WO2016052265A1 - Centrifuge and swing rotor for centrifuge - Google Patents

Centrifuge and swing rotor for centrifuge Download PDF

Info

Publication number
WO2016052265A1
WO2016052265A1 PCT/JP2015/076709 JP2015076709W WO2016052265A1 WO 2016052265 A1 WO2016052265 A1 WO 2016052265A1 JP 2015076709 W JP2015076709 W JP 2015076709W WO 2016052265 A1 WO2016052265 A1 WO 2016052265A1
Authority
WO
WIPO (PCT)
Prior art keywords
bucket
centrifuge
groove
holding pin
rotor
Prior art date
Application number
PCT/JP2015/076709
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 淳
建一 根本
Original Assignee
日立工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立工機株式会社 filed Critical 日立工機株式会社
Priority to DE112015004494.9T priority Critical patent/DE112015004494B4/en
Priority to JP2016551942A priority patent/JP6195023B2/en
Priority to CN201580042393.5A priority patent/CN106573255B/en
Publication of WO2016052265A1 publication Critical patent/WO2016052265A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0407Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles
    • B04B5/0414Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles comprising test tubes
    • B04B5/0421Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles comprising test tubes pivotably mounted

Definitions

  • the present invention relates to a swing rotor type centrifuge (centrifuge) used for separating a sample in the fields of medicine, pharmacy, genetic engineering, biotechnology, etc., and in particular, a bucket holding function that is held and swings by a swing rotor. It is about improvement.
  • the centrifuge includes a rotor capable of accommodating a plurality of sample containers filled with a sample therein, and a motor (driving means) that rotationally drives the rotor in the rotor chamber, and acts on centrifugal force by rotating the rotor in the rotor chamber. By doing so, the sample in the sample container is centrifuged.
  • Centrifuge rotors can be broadly classified into angle rotors and swing rotors. In the case of an angle rotor, a plurality of sample containers filled with a sample are accommodated in the accommodation hole, and a lid for reducing windage loss is fastened to the rotor above the accommodation hole opening.
  • the receiving hole is formed at a fixed angle with respect to the drive shaft, and the relative angle between the receiving hole and the drive shaft is always fixed regardless of the magnitude of the centrifugal force.
  • the swing rotor rotates a bucket that has a bottomed portion and accommodates a sample container that is filled with a sample so as to be swingable with respect to the swing rotor body.
  • the centrifugal load applied to the bucket is held by a pair of holding pins (convex portions) installed on the opposing surfaces of the arms of the swing rotor body.
  • a recess is formed on the two side surfaces of the bucket so as to engage with the cylindrical surface on the outer peripheral side of the holding pin of the swing rotor body, and the recess is mounted so as to hang downward from the holding pin. Is slidably held by.
  • a clearance is provided between the front end surface of the holding pin and the opposing surface (orthogonal surface) of the concave portion of the bucket so as not to prevent sliding.
  • Centrifugal force acts on the bucket installed on the swing shaft, the bucket rotates about the swing axis and ⁇ > 0 °, and is substantially horizontal (swing angle ⁇ 90 at a rotational speed that generates centrifugal force to add the bucket horizontally) °).
  • the swing rotor changes the relative angle between the central axis of the bucket and the drive shaft according to the magnitude of centrifugal force during centrifugation.
  • the rotor has a pair of opposing convex portions that support the bucket so as to be swingable, and is provided with a concave portion on the side surface of the bucket that engages with the outer peripheral side cylindrical surface of the convex portion, and the concave portion is provided with the reinforcing portion Is slid and engaged with the convex portion of the rotor, and swings at the end of the concave portion.
  • the bucket swings around the central axis of the convex cylindrical surface.
  • the size of the contact surface between the bucket and the convex cylindrical surface of the rotor is determined by the outer diameter of the convex cylinder, the contact width determined by the convex cylindrical surface and the concave end surface of the bucket, and the roundness provided on the ridgeline at the convex tip. It is determined by the size of the chamfer.
  • the load of the bucket, the sample, and the sample container is borne by the contact surface of the bucket, and the stress concentrates on the roundness or the arc-shaped portion provided at the corner of the recess.
  • the conventional swing rotor structure has The resulting stress is high (stress concentration). Since this stress concentration significantly affects the repeated life of the bucket, the roundness or arc shape of the recess corner is usually set as large as possible in order to relieve the stress. However, if the roundness or arc shape of the corner of the recess is increased, it will interfere with the roundness or chamfering of the tip ridge line of the convex portion of the rotor, which will affect the swing. The possibility of damaging the roundness or arc shape of the part increases.
  • the rounding or chamfering of the leading edge of the convex portion of the rotor is provided so as not to interfere.
  • increasing roundness or chamfering now requires reducing the contact width.
  • the reduction of the contact width means that the contact surface pressure, that is, the contact stress, increases, causes cracks on the contact surface and surface roughness, which deteriorates slidability and promotes breakage from the contact surface. It opens up possibilities.
  • the rotor front end surface and the opposite surface (relative surface) of the bucket concave portion are attached by sliding and engaging with the convex portion by the reinforcing portion provided in the bucket concave portion. Since it is necessary to be able to swing, it is necessary to provide an appropriate gap. Furthermore, the amount of unbalance with respect to the center of rotation is such that the center plane position parallel to the rotation center axis between the pair of convex portions facing the rotor and the plane parallel to the rotation center axis that passes through the center of gravity of the bucket, sample, and sample container coincide. Since the vibration is reduced and the vibration during rotation becomes low, it is desirable that the gap is small.
  • the present invention has been made in view of the above background, and an object of the present invention is to provide a centrifuge and a swing rotor for a centrifuge that can suppress a decrease in the life of the bucket due to stress concentration on the corners of the recesses of the bucket.
  • Another object of the present invention is a centrifugal system that optimizes the size of roundness and chamfering provided on the ridge line at the tip of the convex portion of the holding pin while ensuring a sufficient contact width of the swing surface between the bucket and the convex portion of the holding pin.
  • a swing rotor for a centrifugal machine is provided in view of the above background, and an object of the present invention is to provide a centrifuge and a swing rotor for a centrifuge that can suppress a decrease in the life of the bucket due to stress concentration on the corners of the recesses of the bucket.
  • Another object of the present invention is a centrifugal system that optimizes the size of roundness and chamfering provided
  • Still another object of the present invention is to reduce the amount of unbalance caused by the size of the gap between the convex portion of the holding pin and the bucket and to enable stable centrifugation without giving unnecessary vibration to the sample.
  • the object is to provide a centrifuge and a swing rotor for the centrifuge.
  • the drive shaft rotated by the drive means, the swing rotor main body mounted on the drive shaft, the plurality of holding pins arranged on the swing rotor main body, and the holding pin are latched. Therefore, in a centrifuge having a plurality of buckets arranged so as to be swingable, the holding pin is a convex portion formed on the swing rotor body and has a cylindrical surface on the outer periphery, and the bucket has a concave portion corresponding to the convex portion. .
  • the concave portion of the bucket has a parallel region facing the outer peripheral surface of the holding pin and a vertical region facing the front end surface of the convex portion, and the vertical region is a groove formed continuously along the boundary with the guide surface.
  • a flat portion is formed in a groove portion whose depth direction is the axial direction of the holding pin and a portion surrounded by the groove portion.
  • a pin receiving portion that is a semi-cylindrical surface corresponding to the outer peripheral shape of the holding pin and a guide surface formed by two opposing flat surfaces are formed.
  • the groove portion has an inverted U shape when viewed from the axial direction of the holding pin, and the cross-sectional shape thereof is curved, particularly preferably hemispherical, and the width of the groove in the cross section passing through the axis of the holding pin is a convex portion. Less than half the diameter.
  • the guide surface extends substantially parallel downward from the semi-cylindrical surface and is formed by a side surface of a rib for guiding attachment to the convex portion of the bucket.
  • the groove portion is continuously formed from the pin receiving portion so as to be in contact with substantially the entire guide surface.
  • the interval W1 between the guide surfaces in the direction orthogonal to the bucket mounting direction on the guide surface is configured such that W1> 2G with respect to the width G of the groove.
  • the present invention it is possible to reduce the roundness or chamfering of the ridgeline at the tip of the convex portion of the rotor to ensure the contact area between the convex portion and the concave portion, and to set the clearance between the convex portion tip and the relative surface of the bucket concave portion to be small. It has become possible. In addition, it was possible to reduce the stress of buckets that were in a high stress state due to stress concentration in the past, and to realize a centrifuge with less abnormal vibration.
  • the gap between the rotor convex portion tip surface and the bucket concave portion relative surface is set to an arbitrary gap regardless of the rounded or chamfered size provided on the ridge line at the rotor convex tip, and is caused by the size of the gap. The amount of unbalance is reduced, and it is possible to prevent unnecessary vibrations from being applied to the sample.
  • FIG. 4 is a side view of the centrifuge 1 according to the embodiment of the present invention during high-speed rotation of the rotor, and is a view of the inner peripheral side from the AA portion of FIG. 3.
  • FIG. 6 is a cross-sectional view taken along a line BB in FIG. 5 and shows a state where the rotor body 20 is rotating.
  • FIG. 1 is a longitudinal sectional view of a centrifuge 1 of the present invention.
  • the centrifuge 1 includes a box-shaped housing 11 and is partitioned into two upper and lower spaces by a partition plate 12 near the upper and lower centers inside the housing 11.
  • the upper space of the partition plate 12 accommodates a substantially cylindrical chamber 4 whose upper surface is open, and a protective wall 6 is disposed on the outer peripheral side of the chamber 4.
  • the upper surface of the chamber 4 is sealed by an openable / closable door 14, thereby forming the rotor chamber 3.
  • a refrigeration pipe 16 is wound around the chamber 4 and the interior of the rotor chamber 3 is maintained at a desired temperature by a cooling device (not shown).
  • a rotor assembly 2 is installed in the rotor chamber 3.
  • the rotor assembly 2 is a set of a swing rotor and a housing cover 30 that houses the swing rotor.
  • the swing rotor rotates while being housed in the housing cover 30.
  • the swing rotor includes a rotor main body 20 attached to the drive shaft 7a and a plurality of buckets 40 that are held swingably with respect to the rotor main body 20.
  • the swing rotor is rotated without using the storage cover 30.
  • the centrifugal operation may be performed without using the storage cover 30. It is not essential for the invention.
  • a motor 7 as a drive source is accommodated in the housing 8 at the lower stage partitioned by the partition plate 12 in the housing 11, and the housing 8 is fixed to a mounting member 13 to the partition plate 12 via a damper rubber 9.
  • the motor 7 is arranged such that its drive shaft 7a extends in the vertical direction.
  • the drive shaft 7a extends from a through hole formed in the bottom portion of the chamber 4 so as to reach the internal space of the rotor chamber 3, and a crown 7b for transmitting the rotational torque of the drive shaft 7a is provided at the upper end portion thereof.
  • the rotor assembly 2 is held by the crown 7b.
  • the bucket 40 swings around the swing axis by centrifugal force.
  • the rotor assembly 2 can be detached from the rotor chamber 3 in the state of the assembly in this way, and the lid 33 of the housing cover 30 is removed while the rotor assembly 2 is set in the centrifuge 1. It is also possible to remove the bucket 40.
  • An operation display unit 10 is provided on the inclined panel 15 on the upper rear side of the housing 11.
  • the operation display unit 10 functions as an input unit for receiving input from the user and a display unit for displaying information to the user, and can be formed by a plurality of buttons and an LED display device. You may comprise using a liquid crystal display.
  • a control unit (not shown) for controlling the entire centrifuge 1 is provided.
  • the control unit is an electronic circuit that includes a microcomputer, volatile and nonvolatile storage memories, and the like.
  • FIG. 2 is a cross-sectional perspective view of the rotor assembly 2 of the centrifuge 1 according to the embodiment of the present invention.
  • the rotor assembly 2 includes a rotor body 20 in which a plurality of buckets 40 are set inside a housing cover 30 including a shell 31, a base 32, and a lid 33 (the rotor body 20 also includes a coupling 36 attached with screws). It is a housed assembly.
  • FIG. 2 shows a state in which the sample container 50 in which the sample 55 is placed inside the bucket 40 is mounted.
  • the bucket 40 has an inner wall shape that matches the outer shape of the sample container 50, and is manufactured by integral molding of an aluminum alloy.
  • the housing cover 30 is used to prevent a temperature rise due to frictional heat with the air due to the unevenness of the rotor assembly 2 and to reduce noise such as wind noise during rotation of the rotor assembly 2 in the centrifugal separation operation. It is important that the thermal conductivity is good, the strength is excellent, and the weight is light. Here, it is made of a metal such as an aluminum alloy.
  • the shell 31 is provided with a lower opening annular base 32, and the shell 31 and the base 32 form a bowl-shaped container.
  • the base 32 is provided with a circular through hole in the center, and a coupling 36 for fixing the rotor body 20 is attached to the upper part of the through hole.
  • a circular opening 31 a larger than the outer diameter of the rotor body 20 is formed on the upper side of the shell 31.
  • a disc-shaped lid 33 is attached to the opening 31 a of the shell 31.
  • a knob 34 is attached to the center of the lid 33, and a through hole is provided in the center of the knob 34.
  • the upper end of the lock screw 35 can be inserted into the through hole, and the opening 31a of the shell 31 can be closed. Therefore, the lid 33 is only on the top of the shell 31.
  • the base 32 and the coupling 36 of the shell 31 are fixed by screws, the housing cover 30 and the rotor body 20 can move together, and a fitting hole 36 a provided in the coupling 36 is set in the crown 7 b of the centrifuge 1. After that, the rotor assembly 2 is fixed to the centrifuge 1 by screwing the screw portion 35a of the lock screw 35, which is rotatably attached to the rotor body 20, into the screw portion 36b provided on the crown 7b.
  • FIG. 3 is a bottom view of the rotor body 20 and the bucket 40 of the centrifuge 1 according to the embodiment of the present invention (here, the coupling 36 is not shown).
  • a holding pin 26 protruding in a convex shape from the rotor body 20 is hooked in a concave depression (concave portion) formed in the bucket 40.
  • the rotor body 20 includes a hub 21 having a substantially rectangular parallelepiped outer diameter in which a through hole 22 is formed, an arm portion 23 that extends radially outwardly from the hub 21 and extends in a cross shape when viewed from above, and an arm portion 23.
  • a branch arm portion 24 connected so as to spread in a V shape from the vicinity of each tip, and a rib 25 for improving strength by connecting adjacent branch arm portions 24 with a planar member.
  • the rotor body 20 is manufactured mainly by precision casting made of stainless cast steel or aluminum alloy, and only a portion requiring combination accuracy is cut by machining.
  • the hub 21 is a place to be installed on the coupling 36. When the number of buckets 40 to be attached is four, the four arm portions 23 are arranged around the rotation axis (rotation center) of the hub 21 at intervals of 90 °. Evenly arranged.
  • the number of arm portions 23 and the interval (rotation angle) between the arm portions 23 can be arbitrarily set, but the rotation target with respect to the through hole 22 (concentric with the rotation axis) It is preferable to set so that
  • each branch arm portion 24 has a substantially cylindrical shape for supporting the bucket 40, and is formed with a holding pin 26 protruding so as to be a convex portion with respect to the bucket 40 side.
  • the direction in which the holding pin 26 extends (the axial direction of the holding pin 26) is the same direction as the tangential direction of the rotation locus of the rotor body 20.
  • FIG. 11 is a perspective view showing a bucket 140 formed by a conventional technique, particularly a conventional pin receiving structure.
  • the bucket 140 is manufactured by integral molding of a metal such as an aluminum alloy, for example, and has a cup shape having a substantially rectangular opening 141 when viewed from above. In the vicinity of the upper end, which is in the vicinity of the opening 141, a thick portion 142 having a partially increased thickness is formed, and a recess 145 sandwiched by two guide ribs 143 is formed downward from the thick portion 142. .
  • a pin receiving portion 144 having an arcuate outer peripheral surface is formed on the upper end of the recess 145 and below the thick portion 142 as a contact surface when the bucket 140 swings.
  • the inner wall of the arc-shaped pin receiving portion 144 is preferably a semi-cylindrical shape slightly larger than the outer diameter of the holding pin 26 (FIG. 2).
  • FIG. 11 only the guide rib 143 and the pin receiving portion 144 connected to one thick portion 142 can be seen, but the same guide rib 143 and pin receiving portion 144 are also formed on the thick portion 142 located on the opposite side.
