23, more preferably 7 to 15, and particularly preferably 7 to 11, and more preferably an alkyl group, an aryl group, or an alkenyl group.
a is 0, 1 or 2.
 
  RSi(R(OR3-c (2)
 
 Rは官能基含有基である。官能基としてはヘテロ原子(S,O,N,P,Si等)を構造内に含む基であることが好ましい。あるいは、重合性基や酸性基、もしくは塩基性基を含むことが好ましい。(メタ)アクリロイルオキシ基、チオール基(スルファニル基)、エポキシ基、オキセタン基、グリシジル基、グリシドキシ基、ヒドロキシル基、フェノール性水酸基、カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基、アミノ基、イソシアネート基、ウレア基、またはこれらの置換基を有する基である。Rが連結基を介してSiに結合するとき、後記連結基Lの例が挙げられ、中でも炭化水素連結基が好ましい。カルボキシル基、スルホン酸基、リン酸基、ホスホン酸基は塩やエステル、その無水物を形成していてもよい。アミノ基も塩を形成していてもよい。なお、本明細書において、「アクリル」ないし「アクリロイル」と称するときには、アクリロイル基のみならずその誘導構造を含むものを広く指し、アクリロイル基のα位に特定の置換基を有する構造を含むものとする。ただし、狭義には、α位が水素原子の場合をアクリルないしアクリロイルと称することがある。α位にメチル基を有するものをメタクリルと呼び、アクリル(α位が水素原子)とメタクリル(α位がメチル基)のいずれかのものを意味して(メタ)クリルまたは(メタ)アクリルなどと称することがある。
 RおよびRはそれぞれ独立に、Rと同義の基である。
 cは0または1である。

R 3 Si (R 4 ) c (OR 5 ) 3-c (2)

R 3 is a functional group-containing group. The functional group is preferably a group containing a hetero atom (S, O, N, P, Si, etc.) in the structure. Or it is preferable that a polymeric group, an acidic group, or a basic group is included. (Meth) acryloyloxy group, thiol group (sulfanyl group), epoxy group, oxetane group, glycidyl group, glycidoxy group, hydroxyl group, phenolic hydroxyl group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group, amino group , An isocyanate group, a urea group, or a group having these substituents. When R 3 is bonded to Si via a linking group, examples of the linking group L described below are given, and among these, a hydrocarbon linking group is preferable. The carboxyl group, sulfonic acid group, phosphoric acid group, and phosphonic acid group may form a salt, ester, or anhydride thereof. The amino group may also form a salt. In the present specification, the term “acryl” or “acryloyl” broadly refers to not only an acryloyl group but also a derivative structure thereof, and includes a structure having a specific substituent at the α-position of the acryloyl group. However, in a narrow sense, the case where the α-position is a hydrogen atom may be referred to as acryl or acryloyl. Those having a methyl group at the α-position are called methacrylic, meaning either acryl (α-position is a hydrogen atom) or methacryl (α-position is a methyl group) Sometimes called.
R 4 and R 5 are each independently a group having the same meaning as R 1 .
c is 0 or 1;
 
  R Si-X-(SiR  (3)
 
 RおよびRは、それぞれ独立に、上記Rと同義の基、あるいは、アルコキシ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルケニルオキシ基(炭素数2~12が好ましく、2~6がより好ましい)、アルキニルオキシ基(炭素数2~12が好ましく、2~6がより好ましい)、アリールオキシ基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、またはアラルキルオキシ基(炭素数7~23が好ましく、7~15がより好ましく、7~11が特に好ましい)である。複数のR及びRのうち1~4個はRの基であってもよい。
 Xは2価以上の連結基である。Xが2価の連結基のとき、後記連結基Lの例が挙げられる。具体的には、S、O、CO、NR、ポリスルフィド基(Sが2~6個)などが挙げられる。Xが3価の連結基のとき例えばイソシアヌル骨格が挙げられる。dは1~4の整数であり、1または2が好ましい。

R 6 3 Si—X— (SiR 7 3 ) d (3)

