WO2016051247A1 - Anti-newton ring laminate, and capacitive touch panel using said anti-newton ring laminate - Google Patents

Anti-newton ring laminate, and capacitive touch panel using said anti-newton ring laminate Download PDF

Info

Publication number
WO2016051247A1
WO2016051247A1 PCT/IB2015/001684 IB2015001684W WO2016051247A1 WO 2016051247 A1 WO2016051247 A1 WO 2016051247A1 IB 2015001684 W IB2015001684 W IB 2015001684W WO 2016051247 A1 WO2016051247 A1 WO 2016051247A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
film
surface shape
touch panel
Prior art date
Application number
PCT/IB2015/001684
Other languages
French (fr)
Japanese (ja)
Inventor
昇平 福田
誠司 瀬口
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to JP2016551103A priority Critical patent/JPWO2016051247A1/en
Publication of WO2016051247A1 publication Critical patent/WO2016051247A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer

Definitions

  • the present invention relates to an anti-Newton ring laminate and a capacitive touch panel using the anti-Newton ring laminate.
  • This application claims the priority based on Japanese Patent Application No. 2014-199559 for which it applied on September 30, 2014, and uses the content here.
  • the touch panel is an electronic component that functions as a position input device, is combined with a display device such as a liquid crystal display, and is widely used in mobile phones and portable game machines.
  • a display device such as a liquid crystal display
  • the device senses the information on the specific position, so that the operator can perform an appropriate operation desired by the operator.
  • Interface There are various types of touch panels depending on the operation principle of detecting the indicated position, and a resistance film type and a capacitance type are widely used.
  • the capacitance type has been rapidly expanded mainly in mobile devices such as mobile phones.
  • As a typical detection method of the electrostatic capacitance type there are two types: a surface type for analog detection, and a projection type by an integrated detection method using patterned electrodes.
  • a touch panel provided with a glass plate (hereinafter sometimes referred to as “sensor glass”) provided with a conductive layer on one side or both sides is usually used.
  • a glass plate (hereinafter sometimes referred to as “cover glass”) is laminated on the side) via an adhesive layer.
  • a protective film sheet (resin film) is further attached to the front side of the cover glass or the back side of the cover glass.
  • FIG. 2 is a schematic cross-sectional view illustrating a configuration of a display device 300 with a capacitive touch panel in which only an outer edge portion of a conventional capacitive touch panel is fixed to the front surface of the display device with an adhesive.
  • the display device 300 with a capacitive touch panel includes a liquid crystal display 311 having a polarizing plate 312 disposed on the forefront, and a capacitive touch panel 321.
  • the capacitive touch panel 321 includes a base material layer 303, an uneven layer 306 formed on the back surface side of the base material layer 303, a conductive layer 302y formed on the front surface side of the base material layer 303, and a conductive layer 302y.
  • An adhesive layer 307 provided on the front side, a conductive layer 302x provided on the front side of the adhesive layer 307, a cover glass 301 on the front side of the conductive layer 302x, and a printing layer 305 are provided.
  • the conductive layer 302 x is formed on the back side of the cover glass 301, and the conductive layer 302 x is fixed to the conductive layer 302 y by an adhesive layer 307.
  • the capacitive touch panel 321 is disposed on the front surface of the liquid crystal display 311 with a gap between the capacitive touch panel 321 and the liquid crystal display 311, and an outer edge portion is fixed to the liquid crystal display 311 with an adhesive layer 331. Thereby, a space is formed between the front surface of the liquid crystal display 311 and the back surface of the capacitive touch panel 321.
  • a fine uneven shape may be provided on the surface of the film.
  • the size of the unevenness to be formed is set according to the required performance (antiglare, anti-Newton ring, anti-blocking), and the anti-glare is the largest and the anti-blocking is the smallest.
  • a method for forming such a concavo-convex shape a method of containing particles in the hard coat layer, a method of depositing a specific resin component by phase separation, and the like are used (for example, Patent Documents 1 to 8).
  • the capacitive touch panel 321 of FIG. 2 incorporates a film having a concavo-convex shape on one side (a concavo-convex layer 306 formed on one side of the base material layer 303) in order to provide anti-blocking performance.
  • Patent Document 9 as an optical film for suppressing the occurrence of Newton's ring in a liquid crystal display, it is 0.03 ⁇ m or more and 0.15 ⁇ m or less, and the root mean square slope R ⁇ q is 0.01 or more and 0.03 or less.
  • An optical film having certain characteristics is disclosed.
  • Patent Document 9 discloses an embodiment (FIG. 8) in which the optical film is disposed on the back side of a front member used for the purpose of design and the like in a liquid crystal display, and the display surface side of the display unit and the back side of the front member. And an embodiment (FIG. 9) in which the optical film is disposed on both.
  • this optical film has not been able to sufficiently reduce haze, and in particular, has not had sufficient optical performance for use in recent high-definition displays.
  • the optical layer is thick, curling occurs when the base material is thin, and handling properties deteriorate.
  • Japanese Laid-Open Patent Publication No. 2010-042671 Japanese Unexamined Patent Application Publication No. 2010-066043 Japanese Unexamined Patent Publication No. 2011-033948 Japanese Unexamined Patent Publication No. 2012-206502 Japanese Patent No. 5181793 Japanese Unexamined Patent Publication No. 2003-045234 Japanese Patent No. 4392048 Japanese Unexamined Patent Publication No. 2007-182519 Japanese Unexamined Patent Publication No. 2010-066761
  • the conventional film having such irregularities has a further problem that Newton rings remain even after the stress is released when pressed against a smooth surface such as glass by stress. .
  • This problem occurs when a touch panel attached with a display device applies stress to the touch panel when a user performs a touch operation, and the touch panel and the display device come into contact with each other.
  • the capacitive touch panel of FIG. 2 when the unevenness layer 306 is provided on the back surface of the base material layer 303 and the surface of the polarizing plate 312 is particularly smooth, the touch panel 321 is pressed by stress. The Newton ring can remain even after the stress is released. Furthermore, this problem becomes more prominent as the display device becomes larger. Moreover, such a problem becomes more prominent when the touch panel has one glass substrate. This is because a touch panel having a single glass substrate is likely to bend and distort, and is difficult to return while being in contact with the polarizing plate on the front surface of the display device near the center.
  • the conventional film having irregularities is provided with Newton's ring by reducing the contact area between the display device and the film on the premise that the surface of the display device that comes into contact with the film has high smoothness. Since it was configured under the technical idea of preventing the occurrence, it was necessary to have a large uneven shape to some extent. As a result, the conventional film has high haze values because large irregularities are formed. Therefore, there is room for further improvement of the conventional film so that the generation of Newton rings can be prevented while the haze value is lowered. As described above, it has been desired to have a high haze value as low as possible while having a high level of anti-Newton ring performance in which Newton rings do not remain even after the stress is released.
  • the present invention has been made in view of the above-described problems, and has excellent optical performance such as good touch surface brightness, and no Newton ring remains even after stress is released.
  • An object is to provide an anti-Newton ring laminate and a capacitive touch panel using the anti-Newton ring laminate.
  • the inventors of the present invention include a first layer having an uneven surface shape on at least one surface and a second layer having an uneven surface shape on at least one surface, and the unevenness of the first layer.
  • the surface shape of the first layer and the uneven surface shape of the second layer have a thickness of 1 to 6 ⁇ m and a surface roughness of more than 10 nm and less than 60 nm.
  • the surface shape of the unevenness of the first layer and the second layer The present invention has been completed by finding that the above-mentioned problems can be solved by using a laminate in which the surface shapes of the irregularities face each other and the surface shapes of the irregularities are in contact with each other.
  • the present invention has the following aspects.
  • the thickness of the uneven surface shape of the first layer and the uneven surface shape of the second layer is 1 to 6 ⁇ m, the surface roughness is greater than 10 nm and less than 60 nm,
  • the uneven surface of the first layer and / or the uneven surface of the second layer are formed uneven by phase separation of a resin composition containing at least two kinds of components [1] or [ 2].
  • a resin composition containing at least two kinds of components [1] or [ 2].
  • the uneven surface of the first layer and the uneven surface of the second layer one is an uneven resin layer containing inorganic or organic fine particles having a particle diameter of 20 to 250 nm, and the other is at least two types
  • [5] The laminate according to any one of [1] to [4], wherein the first layer and the second layer have a haze greater than 0.6 and less than 7.0.
  • An optical film for incorporation in a display device having a touch panel function The optical film has an uneven surface shape on at least one surface, and the surface roughness of the surface having the uneven surface shape is larger than 10 nm and smaller than 60 nm, At least two or more optical films are used in the same display device, and are arranged so that the surface shapes of the projections and recesses are in contact with each other.
  • the surface roughness is a value measured by the following measuring method.
  • Measurement method of surface roughness Using a micro laser microscope (measurement unit VK-X105 controller unit VK-X100 manufactured by KEYENCE Co., Ltd.), the surface of each resin film was observed and images were captured at a magnification of 200 times. For the obtained image, the measurement area is 100 ⁇ m ⁇ 100 ⁇ m, and the arithmetic average surface roughness Ra is calculated based on JIS B0601: 2001 using the analysis software attached to the traveling microlaser microscope.
  • a scanning probe microscope (Nanoscope IV and Nanoscope IIIa manufactured by Veeco Co., Ltd.) is used, an Si single crystal probe is used as a probe, a measurement mode is set to Taping mode, and an image is captured with a measurement area of 10 ⁇ m ⁇ 10 ⁇ m.
  • the obtained image was subjected to flattening (0th order) once and planefit (XY) once as additional processing for removing waviness using the attached analysis software, and then surface roughness was determined. calculate.
  • the transparency of the laminate was measured using NDH4000 manufactured by Nippon Denshoku Co., Ltd. based on JIS K 7136.
  • an anti-Newton ring laminate and an anti-Newton ring laminate in which Newton rings do not remain even after stress is released while having excellent optical performance such as good touch surface brightness can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an anti-Newton ring laminate 100 of the present invention.
  • the anti-Newton ring laminated body 100 includes a first layer 110 and a second layer 120.
  • the first layer 110 has a base material 111 and an uneven surface shape 112.
  • the base material 111 is not limited, For example, it is a resin layer or glass plates, such as a polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the uneven surface shape 112 is that the surface roughness is larger than 10 nm and smaller than 60 nm.
  • the uneven surface shape 112 can be formed by, for example, applying a material such as a curable resin composition, which will be described later, onto the substrate 111 to form a coating film and curing the coating film.
  • the second layer 120 has a base material 121 and an uneven surface shape 122.
  • the details of the substrate 121 and the uneven surface shape 122 are the same as the details of the substrate 111 and the uneven surface shape 112.
  • the uneven surface shape 112 and the uneven surface shape 122 may be fixed to each other at the outer edge portion by an adhesive or a pressure sensitive adhesive.
  • the first layer 110 and the second layer 120 may be fixed to each other at the outer edge portion by a fixing tool (not shown).
  • the concave / convex surface shape 112 and the concave / convex surface shape 122 are arranged to face each other and are stacked so as to be in contact with each other.
  • the concave / convex surface shape 112 and the concave / convex surface shape 122 may not be in contact with each other, and are fixed in a non-contact state with respect to each other via an adhesive or an adhesive at the outer edge portion.
  • the central portion may be laminated in a contact state or a contactable state.
  • films that can be used as the base materials 111 and 121 include polyethylene terephthalate film, polyethylene naphthalate film, polypropylene terephthalate film, polybutylene terephthalate film, polypropylene naphthalate film, polyethylene film, polypropylene film, cellophane, and diacetyl cellulose film.
  • the film is preferably a polyethylene terephthalate film from the viewpoint of weather resistance, solvent resistance, rigidity, cost, and the like.
  • the base materials 111 and 121 are preferably transparent to the extent that they can be used for optical applications.
  • the base materials 111 and 121 may contain various additives.
  • the additive include antioxidants, heat stabilizers, ultraviolet absorbers, organic particles, inorganic particles, pigments, dyes, antistatic agents, nucleating agents, and coupling agents.
  • the base materials 111 and 121 may be subjected to a surface treatment in order to improve adhesion with the uneven surface shapes 112 and 122.
  • the surface treatment include surface roughening treatment such as sandblast treatment or solvent treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, and the like.
  • the thickness of the base materials 111 and 121 is preferably 10 to 300 ⁇ m, more preferably 30 to 200 ⁇ m, from the viewpoint of securing strength, curling prevention, and the like. A thickness of 35 to 130 ⁇ m is particularly preferable.
  • the thickness of the base materials 111 and 121 is preferably 0.1 mm or more, and more preferably 0.2 mm or more.
  • the substrates 111 and 121 may be glass polarizing plates or resin polarizing plates.
  • the polarizing plate 12 constituting the forefront of the liquid crystal display 11 functions as one of the base material 111 or the base material 121
  • the base material 3 is the base material 111 or the base material. It can function as the other side of the material 121.
  • the polarizing plate 12 constituting the forefront of the liquid crystal display 11 functions as one of the base material 111 and the base material 121
  • the base material 3 b is the base material 111 or the base material. It can function as the other side of the material 121.
  • the uneven surface shapes 112 and 122 are provided to provide anti-Newton ring performance and the like.
  • the uneven surface shape 4 a corresponds to the uneven surface shape 112
  • the uneven surface shape 4 b corresponds to the uneven surface shape 122.
  • the uneven surface shape 4 a corresponds to the uneven surface shape 112
  • the uneven surface shape 4 b corresponds to the uneven surface shape 122.
  • the uneven surface shapes 112 and 122 are formed by applying a coating liquid for forming a hard coat layer containing a thermosetting or active energy ray-curable resin component on a base material (base material 111 or base material 121). Can be formed by forming a coating film and curing the coating film.
  • a method for forming irregularities a method of blending particles in the resin layer forming material, the resin layer forming material containing two resin components having different solubility parameter (SP) values, and after coating, For example, a method of precipitating one resin component by phase separation may be used.
  • SP solubility parameter
  • the resin layer forming material when the resin layer forming material does not substantially undergo phase separation, the resin layer forming material preferably contains inorganic or organic fine particles having a particle diameter of less than 250 nm.
  • the resin layer forming material when the resin layer forming material contains a resin component that substantially undergoes phase separation, the resin layer forming material preferably does not substantially contain inorganic or organic fine particles having a particle diameter of less than 250 nm.
  • the anti-Newton ring laminate of the present invention has both excellent optical performance and anti-Newton ring performance.
  • substantially no phase separation means that the resin component for phase separation is not substantially contained in the resin layer forming material (composition).
  • the difference in SP value between the two resin components is 1.0 or more, and the resin component having the smaller amount
  • the content of is preferably 3% by mass or less when the total mass of the resin layer forming material is 100% by mass. More preferably, it is 2 mass% or less, More preferably, it is 1 mass% or less, Most preferably, it is 0.1 mass% or less.
  • the resin layer forming material (composition) is to be phase-separated, when the total mass of the resin layer forming material is 100% by mass, the content of inorganic or organic fine particles having a particle diameter of less than 250 nm is: It is preferable that it is 3 mass% or less. More preferably, it is 2 mass% or less, More preferably, it is 1 mass% or less, Most preferably, it is 0.1 mass% or less.
  • thermosetting resin component examples include phenol resin, urea resin, diallyl phthalate resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, silicon resin, polysiloxane resin, and the like.
  • the active energy ray-curable resin component contains a monomer having a polymerizable unsaturated group (for example, a group containing a polymerizable unsaturated bond such as an ethylenic double bond) that can be polymerized by irradiation with active energy rays. Things. If necessary, a photopolymerization initiator or the like is blended with the active energy ray-curable resin component.
  • a resin layer forming composition containing a polyfunctional (meth) acrylic monomer and particles (hereinafter referred to as “resin layer forming composition (X)”) is an active energy ray. It is preferable that it is the hardened
  • the anti-Newton ring laminated body 100 suppresses shrinkage
  • Polyfunctional means having two or more polymerizable unsaturated groups
  • (meth) acrylic monomer is a compound having at least a (meth) acryloyl group as a polymerizable unsaturated group.
  • (Meth) acryloyl group means an acryloyl group or a methacryloyl group.
  • polyfunctional (meth) acrylic monomer examples include dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol di ( (Meth) acrylate, neopentyl glycol di (meth) acrylate, propylene oxide modified neopentyl glycol di (meth) acrylate, neopentyl glycol adipate di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopenta Nildi (meth) acrylate, caprolactone-modified dicyclopentenyl di (meth) acrylate, polyethylene glycol (preferably mass average molecular weight 400-600) di (meth) acrylate, modified Bifunctional such as bisphenol A di (meth) acrylate, tricyclode
  • the polyfunctional (meth) acrylic monomer preferably contains a tetrafunctional or higher (preferably pentafunctional or higher, more preferably hexafunctional) (meth) acrylic monomer.
  • a tetrafunctional or higher functional (meth) acrylic monomer contributes to an improvement in hardness.
  • the proportion of tetrafunctional or higher (meth) acrylic monomers is preferably 50% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, and 80% by mass or more. Is most preferred.
  • the particles contained in the resin layer forming composition (X) may be inorganic particles or organic particles.
  • the inorganic particles those having high hardness are preferable.
  • inorganic oxide particles such as silicon dioxide particles, titanium dioxide particles, zirconium oxide particles, aluminum oxide particles, tin dioxide particles, antimony pentoxide particles, and antimony trioxide particles are used.
  • the inorganic particles may be reactive inorganic oxide particles obtained by treating the inorganic oxide particles with a coupling agent. By treating with a coupling agent, the bonding strength with the acrylic polymer can be increased. As a result, the surface hardness and scratch resistance can be improved, and further, the dispersibility of the inorganic oxide particles can be improved.
  • the coupling agent examples include ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -mercaptopropyltrimethoxy.
  • Examples thereof include silane, ⁇ -aminopropyltriethoxysilane, and ⁇ -aminopropyltriethoxyaluminum. These may be used individually by 1 type and may use 2 or more types together.
  • the treatment amount of the coupling agent is preferably 0.1 to 20 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the inorganic oxide particles.
  • organic particles examples include resin particles such as acrylic resin, polystyrene, polysiloxane, melamine resin, benzoguanamine resin, polytetrafluoroethylene, cellulose acetate, polycarbonate, and polyamide.
  • the organic particles may be reactive resin particles obtained by treating the resin particles with a coupling agent. By treating with a coupling agent, the bonding strength with the acrylic polymer can be increased. As a result, the surface hardness and scratch resistance can be improved, and further the dispersibility of the resin particles can be improved.
  • the coupling agent and its treatment amount are the same as the coupling agent and its treatment amount mentioned for the reactive inorganic oxide particles.
  • the particle diameter of the particles is less than 250 nm in order to achieve both sufficient anti-Newton ring performance and excellent optical performance.
  • the particle diameter of the particles is preferably 10 nm to 200 nm, more preferably 20 nm to 150 nm, and still more preferably 30 nm to 100 nm.
  • the blending amount of the particles is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and further preferably 5 to 10% by mass in the solid content of the resin layer forming composition (X). When the compounding amount of the particles is within these preferable ranges, the anti-Newton ring performance is further improved.
  • solid content shows the sum total of all the components which comprise the composition (X) for resin layer formation, when a solvent is not included, and shows the sum total of all the components except a solvent when it contains a solvent.
  • the resin layer forming composition (X) preferably contains a photopolymerization initiator together with the polyfunctional (meth) acrylic monomer and particles in order to promote curing.
  • a photopolymerization initiator can be used such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2- Dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4 (Methylthio) phenyl] -2-morpholino-propan-1-one, 4- (2-hydroxyethoxy) phenyl-2 (hydroxy-2-propyl) ketone, benzophenone,
  • photoinitiators may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the blending amount of the photopolymerization initiator is preferably 0.5 to 10% by mass and more preferably 2 to 8% by mass in the solid content of the resin layer forming composition (X). When it is 0.5% by mass or more, poor curing hardly occurs. Even if it mixes exceeding 10 mass%, the hardening acceleration
  • a photosensitizer can be further contained.
  • the photosensitizer include n-butylamine, triethylamine, and tri-n-butylphosphine.
  • the resin layer forming composition (X) may contain other components than the above as long as the effects of the present invention are not impaired, if necessary.
  • known additions used to impart other functions water repellency, oil repellency, antifouling properties, coating suitability, antistatic properties, ultraviolet shielding properties, etc.
  • Such additives include fluorine compounds, polysiloxane compounds, metal oxide fine particles, antistatic resins, conductive polymers, ultraviolet absorbers, and the like.
  • antistatic properties can be imparted by adding metal oxide fine particles, antistatic resins, or conductive polymers.
  • ultraviolet shielding properties can be imparted by adding metal oxide fine particles or ultraviolet absorbers.
  • the resin layer forming composition (X) may contain a solvent.
  • the solvent include methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, toluene, n-hexane, n-butyl alcohol, methyl isobutyl ketone, methyl butyl ketone, ethyl butyl ketone, cyclohexanone, ethyl acetate, butyl acetate, propylene glycol monomethyl.
  • Ether acetate, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, N-methyl-2-pyrrolidone and the like are used. These may be used alone or in combination of two or more.
  • two or more solvents having different evaporation rates may be used in combination.
  • at least two kinds selected from methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, and propylene glycol monomethyl ether can be mixed and used.
  • the uneven surface shapes 112 and 122 are formed by applying a resin layer forming material such as the resin layer forming composition (X) to the surfaces of the base materials 111 and 121 to form a coating film, and curing the coating film.
  • a resin layer forming material such as the resin layer forming composition (X)
  • the coating method for the resin layer forming material include a blade coater, an air knife coater, a roll coater, a bar coater, a gravure coater, a micro gravure coater, a rod blade coater, a lip coater, a die coater, a curtain coater, and a printing machine. The method used is mentioned.
  • the coating amount of the resin layer forming material is set according to the thickness of the uneven surface shapes 112 and 122.
  • the thickness of the uneven surface shapes 112 and 122 is preferably 1 to 6 ⁇ m, and more preferably 2 to 5 ⁇ m. When the thickness is 1 ⁇ m or more, sufficient hard coat performance can be obtained. When it is 6 ⁇ m or less, it is excellent in transparency, substrate adhesion, curl resistance and the like. Note that the thickness of the thinnest part of the uneven surface shapes 112 and 122 (the distance from the bottom of the recesses present in the uneven surface shapes 112 and 122 to the surface on the base material 111 and 121 side) is defined as the uneven surface shape 112. , 122.
  • the uneven surface shapes 112 and 122 are preferably subjected to heat drying after the coating film is formed and before the coating film is cured.
  • the heat drying conditions are preferably 60 ° C. to 100 ° C. and 30 seconds to 90 seconds, for example. More preferably, they are 70 ° C. to 90 ° C. and 45 seconds to 75 seconds.
  • the coating film can be cured by irradiation with active energy rays.
  • the resin layer forming material is thermosetting, it can be cured by heating using a heating furnace or an infrared lamp.
  • the active energy rays include ionizing radiation such as ultraviolet rays, electron beams, visible rays, and ⁇ rays. Among them, ultraviolet rays are preferable from the viewpoint of versatility.
  • the ultraviolet light source for example, a high pressure mercury lamp, a low pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a carbon arc, a xenon arc, an electrodeless ultraviolet lamp, or the like can be used.
  • the electron beam for example, an electron beam emitted from various electron beam accelerators such as a cockloftwald type, a bandecraft type, a resonant transformation type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type can be used.
  • Curing by irradiation with active energy rays is preferably performed in the presence of an inert gas such as nitrogen. Curing may be performed in one stage, or may be performed in two stages, a preliminary curing process and a main curing process.
  • the anti-Newton ring laminate 100 of the present invention preferably has a total light transmittance of 90% or more.
  • the laminate has a haze of 1.5% or less, preferably 1.3% or less, more preferably 1.2% or less, and 1.1% or less. More preferably, it is still more preferably 1.0% or less, and most preferably 0.9% or less. Satisfying these requirements is useful as an optical member for touch panels and display devices.
  • the total light transmittance and haze can be measured by methods based on JIS K7361-1 and JISK7136, respectively.
  • FIG. 3 is a schematic cross-sectional view illustrating the configuration of a display device 200 with a capacitive touch panel using one embodiment of the anti-Newton ring laminate 100 of the present invention.
  • the display device 200 with a capacitive touch panel includes a liquid crystal display 11 in which a polarizing plate 12 on which an uneven surface-shaped layer 4 b is formed is disposed on the forefront, and a capacitive touch panel 25.
  • the touch panel 25 is disposed on the front surface of the liquid crystal display 11 with a gap between the touch panel 25 and the liquid crystal display 11, and an outer edge portion is fixed to the liquid crystal display 11 with an adhesive layer 31. Thereby, a space is formed between the front surface of the liquid crystal display 11 and the back surface of the touch panel 25.
  • the touch panel 25 includes a glass substrate 1, a conductive layer 2x formed on the back surface of the glass substrate, an adhesive layer 7, a printing layer 5, a base material 3, and a conductive layer 2y formed on the front surface of the base material 3. And an uneven surface shape 4 a formed on the back surface of the substrate 3.
  • the glass substrate 1 and the conductive layer 2x are in close contact with the front surface of the conductive layer 2y by the adhesive layer 7.
  • a printed layer 5 is formed on the outer edge of the front surface of the conductive layer 2y.
  • the conductive layer 2x is a conductive layer for detecting a position in the horizontal axis direction
  • the conductive layer 2y is a conductive layer for detecting a position in the vertical axis direction.
  • the uneven surface shape 4 a faces the liquid crystal display device 11.
  • the “front surface” means a surface on the side that the user visually recognizes and operates when using a capacitive touch panel or a display device to which the capacitive touch panel is attached.
  • the “back surface” means a surface on the opposite side to the side visually recognized and operated by the user.
  • the front surface of the touch panel is sometimes referred to as a touch surface.
  • Liquid Crystal Display 11 It does not specifically limit as the liquid crystal display 11, A well-known liquid crystal display can be used except using the polarizing plate 12 in which the uneven
  • Glass substrate 1 As the glass substrate 1, a known glass plate used for a touch panel or the like can be used.
  • the thickness of the glass substrate 1 is preferably 0.1 mm or more, and more preferably 0.2 mm or more. If the thickness is 0.1 mm or more, the strength of the touch panel 11 is sufficient.
  • the upper limit is not particularly limited, but if it exceeds 3 mm, deflection and distortion do not occur so much, and Newton's rings are less likely to occur. Therefore, in view of the usefulness of the present invention and transparency, it is preferably 3 mm or less. 2 mm or less is more preferable.
  • the conductive layers 2x and 2y are transparent conductive films.
  • the conductive layers 2x and 2y may be a uniform layer formed with a substantially uniform thickness used for a surface capacitive touch panel or the like, or used for a projected capacitive touch panel or the like.
  • the conductive layer may have a regular pattern formed for position detection. Even in the case of a uniform layer, part of the conductive layers 2x and 2y may be patterned in order to form lead electrodes and the like depending on the configuration of the touch panel.
  • Examples of the material of the conductive layers 2x and 2y include metals such as gold, silver, platinum, palladium, copper, aluminum, nickel, chromium, titanium, iron, cobalt, tin, and alloys thereof; indium-tin oxide (Indium Metal oxides such as Tin Oxide (ITO), Indium-Zinc Oxide (IZO), Zinc Oxide (ZnO), Zinc-Tin Oxide (ZTO); Other metal compounds composed of copper iodide or the like; conductive resins such as PEDOT / PSS;
  • the PEDOT / PSS is a polymer complex in which PEDOT (3,4-ethylenedioxythiophene polymer) and PSS (styrene sulfonic acid polymer) coexist.
  • the thicknesses of the conductive layers 2x and 2y are set in consideration of conductivity, transparency, and the like.
  • the conductivity of the conductive layers 2x and 2y is preferably 10 5 ⁇ / sq or less, and more preferably 10 3 ⁇ / sq or less, as a surface resistance, in order to provide an electrode plate for a touch panel.
  • Such surface resistance can be generally achieved by setting the thickness to 30 to 600 mm in the case of a metal system and to 80 to 5,000 mm in the case of a metal oxide system.
  • the conductive layers 2x and 2y can be formed by a known method.
  • a thin film forming method such as a vacuum deposition method, a sputtering method, an ion plating method, a spray pyrolysis method, a chemical plating method, an electroplating method, a coating method, or a combination thereof can be used.
  • a vacuum deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a spray pyrolysis method, a chemical plating method, an electroplating method, a coating method, or a combination thereof
  • vacuum vapor deposition and sputtering are preferred.
  • the regular pattern may be formed by a method in which the conductive layers 2x and 2y are partially provided in advance on the surfaces of the glass substrate 1 and the base material 3 by various printing methods, or a uniform layer as described above. After forming, a part thereof may be removed by etching or the like.
  • the surfaces of the glass substrate 1 and the base material 3 are subjected to corona discharge treatment, ultraviolet irradiation treatment, plasma treatment, sputter etching treatment, undercoat. Appropriate pretreatment such as treatment may be performed.
  • Adhesive layer 7 As an adhesive which comprises the adhesion layer 7, the well-known adhesive used for optical uses, such as a touch panel, respectively can be utilized.
  • the pressure sensitive adhesive include natural rubber pressure sensitive adhesive, synthetic rubber pressure sensitive adhesive, acrylic pressure sensitive adhesive, urethane pressure sensitive adhesive, and silicone pressure sensitive adhesive.
  • the pressure-sensitive adhesive may be any of a solvent system, a solventless system, an emulsion system, and an aqueous system. Of these, acrylic pressure-sensitive adhesives, particularly solvent-based ones are preferred from the viewpoints of transparency, weather resistance, durability, cost, and the like. Other auxiliary agents may be added to the adhesive as necessary.
  • auxiliary agents include antioxidants, tackifiers, silane coupling agents, UV absorbers, hindered amine compounds and other light stabilizers, thickeners, pH adjusters, binders, crosslinking agents, adhesive particles, Examples include antifoaming agents, antiseptic / antifungal agents, pigments, inorganic fillers, stabilizers, wetting agents, wetting agents and the like.
  • the thickness of the pressure-sensitive adhesive layer 7 is preferably 10 to 100 ⁇ m, and more preferably 20 to 80 ⁇ m. If it is 10 ⁇ m or more, sufficient adhesiveness can be obtained. If the thickness of the pressure-sensitive adhesive layer 7 exceeds 100 ⁇ m, it is disadvantageous from the viewpoint of thinning and cost.
  • An uneven surface shape 4 a is formed on the back surface of the substrate 3.
  • An uneven surface shape 4 b is formed on the front surface of the polarizing plate 12.
  • the uneven surface shape 4 a comes into contact with the uneven surface shape 4 b when the glass plate 1 bends in the direction of the liquid crystal display device 11.
  • Newton's rings are less likely to occur and remain less likely to remain.
  • the surface roughness is larger than 10 nm, the contact area between the first layer and the second layer is small compared to the case where there are no irregularities on both sides or one side, and it is easy to leave, so that an excellent anti-Newton ring effect is obtained. Demonstrated.
  • the surface roughness is preferably 13 nm or more, and more preferably 15 nm or more. When the surface roughness is less than 60 nm, the haze of the laminate is small, the transparency of the laminate is high, and the brightness of the touch surface is difficult to be impaired.
  • the surface roughness is preferably less than 50 nm, more preferably less than 40 nm, and particularly preferably less than 30 nm.
  • the surface shape of the unevenness that satisfies the surface roughness can be obtained according to the materials and conditions of the examples and comparative examples described in this specification.
  • FIG. 4 is a schematic cross-sectional view illustrating the configuration of a display device 201 with a capacitive touch panel according to another aspect using the anti-Newton ring laminate of the present invention.
  • a display device 201 with a capacitive touch panel shown in FIG. 4 includes a liquid crystal display 11 and a touch panel 21.
  • the touch panel 21 includes a glass substrate 1, an adhesive layer 7, a conductive layer 2x, a first base material 3a, an adhesive layer 17, a conductive layer 2y, a second base material 3b, and a second base material. And a concave-convex surface shape 4a formed on the back surface of 3b.
  • the back surface of the glass substrate 1 and the front surface of the conductive layer 2 x are in close contact with each other through the adhesive layer 7.
  • the back surface of the first substrate 3 a and the front surface of the conductive layer 2 y are in close contact with each other via the adhesive layer 17.
  • a printed layer 5 is formed on the outer edge of the front surface of the conductive layer 2x.
  • the conductive layer 2x is a conductive layer for detecting a position in the horizontal axis direction
  • the conductive layer 2y is a conductive layer for detecting a position in the vertical axis direction.
  • the conductive layer 2x may be a conductive layer for detecting a position in the vertical axis direction
  • the conductive layer 2y may be a conductive layer for detecting a position in the horizontal axis direction.
  • the adhesive layer 17 is an insulating adhesive layer.
  • the uneven surface shape 4a faces the uneven surface shape 4b.
  • the uneven surface shapes 4a and 4b have a surface roughness larger than 10 nm and smaller than 60 nm. A preferable range of the surface roughness is the same as the surface roughness of the display device 200 with a capacitive touch panel.
  • the conductive film sheet of the present invention and the touch panel using the same have been described above, but the present invention is not limited to these.
  • a liquid crystal display is used as a display device
  • the present invention is not limited to this.
  • various display devices such as a cathode ray tube (CRT) display, a plasma display, and an electroluminescence (EL) display can be used.
  • CTR cathode ray tube
  • EL electroluminescence
  • resin film A1 As polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), colloidal silica dispersion (organosilica sol L type, 20 parts by mass of a solid content concentration of 30%, manufactured by Nissan Chemical Industries, Ltd., and 4 parts by mass of a photopolymerization initiator (trade names: IRGACURE 184, manufactured by BASF Corporation) were mixed.
  • a resin layer forming composition A was prepared by diluting this mixture with methyl ethyl ketone so as to have a solid concentration of 50%.
  • a PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m was used as the substrate.
  • the resin layer forming composition A was bar-coated. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition A applied to the substrate was cured to form a resin layer having a thickness of 5 ⁇ m.
  • resin film A1 was obtained.
  • polyfunctional (meth) acrylate 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), colloidal silica dispersion (organosilica sol L type, 20 parts by mass of a solid content concentration of 30%, manufactured by Nissan Chemical Industries, Ltd., and 4 parts by mass of a photopolymerization initiator (trade names: IRGACURE 184, manufactured by BASF Corporation) were mixed.
  • a resin layer forming composition A was prepared by diluting this mixture with methyl ethyl ketone so as to have a solid concentration of 50%.
  • a PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m was used as the substrate.
  • the resin layer forming composition A was bar-coated. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated.
  • resin film A3 As polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), colloidal silica dispersion (organosilica sol L type, 20 parts by mass of a solid content concentration of 30%, manufactured by Nissan Chemical Industries, Ltd., and 4 parts by mass of a photopolymerization initiator (trade names: IRGACURE 184, manufactured by BASF Corporation) were mixed.
  • hexafunctional acrylate trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • colloidal silica dispersion organosilica sol L type, 20 parts by mass of a solid content concentration of 30%, manufactured by Nissan Chemical Industries, Ltd.
  • 4 parts by mass of a photopolymerization initiator trade names: IRGACURE 184, manufactured by BASF Corporation
  • a resin layer forming composition A was prepared by diluting this mixture with methyl ethyl ketone so as to have a solid concentration of 50%.
  • a PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m was used as the substrate.
  • the resin layer forming composition A was bar-coated. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated.
  • resin film A4 As polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), colloidal silica dispersion (organosilica sol L type, 20 parts by mass of a solid content concentration of 30%, manufactured by Nissan Chemical Industries, Ltd., and 4 parts by mass of a photopolymerization initiator (trade names: IRGACURE 184, manufactured by BASF Corporation) were mixed.
  • hexafunctional acrylate trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • colloidal silica dispersion organosilica sol L type, 20 parts by mass of a solid content concentration of 30%, manufactured by Nissan Chemical Industries, Ltd.
  • 4 parts by mass of a photopolymerization initiator trade names: IRGACURE 184, manufactured by BASF Corporation
  • a resin layer forming composition A was prepared by diluting this mixture with methyl ethyl ketone so as to have a solid concentration of 50%.
  • a PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m was used as the substrate.
  • the resin layer forming composition A was bar-coated. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition A applied to the substrate was cured to form a resin layer having a thickness of 0.5 ⁇ m. In this way, a resin film A4 was obtained.
  • resin film B1 As polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), particle size 100 nm colloidal silica dispersion (organosilica sol Z type, solid A partial concentration of 30%, manufactured by Nissan Chemical Industries, Ltd.) 20 parts by mass, and a photopolymerization initiator (trade name IRGACURE 184, manufactured by BASF Corporation) were mixed by 4 parts by mass.
  • a resin layer forming composition B was prepared by diluting this mixture with methyl ethyl ketone so as to have a solid concentration of 50%.
  • a PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m was used as the substrate.
  • the resin layer forming composition B was bar coated on this substrate. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition B applied to the base material was cured to form a resin layer having a thickness of 5 ⁇ m. In this way, a resin film B1 was obtained.
  • Resin layer forming composition C (trade name: Lucifral NAB-007, solid content concentration: 40%, manufactured by Nippon Paint Co., Ltd.) that forms surface irregularities by phase separation is used as a substrate (100 ⁇ m thick PET film, trade name: A4300, Toyo Bar coating was applied to the surface of a spinning company. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition C applied to the substrate was cured to form a resin layer having a thickness of 5 ⁇ m. Thus, a resin film C1 was obtained.
  • a substrate 100 ⁇ m thick PET film, trade name: A4300, Toyo Bar coating was applied to the surface of a
  • resin film D1 As a polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.) and a colloidal silica dispersion (trade name PL-2L having a particle diameter of 20 nm) -30 parts by mass of MEK, solid content concentration 20%, manufactured by Fuso Chemical Industries Co., Ltd., and 4 parts by mass of a photopolymerization initiator (trade names: IRGACURE 184, manufactured by BASF Corporation).
  • hexafunctional acrylate trade name A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • a colloidal silica dispersion trade name PL-2L having a particle diameter of 20 nm
  • a resin layer forming composition D was prepared by diluting this mixture with methyl ethyl ketone to a solid content concentration of 50%.
  • a PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m was used as the substrate.
  • the resin layer forming composition D was bar-coated. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated.
  • resin film E1 As polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), 1400 nm silica particles (trade name: Silicia 310, Fuji Silysia Chemical Co., Ltd.) 6 parts by mass of a company) and 4 parts by mass of a photopolymerization initiator (trade name: IRGACURE 184, manufactured by BASF Corporation) were mixed.
  • hexafunctional acrylate trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • silica particles trade name: Silicia 310, Fuji Silysia Chemical Co., Ltd.
  • 4 parts by mass of a photopolymerization initiator (trade name: IRGACURE 184, manufactured by BASF Corporation) were mixed.
  • a resin layer forming composition E was prepared by diluting the mixture with methyl ethyl ketone to a solid content concentration of 50%.
  • a PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m was used as the substrate.
  • the resin layer forming composition E was bar coated on this substrate. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition E applied to the substrate was cured to form a resin layer having a thickness of 5 ⁇ m. In this way, a resin film E1 was obtained.
  • resin film F1 As polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), 4100 nm silica particles (trade name: Silicia 430, Fuji Silysia Chemical Co., Ltd.) 6 parts by mass of a company) and 4 parts by mass of a photopolymerization initiator (trade name: IRGACURE 184, manufactured by BASF Corporation) were mixed.
  • a resin layer forming composition F was prepared by diluting the mixture with methyl ethyl ketone to a solid content concentration of 50%.
  • a PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m was used as the substrate.
  • the resin layer-forming composition F was bar-coated. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition F applied to the substrate was cured to form a resin layer having a thickness of 5 ⁇ m. Thus, a resin film F1 was obtained.
  • a composition having a refractive index of 1.65 (trade name: OPSTARORKZ6719, solid content: 20%, manufactured by JSR Corporation) was coated on a base of a PET film having a thickness of 100 ⁇ m.
  • the substrate was heat-dried at 80 ° C. for 60 seconds. Thereby, a high refractive layer having a thickness of 0.2 ⁇ m was formed.
  • the resin layer forming composition A was coated on the high refractive layer in the same manner as in the production of the resin film A1 to produce a resin film G1.
  • resin film H1 As a polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.) and a photopolymerization initiator (trade name IRGACURE 184, manufactured by BASF Corporation) ) 4 parts by mass were mixed. A resin layer forming composition H was prepared by diluting this mixture with methyl ethyl ketone so as to have a solid concentration of 50%. A PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m was used as the substrate.
  • a PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m was used as the substrate.
  • the resin layer forming composition H was bar-coated on this substrate. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition H applied to the substrate was cured to a resin layer having a thickness of 5 ⁇ m. In this way, a resin film H1 was obtained.
  • a high-pressure mercury lamp ultraviolet irradiator manufactured by Eye Graphics Co., Ltd.
  • resin film I1 As a polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), colloidal silica dispersion with a particle diameter of 10 nm (organosilica sol standard type, 10 mass parts of solid content concentration 30%, the product made from Nissan Chemical Industries Ltd., and 4 mass parts of photoinitiators (brand name IRGACURE184, the product made from BASF) were mixed.
  • a resin layer forming composition I was prepared by diluting this mixture with methyl ethyl ketone so as to have a solid concentration of 50%.
  • a PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m was used as the substrate.
  • the resin layer forming composition I was bar coated on this substrate. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition I applied to the substrate was cured to form a resin layer having a thickness of 5 ⁇ m. In this way, a resin film I1 was obtained.
  • Example 1 Two resin films A1 were prepared and arranged so that the respective resin layers face each other, thereby producing a laminate.
  • Example 2> A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film B1.
  • Example 3> A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film C1.
  • Example 4> A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film D1.
  • Example 5> A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film G1.
  • Example 6> A laminate was produced in the same manner as in Example 1 except that one of the two resin films A1 was changed to the resin film B1.
  • Example 7> A laminate was produced in the same manner as in Example 1 except that one of the two resin films A1 was changed to the resin film C1.
  • Example 8> A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film A2.
  • ⁇ Comparative Example 1> A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film H1.
  • ⁇ Comparative example 2> A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film I1.
  • ⁇ Comparative Example 3> A laminate was produced in the same manner as in Example 1 except that one of the two resin films A1 was changed to the resin film I1.
  • ⁇ Comparative example 4> A laminate was produced in the same manner as in Example 2 except that one of the two resin films B1 was changed to the resin film I1.
  • ⁇ Comparative Example 5> A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film A3.
  • ⁇ Comparative Example 6> A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film A4.
  • ⁇ Comparative Example 7> A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film E1.
  • ⁇ Comparative Example 8> A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film F1.