  • the guide rib 143 serves as a guide for guiding the holding pin when the bucket 140 is mounted on and removed from the rotor main body.
  • a guide surface 143a which is a wall surface formed on the recess 145 side of the guide rib 143, is formed so as to face the outer peripheral side sliding surface (cylindrical shape) of the holding pin, and is in the axial direction of the swing axis. It becomes a plane area (plane area) formed in parallel.
  • FIG. 11 only the guide ribs 143 connected to one side of the thick portion 142 and the recesses (dents 145, pin receiving portions 144, guide surfaces 143a) formed in a portion surrounded by the ribs and formed in a concave shape in a side view.
  • a similar concave portion is formed in the thick portion 142 located on the opposite side, and a recess 145 and a pin receiving portion 144 are formed at two locations on the long side of the bucket 140.
  • FIG. 12 is a side view of the conventional centrifuge during high-speed rotation of the rotor, as seen from the outer peripheral side toward the inner side. It can be understood from this figure that the centrifugal load is held by the bucket 140 being pivotally supported by the holding pin 126 formed on the branch arm portion 124 of the swing rotor.
  • a boundary portion between the recess 145 and the guide surface 143a of the guide rib 143 is not a right angle at the corner of the recess 145 serving as a recess of the bucket 140, and the corner 145c is formed to be slightly rounded.
  • a similar roundness is also formed at the boundary between the depression 145 and the pin receiving portion 144, which are vertical planes.
  • the roundness of the corner 145c must be smaller than the roundness (chamfering) of the corner 126c at the tip of the holding pin 126.
  • the roundness of the corner 126c of the holding pin 126 must be further increased. Therefore, the cylindrical surface 126b and the pin receiving portion 144 In addition to the decrease in the contact area, the gap between the recess 145 and the front end surface 126a of the holding pin 126 is increased.
  • the contact surface pressure that is, contact stress increases, causing cracks in the contact surface and surface roughness of the contact surface, resulting in poor slidability and a cause of poor swinging of the bucket 140. End up. Further, if the clearance between the front end surfaces 126a of the holding pins 126 is large, the amount of movement of the bucket 40 in the axial direction of the holding pins increases, so that there is a high possibility that unbalance will occur during rotation.
  • the present invention has been made in order to solve these problems.
  • FIG. 4 is a perspective view of the bucket 40 used in the centrifuge 1 according to the present embodiment.
  • the bucket 40 is detachable with respect to the rotor main body 20, and can be mounted on the rotor main body 20 by moving the bucket 40 from top to bottom (mounting direction: downward parallel to the axial direction).
  • the bucket 40 has an opening 41 at the top, and an internal space 48 for accommodating a plurality of sample containers 50 is formed below the opening 41.
  • the bucket 40 in which the opening 41 is in an open state is illustrated, but an openable / closable lid may be formed in the opening 41.
  • the bucket 40 is manufactured by integral molding of a metal such as an aluminum alloy, for example, and has a cup shape having a substantially rectangular opening 41 when viewed from above, and the periphery of the opening 41 is partially A thick part 42 having an increased thickness is formed.
  • the bucket 40 of the present embodiment has a shape in which the internal space 48 is separated into two.
  • a thick portion 42 and a concave portion sandwiched by two guide ribs 43 extending downward from the thick portion 42 are formed on the long side surface of the bucket 40.
  • This concave portion is concave when viewed from the axially outer side of the swing axis of the bucket, and the width of the concave portion is slightly larger than the diameter of the holding pin 26 so that the holding pin 26 can be guided. It is.
  • the main purpose of the guide rib 43 is to form the guide surface 43 a for guiding the holding pin 26, but the rigidity of the bucket 40 can be significantly increased by forming the guide rib 43.
  • a continuous groove portion 46 facing the tip end side of the cylindrical surface of the pin receiving portion 44 and having an inverted U shape in a side view in a region orthogonal to the swing axis (the bottom portion in terms of the recess). Formed.
  • the inner surface of the inverted U-shaped groove 46 is formed with an orthogonal surface 45 that is a flat surface orthogonal to the swing axis.
  • FIG. 5 is a side view of the centrifuge 1 according to the embodiment of the present invention when the rotor of the centrifuge 1 is rotating at a high speed, and is a side view as seen from the AA portion of FIG.
  • the difference between the conventional centrifuge and the centrifuge 1 according to the present embodiment is mainly the shape of the bucket 40, and the shape of the corner of the holding pin 26 is optimized according to the bucket 40.
  • the holding pin 26 has a substantially cylindrical shape, and its axis (swing axis) is the swing center of the bucket 40.
  • the portion of the holding pin 26 that contacts the bucket 40 is a cylindrical surface 26 b, and the tip end surface 26 a is formed at the tip end in the axial direction of the holding pin 26 in a direction perpendicular to the swing axis.
  • a pin receiving portion 44 having a cylindrical inner wall shape is formed, and the pin receiving portion 44 comes into contact with the cylindrical surface 26b.
  • an orthogonal surface 45 is formed in a vertical region facing the front end surface 26a.
  • a groove 46 is formed on the radially outer side of the orthogonal surface, and the locally concentrated stress of the bucket 40 is formed. Was configured to be dispersed.
  • the groove 46 can be formed by cutting using an end mill having a hemispherical cutting tip shape.
  • the groove contour of the groove 46 is semicircular when viewed from the bottom view (or the cross-sectional view of FIG. 6) as shown in FIG. 5, but the reason for providing the groove is to disperse the stress concentrated locally at the corners and the like. Therefore, other cross-sectional shapes may be used as long as the cross-sectional shape is not only a perfect semicircular shape but also a curved shape.
  • the tip surface 26a and the orthogonal surface 45 are configured to face each other with a slight gap. This gap is such that the bucket 40 can be smoothly attached to the rotor body 20 and the bucket 40 can swing smoothly when the rotor body 20 rotates, and should be formed as small as possible.
  • the cross-sectional shape of the BB portion in FIG. 5 will be described with reference to FIG.
  • This section is because the rotor main body 20 is rotating at high speed and the bucket 40 is swinging horizontally, so that the section of the BB section is the center axis (swing axis) of the holding pin 26 and the center axis of the bucket 40. It will be a surface that passes through.
  • the bucket 40 is swingably supported while sliding along the pin receiving portion 44 of the holding pin 26, and the centrifugal load of the bucket 40 is supported by the pin receiving portion 44 coming into contact with the cylindrical surface 26 b of the holding pin 26.
  • a groove 46 is formed on the contact surface (cylindrical half surface) on the axial center side of the swing axis.
  • the orthogonal surface 45 of the bucket 40 with respect to the holding pin 26 is necessarily faced on the swing axis of the holding pin 26. This is necessary to provide a gap between the front end surface 26 a of the holding pin 26 and the orthogonal surface 45 of the bucket 40.
  • the width of the groove 46 is determined by the radius of the hemispherical cross-sectional shape, but there is no problem even if the tip surface 26a of the holding pin 26 and the orthogonal surface 45 of the bucket 40 are reduced to the extent that they remain parallel ridgelines.
  • the width of the groove 46 is reduced to about 2/3 of the radius of the holding pin 26 so that the groove 46 is not positioned on the central axis (swing axis) of the holding pin 26.
  • the tip surface 26 a and the orthogonal surface 45 are close enough to face each other with a small gap, so that there is little shaking when the bucket 40 is swung, and the rotation center of the rotor body 20 is not affected.
  • the amount of unbalance is reduced, and vibration during rotation can be kept low.
  • the bucket 40 is provided with a bucket partition plate 41b for dividing the internal space into two.
  • FIG. 7 is a side view of a single bucket 40 of the centrifuge 1 according to the embodiment of the present invention. What is drawn with a dotted line is the position of the holding pin 26 during the centrifugal separation operation.
  • a guide rib 43 serving as a reinforcing portion is provided on a side surface of the bucket 40, and a concave portion is formed using the thick portion 42 and the guide rib 43.
  • the concave portion is a region which becomes a bottom portion of the groove and is a vertical region which is a side facing the front end surface of the holding pin 26 and a parallel region which is formed orthogonal to the vertical region.
  • the vertical region is a region extending in the vertical direction on the distal end side of the holding pin 26 when viewed from the axial direction of the swing axis.
  • the parallel region is a region formed by a plane parallel to the swing axis, and is a surface that cannot be seen in the side view of FIG.
  • the groove 46 and the orthogonal surface 45 formed in the vertical region can be visually recognized in a side view.
  • the portion between the two parallel guide ribs 43 is buried and is manufactured to have a continuous and identical surface, and then the concave portion is formed by cutting. .
  • an end mill (not shown) having the same diameter as the width G of the groove 46 is positioned parallel to the swing axis and brought close to 46c of the bucket 40, moved in the direction of the arrow 49a, and reversed near the upper end. And move to the arrow 49b while moving in an inverted U shape.
  • a deep groove is formed only in the groove portion 46, and a guide surface 43a and a cylindrical pin receiving portion 44 are formed.
  • an end mill (not shown) having a diameter greater than or equal to W and having a flat tip cutting surface is positioned at the lower end of the island portion formed by the formation of the groove portion 46, and from below as indicated by an arrow 49c.
  • the orthogonal plane 45 is formed by moving to the vicinity of the center of the swing axis while cutting upward. As a result of such cutting, a recess is formed in a portion sandwiched between the guide ribs 43.
  • the guide surface 43a of the guide rib 43 and the pin receiving portion 44 are adjacent to each other so that the surfaces thereof are continuous, and the boundary portion between the guide surface 43a and the groove portion 46 is also continuously formed.
  • the position of the holding pin 26 at the time of rotation of the rotor body 20 is a range indicated by a dotted line in FIG. 7, and a range D from the top is a relative portion facing the holding pin 26.
  • a portion below the relative portion is an extension portion formed to guide the bucket 40 when the bucket 40 is attached to the holding pin 26.
  • the groove 46 when the groove 46 is basically formed only in the relative portion having the length D in the vertical direction, the locally concentrated stress of the bucket 40 can be dispersed during the centrifugal separation operation.
  • the groove portion 46 is cut only at the relative portion, the end of the groove portion is located near the transition portion from the groove portion 46 to the extension portion, and there is a possibility that stress is concentrated not a little. Is sufficiently long to extend from the top to the bottom. If it forms in this way, it will also become possible to form each part of a recessed part efficiently by cutting, and the raise of a cutting cost can be suppressed significantly.
  • a recess for guiding the holding pin 26 is formed inside the guide rib 43 formed in parallel as described above.
  • the interval W1 between the guide surfaces 43a of the guide ribs 43 in the extension region viewed in the direction orthogonal to the mounting direction of the bucket 40 is constant from top to bottom, that is, the guide surfaces 43a are formed in parallel.
  • FIG. 8 is a partial perspective view for explaining the shape of the recess formed on the side surface of the bucket 40.
  • the concave portion is divided into a parallel region mainly serving as a wall surface and a vertical region serving as a bottom surface portion.
  • the blackened portion shows a wall surface that becomes a parallel region, and the upper side of this wall surface is a pin receiving portion 44 that contacts the holding pin 26 when the bucket 40 swings.
  • a guide surface 43a which is a flat surface extending from the columnar surface to the extended portion, is provided below.
  • the portion blacked out in FIG. 8B is the shape of the groove 46 as viewed from the side.
  • the reverse outer peripheral portion 46a of the groove portion 46 is in a position in contact with the upper surface of the pin receiving portion 44, and the reverse inner peripheral portion 46b of the groove portion 46 is above the axis (center point) of the swing shaft. That is, the swing axis is configured to be located in the orthogonal plane 45 that is a plane. For this reason, since the orthogonal surface 45 and the front end surface 26a of the holding pin 26 can face each other in a substantially parallel state on the swing axis, a swing mechanism with less backlash can be realized.
  • the periphery of the facing surface is a groove portion 46, it is easy to bring the orthogonal surface 45 and the front end surface 26a close to each other, and the swinging operation is smooth and the risk of the bucket 40 being displaced is greatly increased. Can be reduced.
  • the portion filled in black in FIG. 8 (3) is a side view of the orthogonal plane 45.
  • the axial position of the bucket 40 is determined by contacting the tip of the holding pin 26 in the axial direction. Since it has a sufficient length of more than half of the vertical distance, the bucket 40 mounting mechanism that can properly position the holding pins 20 of the bucket in the axial direction can be realized.
  • FIG. 9 is a transverse sectional view (horizontal sectional view) passing through the axis of the holding pin 26.
  • the bucket 40 vertical region is a portion that is all disposed within the range of the width 51 and indicated by the arrow 52, and the orthogonal surface 45 and the groove 46 are formed in this portion.
  • the pin receiving portion 44 is a semi-cylindrical surface formed in a parallel region, and is in good contact with the cylindrical surface 26 b of the holding pin 26.
  • the groove portion 46 because of the relationship in which the groove portion 46 is formed, the radius of curvature of the corner portion 26c between the cylindrical surface 26b and the tip surface 26a of the holding pin 26 can be made sufficiently small. If the shape of the holding pin 26 is optimized in accordance with the bucket 40 thus improved, the axial width L1 of the contact portion between the cylindrical surface 26b and the pin receiving portion 44 can be secured large.
  • the groove portion 46 is formed so as to be within the range 51 and the range of the arrow 52, and is formed so as not to protrude to the parallel region side where the pin receiving portion 44 is present.
  • the orthogonal surface 45 can be formed at an arbitrary height (arbitrary depth when viewed as a concave portion) in order to cut after the processing of the groove portion 46 is finished. Can be appropriately set so as to face each other at a minute interval, and a bucket 40 without backlash can be realized.
  • the gap S ⁇ b> 2 between the deepest part of the groove in the groove 46 and the tip surface 26 a of the holding pin 26 is configured to be sufficiently larger than the gap S ⁇ b> 1 with the orthogonal surface 45. According to the conventional technique shown in (2), it is necessary to secure the gap S3 to some extent because of the possibility of interference between the corner 145c and the corner 126c.
  • FIG. 10 is a vertical cross-sectional view (vertical cross-sectional view) passing through the axis of the holding pin 26.
  • the concave portion of the bucket 40 is formed such that the groove portion 46 is formed within the range of the width 53 on the upper side from the holding pin line, and the orthogonal surface 45 is formed on the lower side of the groove portion 46.
  • the groove 46 is formed so as not to exceed the range 53 when viewed in the vertical direction.
  • the lower side of the range 53 is the position of the swing axis
  • the upper side is the upper end position of the inner wall of the pin receiving portion 44.
  • the groove portion 46 is formed at the bottom portion of the concave portion of the bucket 140 and is formed along the boundary between the bottom portion and the wall portion, so that it does not affect the surface on the pin receiving portion 44 side. Formed.
  • the pair of opposed convex holding pins 26 that support the bucket so as to be swingable are arranged on the opposite sides, and the bucket engages with the cylindrical surface 26 b of the holding pin 26. Since the concave portion is provided on the side surface, the concave portion is formed by the groove portion 46 having a rounder or substantially arc shape larger than the corner portion 26c provided on the tip edge line of the holding pin 26 of the rotor and the orthogonal surface 45 inside the groove portion 46. Further, it is possible to prevent the life of the bucket 40 from being shortened due to partial stress concentration at the corner of the concave portion of the bucket 40.
  • the contact width L1 between the cylindrical surface 26b of the holding pin 26 and the bucket 40 can be increased, it is possible to prevent cracking of the contact surface and surface roughness of the contact surface due to increased contact surface pressure, that is, contact stress. Furthermore, since an appropriate gap is provided in the orthogonal surface 45 of the front end surface 26a of the holding pin 26 and the concave portion of the bucket 40, the amount of unbalance caused by the size of the gap can be reduced, and the bucket 40 can be made smooth. A centrifuge that does not give unnecessary vibration to the sample can be realized.
  • the bucket 140 has been described as having a shape in which the opening 41 is substantially rectangular.
  • the shape of the bucket is not limited to this, and the shape of the opening is a substantially circular cylindrical bucket. It may be a bucket of any other shape.
  • Housing cover 31 ... Shell, 31a ... Opening, 32 ... Base, 33 ... Lid, 34 ... Knob, 35 ... Lock screw, 35a ... Screw part, 36 ... Coupling, 36b ... Screw hole, 40 ... Bucket, 41 ... Opening part, 41b ... Bucket partition plate, 42 ... Thick part, 43 ... Guide rib, 43a ... Guide , 44 ... Pin receiving part, 45 ... Orthogonal surface, 46 ... Groove part, 46a ... Inverted outer peripheral part, 46b ... Inverted inner peripheral part, 48 ... Internal space, 50 ... Sample container, 55 ... Sample, 120 ... Rotor body, 124 ... branch arm part, 126 ... holding pin, 126a ...