R 6 and R 7 are each independently a group having the same meaning as R 1 above, or an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkenyloxy group. (Preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), alkynyloxy group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), aryloxy group (preferably 6 to 22 carbon atoms, 6 To 14 are more preferable, and 6 to 10 are particularly preferable), or an aralkyloxy group (preferably 7 to 23 carbon atoms, more preferably 7 to 15 carbon atoms, and particularly preferably 7 to 11 carbon atoms). 1-4 of R 6 and R 7 may be R 3 groups.
X is a divalent or higher linking group. When X is a divalent linking group, examples of the linking group L described below are given. Specific examples include S, O, CO, NR N , and polysulfide groups (2 to 6 S). When X is a trivalent linking group, for example, an isocyanuric skeleton is exemplified. d is an integer of 1 to 4, preferably 1 or 2.
  R~Rはそれぞれ独立に任意の置換基Tを有していてもよい。また、本発明の効果を奏する範囲で、連結基Lを伴ってケイ素原子と結合していてもよい。さらに、隣接するものが結合ないし縮合して環を形成していてもよい。 R 1 to R 7 may each independently have an arbitrary substituent T. Moreover, you may couple | bond with the silicon atom with the coupling group L in the range with the effect of this invention. Further, adjacent ones may be bonded or condensed to form a ring.
 式(1)で表されるシラン化合物の例:
 3官能性シラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリ-n-ブトキシシラン、メチルトリ-t-ブトキシシラン、メチルトリ-sec-ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、ペンチルトリメトキシシラン、シクロペンチルトリメトキシシラン、ヘキシルトリメトキシシラン、シクロヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリイソプロポキシシラン、1-ナフチルトリメトキシシラン、2-ナフチルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン、アリルトリメトキシシランなどが挙げられる。
 2官能性シラン化合物としては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、シクロヘキシルメチルジメトキシシランなどが挙げられる。
 4官能性シラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシランなどが挙げられる。
Examples of silane compounds represented by formula (1):
Examples of the trifunctional silane compound include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, methyltri-n-butoxysilane, methyltri-t-butoxysilane, methyltri-sec-butoxy Silane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, pentyltrimethoxysilane, cyclopentyltrimethoxysilane, hexyltrimethoxysilane, cyclohexyltrimethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxy Silane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, 1-naphthyltrimethoxysilane, - naphthyl trimethoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyl triethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, p- styryl trimethoxysilane, and the like allyl trimethoxysilane.
Examples of the bifunctional silane compound include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylvinyldimethoxysilane, methylvinyldiethoxysilane, cyclohexylmethyldimethoxysilane, and the like. Can be mentioned.
Examples of the tetrafunctional silane compound include tetramethoxysilane and tetraethoxysilane.
 式(2)で表されるシラン化合物の例:
 3官能性シラン化合物としては、例えば、3-グリシドキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-メタクリルオキシプロピルトリエトキシシラン、γ-アクリロイルオキシトリメトキシシラン、γ-アクリロイルオキシプロピルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリイソプロポキシシラン、γ-グリシドキシプロピルトリ-n-ブトキシシラン、γ-グリシドキシプロピルトリ-t-ブトキシシラン、γ-グリシドキシプロピルトリ-sec-ブトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシ-t-ブチルトリエトキシシラン、α-グリシドキシ-t-ブチルトリエトキシシラン、α-グリシドキシ-t-ブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリ-t-ブトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリ-n-ブトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリ-sec-ブトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物、3-ウレイドプロピルトリエトキシシランなどが挙げられる。
 2官能性シラン化合物としては、例えばγ-グリシドキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルジエトキシシラン、γ-メタクリルオキシプロピルメチルジメトキシシラン、γ-メタクリルオキシプロピルメチルジエトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルメチルジエトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、β-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジメトキシエトキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン、3-メタクリロキシプロピルジメトキシシランなどが挙げられる。
Examples of silane compounds represented by formula (2):
Examples of the trifunctional silane compound include 3-glycidoxypropyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-acryloyloxytrimethoxysilane, and γ-acryloyloxy. Propyltriethoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, α-glycidoxyethyltrimethoxysilane, α-glycidoxyethyltriethoxysilane, β-glycidoxyethyltrimethoxysilane , Β-glycidoxyethyltriethoxysilane, α-glycidoxypropyltrimethoxysilane, α-glycidoxypropyltriethoxysilane, β-glycidoxypropyltrimethoxysilane, β-glycidoxypropyl Liethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltripropoxysilane, γ-glycidoxypropyltriisopropoxysilane, γ-glycidoxy Propyltri-n-butoxysilane, γ-glycidoxypropyltri-t-butoxysilane, γ-glycidoxypropyltri-sec-butoxysilane, γ-glycidoxypropyltrimethoxysilane, α-glycidoxybutyl Trimethoxysilane, α-glycidoxy-t-butyltriethoxysilane, α-glycidoxy-t-butyltriethoxysilane, α-glycidoxy-t-butyltriethoxysilane, β-glycidoxybutyltrimethoxysilane, β-glyce Sidoxybutyltriethoxysilane, γ- Lysidoxybutyltrimethoxysilane, γ-glycidoxybutyltriethoxysilane, δ-glycidoxybutyltrimethoxysilane, δ-glycidoxybutyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3,4-epoxycyclohexyl) methyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4- Epoxycyclohexyl) ethyltripropoxysilane, 2- (3,4-epoxycyclohexyl) ethyltri-t-butoxysilane, 2- (3,4-epoxycyclohexyl) ethyltri-n-butoxysilane, 2- (3,4-epoxy (Cyclohexyl) ethyltri-s ec-butoxysilane, 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane, 3- (3,4-epoxycyclohexyl) propyltriethoxysilane, 4- (3,4-epoxycyclohexyl) butyltrimethoxysilane, 4- (3,4-epoxycyclohexyl) butyltriethoxysilane, 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3- Isocyanatopropyltriethoxysilane, 3-trimethoxysilylpropyl succinic anhydride, 3-ureidopropyltriethoxysilane and the like.
Examples of the bifunctional silane compound include γ-glycidoxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, and γ-methacrylic. Oxypropylmethyldiethoxysilane, glycidoxymethyldimethoxysilane, glycidoxymethylmethyldiethoxysilane, α-glycidoxyethylmethyldimethoxysilane, α-glycidoxyethylmethyldiethoxysilane, β-glycidoxyethyl Methyldimethoxysilane, β-glycidoxyethylmethyldiethoxysilane, α-glycidoxypropylmethyldimethoxysilane, α-glycidoxypropylmethyldiethoxysilane, β-glycidoxypro Rumethyldimethoxysilane, β-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldipropoxysilane, β- Glycidoxypropylmethyldibutoxysilane, γ-glycidoxypropylmethyldimethoxyethoxysilane, γ-glycidoxypropylethyldimethoxysilane, γ-glycidoxypropylethyldiethoxysilane, γ-glycidoxypropylvinyldimethoxysilane , Γ-glycidoxypropylvinyldiethoxysilane, 3-methacryloxypropyldimethoxysilane and the like.
 式(3)で表されるシラン化合物としては、例えば、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(3-アミノエチル)テトラメチルジシロキサン、1,3-ビス(3-アミノプロピル)テトラエチルジシロキサン等が挙げられる。 Examples of the silane compound represented by the formula (3) include 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (3-aminoethyl) tetramethyldisiloxane, 1,3 -Bis (3-aminopropyl) tetraethyldisiloxane and the like.
 シロキサン樹脂は、上述したアルコキシシラン化合物を用いて、加水分解反応および縮合反応を介して得ることができる。加水分解縮合反応としては公知の方法を使用することができ、必要に応じて、酸または塩基などの触媒を使用してもよい。触媒としてはpHを変更させるものであれば特に制限がなく、具体的には、酸(有機酸、無機酸)としては、硝酸、リン酸、シュウ酸、酢酸、蟻酸、塩酸などが挙げられる。アルカリとしては、例えばアンモニア、トリエチルアミン、エチレンジアミンなどが挙げられる。使用する量は、シロキサン樹脂が所定の分子量を満たせば、特に限定されない。 The siloxane resin can be obtained through the hydrolysis reaction and the condensation reaction using the above-described alkoxysilane compound. A known method can be used as the hydrolysis-condensation reaction, and a catalyst such as an acid or a base may be used as necessary. The catalyst is not particularly limited as long as the pH is changed. Specifically, examples of the acid (organic acid, inorganic acid) include nitric acid, phosphoric acid, oxalic acid, acetic acid, formic acid, hydrochloric acid and the like. Examples of the alkali include ammonia, triethylamine, ethylenediamine, and the like. The amount to be used is not particularly limited as long as the siloxane resin satisfies a predetermined molecular weight.
 加水分解縮合反応の反応系には、必要に応じて、溶媒を加えてもよい。溶媒としては加水分解縮合反応が実施できれば特に制限されず、後記の溶媒の例が挙げられる。なかでも、例えば、水、メタノール、エタノール、プロパノール、ジアセトンアルコール(DAA)、テトラヒドロフルフリルアルコールなどのアルコール化合物、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル(DPM)などのエーテル化合物、酢酸メチル、酢酸エチル、酢酸ブチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテートなどのエステル化合物、アセトン、メチルエチルケトン、メチルイソアミルケトンなどのケトン化合物などが挙げられる。 If necessary, a solvent may be added to the reaction system of the hydrolysis condensation reaction. The solvent is not particularly limited as long as the hydrolysis-condensation reaction can be carried out, and examples of the solvent described below can be given. Among them, for example, alcohol compounds such as water, methanol, ethanol, propanol, diacetone alcohol (DAA), tetrahydrofurfuryl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, dipropylene glycol monomethyl Examples include ether compounds such as ether (DPM), ester compounds such as methyl acetate, ethyl acetate, butyl acetate, γ-butyrolactone, and propylene glycol monomethyl ether acetate, and ketone compounds such as acetone, methyl ethyl ketone, and methyl isoamyl ketone.
 加水分解縮合反応の条件(温度、時間、溶媒量)は使用される材料の種類に応じて、適宜好適な条件が選択されればよい。 The conditions (temperature, time, amount of solvent) for the hydrolysis-condensation reaction may be appropriately selected according to the type of material used.
 本実施形態で使用されるシロキサン樹脂の重量平均分子量は、2,000以上が好ましく、3,000以上が特に好ましい。上限としては、500,000以下が好ましく、450,000以下がより好ましく、250,000以下が特に好ましい。 The weight average molecular weight of the siloxane resin used in this embodiment is preferably 2,000 or more, particularly preferably 3,000 or more. The upper limit is preferably 500,000 or less, more preferably 450,000 or less, and particularly preferably 250,000 or less.
 本発明においてポリマー(シロキサン樹脂を含む)の分子量については、特に断らない限り、重量平均分子量をいい、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算で計測する。測定条件としては、下記条件1によることとする。ただし、ポリマー種によっては、さらに適宜適切なキャリア(溶離液)およびそれに適合したカラムを選定して用いてもよい。
(条件1)
  カラム:TOSOH TSKgel Super HZM-H、TOSOH
      TSKgel Super HZ4000、TOSOH TSKgel
      Super HZ2000をつないだカラムを用いる
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
In the present invention, the molecular weight of a polymer (including a siloxane resin) means a weight average molecular weight unless otherwise specified, and is measured by gel permeation chromatography (GPC) in terms of standard polystyrene. The measurement conditions are based on the following condition 1. However, depending on the polymer type, an appropriate carrier (eluent) and a column suitable for it may be selected and used.
(Condition 1)
Column: TOSOH TSKgel Super HZM-H, TOSOH
TSKgel Super HZ4000, TOSOH TSKgel
A column connected with Super HZ2000 is used Carrier: Tetrahydrofuran Measurement temperature: 40 ° C.
Carrier flow rate: 1.0 ml / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector
 一部重複する部分もあるが、好ましいシロキサン樹脂としては、下記も挙げられる。
 4つ以上のアルコキシ基を有するアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラアセトキシシラン、テトラフェノキシシラン、テトラメトキシジシロキサン、テトラエトキシジシロキサン、ビス(トリエトキシシリルプロピル)テトラスルフィド、トリス-(3-トリメトキシシリルプロピル)イソシアヌレート、トリス-(3-トリエトキシシリルプロピル)イソシアヌレートが挙げられる。硬化膜の耐薬品性の向上の観点から、嵩高い9官能性シランと立体障害の少ない4官能性シランとを相互に反応させるようにするため、4官能性シランと9官能性シランとの混合物が好ましい。
Although there are some overlapping portions, preferred siloxane resins include the following.
Examples of the alkoxysilane having four or more alkoxy groups include tetramethoxysilane, tetraethoxysilane, tetraacetoxysilane, tetraphenoxysilane, tetramethoxydisiloxane, tetraethoxydisiloxane, and bis (triethoxysilylpropyl) tetrasulfide. , Tris- (3-trimethoxysilylpropyl) isocyanurate, and tris- (3-triethoxysilylpropyl) isocyanurate. From the viewpoint of improving the chemical resistance of the cured film, a mixture of tetrafunctional silane and 9 functional silane is used in order to allow bulky 9 functional silane and tetrafunctional silane with less steric hindrance to react with each other. Is preferred.
 シロキサン樹脂は2官能あるいは3官能のアルコキシシラン化合物との加水分解物縮合反応物であることも好ましい。シロキサン樹脂を構成するアルコキシシラン化合物としては、例えば、ジメトキシジメチルシラン、ジエトキシジメチルシラン、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジヒドロキシジフェニルシラン、ジメトキシ(メチル)(フェニル)シラン、ジエトキシ(メチル)(フェニル)シラン、ジメトキシ(メチル)(フェネチル)シラン、ジシクロペンチルジメトキシシラン又はシクロヘキシルジメトキシ(メチル)シラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン又は3-アクリロキシプロピルトリエトキシシラン、3-トリメトキシシリルプロピル無水コハク酸、3-トリエトキシシリルプロピル無水コハク酸、3-トリメトキシシリルエチル無水コハク酸、3-トリメトキシシリルブチル無水コハク酸、3-グリシジロキシプロピルトリメトキシシラン、3-グリシジロキシプロピルトリエトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、フェニルトリメトキシシラン、フェネチルトリメトキシシラン、ナフチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、フェニルトリエトキシシラン、フェネチルトリエトキシシラン、ナフチルトリエトキシシラン、テトラメトキシシラン又はテトラエトキシシランが挙げられる。 The siloxane resin is also preferably a hydrolyzate condensation reaction product with a bifunctional or trifunctional alkoxysilane compound. Examples of the alkoxysilane compound constituting the siloxane resin include dimethoxydimethylsilane, diethoxydimethylsilane, dimethoxydiphenylsilane, diethoxydiphenylsilane, dihydroxydiphenylsilane, dimethoxy (methyl) (phenyl) silane, and diethoxy (methyl) (phenyl). ) Silane, dimethoxy (methyl) (phenethyl) silane, dicyclopentyldimethoxysilane or cyclohexyldimethoxy (methyl) silane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane Or 3-acryloxypropyltriethoxysilane, 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl anhydride Acid, 3-trimethoxysilylethyl succinic anhydride, 3-trimethoxysilylbutyl succinic anhydride, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3- (3,4-epoxy (Cyclohexyl) propyltrimethoxysilane, 3- (3,4-epoxycyclohexyl) propyltriethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, phenyltrimethoxysilane, phenethyltrimethoxysilane, naphthyltrimethoxysilane, methyltriethoxy Examples include silane, ethyltriethoxysilane, phenyltriethoxysilane, phenethyltriethoxysilane, naphthyltriethoxysilane, tetramethoxysilane, and tetraethoxysilane.
 シロキサン樹脂の含有量は、後述するアルカリ可溶性樹脂が含有している場合には、少なく、含有していない場合には多くすることが好ましい。すなわち、アルカリ可溶性樹脂を含有している場合、シロキサン樹脂の含有量は、組成物の固形成分中で1質量%以上であることが好ましく、2質量%以上であることがより好ましく、3質量%以上であることが特に好ましい。上限としては、30質量%以下であることが好ましく、20質量%以下であることがより好ましい。
 またアルカリ可溶性樹脂を含有していない場合、シロキサン樹脂の含有量は、組成物の固形成分中で10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。上限としては、40質量%以下であることが好ましく、35質量%以下であることがより好ましい。
 金属含有粒子100質量部に対しては、10質量部以上であることが好ましく、20質量部以上であることがより好ましく、30質量部以上であることが特に好ましい。上限としては、120質量部以下であることが好ましく、100質量部以下であることがより好ましく、80質量部以下であることが特に好ましい。少なめにするときには、上限として、70質量部以下であることが好ましく、60質量部以下であることがより好ましく、50質量部以下であることが特に好ましい。
The content of the siloxane resin is small when the alkali-soluble resin described later is contained, and is preferably increased when the alkali-soluble resin is not contained. That is, when the alkali-soluble resin is contained, the content of the siloxane resin is preferably 1% by mass or more, more preferably 2% by mass or more in the solid component of the composition, and 3% by mass. The above is particularly preferable. As an upper limit, it is preferable that it is 30 mass% or less, and it is more preferable that it is 20 mass% or less.
When the alkali-soluble resin is not contained, the content of the siloxane resin is preferably 10% by mass or more, more preferably 15% by mass or more, and more preferably 20% by mass or more in the solid component of the composition. It is particularly preferred that As an upper limit, it is preferable that it is 40 mass% or less, and it is more preferable that it is 35 mass% or less.
The amount is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and particularly preferably 30 parts by mass or more with respect to 100 parts by mass of the metal-containing particles. As an upper limit, it is preferable that it is 120 mass parts or less, It is more preferable that it is 100 mass parts or less, It is especially preferable that it is 80 mass parts or less. When the amount is made small, the upper limit is preferably 70 parts by mass or less, more preferably 60 parts by mass or less, and particularly preferably 50 parts by mass or less.
 なお、本明細書においてシロキサン樹脂というときには、基本的には、アルコキシシラン化合物の加水分解縮合反応を経て得た重合物を意味するが、その他の反応による重合物や、原料となるシラン化合物そのものも含む意味である。ただし、本発明において、シロキサン樹脂は、シラン化合物の加水分解縮合反応物であることが好ましい。なお、シラン化合物の加水分解縮合反応は金属含有粒子の共存下で行われてもよい。このとき、シラン化合物が金属含有粒子とその表面で反応した粒子-樹脂マトリックスや、コアが金属含有粒子でありシェルがシラン化合物であるコアシェル構造を形成していてもよい。 In the present specification, the term “siloxane resin” basically means a polymer obtained through a hydrolytic condensation reaction of an alkoxysilane compound. However, a polymer obtained by other reaction and a silane compound itself as a raw material are also included. Including meaning. However, in the present invention, the siloxane resin is preferably a hydrolytic condensation reaction product of a silane compound. The hydrolysis condensation reaction of the silane compound may be performed in the presence of metal-containing particles. At this time, a particle-resin matrix in which the silane compound reacts with the metal-containing particles on the surface thereof, or a core-shell structure in which the core is the metal-containing particles and the shell is the silane compound may be formed.
<メシチルオキシド>
 本発明のシロキサン樹脂組成物は、メシチルオキシドを必須の成分として含有する。シロキサン樹脂組成物中のメシチルオキシドの濃度は0.01質量%以上であることが好ましく、0.02質量%以上であることがより好ましい。上限としては、15質量%以下であることが好ましく、12質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、8質量%以下であることがさらに好ましく、4質量%以下であることがさらに好ましく、1質量%以下であることがさらに好ましく、0.1質量%以下であることがさらに好ましく、0.09質量%以下であることが特に好ましい。
 金属含有粒子100質量部に対しては、メシチルオキシドは、1質量部以上であることが好ましく、2質量部以上であることがより好ましく、5質量部以上であることが特に好ましい。上限としては、100質量部以下であることが好ましく、80質量部以下であることがより好ましく、50質量部以下であることが特に好ましい。
 メシチルオキシドは下記の式で表される化合物である。
<Mesityl oxide>
The siloxane resin composition of the present invention contains mesityl oxide as an essential component. The concentration of mesityl oxide in the siloxane resin composition is preferably 0.01% by mass or more, and more preferably 0.02% by mass or more. As an upper limit, it is preferable that it is 15 mass% or less, It is more preferable that it is 12 mass% or less, It is more preferable that it is 10 mass% or less, It is further more preferable that it is 8 mass% or less, 4 mass% More preferably, it is more preferably 1% by mass or less, further preferably 0.1% by mass or less, and particularly preferably 0.09% by mass or less.
With respect to 100 parts by mass of the metal-containing particles, the mesityl oxide is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and particularly preferably 5 parts by mass or more. As an upper limit, it is preferable that it is 100 mass parts or less, It is more preferable that it is 80 mass parts or less, It is especially preferable that it is 50 mass parts or less.
Mesityl oxide is a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 メシチルオキシドは一面において光学特性に影響を与える不純物となるため少量に抑えることが好ましい。一方、本発明では敢えてそのメシチルオキシドを微量であっても含有させたことを特徴とする。本発明においてメシチルオキシドを含有させたことで特有の効果が得られた理由は定かではないが、上述した金属含有粒子との相互作用によるものと推定される。その作用は、サーモサイクル特性における効果として特に顕著に現れる(後記実施例参照)。 Since mesityl oxide is an impurity that affects the optical properties on one side, it is preferably suppressed to a small amount. On the other hand, the present invention is characterized in that the mesityl oxide is included even in a trace amount. In the present invention, the reason why a specific effect is obtained by adding mesityl oxide is not clear, but it is presumed to be due to the interaction with the metal-containing particles described above. The action appears particularly prominently as an effect on the thermocycle characteristics (see Examples below).
<溶媒>
 本発明のシロキサン樹脂組成物は溶媒を含有する。この溶媒は、上記シラン化合物の加水分解縮合反応に用いた溶媒をそのまま組成物の溶媒として用いてもよく、あるいはその溶媒に加えて、または切り替えて下記の溶媒を用いてもよい。
 溶媒としては、たとえば、水、脂肪族化合物、ハロゲン化炭化水素化合物、アルコール化合物、エーテル化合物、エステル化合物、ケトン化合物、ニトリル化合物、アミド化合物、スルホキシド化合物、芳香族化合物が挙げられる。これらの溶媒は混合して使用してもよい。それぞれの例を下記に列挙する。
・水
・脂肪族化合物
 ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、オクタン、ペンタン、シクロペンタンなど
・ハロゲン化炭化水素化合物
 塩化メチレン、クロロホルム、ジクロルメタン、二塩化エタン、四塩化炭素、トリクロロエチレン、テトラクロロエチレン、エピクロロヒドリン、モノクロロベンゼン、オルソジクロロベンゼン、アリルクロライド、HCFC、モノクロロ酢酸メチル、モノクロロ酢酸エチル、モノクロロ酢酸トリクロル酢酸、臭化メチル、ウ化メチル、トリ(テトラ)クロロエチレなど
・アルコール化合物
 メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジアセトンアルコール、テトラヒドロフルフリルアルコールなど
・エーテル化合物(水酸基含有エーテル化合物を含む)
 ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、t-ブチルメチルエーテル、シクロヘキシルメチルエーテル、アニソール、テトラヒドロフラン、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)など
・エステル化合物
 酢酸エチル、乳酸エチル、2-(1-メトキシ)プロピルアセテート、プロピレングリコールモノメチルエーテルアセテートなど
・ケトン化合物
 アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-ヘプタノン、シクロペンタノンなど
・ニトリル化合物
 アセトニトリルなど
・アミド化合物
 N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなど
・スルホキシド化合物
 ジメチルスルホキシドなど
・芳香族化合物
 ベンゼン、トルエンなど
<Solvent>
The siloxane resin composition of the present invention contains a solvent. As the solvent, the solvent used in the hydrolysis condensation reaction of the silane compound may be used as it is as the solvent of the composition, or the following solvent may be used in addition to or in place of the solvent.
Examples of the solvent include water, aliphatic compounds, halogenated hydrocarbon compounds, alcohol compounds, ether compounds, ester compounds, ketone compounds, nitrile compounds, amide compounds, sulfoxide compounds, and aromatic compounds. These solvents may be used as a mixture. Examples of each are listed below.
Water / aliphatic compounds Hexane, heptane, cyclohexane, methylcyclohexane, octane, pentane, cyclopentane, etc.Halogenated hydrocarbon compounds Methylene chloride, chloroform, dichloromethane, ethane dichloride, carbon tetrachloride, trichloroethylene, tetrachloroethylene, epichlorohydride Phosphorus, monochlorobenzene, orthodichlorobenzene, allyl chloride, HCFC, monochloroacetic acid methyl, monochloroacetic acid ethyl, monochloroacetic acid trichloroacetic acid, methyl bromide, methyl hydride, tri (tetra) chloroethylene, etc., alcohol compounds methyl alcohol, ethyl alcohol, 1 -Propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanedio , Cyclohexanediol, sorbitol, xylitol, 2-methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol, diacetone alcohol, tetrahydrofurfuryl alcohol, etc. Including compounds)
Dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, t-butyl methyl ether, cyclohexyl methyl ether, anisole, tetrahydrofuran, alkylene glycol alkyl ether (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether) , Diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.) Ester compounds Ethyl acetate, ethyl lactate, 2- (1-methoxy) propyl acetate, propylene glycol monomethyl ether acetate, etc. Ketone compounds Acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone, cyclopentanone, etc. Nitrile compounds Acetonitrile, etc. Amide compounds N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, N-methylformamide, acetamide N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide, etc. ・ Sulphoxide compound Dimethylsulfoxy Etc. Aromatic compounds as benzene, toluene, etc.
 溶媒としては組成物の各成分を均一に溶解し、上述したメシチルオキシドの添加による作用を発現させる観点で、アルコール化合物、エステル化合物、又はエーテル化合物が好ましい。例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジアセトンアルコール、エチレングリコールモノノルマルブチルエーテル、酢酸2-エトキシエチル、1-メトキシプロピル-2-アセテート、3-メトキシ-3-メチルブタノール、3-メトキシ-3-メチルブタノールアセテート、3-メトキシブチルアセテート、1,3-ブチレングリコルジアセテート,エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、乳酸エチル、乳酸ブチル、アセト酢酸エチル又はγ―ブチロラクトンが挙げられる。これらの中でも上記観点からジアセトンアルコールが特に好ましい。 As the solvent, an alcohol compound, an ester compound, or an ether compound is preferable from the viewpoint of uniformly dissolving each component of the composition and expressing the above-described action by the addition of mesityl oxide. For example, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diacetone alcohol, ethylene glycol mononormal butyl ether, 2-ethoxyethyl acetate, 1-methoxypropyl-2-acetate, 3-methoxy-3-methylbutanol, 3-methoxy -3-Methylbutanol acetate, 3-methoxybutyl acetate, 1,3-butylene glycol diacetate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, ethyl lactate, butyl lactate, ethyl acetoacetate or γ-butyrolactone. Among these, diacetone alcohol is particularly preferable from the above viewpoint.
 溶媒の使用量は特に限定されないが、塗布液とするような場合には、固形成分が5質量%以上となるようにすることが好ましく、10質量%以上となるようにすることがより好ましく、15質量%以上となるようにすることが特に好ましい。上限としては、40質量%以下となるようにすることが好ましく、35質量%以下となるようにすることがより好ましく、30質量%以下となるようにすることが特に好ましい。
 溶媒は1種を単独で用いてもよいが、2種以上を組み合わせて用いてもよい。
 本発明のシロキサン樹脂組成物については、2種以上の溶媒を混合することが好ましく、例えば、アルコール化合物(DAA等)とエステル化合物(PEGMEA等)の組み合わせが挙げられる。混合比率は特に限定されないが、エステル化合物(PEGMEA等)100質量部に対して、アルコール化合物(DAA等)が、10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上が特に好ましい。上限としては、100質量部以下が好ましく、90質量部以下がより好ましく、80質量部以下が特に好ましい。この範囲で上記2種の溶媒を混合することで、メシチルオキシドを添加したことと相まって共溶媒効果が得られるため好ましい。
The amount of the solvent used is not particularly limited, but in the case of a coating solution, the solid component is preferably 5% by mass or more, more preferably 10% by mass or more, It is particularly preferable that the content be 15% by mass or more. The upper limit is preferably 40% by mass or less, more preferably 35% by mass or less, and particularly preferably 30% by mass or less.
The solvent may be used alone or in combination of two or more.
About the siloxane resin composition of this invention, it is preferable to mix 2 or more types of solvents, For example, the combination of alcohol compound (DAA etc.) and ester compound (PEGMEA etc.) is mentioned. The mixing ratio is not particularly limited, but the alcohol compound (DAA or the like) is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and particularly preferably 30 parts by mass or more with respect to 100 parts by mass of the ester compound (PEGMEA or the like). preferable. As an upper limit, 100 mass parts or less are preferable, 90 mass parts or less are more preferable, and 80 mass parts or less are especially preferable. Mixing the above two solvents within this range is preferable because a cosolvent effect is obtained in combination with the addition of mesityl oxide.
<紫外線吸収剤>
 本発明のシロキサン樹脂組成物には紫外線吸収剤を用いてもよい。紫外線吸収剤としては、ベンゾトリアゾール化合物、ベンゾフェノン化合物、又はトリアジン化合物を用いることが好ましい。
 ベンゾトリアゾール系化合物としては、例えば、2-(2Hベンゾトリアゾール-2-イル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-tert-ペンチルフェノール、2-(2Hベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール又は2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールが挙げられる。
 ベンゾフェノン系化合物としては、例えば、2-ヒドロキシ-4-メトキシベンゾフェノンが挙げられる。
 トリアジン系化合物の紫外線吸収剤としては、例えば、2-(4,6-ジフェニル-1,3,5トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノールが挙げられる。
<Ultraviolet absorber>
You may use a ultraviolet absorber for the siloxane resin composition of this invention. As the ultraviolet absorber, a benzotriazole compound, a benzophenone compound, or a triazine compound is preferably used.
Examples of the benzotriazole compounds include 2- (2H benzotriazol-2-yl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-tert-pentylphenol, and 2- (2H benzotriazole). -2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol, 2 (2H-benzotriazol-2-yl) -6-dodecyl-4-methylphenol or 2- (2'- Hydroxy-5′-methacryloxyethylphenyl) -2H-benzotriazole.
Examples of benzophenone compounds include 2-hydroxy-4-methoxybenzophenone.
Examples of the ultraviolet absorber of the triazine compound include 2- (4,6-diphenyl-1,3,5 triazin-2-yl) -5-[(hexyl) oxy] -phenol.
<重合開始剤>
 本発明のシロキサン樹脂組成物には、重合開始剤を含有させてもよい。重合開始剤としては、熱重合開始剤でも光重合開始剤でもよいが、光重合性開始剤が好ましい。例えば、有機ハロゲン化化合物、オキシジアゾール化合物、カルボニル化合物、ケタール化合物、ベンゾイン化合物、アクリジン化合物、有機過酸化化合物、アゾ化合物、クマリン化合物、アジド化合物、メタロセン化合物、ヘキサアリールビイミダゾール化合物、有機ホウ酸化合物、ジスルホン酸化合物、オキシム化合物、オニウム塩化合物、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、アシルホスフィンオキシド化合物、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、フォスフィンオキサイド化合物、メタロセン化合物、トリアリルイミダゾールダイマー、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、シクロペンタジエン-ベンゼン-鉄錯体化合物、ハロメチルオキサジアゾール化合物、3-アリール置換クマリン化合物、α-アミノアルキルフェノン化合物、安息香酸エステル化合物が挙げられる。
 これらの具体例として、特開2010-106268号公報段落[0135](対応する米国特許出願公開第2011/0124824号明細書の[0163])以降の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
<Polymerization initiator>
The siloxane resin composition of the present invention may contain a polymerization initiator. The polymerization initiator may be either a thermal polymerization initiator or a photopolymerization initiator, but a photopolymerization initiator is preferred. For example, organic halogenated compounds, oxydiazole compounds, carbonyl compounds, ketal compounds, benzoin compounds, acridine compounds, organic peroxide compounds, azo compounds, coumarin compounds, azide compounds, metallocene compounds, hexaarylbiimidazole compounds, organic boric acid Compound, disulfonic acid compound, oxime compound, onium salt compound, hydroxyacetophenone compound, aminoacetophenone compound, acylphosphine oxide compound, trihalomethyltriazine compound, benzyldimethyl ketal compound, α-hydroxyketone compound, α-aminoketone compound, acylphosphine compound , Phosphine oxide compound, metallocene compound, triallylimidazole dimer, onium compound, benzothiazole compound, benzo Examples include phenone compounds, cyclopentadiene-benzene-iron complex compounds, halomethyloxadiazole compounds, 3-aryl-substituted coumarin compounds, α-aminoalkylphenone compounds, and benzoate compounds.
As specific examples of these, the description after paragraph [0135] of JP 2010-106268 A (corresponding US Patent Application Publication No. 2011/0124824 [0163]) can be referred to. Incorporated into.
 具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、特許第4225898号公報に記載のアシルホスフィンオキシド系開始剤を挙げることができる。
 ヒドロキシアセトフェノン系開始剤としては、IRGACURE-184、DAROCUR-1173、IRGACURE-500、IRGACURE-2959,IRGACURE-127(商品名:いずれもBASF社製)を挙げることができる。
 アミノアセトフェノン系開始剤の市販品としてはIRGACURE-907、IRGACURE-369、IRGACURE-379(商品名:いずれもBASF社製)等を用いることができる。また、365nmまたは405nm等の長波光源に吸収波長がマッチングされた特開2009-191179公報に記載の化合物も用いることができる。
 アシルホスフィン系開始剤の市販品としては、IRGACURE-819、ダロキュア4265、DAROCUR-TPO(商品名:いずれもBASF社製)を用いることができる。
 アゾ化合物としては、2,2-アゾビスイソブチロニトリル(AIBN)、3-カルボキシプロピオニトリル、アゾビスマレイロニトリル、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)[V-601](Wako社製)等が挙げられる。
Specific examples include aminoacetophenone initiators described in JP-A-10-291969 and acylphosphine oxide initiators described in Japanese Patent No. 4225898.
Examples of the hydroxyacetophenone-based initiator include IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, IRGACURE-127 (trade names: all manufactured by BASF).
As commercially available aminoacetophenone initiators, IRGACURE-907, IRGACURE-369, IRGACURE-379 (trade names: all manufactured by BASF) and the like can be used. In addition, a compound described in JP-A-2009-191179 in which an absorption wavelength is matched with a long wave light source such as 365 nm or 405 nm can also be used.
As commercially available acylphosphine initiators, IRGACURE-819, Darocur 4265, DAROCUR-TPO (trade names: all manufactured by BASF) can be used.
Examples of the azo compound include 2,2-azobisisobutyronitrile (AIBN), 3-carboxypropionitrile, azobismaleonitrile, dimethyl-2,2′-azobis (2-methylpropionate) [V -601] (manufactured by Wako).
 本発明においてはオキシム化合物を用いることが好ましい。オキシム化合物は、本発明のシロキサン樹脂組成物において重合を開始・促進する重合開始剤としての機能を効果的に発揮する。また、オキシム化合物は後加熱での着色が少なく、硬化性も良好である。特に、本発明においては、オキシム化合物系の開始剤を添加することで、上述したメシチルオキシドと金属含有粒子の作用によるサーモサイクル後の特性を一層良化させることができ好ましい。なかでも、IRGACURE OXE01(下式)、IRGACURE OXE02(下式)などの市販品(いずれも、BASF社製)を好適に使用することができる。 In the present invention, it is preferable to use an oxime compound. The oxime compound effectively functions as a polymerization initiator that initiates and accelerates polymerization in the siloxane resin composition of the present invention. In addition, the oxime compound is less colored by post-heating and has good curability. In particular, in the present invention, the addition of an oxime compound-based initiator is preferable because the characteristics after the thermocycle due to the action of the mesityl oxide and the metal-containing particles can be further improved. Among these, commercially available products (both manufactured by BASF) such as IRGACURE OXE01 (lower formula) and IRGACURE OXE02 (lower formula) can be suitably used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 重合開始剤となるオキシム化合物としては、下記式(OX)で表されるものが好ましく、式(OX-1)で表されるものがより好ましい。
Figure JPOXMLDOC01-appb-C000003

 ・A
 Aは式(OX-1)の-A-Cまたはアルキル基であることが好ましい。アルキル基は、炭素数1~12が好ましく、1~6であることがより好ましい。アルキル基は、後記置換基Tを有していてもよい。また、置換基Tは後記連結基Lを介在して置換していてもよい。
As the oxime compound serving as a polymerization initiator, those represented by the following formula (OX) are preferred, and those represented by the formula (OX-1) are more preferred.
Figure JPOXMLDOC01-appb-C000003