Abstract

The present invention pertains to a laminate comprising: a first layer having an uneven surface shape on at least one surface thereof; and a second layer having an uneven surface shape on at least one surface thereof. The uneven surface shape of the first layer and the uneven surface shape of the second layer have a thickness of 1-6μm, and a surface roughness greater than 10nm and less than 60nm. The laminate is formed by laminating the first layer and the second layer such that the uneven surface shape of the first layer and the uneven surface shape of the second layer face each other and make contact with each other.

Description

アンチニュートンリング積層体およびそのアンチニュートンリング積層体を用いた静電容量式タッチパネルAnti-Newton ring laminate and capacitive touch panel using the anti-Newton ring laminate
 本発明は、アンチニュートンリング積層体およびそのアンチニュートンリング積層体を用いた静電容量式タッチパネルに関する。
 本願は、2014年9月30日に出願された日本国特願2014−199559号に基づく優先権を主張し、その内容をここに援用する。
The present invention relates to an anti-Newton ring laminate and a capacitive touch panel using the anti-Newton ring laminate.
This application claims the priority based on Japanese Patent Application No. 2014-199559 for which it applied on September 30, 2014, and uses the content here.
 タッチパネルは、位置入力装置として機能する電子部品であり、液晶ディスプレイ等の表示装置と組み合わされ、携帯電話および携帯ゲーム機等において幅広く利用されている。タッチパネルは、操作者が画面表示に基づき、手または入力ペンでタッチパネルの特定位置を指し示すと、装置がその特定位置の情報を感知することで、操作者が望む適切な動作を行なわせることができるインターフェースである。タッチパネルとしては、指し示す位置を検出する動作原理によって種々の方式のものがあるが、抵抗膜式および静電容量式が汎用されている。特に、静電容量式は、携帯電話などのモバイル機器を中心として急速に拡大してきた。静電容量式の代表的な検出方式としては、アナログ検出の表面型、およびパターニングされた電極を用いた積算検出方式による投影型の2つが挙げられる。 The touch panel is an electronic component that functions as a position input device, is combined with a display device such as a liquid crystal display, and is widely used in mobile phones and portable game machines. When the operator points to a specific position of the touch panel with the hand or an input pen based on the screen display, the device senses the information on the specific position, so that the operator can perform an appropriate operation desired by the operator. Interface. There are various types of touch panels depending on the operation principle of detecting the indicated position, and a resistance film type and a capacitance type are widely used. In particular, the capacitance type has been rapidly expanded mainly in mobile devices such as mobile phones. As a typical detection method of the electrostatic capacitance type, there are two types: a surface type for analog detection, and a projection type by an integrated detection method using patterned electrodes.
 静電容量式タッチパネルとしては、片面または両面に導電層を設けたガラス板(以下、「センサガラス」ということがある)を備えるものが用いられており、通常、センサガラスの前面側(タッチ面側)に、粘着層を介してガラス板(以下、「カバーガラス」ということがある)が積層されている。また、カバーガラスの破損および破片の飛散を防止するために、カバーガラスの前面側またはカバーガラスの裏面側にさらに保護フィルムシート(樹脂フィルム)が貼付される。 As the capacitive touch panel, a touch panel provided with a glass plate (hereinafter sometimes referred to as “sensor glass”) provided with a conductive layer on one side or both sides is usually used. A glass plate (hereinafter sometimes referred to as “cover glass”) is laminated on the side) via an adhesive layer. Moreover, in order to prevent damage to the cover glass and scattering of fragments, a protective film sheet (resin film) is further attached to the front side of the cover glass or the back side of the cover glass.
 タッチパネルは、通常、粘着剤を用いて表示装置の前面に取り付けられるが、特に表示装置が大型の場合、コストの点から、タッチパネルの外縁部のみを粘着剤で固定することがある。
 一例として、図2に、従来の静電容量式タッチパネルの外縁部のみを粘着剤で表示装置の前面に固定した静電容量式タッチパネル付き表示装置300の構成を説明する概略断面図を示す。静電容量式タッチパネル付き表示装置300は、最前面に偏光板312が配置された液晶ディスプレイ311と、静電容量式タッチパネル321とを備える。静電容量式タッチパネル321は、基材層303と、基材層303の裏面側に形成された凹凸層306と、基材層303の前面側に形成された導電層302yと、導電層302yの前面側に設けられた粘着層307と、粘着層307の前面側に設けられた導電層302xと、導電層302xの前面側のカバーガラス301と、印刷層305とを備える。導電層302xは、カバーガラス301の裏面側に形成されており、導電層302xは、粘着層307により導電層302yに固定されている。静電容量式タッチパネル321は、液晶ディスプレイ311の前面に、液晶ディスプレイ311との間に隙間を設けて配置され、外縁部が粘着層331で液晶ディスプレイ311に固定されている。これにより、液晶ディスプレイ311の前面と静電容量式タッチパネル321の裏面との間に空間が形成されている。
The touch panel is usually attached to the front surface of the display device using an adhesive. However, particularly when the display device is large, only the outer edge of the touch panel may be fixed with the adhesive from the viewpoint of cost.
As an example, FIG. 2 is a schematic cross-sectional view illustrating a configuration of a display device 300 with a capacitive touch panel in which only an outer edge portion of a conventional capacitive touch panel is fixed to the front surface of the display device with an adhesive. The display device 300 with a capacitive touch panel includes a liquid crystal display 311 having a polarizing plate 312 disposed on the forefront, and a capacitive touch panel 321. The capacitive touch panel 321 includes a base material layer 303, an uneven layer 306 formed on the back surface side of the base material layer 303, a conductive layer 302y formed on the front surface side of the base material layer 303, and a conductive layer 302y. An adhesive layer 307 provided on the front side, a conductive layer 302x provided on the front side of the adhesive layer 307, a cover glass 301 on the front side of the conductive layer 302x, and a printing layer 305 are provided. The conductive layer 302 x is formed on the back side of the cover glass 301, and the conductive layer 302 x is fixed to the conductive layer 302 y by an adhesive layer 307. The capacitive touch panel 321 is disposed on the front surface of the liquid crystal display 311 with a gap between the capacitive touch panel 321 and the liquid crystal display 311, and an outer edge portion is fixed to the liquid crystal display 311 with an adhesive layer 331. Thereby, a space is formed between the front surface of the liquid crystal display 311 and the back surface of the capacitive touch panel 321.
 光学フィルムの分野では、フィルム等の部材が他の部材(例えば、ガラス板または他のフィルム)と接触する際に、グレア、ニュートンリング、ブロッキング等の問題が生じることがある。これらの問題を防止するために、フィルムの表面に微細な凹凸形状を設けることがある。一般に、形成する凹凸の大きさは、要求される性能(アンチグレア、アンチニュートンリング、アンチブロッキング)に応じて設定され、アンチグレアの場合が最も大きく、アンチブロッキングの場合が最も小さい。このような凹凸形状の形成方法としては、ハードコート層に粒子を含有させる方法、および、特定の樹脂成分を相分離により析出させる方法などが用いられている(たとえば特許文献1~8)。図2の静電容量式タッチパネル321には、アンチブロッキング性能を付与するために、凹凸形状を片側に有するフィルム(基材層303の片面に凹凸層306を形成したもの)が組み込まれている。 In the field of optical films, when a member such as a film comes into contact with another member (for example, a glass plate or another film), problems such as glare, Newton ring, and blocking may occur. In order to prevent these problems, a fine uneven shape may be provided on the surface of the film. In general, the size of the unevenness to be formed is set according to the required performance (antiglare, anti-Newton ring, anti-blocking), and the anti-glare is the largest and the anti-blocking is the smallest. As a method for forming such a concavo-convex shape, a method of containing particles in the hard coat layer, a method of depositing a specific resin component by phase separation, and the like are used (for example, Patent Documents 1 to 8). The capacitive touch panel 321 of FIG. 2 incorporates a film having a concavo-convex shape on one side (a concavo-convex layer 306 formed on one side of the base material layer 303) in order to provide anti-blocking performance.
 特許文献9には、液晶ディスプレイにおいてニュートンリングの発生を抑制するための光学フィルムとして、0.03μm以上0.15μm以下であり、かつ、二乗平均平方根傾斜RΔqが0.01以上0.03以下である等の特徴を有する光学フィルムが開示されている。特許文献9には、液晶ディスプレイにおいて意匠性等を目的として用いられる前面部材の裏面側に該光学フィルムを配置する実施形態(図8)、および、表示部の表示面側と前面部材の裏面側との両方に該光学フィルムを配置する実施形態(図9)が開示されている。しかしながら、この光学フィルムは、ヘイズが充分に低減できたものではなく、特に、近年の高精細ディスプレイに用いるのには充分な光学的性能を有するものではなかった。また、光学層の厚みが厚いため、基材が薄くなるとカールが発生してしまい、ハンドリング性が悪くなる。 In Patent Document 9, as an optical film for suppressing the occurrence of Newton's ring in a liquid crystal display, it is 0.03 μm or more and 0.15 μm or less, and the root mean square slope RΔq is 0.01 or more and 0.03 or less. An optical film having certain characteristics is disclosed. Patent Document 9 discloses an embodiment (FIG. 8) in which the optical film is disposed on the back side of a front member used for the purpose of design and the like in a liquid crystal display, and the display surface side of the display unit and the back side of the front member. And an embodiment (FIG. 9) in which the optical film is disposed on both. However, this optical film has not been able to sufficiently reduce haze, and in particular, has not had sufficient optical performance for use in recent high-definition displays. In addition, since the optical layer is thick, curling occurs when the base material is thin, and handling properties deteriorate.
日本国特開2010−042671号公報Japanese Laid-Open Patent Publication No. 2010-042671 日本国特開2010−060643号公報Japanese Unexamined Patent Application Publication No. 2010-066043 日本国特開2011−033948号公報Japanese Unexamined Patent Publication No. 2011-033948 日本国特開2012−206502号公報Japanese Unexamined Patent Publication No. 2012-206502 日本国特許5181793号公報Japanese Patent No. 5181793 日本国特開2003−045234号公報Japanese Unexamined Patent Publication No. 2003-045234 日本国特許4392048号公報Japanese Patent No. 4392048 日本国特開2007−182519号公報Japanese Unexamined Patent Publication No. 2007-182519 日本国特開2010−066761号公報Japanese Unexamined Patent Publication No. 2010-066761
 しかしながら、そのような凹凸を有する従来のフィルムは、ガラス等の平滑な面に対して応力により押し付けられた場合に、応力が開放された後にもニュートンリングが残存するというさらなる問題を有していた。この問題は、表示装置を取り付けたタッチパネルにおいて、使用者がタッチ操作をする時に該タッチパネルに対して応力を加え、タッチパネルと表示装置とが接触する際に生じる。図2の静電容量式タッチパネルにおいて、基材層303の裏面に凹凸層306を設けても、偏光板312の表面の平滑性が特に高い場合には、タッチパネル321が応力により押し付けられた場合に、応力が開放された後にもニュートンリングが残存し得る。さらに、この問題は、表示装置が大型化するほど顕著になる。また、このような問題は、タッチパネルが備えるガラス基板が1枚である場合にさらに顕著になる。ガラス基板が1枚であるタッチパネルは、たわみ及び歪みが生じやすく、中央付近で表示装置の前面の偏光板に接触したまま戻りにくくなるからである。 However, the conventional film having such irregularities has a further problem that Newton rings remain even after the stress is released when pressed against a smooth surface such as glass by stress. . This problem occurs when a touch panel attached with a display device applies stress to the touch panel when a user performs a touch operation, and the touch panel and the display device come into contact with each other. In the capacitive touch panel of FIG. 2, when the unevenness layer 306 is provided on the back surface of the base material layer 303 and the surface of the polarizing plate 312 is particularly smooth, the touch panel 321 is pressed by stress. The Newton ring can remain even after the stress is released. Furthermore, this problem becomes more prominent as the display device becomes larger. Moreover, such a problem becomes more prominent when the touch panel has one glass substrate. This is because a touch panel having a single glass substrate is likely to bend and distort, and is difficult to return while being in contact with the polarizing plate on the front surface of the display device near the center.
 また、凹凸を有する従来のフィルムは、該フィルムと接触することになる表示装置の表面の平滑性が高いことを前提として、該表示装置と該フィルムとの接触面積を小さくすることによりニュートンリングの発生を防ぐという技術的思想の下に構成されたものであるため、ある程度以上の大きい凹凸形状を有している必要があった。その結果、従来のフィルムは大きい凹凸を形成させているためヘイズ値が高いものとなっていた。従って、ヘイズ値を低くしながらも、ニュートンリングの発生を防ぐことができるように従来のフィルムをさらに改良する余地があった。上述したように、応力が開放された後にもニュートンリングが残存しない高いレベルのアンチニュートンリング性能を有しながら、同時に、可能な限りヘイズ値が低いものが望まれていた。 In addition, the conventional film having irregularities is provided with Newton's ring by reducing the contact area between the display device and the film on the premise that the surface of the display device that comes into contact with the film has high smoothness. Since it was configured under the technical idea of preventing the occurrence, it was necessary to have a large uneven shape to some extent. As a result, the conventional film has high haze values because large irregularities are formed. Therefore, there is room for further improvement of the conventional film so that the generation of Newton rings can be prevented while the haze value is lowered. As described above, it has been desired to have a high haze value as low as possible while having a high level of anti-Newton ring performance in which Newton rings do not remain even after the stress is released.
 本発明は、上述した問題に鑑みてなされたものであって、タッチ面の明るさが良好である等の優れた光学的性能を有しながら、応力が開放された後にもニュートンリングが残らないアンチニュートンリング積層体およびそのアンチニュートンリング積層体を用いた静電容量式タッチパネルを提供することを目的とする。 The present invention has been made in view of the above-described problems, and has excellent optical performance such as good touch surface brightness, and no Newton ring remains even after stress is released. An object is to provide an anti-Newton ring laminate and a capacitive touch panel using the anti-Newton ring laminate.
 本発明者らは、鋭意検討の結果、少なくとも片面に凹凸の表面形状を有する第1の層と、少なくとも片面に凹凸の表面形状を有する第2の層とを備え、前記第1の層の凹凸の表面形状および前記第2の層の凹凸の表面形状は、厚さが1~6μm、表面粗さが10nmより大きく60nmより小さく、前記第1の層の凹凸の表面形状と前記第2の層の凹凸の表面形状とが対向して該凹凸の表面形状が互いに接触するように積層されている積層体を用いることにより上記課題が解決されることを見出し、本発明を完成させた。 As a result of intensive studies, the inventors of the present invention include a first layer having an uneven surface shape on at least one surface and a second layer having an uneven surface shape on at least one surface, and the unevenness of the first layer. The surface shape of the first layer and the uneven surface shape of the second layer have a thickness of 1 to 6 μm and a surface roughness of more than 10 nm and less than 60 nm. The surface shape of the unevenness of the first layer and the second layer The present invention has been completed by finding that the above-mentioned problems can be solved by using a laminate in which the surface shapes of the irregularities face each other and the surface shapes of the irregularities are in contact with each other.
 本発明は、以下の態様を有する。
[1]少なくとも片面に凹凸の表面形状を有する第1の層と、少なくとも片面に凹凸の表面形状を有する第2の層とを備え、
 前記第1の層の凹凸の表面形状および前記第2の層の凹凸の表面形状の厚さが1~6μm、表面粗さが10nmより大きく60nmより小さく、
 前記第1の層の凹凸の表面形状と前記第2の層の凹凸の表面形状とが対向して該凹凸の表面形状が互いに接触するように積層されている積層体。
[2]前記第1の層および/または前記第2の層が粒子径20~250nmの無機または有機微粒子を含有する[1]に記載の積層体。
[3]前記第1の層の凹凸面および/または前記第2の層の凹凸面は、少なくとも2種類の成分を含有する樹脂組成物が相分離して凹凸を形成された[1]または[2]に記載の積層体。
[4]前記第1の層の凹凸面および前記第2の層の凹凸面のうち、一方が粒子径20~250nmの無機または有機微粒子を含有する凹凸樹脂層であり、他方が少なくとも2種類の成分を含有する樹脂組成物が相分離して形成された凹凸樹脂層である[1]~[3]のいずれかに記載の積層体。
[5]前記第1の層および第2の層のヘイズが0.6より大きく7.0より小さい[1]~[4]のいずれかに記載の積層体。
[6][1]~[5]のいずれかに記載の積層体が組み込まれた表示装置。
[7]タッチパネル機能を有する表示装置内に組み込むための光学フィルムであって、
 前記光学フィルムは少なくとも片面に凹凸の表面形状を有し、凹凸の表面形状を有する面の表面粗さが10nmより大きく60nmより小さく、
 前記光学フィルムは、同一の表示装置内で少なくとも2枚以上用いられ、凹凸の表面形状が互いに接触するように配置されるためのものであることを特徴とする光学フィルム。
The present invention has the following aspects.
[1] A first layer having an uneven surface shape on at least one surface, and a second layer having an uneven surface shape on at least one surface,
The thickness of the uneven surface shape of the first layer and the uneven surface shape of the second layer is 1 to 6 μm, the surface roughness is greater than 10 nm and less than 60 nm,
A laminate in which the surface shape of the unevenness of the first layer and the surface shape of the unevenness of the second layer are opposed to each other and the surface shape of the unevenness is in contact with each other.
[2] The laminate according to [1], wherein the first layer and / or the second layer contains inorganic or organic fine particles having a particle diameter of 20 to 250 nm.
[3] The uneven surface of the first layer and / or the uneven surface of the second layer are formed uneven by phase separation of a resin composition containing at least two kinds of components [1] or [ 2].
[4] Of the uneven surface of the first layer and the uneven surface of the second layer, one is an uneven resin layer containing inorganic or organic fine particles having a particle diameter of 20 to 250 nm, and the other is at least two types The laminate according to any one of [1] to [3], wherein the resin composition containing components is an uneven resin layer formed by phase separation.
[5] The laminate according to any one of [1] to [4], wherein the first layer and the second layer have a haze greater than 0.6 and less than 7.0.
[6] A display device in which the laminate according to any one of [1] to [5] is incorporated.
[7] An optical film for incorporation in a display device having a touch panel function,
The optical film has an uneven surface shape on at least one surface, and the surface roughness of the surface having the uneven surface shape is larger than 10 nm and smaller than 60 nm,
At least two or more optical films are used in the same display device, and are arranged so that the surface shapes of the projections and recesses are in contact with each other.
 ただし、本明細書および特許請求の範囲において、表面粗さは、下記測定方法により測定される値である。
(表面粗さの測定方法)
 マイクロレーザー顕微鏡(株式会社KEYENCE製 測定部 VK−X105 コントローラー部 VK−X100)を用い、倍率200倍で、各樹脂フィルムの表面観察と画像の取り込みを行った。得られた画像について、測定エリアを100μm×100μmとして前記走マイクロレーザー顕微鏡に付属の解析ソフトウェアを用いて、JIS B0601:2001に基づき算術平均表面粗さRaを算出する。
 または、走査プローブ顕微鏡(Veeco株式会社製NanoscopelIVおよびNanoscope IIIa)を用い、プローブとしてSi単結晶プローブを使用し、測定モードをTappingモードとし、測定エリアを10μm×10μmとして画像の取り込みを行う。得られた画像について、付属の解析ソフトウェアを用いて、うねりを除去するための加増処理としてFlatten処理(0次)を1回、およびPlanefit処理(XY)を1回行った後、表面粗さを算出する。
 また、上記積層体の透明性は、ヘイズ値をJIS K 7136に基づき、日本電色株式会社製のNDH4000を用いて測定した。
However, in the present specification and claims, the surface roughness is a value measured by the following measuring method.
(Measurement method of surface roughness)
Using a micro laser microscope (measurement unit VK-X105 controller unit VK-X100 manufactured by KEYENCE Co., Ltd.), the surface of each resin film was observed and images were captured at a magnification of 200 times. For the obtained image, the measurement area is 100 μm × 100 μm, and the arithmetic average surface roughness Ra is calculated based on JIS B0601: 2001 using the analysis software attached to the traveling microlaser microscope.