Abstract

A centrifuge having a plurality of buckets (40) that are provided in a swingable manner by being latched to the holding pins of a swing rotor body in order to ensure sufficient width of contact between the convex parts of the holding pins and the concave parts of the buckets and to optimize the size of a chamfer or roundness provided to the convex parts of the holding pins, wherein the holding pins are convex parts protruding from the swing rotor body and have a cylindrical surface on the outer periphery, the buckets have concave parts corresponding to the convex parts, and the concave parts include an arcuate pin-receiving part (44) that presses against the convex parts of the holding pins during swinging, and an orthogonal surface (45) that faces the axially distal surface of the convex parts, a continuous groove part (46) being formed in a reverse U-shape in side view on the outside of the orthogonal surface (45). The groove part (46) has a hemispherical groove cross-section, and the axis of the holding pin passes above the orgthogonal surface. Forming the groove part (46) makes it possible to disperse the localized stress concentrated on corner sections, etc., and to increase the service life of the bucket (40).

Description

遠心機及び遠心機用スイングロータCentrifuge and swing rotor for centrifuge
本発明は、医学、薬学、遺伝子工学、バイオ等の分野において試料を分離するために用いられるスイングロータ方式の遠心機(遠心分離機)に関し、特にスイングロータに保持されて揺動するバケット保持機能の改良に関するものである。 The present invention relates to a swing rotor type centrifuge (centrifuge) used for separating a sample in the fields of medicine, pharmacy, genetic engineering, biotechnology, etc., and in particular, a bucket holding function that is held and swings by a swing rotor. It is about improvement.
遠心機は、内部に試料を充填した複数の試料用容器を収容可能なロータと、ロータをロータ室内で回転駆動するモータ(駆動手段)を備え、ロータ室内でロータを回転させて遠心力を作用させることにより試料用容器内の試料を遠心分離するものである。遠心機用のロータは、アングルロータとスイングロータに大別できる。アングルロータの場合、内部に試料を充填した複数の試料用容器を収容穴に収容し、収容穴開口部上方に風損低減のための蓋がロータに締結される。収容穴は駆動軸に対し一定の固定角で形成され、遠心力の大きさによらず収容穴と駆動軸の相対角度は常に固定である。 The centrifuge includes a rotor capable of accommodating a plurality of sample containers filled with a sample therein, and a motor (driving means) that rotationally drives the rotor in the rotor chamber, and acts on centrifugal force by rotating the rotor in the rotor chamber. By doing so, the sample in the sample container is centrifuged. Centrifuge rotors can be broadly classified into angle rotors and swing rotors. In the case of an angle rotor, a plurality of sample containers filled with a sample are accommodated in the accommodation hole, and a lid for reducing windage loss is fastened to the rotor above the accommodation hole opening. The receiving hole is formed at a fixed angle with respect to the drive shaft, and the relative angle between the receiving hole and the drive shaft is always fixed regardless of the magnitude of the centrifugal force.
これに対しスイングロータは、有底部を備え内部に試料を充填する試料用容器を収容するバケットを、スイングロータ本体に対して揺動可能なように保持した状態にて回転させるものである。バケットにかかる遠心荷重は、スイングロータ本体のアームの対向する面に設置される一組の保持ピン(凸部)にて保持される。バケットの2つの側面にはスイングロータ本体の保持ピンの外周側の円柱面に係合するような凹部を形成し、その凹部を保持ピンの上から下方向に掛けるように装着して、保持ピンによって摺動可能に保持される。保持ピンの先端面とバケットの凹部の相対する面(直交面)の間には、摺動を妨げない程度の隙間が設けられている。スイングロータが回転せずに静止している時は、バケットの上下方向中心軸とモータの駆動軸は平行(スイング角θ=0°)であるが、ロータの回転速度が上昇するに従い揺動可能に設置されたバケットに遠心力が作用し、スイング軸を中心にバケットが回転してθ>0°となり、バケットを水平に足らしめる遠心力を発生させる回転速度でほぼ水平(スイング角θ≒90°)となる。その後、遠心が終わりロータの回転速度の減少に伴いスイング角θは減少し停止時にはθ=0となる。このようにスイングロータは遠心中の遠心力の大きさによりバケットの中心軸と駆動軸との相対角度が変化する。 On the other hand, the swing rotor rotates a bucket that has a bottomed portion and accommodates a sample container that is filled with a sample so as to be swingable with respect to the swing rotor body. The centrifugal load applied to the bucket is held by a pair of holding pins (convex portions) installed on the opposing surfaces of the arms of the swing rotor body. A recess is formed on the two side surfaces of the bucket so as to engage with the cylindrical surface on the outer peripheral side of the holding pin of the swing rotor body, and the recess is mounted so as to hang downward from the holding pin. Is slidably held by. A clearance is provided between the front end surface of the holding pin and the opposing surface (orthogonal surface) of the concave portion of the bucket so as not to prevent sliding. When the swing rotor is stationary without rotating, the vertical axis of the bucket and the drive shaft of the motor are parallel (swing angle θ = 0 °), but can swing as the rotor speed increases. Centrifugal force acts on the bucket installed on the swing shaft, the bucket rotates about the swing axis and θ> 0 °, and is substantially horizontal (swing angle θ≈90 at a rotational speed that generates centrifugal force to add the bucket horizontally) °). After that, the centrifugal angle is finished, and the swing angle θ decreases as the rotational speed of the rotor decreases, and θ = 0 when stopped. Thus, the swing rotor changes the relative angle between the central axis of the bucket and the drive shaft according to the magnitude of centrifugal force during centrifugation.
このようなスイングロータにおいては、バケットにかかる遠心荷重はバケットの側面に設けた凹部終端の接触面で負担されるため、部分的に掛かる応力を低減させる工夫が種々試みられてきている。例えば、特許文献1ではロータに形成された一対の凸部と摺動係合されるバケット側面に設けた凹部終端において、荷重による応力集中を低減するためにその応力集中位置を凹部隅部に設けた丸みより大きな丸みとして部分的に球面形状の凹部を更に設けることが提案されている。 In such a swing rotor, since the centrifugal load applied to the bucket is borne by the contact surface at the end of the recess provided on the side surface of the bucket, various attempts have been made to reduce the stress applied partially. For example, in Patent Document 1, at the recess end provided on the side of the bucket that is slidably engaged with a pair of protrusions formed on the rotor, the stress concentration position is provided at the corner of the recess in order to reduce stress concentration due to load. It has been proposed to further provide a partially spherical recess as roundness greater than roundness.
特開昭62-114670号公報Japanese Patent Laid-Open No. 62-114670
ロータはバケットを揺動可能に支持する対向する一対の凸部が対面に配置され、その凸部の外周側円柱面に係合する凹部をバケットの側面に備え、その凹部は設けられた補強部によってロータの凸部と摺動されて係合され、凹部の終端にて揺動する。バケットは、凸部の円柱面中心軸を中心としてスイングする。バケットとロータの凸部円柱面の接触面の大きさは、凸部円柱外径や、凸部円柱面とバケットの凹部端面とで決定される接触幅および凸部先端の稜線に設けられる丸みや面取りの大きさなどで決定される。バケットおよび試料、試料用容器の荷重はバケットの接触面で負担され、凹部隅部に設けた丸みまたは円弧形状部に応力が集中する。近年、一度に大量の試料を処理したい又は、より高い遠心加速度で処理したいとの要望があるが、その要望どおりにバケットの大型化を図るとなると従来のスイングロータの構造では、凹部隅部に生じる応力が高く(応力集中)なってしまう。この応力集中はバケットの繰り返し寿命に著しく影響を及ぼすことから通常は応力を緩和するために、凹部隅部の丸みまたは円弧形状は可能な限り大きく設定される。しかし、凹部の隅部の丸みまたは円弧形状を大きくすると、ロータの凸部の先端稜線の丸みまたは面取りと干渉することになり揺動に影響を与える上に、凸部の先端稜線で凹部の隅部の丸みまたは円弧形状を損傷する可能性が増大してしまう。この損傷を避けるために通常はバケットの凹部隅部の丸みまたは円弧形状を大きくした場合はロータの凸部先端稜線の丸みまたは面取りも干渉しないように大きく設けられる。しかし、丸みまたは面取りを大きくすると今度は接触幅を減らす必要に迫られる。接触幅が減るということは、接触面圧すなわち接触応力が増大し接触面への亀裂の発生や接触面の面荒れを引き起こし、摺動性が悪くなりかつ接触面からの破壊を助長してしまう可能性を広げてしまう。 The rotor has a pair of opposing convex portions that support the bucket so as to be swingable, and is provided with a concave portion on the side surface of the bucket that engages with the outer peripheral side cylindrical surface of the convex portion, and the concave portion is provided with the reinforcing portion Is slid and engaged with the convex portion of the rotor, and swings at the end of the concave portion. The bucket swings around the central axis of the convex cylindrical surface. The size of the contact surface between the bucket and the convex cylindrical surface of the rotor is determined by the outer diameter of the convex cylinder, the contact width determined by the convex cylindrical surface and the concave end surface of the bucket, and the roundness provided on the ridgeline at the convex tip. It is determined by the size of the chamfer. The load of the bucket, the sample, and the sample container is borne by the contact surface of the bucket, and the stress concentrates on the roundness or the arc-shaped portion provided at the corner of the recess. In recent years, there is a desire to process a large amount of sample at a time or to process at a higher centrifugal acceleration, but when the bucket size is increased according to the request, the conventional swing rotor structure has The resulting stress is high (stress concentration). Since this stress concentration significantly affects the repeated life of the bucket, the roundness or arc shape of the recess corner is usually set as large as possible in order to relieve the stress. However, if the roundness or arc shape of the corner of the recess is increased, it will interfere with the roundness or chamfering of the tip ridge line of the convex portion of the rotor, which will affect the swing. The possibility of damaging the roundness or arc shape of the part increases. In order to avoid this damage, normally, when the roundness or arc shape of the concave portion of the bucket is made large, the rounding or chamfering of the leading edge of the convex portion of the rotor is provided so as not to interfere. However, increasing roundness or chamfering now requires reducing the contact width. The reduction of the contact width means that the contact surface pressure, that is, the contact stress, increases, causes cracks on the contact surface and surface roughness, which deteriorates slidability and promotes breakage from the contact surface. It opens up possibilities.
また、ロータの凸部先端面とバケット凹部の相対する面(相対面)にはバケットの凹部に設けられた補強部によって凸部と摺動されて係合させて取り付けるためと、凹部終端にて揺動可能にする必要があることから、適切な隙間を設ける必要がある。更にロータに対向する一対の凸部間の回転中心軸と平行な中心面位置と、バケットおよび試料、試料用容器の重心を通り回転中心軸と並行な面が一致するほど回転中心に対するアンバランス量は減少し回転中の振動は低くなることから、隙間は小さい方が望ましい。しかしながら、ロータの凸部先端稜線の丸みまたは面取りと干渉しないようにバケットの凹部隅部の丸みまたは略円弧状形状を大きくすると、凸部先端面に対面するバケット凹部の相対面にその丸みに接するように設けることになり、ロータの凸部先端面とバケット凹部の相対面の隙間は大きくなってしまうという問題があった。 In addition, the rotor front end surface and the opposite surface (relative surface) of the bucket concave portion are attached by sliding and engaging with the convex portion by the reinforcing portion provided in the bucket concave portion. Since it is necessary to be able to swing, it is necessary to provide an appropriate gap. Furthermore, the amount of unbalance with respect to the center of rotation is such that the center plane position parallel to the rotation center axis between the pair of convex portions facing the rotor and the plane parallel to the rotation center axis that passes through the center of gravity of the bucket, sample, and sample container coincide. Since the vibration is reduced and the vibration during rotation becomes low, it is desirable that the gap is small. However, if the roundness or the substantially arc-shaped shape of the concave portion of the bucket is increased so as not to interfere with the roundness or chamfering of the convex edge of the convex portion of the rotor, the roundness of the bucket concave portion facing the convex tip surface comes into contact with the roundness. Therefore, there is a problem that the gap between the front end surface of the convex portion of the rotor and the relative surface of the bucket concave portion becomes large.
本発明は上記背景に鑑みてなされたもので、その目的は、バケットの凹部隅部への応力集中によるバケットの寿命低下を抑制できる遠心機及び遠心機用スイングロータを提供することにある。 本発明の他の目的は、バケットと保持ピンの凸部とのスイング面の接触幅を十分確保しながら、保持ピンの凸部先端の稜線に設けられる丸みや面取りの大きさを最適化した遠心機及び遠心機用スイングロータを提供することにある。 本発明のさらに他の目的は、保持ピンの凸部とバケットとの隙間の大きさにより生じる不釣合い量を低減し、試料に不要な振動を与えないようにして安定した遠心分離を可能とした遠心機及び遠心機用スイングロータを提供することにある。 The present invention has been made in view of the above background, and an object of the present invention is to provide a centrifuge and a swing rotor for a centrifuge that can suppress a decrease in the life of the bucket due to stress concentration on the corners of the recesses of the bucket. Another object of the present invention is a centrifugal system that optimizes the size of roundness and chamfering provided on the ridge line at the tip of the convex portion of the holding pin while ensuring a sufficient contact width of the swing surface between the bucket and the convex portion of the holding pin. And a swing rotor for a centrifugal machine. Still another object of the present invention is to reduce the amount of unbalance caused by the size of the gap between the convex portion of the holding pin and the bucket and to enable stable centrifugation without giving unnecessary vibration to the sample. The object is to provide a centrifuge and a swing rotor for the centrifuge.
本願において開示される発明のうち代表的なものの特徴を説明すれば次の通りである。 本発明の一つの特徴によれば、駆動手段によって回転される駆動軸と、駆動軸に装着されるスイングロータ本体と、スイングロータ本体に配置される複数の保持ピンと、保持ピンに掛止させることよって揺動可能に配される複数のバケットを有する遠心機において、保持ピンはスイングロータ本体に形成される凸部であって外周に円柱面を有し、バケットは凸部に対応する凹部を有する。前記バケットの凹部には、保持ピンの外周面と対向する平行領域と凸部の先端面と対向する垂直領域があり、垂直領域には前記案内面との境界に沿って連続して形成され溝の深さ方向が前記保持ピンの軸方向となる溝部と、前記溝部に囲まれる部分に平面部が形成される。平行領域には、保持ピンの外周形状に対応する半円柱面となるピン受け部と、対向する2つの平面で形成される案内面が形成される。溝部は保持ピンの軸方向から見た側面視が逆U字状であって、その断面形状は曲線状、特に好ましくは半球状であり、保持ピンの軸線を通る断面における溝の幅は凸部の直径の半分未満とした。 The characteristics of representative ones of the inventions disclosed in the present application will be described as follows. According to one aspect of the present invention, the drive shaft rotated by the drive means, the swing rotor main body mounted on the drive shaft, the plurality of holding pins arranged on the swing rotor main body, and the holding pin are latched. Therefore, in a centrifuge having a plurality of buckets arranged so as to be swingable, the holding pin is a convex portion formed on the swing rotor body and has a cylindrical surface on the outer periphery, and the bucket has a concave portion corresponding to the convex portion. . The concave portion of the bucket has a parallel region facing the outer peripheral surface of the holding pin and a vertical region facing the front end surface of the convex portion, and the vertical region is a groove formed continuously along the boundary with the guide surface. A flat portion is formed in a groove portion whose depth direction is the axial direction of the holding pin and a portion surrounded by the groove portion. In the parallel region, a pin receiving portion that is a semi-cylindrical surface corresponding to the outer peripheral shape of the holding pin and a guide surface formed by two opposing flat surfaces are formed. The groove portion has an inverted U shape when viewed from the axial direction of the holding pin, and the cross-sectional shape thereof is curved, particularly preferably hemispherical, and the width of the groove in the cross section passing through the axis of the holding pin is a convex portion. Less than half the diameter.
本発明の他の特徴によれば、案内面は半円柱面から下方向に略平行に延び、バケットの凸部への装着を案内するためのリブの側面によって形成される。また、溝部はピン受け部から案内面のほぼ全体に接するように連続して形成される。案内面におけるバケットの装着方向と直交方向の案内面の間隔W1は、溝部の幅Gに対して、W1>2Gとなるように構成した。 According to another feature of the invention, the guide surface extends substantially parallel downward from the semi-cylindrical surface and is formed by a side surface of a rib for guiding attachment to the convex portion of the bucket. Further, the groove portion is continuously formed from the pin receiving portion so as to be in contact with substantially the entire guide surface. The interval W1 between the guide surfaces in the direction orthogonal to the bucket mounting direction on the guide surface is configured such that W1> 2G with respect to the width G of the groove.
本発明によれば、ロータの凸部先端の稜線の丸みまたは面取りを小さくして凸部と凹部の接触面積を確保できる上に、凸部先端とバケット凹部の相対面との隙間を小さめに設定可能となった。 また、従来では応力集中により高応力状態となっていたバケットの応力低減が図れ、異常振動の少ない遠心機を実現できた。 さらに、ロータの凸部先端面とバケット凹部の相対面間の隙間はロータの凸部先端の稜線に設けた丸みまたは面取りの大きさによらず、任意の隙間に設定し隙間の大きさにより生じる不釣合い量を低減し試料に不要な振動を与えないことを可能にした。 According to the present invention, it is possible to reduce the roundness or chamfering of the ridgeline at the tip of the convex portion of the rotor to ensure the contact area between the convex portion and the concave portion, and to set the clearance between the convex portion tip and the relative surface of the bucket concave portion to be small. It has become possible. In addition, it was possible to reduce the stress of buckets that were in a high stress state due to stress concentration in the past, and to realize a centrifuge with less abnormal vibration. Further, the gap between the rotor convex portion tip surface and the bucket concave portion relative surface is set to an arbitrary gap regardless of the rounded or chamfered size provided on the ridge line at the rotor convex tip, and is caused by the size of the gap. The amount of unbalance is reduced, and it is possible to prevent unnecessary vibrations from being applied to the sample.