・ A 1
A 1 is preferably —AC or an alkyl group of the formula (OX-1). The alkyl group preferably has 1 to 12 carbon atoms, and more preferably 1 to 6 carbon atoms. The alkyl group may have a substituent T described later. Further, the substituent T may be substituted via a linking group L described later.
・C
 CはAr、-SAr、もしくは-COArを表す。
・R
 Rは一価の置換基を表し、一価の非金属原子団であることが好ましい。上記一価の非金属原子団としては、アルキル基(好ましくは炭素数1~12、より好ましくは1~6、特に好ましくは1~3)、アリール基(好ましくは炭素数6~14、より好ましくは6~10)、アシル基(好ましくは炭素数2~12、より好ましくは2~6、特に好ましくは2~3)、アリーロイル基(好ましくは炭素数7~15、より好ましくは7~11)、アルコキシカルボニル基(好ましくは炭素数2~12、より好ましくは2~6、特に好ましくは2~3)、アリールオキシカルボニル基(好ましくは炭素数7~15、より好ましくは7~11)、複素環基(好ましくは炭素数2~12、より好ましくは2~6)、アルキルチオカルボニル基(好ましくは炭素数2~12、より好ましくは2~6、特に好ましくは2~3)、アリールチオカルボニル基(好ましくは炭素数7~15、より好ましくは7~11)等が挙げられる。また、これらの基は、1以上の置換基を有していてもよい。また、前述した置換基は、さらに他の置換基Tで置換されていてもよい。置換基Tの中でも、ハロゲン原子、アルキル基(好ましくは炭素数1~12、より好ましくは1~6、特に好ましくは1~3)、アリール基(好ましくは炭素数6~14、より好ましくは6~10)、アリールチオ基(好ましくは炭素数6~14、より好ましくは6~10)、アリーロイル基(好ましくは炭素数7~15、より好ましくは7~11))等が好ましい。連結基Lはなかでも、炭素数1~6のアルキレン基,O,S,CO,NR,またはこれらの組み合わせが好ましい。
・ C
C represents Ar, —SAr, or —COAr.
・ R
R represents a monovalent substituent, and is preferably a monovalent nonmetallic atomic group. Examples of the monovalent nonmetallic atomic group include an alkyl group (preferably having a carbon number of 1 to 12, more preferably 1 to 6, particularly preferably 1 to 3), and an aryl group (preferably having a carbon number of 6 to 14, more preferably 6-10), an acyl group (preferably 2-12 carbon atoms, more preferably 2-6, particularly preferably 2-3), an aryloyl group (preferably 7-15 carbon atoms, more preferably 7-11). An alkoxycarbonyl group (preferably having a carbon number of 2 to 12, more preferably 2 to 6, particularly preferably 2 to 3), an aryloxycarbonyl group (preferably having a carbon number of 7 to 15, more preferably 7 to 11), a complex A cyclic group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), an alkylthiocarbonyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 to 3 carbon atoms), Over thiocarbonyl group include (preferably having 7 to 15, more preferably from 7 to 11 carbon atoms) and the like. Moreover, these groups may have one or more substituents. Further, the above-described substituent may be further substituted with another substituent T. Among the substituent T, a halogen atom, an alkyl group (preferably having a carbon number of 1 to 12, more preferably 1 to 6, particularly preferably 1 to 3), an aryl group (preferably having a carbon number of 6 to 14, more preferably 6). To 10), an arylthio group (preferably having 6 to 14 carbon atoms, more preferably 6 to 10), an aryloyl group (preferably having 7 to 15 carbon atoms, more preferably 7 to 11)) and the like. Among them, the linking group L is preferably an alkylene group having 1 to 6 carbon atoms, O, S, CO, NR N , or a combination thereof.
・B
 Bは一価の置換基を表し、アルキル基(好ましくは炭素数1~12)、アリール基(好ましくは炭素数6~14、より好ましくは炭素数6~10)、複素環基(好ましくは炭素数2~18、より好ましくは炭素数2~12)を表す。これらの基は、連結基Lを介して結合していてもよい。また、これらの基は1以上の置換基Tを有していてもよい。置換基Tも任意の連結基Lを介して置換していてもよい。ここでも連結基Lも、炭素数1~6のアルキレン基,O,S,CO,NR,またはこれらの組み合わせが好ましい。Bの具体的な基として下記が挙げられる。*は結合位置を示すが、異なる位置で結合していてもよい。また、これらの基はさらに置換基Tを伴っていてもよい。具体的には、ベンゾイル基、フェニルチオ基、フェニルオキシ基が挙げられる。
・ B
B represents a monovalent substituent, and is an alkyl group (preferably having 1 to 12 carbon atoms), an aryl group (preferably having 6 to 14 carbon atoms, more preferably having 6 to 10 carbon atoms), a heterocyclic group (preferably having carbon atoms). 2 to 18, more preferably 2 to 12 carbon atoms. These groups may be bonded via a linking group L. In addition, these groups may have one or more substituents T. The substituent T may also be substituted through an arbitrary linking group L. Here, the linking group L is also preferably an alkylene group having 1 to 6 carbon atoms, O, S, CO, NR N , or a combination thereof. Specific examples of B include the following. * Indicates a bonding position, but may be bonded at different positions. Further, these groups may be further accompanied by a substituent T. Specific examples include a benzoyl group, a phenylthio group, and a phenyloxy group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
・A
 Aは単結合または連結基である。連結基の好ましい例としては、上記連結基Lまたはアリーレン基(好ましくは炭素数6~14、より好ましくは炭素数6~10)または複素環連結基(好ましくは芳香族複素環連結基)(好ましくは炭素数2~18、より好ましくは炭素数2~12)である。
・ A
A is a single bond or a linking group. Preferred examples of the linking group include the linking group L or arylene group (preferably having 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms) or a heterocyclic linking group (preferably an aromatic heterocyclic linking group) (preferably Has 2 to 18 carbon atoms, more preferably 2 to 12 carbon atoms.
・Ar
 Arはアリール基またはヘテロアリール(芳香族複素環基)である。アリール基としては、好ましくは炭素数6~14、より好ましくは炭素数6~10であり、フェニル基、ナフチル基が好ましい。ヘテロアリール基としては、好ましくは炭素数2~18、より好ましくは炭素数2~12であり、N位にアルキル基等の置換基を有していてもよいカルバゾリル基が好ましい。
・ Ar
Ar is an aryl group or heteroaryl (aromatic heterocyclic group). The aryl group preferably has 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms, and is preferably a phenyl group or a naphthyl group. The heteroaryl group is preferably a carbazolyl group having preferably 2 to 18 carbon atoms, more preferably 2 to 12 carbon atoms, and optionally having a substituent such as an alkyl group at the N-position.
 オキシム開始剤としては、特開2012-208494号公報段落0513(対応する米国特許出願公開第2012/235099号明細書の[0632])以降の式(OX-1)、(OX-2)または(OX-3)で表される化合物の説明を参酌でき、これらの内容は本願明細書に組み込まれる。 As an oxime initiator, Japanese Patent Application Laid-Open No. 2012-208494, paragraph 0513 (corresponding US Patent Application Publication No. 2012/235099, [0632]) and the following formulas (OX-1), (OX-2) or ( The description of the compound represented by OX-3) can be referred to, and the contents thereof are incorporated herein.
 重合開始剤は、350nm~500nmの波長領域に極大吸収波長を有することが好ましく、360nm~480nmの波長領域に吸収波長を有するものであることがより好ましく、365nm及び455nmの吸光度が高いものが特に好ましい。365nm又は405nmにおけるモル吸光係数は、感度の観点から、1,000~300,000であることが好ましく、2,000~300,000であることがより好ましく、5,000~200,000であることが特に好ましい。 The polymerization initiator preferably has a maximum absorption wavelength in a wavelength region of 350 nm to 500 nm, more preferably has an absorption wavelength in a wavelength region of 360 nm to 480 nm, and particularly has a high absorbance at 365 nm and 455 nm. preferable. From the viewpoint of sensitivity, the molar extinction coefficient at 365 nm or 405 nm is preferably 1,000 to 300,000, more preferably 2,000 to 300,000, and 5,000 to 200,000. It is particularly preferred.
 重合開始剤の含有量(2種以上の場合は総含有量)は、組成物の全固形分に対し0.1質量%以上10質量%以下であることが好ましく、より好ましくは0.3質量%以上8質量%以下、更に好ましくは0.5質量%以上5質量%以下である。この範囲で、良好な硬化性と透明性とが得られる。
 また、重合開始剤は、単独で、又は2種以上を併用して用いることができる。
The content of the polymerization initiator (total content in the case of two or more) is preferably 0.1% by mass or more and 10% by mass or less, more preferably 0.3% by mass with respect to the total solid content of the composition. % To 8% by mass, more preferably 0.5% to 5% by mass. Within this range, good curability and transparency can be obtained.
Moreover, a polymerization initiator can be used individually or in combination of 2 or more types.
<重合性化合物>
 本発明のシロキサン樹脂組成物には、重合性化合物を含有させてもよい。重合性化合物は、少なくとも1個のエチレン性不飽和二重結合、エポキシ基、オキセタニル基などの重合性基を有する付加重合性化合物であることが好ましい。好ましくは重合性基を少なくとも1個、より好ましくは2個以上有する化合物から選ばれる。上限は特にないが、12個以下が実際的である。例えばモノマー、プレポリマー(すなわち2量体、3量体などの多量体及びオリゴマー)又はそれらの混合物並びにそれらの共重合体などの化学的形態をもつものでもよい。モノマー及びその共重合体の例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)や、そのエステル類、アミド類が挙げられる。好ましくは、不飽和カルボン酸と脂肪族多価アルコール化合物とのエステル、不飽和カルボン酸と脂肪族多価アミン化合物とのアミド類が用いられる。また、ヒドロキシル基やアミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステル類あるいは不飽和カルボン酸アミド類と単官能若しくは多官能イソシアネート類あるいはエポキシ類との付加反応物、及び単官能若しくは、多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基や、エポキシ基等の親電子性置換基を有する不飽和カルボン酸エステルあるいは不飽和カルボン酸アミド類と単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物;更にハロゲン基や、トシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステルあるいは不飽和カルボン酸アミド類と単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン、ビニルエーテル等に置き換えた化合物群を使用することも可能である。これらの具体的な化合物としては、特開2009-288705号公報の段落番号0095~段落番号0108に記載されている化合物を本発明においても好適に用いることができる。
<Polymerizable compound>
The siloxane resin composition of the present invention may contain a polymerizable compound. The polymerizable compound is preferably an addition polymerizable compound having a polymerizable group such as at least one ethylenically unsaturated double bond, an epoxy group, or an oxetanyl group. Preferably, it is selected from compounds having at least one polymerizable group, more preferably two or more. There is no particular upper limit, but 12 or less is practical. For example, it may have a chemical form such as a monomer, a prepolymer (that is, a polymer such as a dimer, a trimer, and an oligomer) or a mixture thereof and a copolymer thereof. Examples of monomers and copolymers thereof include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, and amides. Preferably, an ester of an unsaturated carboxylic acid and an aliphatic polyhydric alcohol compound, or an amide of an unsaturated carboxylic acid and an aliphatic polyvalent amine compound is used. Further, an addition reaction product of an unsaturated carboxylic acid ester or unsaturated carboxylic acid amide having a nucleophilic substituent such as a hydroxyl group, an amino group or a mercapto group with a monofunctional or polyfunctional isocyanate or epoxy, and A dehydration condensation reaction product with a monofunctional or polyfunctional carboxylic acid is also preferably used. In addition, an addition reaction product of an unsaturated carboxylic acid ester or unsaturated carboxylic acid amide having an electrophilic substituent such as an isocyanate group or an epoxy group and a monofunctional or polyfunctional alcohol, amine, or thiol; Furthermore, a substitution reaction product of an unsaturated carboxylic acid ester or unsaturated carboxylic acid amide having a leaving group such as a halogen group or a tosyloxy group and a monofunctional or polyfunctional alcohol, amine or thiol is also suitable. It is. As another example, it is also possible to use a group of compounds substituted with unsaturated phosphonic acid, styrene, vinyl ether or the like instead of the unsaturated carboxylic acid. As these specific compounds, the compounds described in paragraph numbers 0095 to 0108 of JP-A-2009-288705 can be preferably used in the present invention.
 重合性化合物は、さらに、下記式(MO-1)~(MO-6)で表されるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000005
The polymerizable compound is preferably further represented by the following formulas (MO-1) to (MO-6).
Figure JPOXMLDOC01-appb-C000005
 式中、nは、それぞれ、0~14であり、mは、それぞれ、1~8である。一分子内に複数存在するR、TおよびZは、それぞれ、同一であっても、異なっていてもよい。Tがオキシアルキレン基の場合には、炭素原子側の末端がRに結合する。Rのうち少なくとも1つは、重合性基である。 In the formula, n is 0 to 14, respectively, and m is 1 to 8, respectively. A plurality of R, T and Z present in one molecule may be the same or different. When T is an oxyalkylene group, the terminal on the carbon atom side is bonded to R. At least one of R is a polymerizable group.
 nは0~5が好ましく、1~3がより好ましい。
 mは1~5が好ましく、1~3がより好ましい。
 上記式(MO-1)~(MO-6)で表される重合性化合物の具体例としては、特開2007-269779号公報の段落番号0248~段落番号0251に記載されている化合物を本実施形態においても好適に用いることができる。
n is preferably 0 to 5, and more preferably 1 to 3.
m is preferably 1 to 5, and more preferably 1 to 3.
As specific examples of the polymerizable compounds represented by the above formulas (MO-1) to (MO-6), the compounds described in Paragraph Nos. 0248 to 0251 of JP-A No. 2007-26979 are used in this embodiment. It can use suitably also in a form.
 中でも、重合性化合物等としては、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330;日本化薬株式会社製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320;日本化薬株式会社製)ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬株式会社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA;日本化薬株式会社製)、及びこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介している構造や、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としては M-460;東亜合成製)が好ましい。これらのオリゴマータイプも使用できる。 Among them, dipentaerythritol triacrylate (as a commercially available product, KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (as a commercially available product, KAYARAD D-320; Nippon Kayaku) as the polymerizable compound, etc. Dipentaerythritol penta (meth) acrylate (commercially available) KAYARAD D-310 (commercially available from Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (commercially available KAYARAD DPHA; Nippon Kayaku Co., Ltd.) And a structure in which these (meth) acryloyl groups are mediated by ethylene glycol and propylene glycol residues, diglycerin EO (ethylene oxide) -modified (meth) acrylate (commercially available product is M-460; Made sub-synthesis) is preferable. These oligomer types can also be used.
 重合性化合物としては、下記式(i)または(ii)で表される化合物も使用できる。 As the polymerizable compound, a compound represented by the following formula (i) or (ii) can also be used.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式中、Eは、それぞれ、-((CHCHO)-、または-((CHCH(CH)O)-を表し、-((CHCHO)-が好ましい。
 yは、それぞれ、1~10の整数を表し、1~5の整数が好ましく、1~3の整数がより好ましい。
 Xは、それぞれ、水素原子、アクリロイル基、メタクリロイル基、またはカルボキシル基を表す。式(i)中、アクリロイル基およびメタクリロイル基の合計は3個または4個であることが好ましく、4個がより好ましい。式(ii)中、アクリロイル基およびメタクリロイル基の合計は5個または6個であり、6個が好ましい。
 mは、それぞれ、0~10の整数を表し、1~5の整数が好ましい。
 nは、それぞれ、0~10の整数を表し、1~5の整数が好ましい。
In the above formulae, E represents — ((CH 2 ) y CH 2 O) — or — ((CH 2 ) y CH (CH 3 ) O) —, and — ((CH 2 ) y CH 2 O)-is preferred.
Each y represents an integer of 1 to 10, preferably an integer of 1 to 5, and more preferably an integer of 1 to 3.
X represents a hydrogen atom, an acryloyl group, a methacryloyl group, or a carboxyl group, respectively. In the formula (i), the total number of acryloyl groups and methacryloyl groups is preferably 3 or 4, more preferably 4. In the formula (ii), the total number of acryloyl groups and methacryloyl groups is 5 or 6, with 6 being preferred.
m represents an integer of 0 to 10 and is preferably an integer of 1 to 5.
n represents an integer of 0 to 10, and an integer of 1 to 5 is preferable.
 重合性化合物としては、カルボキシル基、スルホン酸基、リン酸基等の酸性基を有していてもよい。従って、エチレン性化合物が、混合物である場合のように未反応のカルボキシル基を有するものであってもよく、これをそのまま利用することができる。必要において、上述のエチレン性化合物のヒドロキシル基に非芳香族カルボン酸無水物を反応させて酸性基を導入してもよい。この場合、使用される非芳香族カルボン酸無水物の具体例としては、無水テトラヒドロフタル酸、アルキル化無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、アルキル化無水ヘキサヒドロフタル酸、無水コハク酸、無水マレイン酸が挙げられる。 As a polymeric compound, you may have acidic groups, such as a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Accordingly, the ethylenic compound may have an unreacted carboxyl group as in the case of a mixture, and this can be used as it is. If necessary, an acidic group may be introduced by reacting a hydroxyl group of the ethylenic compound with a non-aromatic carboxylic acid anhydride. In this case, specific examples of the non-aromatic carboxylic acid anhydride used include tetrahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, hexahydrophthalic anhydride, alkylated hexahydrophthalic anhydride, succinic anhydride, anhydrous Maleic acid is mentioned.
 重合性化合物の分子量は特に限定されないが、300以上1500以下であることが好ましく、400以上700以下であることがより好ましい。 The molecular weight of the polymerizable compound is not particularly limited, but is preferably 300 or more and 1500 or less, and more preferably 400 or more and 700 or less.
 組成物中の全固形分に対して、重合性化合物の含有量は、1質量%~50質量%の範囲であることが好ましく、3質量%~40質量%の範囲であることがより好ましく、5質量%~30質量%の範囲であることが更に好ましい。この範囲内であると、屈折率や透明性を過度に低下させることなく、硬化性が良好で好ましい。
 重合性化合物は1種を単独で用いても2種以上を組み合わせて用いてもよい。
The content of the polymerizable compound with respect to the total solid content in the composition is preferably in the range of 1% by mass to 50% by mass, more preferably in the range of 3% by mass to 40% by mass, The range of 5% by mass to 30% by mass is more preferable. Within this range, the curability is good and preferable without excessively reducing the refractive index and transparency.
A polymeric compound may be used individually by 1 type, or may be used in combination of 2 or more type.
<アルカリ可溶性樹脂>
 本発明のシロキサン樹脂組成物には、アルカリ可溶性樹脂を含有させてもよい。アルカリ可溶性樹脂としては、線状有機高分子重合体であって、分子(好ましくは、アクリル系共重合体、スチレン系共重合体を主鎖とする分子)中に少なくとも1つのアルカリ可溶性を促進する基を有するアルカリ可溶性樹脂の中から適宜選択することができる。
 耐熱性の観点からは、ポリヒドロキシスチレン系樹脂、ポリシロキサン系樹脂、アクリル系樹脂、アクリルアミド系樹脂、アクリル/アクリルアミド共重合体樹脂が好ましい。現像性制御の観点からは、アクリル系樹脂、アクリルアミド系樹脂、アクリル/アクリルアミド共重合体樹脂が好ましい。アルカリ可溶性を促進する基(以下、酸性基ともいう)としては、例えば、カルボキシル基、リン酸基、スルホン酸基、フェノール性水酸基などが挙げられる。溶媒に可溶で弱アルカリ水溶液により現像可能なものが好ましく、(メタ)アクリル酸が特に好ましいものとして挙げられる。これら酸性基は、1種のみであってもよいし、2種以上であってもよい。
<Alkali-soluble resin>
The siloxane resin composition of the present invention may contain an alkali-soluble resin. The alkali-soluble resin is a linear organic polymer, and promotes at least one alkali-solubility in a molecule (preferably a molecule having an acrylic copolymer or a styrene copolymer as a main chain). It can be suitably selected from alkali-soluble resins having a group.
From the viewpoint of heat resistance, polyhydroxystyrene resins, polysiloxane resins, acrylic resins, acrylamide resins, and acrylic / acrylamide copolymer resins are preferred. From the viewpoint of development control, acrylic resins, acrylamide resins, and acrylic / acrylamide copolymer resins are preferred. Examples of the group that promotes alkali solubility (hereinafter also referred to as an acidic group) include a carboxyl group, a phosphoric acid group, a sulfonic acid group, and a phenolic hydroxyl group. Those which are soluble in a solvent and can be developed with a weak alkaline aqueous solution are preferred, and (meth) acrylic acid is particularly preferred. These acidic groups may be only one type or two or more types.
