WO2016050147A1 - 一种用于led车灯光通信的自适应接收装置及方法 - Google Patents

一种用于led车灯光通信的自适应接收装置及方法 Download PDF

Info

Publication number
WO2016050147A1
WO2016050147A1 PCT/CN2015/089983 CN2015089983W WO2016050147A1 WO 2016050147 A1 WO2016050147 A1 WO 2016050147A1 CN 2015089983 W CN2015089983 W CN 2015089983W WO 2016050147 A1 WO2016050147 A1 WO 2016050147A1
Authority
WO
WIPO (PCT)
Prior art keywords
similarity
electrical signal
signal
microcomputer processor
disturbance
Prior art date
Application number
PCT/CN2015/089983
Other languages
English (en)
French (fr)
Inventor
何举刚
龙兴明
周霞
徐涛
王靖
Original Assignee
重庆长安汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆长安汽车股份有限公司 filed Critical 重庆长安汽车股份有限公司
Priority to RU2017109873A priority Critical patent/RU2663808C1/ru
Publication of WO2016050147A1 publication Critical patent/WO2016050147A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication

Definitions

  • the invention relates to a visible light communication technology in a vehicle network, in particular to an adaptive receiving device and method for LED vehicle light communication.
  • LED lighting optical wireless communication has great development prospects because of its safety, economy and high speed. Although the technology is still in the beginning and exploration stage abroad, its application prospect is very promising, not only for indoor wireless access, but also It can provide a new way for mobile navigation and positioning of urban vehicles.
  • Automobile lighting lamps basically use LED lights, which can form the communication link between automobile and traffic control center, traffic signal to automobile, and automobile to automobile. This is also the development direction of LED visible light communication in intelligent transportation system.
  • the fixed point LED light communication device is a first photoelectric device electrically connected in sequence
  • the detector, the first information processing unit, the first driving circuit and the LED light emitter are configured, and the first actuator and the first display are respectively connected to the output of the first information processing unit;
  • the mobile LED light communication device is The second photodetector, the second information processing unit, the second driving circuit and the LED headlights are electrically connected in sequence.
  • the technology realizes the non-stop payment, which improves the traffic capacity of the lane by 3 to 5 times, and also realizes the rapid collection of the dynamic information of the traffic vehicle, and can also effectively avoid the distance between the front and rear vehicles, and prevent the mutual rear-end collision between the vehicles. A vicious traffic accident.
  • Another example is an intelligent transportation system based on LED visible light communication disclosed in CN102610115A, belonging to the field of intelligent transportation systems, including: LED traffic lights, optical transmitters and optical receivers, optical receivers and optical transmitters installed on a vehicle, followed by a vehicle
  • the car's optical receiver receives the front one
  • the signal sent by the vehicle glazing transmitter, the signal sent by the LED traffic light includes the road condition and the traffic light situation.
  • the signal sent by the optical transmitter includes the distance between the front and rear vehicles and the warning signal, and the optical receiver receives the LED traffic light.
  • the signal from the optical transmitter Through the above manner, the present technology can form a visible light intelligent transportation network, timely receive road condition information emitted by LED traffic lights, distance between vehicles before and after, warning signals and traffic lights, thereby ensuring traffic safety and reducing the probability of traffic accidents.
  • the reliability and stability of the vehicle to the optical signal reception becomes the primary problem in the application of the LED visible light communication in the intelligent transportation system.
  • the positional relationship between the vehicle and the vehicle changes rapidly, which makes the problem more prominent, and the signal interference and the weak or missing signal are easily caused to cause communication failure, thereby causing a traffic accident.
  • An object of the present invention is to provide an adaptive receiving apparatus and method for LED vehicle light communication, which can solve the problem of reliability and stability of vehicle-to-optical signal reception in the prior art.
  • An adaptive receiving device for LED vehicle light communication comprising a photoelectric conversion module and a microcomputer processor connected to the photoelectric conversion module, wherein the photoelectric conversion module comprises a multi-channel amplification circuit and is configured to receive an optical signal
  • the photoelectric conversion module comprises a multi-channel amplification circuit and is configured to receive an optical signal
  • the photodiode array, the output end of the photodiode array is connected to the microcomputer processor via a multi-channel amplifying circuit, the photodiode array is mounted on a micro-electromechanical mechanism, and the control output of the microcomputer processor is connected to the micro-electromechanical mechanism.
  • the output of the microcomputer processor is connected with a redundant averaging circuit, and an output of the redundant averaging circuit is fed back to the microcomputer processor.
  • the output of the redundant averaging circuit is further connected with a low-pass filter circuit, and an output of the low-pass filter circuit is connected with a shaping circuit.
  • the microcomputer processor includes a single-chip microcomputer, and the micro-electromechanical mechanism includes a micro-motion platform, and a PWM waveform output port of the single-chip microcomputer is connected to an input end of the micro-electromechanical mechanism;
  • the photodiode array includes a plurality of GaN-based photodiodes positioned on a micro-motion stage, the multi-channel amplifying circuit is a multi-channel amplifying circuit, and a positive electrode of each photodiode is connected to an operating voltage source, each photodiode The negative poles are each grounded through a resistor of the same resistance value, which is more The cathode of the photodiode is connected to the plurality of PAD terminals of the single chip through a multi-channel amplifying circuit;
  • the redundant averaging circuit comprises a comparator, the negative input end of the comparator is grounded, the positive input end is connected with the output end resistor, and the PA0 ⁇ PA3 terminals of the single chip are connected with the positive input end of the comparator one-to-one correspondingly.
  • the output of the comparator is connected to the input of the low-pass filter circuit and another PAD terminal of the microcontroller.
  • An adaptive receiving method for LED vehicle lighting communication which adopts the receiving device according to any of the above embodiments, wherein the receiving method comprises:
  • the photodiode array Receiving, by the photodiode array, an optical signal emitted by the LED vehicle lamp and performing photoelectric conversion, wherein the photodiode array receives and converts the optical signal in parallel by using a plurality of photodiodes, and outputs an electrical signal corresponding to the number of photodiodes;
