WO2016051465A1 - Atmospheric pressure inductively coupled plasma device - Google Patents

Atmospheric pressure inductively coupled plasma device Download PDF

Info

Publication number
WO2016051465A1
WO2016051465A1 PCT/JP2014/075901 JP2014075901W WO2016051465A1 WO 2016051465 A1 WO2016051465 A1 WO 2016051465A1 JP 2014075901 W JP2014075901 W JP 2014075901W WO 2016051465 A1 WO2016051465 A1 WO 2016051465A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
frequency power
switch
plasma
power source
Prior art date
Application number
PCT/JP2014/075901
Other languages
French (fr)
Japanese (ja)
Inventor
隆司 岩▲崎▼
藤本 直也
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2016551353A priority Critical patent/JP6261100B2/en
Priority to PCT/JP2014/075901 priority patent/WO2016051465A1/en
Publication of WO2016051465A1 publication Critical patent/WO2016051465A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present disclosure relates to an atmospheric pressure inductively coupled plasma apparatus, and can be applied to, for example, a plasma ignition method of an atmospheric pressure inductively coupled plasma apparatus.
  • ICP Inductively Coupled Plasma
  • V the voltage (V) at which spark discharge occurs between parallel electrodes is a function of the product of gas pressure (p) (density) and electrode spacing (d). Since the gas density is high, it is difficult to cause dielectric breakdown of the plasma gas for generating initial electrons (the voltage at which spark discharge is generated becomes high).
  • An object of the present disclosure is to provide a technique that makes plasma ignition easier in an atmospheric pressure inductively coupled plasma apparatus.
  • an atmospheric pressure inductively coupled plasma device includes a high-frequency power source that generates high-frequency power, a matching unit connected to the high-frequency power source, a first coil wound around a torch and connected to the matching unit, A second coil connected to the first coil, a connection point between the first coil and the second coil, a first switch connected to GND, and the other of the second coil and GND A second switch connected; and a control unit connected to the first switch, the second switch, the high-frequency power source, and the matching unit.
  • the first switch Before plasma ignition, the first switch is opened, the second switch is short-circuited, and after plasma ignition, the first switch is short-circuited, and the second switch is opened, The coil voltage generated in the first coil before plasma ignition is increased to cause plasma gas dielectric breakdown.
  • FIG. 6 is a diagram for explaining an inductively coupled plasma apparatus according to Comparative Example 2.
  • the inductively coupled plasma apparatus 0R1 is connected to the high-frequency power source 1 for generating high-frequency power, the matching unit 2 connected to the high-frequency power source 1, the plasma generating unit 3, and the matching unit 2 wound around the plasma generating unit 3.
  • a coil 5 and a control unit 9 connected to the high frequency power source 1 and the matching unit 2 are provided. Magnetic flux is generated when a high-frequency current flows through the coil 5, and an electric field is generated in the plasma generator 3 by the generated magnetic flux to generate plasma.
  • the coil voltage (effective voltage generated in the coil) will be considered.
  • the effective voltage (V L ) generated in the coil 5 is expressed by the following equation using the impedance (Z L ) of the coil 5. It is represented by (1).
  • V L (P ⁇ Z L ) 1/2 [V] (1)
  • the impedance (Z L ) of the coil 5 is expressed by the following equation (2) using the inductance (L) of the coil 5.
  • V L (P ⁇ 2 ⁇ fL) 1/2 [V] (3) That is, in order to increase the effective voltage (V L ) generated in the coil 5 to cause the dielectric breakdown of the plasma gas, the power (P), the frequency (f), and the inductance (L) of the coil 5 are calculated from the equation (3). You need to make at least one of them bigger.
  • the discharge start voltage (spark voltage) in low-pressure plasma (for example, 100 Pa) and atmospheric pressure plasma (0.1 MPa) is compared.
  • the spark voltage is 120 V for low-pressure plasma and 20 kV for atmospheric pressure plasma.
  • the electrodes of the inductively coupled plasma device are not parallel electrodes, but the tendency is the same.
  • the spark voltage of the atmospheric pressure plasma is higher than the spark voltage of the low pressure plasma, and the atmospheric pressure plasma is harder to ignite than the low pressure plasma.
  • the inductively coupled plasma device 0R1 includes an igniter 20 including a high voltage generator 21 and a discharge unit 22 in addition to the inductively coupled plasma device 0R, and the igniter 20 generates initial electrons. generate.