 アルカリ可溶性樹脂として用いられる線状有機高分子重合体としては、側鎖にカルボン酸を有するポリマーが好ましく、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体、ノボラック型樹脂などのアルカリ可溶性フェノール樹脂等、並びに側鎖にカルボン酸を有する酸性セルロース誘導体、水酸基を有するポリマーに酸無水物を付加させたもの挙げられる。特に、(メタ)アクリル酸と、これと共重合可能な他の単量体との共重合体が、アルカリ可溶性樹脂として好適である。(メタ)アクリル酸と共重合可能な他の単量体としては、アルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物などが挙げられる。アルキル(メタ)アクリレート及びアリール(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、(イソ)ペンチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等、ビニル化合物としては、スチレン、α-メチルスチレン、ビニルトルエン、グリシジルメタクリレート、アクリロニトリル、ビニルアセテート、N-ビニルピロリドン、テトラヒドロフルフリルメタクリレート、ポリスチレンマクロモノマー、ポリメチルメタクリレートマクロモノマー等、特開平10-300922号公報に記載のN位置換マレイミドモノマーとして、jN-フェニルマレイミド、N-シクロヘキシルマレイミド等を挙げることができる。 As the linear organic polymer used as the alkali-soluble resin, a polymer having a carboxylic acid in the side chain is preferable, such as a methacrylic acid copolymer, an acrylic acid copolymer, an itaconic acid copolymer, and a crotonic acid copolymer. , Maleic acid copolymers, partially esterified maleic acid copolymers, alkali-soluble phenolic resins such as novolak resins, etc., acid cellulose derivatives having a carboxylic acid in the side chain, and acid anhydrides added to polymers having a hydroxyl group. Can be mentioned. In particular, a copolymer of (meth) acrylic acid and another monomer copolymerizable therewith is suitable as the alkali-soluble resin. Examples of other monomers copolymerizable with (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds. Examples of the alkyl (meth) acrylate and aryl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and (iso) pentyl (Meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) ) Acrylate, naphthyl (meth) acrylate, cyclohexyl (meth) acrylate, and other vinyl compounds include styrene, α-methylstyrene, vinyltoluene, glycidyl methacrylate, acrylonitrile , Vinyl acetate, N-vinylpyrrolidone, tetrahydrofurfuryl methacrylate, polystyrene macromonomer, polymethyl methacrylate macromonomer, and the like, as N-substituted maleimide monomers described in JP-A-10-300922, jN-phenylmaleimide, N-cyclohexyl A maleimide etc. can be mentioned.
 (メタ)アクリル酸と共重合可能な他の単量体としては、下記式(A1)で表される繰り返し単位であることも好ましい。 The other monomer copolymerizable with (meth) acrylic acid is preferably a repeating unit represented by the following formula (A1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 R11は水素原子又はメチル基を表す。R12は炭素数2又は3のアルキレン基を表し、なかでも炭素数2が好ましい。R13は水素原子又は炭素数1~20のアルキル基を表す。n1は1~15の整数を表し、1~12が好ましい。上記式(A1)で表される繰り返し単位は、側鎖に存在するベンゼン環のπ電子の効果により粒子表面への吸着及び/又は配向性が良好となる。特に、この側鎖部分が、パラクミルフェノールのエチレンオキサイド又はプロピレンオキサイド構造をとる場合には、その立体的な効果も加わり、より良好な吸着及び/又は配向面を形成することができる。そのため、より効果が高く好ましい。
 R13は炭素数1~20のアルキル基であることが好ましく、炭素数が1~10であるアルキル基がより好ましい。これは、R13の炭素数が大きい場合、この基が障害となり樹脂同士の接近を抑制し吸着及び/又は配向を促進するが、大きすぎると逆にその効果までをも妨げてしまう場合があるためである。R13で表されるアルキル基としては、無置換のアルキル基又はフェニル基で置換されたアルキル基が好ましい。
R 11 represents a hydrogen atom or a methyl group. R 12 represents an alkylene group having 2 or 3 carbon atoms, and among them, 2 carbon atoms are preferable. R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. n1 represents an integer of 1 to 15, and preferably 1 to 12. The repeating unit represented by the above formula (A1) has good adsorption and / or orientation on the particle surface due to the effect of π electrons of the benzene ring present in the side chain. In particular, when this side chain portion has an ethylene oxide or propylene oxide structure of paracumylphenol, its steric effect is added, and a better adsorption and / or orientation plane can be formed. Therefore, it is more effective and preferable.
R 13 is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms. This is because when R 13 has a large number of carbon atoms, this group becomes an obstacle to suppress the approach between the resins and promote adsorption and / or orientation, but if it is too large, the effect may be hindered. Because. The alkyl group represented by R 13 is preferably an unsubstituted alkyl group or an alkyl group substituted with a phenyl group.
 本発明のシロキサン樹脂組成物には、アルカリ可溶性ポリエステル樹脂を用いてもよい。アルカリ可溶性ポリエステル樹脂を含有することにより得られる効果の作用機序は明らかでないが、芳香環を有するものはエステル基の分解性を低下させ、効果的な現像を可能にするものと思料される。 An alkali-soluble polyester resin may be used for the siloxane resin composition of the present invention. Although the action mechanism of the effect obtained by containing an alkali-soluble polyester resin is not clear, it is thought that those having an aromatic ring reduce the decomposability of the ester group and enable effective development.
 アルカリ可溶性ポリエステル樹脂の合成方法としては、多官能エポキシ化合物と多価カルボン酸化合物との重付加反応、又は、ポリオール化合物と二酸無水物との重付加反応、を経る方法が好ましい。ポリオール化合物としては、多官能エポキシ化合物とラジカル重合性基含有一塩基酸化合物との反応により得られたものが好ましい。重付加反応および付加反応に用いる触媒としては、例えば、テトラブチルアンモニウムアセテート等のアンモニウム系触媒;2,4,6-トリス(ジメチルアミノメチル)フェノール若しくはジメチルベンジルアミン等のアミノ系触媒;トリフェニルホスフィン等のリン系触媒;およびアセチルアセトネートクロム若しくは塩化クロム等のクロム系触媒等が挙げられる。 As a method for synthesizing the alkali-soluble polyester resin, a method of undergoing a polyaddition reaction between a polyfunctional epoxy compound and a polycarboxylic acid compound or a polyaddition reaction between a polyol compound and a dianhydride is preferable. As a polyol compound, what was obtained by reaction of a polyfunctional epoxy compound and a radically polymerizable group containing monobasic acid compound is preferable. Examples of the catalyst used in the polyaddition reaction and the addition reaction include ammonium catalysts such as tetrabutylammonium acetate; amino catalysts such as 2,4,6-tris (dimethylaminomethyl) phenol or dimethylbenzylamine; triphenylphosphine And a phosphorus catalyst such as acetylacetonate chromium or chromium chloride.
 アルカリ可溶性樹脂は23℃で0.1質量%以上の濃度のテトラメチルアンモニウムヒドロオキサイド(TMAH)水溶液に可溶であるものが好ましい。さらに1%質量%以上のTMAH水溶液に可溶であること、さらに2%以上のTMAH水溶液に可溶であることが好ましい。 The alkali-soluble resin is preferably soluble in a tetramethylammonium hydroxide (TMAH) aqueous solution at a concentration of 0.1% by mass or more at 23 ° C. Furthermore, it is preferable that it is soluble in 1% by mass or more of TMAH aqueous solution, and further it is soluble in 2% or more of TMAH aqueous solution.
 アルカリ可溶性樹脂の酸価としては好ましくは30~200mgKOH/g、より好ましくは50~150mgKOH/g、さらに好ましくは70~120mgKOH/gである。このような範囲とすることにより、未露光部の現像残渣を効果的に低減できる。
 アルカリ可溶性樹脂の重量平均分子量(Mw)としては、2,000~50,000が好ましく、5,000~30,000がさらに好ましく、7,000~20,000が特に好ましい。
 アルカリ可溶性樹脂の含有量としては、組成物の全固形分に対して、10~50質量%が好ましく、より好ましくは15~40質量%であり、特に好ましくは20~35質量%である。
 アルカリ可溶性樹脂は1種を単独で用いても2種以上を組み合わせて用いてもよい。
The acid value of the alkali-soluble resin is preferably 30 to 200 mgKOH / g, more preferably 50 to 150 mgKOH / g, still more preferably 70 to 120 mgKOH / g. By setting it as such a range, the image development residue of an unexposed part can be reduced effectively.
The weight average molecular weight (Mw) of the alkali-soluble resin is preferably 2,000 to 50,000, more preferably 5,000 to 30,000, and particularly preferably 7,000 to 20,000.
The content of the alkali-soluble resin is preferably 10 to 50% by mass, more preferably 15 to 40% by mass, and particularly preferably 20 to 35% by mass with respect to the total solid content of the composition.
An alkali-soluble resin may be used individually by 1 type, or may be used in combination of 2 or more type.
<重合禁止剤>
 本発明のシロキサン樹脂組成物には重合禁止剤を含有させてもよい。重合禁止剤としては、フェノール系水酸基含有化合物、N-オキシド化合物類、ピペリジン1-オキシルフリーラジカル化合物類、ピロリジン1-オキシルフリーラジカル化合物類、N-ニトロソフェニルヒドロキシルアミン類、ジアゾニウム化合物類、及びカチオン染料類、スルフィド基含有化合物類、ニトロ基含有化合物類、FeCl、CuCl等の遷移金属化合物類が挙げられる。重合禁止剤としては、具体的には、特開2010-106268号公報段落0260~0280(対応する米国特許出願公開第2011/0124824号明細書の[0284]~[0296])の説明を参酌でき、これらの内容は本願明細書に組み込まれる。
<Polymerization inhibitor>
The siloxane resin composition of the present invention may contain a polymerization inhibitor. Polymerization inhibitors include phenolic hydroxyl group-containing compounds, N-oxide compounds, piperidine 1-oxyl free radical compounds, pyrrolidine 1-oxyl free radical compounds, N-nitrosophenylhydroxylamines, diazonium compounds, and cations Examples include dyes, sulfide group-containing compounds, nitro group-containing compounds, transition metal compounds such as FeCl 3 and CuCl 2 . As the polymerization inhibitor, the description of JP 2010-106268 A paragraphs 0260 to 0280 (corresponding to [0284] to [0296] of the corresponding US Patent Application Publication No. 2011/0124824) can be referred to. The contents of which are incorporated herein by reference.
 重合禁止剤の好ましい添加量としては、重合開始剤100質量部に対して、0.01質量部以上10質量部以下であることが好ましく、更に0.01質量部以上8質量部以下であることが好ましく、0.05質量部以上5質量部以下の範囲にあることが最も好ましい。
 重合禁止剤は1種を単独で用いても2種以上を組み合わせて用いてもよい。
A preferable addition amount of the polymerization inhibitor is preferably 0.01 parts by mass or more and 10 parts by mass or less, and more preferably 0.01 parts by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the polymerization initiator. It is most preferable that it exists in the range of 0.05 mass part or more and 5 mass parts or less.
A polymerization inhibitor may be used individually by 1 type, or may be used in combination of 2 or more type.
<分散剤>
 分散剤としては、特開2007-277514号公報の請求項1(対応するUS2010/0233595の請求項1)の一般式(1)で表される高分子化合物が好ましい。特開2007-277514号公報(対応するUS2010/0233595)の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
<Dispersant>
As the dispersant, a polymer compound represented by the general formula (1) of claim 1 (corresponding claim 1 of US2010 / 0233595) of JP-A-2007-277514 is preferable. The description of JP 2007-277514 A (corresponding US 2010/0233595) can be referred to, and the contents thereof are incorporated in the present specification.
 上記一般式(1)で表される高分子化合物は、特に制限されないが、特開2007-277514号公報段落0114~0140及び0266~0348に記載の合成方法に準じて合成することができる。 The polymer compound represented by the general formula (1) is not particularly limited, but can be synthesized according to the synthesis methods described in paragraphs 0114 to 0140 and 0266 to 0348 of JP-A-2007-277514.
 分散剤の含有量としては、金属含有粒子100質量部に対して、10~1000質量部であることが好ましく、30~1000質量部がより好ましく、50~800質量部がさらに好ましい。また、組成物の全固形分に対しては、10~30質量%であることが好ましい。これらの分散剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。 The content of the dispersing agent is preferably 10 to 1000 parts by mass, more preferably 30 to 1000 parts by mass, and further preferably 50 to 800 parts by mass with respect to 100 parts by mass of the metal-containing particles. The total solid content of the composition is preferably 10 to 30% by mass. These dispersants may be used alone or in combination of two or more.
<界面活性剤>
 本発明のシロキサン樹脂組成物は、界面活性剤を含有してもよい。界面活性剤としては、例えば、シリコーン系界面活性剤、オルガノポリシロキサン系等のケイ素系界面活性剤、フッ素系界面活性剤、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウリレート若しくはポリエチレングリコールジステアレート等のノニオン系界面活性剤ポリアルキレンオキシド系界面活性剤、ポリ(メタ)アクリレート系界面活性剤又はアクリル系若しくはメタクリル系の重合物からなる界面活性剤が挙げられる。市販品の界面活性剤としては、例えば、“メガファック”(登録商標)F142D、F172、F173、F183、F445、F470、F475若しくはF477(いずれも大日本インキ化学工業(株)製)又はNBX-15若しくはFTX-218(いずれも(株)ネオス製)等のフッ素系界面活性剤、BYK-333、BYK-301、BYK-331、BYK-345若しくはBYK-307(いずれもビックケミー・ジャパン(株)製)等のシリコーン系界面活性剤が挙げられる。
<Surfactant>
The siloxane resin composition of the present invention may contain a surfactant. Examples of the surfactant include silicone surfactants, silicon surfactants such as organopolysiloxanes, fluorine surfactants, polyoxyethylene lauryl ether, polyoxyethylene oleyl ether, and polyoxyethylene octylphenyl ether. Nonionic surfactants such as polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate or polyethylene glycol distearate, polyalkylene oxide surfactants, poly (meth) acrylate surfactants, acrylic or methacrylic surfactants A surfactant made of a polymer is exemplified. Examples of commercially available surfactants include “Megafac” (registered trademark) F142D, F172, F173, F183, F445, F470, F475 or F477 (all manufactured by Dainippon Ink & Chemicals, Inc.) or NBX- 15 or FTX-218 (both manufactured by Neos Co., Ltd.) and other fluorine-based surfactants, BYK-333, BYK-301, BYK-331, BYK-345 or BYK-307 (all of which are Big Chemie Japan Co., Ltd.) And the like.
 界面活性剤の添加量は、特に限定されないが、組成物の固形成分中、1質量%以上が好ましく、1.5質量%以上がより好ましく、5質量%以上が特に好ましい。上限値も特に限定されないが、30質量%以下が好ましく、15質量%以下がより好ましい。
 界面活性剤は1種を単独で用いても2種以上を組み合わせて用いてもよい。
Although the addition amount of surfactant is not specifically limited, 1 mass% or more is preferable in a solid component of a composition, 1.5 mass% or more is more preferable, and 5 mass% or more is especially preferable. Although an upper limit is not specifically limited, 30 mass% or less is preferable and 15 mass% or less is more preferable.
Surfactant may be used individually by 1 type, or may be used in combination of 2 or more type.
 本発明のシロキサン樹脂組成物は、必要に応じて、その他、溶解抑止剤、安定剤又は消泡剤等の添加剤を含有しても構わない。 The siloxane resin composition of the present invention may contain other additives such as a dissolution inhibitor, a stabilizer, or an antifoaming agent, if necessary.
<現像液>
 現像液としては、アルカリ性溶液を用いることが好ましい。例えば、アルカリ性化合物の濃度を0.001~10質量%とすることが好ましく、0.01~5質量%とすることがより好ましい。アルカリ性化合物は、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム,ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシ、ベンジルトリメチルアンモニウムヒドロキシド、コリン、ピロール、ピペリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等が挙げられる。このうち、本発明においては、有機アルカリが好ましい。なお、アルカリ性水溶液を現像液として用いた場合は、一般に現像後に水で洗浄処理が施される。これらの現像液の中で好ましくは第四級アンモニウム塩、更に好ましくは、テトラメチルアンモニウムヒドロオキシド(TMAH)もしくはコリンである。
 現像液は1種を単独で用いてもよいが、2種以上を組み合わせて用いてもよい。
<Developer>
As the developer, an alkaline solution is preferably used. For example, the concentration of the alkaline compound is preferably 0.001 to 10% by mass, and more preferably 0.01 to 5% by mass. Alkaline compounds include, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxy , Tetrabutylammonium hydroxy, benzyltrimethylammonium hydroxide, choline, pyrrole, piperidine, 1,8-diazabicyclo [5.4.0] -7-undecene and the like. Among these, in this invention, an organic alkali is preferable. In the case where an alkaline aqueous solution is used as a developer, a washing treatment with water is generally performed after development. Among these developers, quaternary ammonium salts are preferable, and tetramethylammonium hydroxide (TMAH) or choline is more preferable.
One developer may be used alone, or two or more developers may be used in combination.
 なお、本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、上記化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本明細書において置換・無置換を明記していない置換基(連結基についても同様)については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等、ただしアルキル基というときには通常シクロアルキル基を含む意味である。)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、テトラヒドロピラン、テトラヒドロフラン、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル、ピロリドン基等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素原子数6~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル等)、アリーロイル基(好ましくは炭素原子数7~23のアリーロイル基、例えば、ベンゾイル等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ等)、アリーロイルオキシ基(好ましくは炭素原子数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルチオ基(好ましくは炭素原子数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素原子数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルスルホニル基(好ましくは炭素原子数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素原子数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素原子数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素原子数6~42のアリールシリル基、例えば、トリフェニルシリル等)、ホスホリル基(好ましくは炭素原子数0~20のホスホリル基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素原子数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素原子数0~20のホスフィニル基、例えば、-P(R)、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルイミノ基((メタ)クリルアミド基)、ヒドロキシル基、チオール基、カルボキシル基、リン酸基、ホスホン酸基、スルホン酸基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。
 また、これらの置換基Tで挙げた各基は、上記の置換基Tがさらに置換していてもよい。
 また、上記置換基が酸性基または塩基性基のときはその塩を形成していてもよい。
 化合物ないし置換基・連結基等がアルキル基・アルキレン基、アルケニル基・アルケニレン基、アルキニル基・アルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。
 本明細書で規定される各置換基は、本発明の効果を奏する範囲で下記の連結基Lを介在して置換されていても、その構造中に連結基Lが介在していてもよい。たとえば、アルキル基・アルキレン基、アルケニル基・アルケニレン基等はさらに構造中に下記のヘテロ連結基を介在していてもよい。
 連結基Lとしては、炭化水素連結基〔炭素数1~10のアルキレン基(より好ましくは炭素数1~6、さらに好ましくは1~3)、炭素数2~10のアルケニレン基(より好ましくは炭素数2~6、さらに好ましくは2~4)、炭素数2~10のアルキニレン基(より好ましくは炭素数2~6、さらに好ましくは2~4)、炭素数6~22のアリーレン基(より好ましくは炭素数6~10)、またはこれらの組合せ〕、ヘテロ連結基〔カルボニル基(-CO-)、チオカルボニル基(-CS-)、エーテル基(-O-)、チオエーテル基(-S-)、イミノ基(-NR-)、ポリスルフィド基(Sの数が1~8個)、イミン連結基(R-N=C<,-N=C(R)-)、スルホニル基(-SO-)、スルフィニル基(-SO-)、リン酸連結基(-O-P(OH)(O)-O-)、ホスホン酸連結基(-P(OH)(O)-O-)、またはこれらの組合せ〕、またはこれらを組み合せた連結基が好ましい。なお、縮合して環を形成する場合には、上記炭化水素連結基が、二重結合や三重結合を適宜形成して連結していてもよい。形成される環として好ましくは、5員環または6員環が好ましい。5員環としては含窒素の5員環が好ましく、その環をなす化合物として例示すれば、ピロール、イミダゾール、ピラゾール、インダゾール、インドール、ベンゾイミダゾール、ピロリジン、イミダゾリジン、ピラゾリジン、インドリン、カルバゾール、またはこれらの誘導体などが挙げられる。6員環としては、ピペリジン、モルホリン、ピペラジン、またはこれらの誘導体などが挙げられる。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、同様に置換されていても無置換でもよい。
 Rは水素原子または置換基である。置換基としては、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましく、1~3が特に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アルキニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アラルキル基(炭素数7~22が好ましく、7~14がより好ましく、7~10が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)が好ましい。
 Rは水素原子、ヒドロキシル基、または置換基である。置換基としては、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましく、1~3が特に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アルキニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アラルキル基(炭素数7~22が好ましく、7~14がより好ましく、7~10が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、アルコキシ基(炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましく、1~3が特に好ましい)、アルケニルオキシ基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アルキニルオキシ基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アラルキルオキシ基(炭素数7~22が好ましく、7~14がより好ましく、7~10が特に好ましい)、アリールオキシ基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、が好ましい。