  • the microcomputer processor is used to process the plurality of sets of electrical signals outputted by the photodiode array, and the similarity or cross-correlation coefficient of each group of processed signals is calculated, and the biased electrical signal group is retained to retain the effective electrical signal group, and the effective electrical signal is obtained.
  • the microelectromechanical mechanism drives the diode array to move microscopically in a three-dimensional space at intervals, the micro-movement amount is set as a disturbance input amount, and the microcomputer processor calculates and compares the similarity of the electrical signal groups from the photodiode array before and after the disturbance according to the disturbance observation method. Degree, the spatial angle of the diode array corresponding to the electrical signal group with higher similarity is set as the optimal receiving angle, and the optimal receiving angle is temporarily stored in the microcomputer processor, and the microcomputer processor selects the optimal receiving angle.
  • the information is sent to the MEMS, and the MEMS adjusts the diode array to the optimal receive angle, and the optimal receive angle is updated with each disturbance input.
  • the processing step includes redundant averaging processing of the effective electrical signal group to obtain a maximum similarity signal, and the maximum similarity signal is fed back to the microcomputer processor as a reference electrical signal for calculating the similarity, and the path is similar.
  • the maximum signal enters the demodulation link after low-pass filtering and shaping.
  • the specific calculation of the optimal receiving space angle of the microcomputer processor is as follows:
  • Step a setting the coordinate variable of the optimal receiving angle to (Xopt, Yopt, Zopt);
  • Step b setting the coordinates of the receiving angle before the kth disturbance input is (X 0 , Y 0 , Z 0 ), and the waveform group corresponding to the electrical signal obtains the effective electrical signal group according to the waveform similarity calculation or the cross correlation operation (V01, . . . , V0n), the effective electrical signal group (V01, . . . , V0n) is redundantly averaged to obtain a maximum similarity signal V k , which is the maximum similarity signal V k Comparing with the similarity maximum signal V k-1 before the k-1th disturbance input, the similarity value is obtained as f k-1 ; wherein k is a positive integer;
  • Step c The kth disturbance input, the disturbance amount is ( ⁇ X 0 , ⁇ Y 0 , ⁇ Z 0 ), and the coordinates of the reception angle after the disturbance are (X 0 + ⁇ X 0 , Y 0 + ⁇ Y 0 ,Z 0 + ⁇ Z 0 ), the relative waveform group of the electrical signal is obtained according to the waveform similarity calculation or the cross-correlation operation to obtain an effective electrical signal group (V11, . . .
  • Step d compare the values of f k-1 and f k ; when f k-1 >f k , let (X opt , Y opt , Z opt ) take values (X 0 , Y 0 , Z 0 ), when f When k-1 ⁇ f k , let (X opt , Y opt , Z opt ) take a value (X 0 + ⁇ X 0 , Y 0 + ⁇ Y 0 , Z 0 + ⁇ Z 0 ).
  • the disturbance amount ( ⁇ X 0 , ⁇ Y0, ⁇ Z 0 ) takes a three-dimensional synthesis direction, and the actuator moves correspondingly by 0.01 mm.
  • the invention utilizes a GaN diode array to realize photoelectric conversion, expands the receiving angle, suppresses interference of external ambient light, and adopts a redundant averaging technique for multiple signals, and encapsulates the GaN diode array on the microelectromechanical structure, on the basis of Combined with the disturbance observation method, the microcomputer processor realizes the calculation and control of the optimal receiving space angle ⁇ Xopt,Yopt,Zopt ⁇ , and enhances the tracking ability of the optical signal.
  • the GaN-based LED in the present scheme has the advantages of low cost and narrow spectral band. In short, the scheme has high sensitivity to optical signals, large receiving angle, strong dynamic tracking ability, and solves the time-varying problem of positional relationship between sending and receiving of vehicles and vehicles, especially for optical communication between vehicles and vehicles. .
  • FIG. 1 is a system structural diagram of an adaptive receiving device for LED car light communication according to the present invention
  • FIG. 2 is a schematic diagram of the photoelectric conversion circuit of FIG. 1;
  • FIG. 3 is a specific schematic diagram of the redundant averaging circuit of FIG. 1;
  • FIG. 4 is a specific schematic diagram of the low pass filter circuit of FIG. 1;
  • FIG. 5 is a flow chart of a program for calculating a optimal receiving space angle by a microcomputer processor of the present invention.
  • An adaptive receiving device for LED car light communication receives light signals from other vehicles through LED lights (which may be either front lights or rear lights).
  • This device includes a photoelectric conversion module, a microcomputer processor 4, and a microelectromechanical mechanism 3.
  • the photoelectric conversion module includes a multi-channel amplifying circuit 2 and a photodiode array 1 for receiving an optical signal, and an output end of the photodiode array 1 is connected to a microcomputer processor 4 via a multi-channel amplifying circuit 2, and the photodiode array 1 Mounted on a microelectromechanical mechanism 3, the control output of which is connected to the microelectromechanical mechanism 3.
  • the photodiode array 1 is used as a device for receiving and converting an optical signal, and may adopt an array form including a plurality of diodes, and the photodiode array 1 can receive an optical signal in a large angle range, and corresponds to The number of diodes outputs a multi-channel electrical signal;
  • the multi-channel amplifying circuit 2 is for amplifying the multi-path electrical signals outputted by the photodiode array to their respective standard signals, and inputting the multi-channel standard signals to the microcomputer processor 4.
  • the intensity of the multi-channel standard signal is also different due to the position of each photodiode relative to the optical signal source.
  • the microcomputer processor 4 identifies and filters each standard signal, and controls the movement of the MEMS 3 according to the intensity of the received signal, thereby adjusting the receiving angle of the photodiode array 1 to maintain real-time tracking reception and obtain superior performance. signal of.
  • micro-electromechanical mechanism 3 can be moved according to the control signal sent by the microcomputer processor 4, so that the photodiode array mounted thereon adjusts the angle of the received light.
  • the adaptive receiving device for LED car light communication may further include:
  • a redundant averaging circuit 5 is connected to the output of the microprocessor 4.
  • the redundant averaging circuit 5 is used to process a plurality of signals into a signal having a small similarity.
  • the output of the redundant averaging circuit 5 is fed back to the microcomputer processor 4.
  • the adaptive receiving device for LED vehicle light communication may further include:
  • a low pass filter circuit 6 connected to the output of the redundant averaging circuit 5;
  • the low pass filter short circuit 6 and the shaping circuit 7 can further process the signal, which is more advantageous for signal demodulation.
  • the microcomputer processor 4 of the device may select a single-chip microcomputer whose processing capability is not lower than that of the model MC9S12XS128.
