WO2016049854A1 - System and method for monitoring objects - Google Patents

System and method for monitoring objects Download PDF

Info

Publication number
WO2016049854A1
WO2016049854A1 PCT/CN2014/087951 CN2014087951W WO2016049854A1 WO 2016049854 A1 WO2016049854 A1 WO 2016049854A1 CN 2014087951 W CN2014087951 W CN 2014087951W WO 2016049854 A1 WO2016049854 A1 WO 2016049854A1
Authority
WO
WIPO (PCT)
Prior art keywords
accordance
monitoring objects
location
computing module
communication devices
Prior art date
Application number
PCT/CN2014/087951
Other languages
French (fr)
Inventor
Xiaosheng Chen
Yanfei LI
Original Assignee
Hong Kong R&D Centre for Logistics and Supply Chain Management Enabling Technologies Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Kong R&D Centre for Logistics and Supply Chain Management Enabling Technologies Limited filed Critical Hong Kong R&D Centre for Logistics and Supply Chain Management Enabling Technologies Limited
Priority to PCT/CN2014/087951 priority Critical patent/WO2016049854A1/en
Priority to CN201480083743.8A priority patent/CN107408325B/en
Publication of WO2016049854A1 publication Critical patent/WO2016049854A1/en
Priority to HK18104598.8A priority patent/HK1245485A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling

Definitions

  • the present invention relates to a system and method for monitoring objects and particularly, although not exclusively, to a system and method for monitoring objects on a work site for the purpose of tracking the movements of each object.
  • Operators that work or perform tasks at a particular location or site may be at risk of accidents or injuries. Examples of these environments include workers who work at an elevated height, building sites, hospitals, prisons or factories. In these sites, users may be surrounded by dangerous machines or have access to dangerous area. These conditions may put the operator’s life at risk of death or serious injury.
  • a method for monitoring objects comprising the steps of: determining and communicating one or more communication devices associated with each object being monitored with one or more reader modules; tracking location of each object according to one or more statuses retrieved from the one or more communication devices; comparing the location of each object with one or more predetermined alarm conditions; and whereupon the location of each object satisfy the one or more predetermined alarm conditions, trigger an alert.
  • the one or more communication devices communicate with the one or more reader modules through a wireless communication network.
  • the one or more reader modules comprise one or more readers.
  • the one or more communication devices include one or more wireless communication devices.
  • the wireless communication devices may include radio-frequency identification (RFID) devices.
  • RFID radio-frequency identification
  • a computing module uses one or more mapping methods to determine the location of each object.
  • the computing module further includes one or more noise filtering method to increase accuracy of the determined location of each object.
  • the method further comprises a database being arranged to communicate with the computing module and a user interface to store information retrieved from the computing module and allow subsequent processing of the stored information.
  • the user interface allows a user to interact with the one or more communication devices associated with each object being monitored.
  • the predetermined alarm conditions include access to danger zone, striking an object, being struck by a moving object, and falling from a height.
  • the alert is an audio, physical, visual alert or a combination thereof performed by the communication device associated with the object having the location satisfied with the predetermined alarm conditions.
  • a system for monitoring objects comprising: one or more reader modules for determining and communicating with one or more communication devices associated with each object being monitored; a computing module for tracking location of each object according to one or more statuses retrieved from the one or more communication devices, wherein the computing module compares the location of each object with one or more predetermined alarm conditions; and whereupon the location of each object satisfy the one or more predetermined alarm conditions, trigger an alert.
  • the one or more communication devices communicate with the one or more reader modules through a wireless communication network.
  • the one or more reader modules comprise one or more readers.
  • the one or more communication devices include one or more wireless communication devices.
  • the computing module uses one or more mapping methods to determine the location of each object being monitored from the one or more statuses.
  • the computing module further includes one or more noise filtering method to increase accuracy of the determined location of each object.
  • system further comprises a database arranged to communicate with the computing module and a user interface arranged to store information retrieved from the computing module and allow subsequent processing of the stored information.
  • the user interface allows a user to interact with the one or more communication devices associated with each object being monitored.
  • the predetermined alarm conditions include access to danger zone, striking an object, being struck by a moving object, and falling from a height.
  • the alert is an audio, physical, visual alert or a combination thereof performed by the communication device associated with the object having the location satisfied with the predetermined alarm conditions.
  • Figure 1 illustrates an embodiment of a system for monitoring objects in accordance with the present invention
  • Figure 2 is a block diagram illustrating an embodiment of Figure 1;
  • FIG. 3 illustrates an arrangement of communication devices and reader modules in accordance with one embodiment of the present invention
  • Figure 4 illustrates a noise-filtering method in accordance with one embodiment of the present invention
  • Figure 5 shows monitoring parameters that can be defined by a user via a user interface in accordance with one embodiment of the present invention
  • Figure 6 illustrates one embodiment of a system for monitoring objects of the present invention.
  • the system 100 for monitoring objects include a computing module 102 arranged to communicate with a plurality of communication devices 104 each arranged to track objects.
  • the computing module 102 is arranged to communicate with each of the plurality of communication devices 104 over a communication network, such as a wireless telecommunication network.
  • each of the plurality of communication device 104 is closely associated with an object that is being monitored.
  • the communication device 104 may be arranged to be engaged or otherwise connected with the object being monitored and is further arranged to detect the location of the object in operation. This location, along with identity information of the object to which it is engaged, is transmitted to the computing module 102 for further processing so as to store the location of the object and, if appropriate, raise any necessary alerts or alarms concerning the status or location of the object.
  • the computing module 102 processes the information received from the communication device 104 and identifies the location of the object. Preferably, the location of the object identified is then compared with a set of predetermined alarm conditions to determine if the object satisfies with the alarm condition. If the location retrieved matches the alarm condition, the computing module 102 will trigger an alert to the object that is determined at risk.
  • the alarm condition may be associated with different dangers that may be present in the area, such as falling from elevated height, striking against a moving object or the presence of the object in a danger zone such as a confined space.
  • the alert is an audio, physical, visual alert or a combination thereof and may be made to a manager or supervisor such that appropriate actions can be taken.
  • FIG. 2 there is illustrated a block diagram showing an embodiment of a system of monitoring objects comprising steps of: one or more reader modules for determining and communicating with one or more communication devices associated with each object being monitored with one or more reader modules; a computing module for tracking location of each object according to one or more statuses retrieved from the one or more communication devices; wherein the computing module compares the location of each object with one or more predetermined alarm conditions; and whereupon the location of each object satisfy the one or more predetermined alarm conditions, trigger an alert.
  • the system for monitoring objects provides a real-time management for tracking objects in a workplace through a wired or wireless communication network.
  • the system 200 is arranged to have three layers, namely a presentation layer 202, a computing layer 204 and a data layer 206.
  • the presentation layer 202 is a layer that is arranged to be made accessible to users to the system to monitor objects.