  • the igniter 20 since one end of the discharge unit 22 is connected to the GND, unnecessary discharge occurs at the GND end of the coil 5 and the discharge unit 22 even after the plasma is generated, and sufficient energy is supplied to the plasma. There is no problem.
  • the inductively coupled plasma apparatus 0R2 inserts an ignition rod 30 such as graphite into the torch 3 and discharges it to generate initial electrons.
  • the inductively coupled plasma apparatus 0R2 has the same configuration as the inductively coupled plasma apparatus 0R except for the ignition rod 30.
  • the ignition rod 30 When the ignition rod 30 is used, it is necessary to move the ignition rod 30 away from the plasma after plasma ignition. However, since it involves a mechanical operation, it takes time. While the ignition rod 30 is in the plasma range, electrons in the plasma are ignited. There is a problem that the plasma state changes by reaching the rod 30.
  • An atmospheric pressure inductively coupled plasma apparatus 0 is wound around a high frequency power source 1 that generates high frequency power, a matching unit 2 connected to the high frequency power source 1, a plasma generating unit 3, and a plasma generating unit 3. And a control unit 9 connected to the high-frequency power source 1 and the matching unit 2.
  • the first coil 5 is connected to the matching unit 2.
  • the atmospheric pressure inductively coupled plasma apparatus 0 includes a second coil 6 connected to the first coil 5, a connection point between the first coil 5 and the second coil 6, and a first switch connected to GND. 7 and the second switch 8 connected to the other of the second coil 6 and GND.
  • the first switch 7 and the second switch 8 are connected to the control unit 9.
  • the plasma generating unit 3 is formed of a dielectric material such as cylindrical quartz or alumina called a torch, and has an input unit for plasma gas at the top.
  • the diameter of the plasma generator 3 is, for example, 35 mm.
  • the frequency of the high-frequency power source 1 preferably uses an ISM (Industry, Science, Medical) frequency band, for example, 13.56 MHz, 27.12 MHz, 40.68 MHz, 2.45 GHz, or the like.
  • the matching unit 2 is mechanically configured and has a slower response than that formed of a semiconductor or the like.
  • the first switch 7 is opened and the second switch 8 is short-circuited, so that the first coil 5 and the second coil 6 are electrically connected as shown in FIG. Equivalent circuit.
  • the first switch 7 is short-circuited and the second switch 8 is opened, so that the first coil 5 and the second coil 6 are electrically connected as shown in FIG. It becomes an equivalent circuit.
  • the inductance of the first coil 5 is L1
  • the inductance of the second coil 6 is L2
  • the inductance before plasma ignition is Lb
  • the inductance after plasma ignition is La.
  • La L1
  • both L1 and L2 are positive values.
  • Lb> La Therefore, since the inductance (Lb) before plasma ignition can be increased, the effective voltage generated in the first coil 5 can be increased from Equation (3). Therefore, dielectric breakdown of plasma gas is likely to occur at atmospheric pressure, and plasma ignition becomes easier. Therefore, plasma processing can be performed under atmospheric pressure, so that no equipment such as a vacuum chamber or a vacuum pump is necessary. If the inductance after the plasma ignition is kept high, the impedance viewed from the high frequency power source 1 becomes high, that is, impedance matching with the high frequency power source 1 cannot be obtained and the power source efficiency is lowered. Is low.
  • the inductance L of a cylindrical coil is expressed by the following formula (4).
  • L k ⁇ ⁇ ⁇ n 2 ⁇ ⁇ ⁇ a 2 / len [H] (4)
  • k is the Nagaoka coefficient
  • is the magnetic permeability
  • n is the number of coil turns
  • a is the radius of the coil
  • len is the length of the coil.
  • the effective shape of the second coil 6 for causing dielectric breakdown of the plasma gas is to increase the number of coil turns (n), increase the coil radius (a), or length of the coil. At least one of shortening (len) may be performed.
  • the Nagaoka coefficient is determined by the value of 2a / len, it is necessary to determine the coil radius (a) and the coil length (len) so as not to reduce the coil inductance.
  • the diameter of the plasma generating unit 3 is increased, a increases, but the plasma intensity in the plasma generating unit 3 tends to decrease near the center.
  • the power of the high frequency power source 1 is increased to increase the power (P) applied to the coil, or the frequency of the high frequency power source 1 is increased to make the coil By simultaneously performing at least one of increasing the applied frequency (f), dielectric breakdown of the plasma gas can be more effectively caused.
  • the atmospheric pressure inductively coupled plasma apparatus can be applied to, for example, an apparatus for decomposing and removing pollutants in the atmosphere.