Alternatively, a scanning probe microscope (Nanoscope IV and Nanoscope IIIa manufactured by Veeco Co., Ltd.) is used, an Si single crystal probe is used as a probe, a measurement mode is set to Taping mode, and an image is captured with a measurement area of 10 μm × 10 μm. The obtained image was subjected to flattening (0th order) once and planefit (XY) once as additional processing for removing waviness using the attached analysis software, and then surface roughness was determined. calculate.
In addition, the transparency of the laminate was measured using NDH4000 manufactured by Nippon Denshoku Co., Ltd. based on JIS K 7136.
 本発明によれば、タッチ面の明るさが良好である等の優れた光学的性能を有しながら、応力が開放された後にもニュートンリングが残らないアンチニュートンリング積層体およびそのアンチニュートンリング積層体を用いた静電容量式タッチパネルを提供できる。 According to the present invention, an anti-Newton ring laminate and an anti-Newton ring laminate in which Newton rings do not remain even after stress is released while having excellent optical performance such as good touch surface brightness. A capacitive touch panel using a body can be provided.
本発明のアンチニュートンリング積層体の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the anti-Newton ring laminated body of this invention. 従来の静電容量式タッチパネル付き表示装置の構成を説明する概略断面図である。It is a schematic sectional drawing explaining the structure of the conventional display apparatus with an electrostatic capacitance type touch panel. 本発明のアンチニュートンリング積層体を用いた一態様の静電容量式タッチパネル付き表示装置の構成を説明する概略断面図である。It is a schematic sectional drawing explaining the structure of the display apparatus with an electrostatic capacitance type touch panel of the one aspect | mode using the anti-Newton ring laminated body of this invention. 本発明のアンチニュートンリング積層体を用いた他の態様の静電容量式タッチパネル付き表示装置の構成を説明する概略断面図である。It is a schematic sectional drawing explaining the structure of the display apparatus with an electrostatic capacitance type touch panel of the other aspect using the anti-Newton ring laminated body of this invention.
 以下、本発明について、添付の図面を参照し、実施形態を示して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、本発明のアンチニュートンリング積層体100を示す概略断面図である。アンチニュートンリング積層体100は、第1の層110と、第2の層120とを有している。第1の層110は、基材111と、凹凸の表面形状112とを有している。基材111は、限定されないが、例えば、ポリエチレンテレフタレート(PET)等の樹脂層またはガラス板である。
 凹凸の表面形状112は、表面粗さが10nmより大きく60nmより小さいことである。凹凸の表面形状112は、例えば、後述する硬化性樹脂組成物等の材料を基材111上に塗工して塗膜を形成し、該塗膜を硬化させることにより形成することができる。第2の層120は、基材121と、凹凸の表面形状122とを有している。基材121および凹凸の表面形状122の詳細は、基材111および凹凸の表面形状112の詳細と同様である。
 凹凸の表面形状112および凹凸の表面形状122(第1の層110および第2の層120)は、接着剤または粘着剤等により外縁部において互いに対して固定されていてもよい。あるいは、第1の層110と第2の層120とは、図示されていない固定具により、外縁部において互いに対して固定されていてもよい。
 凹凸の表面形状112と凹凸の表面形状122とは、対向して配置されており、互いに接触するように積層されている。凹凸の表面形状112と凹凸の表面形状122とは、すべての部分が接触していなくてもよく、外縁部においては接着剤または粘着剤等を介して互いに対して非接触状態で固定されており、中央部においては、接触状態または接触可能な状態で積層されていてもよい。
FIG. 1 is a schematic cross-sectional view showing an anti-Newton ring laminate 100 of the present invention. The anti-Newton ring laminated body 100 includes a first layer 110 and a second layer 120. The first layer 110 has a base material 111 and an uneven surface shape 112. Although the base material 111 is not limited, For example, it is a resin layer or glass plates, such as a polyethylene terephthalate (PET).
The uneven surface shape 112 is that the surface roughness is larger than 10 nm and smaller than 60 nm. The uneven surface shape 112 can be formed by, for example, applying a material such as a curable resin composition, which will be described later, onto the substrate 111 to form a coating film and curing the coating film. The second layer 120 has a base material 121 and an uneven surface shape 122. The details of the substrate 121 and the uneven surface shape 122 are the same as the details of the substrate 111 and the uneven surface shape 112.
The uneven surface shape 112 and the uneven surface shape 122 (the first layer 110 and the second layer 120) may be fixed to each other at the outer edge portion by an adhesive or a pressure sensitive adhesive. Alternatively, the first layer 110 and the second layer 120 may be fixed to each other at the outer edge portion by a fixing tool (not shown).
The concave / convex surface shape 112 and the concave / convex surface shape 122 are arranged to face each other and are stacked so as to be in contact with each other. The concave / convex surface shape 112 and the concave / convex surface shape 122 may not be in contact with each other, and are fixed in a non-contact state with respect to each other via an adhesive or an adhesive at the outer edge portion. The central portion may be laminated in a contact state or a contactable state.
 基材111、121として用いることができるフィルムとしては、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリプロピレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリプロピレンナフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、ジアセチルセルロースフィルム、トリアセチルセルロースフィルム、アセチルセルロースブチレートフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレン−酢酸ビニル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリメチルペンテンフィルム、ポリスルホンフィルム、ポリエーテルエーテルケトンフィルム、ポリエーテルスルホンフィルム、ポリエーテルイミドフィルム、ポリイミドフィルム、フッ素樹脂フィルム、ポリアミドフィルム、アクリル樹脂フィルム等が挙げられる。
 上記フィルムとしては、耐候性、耐溶剤性、剛度、コスト等の観点から、ポリエチレンテレフタレートフィルムが好ましい。
 基材111、121は、光学用途に用いることが可能な程度に透明であることが好ましい。
Examples of films that can be used as the base materials 111 and 121 include polyethylene terephthalate film, polyethylene naphthalate film, polypropylene terephthalate film, polybutylene terephthalate film, polypropylene naphthalate film, polyethylene film, polypropylene film, cellophane, and diacetyl cellulose film. , Triacetyl cellulose film, acetyl cellulose butyrate film, polyvinyl chloride film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene-vinyl acetate copolymer film, polystyrene film, polycarbonate film, polymethylpentene film, polysulfone film, poly Ether ether ketone film, polyester Ether sulfone film, polyether imide film, a polyimide film, a fluororesin film, a polyamide film, and acrylic resin film.
The film is preferably a polyethylene terephthalate film from the viewpoint of weather resistance, solvent resistance, rigidity, cost, and the like.
The base materials 111 and 121 are preferably transparent to the extent that they can be used for optical applications.
 基材111、121には、各種添加剤が含まれてもよい。添加剤としては、例えば、酸化防止剤、耐熱安定剤、紫外線吸収剤、有機粒子、無機粒子、顔料、染料、帯電防止剤、核剤、カップリング剤等が挙げられる。
 基材111、121は、凹凸の表面形状112、122との密着性を向上させるために、表面処理が施されていてもよい。表面処理としては、例えば、サンドブラスト処理または溶剤処理等の凹凸化処理、コロナ放電処理、クロム酸処理、火炎処理、熱風処理、オゾン・紫外線照射処理等の表面酸化処理などが挙げられる。
 基材111、121の厚みは、基材111、121がフィルムである場合、強度の確保、カール防止等の観点から、10~300μmであることが好ましく、30~200μmであることがより好ましく、35~130μmであることが特に好ましい。基材111、121の厚みは、基材111、121がガラスである場合、0.1mm以上が好ましく、0.2mm以上がより好ましい。
The base materials 111 and 121 may contain various additives. Examples of the additive include antioxidants, heat stabilizers, ultraviolet absorbers, organic particles, inorganic particles, pigments, dyes, antistatic agents, nucleating agents, and coupling agents.
The base materials 111 and 121 may be subjected to a surface treatment in order to improve adhesion with the uneven surface shapes 112 and 122. Examples of the surface treatment include surface roughening treatment such as sandblast treatment or solvent treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, and the like.
When the base materials 111 and 121 are films, the thickness of the base materials 111 and 121 is preferably 10 to 300 μm, more preferably 30 to 200 μm, from the viewpoint of securing strength, curling prevention, and the like. A thickness of 35 to 130 μm is particularly preferable. When the base materials 111 and 121 are glass, the thickness of the base materials 111 and 121 is preferably 0.1 mm or more, and more preferably 0.2 mm or more.
 基材111、121は、ガラス製の偏光板または樹脂製の偏光板であってもよい。例えば、後述する図3の静電容量式タッチパネル200において、液晶ディスプレイ11の最前面を構成する偏光板12が基材111または基材121の一方として機能し、基材3が基材111または基材121の他方として機能することができる。図4の静電容量式タッチパネル201においても、同様に、液晶ディスプレイ11の最前面を構成する偏光板12が基材111または基材121の一方として機能し、基材3bが基材111または基材121の他方として機能することができる。 The substrates 111 and 121 may be glass polarizing plates or resin polarizing plates. For example, in the capacitive touch panel 200 of FIG. 3 to be described later, the polarizing plate 12 constituting the forefront of the liquid crystal display 11 functions as one of the base material 111 or the base material 121, and the base material 3 is the base material 111 or the base material. It can function as the other side of the material 121. Similarly, in the capacitive touch panel 201 of FIG. 4, the polarizing plate 12 constituting the forefront of the liquid crystal display 11 functions as one of the base material 111 and the base material 121, and the base material 3 b is the base material 111 or the base material. It can function as the other side of the material 121.
 凹凸の表面形状112、122は、アンチニュートンリング性能等を付与するために設けられる。図3の静電容量式タッチパネル200において、凹凸の表面形状4aが凹凸の表面形状112に対応し、凹凸の表面形状4bが凹凸の表面形状122に対応する。また、図4の静電容量式タッチパネル201において、凹凸の表面形状4aが凹凸の表面形状112に対応し、凹凸の表面形状4bが凹凸の表面形状122に対応する。
 凹凸の表面形状112、122は、熱硬化性または活性エネルギー線硬化性の樹脂成分を含有するハードコート層形成用の塗工液を基材(基材111または基材121)上に塗工して塗膜を形成し、該塗膜を硬化させることにより形成することができる。凹凸を形成する方法として具体的には、樹脂層形成用材料に粒子を配合する方法、樹脂層形成用材料に溶解性パラメーター(SP)値の異なる2つの樹脂成分を含有させ、塗工後、一方の樹脂成分を相分離により析出させる方法等が挙げられる。
The uneven surface shapes 112 and 122 are provided to provide anti-Newton ring performance and the like. In the capacitive touch panel 200 of FIG. 3, the uneven surface shape 4 a corresponds to the uneven surface shape 112, and the uneven surface shape 4 b corresponds to the uneven surface shape 122. In the capacitive touch panel 201 of FIG. 4, the uneven surface shape 4 a corresponds to the uneven surface shape 112, and the uneven surface shape 4 b corresponds to the uneven surface shape 122.
The uneven surface shapes 112 and 122 are formed by applying a coating liquid for forming a hard coat layer containing a thermosetting or active energy ray-curable resin component on a base material (base material 111 or base material 121). Can be formed by forming a coating film and curing the coating film. Specifically, as a method for forming irregularities, a method of blending particles in the resin layer forming material, the resin layer forming material containing two resin components having different solubility parameter (SP) values, and after coating, For example, a method of precipitating one resin component by phase separation may be used.
 本発明において、樹脂層形成用材料が実質的に相分離しない場合には、該樹脂層形成用材料は、粒子径250nm未満の無機または有機微粒子を含有することが好ましい。また、樹脂層形成用材料が実質的に相分離する樹脂成分を含有する場合には、該樹脂層形成用材料は、粒子径250nm未満の無機または有機微粒子を実質的に含有しないことが好ましい。これらのいずれかの樹脂層形成用材料を用いることにより、本発明のアンチニュートンリング積層体は、優れた光学的性能とアンチニュートンリング性能とを両立したものとなる。
 なお、実質的に相分離しないとは、樹脂層形成用材料(組成物)に相分離する樹脂成分が実質的に含まれていないことを意味する。例えば、樹脂層形成用材料が、溶解性パラメーター(SP)値の異なる2つの樹脂成分からなる場合、2つの樹脂成分のSP値の差が1.0以上であり、量が少ない方の樹脂成分の含有量は、樹脂層形成用材料の全質量を100質量%としたとき、3質量%以下であることが好ましい。より好ましくは2質量%以下であり、さらに好ましくは1質量%以下であり、最も好ましくは0.1質量%以下である。
 また、樹脂層形成用材料(組成物)が相分離するものである場合、樹脂層形成用材料の全質量を100質量%としたとき、粒子径250nm未満の無機または有機微粒子の含有量は、3質量%以下であることが好ましい。より好ましくは2質量%以下であり、さらに好ましくは1質量%以下であり、最も好ましくは0.1質量%以下である。
In the present invention, when the resin layer forming material does not substantially undergo phase separation, the resin layer forming material preferably contains inorganic or organic fine particles having a particle diameter of less than 250 nm. When the resin layer forming material contains a resin component that substantially undergoes phase separation, the resin layer forming material preferably does not substantially contain inorganic or organic fine particles having a particle diameter of less than 250 nm. By using any of these resin layer forming materials, the anti-Newton ring laminate of the present invention has both excellent optical performance and anti-Newton ring performance.
The phrase “substantially no phase separation” means that the resin component for phase separation is not substantially contained in the resin layer forming material (composition). For example, when the resin layer forming material is composed of two resin components having different solubility parameter (SP) values, the difference in SP value between the two resin components is 1.0 or more, and the resin component having the smaller amount The content of is preferably 3% by mass or less when the total mass of the resin layer forming material is 100% by mass. More preferably, it is 2 mass% or less, More preferably, it is 1 mass% or less, Most preferably, it is 0.1 mass% or less.
Further, when the resin layer forming material (composition) is to be phase-separated, when the total mass of the resin layer forming material is 100% by mass, the content of inorganic or organic fine particles having a particle diameter of less than 250 nm is: It is preferable that it is 3 mass% or less. More preferably, it is 2 mass% or less, More preferably, it is 1 mass% or less, Most preferably, it is 0.1 mass% or less.
 熱硬化性の樹脂成分としては、例えば、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、珪素樹脂、ポリシロキサン樹脂等が挙げられる。
 活性エネルギー線硬化性の樹脂成分としては、活性エネルギー線の照射により重合可能な重合性不飽和基(例えば、エチレン性二重結合等の重合性不飽和結合を含む基)を有するモノマーを含有するものが挙げられる。活性エネルギー線硬化性の樹脂成分には、必要に応じて、光重合開始剤等が配合される。
Examples of the thermosetting resin component include phenol resin, urea resin, diallyl phthalate resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, silicon resin, polysiloxane resin, and the like.
The active energy ray-curable resin component contains a monomer having a polymerizable unsaturated group (for example, a group containing a polymerizable unsaturated bond such as an ethylenic double bond) that can be polymerized by irradiation with active energy rays. Things. If necessary, a photopolymerization initiator or the like is blended with the active energy ray-curable resin component.
 凹凸の表面形状112、122は、特に、多官能(メタ)アクリルモノマーおよび粒子を含有する樹脂層形成用組成物(以下、「樹脂層形成用組成物(X)」という。)を活性エネルギー線で硬化した硬化物であることが好ましい。かかる硬化物は、母材(粒子以外の部分)が、架橋構造を有する硬質のアクリル系重合体を含有することから、表面硬度、透明性、擦傷性等に優れる。また、アンチニュートンリング積層体100は、凹凸の表面形状112および凹凸の表面形状122が粒子を含有することによって、樹脂層形成用組成物(X)を硬化させた時の積層体の収縮が抑制される。 In the uneven surface shapes 112 and 122, in particular, a resin layer forming composition containing a polyfunctional (meth) acrylic monomer and particles (hereinafter referred to as “resin layer forming composition (X)”) is an active energy ray. It is preferable that it is the hardened | cured material hardened | cured with. Such a cured product is excellent in surface hardness, transparency, scratch resistance, and the like because the base material (portion other than particles) contains a hard acrylic polymer having a crosslinked structure. Moreover, the anti-Newton ring laminated body 100 suppresses shrinkage | contraction of a laminated body when the uneven | corrugated surface shape 112 and the uneven | corrugated surface shape 122 contain particle | grains, when the composition (X) for resin layer formation is hardened. Is done.
 「多官能」は、重合性不飽和基を2つ以上有することを意味し、「(メタ)アクリルモノマー」は、重合性不飽和基として少なくとも(メタ)アクリロイル基を有する化合物である。「(メタ)アクリロイル基」は、アクリロイル基またはメタクリロイル基であることを示す。
 多官能(メタ)アクリルモノマーとしては、例えば、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、プロピレンオキサイド変性ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、ポリエチレングリコール(好ましくは質量平均分子量400~600)ジ(メタ)アクリレート、変性ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エチレンオキサイド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート等の2官能(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート、ジベンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ポリエーテルトリ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート等の3官能(メタ)アクリレート;ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の4官能(メタ)アクリレート;ジペンタエリスリトールペンタ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の5官能以上の(メタ)アクリレート;等が挙げられる。
 これらの多官能(メタ)アクリルモノマーは、1種を単独で使用してもよいし、2種以上を組み合わせて使用することもできる。
“Polyfunctional” means having two or more polymerizable unsaturated groups, and “(meth) acrylic monomer” is a compound having at least a (meth) acryloyl group as a polymerizable unsaturated group. “(Meth) acryloyl group” means an acryloyl group or a methacryloyl group.
Examples of the polyfunctional (meth) acrylic monomer include dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol di ( (Meth) acrylate, neopentyl glycol di (meth) acrylate, propylene oxide modified neopentyl glycol di (meth) acrylate, neopentyl glycol adipate di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopenta Nildi (meth) acrylate, caprolactone-modified dicyclopentenyl di (meth) acrylate, polyethylene glycol (preferably mass average molecular weight 400-600) di (meth) acrylate, modified Bifunctional such as bisphenol A di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, ethylene oxide modified phosphoric acid di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate (Meth) acrylate; pentaerythritol tri (meth) acrylate, diventaerythritol tri (meth) acrylate, propionic acid-modified dipentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxytri (meth) ) Acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, poly Trifunctional (meth) acrylates such as ether tri (meth) acrylate, glycerin propoxytri (meth) acrylate, tris (acryloxyethyl) isocyanurate; pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, ditri Tetrafunctional (meth) acrylates such as methylolpropane tetra (meth) acrylate; dipentaerythritol penta (meth) acrylate, propionic acid-modified dipentaerythritol penta (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, dipenta 5 or more functional (meth) acrylates such as erythritol hexa (meth) acrylate and caprolactone-modified dipentaerythritol hexa (meth) acrylate Relate; and the like.
These polyfunctional (meth) acrylic monomers may be used individually by 1 type, and can also be used in combination of 2 or more type.
 前記多官能(メタ)アクリルモノマーは、4官能以上(好ましくは5官能以上、より好ましくは6官能)の(メタ)アクリルモノマーを含有することが好ましい。4官能以上の(メタ)アクリルモノマーは硬度の向上に寄与する。