本発明による遠心機の正面図であり、主要部分を断面図で示している。It is a front view of the centrifuge by this invention, and has shown the principal part with sectional drawing. 本発明の実施例に係る遠心機1のロータ組立体2の断面斜視図である。It is a section perspective view of rotor assembly 2 of centrifuge 1 concerning the example of the present invention. 本発明の実施例に係る遠心機1のロータ本体20とバケット40の底面図である。It is a bottom view of the rotor main body 20 and the bucket 40 of the centrifuge 1 which concerns on the Example of this invention. 図1のバケット40の斜視図である。It is a perspective view of the bucket 40 of FIG. 本発明の実施例に係る遠心機1のロータの高速回転中の側面図であって、図3のA-A部から内周側を見た図である。FIG. 4 is a side view of the centrifuge 1 according to the embodiment of the present invention during high-speed rotation of the rotor, and is a view of the inner peripheral side from the AA portion of FIG. 3. 図5のB-B部の断面図であり、ロータ本体20が回転中の状態である。FIG. 6 is a cross-sectional view taken along a line BB in FIG. 5 and shows a state where the rotor body 20 is rotating. 本発明の実施例に係る遠心機1のバケット40単体の側面図である。It is a side view of the bucket 40 single-piece | unit of the centrifuge 1 which concerns on the Example of this invention. 図1のバケット40のピン受け部44付近の形状を説明するための部分斜視図である。It is a fragmentary perspective view for demonstrating the shape of the pin receiving part 44 vicinity of the bucket 40 of FIG. バケットとロータ本体との接触部分の部分拡大図であって、(1)は本発明の実施例に係る形状であり、(2)は従来の遠心機における形状である。It is the elements on larger scale of the contact part of a bucket and a rotor main body, Comprising: (1) is a shape which concerns on the Example of this invention, (2) is a shape in the conventional centrifuge. バケットとロータ本体との接触状態を示す縦断面図であって、(1)は本発明の実施例に係る形状であり、(2)は従来の遠心機における形状である。It is a longitudinal cross-sectional view which shows the contact state of a bucket and a rotor main body, Comprising: (1) is a shape which concerns on the Example of this invention, (2) is a shape in the conventional centrifuge. 従来の技術のピン受け構造で製造したバケット140を示す斜視図である。It is a perspective view which shows the bucket 140 manufactured with the pin receiving structure of the prior art. 図11のバケット140の高速回転中の側面図であって、外周側から内側方向を見た図である。It is the side view in high speed rotation of the bucket 140 of FIG. 11, Comprising: It is the figure which looked at the inner side from the outer peripheral side.
以下、本発明の実施例を図面に基づいて説明する。なお、以下の図において、同一の部分には同一の符号を付し、繰り返しの説明は省略する。また、本明細書においては、前後左右、上下、内周側及び外周側は図中に示す方向であるとして説明する。また、当該数値と略同一である場合も含むものとする。また、位置関係等に言及した場合、例えば、平行、直交、平面、反対等のように言及した場合、完全に平行、直交、平面、反対等である場合だけでなく、略平行、略直交、略反対等である場合を含むものとする。 Embodiments of the present invention will be described below with reference to the drawings. In the following drawings, the same portions are denoted by the same reference numerals, and repeated description is omitted. Further, in this specification, description will be made assuming that the front, rear, left, right, top, bottom, inner peripheral side, and outer peripheral side are directions shown in the drawing. Moreover, the case where it is substantially the same as the said numerical value shall be included. In addition, when referring to the positional relationship, for example, when referring to parallel, orthogonal, plane, opposite, etc., not only when it is completely parallel, orthogonal, plane, opposite, but also substantially parallel, substantially orthogonal, The case where it is substantially opposite is included.
図1は本発明の遠心機1の縦断面図である。遠心機1は、箱型の筐体11を備え、筐体11の内部の上下中央付近には仕切り板12によって上下2段の空間に仕切られている。仕切り板12の上段の空間には、上面が開口する略円筒状のチャンバ4が収容され、チャンバ4の外周側には防護壁6が配置される。チャンバ4の上面には開閉可能なドア14によって密閉され、これらによってロータ室3が形成される。チャンバ4の周囲には冷凍配管16が巻回され、図示しない冷却装置によってロータ室3内が所望の温度に保たれる。ロータ室3内には、ロータ組立体2が設置される。ロータ組立体2は、スイングロータと、スイングロータを収容した収容カバー30の組であって、本実施例では収容カバー30に収容された状態でスイングロータが回転する。スイングロータは、駆動軸7aに装着されるロータ本体20と、ロータ本体20に対してスイング可能に保持される複数のバケット40により構成される。従来のスイングロータ式の遠心機では、収容カバー30を用いない状態でスイングロータを回転させるが、本発明においても収容カバー30を用いずに遠心運転しても良く、収容カバー30の使用は本発明にとって必須では無い。 FIG. 1 is a longitudinal sectional view of a centrifuge 1 of the present invention. The centrifuge 1 includes a box-shaped housing 11 and is partitioned into two upper and lower spaces by a partition plate 12 near the upper and lower centers inside the housing 11. The upper space of the partition plate 12 accommodates a substantially cylindrical chamber 4 whose upper surface is open, and a protective wall 6 is disposed on the outer peripheral side of the chamber 4. The upper surface of the chamber 4 is sealed by an openable / closable door 14, thereby forming the rotor chamber 3. A refrigeration pipe 16 is wound around the chamber 4 and the interior of the rotor chamber 3 is maintained at a desired temperature by a cooling device (not shown). A rotor assembly 2 is installed in the rotor chamber 3. The rotor assembly 2 is a set of a swing rotor and a housing cover 30 that houses the swing rotor. In this embodiment, the swing rotor rotates while being housed in the housing cover 30. The swing rotor includes a rotor main body 20 attached to the drive shaft 7a and a plurality of buckets 40 that are held swingably with respect to the rotor main body 20. In a conventional swing rotor type centrifuge, the swing rotor is rotated without using the storage cover 30. However, in the present invention, the centrifugal operation may be performed without using the storage cover 30. It is not essential for the invention.
筐体11内の仕切り板12によって仕切られた下段には、駆動源たるモータ7がハウジング8の内部に収容され、ハウジング8はダンパーゴム9を介して仕切り板12への取付部材13に固定される。モータ7はその駆動軸7aが鉛直方向に伸びるように配置される。駆動軸7aは、チャンバ4の底部に形成される貫通穴からロータ室3の内部空間に達するように延びて、その上端部に駆動軸7aの回転トルクを伝達するためのクラウン7bが設けられ、ロータ組立体2がクラウン7bによって保持される。ロータ組立体2が高速で回転することにより、遠心力によってバケット40がスイング軸を中心にして揺動する。ロータ組立体2は、このように組立体の状態でロータ室3から外部に取り外しが可能であるし、ロータ組立体2を遠心機1にセットした状態で、収容カバー30の蓋33を取り外して、バケット40を取り外すことも可能である。 A motor 7 as a drive source is accommodated in the housing 8 at the lower stage partitioned by the partition plate 12 in the housing 11, and the housing 8 is fixed to a mounting member 13 to the partition plate 12 via a damper rubber 9. The The motor 7 is arranged such that its drive shaft 7a extends in the vertical direction. The drive shaft 7a extends from a through hole formed in the bottom portion of the chamber 4 so as to reach the internal space of the rotor chamber 3, and a crown 7b for transmitting the rotational torque of the drive shaft 7a is provided at the upper end portion thereof. The rotor assembly 2 is held by the crown 7b. As the rotor assembly 2 rotates at a high speed, the bucket 40 swings around the swing axis by centrifugal force. The rotor assembly 2 can be detached from the rotor chamber 3 in the state of the assembly in this way, and the lid 33 of the housing cover 30 is removed while the rotor assembly 2 is set in the centrifuge 1. It is also possible to remove the bucket 40.
筐体11の上部後方側の傾斜パネル15には操作表示部10が設けられる。操作表示部10は、ユーザからの入力を受け付けるための入力部と、ユーザに対して情報を表示する表示部の機能を果たすものであり複数のボタンとLED表示装置で形成できるし、タッチ式の液晶ディスプレイを用いて構成しても良い。図1では図示していないが、操作表示部10への情報の表示とユーザからの操作入力の受付けの制御、モータ7の回転制御、冷凍配管16に冷媒を流すための図示しない冷却装置の制御等の遠心機1の全体の制御を行う制御部(図示せず)が設けられる。制御部は、マイクロコンピュータ、揮発性および不揮発性の記憶メモリ等を含んで構成される電子回路である。 An operation display unit 10 is provided on the inclined panel 15 on the upper rear side of the housing 11. The operation display unit 10 functions as an input unit for receiving input from the user and a display unit for displaying information to the user, and can be formed by a plurality of buttons and an LED display device. You may comprise using a liquid crystal display. Although not shown in FIG. 1, display of information on the operation display unit 10 and control of receiving operation input from the user, rotation control of the motor 7, control of a cooling device (not shown) for flowing the refrigerant through the refrigeration pipe 16 A control unit (not shown) for controlling the entire centrifuge 1 is provided. The control unit is an electronic circuit that includes a microcomputer, volatile and nonvolatile storage memories, and the like.
図2は、本発明の実施例に係る遠心機1のロータ組立体2の断面斜視図である。ロータ組立体2は、シェル31、ベース32、蓋33からなる収容カバー30の内部に、複数のバケット40がセットされたロータ本体20(ロータ本体20はネジで取り付けられるカップリング36も含む)を収容した組品である。図2ではバケット40の内部に試料55を入れた試料用容器50が装着された状態を示している。バケット40は試料用容器50の外形に合わせた内壁形状を有するものであって、アルミニウム合金の一体成形によって製造される。収容カバー30は、遠心分離運転におけるロータ組立体2の回転中に、ロータ組立体2の凹凸による空気との摩擦熱による温度上昇を防止し、かつ風切音などの騒音を低減させるために用いられるものであり、熱伝導性が良くて強度的に優れ、かつ軽量であることが重要である。ここでは、アルミニウム合金等の金属によって製造される。シェル31は、下側の開口部円環状のベース32が設けられ、シェル31とベース32によってお椀型の容器が形成される。ベース32は中央に円形の貫通穴が設けられ、貫通穴の上部にはロータ本体20を固定するためのカップリング36が取り付けられる。 FIG. 2 is a cross-sectional perspective view of the rotor assembly 2 of the centrifuge 1 according to the embodiment of the present invention. The rotor assembly 2 includes a rotor body 20 in which a plurality of buckets 40 are set inside a housing cover 30 including a shell 31, a base 32, and a lid 33 (the rotor body 20 also includes a coupling 36 attached with screws). It is a housed assembly. FIG. 2 shows a state in which the sample container 50 in which the sample 55 is placed inside the bucket 40 is mounted. The bucket 40 has an inner wall shape that matches the outer shape of the sample container 50, and is manufactured by integral molding of an aluminum alloy. The housing cover 30 is used to prevent a temperature rise due to frictional heat with the air due to the unevenness of the rotor assembly 2 and to reduce noise such as wind noise during rotation of the rotor assembly 2 in the centrifugal separation operation. It is important that the thermal conductivity is good, the strength is excellent, and the weight is light. Here, it is made of a metal such as an aluminum alloy. The shell 31 is provided with a lower opening annular base 32, and the shell 31 and the base 32 form a bowl-shaped container. The base 32 is provided with a circular through hole in the center, and a coupling 36 for fixing the rotor body 20 is attached to the upper part of the through hole.
シェル31の上側には、ロータ本体20の外径よりも大きい円形の開口部31aが形成される。シェル31の開口部31aには円盤状の蓋33が装着される。蓋33の中心にはノブ34が取り付けられ、ノブ34の中心には貫通穴が設けられる。この貫通穴にはロックスクリュー35の上部先端部が挿入することができ、シェル31の開口部31aを塞ぐことができる。よって、蓋33はシェル31の上部に乗っかっているたけである。シェル31のベース32とカップリング36はネジによって固定され、収容カバー30とロータ本体20は一体に移動することができ、カップリング36に設けられる嵌合穴36aを遠心機1のクラウン7bにセットした後、ロータ本体20に回転可能に取付けられる、ロックスクリュー35のネジ部35aをクラウン7bに設けられるネジ部36bにねじ込むことで、遠心機1にロータ組立体2を固定する。 A circular opening 31 a larger than the outer diameter of the rotor body 20 is formed on the upper side of the shell 31. A disc-shaped lid 33 is attached to the opening 31 a of the shell 31. A knob 34 is attached to the center of the lid 33, and a through hole is provided in the center of the knob 34. The upper end of the lock screw 35 can be inserted into the through hole, and the opening 31a of the shell 31 can be closed. Therefore, the lid 33 is only on the top of the shell 31. The base 32 and the coupling 36 of the shell 31 are fixed by screws, the housing cover 30 and the rotor body 20 can move together, and a fitting hole 36 a provided in the coupling 36 is set in the crown 7 b of the centrifuge 1. After that, the rotor assembly 2 is fixed to the centrifuge 1 by screwing the screw portion 35a of the lock screw 35, which is rotatably attached to the rotor body 20, into the screw portion 36b provided on the crown 7b.
次に図3を用いてスイングロータ(ロータ本体20、バケット40)の詳細構造を説明する。図3は本発明の実施例に係る遠心機1のロータ本体20とバケット40の底面図である(ここではカップリング36は図示していない)。ロータ本体20から凸状に突出する保持ピン26が、バケット40に形成された凹状の窪み(凹部)に掛止している。ロータ本体20は、貫通穴22が形成された外径が略直方体のハブ21と、ハブ21の径方向外側であって上から見て十字状に四方に延びるアーム部23と、アーム部23のそれぞれの先端付近からV字状に広がるように接続される分岐アーム部24と、隣接する分岐アーム部24を面状の部材にて接続することにより強度を向上させるためのリブ25によって構成される。ロータ本体20は、主にステンレス鋳鋼製やアルミ合金製の精密鋳造によって製作され、組合せ精度の必要な個所のみ機械加工により切削する。ハブ21はカップリング36に設置される箇所となり、取り付けられるバケット40の数が4個の場合は、ハブ21の回転軸(回転中心)回りに回転角90°間隔で4本のアーム部23が均等に配置される。尚、バケット40の取り付け数に応じて、アーム部23の本数と、各アーム部23の間隔(回転角)は任意に設定できるが、貫通穴22(回転軸と同心)に対して回転対象となるように設定すると好ましい。 Next, the detailed structure of the swing rotor (the rotor body 20 and the bucket 40) will be described with reference to FIG. FIG. 3 is a bottom view of the rotor body 20 and the bucket 40 of the centrifuge 1 according to the embodiment of the present invention (here, the coupling 36 is not shown). A holding pin 26 protruding in a convex shape from the rotor body 20 is hooked in a concave depression (concave portion) formed in the bucket 40. The rotor body 20 includes a hub 21 having a substantially rectangular parallelepiped outer diameter in which a through hole 22 is formed, an arm portion 23 that extends radially outwardly from the hub 21 and extends in a cross shape when viewed from above, and an arm portion 23. A branch arm portion 24 connected so as to spread in a V shape from the vicinity of each tip, and a rib 25 for improving strength by connecting adjacent branch arm portions 24 with a planar member. . The rotor body 20 is manufactured mainly by precision casting made of stainless cast steel or aluminum alloy, and only a portion requiring combination accuracy is cut by machining. The hub 21 is a place to be installed on the coupling 36. When the number of buckets 40 to be attached is four, the four arm portions 23 are arranged around the rotation axis (rotation center) of the hub 21 at intervals of 90 °. Evenly arranged. Depending on the number of attached buckets 40, the number of arm portions 23 and the interval (rotation angle) between the arm portions 23 can be arbitrarily set, but the rotation target with respect to the through hole 22 (concentric with the rotation axis) It is preferable to set so that
アーム部23の外側部分には、略90度の角度を隔てるように2つに分岐する分岐アーム部24と、それらの分岐アーム部24の間を板状の部材で接合するリブ25が形成される。分岐アーム部24は、回転軸に垂直な方向に延び、バケット40を挟んで対向する分岐アーム部24と互いに平行な位置関係となる。これら平行な分岐アーム部24によって1つのバケット40を保持する。各分岐アーム部24には、バケット40を支承するために略円柱状の形状を有し、バケット40側に対して凸部となるように突出する保持ピン26が形成される。保持ピン26の伸びる方向(保持ピン26の軸線方向)は、ロータ本体20の回転軌跡の接線方向と同じ方向となる。 On the outer portion of the arm portion 23, there are formed a branch arm portion 24 that branches into two at an angle of about 90 degrees, and a rib 25 that joins the branch arm portions 24 with a plate-like member. The The branch arm portion 24 extends in a direction perpendicular to the rotation axis, and is in a positional relationship parallel to the branch arm portion 24 opposed to the bucket 40 therebetween. One bucket 40 is held by these parallel branch arm portions 24. Each branch arm portion 24 has a substantially cylindrical shape for supporting the bucket 40, and is formed with a holding pin 26 protruding so as to be a convex portion with respect to the bucket 40 side. The direction in which the holding pin 26 extends (the axial direction of the holding pin 26) is the same direction as the tangential direction of the rotation locus of the rotor body 20.
ここで本実施例のバケット40を説明する前に、従来の技術を用いて製造したスイングロータの保持ピンの形状とバケットの形状を図11及び図12を用いて説明する。図11は従来の技術、特に従来のピン受け構造で形成したバケット140を示す斜視図である。バケット140は、例えばアルミ合金等の金属の一体成形により製造されるものであり、上から見た際に略長方形の開口部141を有するカップ状の形状である。開口部141近傍である上端付近は、部分的に厚みを増した肉厚部142が形成され、肉厚部142から下方向には2本の案内リブ143により挟まれた窪み145が形成される。窪み145の上端であって肉厚部142の下側には、バケット140がスイングする際の接触面となるものであって、その外周面が円弧状のピン受け部144が形成される。円弧状のピン受け部144の内壁は保持ピン26(図2)の外径よりも僅かに大きな半円柱状とすると良い。図11では一方の肉厚部142に接続された案内リブ143とピン受け部144しか見えないが、反対側に位置する肉厚部142にも同様の案内リブ143とピン受け部144が形成される。 Before describing the bucket 40 of the present embodiment, the shape of the holding pin and the shape of the bucket of the swing rotor manufactured using the conventional technique will be described with reference to FIGS. 11 and 12. FIG. 11 is a perspective view showing a bucket 140 formed by a conventional technique, particularly a conventional pin receiving structure. The bucket 140 is manufactured by integral molding of a metal such as an aluminum alloy, for example, and has a cup shape having a substantially rectangular opening 141 when viewed from above. In the vicinity of the upper end, which is in the vicinity of the opening 141, a thick portion 142 having a partially increased thickness is formed, and a recess 145 sandwiched by two guide ribs 143 is formed downward from the thick portion 142. . A pin receiving portion 144 having an arcuate outer peripheral surface is formed on the upper end of the recess 145 and below the thick portion 142 as a contact surface when the bucket 140 swings. The inner wall of the arc-shaped pin receiving portion 144 is preferably a semi-cylindrical shape slightly larger than the outer diameter of the holding pin 26 (FIG. 2). In FIG. 11, only the guide rib 143 and the pin receiving portion 144 connected to one thick portion 142 can be seen, but the same guide rib 143 and pin receiving portion 144 are also formed on the thick portion 142 located on the opposite side. The