Abstract

This atmospheric pressure inductively coupled plasma device comprises a high-frequency power source for generating high-frequency electric power, a matching box connected to the high-frequency power source, a first coil wound around a torch and connected to the matching box, a second coil connected to the first coil, a first switch connected to the GND and the connection point between the first coil and the second coil, a second switch connected to the GND and the other side of the second coil, and a control unit connected to the first switch, the second switch, the high-frequency power source, and the matching box. By opening the first switch and shorting the second switch prior to plasma ignition while shorting the first switch and opening the second switch after plasma ignition, the coil voltage generated in the first coil prior to plasma ignition is raised so as to provoke a breakdown of the plasma gas.

Description

大気圧誘導結合プラズマ装置Atmospheric pressure inductively coupled plasma device
 本開示は大気圧誘導結合プラズマ装置に関し、例えば大気圧誘導結合プラズマ装置のプラズマ着火方法に適用することができる。 The present disclosure relates to an atmospheric pressure inductively coupled plasma apparatus, and can be applied to, for example, a plasma ignition method of an atmospheric pressure inductively coupled plasma apparatus.
 誘導結合プラズマ(ICP:Inductively Coupled Plasma)の着火のメカニズムは、第一にトーチと呼ばれる円筒状の誘電体等にて構成されたプラズマ発生部のまわりに巻かれたコイルに高周波電力を印加し、発生したコイル電圧によりプラズマガスの絶縁破壊を発生させて初期電子を作り、第二に、コイルに流れる電流から発生した磁界により誘導される電界により加速された初期電子がガスの原子や分子を電離させるα作用を誘発させ、なだれ式に電子の数を増やすことで安定状態に移行することで、プラズマが着火する。 The ignition mechanism of inductively coupled plasma (ICP: Inductively Coupled Plasma) is as follows. First, high frequency power is applied to a coil wound around a plasma generating part composed of a cylindrical dielectric called a torch. The generated coil voltage causes plasma gas dielectric breakdown to produce initial electrons, and secondly, the initial electrons accelerated by the electric field induced by the magnetic field generated from the current flowing in the coil ionizes the gas atoms and molecules. The plasma is ignited by inducing the α action to shift to a stable state by increasing the number of electrons in the avalanche equation.
特開平5-217693号公報JP-A-5-217893
 パッシェンの法則によると、平行電極間における火花放電の生じる電圧(V)はガス圧(p)(密度)と電極の間隔(d)の積の関数となり、大気圧プラズマの場合、低圧プラズマに比べ、ガス密度が高いため初期電子を作り出すためのプラズマガスの絶縁破壊を起こすことは困難である(火花放電の生じる電圧が高くなる)。 According to Paschen's law, the voltage (V) at which spark discharge occurs between parallel electrodes is a function of the product of gas pressure (p) (density) and electrode spacing (d). Since the gas density is high, it is difficult to cause dielectric breakdown of the plasma gas for generating initial electrons (the voltage at which spark discharge is generated becomes high).
 本開示の課題は、大気圧誘導結合プラズマ装置においてプラズマ着火がより容易になる技術を提供することにある。 An object of the present disclosure is to provide a technique that makes plasma ignition easier in an atmospheric pressure inductively coupled plasma apparatus.
 本開示のうち、代表的なものの概要を簡単に説明すれば、下記のとおりである。
  すなわち、大気圧誘導結合プラズマ装置は、高周波電力を発生させる高周波電源と、前記高周波電源に接続された整合器と、トーチのまわりに巻かれ前記整合器に接続された第一のコイルと、前記第一のコイルに接続された第二のコイルと、前記第一のコイルと前記第二のコイルの接続点とGNDに接続された第一のスイッチと、前記第二のコイルの他方とGNDに接続された第二のスイッチと、前記第一のスイッチ、前記第二のスイッチ、前記高周波電源および前記整合器に接続された制御部と、を備える。プラズマ着火前には、前記第一のスイッチを開放とし、前記第二のスイッチを短絡し、プラズマ着火後には、前記第一のスイッチを短絡とし、前記第二のスイッチを開放とすることで、プラズマ着火前の前記第一のコイルに発生するコイル電圧を高め、プラズマガスの絶縁破壊を起こすようにされる。
The outline of a representative one of the present disclosure will be briefly described as follows.
That is, an atmospheric pressure inductively coupled plasma device includes a high-frequency power source that generates high-frequency power, a matching unit connected to the high-frequency power source, a first coil wound around a torch and connected to the matching unit, A second coil connected to the first coil, a connection point between the first coil and the second coil, a first switch connected to GND, and the other of the second coil and GND A second switch connected; and a control unit connected to the first switch, the second switch, the high-frequency power source, and the matching unit. Before plasma ignition, the first switch is opened, the second switch is short-circuited, and after plasma ignition, the first switch is short-circuited, and the second switch is opened, The coil voltage generated in the first coil before plasma ignition is increased to cause plasma gas dielectric breakdown.
 上記大気圧誘導結合プラズマ装置によれば、プラズマ着火がより容易にすることができる。 According to the above atmospheric pressure inductively coupled plasma apparatus, plasma ignition can be made easier.