 連結基Lを構成する原子の数は、1~36であることが好ましく、1~24であることがより好ましく、1~12であることがさらに好ましく、1~6であることが特に好ましい。連結基の連結原子数は10以下であることが好ましく、8以下であることがより好ましい。下限としては、1以上である。上記連結原子数とは所定の構造部間を結ぶ経路に位置し連結に関与する最少の原子数を言う。たとえば、-CH-C(=O)-O-の場合、連結基を構成する原子の数は6となるが、連結原子数は3となる。
 具体的に連結基の組合せとしては、以下のものが挙げられる。オキシカルボニル基(-OCO-)、カーボネート基(-OCOO-)、アミド基(-CONH-)、ウレタン基(-NHCOO-)、ウレア基(-NHCONH-)、(ポリ)アルキレンオキシ基(-(Lr-O)x-)、カルボニル(ポリ)オキシアルキレン基(-CO-(O-Lr)x-、カルボニル(ポリ)アルキレンオキシ基(-CO-(Lr-O)x-)、カルボニルオキシ(ポリ)アルキレンオキシ基(-COO-(Lr-O)x-)、(ポリ)アルキレンイミノ基(-(Lr-NR)x)、アルキレン(ポリ)イミノアルキレン基(-Lr-(NR-Lr)x-)、カルボニル(ポリ)イミノアルキレン基(-CO-(NR-Lr)x-)、カルボニル(ポリ)アルキレンイミノ基(-CO-(Lr-NR)x-)、(ポリ)エステル基(-(CO-O-Lr)x-、-(O-CO-Lr)x-、-(O-Lr-CO)x-、-(Lr-CO-O)x-、-(Lr-O-CO)x-)、(ポリ)アミド基(-(CO-NR-Lr)x-、-(NR-CO-Lr)x-、-(NR-Lr-CO)x-、-(Lr-CO-NR)x-、-(Lr-NR-CO)x-)などである。xは1以上の整数であり、1~500が好ましく、1~100がより好ましい。
 Lrはアルキレン基、アルケニレン基、アルキニレン基が好ましい。Lrの炭素数は、1~12が好ましく、1~6がより好ましく、1~3が特に好ましい。複数のLrやR、R、x等は同じである必要はない。連結基の向きは上記の記載により限定されず、適宜所定の化学式に合わせた向きで理解すればよい。
In addition, in this specification, it uses for the meaning containing the salt and its ion other than the said compound itself about the display of a compound (For example, when attaching | subjecting and attaching | subjecting a compound and an end). In addition, it is meant to include derivatives in which a part thereof is changed, such as introduction of a substituent, within a range where a desired effect is exhibited.
In the present specification, a substituent that does not specify substitution / non-substitution (the same applies to a linking group) means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution. Preferred substituents include the following substituent T.
Examples of the substituent T include the following.
An alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl A group (preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like), an alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like), A cycloalkyl group (preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc., but the alkyl group usually means a cycloalkyl group), aryl Group (preferably having 6 to 2 carbon atoms) Aryl groups such as phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.), heterocyclic groups (preferably heterocyclic groups having 2 to 20 carbon atoms, preferably at least 1 A 5- or 6-membered heterocyclic group having one oxygen atom, sulfur atom or nitrogen atom is preferred, and examples thereof include tetrahydropyran, tetrahydrofuran, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzoimidazolyl, 2-thiazolyl, 2-oxazolyl, pyrrolidone group, etc.), alkoxy groups (preferably alkoxy groups having 1-20 carbon atoms, such as methoxy, ethoxy, isopropyloxy, benzyloxy etc.), aryloxy groups (preferably 6-26 carbon atoms). Aryloxy groups such as phenoxy, 1-naphthylo Si, 3-methylphenoxy, 4-methoxyphenoxy, etc.), alkoxycarbonyl groups (preferably alkoxycarbonyl groups having 2 to 20 carbon atoms, such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.), aryloxycarbonyl groups (preferably Is an aryloxycarbonyl group having 6 to 26 carbon atoms, such as phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-methylphenoxycarbonyl, 4-methoxyphenoxycarbonyl, etc., an amino group (preferably having 0 to 20 carbon atoms) Including amino group, alkylamino group, arylamino group, for example, amino, N, N-dimethylamino, N, N-diethylamino, N-ethylamino, anilino, etc.), sulfamoyl group (preferably having 0 to 20 carbon atoms) The sulfamoyl A group such as N, N-dimethylsulfamoyl, N-phenylsulfamoyl, etc.), an acyl group (preferably an acyl group having 1 to 20 carbon atoms such as acetyl, propionyl, butyryl, etc.), an aryloyl group ( Preferably an aryloyl group having 7 to 23 carbon atoms, such as benzoyl, an acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms, such as acetyloxy), an aryloyloxy group (preferably having a carbon number) 7 to 23 aryloyloxy groups such as benzoyloxy), carbamoyl groups (preferably carbamoyl groups having 1 to 20 carbon atoms such as N, N-dimethylcarbamoyl, N-phenylcarbamoyl etc.), acylamino groups ( Preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino Benzoylamino and the like), an alkylthio group (preferably an alkylthio group having 1 to 20 carbon atoms, such as methylthio, ethylthio, isopropylthio, benzylthio and the like), an arylthio group (preferably an arylthio group having 6 to 26 carbon atoms, such as Phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc.), alkylsulfonyl groups (preferably alkylsulfonyl groups having 1 to 20 carbon atoms, such as methylsulfonyl, ethylsulfonyl, etc.), arylsulfonyl groups (Preferably an arylsulfonyl group having 6 to 22 carbon atoms, such as benzenesulfonyl), an alkylsilyl group (preferably an alkylsilyl group having 1 to 20 carbon atoms, such as monomethylsilyl, dimethylsilyl, trimethylsilyl, Ethylsilyl, etc.), arylsilyl groups (preferably arylsilyl groups having 6 to 42 carbon atoms, such as triphenylsilyl), phosphoryl groups (preferably phosphoryl groups having 0 to 20 carbon atoms, such as —OP (= O) (R P ) 2 ), a phosphonyl group (preferably a phosphonyl group having 0 to 20 carbon atoms, such as —P (═O) (R P ) 2 ), a phosphinyl group (preferably having 0 to 20 carbon atoms). Phosphinyl groups such as —P (R P ) 2 ), (meth) acryloyl groups, (meth) acryloyloxy groups, (meth) acryloylimimino groups ((meth) acrylamido groups), hydroxyl groups, thiol groups, carboxyl groups , Phosphoric acid group, phosphonic acid group, sulfonic acid group, cyano group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom) Is mentioned.
In addition, each of the groups listed as the substituent T may be further substituted with the substituent T described above.
Moreover, when the said substituent is an acidic group or a basic group, the salt may be formed.
When a compound or a substituent / linking group includes an alkyl group / alkylene group, an alkenyl group / alkenylene group, an alkynyl group / alkynylene group, etc., these may be cyclic or linear, and may be linear or branched These may be substituted as described above or may be unsubstituted.
Each substituent defined in the present specification may be substituted through the following linking group L within the scope of the effects of the present invention, or the linking group L may be present in the structure thereof. For example, the alkyl group / alkylene group, alkenyl group / alkenylene group and the like may further have the following hetero-linking group interposed in the structure.
The linking group L includes a hydrocarbon linking group [an alkylene group having 1 to 10 carbon atoms (more preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), an alkenylene group having 2 to 10 carbon atoms (more preferably carbon atoms). 2 to 6, more preferably 2 to 4), an alkynylene group having 2 to 10 carbon atoms (more preferably 2 to 6, more preferably 2 to 4 carbon atoms), and an arylene group having 6 to 22 carbon atoms (more preferably Is a carbon number 6-10), or a combination thereof], hetero-linking group [carbonyl group (—CO—), thiocarbonyl group (—CS—), ether group (—O—), thioether group (—S—) , Imino group (—NR N —), polysulfide group (the number of S is 1 to 8), imine linking group (R N —N═C <, —N═C (R N ) —), sulfonyl group (— SO 2 -), a sulfinyl group (-SO- , A phosphate linking group (—O—P (OH) (O) —O—), a phosphonic acid linking group (—P (OH) (O) —O—), or a combination thereof), or a combination thereof A linking group is preferred. In addition, when condensing and forming a ring, the said hydrocarbon coupling group may form the double bond and the triple bond suitably, and may connect. The ring to be formed is preferably a 5-membered ring or a 6-membered ring. As the five-membered ring, a nitrogen-containing five-membered ring is preferable, and examples of the compound forming the ring include pyrrole, imidazole, pyrazole, indazole, indole, benzimidazole, pyrrolidine, imidazolidine, pyrazolidine, indoline, carbazole, or these And derivatives thereof. Examples of the 6-membered ring include piperidine, morpholine, piperazine, and derivatives thereof. Moreover, when an aryl group, a heterocyclic group, etc. are included, they may be monocyclic or condensed and may be similarly substituted or unsubstituted.
RN is a hydrogen atom or a substituent. Examples of the substituent include an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), and an alkenyl group (preferably having 2 to 24 carbon atoms and 2 carbon atoms). To 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is particularly preferable, and an alkynyl group (2 to 24 carbon atoms is preferable, 2 to 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is Particularly preferred), an aralkyl group (preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, 6 to 14 carbon atoms). 10 is particularly preferred).
RP is a hydrogen atom, a hydroxyl group, or a substituent. Examples of the substituent include an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), and an alkenyl group (preferably having 2 to 24 carbon atoms and 2 carbon atoms). To 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is particularly preferable, and an alkynyl group (2 to 24 carbon atoms is preferable, 2 to 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is Particularly preferred), an aralkyl group (preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, 6 to 14 carbon atoms). 10 is particularly preferred), an alkoxy group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12, more preferably 1 to 6 and particularly preferably 1 to 3), an alkenyloxy group (having carbon number). To 24, more preferably 2 to 12, more preferably 2 to 6, particularly preferably 2 to 3, and an alkynyloxy group (preferably having 2 to 24 carbon atoms, more preferably 2 to 12 and more preferably 2 to 6). More preferably, 2 to 3 are particularly preferred), an aralkyloxy group (preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms), an aryloxy group (preferably 6 to 22 carbon atoms, 6 to 14 are more preferable, and 6 to 10 are particularly preferable.
The number of atoms constituting the linking group L is preferably 1 to 36, more preferably 1 to 24, still more preferably 1 to 12, and particularly preferably 1 to 6. The number of linking atoms in the linking group is preferably 10 or less, and more preferably 8 or less. The lower limit is 1 or more. The number of connected atoms refers to the minimum number of atoms that are located in a path connecting predetermined structural portions and are involved in the connection. For example, in the case of —CH 2 —C (═O) —O—, the number of atoms constituting the linking group is 6, but the number of linking atoms is 3.
Specific examples of combinations of linking groups include the following. Oxycarbonyl group (—OCO—), carbonate group (—OCOO—), amide group (—CONH—), urethane group (—NHCOO—), urea group (—NHCONH—), (poly) alkyleneoxy group (— ( Lr-O) x-), carbonyl (poly) oxyalkylene group (-CO- (O-Lr) x-, carbonyl (poly) alkyleneoxy group (-CO- (Lr-O) x-), carbonyloxy ( Poly) alkyleneoxy group (—COO— (Lr—O) x—), (poly) alkyleneimino group (— (Lr—NR N ) x), alkylene (poly) iminoalkylene group (—Lr— (NR N —) lr) x-), carbonyl (poly) iminoalkylene group (-CO- (NR N -Lr) x- ), carbonyl (poly) alkyleneimino group (-CO- (lr-NR N) -), (Poly) ester group (-(CO-O-Lr) x-,-(O-CO-Lr) x-,-(O-Lr-CO) x-,-(Lr-CO-O) x-,-(Lr-O-CO) x-), (poly) amide group (-(CO-NR N -Lr) x-,-(NR N -CO-Lr) x-,-(NR N- Lr-CO) x-,-(Lr-CO-NR N ) x-,-(Lr-NR N -CO) x-), etc. x is an integer of 1 or more, preferably 1 to 500, 1 to 100 is more preferable.
Lr is preferably an alkylene group, an alkenylene group or an alkynylene group. The carbon number of Lr is preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 3. A plurality of Lr, R N , R P , x, etc. need not be the same. The direction of the linking group is not limited by the above description, and may be understood as appropriate according to a predetermined chemical formula.
<透明硬化物の形成>
 本発明のシロキサン樹脂組成物を用いた透明硬化物(膜)の形成方法について、例を挙げて説明する。シロキサン樹脂組成物を塗布液とした際には、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング又はスリットコーティング等の公知の方法によって下地基板上に塗布することができる。その後、ホットプレート又はオーブン等の加熱装置でプリベークし、膜を形成することができる。プリベークは、50~150℃で30秒~30分間行うことが好ましい。プリベーク後の膜厚は、0.1~15μmとすることが好ましい。
<Formation of transparent cured product>
An example is given and demonstrated about the formation method of transparent hardened | cured material (film | membrane) using the siloxane resin composition of this invention. When the siloxane resin composition is used as a coating solution, it can be applied on a base substrate by a known method such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating or slit coating. . Then, it can pre-bake with heating apparatuses, such as a hot plate or oven, and a film | membrane can be formed. Prebaking is preferably performed at 50 to 150 ° C. for 30 seconds to 30 minutes. The film thickness after pre-baking is preferably 0.1 to 15 μm.
 プリベーク後、例えば、ステッパ、ミラープロジェクションマスクアライナー(MPA)又はパラレルライトマスクアライナー(以下、PLA)等の露光機を用いて、10~4000J/m程度(波長365nm露光量換算)の光を所望のマスクを介して又は介さずに照射する。露光光源(活性放射線)に制限はなく、i線(波長365nm)、g線(波長436nm)、もしくはh線(波長405nm)等の紫外線、KrF(波長248nm)レーザー又はArF(波長193nm)レーザー等を用いることができる。その後、この膜をホットプレート又はオーブン等の加熱装置を用いて、150~450℃で1時間程度加熱する露光後ベークを行っても構わない。本発明においては中でもi線を用いることが好ましい。 After pre-baking, for example, using an exposure machine such as a stepper, mirror projection mask aligner (MPA) or parallel light mask aligner (hereinafter referred to as PLA), light of about 10 to 4000 J / m 2 (wavelength 365 nm exposure amount conversion) is desired. Irradiate through or without the mask. The exposure light source (active radiation) is not limited, and ultraviolet rays such as i-line (wavelength 365 nm), g-line (wavelength 436 nm), or h-line (wavelength 405 nm), KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, etc. Can be used. Thereafter, post-exposure baking may be performed by heating the film at 150 to 450 ° C. for about 1 hour using a heating device such as a hot plate or an oven. In the present invention, it is particularly preferable to use i-line.
 パターニング露光後、現像により非露光部が溶解し、ネガ型パターンを得ることができる。現像方法としては、シャワー、ディッピング又はパドル等の方法で、現像液に5秒~10分間浸漬する方法が好ましい。現像液としては、先に例示したものが挙げられる。現像後は、膜を水でリンスすることが好ましい。続いて50~150℃で乾燥ベークを行ってもよい。その後、この膜をホットプレート又はオーブン等の加熱装置を用いて、120~280℃で1時間程度熱硬化することにより、硬化物(膜)が得られる。
 固体撮像素子に組み込まれる透明画素などは、このような手順で基板上に形成することができる。
After patterning exposure, the unexposed portion is dissolved by development, and a negative pattern can be obtained. As a developing method, a method of immersing in a developing solution for 5 seconds to 10 minutes by a method such as shower, dipping or paddle is preferable. Examples of the developer include those exemplified above. After development, the film is preferably rinsed with water. Subsequently, dry baking may be performed at 50 to 150 ° C. Thereafter, the film is thermally cured at 120 to 280 ° C. for about 1 hour using a heating device such as a hot plate or an oven to obtain a cured product (film).
Transparent pixels and the like incorporated in the solid-state imaging device can be formed on the substrate in such a procedure.
 得られる硬化物(膜)の膜厚は、0.1~10μmが好ましい。リーク電流は10-6A/cm以下、比誘電率は6.0以上であることが好ましい。 The thickness of the resulting cured product (film) is preferably 0.1 to 10 μm. The leakage current is preferably 10 −6 A / cm 2 or less, and the relative dielectric constant is preferably 6.0 or more.
 本発明のシロキサン樹脂組成物の硬化物(膜)の屈折率は1.65以上であることが好ましく、1.70以上であることがより好ましく、1.75以上であることが特に好ましい。上限は特にないが、2.20以下であることが実際的である。屈折率は特に断らない限り、後記実施例で測定した条件によるものとする。 The refractive index of the cured product (film) of the siloxane resin composition of the present invention is preferably 1.65 or more, more preferably 1.70 or more, and particularly preferably 1.75 or more. Although there is no upper limit in particular, it is practical that it is 2.20 or less. Unless otherwise specified, the refractive index is based on the conditions measured in Examples described later.
 本発明のシロキサン樹脂組成物の硬化膜は透明性が高いことが好ましい。可視光の透過率で90%以上であることが好ましく、93%以上であることがより好ましく、95%以上であることが特に好ましい。上限は特にないが、99%以下であることが実際的である。可視光の透過率は特に断らない限り、後記実施例で測定した条件によるものとする。 The cured film of the siloxane resin composition of the present invention preferably has high transparency. The visible light transmittance is preferably 90% or more, more preferably 93% or more, and particularly preferably 95% or more. There is no particular upper limit, but it is practical that it is 99% or less. Unless otherwise specified, the visible light transmittance is based on the conditions measured in the examples described later.
 本発明のシロキサン樹脂組成物を硬化して得られる硬化膜は、固体撮像素子のマイクロレンズや透明画素として特に好適に用いることができる。 The cured film obtained by curing the siloxane resin composition of the present invention can be particularly suitably used as a microlens or a transparent pixel of a solid-state imaging device.
<マイクロレンズアレイの形成方法>
 マイクロレンズの形成方法の一形態としてマイクロレンズアレイの形成工程の一例について説明する。必要により凹凸のある素子の表面などを透明樹脂のスピンコートで埋め込み平坦化しておく。平坦化した表面にレンズ材料を均一に塗布する。レンズ材料の上にレジストを均一に塗布する。ステッパ装置でレチクルをマスクとして紫外線照射を行い、レンズ間スペースの部分を露光する。現像液で感光した部分を分解除去しパターン形成する。加熱することにより、半球状のパターンを得る。このときレジストは溶融し液相となり、半球状態になった後、固相に変化する。その後、ドライエッチングによりレンズ材料の層をエッチングする。このようにして半球状のレンズが配列されたレンズアレイを形成することができる。