案内リブ143は、バケット140をロータ本体部に装着及び取り外す際の保持ピンを案内するガイドとしての役目を果たすものである。案内リブ143の窪み145側に形成される壁面たる案内面143aは、保持ピンの外周側摺動面(円筒形状)と対向するように形成されるものであって、スイング軸の軸方向に対して平行に形成される面領域(平面領域)となる。図11では肉厚部142の片側に接続された案内リブ143と、これらに囲まれる部分に形成され、側面視で凹状に形成される凹部(窪み145、ピン受け部144、案内面143a)しか見えないが、反対側に位置する肉厚部142にも同様の凹部が形成され、バケット140の長辺側の側面の2カ所にて窪み145とピン受け部144が形成される。 The guide rib 143 serves as a guide for guiding the holding pin when the bucket 140 is mounted on and removed from the rotor main body. A guide surface 143a, which is a wall surface formed on the recess 145 side of the guide rib 143, is formed so as to face the outer peripheral side sliding surface (cylindrical shape) of the holding pin, and is in the axial direction of the swing axis. It becomes a plane area (plane area) formed in parallel. In FIG. 11, only the guide ribs 143 connected to one side of the thick portion 142 and the recesses (dents 145, pin receiving portions 144, guide surfaces 143a) formed in a portion surrounded by the ribs and formed in a concave shape in a side view. Although not visible, a similar concave portion is formed in the thick portion 142 located on the opposite side, and a recess 145 and a pin receiving portion 144 are formed at two locations on the long side of the bucket 140.
図12は従来の遠心機におけるロータの高速回転中の側面図であって、外周側から内側方向を見た図である。本図により、バケット140がスイングロータの分岐アーム部124に形成された保持ピン126に軸支されることによって遠心荷重が保持されることが理解できるであろう。バケット140の凹部となる窪み145の隅部において窪み145と案内リブ143の案内面143aとの境界部分は直角で無くて、隅部145cが若干の丸みとなるように形成される。同様の丸みは、鉛直な平面である窪み145とピン受け部144との境界部分にも形成される。この隅部145cの丸みは、保持ピン126の先端部の隅部126cの丸み(面取り)より小さく設けなければならないため。凹状の窪み145の隅部の丸みを大きくして応力集中を低減しようとすると、保持ピン126の隅部126cの丸みをさらに大きく形成しなくてはならないため、円柱面126bとピン受け部144との接触面積が減少する上に、窪み145と保持ピン126の先端面126aとの隙間が大きくなってしまう。接触面積が減少すると、接触面圧すなわち接触応力が増大してしまうので、接触面への亀裂の発生や接触面の面荒れを引き起こし、摺動性が悪くなりバケット140の揺動不良の発生要因となってしまう。また、保持ピン126の先端面126aの隙間が大きいと、バケット40が保持ピンの軸方向に移動する量が増大してしまうので、回転時にアンバランスを生ずる恐れが高くなる。これらの問題を解消するためになされたのが本発明である。 FIG. 12 is a side view of the conventional centrifuge during high-speed rotation of the rotor, as seen from the outer peripheral side toward the inner side. It can be understood from this figure that the centrifugal load is held by the bucket 140 being pivotally supported by the holding pin 126 formed on the branch arm portion 124 of the swing rotor. A boundary portion between the recess 145 and the guide surface 143a of the guide rib 143 is not a right angle at the corner of the recess 145 serving as a recess of the bucket 140, and the corner 145c is formed to be slightly rounded. A similar roundness is also formed at the boundary between the depression 145 and the pin receiving portion 144, which are vertical planes. This is because the roundness of the corner 145c must be smaller than the roundness (chamfering) of the corner 126c at the tip of the holding pin 126. In order to reduce the stress concentration by increasing the roundness of the corner of the concave recess 145, the roundness of the corner 126c of the holding pin 126 must be further increased. Therefore, the cylindrical surface 126b and the pin receiving portion 144 In addition to the decrease in the contact area, the gap between the recess 145 and the front end surface 126a of the holding pin 126 is increased. When the contact area decreases, the contact surface pressure, that is, contact stress increases, causing cracks in the contact surface and surface roughness of the contact surface, resulting in poor slidability and a cause of poor swinging of the bucket 140. End up. Further, if the clearance between the front end surfaces 126a of the holding pins 126 is large, the amount of movement of the bucket 40 in the axial direction of the holding pins increases, so that there is a high possibility that unbalance will occur during rotation. The present invention has been made in order to solve these problems.
図4は本実施例に係る遠心機1に用いられるバケット40の斜視図である。バケット40はロータ本体20に対して着脱可能であり、バケット40を上から下方向(装着方向:軸方向と平行な下方向)に移動させることによってロータ本体20に装着することができる。バケット40は、上部に開口部41を有し、開口部41から下方には複数の試料用容器50を収容するための内部空間48が形成される。本実施例では開口部41がオープン状態のバケット40を図示しているが、開口部41に開閉式の蓋を形成するようにしても良い。バケット40は、例えばアルミ合金等の金属の一体成形により製造されるものであり、上から見た際に略長方形の開口部41を有するカップ状であって、開口部41の周囲は部分的に肉厚を増した肉厚部42が形成される。本実施例のバケット40は、内部空間48が2つに分離された形状である。 FIG. 4 is a perspective view of the bucket 40 used in the centrifuge 1 according to the present embodiment. The bucket 40 is detachable with respect to the rotor main body 20, and can be mounted on the rotor main body 20 by moving the bucket 40 from top to bottom (mounting direction: downward parallel to the axial direction). The bucket 40 has an opening 41 at the top, and an internal space 48 for accommodating a plurality of sample containers 50 is formed below the opening 41. In the present embodiment, the bucket 40 in which the opening 41 is in an open state is illustrated, but an openable / closable lid may be formed in the opening 41. The bucket 40 is manufactured by integral molding of a metal such as an aluminum alloy, for example, and has a cup shape having a substantially rectangular opening 41 when viewed from above, and the periphery of the opening 41 is partially A thick part 42 having an increased thickness is formed. The bucket 40 of the present embodiment has a shape in which the internal space 48 is separated into two.
バケット40の長辺側の側面には、肉厚部42と、肉厚部42から下方向に延びる2本の案内リブ43により挟まれた凹部が形成される。この凹部はバケットのスイング軸の軸方向外側から見た際に凹状となるものであって、その凹部の幅は、保持ピン26を案内できるように、保持ピン26の直径よりも僅かに大きい程度である。案内リブ43は、保持ピン26を案内する案内面43aの形成のためが主目的であるが、案内リブ43を形成したことによりバケット40の剛性を大幅に上げることができる。本実施例では、ピン受け部44の円柱面の先端側と対面して、スイング軸と直交する領域(凹部でいうと底の部分)において、側面視で逆U字状となる連続した溝部46を形成した。逆U字状の溝部46の内側部分は、スイング軸と直交する平面部となる直交面45が形成される。 On the long side surface of the bucket 40, a thick portion 42 and a concave portion sandwiched by two guide ribs 43 extending downward from the thick portion 42 are formed. This concave portion is concave when viewed from the axially outer side of the swing axis of the bucket, and the width of the concave portion is slightly larger than the diameter of the holding pin 26 so that the holding pin 26 can be guided. It is. The main purpose of the guide rib 43 is to form the guide surface 43 a for guiding the holding pin 26, but the rigidity of the bucket 40 can be significantly increased by forming the guide rib 43. In the present embodiment, a continuous groove portion 46 facing the tip end side of the cylindrical surface of the pin receiving portion 44 and having an inverted U shape in a side view in a region orthogonal to the swing axis (the bottom portion in terms of the recess). Formed. The inner surface of the inverted U-shaped groove 46 is formed with an orthogonal surface 45 that is a flat surface orthogonal to the swing axis.
図5は本発明の実施例に係る遠心機1のロータの高速回転中の側面図であって、図3のA-A部から内周側を見た側面図である。従来の遠心機と、本実施例に係る遠心機1との違いは主にバケット40の形状であって、そのバケット40に合わせて保持ピン26の隅部の形状を最適化した。保持ピン26は略円柱形状であって、その軸線(スイング軸)がバケット40の揺動中心となる。保持ピン26のバケット40と接触する部分は円柱面26bであり、保持ピン26の軸方向先端にはスイング軸と直交する方向に先端面26aが形成される。一方、バケット40側においては、内壁形状が円筒形のピン受け部44が形成され、ピン受け部44が円柱面26bと当接する。バケット40側には先端面26aと対向する垂直領域に直交面45が形成されるが、本実施例ではこの直交面の径方向外側において溝部46が形成され、バケット40の局部的に集中する応力を分散させるように構成した。溝部46は切削先端形状が半球状となるエンドミルを用いて切削加工にて形成できる。溝部46の溝の輪郭は、図5のような底面図(又は図6の断面図)で見て半円状であるが、溝を設ける理由は角部等に局所的に集中する応力を分散させることであるので、完全な半円形状だけでなく断面形状が曲線状となるようにすればその他の断面形状であっても良い。先端面26aと直交面45は、僅かな隙間を隔てて対面するように構成する。この隙間はバケット40をロータ本体20に対してスムースに装着でき、ロータ本体20の回転時にスムースにバケット40がスイングできる程度であって、なるべく小さく形成すると良い。 FIG. 5 is a side view of the centrifuge 1 according to the embodiment of the present invention when the rotor of the centrifuge 1 is rotating at a high speed, and is a side view as seen from the AA portion of FIG. The difference between the conventional centrifuge and the centrifuge 1 according to the present embodiment is mainly the shape of the bucket 40, and the shape of the corner of the holding pin 26 is optimized according to the bucket 40. The holding pin 26 has a substantially cylindrical shape, and its axis (swing axis) is the swing center of the bucket 40. The portion of the holding pin 26 that contacts the bucket 40 is a cylindrical surface 26 b, and the tip end surface 26 a is formed at the tip end in the axial direction of the holding pin 26 in a direction perpendicular to the swing axis. On the other hand, on the bucket 40 side, a pin receiving portion 44 having a cylindrical inner wall shape is formed, and the pin receiving portion 44 comes into contact with the cylindrical surface 26b. On the bucket 40 side, an orthogonal surface 45 is formed in a vertical region facing the front end surface 26a. In this embodiment, a groove 46 is formed on the radially outer side of the orthogonal surface, and the locally concentrated stress of the bucket 40 is formed. Was configured to be dispersed. The groove 46 can be formed by cutting using an end mill having a hemispherical cutting tip shape. The groove contour of the groove 46 is semicircular when viewed from the bottom view (or the cross-sectional view of FIG. 6) as shown in FIG. 5, but the reason for providing the groove is to disperse the stress concentrated locally at the corners and the like. Therefore, other cross-sectional shapes may be used as long as the cross-sectional shape is not only a perfect semicircular shape but also a curved shape. The tip surface 26a and the orthogonal surface 45 are configured to face each other with a slight gap. This gap is such that the bucket 40 can be smoothly attached to the rotor body 20 and the bucket 40 can swing smoothly when the rotor body 20 rotates, and should be formed as small as possible.
次に図6を用いて図5のB-B部の断面形状を説明する。この断面はロータ本体20が高速回転中であって、バケット40が水平状態にスイングしているため、B-B部の断面が、保持ピン26の中心軸線(スイング軸)とバケット40の中心軸線を通る面となる。バケット40は保持ピン26のピン受け部44に沿い摺動しながら揺動支持され、保持ピン26の円柱面26bにピン受け部44が当接することによりバケット40の遠心荷重が支えられる。これらの接触面と隣接するバケット40の部分においては、接触面(円筒形状の半面)のスイング軸の軸方向中心側に溝部46が形成される。ここで保持ピン26に対するバケット40の直交面45は、保持ピン26のスイング軸線上において必ず対面することを特徴としている。これは、保持ピン26の先端面26aとバケット40の直交面45の隙間を設けるために必要となる。溝部46の幅は断面形状が半球状の半径の大きさにより決定されるが、保持ピン26の先端面26aとバケット40の直交面45が平行な稜線で残る程度まで減らしても問題はない。ここでは溝部46の幅を保持ピン26の半径よりも2/3程度にまで小さくして、保持ピン26の中心軸線(スイング軸線)上においては、溝部46が位置しないようにした。この結果、保持ピン26のスイング軸線でみると、先端面26aと直交面45が十分近接して小さな隙間で対面するので、バケット40がスイングしたさいのぶれが少なく、ロータ本体20の回転中心に対するアンバランス量が減少し、回転中の振動を低く抑えることが可能となる。尚、バケット40には、内部空間を2分割するためのバケット仕切り板41bが設けられている。 Next, the cross-sectional shape of the BB portion in FIG. 5 will be described with reference to FIG. This section is because the rotor main body 20 is rotating at high speed and the bucket 40 is swinging horizontally, so that the section of the BB section is the center axis (swing axis) of the holding pin 26 and the center axis of the bucket 40. It will be a surface that passes through. The bucket 40 is swingably supported while sliding along the pin receiving portion 44 of the holding pin 26, and the centrifugal load of the bucket 40 is supported by the pin receiving portion 44 coming into contact with the cylindrical surface 26 b of the holding pin 26. In the portion of the bucket 40 adjacent to these contact surfaces, a groove 46 is formed on the contact surface (cylindrical half surface) on the axial center side of the swing axis. Here, the orthogonal surface 45 of the bucket 40 with respect to the holding pin 26 is necessarily faced on the swing axis of the holding pin 26. This is necessary to provide a gap between the front end surface 26 a of the holding pin 26 and the orthogonal surface 45 of the bucket 40. The width of the groove 46 is determined by the radius of the hemispherical cross-sectional shape, but there is no problem even if the tip surface 26a of the holding pin 26 and the orthogonal surface 45 of the bucket 40 are reduced to the extent that they remain parallel ridgelines. Here, the width of the groove 46 is reduced to about 2/3 of the radius of the holding pin 26 so that the groove 46 is not positioned on the central axis (swing axis) of the holding pin 26. As a result, when viewed from the swing axis of the holding pin 26, the tip surface 26 a and the orthogonal surface 45 are close enough to face each other with a small gap, so that there is little shaking when the bucket 40 is swung, and the rotation center of the rotor body 20 is not affected. The amount of unbalance is reduced, and vibration during rotation can be kept low. The bucket 40 is provided with a bucket partition plate 41b for dividing the internal space into two.
図7は、本発明の実施例に係る遠心機1のバケット40単体の側面図である。点線で描かれているのは遠心分離運転時における保持ピン26の位置である。バケット40の側面には補強部となる案内リブ43が設けられ、肉厚部42と案内リブ43を用いて凹部が形成される。凹部は、溝の底部分となる領域であって保持ピン26の先端面と対向する側である垂直領域と、垂直領域と直交して形成される平行領域が形成される。垂直領域はスイング軸の軸方向から見て、保持ピン26の先端側において垂直方向に延びる領域である。一方、平行領域はスイング軸線と平行な面にて形成される領域であって、図7の側面図では見えない面である。垂直領域に形成される溝部46と直交面45は側面視で視認できる。 FIG. 7 is a side view of a single bucket 40 of the centrifuge 1 according to the embodiment of the present invention. What is drawn with a dotted line is the position of the holding pin 26 during the centrifugal separation operation. A guide rib 43 serving as a reinforcing portion is provided on a side surface of the bucket 40, and a concave portion is formed using the thick portion 42 and the guide rib 43. The concave portion is a region which becomes a bottom portion of the groove and is a vertical region which is a side facing the front end surface of the holding pin 26 and a parallel region which is formed orthogonal to the vertical region. The vertical region is a region extending in the vertical direction on the distal end side of the holding pin 26 when viewed from the axial direction of the swing axis. On the other hand, the parallel region is a region formed by a plane parallel to the swing axis, and is a surface that cannot be seen in the side view of FIG. The groove 46 and the orthogonal surface 45 formed in the vertical region can be visually recognized in a side view.
バケット40の凹部の製造方法は、最初に2本の平行する案内リブ43の間の部分が埋められて連続した同一面となるように肉厚で製造し、その後に切削加工により凹部を形成する。凹部の形成は、まず溝部46の幅Gと同じ直径のエンドミル(図示せず)をスイング軸と平行に位置づけてバケット40の46c付近に近づけ、矢印49aの方向に移動して、上端付近で反転させて逆U字状に動かしながら矢印49bまで移動させる。そうすると溝部46の部分だけ深い溝が形成されると共に、案内面43aと円筒状のピン受け部44が形成される。次に、溝部46の形成によって形成された島部分の下端に、直径がW以上の大きさであって先端切削面が平面になるエンドミル(図示せず)を位置づけ、矢印49cのように下から上方向に切削ながらスイング軸中心付近まで移動させることにより直交面45を形成する。このような切削加工の結果、案内リブ43に挟まれる部分に凹部が形成されることになる。ここで、案内リブ43の案内面43aとピン受け部44は、それらの面が連続するように隣接する上に、案内面43aと溝部46の境界部分も連続して形成されることが理解できるであろう。 In the manufacturing method of the concave portion of the bucket 40, first, the portion between the two parallel guide ribs 43 is buried and is manufactured to have a continuous and identical surface, and then the concave portion is formed by cutting. . To form the recess, first, an end mill (not shown) having the same diameter as the width G of the groove 46 is positioned parallel to the swing axis and brought close to 46c of the bucket 40, moved in the direction of the arrow 49a, and reversed near the upper end. And move to the arrow 49b while moving in an inverted U shape. As a result, a deep groove is formed only in the groove portion 46, and a guide surface 43a and a cylindrical pin receiving portion 44 are formed. Next, an end mill (not shown) having a diameter greater than or equal to W and having a flat tip cutting surface is positioned at the lower end of the island portion formed by the formation of the groove portion 46, and from below as indicated by an arrow 49c. The orthogonal plane 45 is formed by moving to the vicinity of the center of the swing axis while cutting upward. As a result of such cutting, a recess is formed in a portion sandwiched between the guide ribs 43. Here, it can be understood that the guide surface 43a of the guide rib 43 and the pin receiving portion 44 are adjacent to each other so that the surfaces thereof are continuous, and the boundary portion between the guide surface 43a and the groove portion 46 is also continuously formed. Will.