実施の形態に係る大気圧誘導結合プラズマ装置(プラズマ着火前)を説明するための図である。It is a figure for demonstrating the atmospheric pressure inductively coupled plasma apparatus (before plasma ignition) which concerns on embodiment. 実施の形態に係る大気圧誘導結合プラズマ装置(プラズマ着火後)を説明するための図である。It is a figure for demonstrating the atmospheric pressure inductively coupled plasma apparatus (after plasma ignition) which concerns on embodiment. 図1の整合器以降の電気的等価回路を示す図である。It is a figure which shows the electrical equivalent circuit after the matching device of FIG. 図2の整合器以降の電気的等価回路を示す図である。It is a figure which shows the electrical equivalent circuit after the matching device of FIG. 誘導結合プラズマ装置を説明するための図である。It is a figure for demonstrating an inductively coupled plasma apparatus. ガス圧と電極間隔の積と火花電圧の関係を示すパッシェン曲線を示す図である。It is a figure which shows the Paschen curve which shows the relationship between the product of a gas pressure and an electrode space | interval, and a spark voltage. 比較例1に係る誘導結合プラズマ装置を説明するための図である。It is a figure for demonstrating the inductively coupled plasma apparatus which concerns on the comparative example 1. FIG. 比較例2に係る誘導結合プラズマ装置を説明するための図である。6 is a diagram for explaining an inductively coupled plasma apparatus according to Comparative Example 2. FIG.
 以下に、実施の形態および比較例について、図面を参照しつつ説明する。なお、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 Hereinafter, embodiments and comparative examples will be described with reference to the drawings. In order to clarify the description, the drawings may be schematically represented with respect to the width, thickness, shape, etc. of each part as compared to the actual embodiment, but are merely examples, and the interpretation of the present invention is not limited to them. It is not limited. In addition, in the present specification and each drawing, elements similar to those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description may be omitted as appropriate.
 まず、誘導結合プラズマ装置について図5を用いて説明する。誘導結合プラズマ装置0R1は高周波電力を発生させる高周波電源1と、高周波電源1に接続された整合器2と、プラズマ発生部3と、プラズマ発生部3のまわりに巻かれ整合器2に接続されたコイル5と、高周波電源1および整合器2に接続された制御部9と、を備える。コイル5に高周波電流が流れることにより磁束は発生し、発生した磁束によりプラズマ発生部3内に電界が発生することでプラズマを発生させる。 First, the inductively coupled plasma apparatus will be described with reference to FIG. The inductively coupled plasma apparatus 0R1 is connected to the high-frequency power source 1 for generating high-frequency power, the matching unit 2 connected to the high-frequency power source 1, the plasma generating unit 3, and the matching unit 2 wound around the plasma generating unit 3. A coil 5 and a control unit 9 connected to the high frequency power source 1 and the matching unit 2 are provided. Magnetic flux is generated when a high-frequency current flows through the coil 5, and an electric field is generated in the plasma generator 3 by the generated magnetic flux to generate plasma.
 ここでコイル電圧(コイルに発生する実効電圧)について考察する。
  整合器2により整合されている場合、コイル5に印加する高周波の電力をPとすると、コイル5に発生する実効電圧(V)は、コイル5のインピーダンス(Z)を用いて下記の式(1)にて表わされる。
             V=(P・Z1/2[V]       ・・・・・・(1)
  コイル5に印加した高周波の周波数をfとすると、コイル5のインピーダンス(Z)はコイル5のインダクタンス(L)を用いて下記の式(2)にて表わされる。
             Z=2πfL[Ω]           ・・・・・・(2)
式(1)および式(2)より、
             V=(P・2πfL)1/2[V]     ・・・・・・(3)
  すなわち、プラズマガスの絶縁破壊を起こすためにコイル5に発生する実効電圧(V)を大きくするには、式(3)より電力(P)、周波数(f)、コイル5のインダクタンス(L)の少なくとも1つを大きくする必要がある。
Here, the coil voltage (effective voltage generated in the coil) will be considered.
When matching is performed by the matching unit 2, when the high frequency power applied to the coil 5 is P, the effective voltage (V L ) generated in the coil 5 is expressed by the following equation using the impedance (Z L ) of the coil 5. It is represented by (1).
V L = (P · Z L ) 1/2 [V] (1)
When the frequency of the high frequency applied to the coil 5 is f, the impedance (Z L ) of the coil 5 is expressed by the following equation (2) using the inductance (L) of the coil 5.
Z L = 2πfL [Ω] (2)
From Formula (1) and Formula (2),
V L = (P · 2πfL) 1/2 [V] (3)
That is, in order to increase the effective voltage (V L ) generated in the coil 5 to cause the dielectric breakdown of the plasma gas, the power (P), the frequency (f), and the inductance (L) of the coil 5 are calculated from the equation (3). You need to make at least one of them bigger.
 ここで、パッシェンの法則を用いて、低圧プラズマ(例えば100Pa)と大気圧プラズマ(0.1MPa)における放電開始電圧(火花電圧)を比較する。その圧力差は1000倍であり、平行電極間距離を1.3cmとした場合、図6に示すパッシェン曲線から低圧プラズマの場合のpd積は1(=10)、大気圧プラズマのpd積は1000(=10)である。例えば、Arにて比較するとその火花電圧は、低圧プラズマで120V、大気圧プラズマで20kVである。なお、誘導結合プラズマ装置の電極は平行電極ではないが、傾向は同様であり、大気圧プラズマの火花電圧は低圧プラズマの火花電圧よりも高く、大気圧プラズマは低圧プラズマよりも着火しづらい。 Here, using Paschen's law, the discharge start voltage (spark voltage) in low-pressure plasma (for example, 100 Pa) and atmospheric pressure plasma (0.1 MPa) is compared. The pressure difference is 1000 times, and when the distance between the parallel electrodes is 1.3 cm, the pd product in the case of low pressure plasma is 1 (= 10 0 ) from the Paschen curve shown in FIG. 1000 (= 10 3 ). For example, when compared with Ar, the spark voltage is 120 V for low-pressure plasma and 20 kV for atmospheric pressure plasma. The electrodes of the inductively coupled plasma device are not parallel electrodes, but the tendency is the same. The spark voltage of the atmospheric pressure plasma is higher than the spark voltage of the low pressure plasma, and the atmospheric pressure plasma is harder to ignite than the low pressure plasma.