 レンズアレイの形成工程の別の実施形態としては、上記のレジストの使用を省略し、レンズ材料を露光によりパターン化する方法が挙げられる。この実施形態では、パターン化したレンズ材料をそのまま溶融し、半球状のレンズを得る。
<Method for forming microlens array>
An example of a microlens array forming process will be described as an embodiment of a microlens forming method. If necessary, the surface of an uneven element is filled with a transparent resin spin coat and planarized. A lens material is uniformly applied to the flattened surface. A resist is uniformly applied on the lens material. The stepper device irradiates ultraviolet rays using the reticle as a mask to expose the space between the lenses. A pattern is formed by disassembling and removing the portion exposed to the developer. A hemispherical pattern is obtained by heating. At this time, the resist melts into a liquid phase, becomes a hemispherical state, and then changes to a solid phase. Thereafter, the lens material layer is etched by dry etching. In this way, a lens array in which hemispherical lenses are arranged can be formed.
As another embodiment of the lens array forming step, there is a method in which the use of the resist is omitted and the lens material is patterned by exposure. In this embodiment, the patterned lens material is melted as it is to obtain a hemispherical lens.
<固体撮像素子>
 本発明の好ましい実施形態に係る固体撮像素子は、本発明のシロキサン樹脂組成物の硬化物からなる透明画素および/またはマイクロレンズを有してなる。半導体受光ユニット上にレンズユニットを有し、レンズアレイ部材とカラーフィルタが隣接するように組み込まれる。受光素子は透明樹脂膜、レンズ、及びカラーフィルタの順に通過する光を受光し、イメージセンサーとして機能する。具体的には、透明樹脂膜が反射防止膜として機能し、レンズの集光効率を向上させ、レンズによって効率的に集められた光がカラーフィルタを介して受光素子に検知される。これらがRGBそれぞれに対応する光を検知する素子の全般に渡って機能する。そのため、受光素子とレンズとが高密度に配列されている場合でも、極めて鮮明な画像を得ることができる。上記のレンズやRGBの画素配列に介在させる透明画素として本発明のシロキサン樹脂組成物の硬化物を好適に利用することができる。
<Solid-state imaging device>
A solid-state imaging device according to a preferred embodiment of the present invention includes a transparent pixel and / or a microlens made of a cured product of the siloxane resin composition of the present invention. A lens unit is provided on the semiconductor light receiving unit, and the lens array member and the color filter are incorporated so as to be adjacent to each other. The light receiving element receives light passing through the transparent resin film, the lens, and the color filter in this order, and functions as an image sensor. Specifically, the transparent resin film functions as an antireflection film, improves the light collection efficiency of the lens, and the light efficiently collected by the lens is detected by the light receiving element via the color filter. These function over the whole element which detects the light corresponding to RGB. Therefore, even when the light receiving elements and the lenses are arranged with high density, an extremely clear image can be obtained. The cured product of the siloxane resin composition of the present invention can be suitably used as a transparent pixel interposed in the lens or RGB pixel array.
 レンズアレイを適用した固体撮像素子の例として、特開2007-119744号公報に記載のものが挙げられる。具体的には、半導体基板の表面に形成されたCCD領域や光電変換部の間に転送電極を有しており、その上には層間膜を介して遮光膜が形成されている。遮光膜の上には、BPSG(Boro-Phospho-Silicate Glass)等による層間絶縁膜、パッシベーション膜及びアクリル系樹脂等による低屈折率の透明平坦化膜が積層され、その上に、R.G.B.が組み合わされたカラーフィルタが形成されている。さらに保護膜を介して、受光領域である光電変換部の上方に位置するようにマイクロレンズが多数配列して形成されてなる。 Examples of solid-state imaging devices to which a lens array is applied include those described in Japanese Patent Application Laid-Open No. 2007-119744. Specifically, a transfer electrode is provided between a CCD region and a photoelectric conversion unit formed on the surface of the semiconductor substrate, and a light shielding film is formed thereon via an interlayer film. On the light shielding film, an interlayer insulating film made of BPSG (Boro-Phospho-Silicate Glass), a passivation film, a transparent planarizing film having a low refractive index made of acrylic resin, and the like are laminated. G. B. Are combined to form a color filter. Further, a large number of microlenses are arranged so as to be positioned above the photoelectric conversion portion which is a light receiving region via a protective film.
 以下に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例により限定して解釈されるものではない。なお、本実施例において「部」及び「%」とは特に断らない限りいずれも質量基準である。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not construed as being limited to these examples. In this example, “part” and “%” are based on mass unless otherwise specified.
<実施例1・比較例1>
 (微粒子の水分散ゾル(E-1)の調製)
 四塩化チタンをTiO換算基準で7.75質量%含む四塩化チタン水溶液7.60kgと、アンモニアを15質量%含むアンモニア水2.91kgとを混合し、pH9.5の白色スラリー液を調製した。次いで、この白色スラリー液を濾過した後、イオン交換水で洗浄して、固形分含有量が10質量%の含水チタン酸ケーキ6.21kgを得た。
 次に、このケーキに、過酸化水素を35質量%含む過酸化水素水7.10kgと、イオン交換水20.00kgとを加えた後、80℃の温度で1時間、撹拌下で加熱し、さらにイオン交換水28.90kgを加えて、過酸化チタン酸をTiO換算基準で1質量%含む過酸化チタン酸水溶液を62.24kg得た。この過酸化チタン酸水溶液は、透明な黄褐色でpHは8.5であった。
 次いで、上記過酸化チタン酸水溶液62.20kgに陽イオン交換樹脂(三菱化学(株)製)3.00kgを混合して、これに、スズ酸カリウムをSnO換算基準で1質量%含むスズ酸カリウム水溶液7.79kgを撹拌下で徐々に添加した。
 次に、カリウムイオンなどを取り込んだ陽イオン交換樹脂を分離した後、この混合水溶液をオートクレーブ中で168℃の温度で20時間、加熱した。
 次に、得られた混合水溶液を室温まで冷却した後、限外濾過膜装置で濃縮して、固形分含有量が10質量%の微粒子の水分散ゾル(E-1)7.02kgを得た。
 このようにして得られた金属酸化物微粒子を含む水分散ゾル(E-1)は透明な乳白色であった。
 この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO 87.5質量%、SnO 10.6質量%およびKO 1.8質量%であった。
<Example 1 and Comparative Example 1>
(Preparation of fine particle water dispersion sol (E-1))
A white slurry liquid having a pH of 9.5 was prepared by mixing 7.60 kg of an aqueous titanium tetrachloride solution containing 7.75% by mass of titanium tetrachloride on a TiO 2 basis and 2.91 kg of aqueous ammonia containing 15% by mass of ammonia. . Next, this white slurry was filtered and then washed with ion-exchanged water to obtain 6.21 kg of a hydrous titanate cake having a solid content of 10% by mass.
Next, 7.10 kg of hydrogen peroxide containing 35% by mass of hydrogen peroxide and 20.00 kg of ion exchange water were added to this cake, and then heated at 80 ° C. for 1 hour with stirring. Further, 28.90 kg of ion-exchanged water was added to obtain 62.24 kg of an aqueous solution of titanic acid peroxide containing 1% by mass of titanic acid peroxide in terms of TiO 2 . This aqueous solution of titanic acid peroxide was transparent yellowish brown and had a pH of 8.5.
Next, 62.20 kg of the above-mentioned aqueous solution of titanic acid titanate was mixed with 3.00 kg of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation), and stannic acid containing 1% by mass of potassium stannate in terms of SnO 2 conversion. 7.79 kg of aqueous potassium solution was gradually added with stirring.
Next, after separating the cation exchange resin which took in potassium ion etc., this mixed aqueous solution was heated in the autoclave at the temperature of 168 degreeC for 20 hours.
Next, the obtained mixed aqueous solution was cooled to room temperature and then concentrated with an ultrafiltration membrane device to obtain 7.02 kg of an aqueous dispersion sol (E-1) of fine particles having a solid content of 10% by mass. .
The water-dispersed sol (E-1) containing the metal oxide fine particles thus obtained was transparent and milky white.
When the content of the metal component contained in the metal oxide fine particles was measured, TiO 2 87.5% by mass, SnO 2 10.6% by mass, and K 2 O It was 8 mass%.
 (表面処理金属酸化物微粒子の水分散ゾル(EZ-1)の調製)
 上記で得られた微粒子の水分散ゾル(E-1)7.02kgに、水酸化カリウム水溶液でpHを7.0に調整しながらZrO質量換算で3.6%濃度のオキシ塩化ジルコニウム八水和物水溶液1.54kgを徐々に添加し、40℃にて1時間で攪拌混合して、ジルコニウムで表面処理された金属酸化物微粒子の水分散液を得た。このとき、ジルコニウムの量は微粒子中に含まれる金属元素に対して酸化物換算基準で5.0モル%であった。
 次いで、ジルコニウムで表面処理金属酸化物微粒子の水分散液8.51kgをスプレードライヤー(NIRO社製NIRO ATOMIZER)にて噴霧乾燥した。これにより、平均粒子径が約2μmの表面処理金属酸化物微粒子からなる乾燥粉体0.90kgを得た。
 次に、上記で得られた表面処理金属酸化物微粒子の乾燥粉体0.90kgを、空気雰囲気下、500℃の温度にて2時間焼成して、表面処理金属酸化物微粒子の焼成粉体0.83kgを得た。
 上記で得られた表面処理金属酸化物微粒子の焼成粉体0.20kgを純水0.18kgに分散させ、これに、濃度28.6%の酒石酸水溶液0.13kg、濃度50質量%のKOH水溶液0.06kgを加えて充分攪拌した。
 次に、粒子径0.1mmのアルミナビーズ(大明化学工業(株)製 高純度アルミナビース)を加え、これを湿式粉砕機(カンペ(株)製バッチ式卓上サンドミル)に供して180分間、上記表面処理金属酸化物微粒子(チタニア系複合酸化物微粒子)の焼成粉体の粉砕及び分散処理を行った。その後、アルミナビーズを目開き44μmのステンレス製フィルターを用いて分離・除去したのち、さらに純水1.38kgを添加して撹拌し、固形分含有量が11.0質量%の表面処理金属酸化物微粒子の水分散液1.70kgを得た。 次に、この水分散液を、限外濾過膜を用いてイオン交換水で洗浄した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)0.09kgを加えて脱イオン処理をした。次いで、遠心分離機(日立工機(株)製CR-21G)に供して11,000rpmの速度で1時間処理した後、イオン交換水を添加して固形分濃度10質量%の表面処理金属酸化物微粒子の水分散ゾル(EZ-1)1.86kgを調製した。
 さらに、この表面処理金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO 82.6質量%、SnO 10.3質量%、ZrO 4.9質量%および KO 2.2質量%であった(TiOは79.87g/mol、ZrOは123.2g/molであり、上記の配合におけるTi/Zr(モル比)は26となる)。
 次に、冷却した後に限外濾過膜装置(旭化成(株)製濾過膜、SIP-1013)を用いて分散媒を水からメタノールに置換してコアシェル型無機酸化物微粒子のメタノール分散液(EM-1)0.32kgを得た。その結果、得られたメタノール分散液中に含まれる固形分濃度は約30質量%であり、水分含有量は0.28質量%であった。
 次にこのメタノール分散液(EM-1)0.30kgにプロピレングリコールモノメチルエーテルアセテート(PGMEA)0.095kg、ジアセトンアルコール(DAA)0.038kgを加えた後、バス温100℃で加熱攪拌して、分散液中のメタノールを取り除き、PGMEA/DAA分散液(EP-1)を0.30kg調製した。このときの分散液中の固形分濃度は40質量%であった。
(Preparation of water-dispersed sol (EZ-1) of surface-treated metal oxide fine particles)
The aqueous dispersion sol (E-1) of fine particles obtained as described above was added to 7.02 kg of zirconium oxychloride octahydrochloride having a concentration of 3.6% in terms of ZrO 2 while adjusting the pH to 7.0 with an aqueous potassium hydroxide solution. 1.54 kg of the aqueous solution of the hydrate was gradually added and stirred and mixed at 40 ° C. for 1 hour to obtain an aqueous dispersion of metal oxide fine particles surface-treated with zirconium. At this time, the amount of zirconium was 5.0 mol% in terms of oxide with respect to the metal element contained in the fine particles.
Subsequently, 8.51 kg of an aqueous dispersion of surface-treated metal oxide fine particles with zirconium was spray-dried with a spray dryer (NIRO ATOMIZER manufactured by NIRO). As a result, 0.90 kg of a dry powder composed of surface-treated metal oxide fine particles having an average particle diameter of about 2 μm was obtained.
Next, 0.90 kg of the dry powder of the surface-treated metal oxide fine particles obtained above was calcined for 2 hours at a temperature of 500 ° C. in an air atmosphere, and the calcined powder of the surface-treated metal oxide fine particles 0 .83 kg was obtained.
0.20 kg of the sintered powder of the surface-treated metal oxide particles obtained above was dispersed in 0.18 kg of pure water, and 0.13 kg of a 28.6% concentration tartaric acid aqueous solution and a 50% by mass KOH aqueous solution were added thereto. 0.06 kg was added and sufficiently stirred.
Next, alumina beads having a particle diameter of 0.1 mm (Daimei Chemical Co., Ltd. high-purity alumina beads) were added, and this was subjected to a wet pulverizer (Batch type tabletop sand mill manufactured by Campe Co., Ltd.) for 180 minutes. The fired powder of the surface-treated metal oxide fine particles (titania composite oxide fine particles) was pulverized and dispersed. Thereafter, the alumina beads were separated and removed using a stainless steel filter having an opening of 44 μm, and further 1.38 kg of pure water was added and stirred, and the surface-treated metal oxide having a solid content of 11.0% by mass 1.70 kg of an aqueous dispersion of fine particles was obtained. Next, this aqueous dispersion was washed with ion exchange water using an ultrafiltration membrane, and then 0.09 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization treatment. Next, the sample was subjected to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) for 1 hour at a speed of 11,000 rpm, and then ion-exchanged water was added to the surface-treated metal oxide having a solid content concentration of 10% by mass. 1.86 kg of water-dispersed sol (EZ-1) of fine particles was prepared.
Furthermore, when the content of the metal component contained in the surface-treated metal oxide fine particles was measured, 82.6% by mass of TiO 2 , 10.3% by mass of SnO 2 , ZrO based on the oxide conversion standard of each metal component. 2 4.9% by mass and K 2 O 2.2% by mass (TiO 2 was 79.87 g / mol, ZrO 2 was 123.2 g / mol, Ti / Zr (molar ratio) in the above formulation) Becomes 26).
Next, after cooling, the dispersion medium is replaced with methanol by using an ultrafiltration membrane device (a filtration membrane manufactured by Asahi Kasei Co., Ltd., SIP-1013), and a methanol dispersion of core-shell inorganic oxide fine particles (EM- 1) 0.32 kg was obtained. As a result, the solid content concentration contained in the obtained methanol dispersion was about 30% by mass, and the water content was 0.28% by mass.
Next, 0.095 kg of propylene glycol monomethyl ether acetate (PGMEA) and 0.038 kg of diacetone alcohol (DAA) were added to 0.30 kg of this methanol dispersion (EM-1), and then heated and stirred at a bath temperature of 100 ° C. Then, methanol in the dispersion was removed, and 0.30 kg of PGMEA / DAA dispersion (EP-1) was prepared. The solid content concentration in the dispersion at this time was 40% by mass.
 (ZrOの比率を変えたPGMEA/DAA分散液(EP-2)~(EP-5)の作製)
 水分散ゾル(EZ-1)作成時のオキシ塩化ジルコニウム八水和物水溶液の添加量を調整した以外は、PGMEA/DAA分散液の調製方法(EP-1)に準拠して、ZrOの量を変化させた下表1の分散液を作製した。それぞれの分散液に含まれる粒子の数平均粒子径(Mn)を表中に示した。なお、測定方法は上述したとおりであった。
(Preparation of PGMEA / DAA dispersions (EP-2) to (EP-5) with different ratios of ZrO 2 )
Except for adjusting the addition amount of the zirconium oxychloride octahydrate aqueous solution at the time of preparation of the water dispersion sol (EZ-1), the amount of ZrO 2 in accordance with the preparation method of the PGMEA / DAA dispersion (EP-1) Dispersions shown in Table 1 below were prepared. The number average particle diameter (Mn) of the particles contained in each dispersion is shown in the table. The measurement method was as described above.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 下記処方1の成分を反応容器に入れ、この溶液に、水16.1gおよびリン酸0.26gを、反応温度が40℃を越えないように、攪拌しながら滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液を、バス温105℃で2.5時間加熱撹拌して、加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリマー溶液S-1(固形分30質量%)を得た。
 [処方1]
 メチルトリメトキシシラン                20.4g
  (0.15mol 136.2g/mol)
 フェニルトリメトキシシラン               69.4g
  (0.35mol 198.3g/mol)
 PGMEA/DAA分散液(EP-1)(固形分40質量%) 243g
 PGMEA                        127g
 DAA                           51g
The components of the following formulation 1 were placed in a reaction vessel, and 16.1 g of water and 0.26 g of phosphoric acid were added dropwise to this solution while stirring so that the reaction temperature did not exceed 40 ° C. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off the methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain a polymer solution S-1 (solid content: 30% by mass).
[Prescription 1]
Methyltrimethoxysilane 20.4g
(0.15 mol 136.2 g / mol)
Phenyltrimethoxysilane 69.4g
(0.35 mol 198.3 g / mol)
PGMEA / DAA dispersion (EP-1) (solid content 40% by mass) 243 g
PGMEA 127g
DAA 51g
 このポリマー溶液S-1の90gに対し、メシチルオキシドを10g追添加し、光開始剤としてIRGACURE OXE02を0.5g添加した。さらに以下の表2のように追添加する溶媒を変更してシロキサン樹脂組成物の各試料を作製した。試料113においては、光開始剤としてIR369を添加した。 10 g of mesityl oxide was added to 90 g of this polymer solution S-1, and 0.5 g of IRGACURE OXE02 was added as a photoinitiator. Furthermore, each sample of the siloxane resin composition was prepared by changing the additional solvent as shown in Table 2 below. In sample 113, IR369 was added as a photoinitiator.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記で作製したシロキサン樹脂組成物の各試料について、下記のサーモサイクル試験を行った。その結果を表3に示す。 The following thermocycle test was performed on each sample of the siloxane resin composition produced above. The results are shown in Table 3.
<サーモサイクル試験[TC試験]> 完成した各試料を、ガラス密閉容器に収納した。次いで、サーモサイクル試験機(Hutech社製、LTS-150-W[商品名])を使用して、5℃ 4時間、25℃ 2時間のサーモサイクルを90日間繰り返して、サーモサイクル試験用のサンプルを作成した。
 高屈折率ガラス((株)住田光学ガラス社製SFLD-6[商品名])に、サーモサイクル試験用のサンプルをスピーンコーター(1H-360S(ミカサ(株))製)で塗布し、ホットプレ-トを用いて、100℃で2分プリベークして塗布膜を得た。この塗布膜を、さらに空気雰囲気下のホットプレート上で200℃で5分加熱し、膜厚0.6μmの硬化膜を得た。
 得られた硬化膜について、光学顕微鏡にて中心部分の1mm四方を100倍に拡大して、目視にて、欠陥を観察し、1mm四方中の個数をカウントして、評価基準とした。評価は5つのサンプルの平均値を採用した。
<Thermocycle test [TC test]> Each completed sample was stored in a glass sealed container. Then, using a thermocycle tester (manufactured by Hutech, LTS-150-W [trade name]), a thermocycle at 5 ° C. for 4 hours and 25 ° C. for 2 hours was repeated for 90 days to obtain a sample for thermocycle test It was created.
A sample for thermo cycle test was applied to high refractive index glass (SFLD-6 [trade name] manufactured by Sumita Optical Glass Co., Ltd.) with a spine coater (1H-360S (Mikasa Co., Ltd.)), and a hot plate And prebaked at 100 ° C. for 2 minutes to obtain a coating film. This coating film was further heated at 200 ° C. for 5 minutes on a hot plate in an air atmosphere to obtain a cured film having a thickness of 0.6 μm.
About the obtained cured film, the 1 mm square of the central portion was magnified 100 times with an optical microscope, the defects were visually observed, and the number in 1 mm square was counted and used as an evaluation standard. The average value of five samples was adopted for evaluation.
 1  欠陥数 50個以上
 2  欠陥数 25個以上50個未満
 3  欠陥数 10個以上25個未満
 4  欠陥数  5個以上10個未満
 5  欠陥数  1個以上 5個未満
 6  評価視野内に欠陥はみつからなかった
1 Number of defects 50 or more 2 Number of defects 25 or more and less than 50 3 Number of defects 10 or more and less than 25 4 Number of defects 5 or more and less than 10 5 Number of defects 1 or more and less than 5 6 Didn't exist
Figure JPOXMLDOC01-appb-T000010