ロータ本体20の回転時の保持ピン26の位置は図7の点線で示す範囲であり、上からDの範囲が保持ピン26に相対する相対部分である。相対部分よりも下の部分がバケット40を保持ピン26に装着する際に案内するために形成される延長部分となる。本実施例では、基本的に上下方向の長さDの相対部分にだけ溝部46を形成すれば、遠心分離運転時にバケット40の局部的に集中する応力を分散させることができる。しかしながら、相対部分だけで溝部46を切ってしまうと、溝部46から延長部分への移行部分付近に溝部の端部が位置して少なからず応力が集中する恐れがあるので、本実施例では溝部46を延長部分にまで十分入り込むようにして、上から下まで延びる十分な長さとした。このように形成すると、凹部の各部位を切削加工にて効率よく形成できることにもなり、切削加工費の上昇を大幅に押さえることができる。 The position of the holding pin 26 at the time of rotation of the rotor body 20 is a range indicated by a dotted line in FIG. 7, and a range D from the top is a relative portion facing the holding pin 26. A portion below the relative portion is an extension portion formed to guide the bucket 40 when the bucket 40 is attached to the holding pin 26. In the present embodiment, when the groove 46 is basically formed only in the relative portion having the length D in the vertical direction, the locally concentrated stress of the bucket 40 can be dispersed during the centrifugal separation operation. However, if the groove portion 46 is cut only at the relative portion, the end of the groove portion is located near the transition portion from the groove portion 46 to the extension portion, and there is a possibility that stress is concentrated not a little. Is sufficiently long to extend from the top to the bottom. If it forms in this way, it will also become possible to form each part of a recessed part efficiently by cutting, and the raise of a cutting cost can be suppressed significantly.
以上のようにして平行して形成される案内リブ43の内側には、保持ピン26を案内するための凹部が形成される。本実施例で延長領域における案内リブ43の、バケット40の装着方向と直交方向に見た案内面43aの間隔W1は、上から下まで一定、つまり案内面43aは平行に形成されるが、バケット40をロータ本体部に装着及び取り外す際の保持ピン26を案内するガイドとしての役目を考えると、上側で幅がW1(=W+2G)として、下側でそれよりもやや広くなるように案内リブ43を僅かに斜めに形成しても良い。 A recess for guiding the holding pin 26 is formed inside the guide rib 43 formed in parallel as described above. In this embodiment, the interval W1 between the guide surfaces 43a of the guide ribs 43 in the extension region viewed in the direction orthogonal to the mounting direction of the bucket 40 is constant from top to bottom, that is, the guide surfaces 43a are formed in parallel. Considering the role as a guide for guiding the holding pin 26 when mounting and removing the rotor 40 on the rotor main body, the guide rib 43 has a width W1 (= W + 2G) on the upper side and slightly wider on the lower side. May be formed slightly obliquely.
次に図8を用いて、バケット40の凹部の形状を更に説明する。図8はバケット40の側面に形成される凹部の形状を説明するための部分斜視図である。凹部は主に壁面となる平行領域と、底面部分となる垂直領域に分かれる。図8(1)で黒く塗りつぶした部分は平行領域となる壁面を示しており、この壁面の上側はバケット40のスイング時に保持ピン26と接触するピン受け部44であり、ピン受け部44の円柱状の面から下方には延長部分にまで延びる平面である案内面43aとなる。 Next, the shape of the concave portion of the bucket 40 will be further described with reference to FIG. FIG. 8 is a partial perspective view for explaining the shape of the recess formed on the side surface of the bucket 40. The concave portion is divided into a parallel region mainly serving as a wall surface and a vertical region serving as a bottom surface portion. In FIG. 8 (1), the blackened portion shows a wall surface that becomes a parallel region, and the upper side of this wall surface is a pin receiving portion 44 that contacts the holding pin 26 when the bucket 40 swings. A guide surface 43a, which is a flat surface extending from the columnar surface to the extended portion, is provided below.
図8(2)の黒く塗りつぶした部分は溝部46の側面視の形状である。溝部46の反転外周部46aはピン受け部44の上面に接する位置にあり、溝部46の反転内周部46bは、スイング軸の軸心(中心点)よりも上側にある。つまりスイング軸心が平面たる直交面45の中に位置するように構成される。このためスイング軸線上では直交面45と保持ピン26の先端面26aがほぼ並行の状態に良好に対面することができるので、がたつきが少ないスイング機構を実現できる。また、対面する面の周囲は溝部46になっているので、直交面45と先端面26aを接近させることが容易な上に、スイング動作がスムースでバケット40の片寄りが発生する恐れを大幅に減らすことができる。 The portion blacked out in FIG. 8B is the shape of the groove 46 as viewed from the side. The reverse outer peripheral portion 46a of the groove portion 46 is in a position in contact with the upper surface of the pin receiving portion 44, and the reverse inner peripheral portion 46b of the groove portion 46 is above the axis (center point) of the swing shaft. That is, the swing axis is configured to be located in the orthogonal plane 45 that is a plane. For this reason, since the orthogonal surface 45 and the front end surface 26a of the holding pin 26 can face each other in a substantially parallel state on the swing axis, a swing mechanism with less backlash can be realized. In addition, since the periphery of the facing surface is a groove portion 46, it is easy to bring the orthogonal surface 45 and the front end surface 26a close to each other, and the swinging operation is smooth and the risk of the bucket 40 being displaced is greatly increased. Can be reduced.
図8(3)の黒く塗りつぶした部分は直交面45の側面視である。直交面45がバケット40を装着する際に、保持ピン26の軸方向先端と接触することにより、バケット40の軸方向位置を決定することになるが、本実施例では直交面45はバケット40の上下方向距離の半分以上という十分な長さを有するため、バケットの保持ピン20の軸方向の位置決めがきちんとできるバケット40の装着機構を実現できた。 The portion filled in black in FIG. 8 (3) is a side view of the orthogonal plane 45. When the orthogonal surface 45 is attached to the bucket 40, the axial position of the bucket 40 is determined by contacting the tip of the holding pin 26 in the axial direction. Since it has a sufficient length of more than half of the vertical distance, the bucket 40 mounting mechanism that can properly position the holding pins 20 of the bucket in the axial direction can be realized.
次に図9及び図10を用いて保持ピン26の断面形状と溝部46の断面形状を説明する。それぞれ(1)が本実施例のバケット40の凹部の形状であり、(2)が従来の技術を用いたバケット140の凹部の形状である。図9は保持ピン26の軸線を通る横断面図(水平方向の断面図)である。(1)ではバケット40垂直領域は、幅51の範囲内かつ矢印52で示す部分に全て配置される部分であって、この部分内に直交面45と溝部46が形成される。ピン受け部44は平行領域に形成される半円柱面であって、保持ピン26の円柱面26bと良好に接する。ここでは、溝部46が形成される関係から、保持ピン26の円柱面26bと先端面26aとの隅部26cの曲率半径を十分小さくすることができるようになった。このように改良されたバケット40に合わせて保持ピン26の形状を最適化すれば、円柱面26bとピン受け部44との接触部分の軸方向幅L1を大きく確保できる。また、溝部46は、範囲51かつ矢印52の範囲内に収まるように形成し、ピン受け部44のある平行領域側にはみ出すことが無いように形成される。この結果、ピン受け部44と円柱面26bの接触部分に溝部46による曲面部分が何ら干渉することが無いので、バケット40のスイング特性を良好に保つことができる。この利点は(2)に示す従来技術によるバケット140の構造を比較すると明確であり、バケット140では隅部145cの曲率半径との関係から、保持ピン126の隅部126cの曲率半径を大きくせざるを得ないため、円柱面126bとピン受け部144の接触部分の軸方向幅L2が小さくなってしまう。このことは、保持ピン126の円柱面126bに負荷される遠心荷重による応力が大きくなる上に、バケット140側もピン受け部144が受ける局所的な応力が大きくなる。 Next, the cross-sectional shape of the holding pin 26 and the cross-sectional shape of the groove 46 will be described with reference to FIGS. 9 and 10. (1) is the shape of the concave portion of the bucket 40 of this embodiment, and (2) is the shape of the concave portion of the bucket 140 using the conventional technique. FIG. 9 is a transverse sectional view (horizontal sectional view) passing through the axis of the holding pin 26. In (1), the bucket 40 vertical region is a portion that is all disposed within the range of the width 51 and indicated by the arrow 52, and the orthogonal surface 45 and the groove 46 are formed in this portion. The pin receiving portion 44 is a semi-cylindrical surface formed in a parallel region, and is in good contact with the cylindrical surface 26 b of the holding pin 26. Here, because of the relationship in which the groove portion 46 is formed, the radius of curvature of the corner portion 26c between the cylindrical surface 26b and the tip surface 26a of the holding pin 26 can be made sufficiently small. If the shape of the holding pin 26 is optimized in accordance with the bucket 40 thus improved, the axial width L1 of the contact portion between the cylindrical surface 26b and the pin receiving portion 44 can be secured large. Further, the groove portion 46 is formed so as to be within the range 51 and the range of the arrow 52, and is formed so as not to protrude to the parallel region side where the pin receiving portion 44 is present. As a result, since the curved surface portion by the groove portion 46 does not interfere with the contact portion between the pin receiving portion 44 and the cylindrical surface 26b, the swing characteristics of the bucket 40 can be kept good. This advantage is clear when the structure of the bucket 140 according to the prior art shown in (2) is compared. In the bucket 140, the curvature radius of the corner 126c of the holding pin 126 is not increased due to the relationship with the curvature radius of the corner 145c. Therefore, the axial width L2 of the contact portion between the cylindrical surface 126b and the pin receiving portion 144 becomes small. This increases the stress due to the centrifugal load applied to the cylindrical surface 126b of the holding pin 126, and also increases the local stress received by the pin receiving portion 144 on the bucket 140 side.
さらに、図8で説明したように直交面45は溝部46の加工が終わったあとに切削するために、任意の高さ(凹部としてみたら任意の深さ)に形成可能であるので、隙間S1の距離を微小間隔で対面するように適切に設定することができ、がたつきの無いバケット40を実現できる。ここで、溝部46における溝の最深部と保持ピン26の先端面26aとの隙間S2は、直交面45との隙間S1よりも十分大きくなるよう構成される。(2)に示す従来の技術によれば、隅部145cと隅部126cとの干渉の恐れから隙間S3をある程度確保する必要がある。また、バケット140が保持ピンの軸方向に片寄りして、直交面145aと先端面126aが接触すると、接触面積が大きいためバケット40のスムースなスイングを妨げる恐れがある。しかしながら、(1)の本実施例の構成では、仮に直交面45と先端面26aが接触しても接触面積が小さいので、スムースなスイングを実現できる。尚、本実施例ではスイング軸線上において直交面45と先端面26aが非接触にまたは接触して対面することが重要であり、スイング軸線上に溝部46がかかるように構成するのは好ましくない。 Further, as described with reference to FIG. 8, the orthogonal surface 45 can be formed at an arbitrary height (arbitrary depth when viewed as a concave portion) in order to cut after the processing of the groove portion 46 is finished. Can be appropriately set so as to face each other at a minute interval, and a bucket 40 without backlash can be realized. Here, the gap S <b> 2 between the deepest part of the groove in the groove 46 and the tip surface 26 a of the holding pin 26 is configured to be sufficiently larger than the gap S <b> 1 with the orthogonal surface 45. According to the conventional technique shown in (2), it is necessary to secure the gap S3 to some extent because of the possibility of interference between the corner 145c and the corner 126c. Further, when the bucket 140 is shifted in the axial direction of the holding pin and the orthogonal surface 145a and the front end surface 126a come into contact with each other, there is a possibility that the smooth swing of the bucket 40 may be hindered because the contact area is large. However, in the configuration of the present embodiment of (1), even if the orthogonal surface 45 and the tip surface 26a come into contact with each other, the contact area is small, so that a smooth swing can be realized. In the present embodiment, it is important that the orthogonal surface 45 and the tip surface 26a face each other in a non-contact manner or in contact with each other on the swing axis, and it is not preferable to configure the groove 46 on the swing axis.
図10は保持ピン26の軸線を通る縦断面図(鉛直方向の断面図)である。(1)ではバケット40の凹部は、保持ピン線から上側の幅53の範囲内に溝部46が形成されるようにし、溝部46の下側では直交面45となるようにした。ここで、溝部46は、上下方向に見て範囲53を越えないように形成される。範囲53の下側はスイング軸線の位置であり、上側はピン受け部44の内壁の上端位置である。以上のように、溝部46はバケット140の凹部のうちの底部分に形成され、かつ、底部分と壁部分の境界に沿って形成されるので、ピン受け部44側の面には影響しないように形成される。 FIG. 10 is a vertical cross-sectional view (vertical cross-sectional view) passing through the axis of the holding pin 26. In (1), the concave portion of the bucket 40 is formed such that the groove portion 46 is formed within the range of the width 53 on the upper side from the holding pin line, and the orthogonal surface 45 is formed on the lower side of the groove portion 46. Here, the groove 46 is formed so as not to exceed the range 53 when viewed in the vertical direction. The lower side of the range 53 is the position of the swing axis, and the upper side is the upper end position of the inner wall of the pin receiving portion 44. As described above, the groove portion 46 is formed at the bottom portion of the concave portion of the bucket 140 and is formed along the boundary between the bottom portion and the wall portion, so that it does not affect the surface on the pin receiving portion 44 side. Formed.
以上説明したように、本実施例によればバケットを揺動可能に支持する対向する一対の凸状の保持ピン26が対面に配置され、バケットには保持ピン26の円柱面26bに係合する凹部を側面に備え、その凹部はロータの保持ピン26の先端稜線に設けられた隅部26cより大きい丸みまたは略円弧状形状の溝部46と、溝部46の内側の直交面45にて形成したので、バケット40の凹部の隅部への部分的な応力集中によるバケット40の短寿命化を防止できる。また、保持ピン26の円柱面26bとバケット40の接触幅L1を大きく取ることができるので、接触面圧すなわち接触応力増大による接触面の亀裂発生や接触面の面荒れを防止できる。さらに、保持ピン26の先端面26aとバケット40の凹部の相対する直交面45には適度な隙間が設けられるため、隙間の大きさにより生じる不釣合い量を低減することができ、バケット40がスムースにスイング可能となって試料に不要な振動を与えない遠心機を実現できた。 As described above, according to the present embodiment, the pair of opposed convex holding pins 26 that support the bucket so as to be swingable are arranged on the opposite sides, and the bucket engages with the cylindrical surface 26 b of the holding pin 26. Since the concave portion is provided on the side surface, the concave portion is formed by the groove portion 46 having a rounder or substantially arc shape larger than the corner portion 26c provided on the tip edge line of the holding pin 26 of the rotor and the orthogonal surface 45 inside the groove portion 46. Further, it is possible to prevent the life of the bucket 40 from being shortened due to partial stress concentration at the corner of the concave portion of the bucket 40. In addition, since the contact width L1 between the cylindrical surface 26b of the holding pin 26 and the bucket 40 can be increased, it is possible to prevent cracking of the contact surface and surface roughness of the contact surface due to increased contact surface pressure, that is, contact stress. Furthermore, since an appropriate gap is provided in the orthogonal surface 45 of the front end surface 26a of the holding pin 26 and the concave portion of the bucket 40, the amount of unbalance caused by the size of the gap can be reduced, and the bucket 40 can be made smooth. A centrifuge that does not give unnecessary vibration to the sample can be realized.
以上、本発明を実施例に基づいて説明したが、本発明は上述の実施例に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の変更が可能である。例えば、本実施例ではバケット140の形状として開口部41が略長方形となるような形状のものを説明したが、必ずしもこの形状に限らずに、開口の形状が略円形の円筒状のバケットであっても良いし、その他の任意の形状のバケットであっても良い。 As mentioned above, although this invention was demonstrated based on the Example, this invention is not limited to the above-mentioned Example, A various change is possible within the range which does not deviate from the meaning. For example, in the present embodiment, the bucket 140 has been described as having a shape in which the opening 41 is substantially rectangular. However, the shape of the bucket is not limited to this, and the shape of the opening is a substantially circular cylindrical bucket. It may be a bucket of any other shape.
1…遠心機、2…ロータ組立体、3…ロータ室、4…チャンバ、6…防護壁、7…モータ、7a…駆動軸、7b…クラウン、8…ハウジング、9…ダンパーゴム、10…操作表示部、11…筐体、12…仕切り板、13…取付部材、14…ドア、15…傾斜パネル、16…冷凍配管、20…ロータ本体、21…ハブ、22…貫通穴、23…アーム部、24…分岐アーム部、25…リブ、26…保持ピン、26a…先端面、26b…円柱面、26c…隅部、30…収容カバー、31…シェル、31a…開口部、32…ベース、33…蓋、34…ノブ、35…ロックスクリュー、35a…ネジ部、36…カップリング、36b…ネジ穴、40…バケット、41…開口部、41b…バケット仕切り板、42…肉厚部、43…案内リブ、43a…案内面、44…ピン受け部、45…直交面、46…溝部、46a…反転外周部、46b…反転内周部、48…内部空間、50…試料用容器、55…試料、120…ロータ本体、124…分岐アーム部、126…保持ピン、126a…先端面、126b…円柱面、126c…隅部、140…バケット、141…開口部、142…肉厚部、143…案内リブ、143a…案内面、144…ピン受け部、145a…直交面、145b…案内面、145c…隅部 DESCRIPTION OF SYMBOLS 1 ... Centrifuge, 2 ... Rotor assembly, 3 ... Rotor chamber, 4 ... Chamber, 6 ... Protective wall, 7 ... Motor, 7a ... Drive shaft, 7b ... Crown, 8 ... Housing, 9 ... Damper rubber, 10 ... Operation Display part 11 ... Housing, 12 ... Partition plate, 13 ... Mounting member, 14 ... Door, 15 ... Inclined panel, 16 ... Refrigeration pipe, 20 ... Rotor body, 21 ... Hub, 22 ... Through hole, 23 ... Arm part 24 ... Branch arm portion, 25 ... Rib, 26 ... Holding pin, 26a ... End face, 26b ... Cylindrical surface, 26c ... Corner, 30 ... Housing cover, 31 ... Shell, 31a ... Opening, 32 ... Base, 33 ... Lid, 34 ... Knob, 35 ... Lock screw, 35a ... Screw part, 36 ... Coupling, 36b ... Screw hole, 40 ... Bucket, 41 ... Opening part, 41b ... Bucket partition plate, 42 ... Thick part, 43 ... Guide rib, 43a ... Guide , 44 ... Pin receiving part, 45 ... Orthogonal surface, 46 ... Groove part, 46a ... Inverted outer peripheral part, 46b ... Inverted inner peripheral part, 48 ... Internal space, 50 ... Sample container, 55 ... Sample, 120 ... Rotor body, 124 ... branch arm part, 126 ... holding pin, 126a ... tip surface, 126b ... cylindrical surface, 126c ... corner part, 140 ... bucket, 141 ... opening part, 142 ... thick part, 143 ... guide rib, 143a ... guide surface, 144: Pin receiving portion, 145a ... Orthogonal surface, 145b ... Guide surface, 145c ... Corner