 次に、プラズマ着火を容易にする技術(比較例1、比較例2)について図7および図8を用いて説明する。
  図7に示すように、比較例1に係る誘導結合プラズマ装置0R1は、誘導結合プラズマ装置0Rに加えて、高電圧発生器21および放電部22を含むイグナイタ20を備え、イグナイタ20により初期電子を発生させる。イグナイタ20を用いる場合は、その放電部22の一端はGNDに接続されているため、プラズマ発生後でもコイル5と放電部22のGND端にて不要な放電が起こり、プラズマに十分なエネルギーが供給されない問題がある。
Next, techniques (Comparative Example 1 and Comparative Example 2) that facilitate plasma ignition will be described with reference to FIGS.
As shown in FIG. 7, the inductively coupled plasma device 0R1 according to the comparative example 1 includes an igniter 20 including a high voltage generator 21 and a discharge unit 22 in addition to the inductively coupled plasma device 0R, and the igniter 20 generates initial electrons. generate. When the igniter 20 is used, since one end of the discharge unit 22 is connected to the GND, unnecessary discharge occurs at the GND end of the coil 5 and the discharge unit 22 even after the plasma is generated, and sufficient energy is supplied to the plasma. There is no problem.
 図8に示すように、比較例2に係る誘導結合プラズマ装置0R2は、黒鉛等の着火棒30をトーチ3に挿入し放電させ初期電子を発生させる。誘導結合プラズマ装置0R2は、着火棒30を除いて、誘導結合プラズマ装置0Rと同様な構成である。着火棒30を用いる場合、プラズマ着火後は着火棒30をプラズマから遠ざける必要があるが、機械的な動作を伴うため時間がかかり、着火棒30がプラズマ範囲にある間はプラズマ内の電子が着火棒30に到達することによりプラズマ状態が変化する問題点がある。 As shown in FIG. 8, the inductively coupled plasma apparatus 0R2 according to Comparative Example 2 inserts an ignition rod 30 such as graphite into the torch 3 and discharges it to generate initial electrons. The inductively coupled plasma apparatus 0R2 has the same configuration as the inductively coupled plasma apparatus 0R except for the ignition rod 30. When the ignition rod 30 is used, it is necessary to move the ignition rod 30 away from the plasma after plasma ignition. However, since it involves a mechanical operation, it takes time. While the ignition rod 30 is in the plasma range, electrons in the plasma are ignited. There is a problem that the plasma state changes by reaching the rod 30.
 さらに比較例1および比較例2のいずれの場合も放電部22や着火棒30自体の電極摩耗が生じ、定期的な交換が必要となる問題がある。 Furthermore, in both cases of Comparative Example 1 and Comparative Example 2, there is a problem that electrode wear of the discharge part 22 and the ignition rod 30 itself occurs, and periodic replacement is necessary.
 実施の形態に係る大気圧誘導結合プラズマ装置について図1および図2を用いて説明する。実施の形態に係る大気圧誘導結合プラズマ装置0は、高周波電力を発生させる高周波電源1と、高周波電源1に接続された整合器2と、プラズマ発生部3と、プラズマ発生部3のまわりに巻かれた第一のコイル5と、高周波電源1および整合器2に接続された制御部9と、を備える。第一のコイル5は整合器2に接続される。さらに大気圧誘導結合プラズマ装置0は、第一のコイル5に接続された第二のコイル6と、第一のコイル5と第二のコイル6の接続点とGNDに接続された第一のスイッチ7と、第二のコイル6の他方とGNDに接続された第二のスイッチ8と、を備える。第一のスイッチ7および第二のスイッチ8は制御部9に接続される。プラズマ発生部3はトーチと呼ばれる円筒状の石英やアルミナ等の誘電体等にて構成され、上部にプラズマガス用入力部を備える。プラズマ発生部3の直径は、例えば35mmである。高周波電源1の周波数はISM(Industry, Science, Medical)の周波数帯を使用するのが好ましく、例えば13.56MHz、27.12MHz、40.68MHz、2.45GHz等を使用する。なお、整合器2はメカニカルに構成され、半導体等で構成されるものより応答が遅い。 The atmospheric pressure inductively coupled plasma apparatus according to the embodiment will be described with reference to FIGS. An atmospheric pressure inductively coupled plasma apparatus 0 according to an embodiment is wound around a high frequency power source 1 that generates high frequency power, a matching unit 2 connected to the high frequency power source 1, a plasma generating unit 3, and a plasma generating unit 3. And a control unit 9 connected to the high-frequency power source 1 and the matching unit 2. The first coil 5 is connected to the matching unit 2. Further, the atmospheric pressure inductively coupled plasma apparatus 0 includes a second coil 6 connected to the first coil 5, a connection point between the first coil 5 and the second coil 6, and a first switch connected to GND. 7 and the second switch 8 connected to the other of the second coil 6 and GND. The first switch 7 and the second switch 8 are connected to the control unit 9. The plasma generating unit 3 is formed of a dielectric material such as cylindrical quartz or alumina called a torch, and has an input unit for plasma gas at the top. The diameter of the plasma generator 3 is, for example, 35 mm. The frequency of the high-frequency power source 1 preferably uses an ISM (Industry, Science, Medical) frequency band, for example, 13.56 MHz, 27.12 MHz, 40.68 MHz, 2.45 GHz, or the like. The matching unit 2 is mechanically configured and has a slower response than that formed of a semiconductor or the like.
 図1に示すようにプラズマ着火前には、第一のスイッチ7を開放とし、第二のスイッチ8を短絡とすることで、第一のコイル5と第二のコイル6は図3に示す電気的等価回路となる。図2に示すようにプラズマ着火後には、第一のスイッチ7を短絡とし、第二のスイッチ8を開放とすることで、第一のコイル5と第二のコイル6は図4に示す電気的等価回路となる。 As shown in FIG. 1, before plasma ignition, the first switch 7 is opened and the second switch 8 is short-circuited, so that the first coil 5 and the second coil 6 are electrically connected as shown in FIG. Equivalent circuit. As shown in FIG. 2, after plasma ignition, the first switch 7 is short-circuited and the second switch 8 is opened, so that the first coil 5 and the second coil 6 are electrically connected as shown in FIG. It becomes an equivalent circuit.