  • the MEMS of the control output terminal 3 may be a MEMS model of the model NM-XY-100X.
  • the three PWM waveform output ports of the system and the single-chip microcomputer are connected to the input end of the micro-electromechanical mechanism 3;
  • the photodiode array 1 may include a plurality of GaN-based photodiodes. In operation, six D1 to D6 uniformly distributed in each part may be selected. As shown in FIG. 2, the positive pole of each photodiode is connected to an operating voltage.
  • the source Vcc, the negative electrodes of the photodiodes D1 to D6 are grounded correspondingly to the resistors R1 to R6 having the same resistance value, and the cathodes of the six photodiodes are connected to one of the six PAD terminals of the single chip through the six-channel amplifier circuit, D1 ⁇
  • the voltage value at the negative pole of D6 corresponds to the optical signal received by itself, that is, the electrical signal after photoelectric conversion.
  • the redundant averaging circuit 5 is an additive averaging circuit, as shown in FIG. 3, which includes a comparator of the type LM324C, the negative input terminal of which is grounded, the positive input terminal and the output terminal pass the resistor Rf.
  • the six-channel signal is filtered by the single-chip microcomputer to remove the bias signal, and the four signals are reserved.
  • the PA0 ⁇ PA3 terminals of the single-chip microcomputer are connected with the positive input terminals of the comparator through the resistors R, Ra, Rb, and Rc, and the output terminals of the comparator are V0 and low-pass.
  • the input end of the filter circuit 6 is connected to another PAD terminal of the single chip microcomputer.
  • the low pass filter circuit 6 and the shaping circuit 7 may be of the prior art, such as a second order low pass filter circuit as shown in FIG.
  • an embodiment of the present invention further provides an adaptive receiving method for LED car light communication.
  • the receiving method includes:
  • the electric diode array 1 uses a plurality of photodiodes to receive and convert optical signals in parallel, and outputs an electrical signal corresponding to the number of photodiodes.
  • the microcomputer processor 4 processes the plurality of sets of electrical signals output by the photodiode array 1, and the microcomputer processor 4 calculates the similarity or the correlation number of each group of signals, removes the biased electrical signal group and retains the effective electrical signal group, such as photoelectricity.
  • the diode array 1 outputs six sets of electrical signals, and can filter four electrical signals to retain four sets of electrical signals, and store the four sets of electrical signals; at the same time, the four sets of electrical signals enter the processing link and the demodulation link in real time.
  • the actuator of the MEMS system drives the diode array 1 to move slightly in a three-dimensional space under the control of the microcomputer processor 4, the micro-movement amount is set as the disturbance input amount, and the microcomputer processor 4 calculates the disturbance according to the disturbance observation method.
  • the electrical signal group similarity before and after the disturbance is compared to determine which electrical signal group with higher similarity.
  • the spatial angle of the diode array corresponding to the electrical signal group with higher similarity is set as the optimal receiving angle, and the optimal receiving angle is temporarily stored in the microcomputer processor 4, and the microcomputer processor 4 selects the optimal receiving angle.
  • the above processing steps include redundant averaging processing of the effective electrical signal group to obtain a maximum similarity signal, and the channel similarity maximum signal is low-pass filtered and shaped to obtain an ideal signal, and enters the demodulation link. Since the calculation of the similarity between the plurality of sets of electrical signals and the plurality of sets of electrical signals is large, in order to simplify the calculation and improve the implementability, the above-mentioned one-way similarity maximum signal represents the electrical signal group of the same, and is used for calculating and comparing the similarity values. . Therefore, the road similarity maximum signal is fed back to the microcomputer processor 4 as a reference electrical signal for calculating the similarity.
  • Step a setting the coordinate variable of the optimal receiving angle to be (X opt , Y opt , Z opt );
  • Step b Let the coordinates of the receiving angle before the kth (k is a positive integer) perturbation input be (X 0 , Y 0 , Z 0 ), and the waveform group corresponding to the electrical signal is valid according to the waveform similarity calculation or the cross-correlation operation.
  • the electric signal group (V01, . . . , V0n), the effective electric signal group (V01, . . . , V0n) is redundantly averaged to obtain a similar maximum signal V k , the road greatest similarity to the first signal V K k-1 greatest similarity times before the disturbance signal V k-1 input is obtained by comparing the similarity value F k-1;
  • Step c The kth disturbance input, the disturbance amount is ( ⁇ X 0 , ⁇ Y 0 , ⁇ Z 0 ), and the coordinates of the reception angle after the disturbance are (X 0 + ⁇ X 0 , Y 0 + ⁇ Y 0 ,Z 0 + ⁇ Z 0 ), the relative waveform group of the electrical signal is obtained according to the waveform similarity calculation or the cross-correlation operation to obtain an effective electrical signal group (V11, . . .
  • Step d comparing the values of f k-1 and f k ;
  • the coordinate variables of the optimal receiving angle determine the coordinates according to the previous disturbance.
  • the current receiving angle of the diode array can be initially assigned, and the correction is continuously corrected in the subsequent multiple disturbances.
  • the similarity magnitude matrix at time K is:
  • the convolution operator is shown, and the signal group v K-1 (V 1 , . . . , V i , . . . , V j , . . . V n ) at the previous moment of time K is used as the reference wave of the current K-time detection signal group v K .
  • step ( ⁇ ) represents a unit step function and S th is a defined threshold.
  • S th is often taken as 0.8 in the specific implementation, and the number of signal channels of the diode array is usually 6 to 10.
  • the calculation process is more complicated, and there are dedicated convolution and similarity calculation functions in the prior art, which can be directly called when the program is written.
  • the number of adjustments and the number of calculations required to adjust to the optimal receiving angle will increase greatly, and the speed at which the optimal receiving angle is found will change.
  • Slow, and the vehicle is moving which not only makes the actuator constantly adjust but can not stay in a relatively stable state, affecting the receiving effect of the signal, and the operation speed of the microcomputer processor 4 and the response speed of the MEMS system.
  • Very high requirements were put forward. Therefore, the utility model is more practical and easy to implement, and the disturbance amount ( ⁇ X 0 , ⁇ Y 0 , ⁇ Z 0 ) takes a three-dimensional synthesis direction, and the actuator moves by 0.01 mm to satisfy the adaptive tracking effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