Claims (8)

  1. 駆動手段によって回転される駆動軸と、該駆動軸に装着されるスイングロータ本体と、該スイングロータ本体に配置される複数の保持ピンと、前記保持ピンに掛止させることよって揺動可能に配される複数のバケットを有する遠心機において、前記保持ピンは前記スイングロータ本体に形成される凸部であって外周に円柱面を有し、前記バケットは前記凸部に対応する凹部を有し、前記バケットの凹部は、前記凸部の先端面と対向する面と、ピン受け部と、対向する2つの平面で形成される案内面が形成され、前記対向する面には、前記案内面との境界に沿って連続して形成され溝の深さ方向が前記保持ピンの軸方向となる溝部と、前記溝部に囲まれる部分に平面部が形成されることを特徴とする遠心機。 A drive shaft rotated by the drive means, a swing rotor body mounted on the drive shaft, a plurality of holding pins arranged on the swing rotor body, and swingable by being hooked on the holding pins. In the centrifuge having a plurality of buckets, the holding pin is a convex portion formed on the swing rotor body and has a cylindrical surface on the outer periphery, and the bucket has a concave portion corresponding to the convex portion, The concave portion of the bucket is formed with a surface facing the tip surface of the convex portion, a pin receiving portion, and a guide surface formed by two opposing flat surfaces, and the opposing surface has a boundary with the guide surface The centrifuge is characterized in that a groove portion that is continuously formed along the groove and in which the depth direction of the groove is the axial direction of the holding pin, and a flat portion is formed in a portion surrounded by the groove portion.
  2. 前記溝部は、前記保持ピンの軸方向から見た側面視が逆U字状であって、その断面形状は曲線状であり、前記保持ピンの軸線を通る断面における前記溝の幅は前記凸部の直径の半分未満としたことを特徴とする請求項1に記載の遠心機。 The groove portion has an inverted U shape when viewed from the axial direction of the holding pin, has a curved cross-sectional shape, and the width of the groove in a cross section passing through the axis of the holding pin is the convex portion. The centrifuge according to claim 1, wherein the centrifuge is less than half of the diameter of the centrifuge.
  3. 前記保持ピンの軸線を通る断面における前記溝の断面形状は、半球状であることを特徴とする請求項1又は2に記載の遠心機。 The centrifuge according to claim 1 or 2, wherein a cross-sectional shape of the groove in a cross section passing through the axis of the holding pin is hemispherical.
  4. 前記案内面は、半円柱面に形成される前記ピン受け部から下方向に略平行に延び、前記バケットの前記凸部への装着を案内するためのリブによって形成されることを特徴とする請求項1から3のいずれか一項に記載の遠心機。 The guide surface extends from the pin receiving portion formed in a semi-cylindrical surface substantially in parallel downward, and is formed by a rib for guiding attachment of the bucket to the convex portion. Item 4. The centrifuge according to any one of Items 1 to 3.
  5. 前記溝部は、前記ピン受け部から前記案内面のほぼ全体に接するように連続して形成されることを特徴とする請求項4に記載の遠心機。 The centrifuge according to claim 4, wherein the groove portion is continuously formed from the pin receiving portion so as to be in contact with substantially the entire guide surface.
  6. 前記案内面における前記バケットの装着方向と直交方向の前記案内面の間隔W1は、前記溝部の幅Gに対して、W1>2Gであることを特徴とする請求項5に記載の遠心機。 The centrifuge according to claim 5, wherein an interval W <b> 1 of the guide surface in the direction orthogonal to the mounting direction of the bucket on the guide surface satisfies W <b> 1> 2 G with respect to a width G of the groove.
  7. 遠心機の駆動軸に装着されるスイングロータ本体と、スイングロータ本体に配置される複数の保持ピンと、前記保持ピンに掛止させることよって揺動可能に配される複数のバケットを有する遠心機用のスイングロータであって、前記保持ピンは前記スイングロータ本体に形成される凸部であって外周に円柱面を有し、前記バケットは前記凸部に対応する凹部を有し、前記バケットの凹部は、前記凸部の先端面と対向する面と、ピン受け部と、対向する2つの平面で形成される案内面が形成され、前記対向する面には、前記案内面との境界に沿って連続して形成され溝の深さ方向が前記保持ピンの軸方向となる溝部と、前記溝部に囲まれる部分に平面部が形成されることを特徴とする遠心機用スイングロータ。 For a centrifuge having a swing rotor body mounted on a drive shaft of a centrifuge, a plurality of holding pins arranged on the swing rotor body, and a plurality of buckets arranged so as to be swingable by being hooked on the holding pins The holding pin is a convex portion formed on the swing rotor main body and has a cylindrical surface on the outer periphery, the bucket has a concave portion corresponding to the convex portion, and the concave portion of the bucket Is formed with a guide surface formed by two surfaces facing the tip surface of the convex portion, the pin receiving portion, and the opposing surface along the boundary with the guide surface. A centrifuge swing rotor comprising a groove portion formed continuously and a groove portion whose depth direction is the axial direction of the holding pin, and a flat portion formed in a portion surrounded by the groove portion.
  8. 前記保持ピンの軸方向から見た側面視が逆U字状であり、前記バケットのスイング時のスイング軸方向において前記保持ピンの先端面と前記平面部が微小間隔で対面することを特徴とする請求項7に記載の遠心機用スイングロータ。 A side view as viewed from the axial direction of the holding pin has an inverted U-shape, and the tip surface of the holding pin and the flat portion face each other at a minute interval in the swing axis direction when the bucket swings. The swing rotor for a centrifuge according to claim 7.
PCT/JP2015/076709 2014-09-30 2015-09-18 Centrifuge and swing rotor for centrifuge WO2016052265A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015004494.9T DE112015004494B4 (en) 2014-09-30 2015-09-18 Centrifuge and swing-bucket rotor for a centrifuge
JP2016551942A JP6195023B2 (en) 2014-09-30 2015-09-18 Centrifuge and swing rotor for centrifuge
CN201580042393.5A CN106573255B (en) 2014-09-30 2015-09-18 Centrifuge and centrifuge swing-rotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-201333 2014-09-30
JP2014201333 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052265A1 true WO2016052265A1 (en) 2016-04-07