 配合:質量部
 Ti/Zrは元素組成比(モル比)
 シロキサン樹脂:MTMS/PTMSの加水分解縮合
  MTMS:メチルトリメトキシシラン
  PTMS:フェニルトリメトキシシラン
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
 DAA:ジアセトンアルコール
 MeOH 20:DAAに代えてメタノールを20部用いたことを意味する。
 OXE02:IRGACURE OXE02
 IR369:IRGACURE-369
Figure JPOXMLDOC01-appb-T000010

Formulation: parts by mass Ti / Zr is the elemental composition ratio (molar ratio)
Siloxane resin: Hydrolysis condensation of MTMS / PTMS MTMS: Methyltrimethoxysilane PTMS: Phenyltrimethoxysilane PGMEA: Propylene glycol monomethyl ether acetate DAA: Diacetone alcohol MeOH 20: Means that 20 parts of methanol was used instead of DAA To do.
OXE02: IRGACURE OXE02
IR369: IRGACURE-369
-チタン粒子が被覆されていない態様-
<実施例2>
 (微粒子の水分散ゾル(E-21)の調製)
 四塩化チタンをTiO換算基準で7.75質量%含む四塩化チタン水溶液7.60kgと、アンモニアを15質量%含むアンモニア水2.91kgとを混合し、これらを混合しながらZrO質量換算で1.23%濃度のオキシ塩化ジルコニウム八水和物水溶液7.6kgを24時間かけて滴下し、pH8.8の白色スラリー液を調製した。次いで、この白色スラリー液をイオン交換水で5倍に希釈してから濾過し、さらにイオン交換水で洗浄して、固形分含有量が10質量%の含水チタンジルコニウム酸ケーキ5.2kgを得た。
 次に、このケーキに、過酸化水素を35質量%含む過酸化水素水7.10kgと、イオン交換水20.0kgとを加えた後、80℃の温度で1時間、撹拌下で加熱し、さらにイオン交換水28.90kgを加えて、過酸化チタンジルコニウム酸をTiO換算基準で1質量%含む過酸化チタンジルコニウム酸水溶液を61.39kg得た。この過酸化チタンジルコニウム酸水溶液は、透明な黄褐色でpHは8.9であった。
 次いで、上記過酸化チタンジルコニウム酸水溶液60.78kgに陽イオン交換樹脂(三菱化学(株)製)4.00kgを混合して、これに、スズ酸カリウムをSnO換算基準で1質量%含むスズ酸カリウム水溶液8.01kgを撹拌下で徐々に添加した。次に、カリウムイオンなどを取り込んだ陽イオン交換樹脂を分離した後、この混合水溶液をオートクレーブ中で168℃の温度で20時間、加熱した。
 次に、得られた混合水溶液を室温まで冷却した後、限外濾過膜装置で濃縮して、固形分含有量が10質量%の微粒子の水分散ゾル(E-21)6.89kgを得た。
 このようにして得られた金属酸化物微粒子を含む水分散ゾル(E-21)は透明な乳白色であった。
 この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO 90.0質量%、SnO 4.2質量%、KO 0.5質量%、およびZrO 5.3質量%であった。
-Aspect in which titanium particles are not coated-
<Example 2>
(Preparation of fine particle water dispersion sol (E-21))
7.60 kg of titanium tetrachloride aqueous solution containing 7.75% by mass of titanium tetrachloride in terms of TiO 2 and 2.91 kg of aqueous ammonia containing 15% by mass of ammonia were mixed, and these were mixed in terms of ZrO 2 by mass. 7.6 kg of a 1.23% concentration zirconium oxychloride octahydrate aqueous solution was added dropwise over 24 hours to prepare a white slurry having a pH of 8.8. Next, the white slurry was diluted 5 times with ion-exchanged water, filtered, and further washed with ion-exchanged water to obtain 5.2 kg of a hydrous titanium zirconate cake having a solid content of 10% by mass. .
Next, 7.10 kg of hydrogen peroxide containing 35% by mass of hydrogen peroxide and 20.0 kg of ion exchange water were added to the cake, and then heated at 80 ° C. for 1 hour with stirring. Further, 28.90 kg of ion-exchanged water was added to obtain 61.39 kg of an aqueous titanium zirconate solution containing 1% by mass of titanium zirconate in terms of TiO 2 . This aqueous solution of titanium zirconate acid was transparent yellowish brown and had a pH of 8.9.
Next, 4.00 kg of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with 60.78 kg of the above titanium peroxide zirconate aqueous solution, and tin containing 1% by mass of potassium stannate in terms of SnO 2 conversion standard was added thereto. 8.01 kg of potassium acid aqueous solution was gradually added with stirring. Next, after separating the cation exchange resin which took in potassium ion etc., this mixed aqueous solution was heated in the autoclave at the temperature of 168 degreeC for 20 hours.
Next, the obtained mixed aqueous solution was cooled to room temperature and then concentrated with an ultrafiltration membrane device to obtain 6.89 kg of a fine particle water dispersion sol (E-21) having a solid content of 10% by mass. .
The water-dispersed sol (E-21) containing the metal oxide fine particles thus obtained was transparent and milky white.
When the content of the metal component contained in the metal oxide fine particles was measured, it was 90.0% by mass of TiO 2 , 4.2% by mass of SnO 2 , 0.2% by mass of K 2 O, based on the oxide conversion standard of each metal component. 5 wt%, and was ZrO 2 5.3% by mass.
 (金属酸化物微粒子の水分散ゾル(EZ-21)の調製)
 上述の金属酸化物微粒子を含む水分散ゾル(E-21)7.51kgをスプレードライヤー(NIRO社製NIRO ATOMIZER)にて噴霧乾燥した。これにより、平均粒子径が約2μmの金属酸化物微粒子からなる乾燥粉体0.90kgを得た。
 次に、上記で得られた金属酸化物微粒子の乾燥粉体0.90kgを、空気雰囲気下、500℃の温度にて2時間焼成して、金属酸化物微粒子の焼成粉体0.90kgを得た。
 上記で得られた金属酸化物微粒子の焼成粉体0.20kgを純水0.18kgに分散させ、これに、濃度28.6%の酒石酸水溶液0.13kg、濃度50質量%のKOH水溶液0.06kgを加えて充分攪拌した。
 次に、粒子径0.1mmのアルミナビーズ(大明化学工業(株)製高純度アルミナビース)を加え、これを湿式粉砕機(カンペ(株)製バッチ式卓上サンドミル)に供して180分間、上記金属酸化物微粒子の焼成粉体の粉砕及び分散処理を行った。その後、アルミナビーズを目開き44μmのステンレス製フィルターを用いて分離・除去したのち、さらに純水1.39kgを添加して撹拌し、固形分含有量が11.0質量%の金属酸化物微粒子の水分散液1.70kgを得た。
 次に、この水分散液を、限外濾過膜を用いてイオン交換水で洗浄した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)0.09kgを加えて脱イオン処理をした。次いで、遠心分離機(日立工機(株)製CR-21G)に供して11,000rpmの速度で1時間処理した後、イオン交換水を添加して固形分濃度10質量%の金属酸化物微粒子の水分散ゾル(EZ-21)1.86kgを調製した。
 さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO 88.9質量%、SnO 5.3質量%、ZrO 5.3質量%およびKO 0.5質量%であった(TiOは79.87g/mol、ZrOは123.2g/molであり、上記の配合におけるTi/Zr(モル比)は26となる)。
 次に、水分散ゾル(EZ-21)を冷却した後に、限外濾過膜装置(旭化成(株)製濾過膜、SIP-1013)を用いて分散媒を水からメタノールに置換して金属酸化物微粒子のメタノール分散液(EM-21)0.32kgを得た。その結果、得られたメタノール分散液中に含まれる固形分濃度は約30質量%であり、水分含有量は0.28質量%であった。
 次にこのメタノール分散液(EM-21)0.30kgにプロピレングリコールモノメチルエーテルアセテート(PGMEA)0.095kg、ジアセトンアルコール(DAA)0.038kgを加えた後、バス温100℃で加熱攪拌して、分散液中のメタノールを取り除き、PGMEA/DAA分散液(EP-21)を0.30kg調製した。このときの分散液中の固形分濃度は40質量%であった。
(Preparation of metal oxide fine particle water dispersion sol (EZ-21))
7.51 kg of the water-dispersed sol (E-21) containing the above metal oxide fine particles was spray-dried with a spray dryer (NIRO ATOMIZER manufactured by NIRO). As a result, 0.90 kg of dry powder composed of metal oxide fine particles having an average particle diameter of about 2 μm was obtained.
Next, 0.90 kg of the dried powder of metal oxide fine particles obtained above was fired at 500 ° C. for 2 hours in an air atmosphere to obtain 0.90 kg of fired powder of metal oxide fine particles. It was.
0.20 kg of the fired powder of metal oxide fine particles obtained above was dispersed in 0.18 kg of pure water. 06 kg was added and stirred thoroughly.
Next, alumina beads having a particle diameter of 0.1 mm (Daimei Chemical Co., Ltd. high-purity alumina beads) were added, and this was subjected to a wet pulverizer (Batch type tabletop sand mill manufactured by Campe Co., Ltd.) for 180 minutes. The fired powder of metal oxide fine particles was pulverized and dispersed. Thereafter, the alumina beads were separated and removed using a stainless steel filter having an opening of 44 μm, and further 1.39 kg of pure water was added and stirred to obtain metal oxide fine particles having a solid content of 11.0% by mass. 1.70 kg of aqueous dispersion was obtained.
Next, this aqueous dispersion was washed with ion exchange water using an ultrafiltration membrane, and then 0.09 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization treatment. Next, the resultant was subjected to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) for 1 hour at a speed of 11,000 rpm, and then ion-exchanged water was added to form metal oxide fine particles having a solid content concentration of 10% by mass. 1.86 kg of an aqueous dispersion sol (EZ-21) was prepared.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, TiO 2 88.9% by mass, SnO 2 5.3% by mass, ZrO 2 5 based on the oxide conversion standard of each metal component. 0.3 wt% and K 2 O 0.5 wt% (TiO 2 was 79.87 g / mol, ZrO 2 was 123.2 g / mol, and Ti / Zr (molar ratio) in the above composition was 26 Becomes).
Next, after cooling the water dispersion sol (EZ-21), the dispersion medium was replaced from water to methanol using an ultrafiltration membrane device (a filtration membrane manufactured by Asahi Kasei Co., Ltd., SIP-1013). 0.32 kg of a fine particle methanol dispersion (EM-21) was obtained. As a result, the solid content concentration contained in the obtained methanol dispersion was about 30% by mass, and the water content was 0.28% by mass.
Next, 0.095 kg of propylene glycol monomethyl ether acetate (PGMEA) and 0.038 kg of diacetone alcohol (DAA) were added to 0.30 kg of this methanol dispersion (EM-21), and then heated and stirred at a bath temperature of 100 ° C. Then, methanol in the dispersion was removed, and 0.30 kg of PGMEA / DAA dispersion (EP-21) was prepared. The solid content concentration in the dispersion at this time was 40% by mass.
 (ZrOの比率を変えたPGMEA/DAA分散液(EP-22)~(EP25)の作製)
 水分散ゾル(E-21)作成時のオキシ塩化ジルコニウム八水和物水溶液の添加量を調整した以外は、PGMEA/DAA分散液(EP-21)の調製方法に準拠して、ZrOの量を変化させた下表4の分散液を作製した。それぞれの分散液に含まれる粒子の数平均粒子径(Mn)を表4中に示した。
(Preparation of PGMEA / DAA dispersions (EP-22) to (EP25) with different ratios of ZrO 2 )
Except for adjusting the addition amount of the zirconium oxychloride octahydrate aqueous solution at the time of preparing the water dispersion sol (E-21), the amount of ZrO 2 was determined according to the preparation method of the PGMEA / DAA dispersion (EP-21). Dispersions shown in Table 4 below were prepared. Table 4 shows the number average particle diameter (Mn) of the particles contained in each dispersion.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 ポリマー溶液S-1の調製において、PEGMEA/DAA分散液(EP-1)(固形分40質量%)に代えて、PEGMEA/DAA分散液(EP-21)(固形分40質量%)を用いた以外は同様にして、ポリマー溶液S-2(固形分30質量%)を得た。 In the preparation of the polymer solution S-1, a PEGMEA / DAA dispersion (EP-21) (solid content 40% by mass) was used instead of the PEGMEA / DAA dispersion (EP-1) (solid content 40% by mass). In the same manner as above, a polymer solution S-2 (solid content: 30% by mass) was obtained.
 このポリマー溶液S-2の90gに対し、メシチルオキシドを10g追添加し、光開始剤としてIRGACURE OXE02を0.5g添加した。さらに以下の表5のように追添加する溶媒を変更してシロキサン樹脂組成物の各試料を作製した。試料213においては、光開始剤としてIR369を添加した。 10 g of mesityl oxide was added to 90 g of this polymer solution S-2, and 0.5 g of IRGACURE OXE02 was added as a photoinitiator. Furthermore, each sample of the siloxane resin composition was prepared by changing the additional solvent as shown in Table 5 below. In sample 213, IR369 was added as a photoinitiator.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 上記で作製したシロキサン樹脂組成物の各試料について、実施例1と同様にしてサーモサイクル試験を行った。その結果を表6に示す。 The thermocycle test was conducted in the same manner as in Example 1 for each sample of the siloxane resin composition produced above. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000013