 本发明涉及车联网中的可见光通信技术,提供了一种用于LED车灯光通信的自适应接收装置,其包括光电转换模块和与该光电转换模块连接的微机处理器,所述光电转换模块包括接收光信号的光电二极管阵列和多通道放大电路,所述光电二极管阵列的输出端经多通道放大电路与微机处理器连接,该光电二极管阵列安装在一微机电机构上,所述微机处理器控制连接微机电机构。本发明还提供了一种用于LED车灯光通信的自适应接收方法,其采用光电二极管阵列进行光信号的接收和转换,并采用扰动观察法计算最优接收角度,对光信号发射源实现跟踪。本方案解决了现有技术对光信号接收的可靠性和稳定性问题。

Description

一种用于LED车灯光通信的自适应接收装置及方法
本申请要求于2014年09月30日提交中国专利局、申请号为201410529162.4、发明名称为“一种用于LED车灯光通信的自适应接收装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及车联网中的可见光通信技术,具体是一种在用于LED车灯光通信的自适应接收装置及方法。
背景技术
LED照明光无线通信因其具有安全、经济且高速的特点而极具发展前景,虽然该技术在国外尚处于起步和摸索阶段,但其应用前景非常看好,不仅可以用于室内无线接入,还可以为城市车辆的移动导航及定位提供一种全新的方法。汽车照明灯基本都采用LED灯,可以组成汽车与交通控制中心、交通信号灯至汽车、汽车至汽车的通信链路,这也是LED可见光通信在智能交通系统的发展方向。
如CN202524390公开的一种LED通信照明装置及基于该装置的机动车灯光系统,它包括定点LED灯光通信装置和移动LED灯光通信装置;所述定点LED灯光通信装置是由依次电连接的第一光电探测器、第一信息处理单元、第一驱动电路和LED灯光发射器构成,在第一信息处理单元的输出还分别连接有第一执行器和第一显示器;所述移动LED灯光通信装置是由依次电连接的第二光电探测器、第二信息处理单元、第二驱动电路和LED前灯构成。该技术实现了不停车缴费,使车道的通行能力提高3~5倍,还实现了交通车辆动态信息的快速采集,并且还可以有效避免前后车辆车距太近,防止汽车之间的相互追尾的恶性交通事故。
又如CN102610115A公开的一种基于LED可见光通信的智能交通系统,属于智能交通系统领域,包括:LED交通灯、光发射机和光接收机,光接收机和光发射机安装在一个车辆上,后面一辆汽车的光接收机接收前面一辆 汽车上光发射机发出的信号,LED交通灯中发送的信号中包含路况情况和红绿灯情况,光发射机所发送的信号中包含前后车辆间的距离和警示信号,光接收机接收LED交通灯、光发射机发出的信号。通过上述方式,本技术能够形成可见光智能交通网络,及时地接收LED交通灯发出的路况信息、前后车辆间的距离、警示信号和红绿灯情况,保证了交通安全,降低了交通事故发生的概率。
然而,由于车辆是移动的,在如上述两个系统中,车对光信号接收的可靠性和稳定性问题成为LED可见光通信在智能交通系统运用中首要难题。并且,在车辆高速行驶以及转弯的时候,车与车之间的位置关系变化急速,使得该问题更为突出,信号干扰大以及信号弱或缺失都极易造成通讯失败,进而引发交通事故。
发明内容
本发明的目的在于提供一种用于LED车灯光通信的自适应接收装置及方法,其能够解决现有技术中车对光信号接收的可靠性和稳定性问题。
本发明的技术方案如下:
一种用于LED车灯光通信的自适应接收装置,包括光电转换模块和与该光电转换模块连接的微机处理器,其特征在于:所述光电转换模块包括多通道放大电路和用于接收光信号的光电二极管阵列,所述光电二极管阵列的输出端经多通道放大电路与微机处理器连接,该光电二极管阵列安装在一微机电机构上,所述微机处理器的控制输出端连接所述微机电机构。
可选地,所述微机处理器输出端连接有冗余平均电路,所述冗余平均电路的输出端反馈连接微机处理器。
可选地,所述冗余平均电路的输出端还连接有低通滤波电路,所述低通滤波电路的输出端连接有整形电路。
可选地,所述微机处理器包括单片机,所述微机电机构包括微动平台,所述单片机的PWM波形输出端口与微机电机构的输入端连接;
所述光电二极管阵列包括多个定位于微动平台上的GaN基光电二极管,所述多通道放大电路为多通道放大电路,每个光电二极管的正极均连接至一工作电压源,每个光电二极管的负极各自通过一阻值相同的电阻接地,该多 个光电二极管的负极经多通道放大电路与单片机的其中多个PAD端子一一对应连接;
所述冗余平均电路包括一比较器,所所述比较器的负输入端接地,正输入端与输出端电阻连接,单片机的PA0~PA3端子与比较器的正输入端一一对应电阻连接,比较器的输出端与低通滤波电路的输入端、单片机的另一PAD端子连接。
一种用于LED车灯光通信的自适应接收方法,采用上述任一实施方式所述的接收装置,所述接收方法包括:
采用光电二极管阵列接收LED车灯发射出来的光信号并进行光电转换,所述光电二极管阵列采用多个光电二极管并行接收和转换光信号,输出组数与光电二极管数量对应的电信号;
采用微机处理器对光电二极管阵列输出的多组电信号进行处理,并计算处理后的各组信号的相似度或互相关系数大小,去掉偏颇电信号组保留有效电信号组,并将有效电信号组输出以进入处理环节和解调环节;