 全多官能(メタ)アクリルモノマー中、4官能以上の(メタ)アクリルモノマーの割合は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましく、80質量%以上が最も好ましい。
The polyfunctional (meth) acrylic monomer preferably contains a tetrafunctional or higher (preferably pentafunctional or higher, more preferably hexafunctional) (meth) acrylic monomer. A tetrafunctional or higher functional (meth) acrylic monomer contributes to an improvement in hardness.
In all polyfunctional (meth) acrylic monomers, the proportion of tetrafunctional or higher (meth) acrylic monomers is preferably 50% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, and 80% by mass or more. Is most preferred.
 樹脂層形成用組成物(X)が含有する粒子は無機粒子でも有機粒子でもよい。無機粒子としては、硬度が高いものが好ましく、例えば、二酸化ケイ素粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化アルミニウム粒子、二酸化スズ粒子、五酸化アンチモン粒子、三酸化アンチモン粒子などの無機酸化物粒子を用いることができる。
 無機粒子は、前記無機酸化物粒子をカップリング剤により処理した反応性無機酸化物粒子であってもよい。カップリング剤により処理することにより、アクリル系重合体との間の結合力を高めることができる。その結果、表面硬度および耐擦傷性を向上させることができ、さらに無機酸化物粒子の分散性を向上させることができる。
 カップリング剤としては、例えば、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリエトキシアルミニウム等が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
 カップリング剤の処理量は、無機酸化物粒子100質量部に対して、0.1~20質量部であることが好ましく、1~10質量部であることがより好ましい。
The particles contained in the resin layer forming composition (X) may be inorganic particles or organic particles. As the inorganic particles, those having high hardness are preferable. For example, inorganic oxide particles such as silicon dioxide particles, titanium dioxide particles, zirconium oxide particles, aluminum oxide particles, tin dioxide particles, antimony pentoxide particles, and antimony trioxide particles are used. Can be used.
The inorganic particles may be reactive inorganic oxide particles obtained by treating the inorganic oxide particles with a coupling agent. By treating with a coupling agent, the bonding strength with the acrylic polymer can be increased. As a result, the surface hardness and scratch resistance can be improved, and further, the dispersibility of the inorganic oxide particles can be improved.
Examples of the coupling agent include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, and γ-mercaptopropyltrimethoxy. Examples thereof include silane, γ-aminopropyltriethoxysilane, and γ-aminopropyltriethoxyaluminum. These may be used individually by 1 type and may use 2 or more types together.
The treatment amount of the coupling agent is preferably 0.1 to 20 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the inorganic oxide particles.
 有機粒子としては、例えば、アクリル樹脂、ポリスチレン、ポリシロキサン、メラミン樹脂、ベンゾグアナミン樹脂、ポリテトラフルオロエチレン、セルロースアセテート、ポリカーボネート、ポリアミドなどの樹脂粒子などを用いることができる。
 有機粒子は、前記樹脂粒子をカップリング剤により処理した反応性樹脂粒子であってもよい。カップリング剤により処理することにより、アクリル系重合体との間の結合力を高めることができる。その結果、表面硬度および耐擦傷性を向上させることができ、さらに樹脂粒子の分散性を向上させることができる。
 カップリング剤およびその処理量は、前記反応性無機酸化物粒子で挙げたカップリング剤およびその処理量と同様である。
Examples of organic particles that can be used include resin particles such as acrylic resin, polystyrene, polysiloxane, melamine resin, benzoguanamine resin, polytetrafluoroethylene, cellulose acetate, polycarbonate, and polyamide.
The organic particles may be reactive resin particles obtained by treating the resin particles with a coupling agent. By treating with a coupling agent, the bonding strength with the acrylic polymer can be increased. As a result, the surface hardness and scratch resistance can be improved, and further the dispersibility of the resin particles can be improved.
The coupling agent and its treatment amount are the same as the coupling agent and its treatment amount mentioned for the reactive inorganic oxide particles.
 粒子の粒子径は、充分なアンチニュートンリング性能と優れた光学的性能とを両立するために、250nm未満である。粒子の粒子径は、好ましくは10nm~200nmであり、より好ましくは20nm~150nmであり、さらに好ましくは30nm~100nmである。
 粒子の配合量は、樹脂層形成用組成物(X)の固形分中、1~20質量%が好ましく、3~15質量%がより好ましく、5~10質量%がさらに好ましい。粒子の配合量がこれらの好ましい範囲内であると、アンチニュートンリング性能がさらに向上する。また、1質量%以上であると、アンチニュートンリング性能が向上し、20質量%以下であると、充分な量の多官能(メタ)アクリルモノマーを配合できるため、ハードコート性能が良好となる。
 なお、固形分とは、溶剤を含まない場合は樹脂層形成用組成物(X)を構成する全成分の合計を示し、溶剤を含む場合は溶剤を除いた全成分の合計を示す。
The particle diameter of the particles is less than 250 nm in order to achieve both sufficient anti-Newton ring performance and excellent optical performance. The particle diameter of the particles is preferably 10 nm to 200 nm, more preferably 20 nm to 150 nm, and still more preferably 30 nm to 100 nm.
The blending amount of the particles is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and further preferably 5 to 10% by mass in the solid content of the resin layer forming composition (X). When the compounding amount of the particles is within these preferable ranges, the anti-Newton ring performance is further improved. Further, when it is 1% by mass or more, the anti-Newton ring performance is improved, and when it is 20% by mass or less, a sufficient amount of polyfunctional (meth) acrylic monomer can be blended, so that the hard coat performance is good.
In addition, solid content shows the sum total of all the components which comprise the composition (X) for resin layer formation, when a solvent is not included, and shows the sum total of all the components except a solvent when it contains a solvent.
 樹脂層形成用組成物(X)は、硬化を促進させるために、前記多官能(メタ)アクリルモノマーおよび粒子とともに、光重合開始剤を含有することが好ましい。
 光重合開始剤としては、公知のものが使用でき、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン−n−ブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−[4(メチルチオ)フェニル]−2−モルフォリノ−プロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−2(ヒドロキシ−2−プロプル)ケトン、ベンゾフェノン、p−フェニルベンゾフェノン、4,4’−ジエチルアミノベンゾフェノン、プロピオフェノン、ジクロロベンゾフェノン、2−メチルアントラキノン、2−エチルアントラキノン、2−ターシャリーブチルアントラキノン、2−アミノアントラキノン、2−メチルチオキサントン、2−エチルチオキサントン、2−クロロチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、ベンジルジメチルケタール、アセトフェノンジメチルケタール、p−ジメチルアミン安息香酸エステルなどが挙げられる。これら光重合開始剤は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 光重合開始剤の配合量は、樹脂層形成用組成物(X)の固形分中、0.5~10質量%が好ましく、2~8質量%がより好ましい。0.5質量%以上であると硬化不良が生じにくい。10質量%を超えて配合しても、配合量に見合った硬化促進効果は得られず、コストも高くなる。また、硬化物中に残留して黄変およびブリードアウトなどの原因となるおそれがある。
The resin layer forming composition (X) preferably contains a photopolymerization initiator together with the polyfunctional (meth) acrylic monomer and particles in order to promote curing.
Known photopolymerization initiators can be used such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2- Dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4 (Methylthio) phenyl] -2-morpholino-propan-1-one, 4- (2-hydroxyethoxy) phenyl-2 (hydroxy-2-propyl) ketone, benzophenone, p-phenylbenzophenone, 4, '-Diethylaminobenzophenone, propiophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertiarybutylanthraquinone, 2-aminoanthraquinone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2 , 4-dimethylthioxanthone, 2,4-diethylthioxanthone, benzyldimethyl ketal, acetophenone dimethyl ketal, p-dimethylamine benzoate and the like. These photoinitiators may be used individually by 1 type, and may be used in combination of 2 or more type.
The blending amount of the photopolymerization initiator is preferably 0.5 to 10% by mass and more preferably 2 to 8% by mass in the solid content of the resin layer forming composition (X). When it is 0.5% by mass or more, poor curing hardly occurs. Even if it mixes exceeding 10 mass%, the hardening acceleration | stimulation effect corresponding to a compounding quantity is not acquired, but cost also becomes high. Moreover, it may remain in the cured product and cause yellowing and bleeding out.
 光重合開始剤に加えて、光増感剤をさらに含有することもできる。光増感剤としては、たとえば、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等が挙げられる。 In addition to the photopolymerization initiator, a photosensitizer can be further contained. Examples of the photosensitizer include n-butylamine, triethylamine, and tri-n-butylphosphine.
 樹脂層形成用組成物(X)は、必要に応じて、本発明の効果を損なわない範囲で、上記以外の他の成分を含有してもよい。例えば、凹凸樹脂層に耐擦傷性以外の他の機能(撥水性、撥油性、防汚性、塗工適性、帯電防止性、紫外線遮蔽性等)を付与するために用いられている公知の添加剤を含有させることができる。このような添加剤として、例えば、フッ素系化合物、ポリシロキサン系化合物、金属酸化物微粒子、帯電防止樹脂、導電性高分子、紫外線吸収剤等が挙げられる。フッ素系化合物を添加することで、撥水・撥油性、汚れが付着し難く且つ付着した汚れを拭き取りやすい防汚効果を付与することができる。また、ポリシロキサン系化合物を添加することで、撥水性、汚れが付着し難く且つ付着した汚れを拭き取りやすい防汚効果の付与および塗工適性を向上させる。また、金属酸化物微粒子、帯電防止樹脂、または導電性高分子を添加することで、帯電防止性を付与できる。また、金属酸化物微粒子または紫外線吸収剤を添加することで、紫外線遮蔽性を付与できる。 The resin layer forming composition (X) may contain other components than the above as long as the effects of the present invention are not impaired, if necessary. For example, known additions used to impart other functions (water repellency, oil repellency, antifouling properties, coating suitability, antistatic properties, ultraviolet shielding properties, etc.) other than scratch resistance to the concavo-convex resin layer An agent can be included. Examples of such additives include fluorine compounds, polysiloxane compounds, metal oxide fine particles, antistatic resins, conductive polymers, ultraviolet absorbers, and the like. By adding a fluorine-based compound, water / oil repellency, antifouling effect that makes it difficult for dirt to adhere and easily wipes off the attached dirt can be imparted. Further, by adding a polysiloxane compound, imparting water repellency, antifouling effect that makes it difficult for dirt to adhere and easily wipes off the attached dirt, and improves coating suitability. In addition, antistatic properties can be imparted by adding metal oxide fine particles, antistatic resins, or conductive polymers. Moreover, ultraviolet shielding properties can be imparted by adding metal oxide fine particles or ultraviolet absorbers.
 樹脂層形成用組成物(X)は、溶剤を含有してもよい。
 溶剤としては、例えば、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、トルエン、n−ヘキサン、n−ブチルアルコール、メチルイソブチルケトン、メチルブチルケトン、エチルブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、N−メチル−2−ピロリドンなどが使用される。これらは1種以上を単独で使用してもよいし、2種以上を混合して使用してもよい。
 塗工ムラを軽減することを目的として、蒸発速度の異なる2種以上の溶剤を併用してもよい。例えば、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルから選ばれる少なくとも2種を混合して使用することができる。
The resin layer forming composition (X) may contain a solvent.
Examples of the solvent include methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, toluene, n-hexane, n-butyl alcohol, methyl isobutyl ketone, methyl butyl ketone, ethyl butyl ketone, cyclohexanone, ethyl acetate, butyl acetate, propylene glycol monomethyl. Ether acetate, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, N-methyl-2-pyrrolidone and the like are used. These may be used alone or in combination of two or more.
For the purpose of reducing coating unevenness, two or more solvents having different evaporation rates may be used in combination. For example, at least two kinds selected from methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, and propylene glycol monomethyl ether can be mixed and used.
 凹凸の表面形状112、122は、前記樹脂層形成用組成物(X)等の樹脂層形成用材料を基材111、121の表面に塗工して塗膜を形成し、該塗膜を硬化させることにより形成することができる。
 樹脂層形成用材料の塗工方法としては、例えば、ブレードコーター、エアナイフコーター、ロールコーター、バーコーター、グラビアコーター、マイクログラビアコーター、ロッドブレードコーター、リップコーター、ダイコーター、カーテンコーター、印刷機等を用いた方法が挙げられる。
 樹脂層形成用材料の塗工量は、凹凸の表面形状112、122の厚みに応じて設定される。
 凹凸の表面形状112、122の厚みは、1~6μmであることが好ましく、2~5μmであることがより好ましい。該厚みが1μm以上であると充分なハードコート性能が得られる。6μm以下であると、透明性、基材密着性、耐カール性等に優れる。
 なお、凹凸の表面形状112、122の最も薄い部分の厚み(凹凸の表面形状112、122に存在する凹部の底から、基材111、121側の表面までの距離)を、凹凸の表面形状112、122の厚みとする。
The uneven surface shapes 112 and 122 are formed by applying a resin layer forming material such as the resin layer forming composition (X) to the surfaces of the base materials 111 and 121 to form a coating film, and curing the coating film. Can be formed.
Examples of the coating method for the resin layer forming material include a blade coater, an air knife coater, a roll coater, a bar coater, a gravure coater, a micro gravure coater, a rod blade coater, a lip coater, a die coater, a curtain coater, and a printing machine. The method used is mentioned.
The coating amount of the resin layer forming material is set according to the thickness of the uneven surface shapes 112 and 122.
The thickness of the uneven surface shapes 112 and 122 is preferably 1 to 6 μm, and more preferably 2 to 5 μm. When the thickness is 1 μm or more, sufficient hard coat performance can be obtained. When it is 6 μm or less, it is excellent in transparency, substrate adhesion, curl resistance and the like.
Note that the thickness of the thinnest part of the uneven surface shapes 112 and 122 (the distance from the bottom of the recesses present in the uneven surface shapes 112 and 122 to the surface on the base material 111 and 121 side) is defined as the uneven surface shape 112. , 122.
 凹凸の表面形状112、122は、塗膜を形成した後であって、該塗膜を硬化させる前に加熱乾燥に供されることが好ましい。加熱乾燥の条件は、例えば、60℃~100℃、30秒~90秒であることが好ましい。より好ましくは、70℃~90℃、45秒~75秒である。上記の好ましい範囲の条件で加熱乾燥を行うことにより、本発明の積層体は、優れた光学的性能と、充分なアンチニュートンリング性能とを兼ね備えたものとなる。 The uneven surface shapes 112 and 122 are preferably subjected to heat drying after the coating film is formed and before the coating film is cured. The heat drying conditions are preferably 60 ° C. to 100 ° C. and 30 seconds to 90 seconds, for example. More preferably, they are 70 ° C. to 90 ° C. and 45 seconds to 75 seconds. By performing heat drying under the above-mentioned preferable conditions, the laminate of the present invention has both excellent optical performance and sufficient anti-Newton ring performance.
 塗膜は、樹脂層形成用材料が、前記樹脂層形成用組成物(X)のように活性エネルギー線硬化性である場合は、活性エネルギー線の照射によって硬化させることができる。樹脂層形成用材料が熱硬化性である場合は、加熱炉や赤外線ランプ等を用いて加熱することによって硬化させることができる。
 活性エネルギー線としては、紫外線、電子線、可視光線、γ線等の電離性放射線などが挙げられ、中でも、汎用性の点から、紫外線が好ましい。紫外線の光源としては、例えば、高圧水銀灯、低圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク、キセノンアーク、無電極紫外線ランプ等を使用できる。
 電子線としては、例えば、コックロフトワルト型、バンデクラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される電子線を使用できる。
 活性エネルギー線の照射による硬化は、窒素等の不活性ガス存在下で行うことが好ましい。
 硬化は、1段階で行ってもよく、予備硬化工程と本硬化工程との2段階に分けて行ってもよい。
When the resin layer forming material is active energy ray curable like the resin layer forming composition (X), the coating film can be cured by irradiation with active energy rays. When the resin layer forming material is thermosetting, it can be cured by heating using a heating furnace or an infrared lamp.
Examples of the active energy rays include ionizing radiation such as ultraviolet rays, electron beams, visible rays, and γ rays. Among them, ultraviolet rays are preferable from the viewpoint of versatility. As the ultraviolet light source, for example, a high pressure mercury lamp, a low pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a carbon arc, a xenon arc, an electrodeless ultraviolet lamp, or the like can be used.
As the electron beam, for example, an electron beam emitted from various electron beam accelerators such as a cockloftwald type, a bandecraft type, a resonant transformation type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type can be used.
Curing by irradiation with active energy rays is preferably performed in the presence of an inert gas such as nitrogen.
Curing may be performed in one stage, or may be performed in two stages, a preliminary curing process and a main curing process.
 本発明のアンチニュートンリング積層体100は、全光線透過率が90%以上であることが好ましい。また、上記積層体は、ヘイズが1.5%以下であるが、1.3%以下であることが好ましく、1.2%以下であることがより好ましく、1.1%以下であることがさらに好ましく、1.0%以下であることがさらにより好ましく、0.9%以下であることが最も好ましい。これらの要件を満たすと、タッチパネルおよび表示装置用の光学部材として有用である。
 全光線透過率およびヘイズはそれぞれ、JIS K7361−1およびJISK7136に準拠した方法で測定できる。
The anti-Newton ring laminate 100 of the present invention preferably has a total light transmittance of 90% or more. The laminate has a haze of 1.5% or less, preferably 1.3% or less, more preferably 1.2% or less, and 1.1% or less. More preferably, it is still more preferably 1.0% or less, and most preferably 0.9% or less. Satisfying these requirements is useful as an optical member for touch panels and display devices.
The total light transmittance and haze can be measured by methods based on JIS K7361-1 and JISK7136, respectively.
 図3は、本発明のアンチニュートンリング積層体100を用いた一態様の静電容量式タッチパネル付き表示装置200の構成を説明する概略断面図である。
 静電容量式タッチパネル付き表示装置200は、凹凸の表面形状の層4bが形成された偏光板12が最前面に配置された液晶ディスプレイ11と、静電容量式タッチパネル25とを備える。タッチパネル25は、液晶ディスプレイ11の前面に、液晶ディスプレイ11との間に隙間を設けて配置され、外縁部が粘着層31で液晶ディスプレイ11に固定されている。これにより、液晶ディスプレイ11の前面とタッチパネル25の裏面との間に空間が形成されている。
 タッチパネル25は、ガラス基板1と、ガラス基板の裏面に形成された導電層2xと、粘着層7と、印刷層5と、基材3と、基材3の前面に形成された導電層2yと、基材3の裏面に形成された凹凸の表面形状4aとを備える。ガラス基板1および導電層2xは、粘着層7により、導電層2yの前面に密着されている。導電層2yの前面の外縁部には印刷層5が形成されている。
 導電層2xは、横軸方向の位置を検出するための導電層であり、導電層2yは、縦軸方向の位置を検出するための導電層である。
 凹凸の表面形状4aは、液晶表示装置11と対向している。
 なお、本明細書および特許請求の範囲において、「前面」は、静電容量式タッチパネルまたはこれを取り付けた表示装置を使用する際に、使用者が視認、操作する側の面を意味し、「裏面」は、使用者が視認、操作する側とは反対側の面を意味する。タッチパネルの前面をタッチ面ということがある。
FIG. 3 is a schematic cross-sectional view illustrating the configuration of a display device 200 with a capacitive touch panel using one embodiment of the anti-Newton ring laminate 100 of the present invention.
The display device 200 with a capacitive touch panel includes a liquid crystal display 11 in which a polarizing plate 12 on which an uneven surface-shaped layer 4 b is formed is disposed on the forefront, and a capacitive touch panel 25. The touch panel 25 is disposed on the front surface of the liquid crystal display 11 with a gap between the touch panel 25 and the liquid crystal display 11, and an outer edge portion is fixed to the liquid crystal display 11 with an adhesive layer 31. Thereby, a space is formed between the front surface of the liquid crystal display 11 and the back surface of the touch panel 25.
The touch panel 25 includes a glass substrate 1, a conductive layer 2x formed on the back surface of the glass substrate, an adhesive layer 7, a printing layer 5, a base material 3, and a conductive layer 2y formed on the front surface of the base material 3. And an uneven surface shape 4 a formed on the back surface of the substrate 3. The glass substrate 1 and the conductive layer 2x are in close contact with the front surface of the conductive layer 2y by the adhesive layer 7. A printed layer 5 is formed on the outer edge of the front surface of the conductive layer 2y.