 ここで、第一のコイル5のインダクタンスをL1とし、第二のコイル6のインダクタンスをL2とし、プラズマ着火前のインダクタンスをLbとし、プラズマ着火後のインダクタンスをLaとする。図3に示す電気的等価回路から、Lb=L1+L2にて表わされ、図4に示す電気的等価回路から、La=L1にて表わされ、L1およびL2は共に正の値であるために、Lb>Laの関係となる。よって、プラズマ着火前のインダクタンス(Lb)を大きくすることができるので、式(3)より第一のコイル5に発生する実効電圧を高くすることができる。よって、大気圧においてプラズマガスの絶縁破壊が起こしやすくなりプラズマ着火がより容易になる。したがって、大気圧のもとでプラズマ処理を行うことができるので、真空チャンバや真空ポンプ等の装備が必要ない。なお、プラズマ着火後のインダクタンスを高くしたままにすると高周波電源1から見たインピーダンスが高くなってしまい、すなわち高周波電源1とインピーダンスマッチングが取れなくなってしまい電源効率が低下するので、プラズマ着火後のインダクタンスを低くしている。 Here, the inductance of the first coil 5 is L1, the inductance of the second coil 6 is L2, the inductance before plasma ignition is Lb, and the inductance after plasma ignition is La. Since the electrical equivalent circuit shown in FIG. 3 is represented by Lb = L1 + L2, and from the electrical equivalent circuit shown in FIG. 4 is represented by La = L1, both L1 and L2 are positive values. , Lb> La. Therefore, since the inductance (Lb) before plasma ignition can be increased, the effective voltage generated in the first coil 5 can be increased from Equation (3). Therefore, dielectric breakdown of plasma gas is likely to occur at atmospheric pressure, and plasma ignition becomes easier. Therefore, plasma processing can be performed under atmospheric pressure, so that no equipment such as a vacuum chamber or a vacuum pump is necessary. If the inductance after the plasma ignition is kept high, the impedance viewed from the high frequency power source 1 becomes high, that is, impedance matching with the high frequency power source 1 cannot be obtained and the power source efficiency is lowered. Is low.
 一般に円筒状コイルのインダクタンスLは、下記の式(4)にて表わされることが知られている。
             L=k・μ・n・π・a/len[H]・・・・・・(4)
ここで、kは長岡係数、μは透磁率、nはコイル巻数、aはコイルの半径、lenはコイルの長さである。
  式(4)より、プラズマガスの絶縁破壊を起こすための第二のコイル6の効果的な形状は、コイル巻数(n)を増やす、またはコイルの半径(a)を大きくする、またはコイルの長さ(len)を短くする、の少なくとも1つを行えばよい。但し、2a/lenの値により長岡係数が決定されるので、コイルのインダクタンスが小さくならないようにコイルの半径(a)およびコイルの長さ(len)を決定する必要がある。なお、プラズマ発生部3の直径を大きくするとaも大きくなるが、プラズマ発生部3内のプラズマ強度が中心付近で低下する傾向がある。
  さらに式(3)より考察すると、本実施の形態に加え、高周波電源1の電力を大きくしてコイルに印加される電力(P)を大きくする、または高周波電源1の周波数を高くしてコイルに印加される周波数(f)を高くする、の少なくとも1つを同時に行うことで、より効果的にプラズマガスの絶縁破壊を起こすことが可能となる。
Generally, it is known that the inductance L of a cylindrical coil is expressed by the following formula (4).
L = k · μ · n 2 · π · a 2 / len [H] (4)
Here, k is the Nagaoka coefficient, μ is the magnetic permeability, n is the number of coil turns, a is the radius of the coil, and len is the length of the coil.
From equation (4), the effective shape of the second coil 6 for causing dielectric breakdown of the plasma gas is to increase the number of coil turns (n), increase the coil radius (a), or length of the coil. At least one of shortening (len) may be performed. However, since the Nagaoka coefficient is determined by the value of 2a / len, it is necessary to determine the coil radius (a) and the coil length (len) so as not to reduce the coil inductance. When the diameter of the plasma generating unit 3 is increased, a increases, but the plasma intensity in the plasma generating unit 3 tends to decrease near the center.
Further considering from the expression (3), in addition to the present embodiment, the power of the high frequency power source 1 is increased to increase the power (P) applied to the coil, or the frequency of the high frequency power source 1 is increased to make the coil By simultaneously performing at least one of increasing the applied frequency (f), dielectric breakdown of the plasma gas can be more effectively caused.
 本実施の形態に係る大気圧誘導結合プラズマ装置は、例えば、大気中の汚染物質の分解・除去装置に適用することができる。 The atmospheric pressure inductively coupled plasma apparatus according to the present embodiment can be applied to, for example, an apparatus for decomposing and removing pollutants in the atmosphere.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は、上記実施の形態に限定されるものではなく、種々変更可能であることはいうまでもない。 As mentioned above, although the invention made by the present inventor has been specifically described based on the embodiment, it is needless to say that the present invention is not limited to the above embodiment and can be variously changed.
0・・・大気圧誘導結合プラズマ装置
0R、0R1,0R2・・・誘導結合プラズマ装置
1・・・高周波電源
2・・・整合器
3・・・プラズマ発生部(トーチ)
4・・・プラズマガス用入力部
5・・・第一のコイル
6・・・第二のコイル
7・・・第一のスイッチ
8・・・第二のスイッチ
9・・・制御器
10・・・プラズマ
20・・・イグナイタ
21・・・高電圧発生器
22・・・放電部
30・・・着火棒
0 ... Atmospheric pressure inductively coupled plasma device 0R, 0R1, 0R2 ... Inductively coupled plasma device 1 ... High frequency power supply 2 ... Matching device 3 ... Plasma generator (torch)
4 ... Plasma gas input 5 ... First coil 6 ... Second coil 7 ... First switch 8 ... Second switch 9 ... Controller 10 ...・ Plasma 20 ... igniter 21 ... high voltage generator 22 ... discharge part 30 ... ignition rod