所述微机电机构按间隔时间驱动二极管阵列在三维空间内微移动,该微移动量设为扰动输入量,微机处理器根据扰动观察法计算并比较扰动前后来自光电二极管阵列的电信号组的相似度,将相似度较高的电信号组对应的二极管阵列所在的空间角度设为最优接收角度,并将该最优接收角度暂存于微机处理器内,微机处理器将该最优接收角度信息发送至微机电机构,微机电机构将二极管阵列调至该最优接收角度,最优接收角度随每次扰动输入得到更新。
可选地,所述处理环节包括对有效电信号组的冗余平均处理,得到一路相似度最大信号,该路相似度最大信号反馈回微机处理器作为计算相似度的基准电信号,该路相似度最大信号经低通滤波和整形后进入解调环节。可选地,所述微机处理器获得最优接收空间角度的具体计算如下:
步骤a:设最优接收角度的坐标变量为(Xopt,Yopt,Zopt);
步骤b:设第k次扰动输入前接收角度的坐标为(X0,Y0,Z0),其电信号对应的波形组根据波形相似度计算或互相关运算得到有效电信号组(V01,.......,V0n),该有效电信号组(V01,.......,V0n)冗余平均后得到一 路相似度最大信号Vk,该路相似度最大信号Vk与第k-1次扰动输入前的相似度最大信号Vk-1比较,得到相似度值为fk-1;其中,k为正整数;
步骤c:第k次扰动输入,扰动量为(△X0,△Y0,△Z0),扰动后的接收角度的坐标为(X0+△X0,Y0+△Y0,Z0+△Z0),其电信号相对的波形组根据波形相似度计算或互相关运算得到有效电信号组(V11,.......,V1m),该有效电信号组(V11,.......,V1m)冗余平均后得到一路相似度最大信号Vk+1,该路相似度最大信号Vk+1与第k次扰动输入前的相似度最大信号Vk比较,得到相似度值为fk
步骤d:比较fk-1与fk的值;当fk-1>fk时,令(Xopt,Yopt,Zopt)取值(X0,Y0,Z0),当fk-1≤fk时,令(Xopt,Yopt,Zopt)取值(X0+△X0,Y0+△Y0,Z0+△Z0)。
可选地,所述扰动量(△X0,△Y0,△Z0)取三维合成方向,执行机构对应移动0.01mm。
本发明利用GaN二极管阵列实现光电转换,扩大了接收角度,抑制了外部环境光的干扰,同时对多路信号采用冗余平均技术,且把GaN二极管阵列封装在微机电结构上,在此基础上结合扰动观察法由微机处理器实现最优接收空间角度{Xopt,Yopt,Zopt}的计算和控制,增强了对光信号的跟踪能力。相比传统雪崩光电二极管、硅光电二极管的昂贵价格和弱光谱选择能力,本方案中的GaN基底的LED具有廉价、光谱带窄等优点。简言之,本方案对光信号的灵敏度高,接收角度大,动态跟踪能力强,解决了车车之间发送及接收的位置关系的时变问题,尤其有利于车与车之间的光通信。
附图说明
图1为本发明一种用于LED车灯光通信的自适应接收装置的系统结构图;
图2为图1中光电转换电路的原理图;
图3为图1中冗余平均电路的一种具体原理图;
图4为图1中低通滤波电路的一种具体原理图;
图5为本发明微机处理器计算最优接收空间角度的程序流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步的描述。
一种用于LED车灯光通信的自适应接收装置,接收来自其它车辆通过LED车灯(可以是前车灯也可以是后车灯)发射来的光信号。本装置如图1所示,包含光电转换模块、微机处理器4和微机电机构3。所述光电转换模块包括多通道放大电路2和用于接收光信号的光电二极管阵列1,所述光电二极管阵列1的输出端经多通道放大电路2与微机处理器4连接,该光电二极管阵列1安装在一微机电机构3上,所述微机处理器4的控制输出端连接微机电机构3。
在本发明实施例中,该光电二极管阵列1作为接收和转换光信号的器件,其可以采用包含多只二极管的阵列形式,光电二极管阵列1能够在较大角度范围内接收到光信号,且对应二极管的个数输出多路电信号;
多通道放大电路2用于对由光电二极管阵列输出的多路电信号放大至其各自对应的标准信号,并将该多路标准信号输入到微机处理器4。
由于各光电二极管相对于光信号发射源的位置不同,该多路标准信号的强度也不同。
微机处理器4对各路标准信号进行识别和筛选,并根据接收到的信号的强度,控制微机电机构3移动,进而调整光电二极管阵列1的接收角度,以保持实时的跟踪接收,获得较优的信号。
需要说明的是,微机电机构3根据微机处理器4发出的控制信号可以移动,从而使得安装在其上的光电二极管阵列调整其接收光的角度。
此外,为使信号的调解更准确,所述用于LED车灯光通信的自适应接收装置还可以包括:
连接在所述微处理器4输出端的冗余平均电路5,该冗余平均电路5用于将若干路信号处理成一路信号,该路信号偏差小相似度高。冗余平均电路5的输出端反馈连接微机处理器4。
进一步地,为了使信号进一步去噪和规整,所述用于LED车灯光通信的自适应接收装置还可以包括:
连接在所述冗余平均电路5输出端的低通滤波电路6;
以及连接在所述低通滤波电路6输出端的整形电路7。
低通滤波短路6和整形电路7可以对信号进行进一步处理,进而更加有利于信号的解调。
作为示例,本装置的微机处理器4可以选用处理能力不低于型号为MC9S12XS128的单片机,以该型号的单片机为例,其控制输出端的微机电机构3可选用型号为NM-XY-100X的MEMS系统,单片机的三个PWM波形输出端口与微机电机构3的输入端连接;
所述光电二极管阵列1可以包含多只GaN基光电二极管,工作时,可选用其中均布在各部的六只D1~D6,如图2所示,每个光电二极管的正极均连接至一工作电压源Vcc,光电二极管D1~D6的负极一一对应阻值相同的电阻R1~R6接地,该六个光电二极管的负极经六通道放大电路与单片机的其中六个PAD端子一一对应连接,D1~D6的负极处的电压值与其自身接收到的光信号对应,即为光电转换后的电信号。