The conductive layer 2x is a conductive layer for detecting a position in the horizontal axis direction, and the conductive layer 2y is a conductive layer for detecting a position in the vertical axis direction.
The uneven surface shape 4 a faces the liquid crystal display device 11.
In the present specification and claims, the “front surface” means a surface on the side that the user visually recognizes and operates when using a capacitive touch panel or a display device to which the capacitive touch panel is attached. The “back surface” means a surface on the opposite side to the side visually recognized and operated by the user. The front surface of the touch panel is sometimes referred to as a touch surface.
[液晶ディスプレイ11]
 液晶ディスプレイ11としては、特に限定されず、凹凸の表面形状の層4bが表面に形成された偏光板12を用いること以外は、公知の液晶ディスプレイを用いることができる。
[Liquid Crystal Display 11]
It does not specifically limit as the liquid crystal display 11, A well-known liquid crystal display can be used except using the polarizing plate 12 in which the uneven | corrugated surface-shaped layer 4b was formed in the surface.
[タッチパネル25]
(ガラス基板1)
 ガラス基板1としては、タッチパネル等に用いられている公知のガラス板が利用できる。
 ガラス基板1の厚さは、0.1mm以上が好ましく、0.2mm以上がより好ましい。0.1mm以上であると、タッチパネル11の強度も充分なものとなる。上限は特に限定されないが、3mmを超えるとたわみおよび歪みがあまり生じず、ニュートンリングが生じにくくなることから、本発明の有用性の点で、また透明性にも優れることから、3mm以下が好ましく、2mm以下がより好ましい。
[Touch panel 25]
(Glass substrate 1)
As the glass substrate 1, a known glass plate used for a touch panel or the like can be used.
The thickness of the glass substrate 1 is preferably 0.1 mm or more, and more preferably 0.2 mm or more. If the thickness is 0.1 mm or more, the strength of the touch panel 11 is sufficient. The upper limit is not particularly limited, but if it exceeds 3 mm, deflection and distortion do not occur so much, and Newton's rings are less likely to occur. Therefore, in view of the usefulness of the present invention and transparency, it is preferably 3 mm or less. 2 mm or less is more preferable.
(導電層2x、2y)
 導電層2xおよび2yは、透明な導電性の膜である。
 導電層2xおよび2yは、表面型静電容量式タッチパネルなどに用いられる、実質的に均一な厚さで形成された均一層でもよいし、あるいは、投影型静電容量方式のタッチパネルなどに用いられる、位置検知のために形成された規則的なパターンを有する導電層であってもよい。なお、均一層の場合でも、タッチパネルの構成などに応じて、引き出し電極等形成のため、導電層2xおよび2yの一部がパターン化されていてもよい。
(Conductive layers 2x, 2y)
The conductive layers 2x and 2y are transparent conductive films.
The conductive layers 2x and 2y may be a uniform layer formed with a substantially uniform thickness used for a surface capacitive touch panel or the like, or used for a projected capacitive touch panel or the like. The conductive layer may have a regular pattern formed for position detection. Even in the case of a uniform layer, part of the conductive layers 2x and 2y may be patterned in order to form lead electrodes and the like depending on the configuration of the touch panel.
 導電層2xおよび2yの材質としては、例えば、金、銀、白金、パラジウム、銅、アルミニウム、ニッケル、クロム、チタン、鉄、コバルト、錫、これらの合金等の金属;インジウム−スズ酸化物(Indium Tin Oxide(ITO))、インジウム−亜鉛酸化物(Indium Zinc Oxide(IZO))、酸化亜鉛(Zinc Oxide(ZnO))、亜鉛−スズ酸化物(Zinc Tin Oxide(ZTO))等の金属酸化物;ヨウ化銅等からなる他の金属化合物;PEDOT/PSS等の導電性樹脂;などが挙げられる。なお、前記PEDOT/PSSは、PEDOT(3,4−エチレンジオキシチオフェンのポリマー)とPSS(スチレンスルホン酸のポリマー)を共存させたポリマーコンプレックスである。
 導電層2xおよび2yの厚みは、導電性、透明性等を考慮して設定される。導電層2xおよび2yの導電性は、タッチパネル用の電極板とするため、表面抵抗として10Ω/sq以下が好ましく、10Ω/sq以下がより好ましい。かかる表面抵抗は、通例、金属系の場合で30~600Å、金属酸化物系の場合で80~5,000Åの厚さとすることで達成することができる。
Examples of the material of the conductive layers 2x and 2y include metals such as gold, silver, platinum, palladium, copper, aluminum, nickel, chromium, titanium, iron, cobalt, tin, and alloys thereof; indium-tin oxide (Indium Metal oxides such as Tin Oxide (ITO), Indium-Zinc Oxide (IZO), Zinc Oxide (ZnO), Zinc-Tin Oxide (ZTO); Other metal compounds composed of copper iodide or the like; conductive resins such as PEDOT / PSS; The PEDOT / PSS is a polymer complex in which PEDOT (3,4-ethylenedioxythiophene polymer) and PSS (styrene sulfonic acid polymer) coexist.
The thicknesses of the conductive layers 2x and 2y are set in consideration of conductivity, transparency, and the like. The conductivity of the conductive layers 2x and 2y is preferably 10 5 Ω / sq or less, and more preferably 10 3 Ω / sq or less, as a surface resistance, in order to provide an electrode plate for a touch panel. Such surface resistance can be generally achieved by setting the thickness to 30 to 600 mm in the case of a metal system and to 80 to 5,000 mm in the case of a metal oxide system.
 導電層2xおよび2yは公知の方法により形成できる。
 例えば導電層2が均一層である場合、真空蒸着法、スパッタリング法、イオンプレーティング法、スプレー熱分解法、化学メッキ法、電気メッキ法、塗布法、あるいはこれらの組合せ法などの薄膜形成法が挙げられる。膜の形成速度及び大面積膜の形成性、生産性などの点より、真空蒸着法やスパッタリング法が好ましい。
 規則的なパターンは、各種印刷方式などにより、ガラス基板1および基材3の表面に予め部分的に導電層2xおよび2yを設ける方法で形成してもよいし、あるいは、上記のように均一層を形成した後、その一部をエッチングなどにより除去して形成してもよい。
 導電層2xおよび2yとガラス基板1および基材3との密着性を高めるために、ガラス基板1および基材3の表面に、コロナ放電処理、紫外線照射処理、プラズマ処理、スパッタエッチング処理、アンダーコート処理等の適宜な前処理を施してもよい。
The conductive layers 2x and 2y can be formed by a known method.
For example, when the conductive layer 2 is a uniform layer, a thin film forming method such as a vacuum deposition method, a sputtering method, an ion plating method, a spray pyrolysis method, a chemical plating method, an electroplating method, a coating method, or a combination thereof can be used. Can be mentioned. From the viewpoints of film formation speed, large-area film formability, productivity, and the like, vacuum vapor deposition and sputtering are preferred.
The regular pattern may be formed by a method in which the conductive layers 2x and 2y are partially provided in advance on the surfaces of the glass substrate 1 and the base material 3 by various printing methods, or a uniform layer as described above. After forming, a part thereof may be removed by etching or the like.
In order to improve the adhesion between the conductive layers 2x and 2y and the glass substrate 1 and the base material 3, the surfaces of the glass substrate 1 and the base material 3 are subjected to corona discharge treatment, ultraviolet irradiation treatment, plasma treatment, sputter etching treatment, undercoat. Appropriate pretreatment such as treatment may be performed.
(粘着層7)
 粘着層7を構成する粘着剤としては、それぞれ、タッチパネル等の光学用途に用いられている公知の粘着剤が利用できる。粘着剤としては、例えば、天然ゴム系粘着剤、合成ゴム系粘着剤、アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤などが挙げられる。粘着剤は、溶剤系、無溶剤系、エマルジョン系、水系のいずれであってもよい。なかでも、透明度、耐候性、耐久性、コスト等の観点から、アクリル系粘着剤、特に溶剤系のものが好ましい。
 粘着剤には、必要に応じて他の助剤が添加されてもよい。他の助剤としては、酸化防止剤、粘着付与剤、シランカップリング剤、紫外線吸収剤、ヒンダードアミン系化合物等の光安定剤、増粘剤、pH調整剤、バインダ、架橋剤、粘着性粒子、消泡剤、防腐防黴剤、顔料、無機充填剤、安定剤、濡れ剤、湿潤剤などが挙げられる。
 粘着層7の厚みは、それぞれ、10~100μmであることが好ましく、20~80μmであることがより好ましい。10μm以上であれば、充分な粘着性が得られる。粘着層7の厚みが100μmを超えると、薄型化、コストの面から不利である。
(Adhesive layer 7)
As an adhesive which comprises the adhesion layer 7, the well-known adhesive used for optical uses, such as a touch panel, respectively can be utilized. Examples of the pressure sensitive adhesive include natural rubber pressure sensitive adhesive, synthetic rubber pressure sensitive adhesive, acrylic pressure sensitive adhesive, urethane pressure sensitive adhesive, and silicone pressure sensitive adhesive. The pressure-sensitive adhesive may be any of a solvent system, a solventless system, an emulsion system, and an aqueous system. Of these, acrylic pressure-sensitive adhesives, particularly solvent-based ones are preferred from the viewpoints of transparency, weather resistance, durability, cost, and the like.
Other auxiliary agents may be added to the adhesive as necessary. Other auxiliary agents include antioxidants, tackifiers, silane coupling agents, UV absorbers, hindered amine compounds and other light stabilizers, thickeners, pH adjusters, binders, crosslinking agents, adhesive particles, Examples include antifoaming agents, antiseptic / antifungal agents, pigments, inorganic fillers, stabilizers, wetting agents, wetting agents and the like.
The thickness of the pressure-sensitive adhesive layer 7 is preferably 10 to 100 μm, and more preferably 20 to 80 μm. If it is 10 μm or more, sufficient adhesiveness can be obtained. If the thickness of the pressure-sensitive adhesive layer 7 exceeds 100 μm, it is disadvantageous from the viewpoint of thinning and cost.
 基材3の裏面には、凹凸の表面形状4aが形成されている。偏光板12の前面には、凹凸の表面形状4bが形成されている。
 これらの凹凸の表面形状は表面粗さを10nmより大きく60nmより小さくすることによって、ガラス板1が液晶表示装置11方向にたわんだ時に、凹凸の表面形状4aが凹凸の表面形状4bに接触しても、ニュートンリングが生じにくく、かつ、残存しにくい。
 上記表面粗さが10nmより大きいことにより、両面または片面に凹凸がない場合に比べて、第1の層と第2の層との接触面積が小さく、離れやすいため、優れたアンチニュートンリング効果が発揮される。上記表面粗さは、13nm以上が好ましく、15nm以上がより好ましい。
 上記表面粗さが60nmより小さいことにより、積層体のヘイズが小さく、また、積層体の透明性が高くなり、タッチ面の明るさを損ないにくい。該表面粗さは、50nmより小さいことが好ましく、40nmより小さいことがより好ましく、30nmより小さいことが特に好ましい。
 上記表面粗さを満たす凹凸の表面形状は、本明細書に記載の実施例および比較例の材料および条件等に従って得ることができる。
An uneven surface shape 4 a is formed on the back surface of the substrate 3. An uneven surface shape 4 b is formed on the front surface of the polarizing plate 12.
By making the surface roughness larger than 10 nm and smaller than 60 nm, the uneven surface shape 4 a comes into contact with the uneven surface shape 4 b when the glass plate 1 bends in the direction of the liquid crystal display device 11. However, Newton's rings are less likely to occur and remain less likely to remain.
Since the surface roughness is larger than 10 nm, the contact area between the first layer and the second layer is small compared to the case where there are no irregularities on both sides or one side, and it is easy to leave, so that an excellent anti-Newton ring effect is obtained. Demonstrated. The surface roughness is preferably 13 nm or more, and more preferably 15 nm or more.
When the surface roughness is less than 60 nm, the haze of the laminate is small, the transparency of the laminate is high, and the brightness of the touch surface is difficult to be impaired. The surface roughness is preferably less than 50 nm, more preferably less than 40 nm, and particularly preferably less than 30 nm.
The surface shape of the unevenness that satisfies the surface roughness can be obtained according to the materials and conditions of the examples and comparative examples described in this specification.
 図4は、本発明のアンチニュートンリング積層体を用いた他の態様の静電容量式タッチパネル付き表示装置201の構成を説明する概略断面図である。
 図4に示されている静電容量式タッチパネル付き表示装置201は、液晶ディスプレイ11とタッチパネル21とを備える。タッチパネル21は、ガラス基板1と、粘着層7と、導電層2xと、第1の基材3aと、粘着層17と、導電層2yと、第2の基材3bと、第2の基材3bの裏面に形成された凹凸の表面形状4aとを備える。
 ガラス基板1の裏面と導電層2xの前面とは、粘着層7を介して密着している。第1の基材3aの裏面と導電層2yの前面とは、粘着層17を介して密着している。導電層2xの前面の外縁部には印刷層5が形成されている。
 導電層2xは、横軸方向の位置を検出するための導電層であり、導電層2yは、縦軸方向の位置を検出するための導電層である。なお、導電層2xが、縦軸方向の位置を検出するための導電層であり、導電層2yが、横軸方向の位置を検出するための導電層であってもよい。粘着層17は、絶縁性粘着層である。
 凹凸の表面形状4aは、凹凸の表面形状4bと対向している。凹凸の表面形状4a、4bは表面粗さが10nmより大きく60nmより小さい。表面粗さの好ましい範囲は、静電容量式タッチパネル付き表示装置200の表面粗さと同様である。
FIG. 4 is a schematic cross-sectional view illustrating the configuration of a display device 201 with a capacitive touch panel according to another aspect using the anti-Newton ring laminate of the present invention.
A display device 201 with a capacitive touch panel shown in FIG. 4 includes a liquid crystal display 11 and a touch panel 21. The touch panel 21 includes a glass substrate 1, an adhesive layer 7, a conductive layer 2x, a first base material 3a, an adhesive layer 17, a conductive layer 2y, a second base material 3b, and a second base material. And a concave-convex surface shape 4a formed on the back surface of 3b.
The back surface of the glass substrate 1 and the front surface of the conductive layer 2 x are in close contact with each other through the adhesive layer 7. The back surface of the first substrate 3 a and the front surface of the conductive layer 2 y are in close contact with each other via the adhesive layer 17. A printed layer 5 is formed on the outer edge of the front surface of the conductive layer 2x.
The conductive layer 2x is a conductive layer for detecting a position in the horizontal axis direction, and the conductive layer 2y is a conductive layer for detecting a position in the vertical axis direction. The conductive layer 2x may be a conductive layer for detecting a position in the vertical axis direction, and the conductive layer 2y may be a conductive layer for detecting a position in the horizontal axis direction. The adhesive layer 17 is an insulating adhesive layer.
The uneven surface shape 4a faces the uneven surface shape 4b. The uneven surface shapes 4a and 4b have a surface roughness larger than 10 nm and smaller than 60 nm. A preferable range of the surface roughness is the same as the surface roughness of the display device 200 with a capacitive touch panel.
 以上、本発明の導電フィルムシートおよびそれを用いたタッチパネルを説明したが、本発明はこれらに限定されるものではない。
 たとえば、上記説明においては、表示装置として液晶ディスプレイを用いた例を示したが、本発明はこれに限定されない。たとえば、陰極線管(CRT)ディスプレイ、プラズマディスプレイ、エレクトロルミネッセンス(EL)ディスプレイ等の各種表示装置を用いることができる。
The conductive film sheet of the present invention and the touch panel using the same have been described above, but the present invention is not limited to these.
For example, in the above description, an example in which a liquid crystal display is used as a display device has been shown, but the present invention is not limited to this. For example, various display devices such as a cathode ray tube (CRT) display, a plasma display, and an electroluminescence (EL) display can be used.
 以下、実施例を示して本発明をより具体的に説明するが、本発明は、これらの例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
(樹脂フィルムA1の作製)
 多官能(メタ)アクリレートとして、ジペンタエリスリトールヘキサアクリレート(6官能アクリレート、商品名 A−DPH、新中村化学株式会社製)を100質量部、粒子径50nmのコロイダルシリカ分散液(オルガノシリカゾルLタイプ、固形分濃度30%、日産化学工業株式会社製)を20質量部、光重合開始剤(商品名 IRGACURE184、BASF株式会社製)を4質量部混合した。この混合物をメチルエチルケトンで固形分濃度50%となるように希釈することによって樹脂層形成用組成物Aを調製した。
 基材として、厚さ100μmのPETフィルム(商品名 A4300、東洋紡績株式会社製)を用いた。この基材上に、樹脂層形成用組成物Aをバー塗工した。その後、その基材を80℃、60秒間加熱乾燥した。その後、その基材に対して、高圧水銀ランプ紫外線照射機(アイグラフィックス株式会社製)を用いて、160W/cm、ランプ高さ13cm、ベルトスピード10m/min、2pass、窒素雰囲気下で紫外線を照射した。それにより、基材に塗工した組成物Aは、硬化して厚さ5μmの樹脂層となった。このようにして樹脂フィルムA1を得た。
(樹脂フィルムA2の作製)
 多官能(メタ)アクリレートとして、ジペンタエリスリトールヘキサアクリレート(6官能アクリレート、商品名 A−DPH、新中村化学株式会社製)を100質量部、粒子径50nmのコロイダルシリカ分散液(オルガノシリカゾルLタイプ、固形分濃度30%、日産化学工業株式会社製)を20質量部、光重合開始剤(商品名 IRGACURE184、BASF株式会社製)を4質量部混合した。この混合物をメチルエチルケトンで固形分濃度50%となるように希釈することによって樹脂層形成用組成物Aを調製した。
 基材として、厚さ100μmのPETフィルム(商品名 A4300、東洋紡績株式会社製)を用いた。この基材上に、樹脂層形成用組成物Aをバー塗工した。その後、その基材を80℃、60秒間加熱乾燥した。その後、その基材に対して、高圧水銀ランプ紫外線照射機(アイグラフィックス株式会社製)を用いて、160W/cm、ランプ高さ13cm、ベルトスピード10m/min、2pass、窒素雰囲気下で紫外線を照射した。それにより、基材に塗工した組成物Aは、硬化して厚さ2μmの樹脂層となった。このようにして樹脂フィルムA2を得た。
(樹脂フィルムA3の作製)
 多官能(メタ)アクリレートとして、ジペンタエリスリトールヘキサアクリレート(6官能アクリレート、商品名 A−DPH、新中村化学株式会社製)を100質量部、粒子径50nmのコロイダルシリカ分散液(オルガノシリカゾルLタイプ、固形分濃度30%、日産化学工業株式会社製)を20質量部、光重合開始剤(商品名 IRGACURE184、BASF株式会社製)を4質量部混合した。この混合物をメチルエチルケトンで固形分濃度50%となるように希釈することによって樹脂層形成用組成物Aを調製した。
 基材として、厚さ100μmのPETフィルム(商品名 A4300、東洋紡績株式会社製)を用いた。この基材上に、樹脂層形成用組成物Aをバー塗工した。その後、その基材を80℃、60秒間加熱乾燥した。その後、その基材に対して、高圧水銀ランプ紫外線照射機(アイグラフィックス株式会社製)を用いて、160W/cm、ランプ高さ13cm、ベルトスピード10m/min、2pass、窒素雰囲気下で紫外線を照射した。それにより、基材に塗工した組成物Aは、硬化して厚さ7μmの樹脂層となった。このようにして樹脂フィルムA3を得た。
(樹脂フィルムA4の作製)
 多官能(メタ)アクリレートとして、ジペンタエリスリトールヘキサアクリレート(6官能アクリレート、商品名 A−DPH、新中村化学株式会社製)を100質量部、粒子径50nmのコロイダルシリカ分散液(オルガノシリカゾルLタイプ、固形分濃度30%、日産化学工業株式会社製)を20質量部、光重合開始剤(商品名 IRGACURE184、BASF株式会社製)を4質量部混合した。この混合物をメチルエチルケトンで固形分濃度50%となるように希釈することによって樹脂層形成用組成物Aを調製した。
 基材として、厚さ100μmのPETフィルム(商品名 A4300、東洋紡績株式会社製)を用いた。この基材上に、樹脂層形成用組成物Aをバー塗工した。その後、その基材を80℃、60秒間加熱乾燥した。その後、その基材に対して、高圧水銀ランプ紫外線照射機(アイグラフィックス株式会社製)を用いて、160W/cm、ランプ高さ13cm、ベルトスピード10m/min、2pass、窒素雰囲気下で紫外線を照射した。それにより、基材に塗工した組成物Aは、硬化して厚さ0.5μmの樹脂層となった。このようにして樹脂フィルムA4を得た。
(Preparation of resin film A1)
As polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), colloidal silica dispersion (organosilica sol L type, 20 parts by mass of a solid content concentration of 30%, manufactured by Nissan Chemical Industries, Ltd., and 4 parts by mass of a photopolymerization initiator (trade names: IRGACURE 184, manufactured by BASF Corporation) were mixed. A resin layer forming composition A was prepared by diluting this mixture with methyl ethyl ketone so as to have a solid concentration of 50%.
A PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm was used as the substrate. On this base material, the resin layer forming composition A was bar-coated. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition A applied to the substrate was cured to form a resin layer having a thickness of 5 μm. In this way, a resin film A1 was obtained.
(Preparation of resin film A2)
As polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), colloidal silica dispersion (organosilica sol L type, 20 parts by mass of a solid content concentration of 30%, manufactured by Nissan Chemical Industries, Ltd., and 4 parts by mass of a photopolymerization initiator (trade names: IRGACURE 184, manufactured by BASF Corporation) were mixed. A resin layer forming composition A was prepared by diluting this mixture with methyl ethyl ketone so as to have a solid concentration of 50%.
A PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm was used as the substrate. On this base material, the resin layer forming composition A was bar-coated. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition A applied to the substrate was cured to form a resin layer having a thickness of 2 μm. In this way, a resin film A2 was obtained.
(Preparation of resin film A3)
As polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), colloidal silica dispersion (organosilica sol L type, 20 parts by mass of a solid content concentration of 30%, manufactured by Nissan Chemical Industries, Ltd., and 4 parts by mass of a photopolymerization initiator (trade names: IRGACURE 184, manufactured by BASF Corporation) were mixed. A resin layer forming composition A was prepared by diluting this mixture with methyl ethyl ketone so as to have a solid concentration of 50%.
A PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm was used as the substrate. On this base material, the resin layer forming composition A was bar-coated. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition A applied to the substrate was cured to form a resin layer having a thickness of 7 μm. In this way, a resin film A3 was obtained.
(Preparation of resin film A4)
As polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), colloidal silica dispersion (organosilica sol L type, 20 parts by mass of a solid content concentration of 30%, manufactured by Nissan Chemical Industries, Ltd., and 4 parts by mass of a photopolymerization initiator (trade names: IRGACURE 184, manufactured by BASF Corporation) were mixed. A resin layer forming composition A was prepared by diluting this mixture with methyl ethyl ketone so as to have a solid concentration of 50%.
A PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm was used as the substrate. On this base material, the resin layer forming composition A was bar-coated. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition A applied to the substrate was cured to form a resin layer having a thickness of 0.5 μm. In this way, a resin film A4 was obtained.
(樹脂フィルムB1の作製)
 多官能(メタ)アクリレートとして、ジペンタエリスリトールヘキサアクリレート(6官能アクリレート、商品名 A−DPH、新中村化学株式会社製)を100質量部、粒子径100nmコロイダルシリカ分散液(オルガノシリカゾルZタイプ、固形分濃度30%、日産化学工業株式会社製)20質量部、光重合開始剤(商品名 IRGACURE184、BASF株式会社製)を4質量部混合した。この混合物をメチルエチルケトンで固形分濃度50%となるように希釈することによって樹脂層形成用組成物Bを調製した。
 基材として、厚さ100μmのPETフィルム(商品名 A4300、東洋紡績株式会社製)を用いた。この基材上に、樹脂層形成用組成物Bをバー塗工した。その後、その基材を80℃、60秒間加熱乾燥した。その後、その基材に対して、高圧水銀ランプ紫外線照射機(アイグラフィックス株式会社製)を用いて、160W/cm、ランプ高さ13cm、ベルトスピード10m/min、2pass、窒素雰囲気下で紫外線を照射した。それにより、基材に塗工した組成物Bは、硬化して厚さ5μmの樹脂層となった。このようにして樹脂フィルムB1を得た。
(Preparation of resin film B1)
As polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), particle size 100 nm colloidal silica dispersion (organosilica sol Z type, solid A partial concentration of 30%, manufactured by Nissan Chemical Industries, Ltd.) 20 parts by mass, and a photopolymerization initiator (trade name IRGACURE 184, manufactured by BASF Corporation) were mixed by 4 parts by mass. A resin layer forming composition B was prepared by diluting this mixture with methyl ethyl ketone so as to have a solid concentration of 50%.
A PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm was used as the substrate. The resin layer forming composition B was bar coated on this substrate. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition B applied to the base material was cured to form a resin layer having a thickness of 5 μm. In this way, a resin film B1 was obtained.
(樹脂フィルムC1の作製)
 相分離によって表面凹凸を形成する樹脂層形成用組成物C(商品名 ルシフラール NAB−007 固形分濃度40% 日本ペイント株式会社製)を、基材(厚さ100μmのPETフィルム、商品名 A4300、東洋紡績株式会社製)の表面に、バー塗工した。その後、その基材を80℃、60秒間加熱乾燥した。その後、その基材に対して、高圧水銀ランプ紫外線照射機(アイグラフィックス株式会社製)を用いて、160W/cm、ランプ高さ13cm、ベルトスピード10m/min、2pass、窒素雰囲気下で紫外線を照射した。それにより、基材に塗工した組成物Cは、硬化して厚さ5μmの樹脂層となった。このようにして樹脂フィルムC1を得た。
(Preparation of resin film C1)
Resin layer forming composition C (trade name: Lucifral NAB-007, solid content concentration: 40%, manufactured by Nippon Paint Co., Ltd.) that forms surface irregularities by phase separation is used as a substrate (100 μm thick PET film, trade name: A4300, Toyo Bar coating was applied to the surface of a spinning company. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition C applied to the substrate was cured to form a resin layer having a thickness of 5 μm. Thus, a resin film C1 was obtained.
(樹脂フィルムD1の作製)
 多官能(メタ)アクリレートとして、ジペンタエリスリトールヘキサアクリレート(6官能アクリレート、商品名 A−DPH、新中村化学株式会社製)を100質量部、粒子径20nmのコロイダルシリカ分散液(商品名 PL−2L−MEK、固形分濃度20%、扶桑化学工業株式会社製)を30質量部、光重合開始剤(商品名 IRGACURE184、BASF株式会社製)を4質量部混合した。この混合物をメチルエチルケトンで固形分濃度50%となるように希釈することによって樹脂層形成用組成物Dを調製した。
 基材として、厚さ100μmのPETフィルム(商品名 A4300、東洋紡績株式会社製)を用いた。この基材上に、樹脂層形成用組成物Dをバー塗工した。その後、その基材を80℃、60秒間加熱乾燥した。その後、その基材に対して、高圧水銀ランプ紫外線照射機(アイグラフィックス株式会社製)を用いて、160W/cm、ランプ高さ13cm、ベルトスピード10m/min、2pass、窒素雰囲気下で紫外線を照射した。それにより、基材に塗工した組成物Dは、硬化して厚さ5μmの樹脂層となった。このようにして樹脂フィルムD1を得た。
(樹脂フィルムE1の作製)
 多官能(メタ)アクリレートとして、ジペンタエリスリトールヘキサアクリレート(6官能アクリレート、商品名 A−DPH、新中村化学株式会社製)を100質量部、1400nmのシリカ粒子(商品名サイリシア310、富士シリシア化学株式会社製)6質量部、光重合開始剤(商品名 IRGACURE184、BASF株式会社製)を4質量部混合した。その混合物をメチルエチルケトンで固形分濃度50%となるように希釈することによって樹脂層形成用組成物Eを調製した。
 基材として、厚さ100μmのPETフィルム(商品名 A4300、東洋紡績株式会社製)を用いた。この基材上に、樹脂層形成用組成物Eをバー塗工した。その後、その基材を80℃、60秒間加熱乾燥した。その後、その基材に対して、高圧水銀ランプ紫外線照射機(アイグラフィックス株式会社製)を用いて、160W/cm、ランプ高さ13cm、ベルトスピード10m/min、2pass、窒素雰囲気下で紫外線を照射した。それにより、基材に塗工した組成物Eは、硬化して厚さ5μmの樹脂層となった。このようにして樹脂フィルムE1を得た。
(Preparation of resin film D1)
As a polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.) and a colloidal silica dispersion (trade name PL-2L having a particle diameter of 20 nm) -30 parts by mass of MEK, solid content concentration 20%, manufactured by Fuso Chemical Industries Co., Ltd., and 4 parts by mass of a photopolymerization initiator (trade names: IRGACURE 184, manufactured by BASF Corporation). A resin layer forming composition D was prepared by diluting this mixture with methyl ethyl ketone to a solid content concentration of 50%.
A PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm was used as the substrate. On this base material, the resin layer forming composition D was bar-coated. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition D applied to the substrate was cured to form a resin layer having a thickness of 5 μm. In this way, a resin film D1 was obtained.
(Preparation of resin film E1)
As polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), 1400 nm silica particles (trade name: Silicia 310, Fuji Silysia Chemical Co., Ltd.) 6 parts by mass of a company) and 4 parts by mass of a photopolymerization initiator (trade name: IRGACURE 184, manufactured by BASF Corporation) were mixed. A resin layer forming composition E was prepared by diluting the mixture with methyl ethyl ketone to a solid content concentration of 50%.
A PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm was used as the substrate. The resin layer forming composition E was bar coated on this substrate. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition E applied to the substrate was cured to form a resin layer having a thickness of 5 μm. In this way, a resin film E1 was obtained.
(樹脂フィルムF1の作製)
 多官能(メタ)アクリレートとして、ジペンタエリスリトールヘキサアクリレート(6官能アクリレート、商品名 A−DPH、新中村化学株式会社製)を100質量部、4100nmのシリカ粒子(商品名サイリシア430、富士シリシア化学株式会社製)6質量部、光重合開始剤(商品名 IRGACURE184、BASF株式会社製)を4質量部混合した。その混合物をメチルエチルケトンで固形分濃度50%となるように希釈することによって樹脂層形成用組成物Fを調製した。
 基材として、厚さ100μmのPETフィルム(商品名 A4300、東洋紡績株式会社製)を用いた。この基材上に、樹脂層形成用組成物Fをバー塗工した。その後、その基材を80℃、60秒間加熱乾燥した。その後、その基材に対して、高圧水銀ランプ紫外線照射機(アイグラフィックス株式会社製)を用いて、160W/cm、ランプ高さ13cm、ベルトスピード10m/min、2pass、窒素雰囲気下で紫外線を照射した。それにより、基材に塗工した組成物Fは、硬化して厚さ5μmの樹脂層となった。このようにして樹脂フィルムF1を得た。
(Preparation of resin film F1)
As polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), 4100 nm silica particles (trade name: Silicia 430, Fuji Silysia Chemical Co., Ltd.) 6 parts by mass of a company) and 4 parts by mass of a photopolymerization initiator (trade name: IRGACURE 184, manufactured by BASF Corporation) were mixed. A resin layer forming composition F was prepared by diluting the mixture with methyl ethyl ketone to a solid content concentration of 50%.
A PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm was used as the substrate. On this base material, the resin layer-forming composition F was bar-coated. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition F applied to the substrate was cured to form a resin layer having a thickness of 5 μm. Thus, a resin film F1 was obtained.
(樹脂フィルムG1の作製)
 厚さ100μmのPETフィルムの基材上に、屈折率1.65の組成物(商品名OPSTARORKZ6719 固形分20%、JSR株式会社製)をバー塗工した。その基材を80℃で60秒間加熱乾燥させた。それによって、厚さ0.2μmの高屈折層が形成された。さらに高屈折層上に樹脂層形成用組成物Aを樹脂フィルムA1の作製と同様にバー塗工して樹脂フィルムG1を作製した。
(Preparation of resin film G1)
A composition having a refractive index of 1.65 (trade name: OPSTARORKZ6719, solid content: 20%, manufactured by JSR Corporation) was coated on a base of a PET film having a thickness of 100 μm. The substrate was heat-dried at 80 ° C. for 60 seconds. Thereby, a high refractive layer having a thickness of 0.2 μm was formed. Furthermore, the resin layer forming composition A was coated on the high refractive layer in the same manner as in the production of the resin film A1 to produce a resin film G1.
(樹脂フィルムH1の作製)
 多官能(メタ)アクリレートとして、ジペンタエリスリトールヘキサアクリレート(6官能アクリレート、商品名 A−DPH、新中村化学株式会社製)100質量部、および、光重合開始剤(商品名 IRGACURE184、BASF株式会社製)4質量部を混合した。この混合物をメチルエチルケトンで固形分濃度50%となるように希釈することによって樹脂層形成用組成物Hを調製した。
 基材として、厚さ100μmのPETフィルム(商品名 A4300、東洋紡績株式会社製)を用いた。この基材上に、樹脂層形成用組成物Hをバー塗工した。その後、その基材を80℃、60秒間加熱乾燥した。その後、その基材に対して、高圧水銀ランプ紫外線照射機(アイグラフィックス株式会社製)を用いて、160W/cm、ランプ高さ13cm、ベルトスピード10m/min、2pass、窒素雰囲気下で紫外線を照射した。それにより、基材に塗工した組成物Hは、硬化して厚さ5μmの樹脂層となった。このようにして樹脂フィルムH1を得た。
(Preparation of resin film H1)
As a polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.) and a photopolymerization initiator (trade name IRGACURE 184, manufactured by BASF Corporation) ) 4 parts by mass were mixed. A resin layer forming composition H was prepared by diluting this mixture with methyl ethyl ketone so as to have a solid concentration of 50%.
A PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm was used as the substrate. The resin layer forming composition H was bar-coated on this substrate. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition H applied to the substrate was cured to a resin layer having a thickness of 5 μm. In this way, a resin film H1 was obtained.
(樹脂フィルムI1の作製)
 多官能(メタ)アクリレートとして、ジペンタエリスリトールヘキサアクリレート(6官能アクリレート、商品名 A−DPH、新中村化学株式会社製)100質量部と、粒子径10nmのコロイダルシリカ分散液(オルガノシリカゾル標準タイプ、固形分濃度30%、日産化学工業株式会社製)10質量部と、光重合開始剤(商品名 IRGACURE184、BASF株式会社製)4質量部とを混合した。この混合物をメチルエチルケトンで固形分濃度50%となるように希釈することによって樹脂層形成用組成物Iを調製した。
 基材として、厚さ100μmのPETフィルム(商品名 A4300、東洋紡績株式会社製)を用いた。この基材上に、樹脂層形成用組成物Iをバー塗工した。その後、その基材を80℃、60秒間加熱乾燥した。その後、その基材に対して、高圧水銀ランプ紫外線照射機(アイグラフィックス株式会社製)を用いて、160W/cm、ランプ高さ13cm、ベルトスピード10m/min、2pass、窒素雰囲気下で紫外線を照射した。それにより、基材に塗工した組成物Iは、硬化して厚さ5μmの樹脂層となった。このようにして樹脂フィルムI1を得た。
(Preparation of resin film I1)
As a polyfunctional (meth) acrylate, 100 parts by mass of dipentaerythritol hexaacrylate (hexafunctional acrylate, trade name: A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), colloidal silica dispersion with a particle diameter of 10 nm (organosilica sol standard type, 10 mass parts of solid content concentration 30%, the product made from Nissan Chemical Industries Ltd., and 4 mass parts of photoinitiators (brand name IRGACURE184, the product made from BASF) were mixed. A resin layer forming composition I was prepared by diluting this mixture with methyl ethyl ketone so as to have a solid concentration of 50%.
A PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm was used as the substrate. The resin layer forming composition I was bar coated on this substrate. Thereafter, the substrate was heated and dried at 80 ° C. for 60 seconds. Then, using a high-pressure mercury lamp ultraviolet irradiator (manufactured by Eye Graphics Co., Ltd.), 160 W / cm, a lamp height of 13 cm, a belt speed of 10 m / min, 2 pass, and an ultraviolet ray in a nitrogen atmosphere. Irradiated. Thereby, the composition I applied to the substrate was cured to form a resin layer having a thickness of 5 μm. In this way, a resin film I1 was obtained.
(表面粗さの測定方法)
 マイクロレーザー顕微鏡(株式会社KEYENCE製 測定部 VK−X105 コントローラー部 VK−X100)を用い、倍率200倍で、各樹脂フィルムの表面観察と画像の取り込みを行った。得られた画像について、測定エリアを100μm×100μmとして前記走マイクロレーザー顕微鏡に付属の解析ソフトウェアを用いて、JIS B0601:2001に基づき算術平均表面粗さRaを算出した。
(Measurement method of surface roughness)
Using a micro laser microscope (measurement unit VK-X105 controller unit VK-X100 manufactured by KEYENCE Co., Ltd.), the surface of each resin film was observed and images were captured at a magnification of 200 times. With respect to the obtained image, the arithmetic average surface roughness Ra was calculated based on JIS B0601: 2001 using analysis software attached to the traveling microlaser microscope with a measurement area of 100 μm × 100 μm.
<ヘイズ(透明性)の評価>
 得られた樹脂フィルムおよび積層体のヘイズ値を、JIS K 7136に基づき、日本電色工業株式会社製のNDH4000を用いて測定した。
<カールの評価>
 得られた樹脂フィルムを縦100mm×横100mmの大きさに断裁し23℃、湿度50%RHの環境下で1日放置した。その後、樹脂フィルムを水平面上に置き、四隅の浮きを測定した。四隅の浮きは、水平面に対して垂直な方向における、水平面から樹脂フィルムの四隅のそれぞれまでの距離である。その平均値をカールとして算出した。カールが0~10mmの場合を○と評価した。カールが11mm以上の場合を×と評価した。
<Evaluation of haze (transparency)>
The haze value of the obtained resin film and laminated body was measured using NDH4000 made by Nippon Denshoku Industries Co., Ltd. based on JIS K7136.
<Evaluation of curls>
The obtained resin film was cut into a size of 100 mm length × 100 mm width and left for 1 day in an environment of 23 ° C. and humidity 50% RH. Thereafter, the resin film was placed on a horizontal plane, and the floating of the four corners was measured. The four corner floats are distances from the horizontal plane to the four corners of the resin film in a direction perpendicular to the horizontal plane. The average value was calculated as curl. A case where the curl was 0 to 10 mm was evaluated as ◯. The case where the curl was 11 mm or more was evaluated as x.
<ニュートンリング発生の評価>
 2枚の樹脂フィルムを用意し、各々の樹脂層同士を対向させた状態で置き樹脂層の反対面から指で押し付けた。その後応力を開放し、5秒後のニュートンリング発生の有無を目視で確認した。このとき、ニュートンリングが発生しない場合を○と評価した。また、ニュートンリングが発生する場合または樹脂フィルム同士が貼りついている場合を×と評価した。
<Evaluation of Newton ring generation>
Two resin films were prepared, placed with the resin layers facing each other, and pressed with a finger from the opposite surface of the resin layer. Thereafter, the stress was released, and the presence or absence of Newton ring generation after 5 seconds was visually confirmed. At this time, the case where no Newton ring was generated was evaluated as ◯. Moreover, the case where Newton ring generate | occur | produces or the case where the resin films have adhered is evaluated as x.
<実施例1>
 樹脂フィルムA1を2枚用意し、各々の樹脂層が対向するように配置し、積層体を作製した。
<実施例2>
 2枚の樹脂フイルムA1の両方を樹脂フィルムB1に変更した以外は実施例1と同様にして、積層体を作製した。
<実施例3>
 2枚の樹脂フィルムA1の両方を樹脂フィルムC1に変更した以外は実施例1と同様にして、積層体を作製した。
<実施例4>
 2枚の樹脂フィルムA1の両方を樹脂フィルムD1に変更した以外は実施例1と同様にして、積層体を作製した。
<実施例5>
 2枚の樹脂フィルムA1の両方を樹脂フィルムG1に変更した以外は実施例1と同様にして、積層体を作製した。
<実施例6>
 2枚の樹脂フィルムA1の一方を樹脂フィルムB1に変更した以外は実施例1と同様にして、積層体を作製した。
<実施例7>
 2枚の樹脂フィルムA1の一方を樹脂フィルムC1に変更した以外は実施例1と同様にして、積層体を作製した。
<実施例8>
 2枚の樹脂フィルムA1の両方を樹脂フィルムA2に変更した以外は実施例1と同様にして、積層体を作製した。
<Example 1>
Two resin films A1 were prepared and arranged so that the respective resin layers face each other, thereby producing a laminate.
<Example 2>
A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film B1.
<Example 3>
A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film C1.
<Example 4>
A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film D1.
<Example 5>
A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film G1.
<Example 6>
A laminate was produced in the same manner as in Example 1 except that one of the two resin films A1 was changed to the resin film B1.
<Example 7>
A laminate was produced in the same manner as in Example 1 except that one of the two resin films A1 was changed to the resin film C1.
<Example 8>
A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film A2.
<比較例1>
 2枚の樹脂フィルムA1の両方を樹脂フィルムH1に変更した以外は実施例1と同様にして、積層体を作製した。
<比較例2>
 2枚の樹脂フィルムA1の両方を樹脂フィルムI1に変更した以外は実施例1と同様にして、積層体を作製した。
<比較例3>
 2枚の樹脂フィルムA1の一方を樹脂フィルムI1に変更した以外は実施例1と同様にして、積層体を作製した。
<比較例4>
 2枚の樹脂フィルムB1の一方を樹脂フィルムI1に変更した以外は実施例2と同様にして、積層体を作製した。
<比較例5>
 2枚の樹脂フィルムA1の両方を樹脂フィルムA3に変更した以外は実施例1と同様にして、積層体を作製した。
<比較例6>
 2枚の樹脂フィルムA1の両方を樹脂フィルムA4に変更した以外は実施例1と同様にして、積層体を作製した。
<比較例7>
 2枚の樹脂フィルムA1の両方を樹脂フィルムE1に変更した以外は実施例1と同様にして、積層体を作製した。
<比較例8>
 2枚の樹脂フィルムA1の両方を樹脂フィルムF1に変更した以外は実施例1と同様にして、積層体を作製した。
<Comparative Example 1>
A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film H1.
<Comparative example 2>
A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film I1.
<Comparative Example 3>
A laminate was produced in the same manner as in Example 1 except that one of the two resin films A1 was changed to the resin film I1.
<Comparative example 4>
A laminate was produced in the same manner as in Example 2 except that one of the two resin films B1 was changed to the resin film I1.
<Comparative Example 5>
A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film A3.
<Comparative Example 6>
A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film A4.
<Comparative Example 7>
A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film E1.
<Comparative Example 8>
A laminate was produced in the same manner as in Example 1 except that both of the two resin films A1 were changed to the resin film F1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 1…ガラス基板、2、2x、2y…導電層、3、3a、3b…基材(透明フィルム)、4a、4b…凹凸の表面形状、5…印刷層、7、17…粘着層、11…液晶ディスプレイ、12…基材(偏光板)、21、22…静電容量式タッチパネル、31…粘着層、100…アンチニュートンリング積層体、110…第1の層、111…基材、112…凹凸の表面形状、120…第2の層、121…基材、122…凹凸の表面形状、200、201…本発明のアンチニュートンリング積層体を用いた静電容量式タッチパネル付き表示装置、300…従来の静電容量式タッチパネル付き表示装置 DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 2, 2x, 2y ... Conductive layer 3, 3a, 3b ... Base material (transparent film), 4a, 4b ... Uneven surface shape, 5 ... Printed layer, 7, 17 ... Adhesive layer, 11 ... Liquid crystal display, 12 ... base material (polarizing plate), 21, 22 ... capacitive touch panel, 31 ... adhesive layer, 100 ... anti-Newton ring laminate, 110 ... first layer, 111 ... base material, 112 ... unevenness 120 ... second layer, 121 ... base material, 122 ... uneven surface shape, 200, 201 ... display device with a capacitive touch panel using the anti-Newton ring laminate of the present invention, 300 ... conventional Display device with capacitive touch panel