Claims (4)

  1.  高周波電力を発生させる高周波電源と、
     前記高周波電源に接続された整合器と、
     トーチのまわりに巻かれ前記整合器に接続された第一のコイルと、
     前記第一のコイルに接続された第二のコイルと、
     前記第一のコイルと前記第二のコイルの接続点とGNDに接続された第一のスイッチと、
     前記第二のコイルの他方とGNDに接続された第二のスイッチと、
     前記第一のスイッチ、前記第二のスイッチ、前記高周波電源および前記整合器に接続された制御部と、
    を備え、
     プラズマ着火前には、前記第一のスイッチを開放とし、前記第二のスイッチを短絡し、プラズマ着火後には、前記第一のスイッチを短絡とし、前記第二のスイッチを開放とすることで、プラズマ着火前の前記第一のコイルに発生するコイル電圧を高め、プラズマガスの絶縁破壊を起こすようにされる大気圧誘導結合プラズマ装置。
    A high frequency power source for generating high frequency power;
    A matching unit connected to the high-frequency power source;
    A first coil wound around the torch and connected to the matcher;
    A second coil connected to the first coil;
    A first switch connected to a connection point between the first coil and the second coil and GND;
    A second switch connected to the other of the second coil and GND;
    A control unit connected to the first switch, the second switch, the high-frequency power source and the matching unit;
    With
    Before plasma ignition, the first switch is opened, the second switch is short-circuited, and after plasma ignition, the first switch is short-circuited, and the second switch is opened, An atmospheric pressure inductively coupled plasma apparatus configured to increase a coil voltage generated in the first coil before plasma ignition and cause a dielectric breakdown of plasma gas.
  2.  請求項1において、
     プラズマ着火前の前記高周波電源の周波数をプラズマ着火後の前記高周波電源の周波数より高くするようにされる大気圧誘導結合プラズマ装置。
    In claim 1,
    An atmospheric pressure inductively coupled plasma apparatus in which a frequency of the high-frequency power source before plasma ignition is made higher than a frequency of the high-frequency power source after plasma ignition.
  3.  請求項1において、
     プラズマ着火前の前記高周波電源の高周波電力をプラズマ着火後の前記高周波電源の高周波電力より大きくするようにされる大気圧誘導結合プラズマ装置。
    In claim 1,
    An atmospheric pressure inductively coupled plasma apparatus in which a high frequency power of the high frequency power source before plasma ignition is made larger than a high frequency power of the high frequency power source after plasma ignition.
  4.  請求項1において、
     プラズマ着火前の前記高周波電源の周波数をプラズマ着火後の前記高周波電源の周波数より高くすると同時に、プラズマ着火前の前記高周波電源の高周波電力をプラズマ着火後の前記高周波電源の高周波電力より大きくするようにされる大気圧誘導結合プラズマ装置。
    In claim 1,
    The frequency of the high-frequency power source before plasma ignition is made higher than the frequency of the high-frequency power source after plasma ignition, and at the same time, the high-frequency power of the high-frequency power source before plasma ignition is made larger than the high-frequency power of the high-frequency power source after plasma ignition. Atmospheric pressure inductively coupled plasma device.
PCT/JP2014/075901 2014-09-29 2014-09-29 Atmospheric pressure inductively coupled plasma device WO2016051465A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016551353A JP6261100B2 (en) 2014-09-29 2014-09-29 Atmospheric pressure inductively coupled plasma device
PCT/JP2014/075901 WO2016051465A1 (en) 2014-09-29 2014-09-29 Atmospheric pressure inductively coupled plasma device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075901 WO2016051465A1 (en) 2014-09-29 2014-09-29 Atmospheric pressure inductively coupled plasma device