作为示例,所述冗余平均电路5为加法平均电路,如图3所示,其包括一型号可以为LM324C的比较器,该比较器的负输入端接地、正输入端与输出端通过电阻Rf连接,六路信号经单片机筛除偏颇信号后,保留四路信号,单片机的PA0~PA3端子与比较器的正输入端通过电阻R、Ra、Rb、Rc连接,比较器的输出端V0与低通滤波电路6的输入端、单片机的另一PAD端子连接。
低通滤波电路6和整形电路7采用现有技术即可,如图4所示的一种二阶低通滤波电路。
基于上述实施例提供的用于LED车灯光通信的自适应接收装置,本发明实施例还提供了一种用于LED车灯光通信的自适应接收方法。
该接收方法包括:
采用光电二极管阵列1接收LED车灯发射出来的光信号并进行光电转换,并将二极管阵列安装在微机电机构3即微机电系统的执行机构上,所述光 电二极管阵列1采用多个光电二极管并行接收和转换光信号,输出组数与光电二极管数量对应的电信号。
采用微机处理器4对光电二极管阵列1输出的多组电信号进行处理,微机处理器4计算各组信号的相似度或互相关系数大小,去掉偏颇电信号组并保留有效电信号组,如光电二极管阵列1输出六组电信号,可筛除两路电信号后保留四组电信号,将这四组电信号储存;同时,这四组电信号实时地进入处理环节和解调环节。
所述微机电系统的执行机构在微机处理器4的控制下按间隔时间驱动二极管阵列1在三维空间内微移动,该微移动量设为扰动输入量,微机处理器4根据扰动观察法计算扰动前后来自光电二极管阵列1的电信号组的相似度,比较扰动前和扰动后的电信号组相似度,以确定哪个相似度较高的电信号组。将相似度较高的电信号组对应的二极管阵列所在的空间角度设为最优接收角度,并将该最优接收角度暂存于微机处理器4内,微机处理器4将该最优接收角度信息发送至微机电系统,微机电系统的执行机构将二极管阵列调至该最优接收角度,最优接收角度随每次扰动输入得到更新。这些计算过程由微机处理器4按程序代码执行,程序的原理流程图如图5所示。
上述处理环节包括对有效电信号组的冗余平均处理,得到一路相似度最大信号,该路相似度最大信号经低通滤波和整形后得到理想的信号,进入解调环节。由于多组电信号与多组电信号计算相似度的量较大,为简化计算,提高可实施性,用上述的一路相似度最大信号代表其所在电信号组,用于计算和比较相似度值。因此,该路相似度最大信号反馈回微机处理器4作为计算相似度的基准电信号。
进一步说明,计算最优接收空间角度的步骤如下:
步骤a:设最优接收角度的坐标变量为(Xopt,Yopt,Zopt);
步骤b:设第k(k为正整数)次扰动输入前接收角度的坐标为(X0,Y0,Z0),其电信号对应的波形组根据波形相似度计算或互相关运算得到有效电信号组(V01,.......,V0n),该有效电信号组(V01,.......,V0n)冗余平均后得到一路相似度最大信号Vk,该路相似度最大信号Vk与第k-1次扰动输入前的相似度最大信号Vk-1比较,得到相似度值为fk-1
步骤c:第k次扰动输入,扰动量为(△X0,△Y0,△Z0),扰动后的接收角度的坐标为(X0+△X0,Y0+△Y0,Z0+△Z0),其电信号相对的波形组根据波形相似度计算或互相关运算得到有效电信号组(V11,.......,V1m),该有效电信号组(V11,.......,V1m)冗余平均后得到一路相似度最大信号Vk+1,该路相似度最大信号Vk+1与第k次扰动输入前的相似度最大信号Vk比较,得到相似度值为fk
步骤d:比较fk-1与fk的值;
当fk-1>fk时,令(Xopt,Yopt,Zopt)取值(X0,Y0,Z0),当fk-1≤fk时,令(Xopt,Yopt,Zopt)取值(X0+△X0,Y0+△Y0,Z0+△Z0)。
在计算最优接收空间角度的持续过程中,最优接收角度的坐标变量(Xopt,Yopt,Zopt)根据前次扰动后确定坐标。而在刚开始求最优接收空间角度的时候,由于之前没有扰动,可以以二极管阵列当前的接收角度初始赋值,在随后的多次扰动中得到不断修正。
相似度的计算原理,根据信号处理技术,有:
K时刻的相似度大小矩阵为:
Figure PCTCN2015089983-appb-000001
其中,
Figure PCTCN2015089983-appb-000002
表示卷积算子,K时刻的前一时刻的信号组vK-1(V1,…,Vi,…,Vj,…Vn)作为当前K时刻检测信号组vK的基准波。
定义的相似度值
Figure PCTCN2015089983-appb-000003
其中,step(·)表示单位阶跃函数,Sth为定义的阈值。
上述计算原理中,在具体实施时Sth常取值为0.8,二极管阵列信号通道数常取6~10个。该计算过程较为复杂,而现有技术中已有专用的卷积和相似度计算函数,程序编写时直接调用即可。
在实际运用中,如果每次的扰动量只作用在一维方向上,则调整至最优接收角度所需的调整次数和运算次数将会大幅度增加,找到最优接收角度的速度将会变慢,而车辆是运动的,这样不但容易导致执行机构不停地调整却不能停留到相对稳定的状态,影响到信号的接收效果,还对微机处理器4的运算速 度及微机电系统的响应速度提出了极高的要求。因此,较实用且易于实施的,所述扰动量(△X0,△Y0,△Z0)取三维合成方向,执行机构对应移动0.01mm,即可满足自适应追踪效果。