Claims (7)

  1.  少なくとも片面に凹凸の表面形状を有する第1の層と、少なくとも片面に凹凸の表面形状を有する第2の層とを備え、
     前記第1の層の凹凸の表面形状および前記第2の層の凹凸の表面形状の厚さが1~6μm、表面粗さが10nmより大きく60nmより小さく、
     前記第1の層の凹凸の表面形状と前記第2の層の凹凸の表面形状とが対向して該凹凸の表面形状が互いに接触するように積層されている積層体。
    A first layer having an uneven surface shape on at least one surface, and a second layer having an uneven surface shape on at least one surface;
    The thickness of the uneven surface shape of the first layer and the uneven surface shape of the second layer is 1 to 6 μm, the surface roughness is greater than 10 nm and less than 60 nm,
    A laminate in which the surface shape of the unevenness of the first layer and the surface shape of the unevenness of the second layer are opposed to each other and the surface shape of the unevenness is in contact with each other.
  2.  前記第1の層および/または前記第2の層が粒子径20~250nmの無機または有機微粒子を含有する請求項1に記載の積層体。 The laminate according to claim 1, wherein the first layer and / or the second layer contains inorganic or organic fine particles having a particle diameter of 20 to 250 nm.
  3.  前記第1の層の凹凸面および/または前記第2の層の凹凸面は、少なくとも2種類の成分を含有する樹脂組成物が相分離して凹凸を形成された請求項1または2に記載の積層体。 The uneven surface of the first layer and / or the uneven surface of the second layer are formed with unevenness by phase separation of a resin composition containing at least two kinds of components. Laminated body.
  4.  前記第1の層の凹凸面および前記第2の層の凹凸面のうち、一方が粒子径20~250nmの無機または有機微粒子を含有する凹凸樹脂層であり、他方が少なくとも2種類の成分を含有する樹脂組成物が相分離して形成された凹凸樹脂層である請求項1~3のいずれかに記載の積層体。 One of the uneven surface of the first layer and the uneven surface of the second layer is an uneven resin layer containing inorganic or organic fine particles having a particle diameter of 20 to 250 nm, and the other contains at least two types of components. The laminate according to any one of claims 1 to 3, wherein the resin composition to be formed is an uneven resin layer formed by phase separation.
  5.  前記第1の層および第2の層のヘイズが0.6より大きく7.0より小さい請求項1~4のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the first layer and the second layer have a haze greater than 0.6 and less than 7.0.
  6.  請求項1~5のいずれかに記載の積層体が組み込まれた表示装置。 A display device in which the laminate according to any one of claims 1 to 5 is incorporated.
  7.  タッチパネル機能を有する表示装置内に組み込むための光学フィルムであって、
     前記光学フィルムは少なくとも片面に凹凸の表面形状を有し、凹凸の表面形状を有する面の表面粗さが10nmより大きく60nmより小さく、
     前記光学フィルムは、同一の表示装置内で少なくとも2枚以上用いられ、凹凸の表面形状が互いに接触するように配置されるためのものであることを特徴とする光学フィルム。
    An optical film for incorporation in a display device having a touch panel function,
    The optical film has an uneven surface shape on at least one surface, and the surface roughness of the surface having the uneven surface shape is larger than 10 nm and smaller than 60 nm,
    At least two or more optical films are used in the same display device, and are arranged so that the surface shapes of the projections and recesses are in contact with each other.
PCT/IB2015/001684 2014-09-30 2015-09-25 Anti-newton ring laminate, and capacitive touch panel using said anti-newton ring laminate WO2016051247A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016551103A JPWO2016051247A1 (en) 2014-09-30 2015-09-25 Anti-Newton ring laminate and capacitive touch panel using the anti-Newton ring laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-199559 2014-09-30
JP2014199559 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016051247A1 true WO2016051247A1 (en) 2016-04-07