Family

ID=55630305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076709 WO2016052265A1 (en) 2014-09-30 2015-09-18 Centrifuge and swing rotor for centrifuge

Country Status (4)

Country Link
JP (1) JP6195023B2 (en)
CN (1) CN106573255B (en)
DE (1) DE112015004494B4 (en)
WO (1) WO2016052265A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018234420A1 (en) * 2017-06-20 2018-12-27 Bluecatbio Gmbh Centrifuge

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017125306A1 (en) * 2017-10-27 2019-05-02 Eppendorf Ag centrifuge insert
US20210245173A1 (en) * 2018-05-11 2021-08-12 Beckman Coulter, Inc. Centrifuge rotor and container arrangement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119751U (en) * 1981-01-19 1982-07-24
JPS62114670A (en) * 1985-11-11 1987-05-26 ヘレウス・ゼパラツイオ−ンステヒニク・ゲ−エムベ−ハ− Centrifugal bucket for rocking bucket type rotor
JPH07222940A (en) * 1994-02-15 1995-08-22 Hitachi Koki Co Ltd Rotor for centrifugal separator
JP2005152819A (en) * 2003-11-27 2005-06-16 Hitachi Koki Co Ltd Centrifuge and rotor for centrifuge
JP2012101203A (en) * 2010-11-12 2012-05-31 Hitachi Koki Co Ltd Swing rotor for centrifugal separator and centrifugal separator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH654759A5 (en) * 1981-07-24 1986-03-14 Escher Wyss Ag CENTRIFUGAL SCREEN.
JPH0639140U (en) * 1992-10-23 1994-05-24 株式会社久保田製作所 Bucket for centrifuge
JP3377842B2 (en) * 1993-10-29 2003-02-17 三菱化工機株式会社 Rotary discharge centrifuge
CN202105733U (en) * 2011-06-16 2012-01-11 安徽赛而特离心机有限公司 Disc separator body
EP2548650A1 (en) * 2011-07-21 2013-01-23 Florigo International B.V. Device and method for centrifuging a food product
CN203770524U (en) * 2014-03-28 2014-08-13 清华大学 Drum-type high-speed composite rotor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119751U (en) * 1981-01-19 1982-07-24
JPS62114670A (en) * 1985-11-11 1987-05-26 ヘレウス・ゼパラツイオ−ンステヒニク・ゲ−エムベ−ハ− Centrifugal bucket for rocking bucket type rotor
JPH07222940A (en) * 1994-02-15 1995-08-22 Hitachi Koki Co Ltd Rotor for centrifugal separator
JP2005152819A (en) * 2003-11-27 2005-06-16 Hitachi Koki Co Ltd Centrifuge and rotor for centrifuge
JP2012101203A (en) * 2010-11-12 2012-05-31 Hitachi Koki Co Ltd Swing rotor for centrifugal separator and centrifugal separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018234420A1 (en) * 2017-06-20 2018-12-27 Bluecatbio Gmbh Centrifuge
US11738354B2 (en) 2017-06-20 2023-08-29 Bluecatbio Gmbh Centrifuge with drainage

Also Published As

Publication number Publication date
DE112015004494B4 (en) 2021-03-04
CN106573255B (en) 2019-05-31
CN106573255A (en) 2017-04-19
JPWO2016052265A1 (en) 2017-04-27
JP6195023B2 (en) 2017-09-13
DE112015004494T5 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6195023B2 (en) Centrifuge and swing rotor for centrifuge
US9731301B2 (en) Swing rotor with holding pins fixed to branch arms and having connection part connecting the branch arms for centrifuge and centrifuge
JP5707882B2 (en) Swing rotor for centrifuge and centrifuge
JP6406033B2 (en) Centrifuge and swing rotor for centrifuge
JP6332441B2 (en) Centrifuge and swing rotor for centrifuge
CN108290168B (en) Centrifuge, rotor for centrifuge, and swing rotor
CN108166110B (en) Open-end spinning device and spinning rotor for an open-end spinning device
JP7161921B2 (en) Centrifuge and Swing Bucket Rotor
JP6260699B2 (en) Centrifuge
JP6331379B2 (en) Centrifuge and swing rotor for centrifuge
JP2016083637A (en) Inner cup for centrifugal machine and centrifugal machine
JP7117899B2 (en) Centrifuge rotors and centrifuges
KR20090048828A (en) Auto balancing device, turntable device and disk driving device having the same
JP2007111577A (en) Rotor for centrifugal separator and centrifugal separator
JP2018124530A (en) Rotary drive device
KR20080077852A (en) A centrifugal separator
US20180262083A1 (en) Bush, rotary machine, and air conditioning apparatus
KR20050066023A (en) Spindle motor
JP2018103142A (en) Sample container for centrifugal machine and centrifugal machine using the same
JP2517674Y2 (en) Centrifuge rotor and bucket
JP2007111580A (en) Rotor for centrifugal separator and centrifugal separator
JPH0619842U (en) Bucket for centrifuge
JP2013169475A (en) Centrifuge
JP2000186715A (en) Spindle motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551942

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015004494

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846666

Country of ref document: EP

Kind code of ref document: A1