Claims (8)

  1. 一种用于LED车灯光通信的自适应接收装置,包括光电转换模块和与该光电转换模块连接的微机处理器,其特征在于:所述光电转换模块包括多通道放大电路和用于接收光信号的光电二极管阵列,所述光电二极管阵列的输出端经多通道放大电路与微机处理器连接,该光电二极管阵列安装在一微机电机构上,所述微机处理器的控制输出端连接所述微机电机构。
  2. 根据权利要求1所述的用于LED车灯光通信的自适应接收装置,其特征在于:所述微机处理器输出端连接有冗余平均电路,所述冗余平均电路的输出端反馈连接微机处理器。
  3. 根据权利要求2所述的用于LED车灯光通信的自适应接收装置,其特征在于:所述冗余平均电路的输出端还连接有低通滤波电路,所述低通滤波电路的输出端连接有整形电路。
  4. 根据权利要求3所述的用于LED车灯光通信的自适应接收装置,其特征在于:所述微机处理器包括单片机,所述微机电机构包括微动平台,所述单片机的PWM波形输出端口与微机电机构的输入端连接;
    所述光电二极管阵列包括多个定位于微动平台上的GaN基光电二极管,所述多通道放大电路为多通道放大电路,每个光电二极管的正极均连接至一工作电压源,每个光电二极管的负极各自通过一阻值相同的电阻接地,该多个光电二极管的负极经多通道放大电路与单片机的其中多个PAD端子一一对应连接;
    所述冗余平均电路包括一比较器,所所述比较器的负输入端接地,正输入端与输出端电阻连接,单片机的PA0~PA3端子与比较器的正输入端一一对应电阻连接,比较器的输出端与低通滤波电路的输入端、单片机的另一PAD端子连接。
  5. 一种用于LED车灯光通信的自适应接收方法,其特征在于:采用权利要求1-4任一项所述的接收装置,所述接收方法包括:
    采用光电二极管阵列接收LED车灯发射出来的光信号并进行光电转换,所述光电二极管阵列采用多个光电二极管并行接收和转换光信号,输出组数与光电二极管数量对应的电信号;
    采用微机处理器对光电二极管阵列输出的多组电信号进行处理,并计算处理后的各组信号的相似度或互相关系数大小,去掉偏颇电信号组保留有效电信号组,并将有效电信号组输出以进入处理环节和解调环节;
    所述微机电机构按间隔时间驱动二极管阵列在三维空间内微移动,该微移动量设为扰动输入量,微机处理器根据扰动观察法计算并比较扰动前后来自光电二极管阵列的电信号组的相似度,将相似度较高的电信号组对应的二极管阵列所在的空间角度设为最优接收角度,并将该最优接收角度暂存于微机处理器内,微机处理器将该最优接收角度信息发送至微机电机构,微机电机构将二极管阵列调至该最优接收角度,最优接收角度随每次扰动输入得到更新。
  6. 根据权利要求5所述的用于LED车灯光通信的自适应接收方法,其特征在于:所述处理环节包括对有效电信号组的冗余平均处理,得到一路相似度最大信号,该路相似度最大信号反馈回微机处理器作为计算相似度的基准电信号,该路相似度最大信号经低通滤波和整形后进入解调环节。
  7. 根据权利要求5所述的用于LED车灯光通信的自适应接收方法,其特征在于:所述微机处理器获得最优接收空间角度的具体计算如下:
    步骤a:设最优接收角度的坐标变量为(Xopt,Yopt,Zopt);
    步骤b:设第k次扰动输入前接收角度的坐标为(X0,Y0,Z0),其电信号对应的波形组根据波形相似度计算或互相关运算得到有效电信号组(V01,.......,V0n),该有效电信号组(V01,.......,V0n)冗余平均后得到一路相似度最大信号Vk,该路相似度最大信号Vk与第k-1次扰动输入前的相似度最大信号Vk-1比较,得到相似度值为fk-1;其中,k为正整数;
    步骤c:第k次扰动输入,扰动量为(△X0,△Y0,△Z0),扰动后的接收角度的坐标为(X0+△X0,Y0+△Y0,Z0+△Z0),其电信号相对的波形组根据波形相似度计算或互相关运算得到有效电信号组(V11,.......,V1m),该有效电信号组(V11,.......,V1m)冗余平均后得到一路相似度最大信号Vk+1,该路相似度最大信号Vk+1与第k次扰动输入前的相似度最大信号Vk比较,得到相似度值为fk
    步骤d:比较fk-1与fk的值;当fk-1>fk时,令(Xopt,Yopt,Zopt)取值(X0, Y0,Z0),当fk-1≤fk时,令(Xopt,Yopt,Zopt)取值(X0+△X0,Y0+△Y0,Z0+△Z0)。
  8. 根据权利要求7所述的用于LED车灯光通信的自适应接收方法,其特征在于:所述扰动量(△X0,△Y0,△Z0)取三维合成方向,执行机构对应移动0.01mm。
PCT/CN2015/089983 2014-09-30 2015-09-18 一种用于led车灯光通信的自适应接收装置及方法 WO2016050147A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017109873A RU2663808C1 (ru) 2014-09-30 2015-09-18 Устройство и способ адаптивного приема для связи с использованием светодиодных ламп транспортного средства