 
Figure JPOXMLDOC01-appb-T000013

 
<実施例3>
 (数平均粒子径を変えたPGMEA/DAA分散液(EP-31)~(EP-35)の作製)
 水分散ゾル(E-21)調製時において、金属酸化物微粒子の熱処理温度および処理時間を増すことにより平均粒子径を調整した。平均粒子径を調整した以外は、PEGMEA/DAA分散液(EP-21)の調製方法に準拠して、ZrOの量を変化させた下表7の分散液を作製した。それぞれの分散液に含まれる粒子の数平均粒子径(Mn)を表7中に示した。なお、測定方法は上述したとおりである。
<Example 3>
(Preparation of PGMEA / DAA dispersions (EP-31) to (EP-35) with different number average particle diameters)
When preparing the water-dispersed sol (E-21), the average particle size was adjusted by increasing the heat treatment temperature and treatment time of the metal oxide fine particles. Except for adjusting the average particle size, the dispersions shown in Table 7 below were prepared by changing the amount of ZrO 2 in accordance with the method for preparing the PEGMEA / DAA dispersion (EP-21). Table 7 shows the number average particle diameter (Mn) of the particles contained in each dispersion. The measuring method is as described above.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 ポリマー溶液S-1の調製において、PEGMEA/DAA分散液(EP-1)(固形分40質量%)に代えて、PEGMEA/DAA分散液(EP-31)(固形分40質量%)を用いた以外は同様にして、ポリマー溶液S-3(固形分30質量%)を得た。 In the preparation of the polymer solution S-1, a PEGMEA / DAA dispersion (EP-31) (solid content 40% by mass) was used instead of the PEGMEA / DAA dispersion (EP-1) (solid content 40% by mass). In the same manner as above, a polymer solution S-3 (solid content: 30% by mass) was obtained.
 このポリマー溶液S-3の90gに対し、メシチルオキシドを10g追添加し、光開始剤としてIRGACURE OXE02を0.5g添加した。さらに以下の表8のように追添加する溶媒を変更してシロキサン樹脂組成物の各試料を作製した。試料313においては、光開始剤としてIR369を添加した。 10 g of mesityl oxide was added to 90 g of this polymer solution S-3, and 0.5 g of IRGACURE OXE02 was added as a photoinitiator. Furthermore, each sample of the siloxane resin composition was prepared by changing the additional solvent as shown in Table 8 below. In sample 313, IR369 was added as a photoinitiator.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 上記で作製したシロキサン樹脂組成物の各試料について、実施例1と同様にしてサーモサイクル試験を行った。その結果を表9に示す。 The thermocycle test was conducted in the same manner as in Example 1 for each sample of the siloxane resin composition produced above. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
-チタン粒子がSiで被覆されている態様-
<実施例4>
(珪酸液の調製)
 市販の水ガラス(AGCエスアイテック(株)製)0.31kgを純水にて希釈したのち、陽イオン交換樹脂(三菱化学(株)製)を用いて脱アルカリして、珪酸をSiO換算基準で2.0重量%含む珪酸水溶液3.00kgを得た。なお、この珪酸水溶液のpHは、2.3であった。
-Aspect where titanium particles are coated with Si-
<Example 4>
(Preparation of silicic acid solution)
After diluting 0.31 kg of commercially available water glass (manufactured by AGC S-Tech Co., Ltd.) with pure water, it is dealkalized using a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) to convert silicic acid into SiO 2 As a result, 3.00 kg of an aqueous silicic acid solution containing 2.0% by weight was obtained. The silicic acid aqueous solution had a pH of 2.3.
 (コア(TiとZr)シェル(Si)型無機酸化物微粒子の水分散ゾル(E-41)の調製)
 金属酸化物微粒子を含む水分散ゾル(E-21)1.80kgに純水12.3kgを加えて撹拌して90℃の温度に加熱したのち、これに珪酸水溶液2.39kgを徐々に添加し、添加終了後、この混合溶液を90℃の温度に保ちながら攪拌下で10時間熟成した。このとき、金属酸化物微粒子を被覆する複合酸化物の量は、この金属酸化物微粒子100質量部に対して12質量部であった。
 次いで、この混合溶液をオートクレーブ(耐圧硝子工業(株)製)に入れて、165℃の温度で18時間、加熱処理を行った。
(Preparation of aqueous dispersion sol (E-41) of core (Ti and Zr) shell (Si) type inorganic oxide fine particles)
After adding 12.3 kg of pure water to 1.80 kg of water-dispersed sol (E-21) containing metal oxide fine particles, stirring and heating to 90 ° C., 2.39 kg of aqueous silicic acid solution is gradually added thereto. After the addition, this mixed solution was aged for 10 hours under stirring while maintaining the temperature at 90 ° C. At this time, the amount of the composite oxide covering the metal oxide fine particles was 12 parts by mass with respect to 100 parts by mass of the metal oxide fine particles.
Next, this mixed solution was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd.) and subjected to heat treatment at a temperature of 165 ° C. for 18 hours.
 次に、得られた混合溶液を室温まで冷却してから、限外濾過装置で濃縮して水分散ゾル(E-41)を得た。この水分散ゾル(E-41)を限外濾過膜(旭化成(株)製、SIP-1013)を用いて、分散媒を水からメタノールに置換して金属酸化物微粒子のメタノール分散液(EM-41)0.31kgを得た。その結果、得られたメタノール分散液中に含まれる固形分濃度は約30質量%であり、水分含有量は0.25質量%であった。
 次にこのメタノール分散液(EM-41)0.30kgにプロピレングリコールモノメチルエーテルアセテート(PGMEA)0.095kg、ジアセトンアルコール(DAA)0.038kgを加えた後、バス温100℃で加熱攪拌して、分散液中のメタノールを取り除き、PGMEA/DAA分散液(EP-41)を0.30kg調製した。このときの分散液中の固形分濃度は40質量%であった。
Next, the obtained mixed solution was cooled to room temperature and then concentrated with an ultrafiltration device to obtain an aqueous dispersion sol (E-41). This water-dispersed sol (E-41) was subjected to ultrafiltration membrane (SIP-1013, manufactured by Asahi Kasei Co., Ltd.), and the dispersion medium was replaced with water to methanol to obtain a metal oxide fine particle methanol dispersion (EM- 41) 0.31 kg was obtained. As a result, the solid content concentration contained in the obtained methanol dispersion was about 30% by mass, and the water content was 0.25% by mass.
Next, 0.095 kg of propylene glycol monomethyl ether acetate (PGMEA) and 0.038 kg of diacetone alcohol (DAA) were added to 0.30 kg of this methanol dispersion (EM-41), and then heated and stirred at a bath temperature of 100 ° C. Then, methanol in the dispersion was removed, and 0.30 kg of PGMEA / DAA dispersion (EP-41) was prepared. The solid content concentration in the dispersion at this time was 40% by mass.
 これにより、金属酸化物微粒子の表面をケイ素を含む酸化物で被覆してなるコア(TiとZr)シェル(Si)型金属酸化物微粒子を得た。得られたコアシェル型金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO 86.3質量%、SnO 5.1質量%、ZrO 5.1質量%およびKO 0.5質量%であった(TiOは79.87g/mol、ZrOは123.2g/molであり、上記の配合におけるTi/Zr(モル比)は26となる)。 As a result, core (Ti and Zr) shell (Si) type metal oxide fine particles obtained by coating the surface of the metal oxide fine particles with an oxide containing silicon were obtained. When the content of the metal component contained in the obtained core-shell type metal oxide fine particles was measured, TiO 2 was 86.3% by mass, SnO 2 5.1% by mass, ZrO based on the oxide conversion standard of each metal component. 2 5.1% by mass and K 2 O 0.5% by mass (TiO 2 was 79.87 g / mol, ZrO 2 was 123.2 g / mol, Ti / Zr (molar ratio) in the above formulation) Becomes 26).
(ZrOの比率を変えたPGMEA分散液(EP-42)~(EP-45)の作製)
 水分散ゾル(E-41)作成時において、水分散ゾル(E-21)の調製に用いたオキシ塩化ジルコニウム八水和物水溶液の添加量を調整した以外は、PGMEA/DAA分散液(EP-41)に準拠して、ZrOの量を変化させた下表10の分散液を作製した。それぞれの分散液に含まれる粒子の数平均粒子径(Mn)を表10中に示した。
(Preparation of PGMEA dispersions (EP-42) to (EP-45) with different ratios of ZrO 2 )
The PGMEA / DAA dispersion (EP- In accordance with 41), dispersions shown in Table 10 below with varying amounts of ZrO 2 were prepared. Table 10 shows the number average particle diameter (Mn) of the particles contained in each dispersion.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 ポリマー溶液S-1の調製において、PEGMEA/DAA分散液(EP-1)(固形分40質量%)に代えて、PGMEA/DAA分散液(EP-41)(固形分40質量%)を用いた以外は同様にして、ポリマー溶液S-4(固形分30質量%)を得た。 In the preparation of the polymer solution S-1, PGMEA / DAA dispersion (EP-41) (solid content 40% by mass) was used instead of PEGMEA / DAA dispersion (EP-1) (solid content 40% by mass). In the same manner as above, a polymer solution S-4 (solid content: 30% by mass) was obtained.
 このポリマー溶液S-4の90gに対し、メシチルオキシドを10g追添加し、光開始剤としてIRGACURE OXE02を0.5g添加した。さらに以下の表11のように追添加する溶媒を変更してシロキサン樹脂組成物の各試料を作製した。試料413においては、光開始剤としてIR369を添加した。 10 g of mesityl oxide was added to 90 g of this polymer solution S-4, and 0.5 g of IRGACURE OXE02 was added as a photoinitiator. Furthermore, each sample of the siloxane resin composition was prepared by changing the additional solvent as shown in Table 11 below. In sample 413, IR369 was added as a photoinitiator.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 上記で作製したシロキサン樹脂組成物の各試料について、実施例1と同様にしてサーモサイクル試験を行った。その結果を表12に示す。 The thermocycle test was conducted in the same manner as in Example 1 for each sample of the siloxane resin composition produced above. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
<実施例5>
 (数平均粒子径を変えたPGMEA/DAA分散液(EP-51)~(EP-55)の作製)
 水分散ゾル(E-21)調製時において、金属酸化物微粒子の熱処理温度および処理時間を増すことにより平均粒子径を調整した。平均粒子径を調整した以外は、PEGMEA/DAA分散液(EP-41)の調製方法に準拠して、ZrOの量を変化させた下表13の分散液を作製した。それぞれの分散液に含まれる粒子の数平均粒子径(Mn)を表13中に示した。なお、測定方法は上述したとおりである。
<Example 5>
(Preparation of PGMEA / DAA dispersions (EP-51) to (EP-55) with different number average particle diameters)
When preparing the water-dispersed sol (E-21), the average particle size was adjusted by increasing the heat treatment temperature and treatment time of the metal oxide fine particles. Except for adjusting the average particle diameter, a dispersion shown in Table 13 below was prepared in which the amount of ZrO 2 was changed in accordance with the method for preparing a PEGMEA / DAA dispersion (EP-41). Table 13 shows the number average particle diameter (Mn) of the particles contained in each dispersion. The measuring method is as described above.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 ポリマー溶液S-1の調製において、PEGMEA/DAA分散液(EP-1)(固形分40質量%)に代えて、PGMEA/DAA分散液(EP-51)(固形分40質量%)を用いた以外は同様にして、ポリマー溶液S-5(固形分30質量%)を得た。 In the preparation of the polymer solution S-1, PGMEA / DAA dispersion (EP-51) (solid content 40% by mass) was used instead of PEGMEA / DAA dispersion (EP-1) (solid content 40% by mass). In the same manner as above, a polymer solution S-5 (solid content: 30% by mass) was obtained.
 このポリマー溶液S-5の90gに対し、メシチルオキシドを10g追添加し、光開始剤としてIRGACURE OXE02を0.5g添加した。さらに以下の表14のように追添加する溶媒を変更してシロキサン樹脂組成物の各試料を作製した。試料513においては、光開始剤としてIR369を添加した。 10 g of mesityl oxide was added to 90 g of this polymer solution S-5, and 0.5 g of IRGACURE OXE02 was added as a photoinitiator. Further, each sample of the siloxane resin composition was prepared by changing the additional solvent as shown in Table 14 below. In sample 513, IR369 was added as a photoinitiator.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 上記で作製したシロキサン樹脂組成物の各試料について、実施例1と同様にしてサーモサイクル試験を行った。その結果を表15に示す。 The thermocycle test was conducted in the same manner as in Example 1 for each sample of the siloxane resin composition produced above. The results are shown in Table 15.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 上記の結果より、本発明のシロキサン樹脂組成物によれば、優れたサーモサイクル特性を実現し、その製造適性と製造品質を良化させるのに資することが分かる。 From the above results, it can be seen that the siloxane resin composition of the present invention achieves excellent thermocycle characteristics and contributes to improving the manufacturing suitability and manufacturing quality.
 試験101の透明硬化膜について光学特性を確認したところ、屈折率は1.8であり、光透過率は90%以上であった。その他の試験膜についても同様に光学特性の確認を行い、実施例の膜はいずれも所望の高屈折率と高い光透過性を示すことを確認した。なお、屈折率と光透過率の測定は下記のようにして行った。 When the optical properties of the transparent cured film of Test 101 were confirmed, the refractive index was 1.8 and the light transmittance was 90% or more. The optical characteristics of other test films were confirmed in the same manner, and it was confirmed that all of the films of the examples exhibited a desired high refractive index and high light transmittance. The refractive index and light transmittance were measured as follows.
~屈折率および可視光透過率の測定~
 高屈折率ガラス((株)住田光学ガラス社製SFLD-6)に、サーモサイクル試験用のサンプルを700rpmで10秒、1100rpmで30秒、スピーンコーター(1H-360S[商品名](ミカサ(株))製)で塗布した。ホットプレ-ト(大日本スクリーン製造(株)製SCW-636[商品名])を用いて、120℃で3分プリベークして塗布膜を得た。この塗布膜を、空気雰囲気下のホットプレート上で230℃で5分加熱し、膜厚0.5μmの硬化膜を得た。得られた硬化膜について、エリプソメータ(大塚電子(株)社製)を用い、室温25℃での波長633nmにおける屈折率を測定した。このときに、この塗布膜(試験透明膜)の光透過率を400nm~700nmで測定した。透過率は400~700nmの最低透過率の値を採用した。試験は各試料につき5回行い、最大値と最小値を除いた3回の結果の平均値を採用した。
-Measurement of refractive index and visible light transmittance-
A sample for thermocycle test was applied to a high refractive index glass (SFLD-6 manufactured by Sumita Optical Glass Co., Ltd.) for 10 seconds at 700 rpm, 30 seconds at 1100 rpm, and a spin coater (1H-360S [trade name] (Mikasa Corporation). )))). Using a hot plate (SCW-636 [trade name] manufactured by Dainippon Screen Mfg. Co., Ltd.), the coating film was obtained by prebaking at 120 ° C. for 3 minutes. This coating film was heated on a hot plate in an air atmosphere at 230 ° C. for 5 minutes to obtain a cured film having a thickness of 0.5 μm. About the obtained cured film, the refractive index in wavelength 633nm in 25 degreeC room temperature was measured using the ellipsometer (made by Otsuka Electronics Co., Ltd.). At this time, the light transmittance of this coating film (test transparent film) was measured from 400 nm to 700 nm. As the transmittance, a minimum transmittance value of 400 to 700 nm was adopted. The test was performed 5 times for each sample, and the average value of 3 results excluding the maximum and minimum values was adopted.
 上記の処方1において、メチルトリメトキシシランをエチルトリメトキシシランに代えて同様に樹脂組成物を作成した。また、メチルトリメトキシシランの一部をテトラメトキシシランに代えて同様にシロキサン樹脂組成物を作成した。これらのシロキサン樹脂組成物を用いてサーモサイクル試験を実施したところ、いずれも良好な結果が得られることを確認した。 In the above formulation 1, a resin composition was similarly prepared by replacing methyltrimethoxysilane with ethyltrimethoxysilane. Further, a siloxane resin composition was similarly prepared by replacing part of methyltrimethoxysilane with tetramethoxysilane. When the thermocycle test was implemented using these siloxane resin compositions, it was confirmed that good results were obtained in all cases.

Claims (16)

  1.  金属含有粒子と、シロキサン樹脂と、メシチルオキシドと、溶媒と、
     を含有するシロキサン樹脂組成物。
    Metal-containing particles, siloxane resin, mesityl oxide, solvent,
    A siloxane resin composition containing
  2.  上記メシチルオキシドの含有率が0.01質量%以上15質量%以下である請求項1に記載のシロキサン樹脂組成物。 The siloxane resin composition according to claim 1, wherein the content of the mesityl oxide is 0.01 mass% or more and 15 mass% or less.
  3.  上記メシチルオキシドの含有率が0.09質量%以下である請求項1または2に記載のシロキサン樹脂組成物。 The siloxane resin composition according to claim 1 or 2, wherein the content of the mesityl oxide is 0.09% by mass or less.
  4.  上記シロキサン樹脂がアルコキシシラン化合物の加水分解縮合反応物である請求項1~3のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 3, wherein the siloxane resin is a hydrolysis condensation reaction product of an alkoxysilane compound.
  5.  上記金属含有粒子100質量部に対してシロキサン樹脂を30質量部以上80質量部以下含む請求項1~4のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 4, comprising 30 parts by mass or more and 80 parts by mass or less of a siloxane resin with respect to 100 parts by mass of the metal-containing particles.
  6.  上記シロキサン樹脂組成物の固形成分中、上記金属含有粒子の含有量が10質量%以上90質量%以下である請求項1~5のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 5, wherein the content of the metal-containing particles in the solid component of the siloxane resin composition is 10% by mass or more and 90% by mass or less.
  7.  上記金属含有粒子を構成する元素として、Ti、Ta、W、Y、Ba、Hf、Zr、Sn、Nb、V、およびSiから選ばれる金属を含有する請求項1~6のいずれか1項に記載のシロキサン樹脂組成物。 The element according to any one of claims 1 to 6, comprising a metal selected from Ti, Ta, W, Y, Ba, Hf, Zr, Sn, Nb, V, and Si as an element constituting the metal-containing particle. The siloxane resin composition described.
  8.  上記金属含有粒子を構成する元素として、Ti及びZrを含有し、
     上記金属含有粒子を構成する元素において、元素組成比で、TiとZrとの比率、Ti/Zr、が1~40である請求項1~7のいずれか1項に記載のシロキサン樹脂組成物。
    As elements constituting the metal-containing particles, Ti and Zr are contained,
    The siloxane resin composition according to any one of claims 1 to 7, wherein, in the elements constituting the metal-containing particles, the ratio of Ti and Zr, Ti / Zr, is 1 to 40 in terms of elemental composition ratio.
  9.  上記金属含有粒子を構成する元素として、Ti及びZrを含有し、
     上記金属含有粒子を構成する元素において、元素組成比で、TiとZrとの比率、Ti/Zr、が4~12である請求項1~8のいずれか1項に記載のシロキサン樹脂組成物。
    As elements constituting the metal-containing particles, Ti and Zr are contained,
    The siloxane resin composition according to any one of claims 1 to 8, wherein, in the elements constituting the metal-containing particles, the ratio of Ti and Zr, Ti / Zr, is 4 to 12 in terms of elemental composition ratio.
  10.  上記金属含有粒子の数平均粒子径が5nm以上30nm以下である請求項1~9のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 9, wherein the metal-containing particles have a number average particle diameter of 5 nm to 30 nm.
  11.  上記溶媒がジアセトンアルコールを含む請求項1~10のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 10, wherein the solvent contains diacetone alcohol.
  12.  上記シロキサン樹脂が上記金属含有粒子の存在下で加水分解縮合反応させて得たものである請求項1~11のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 11, wherein the siloxane resin is obtained by a hydrolytic condensation reaction in the presence of the metal-containing particles.
  13.  請求項1~12のいずれか1項に記載のシロキサン樹脂組成物を硬化させてなる透明硬化物。 A transparent cured product obtained by curing the siloxane resin composition according to any one of claims 1 to 12.
  14.  請求項13に記載の透明硬化物からなる透明画素。 A transparent pixel comprising the transparent cured product according to claim 13.
  15.  請求項13に記載の透明硬化物からなるマイクロレンズ。 A microlens made of the transparent cured product according to claim 13.
  16.  請求項14に記載の透明画素、及び/または、請求項15に記載のマイクロレンズを具備する固体撮像素子。 A solid-state imaging device comprising the transparent pixel according to claim 14 and / or the microlens according to claim 15.
PCT/JP2015/076971 2014-10-03 2015-09-24 Siloxane resin composition, transparent cured product using said composition, transparent pixel, microlens, and solid-state imaging element WO2016052307A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-205273 2014-10-03
JP2014205273A JP6013422B2 (en) 2014-10-03 2014-10-03 Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same

Publications (1)

Publication Number Publication Date
WO2016052307A1 true WO2016052307A1 (en) 2016-04-07

Family

ID=55630345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076971 WO2016052307A1 (en) 2014-10-03 2015-09-24 Siloxane resin composition, transparent cured product using said composition, transparent pixel, microlens, and solid-state imaging element

Country Status (3)

Country Link
JP (1) JP6013422B2 (en)
TW (1) TW201614008A (en)
WO (1) WO2016052307A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6001041B2 (en) 2014-10-03 2016-10-05 富士フイルム株式会社 Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190141A (en) * 1986-02-15 1987-08-20 Mitsubishi Chem Ind Ltd Purification of diacetone alcohol
JPH0215042A (en) * 1988-07-01 1990-01-18 Mitsubishi Kasei Corp Method for purifying diacetone alcohol
JPH09279035A (en) * 1996-04-11 1997-10-28 Dainippon Toryo Co Ltd Stabilized composition containing hydrolyzable silicon compound
JP2007246877A (en) * 2005-10-03 2007-09-27 Toray Ind Inc Siloxane-based resin composition, optical article and method for producing siloxane-based resin composition

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3631125A1 (en) * 1986-09-12 1988-03-24 Wacker Chemie Gmbh METHOD FOR PRODUCING ORGANOPOLYSILOXANELASTOMERS AND NEW ORGANOSILICIUM COMPOUNDS
JPH10306258A (en) * 1997-03-04 1998-11-17 Nissan Chem Ind Ltd Coating composition and optical member
JP4288432B2 (en) * 1998-08-20 2009-07-01 日産化学工業株式会社 Coating composition and optical member
JP2005272270A (en) * 2004-03-26 2005-10-06 Fuji Photo Film Co Ltd Conductive titanium dioxide fine particle, high refractive index coating, composition for forming high refractive index coating, and method for manufacturing these
JP4653961B2 (en) * 2004-03-26 2011-03-16 富士フイルム株式会社 Conductive titanium dioxide fine particles containing cobalt, high refractive index film, composition for forming high refractive index film, and production method thereof
JP4860129B2 (en) * 2004-09-01 2012-01-25 日揮触媒化成株式会社 Coating liquid for forming transparent film and substrate with transparent film
CN101815676B (en) * 2007-10-03 2013-12-18 日产化学工业株式会社 Modified metal-oxide composite sol, coating composition, and optical member
JP5182533B2 (en) * 2007-10-03 2013-04-17 日産化学工業株式会社 Metal oxide composite sol, coating composition and optical member
JP5255270B2 (en) * 2007-12-27 2013-08-07 日揮触媒化成株式会社 Inorganic oxide fine particles having a core-shell structure, dispersed sol containing the fine particles, and coating solution for optical substrate
JP2012031353A (en) * 2010-08-03 2012-02-16 Nissan Chem Ind Ltd Coating composition and optical member
JP5557662B2 (en) * 2010-09-10 2014-07-23 日揮触媒化成株式会社 Dispersion of core-shell type inorganic oxide fine particles, process for producing the same, and coating composition containing the dispersion
JP6049368B2 (en) * 2011-09-15 2016-12-21 日揮触媒化成株式会社 Al-modified inorganic oxide fine particles, production method thereof, dispersion, and coating composition
JP6234228B2 (en) * 2011-12-21 2017-11-22 日揮触媒化成株式会社 Oligomer-modified fine particles, method for producing the same, and paint
JP2014038293A (en) * 2012-08-20 2014-02-27 Nissan Chem Ind Ltd Dispersion liquid of titanium oxide-based fine particles, coating composition including particles and base material with transparent film
JP6080583B2 (en) * 2013-02-07 2017-02-15 日揮触媒化成株式会社 Surface-modified inorganic composite oxide fine particles, production method thereof, dispersion containing the fine particles, coating solution for optical substrate, coating film for optical substrate, and coated substrate
JP6049521B2 (en) * 2013-03-29 2016-12-21 富士フイルム株式会社 Photosensitive resin composition, cured film, image forming method, solid-state imaging device, color filter, and ultraviolet absorber
JP5799182B1 (en) * 2014-10-03 2015-10-21 富士フイルム株式会社 Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190141A (en) * 1986-02-15 1987-08-20 Mitsubishi Chem Ind Ltd Purification of diacetone alcohol
JPH0215042A (en) * 1988-07-01 1990-01-18 Mitsubishi Kasei Corp Method for purifying diacetone alcohol
JPH09279035A (en) * 1996-04-11 1997-10-28 Dainippon Toryo Co Ltd Stabilized composition containing hydrolyzable silicon compound
JP2007246877A (en) * 2005-10-03 2007-09-27 Toray Ind Inc Siloxane-based resin composition, optical article and method for producing siloxane-based resin composition

Also Published As

Publication number Publication date
JP6013422B2 (en) 2016-10-25
TW201614008A (en) 2016-04-16
JP2016074797A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP5375094B2 (en) Siloxane resin composition
JP6893236B2 (en) Compositions, membranes, photosensors and dispersants
TWI700519B (en) Shielding film, infrared cut filter having shielding film, and solid state image device
JP6744921B2 (en) Dispersion, composition, film, method for producing film and dispersant
TWI691460B (en) Composition for forming an optical functional layer, solid imaging element and camera module using the same, pattern forming method for optical functional layer, and method for manufacturing solid imaging element and camera module
JP7127194B2 (en) Siloxane resin composition, microlens or transparent pixel using the same, solid-state imaging device
JP6701324B2 (en) Composition, film, cured film, optical sensor and method for manufacturing film
JP6387110B2 (en) Siloxane resin composition, transparent cured product, transparent pixel, microlens, solid-state imaging device, and microlens manufacturing method using the same
JP6001041B2 (en) Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same
JP5799182B1 (en) Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same
JP6298175B2 (en) Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same
WO2017158914A1 (en) Composition, film, cured film, optical sensor and method for producing film
JP6013422B2 (en) Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same
WO2016052113A1 (en) Siloxane resin composition, transparent cured object obtained therefrom, transparent pixel, microlens, and solid imaging element
WO2021044987A1 (en) Composition, film, structure, color filter, solid-state image sensor, and image display device
TW202313470A (en) Composition, cured film, structure, optical filter, solid-state imaging element, image display device, and method for producing cured film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845944

Country of ref document: EP

Kind code of ref document: A1