Publications (1)

Publication Number Publication Date
WO2016051465A1 true WO2016051465A1 (en) 2016-04-07

Family

ID=55629565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075901 WO2016051465A1 (en) 2014-09-29 2014-09-29 Atmospheric pressure inductively coupled plasma device

Country Status (2)

Country Link
JP (1) JP6261100B2 (en)
WO (1) WO2016051465A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4345845A1 (en) * 2022-09-30 2024-04-03 Handa, Janak H. Separation apparatus for high-level nuclear waste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176700A (en) * 1987-12-29 1989-07-13 Nippon Koshuha Kk Thermal plasma generator
JPH0712729A (en) * 1993-06-29 1995-01-17 Hitachi Ltd Induction coupled plasma generating device
JPH09250986A (en) * 1996-03-16 1997-09-22 Horiba Ltd Ignition circuit for icp emission spectrochemical analyzer
JPH10228997A (en) * 1996-12-05 1998-08-25 Applied Materials Inc Device and method for generating plasma torch

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187072B1 (en) * 1995-09-25 2001-02-13 Applied Materials, Inc. Method and apparatus for reducing perfluorocompound gases from substrate processing equipment emissions
JP4998361B2 (en) * 2008-04-17 2012-08-15 パナソニック株式会社 Atmospheric pressure plasma generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176700A (en) * 1987-12-29 1989-07-13 Nippon Koshuha Kk Thermal plasma generator
JPH0712729A (en) * 1993-06-29 1995-01-17 Hitachi Ltd Induction coupled plasma generating device
JPH09250986A (en) * 1996-03-16 1997-09-22 Horiba Ltd Ignition circuit for icp emission spectrochemical analyzer
JPH10228997A (en) * 1996-12-05 1998-08-25 Applied Materials Inc Device and method for generating plasma torch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4345845A1 (en) * 2022-09-30 2024-04-03 Handa, Janak H. Separation apparatus for high-level nuclear waste

Also Published As

Publication number Publication date
JPWO2016051465A1 (en) 2017-08-03
JP6261100B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
KR102509754B1 (en) Balanced barrier discharge neutralization in variable pressure environments
JP5085834B2 (en) An improved apparatus for generating and maintaining a glow discharge plasma under atmospheric pressure conditions
US6822396B2 (en) Transformer ignition circuit for a transformer coupled plasma source
JP4817407B2 (en) Plasma generating apparatus and plasma generating method
KR960026342A (en) Plasma treatment apparatus and plasma treatment method
JP2017054824A (en) Plasma ignition and sustaining methods and apparatuses
JP2011500369A5 (en)
KR20150021573A (en) Plasma source apparatus and methods for generating charged particle beams
US11101426B2 (en) Piezoelectric transformer
TWI400010B (en) Apparatus and method for forming a plasma
CN204827767U (en) Ignition and ignition system
JP2016130512A (en) Ignition method and ignition system
JP2007515760A (en) Method and apparatus for stabilizing glow discharge plasma under atmospheric pressure conditions
JP6261100B2 (en) Atmospheric pressure inductively coupled plasma device
KR101889826B1 (en) A device for generating filament discharges uniformly on three-dimensional object
JP5758086B2 (en) Inductively coupled microplasma source and apparatus using the same
JP6341690B2 (en) Inductively coupled microplasma source with floating electrode shielded
RU2499373C1 (en) Device to excite high-frequency flare discharge
JP5627766B2 (en) Gas discharge lamp driving method and gas discharge lamp apparatus
CN104347336B (en) Inductance coupling coil and plasma processing device
WO1994027312A1 (en) Gas discharge lamp
JP2009283157A (en) Plasma processing device
JP4609440B2 (en) Atmospheric pressure plasma generator and ignition method
JP5636931B2 (en) Electron beam irradiation apparatus, electron beam irradiation processing apparatus using the same, and collector electrode used therefor
JP6863608B2 (en) Plasma source and plasma processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903126

Country of ref document: EP

Kind code of ref document: A1