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410529162.4A CN105530053B (zh) 2014-09-30 2014-09-30 一种用于led车灯光通信的自适应接收装置及方法
CN201410529162.4 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016050147A1 true WO2016050147A1 (zh) 2016-04-07

Family

ID=55629423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089983 WO2016050147A1 (zh) 2014-09-30 2015-09-18 一种用于led车灯光通信的自适应接收装置及方法

Country Status (3)

Country Link
CN (1) CN105530053B (zh)
RU (1) RU2663808C1 (zh)
WO (1) WO2016050147A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782649A (zh) * 2021-01-22 2021-05-11 东南大学 一种基于串口和光电转换器阵列的无线光定位系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610115A (zh) * 2012-03-09 2012-07-25 郭丰亮 基于led可见光通信的智能交通系统
CN103684586A (zh) * 2012-08-28 2014-03-26 财团法人工业技术研究院 光通信系统、发射装置及接收装置
US20140099107A1 (en) * 2012-10-09 2014-04-10 Booz, Allen & Hamilton Method and system for data transmission and communication using imperceptible differences in visible light
CN204156869U (zh) * 2014-09-30 2015-02-11 重庆长安汽车股份有限公司 一种用于led车灯光通信的自适应接收装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4273696A (en) * 1995-09-11 1997-04-01 Valery Filippovich Ivanov Method and device for optical signalling in a vehicle
DE19625960C2 (de) * 1996-06-28 2000-05-31 Thomas Rudel Einrichtung zur Übertragung von Informationen von Fahrzeug zu Fahrzeug
US8188878B2 (en) * 2000-11-15 2012-05-29 Federal Law Enforcement Development Services, Inc. LED light communication system
JP5392533B2 (ja) * 2008-10-10 2014-01-22 ソニー株式会社 固体撮像素子、光学装置、信号処理装置及び信号処理システム
CN102415020B (zh) * 2009-04-28 2015-07-08 西门子公司 数据的光传输方法和装置
CN102307063A (zh) * 2011-09-23 2012-01-04 天津工业大学 一种基于led可见光的语音信息通告系统
CN202677621U (zh) * 2012-03-09 2013-01-16 郭丰亮 Led可见光智能交通网络系统
CN102715907A (zh) * 2012-06-28 2012-10-10 无锡莱吉特信息科技有限公司 基于mems技术的腹壁监测系统
KR101961166B1 (ko) * 2012-07-09 2019-07-18 한국전자통신연구원 가시광 무선통신 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610115A (zh) * 2012-03-09 2012-07-25 郭丰亮 基于led可见光通信的智能交通系统
CN103684586A (zh) * 2012-08-28 2014-03-26 财团法人工业技术研究院 光通信系统、发射装置及接收装置
US20140099107A1 (en) * 2012-10-09 2014-04-10 Booz, Allen & Hamilton Method and system for data transmission and communication using imperceptible differences in visible light
CN204156869U (zh) * 2014-09-30 2015-02-11 重庆长安汽车股份有限公司 一种用于led车灯光通信的自适应接收装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782649A (zh) * 2021-01-22 2021-05-11 东南大学 一种基于串口和光电转换器阵列的无线光定位系统

Also Published As

Publication number Publication date
CN105530053B (zh) 2019-08-02
CN105530053A (zh) 2016-04-27
RU2663808C1 (ru) 2018-08-10

Similar Documents

Publication Publication Date Title
WO2016150088A1 (zh) 一种基于可见光通信的汽车追尾预警系统及方法
CN104485993B (zh) 一种车载可见光无线数字语音通信系统
CN111610484B (zh) 一种基于occ的自动驾驶车辆跟踪定位方法
CN102424016A (zh) 一种基于机器视觉的汽车前照灯自动控制系统
CN103561511A (zh) 一种亮度可控的道路照明控制方法及系统
US10214137B2 (en) Dual color temperature vehicle lamp able to judge driving environment based on invisible light and judging method
US20220026541A1 (en) Photodetection device and distance measurement device
CN203523115U (zh) 一种亮度可控的道路照明系统
CN109050526A (zh) 一种基于光通讯的防追尾和柔性刹车的汽车安全装置及其控制方法
CN105471502A (zh) 基于可见光和太阳能板的通信系统及方法
WO2016050147A1 (zh) 一种用于led车灯光通信的自适应接收装置及方法
CN204156869U (zh) 一种用于led车灯光通信的自适应接收装置
CN112564797B (zh) 基于led通信的车载通信系统
CN105228294A (zh) 照明装置调节亮度的方法、照明装置及照明系统
WO2021124762A1 (ja) 受光装置及び受光装置の制御方法、並びに、測距装置
WO2021111766A1 (ja) 受光装置及び受光装置の制御方法、並びに、測距装置
CN101540635B (zh) Led交通灯可见光无线通信接收机的接收方法及应用方法
CN206914226U (zh) 车前光源位置识别装置及车辆远光灯自动控制系统
WO2022059397A1 (ja) 測距システムおよび光検出装置
CN204425746U (zh) 汽车刹车灯亮度调节电路
CN107336670A (zh) 车前光源位置识别装置及车辆远光灯自动控制系统
CN208393215U (zh) 一种新型adb前照灯控制系统
CN208997984U (zh) 一种新型急刹警示灯
CN106681360B (zh) 一种带高亮度空中照明的多旋翼无人机
CN211844240U (zh) 一种汽车自动会灯器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017109873

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15847856

Country of ref document: EP

Kind code of ref document: A1