Family

ID=55629485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/001684 WO2016051247A1 (en) 2014-09-30 2015-09-25 Anti-newton ring laminate, and capacitive touch panel using said anti-newton ring laminate

Country Status (3)

Country Link
JP (1) JPWO2016051247A1 (en)
TW (1) TWI656976B (en)
WO (1) WO2016051247A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10996808B2 (en) 2017-04-25 2021-05-04 Canatu Oy Method for producing a laminated film
US11760071B2 (en) 2018-05-09 2023-09-19 Canatu Oy Electrically conductive multilayer film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069683A1 (en) * 2011-11-07 2013-05-16 王子ホールディングス株式会社 Display device with capacitive touch panel, capacitive touch panel
JP2014059524A (en) * 2012-09-19 2014-04-03 Toppan Printing Co Ltd Transparent uneven film, manufacturing method therefor, and display unit equipped with transparent uneven film
WO2015080195A1 (en) * 2013-11-29 2015-06-04 王子ホールディングス株式会社 Optical sheet, conductive sheet, and display device provided with said optical sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5806620B2 (en) * 2011-03-16 2015-11-10 日東電工株式会社 Transparent conductive film and touch panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069683A1 (en) * 2011-11-07 2013-05-16 王子ホールディングス株式会社 Display device with capacitive touch panel, capacitive touch panel
JP2014059524A (en) * 2012-09-19 2014-04-03 Toppan Printing Co Ltd Transparent uneven film, manufacturing method therefor, and display unit equipped with transparent uneven film
WO2015080195A1 (en) * 2013-11-29 2015-06-04 王子ホールディングス株式会社 Optical sheet, conductive sheet, and display device provided with said optical sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10996808B2 (en) 2017-04-25 2021-05-04 Canatu Oy Method for producing a laminated film
US11760071B2 (en) 2018-05-09 2023-09-19 Canatu Oy Electrically conductive multilayer film
EP3790736B1 (en) * 2018-05-09 2024-03-13 Canatu Oy An electrically conductive multilayer film

Also Published As

Publication number Publication date
JPWO2016051247A1 (en) 2017-08-24
TWI656976B (en) 2019-04-21
TW201620711A (en) 2016-06-16

Similar Documents

Publication Publication Date Title
JP6656799B2 (en) Anti-Newton ring laminate and capacitive touch panel using the anti-Newton ring laminate
JP5440747B2 (en) Display device with capacitive touch panel, capacitive touch panel
JP5958476B2 (en) Transparent conductor and touch panel
JP5825055B2 (en) Antireflective body, capacitive touch panel, and display device with capacitive touch panel
JP4944572B2 (en) Anti-glare hard coat film
CN113448001A (en) Hard coating film, polarizing plate using same, hard coating film processed product, and display member
JP6331581B2 (en) Laminate for forming transparent conductive film, transparent conductive film, touch panel, method for selecting second substrate with adhesive layer, method for producing laminate for forming transparent conductive film, and method for producing transparent conductive film
WO2016080201A1 (en) Transparent multilayer film and touch panel display
JP4753764B2 (en) Touch panel
WO2011013798A1 (en) Display film and manufacturing method therefor
JP2013075955A (en) Hard coat film
JP5463972B2 (en) Hard coat substrate for touch panel and touch panel using the same
WO2016051247A1 (en) Anti-newton ring laminate, and capacitive touch panel using said anti-newton ring laminate
JP7229833B2 (en) Laminated film for molding
JP6349235B2 (en) Transparent laminated film and touch panel display
JP6256154B2 (en) Laminated body, touch panel using the laminated body, and method for manufacturing the laminated body
JP6269304B2 (en) Total light transmittance improving film having a function of preventing sticking.
JP2007183674A (en) Antiglare antireflection film
JP2016078245A (en) Hard coat film for transparent electrode
JP2005262442A (en) Newton ring preventing sheet and touch panel using it
JP2015098137A (en) Optical laminate, transparent conductive film, and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551103

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845676

Country of ref document: EP

Kind code of ref document: A1