  • the presentation layer allows users and objects to interact with the system. It functions to display location information of the objects, prompts alert to a user or objects, and to communicate with the computing layer 204 to transfer information for further processing.
  • the computing layer 204 plays a key role in performing detailed processing of information received from other layers. It may involve a plurality of methods to process signals and analyze data for further display and storage. Preferably, it tracks location of the object by determining the object’s status from the signal received from the presentation layer 202 and processes any commands received from the presentation layer 202. The computing layer 204 also communicates with the data layer 206 to store the information retrieved during signal processing.
  • the data layer 206 stores the data received from the computing layer 204 and allows updates for any changes during operation.
  • the data layer 206 is also arranged to be in communication with the presentation layer 202 such that a user is capable to retrieve any data or record from the data layer 206.
  • the presentation layer 202 may include a communication device 208 arranged to communicate with a reader module 210, and a user interface 212 in communication with a web server 214.
  • the communication device 208 which may include a wireless communication device and/or a radio-frequency identification (RFID) device being arranged to be carried by the object being monitored or to be affixed on the object.
  • RFID radio-frequency identification
  • the communication device 208 can actively communicate with the reader module 210 to receive and transmit signals to the reader module 210 for further processing.
  • the reader module 210 is provided with one or more readers distributed in the area being monitored such that the readers are capable to communicate with the communication device 208 via a wireless communication network.
  • the RFID device actively makes use of radio-frequency electromagnetic field to receive and transfer signals to static readers to determine the status of the object and receive command to trigger an alert if necessary.
  • the signals received from the communication device 208 are then directed to a computing module 216 arranged in the computing layer 204 for analysis.
  • the reader module 210 will then transmit the command to the communication device 208 to activate an audio, physical or visual alert on the communication device 208.
  • the user interface 212 is arranged to display information and allow a user to interact with the system 200.
  • the user interface 212 receives information from the computing layer 204 via a web server 214.
  • the user interface 212 is preferably a web-based interface such that it enables a user to access the interface 212 at any place and at any time.
  • portable devices can be used to access the user interface 212 for monitoring the objects in the workplace.
  • the user interface 212 allows a user to interact with the monitoring system 200, such as sending a command to alert the objects in the workplace, redefining any parameters of the computing layer 204, and inputting information for record.
  • the web server 214 is also arranged to communicate with the data layer 206, as such it allows a user to retrieve any data from a database 218 or make any changes to the stored data.
  • the computing layer 204 is arranged to perform detailed processing of information. It may comprise a computing module 216 arranged to communicate with the reader module 210 of the presentation layer 202. The computing module 216 processes the signals received from the reader module 210 to determine the statuses of the objects being monitored. Accordingly, the locations of the objects are identified and tracked for record. The computing module 216 may further analyses the locations determined with a set of predetermined alarm conditions to determine whether the objects are at risk of certain danger.
  • Examples of these alarm conditions may related to the risks of an object falling from the elevated height, striking against another object, being struck by another object, etc.
  • the computing module 216 checks whether the status of each object falls within the ranging criteria of the above conditions. If the status is found to match the condition, the computing module 216 will send a command to trigger an alert on the corresponding communication device 208 which is associated with the object at risk. Accordingly, the object is alerted to pay attention to the possible danger around him.
  • the computing module 216 also communicates with the user interface 212 via the web server 214.
  • the computing module 216 may also provide real-time statuses of the objects being monitored to a user through displaying the relevant information on the user interface 212.
  • the computing module 216 In the case that the computing module 216 identifies an object matches the predetermined alarm conditions, besides triggering an alert on the corresponding communication device 208, the computing module 216 also prompts an alert on the user interfhce 212 to notify the user about the condition. Accordingly, the user is informed to inspect the safety condition of the workplace. In addition, the user may also send a command to the computing module 216 if necessary, for example, to trigger an alert to an object when the status of the object is close to the predetermined alarm conditions but not yet fhll within the criteria.
  • the data retrieved from the computing module 216 are transferred to a database 218 of the data layer 206 for storage.
  • the data layer 206 mainly includes a database 218 for data storage and updates.
  • the database 218 receives updated information from the computing module 216 and responds to queries from the user interface 212 to retrieve specific data.
  • the database 218 enables the computing module 216 and the user interface 212 to quickly retrieve desired pieces of data for their use whilst also storing information from the computing module 216 for subsequent processing, such as data mining, audits or assessment purposes.
  • a workplace being monitored may have different work zones.
  • Each work zone is provided with a reader module to communicate with one or more communication devices to monitor objects allocated in the work zone via a wired or wireless communication network.
  • each work zone 302, 304 is provided with one or more readers 306 distributed in the work zone 302, 304 to transmit and receive signal from one or more communication devices 308 provided in the zone.
  • the communication device 308 is a RFID device such that the RFID device is carried by the object or affixed to the object to actively receive or transfer signals to the reader 306 for further processing.
  • the reader 306 receives signals from the communication device 308 and transmits to a repeater 310 for signal amplification. This is advantageous for a long distance re-transmission of signals by covering a longer distance.
  • Each work zone 302, 304 may be provided with a repeater 310.
  • the repeater 310 is arranged to communicate with the readers 306 and amplify the signal received for further transmission to a router 312.
  • the router 312 is provided in a workplace to exchange information between the reader module and a computing module 314.
  • the router 312 may be arranged to receive signals from the computing module 314 and direct them to the corresponding repeater 310 for further transmission to the reader 306 and communication device 308.
  • the repeater 310 may also communicate with the communication device 308 for signal exchange.
  • the signals given by the reader module and communication device 308 are directed to the computing module 314 for further processing.
  • the computing module 314 performs detailed information processing to retrieve the statuses of the objects being monitored in the workplace.
  • the computing module 314 comprises one or more methods to determine the statuses of the objects.
  • the computing module 314 makes use of one or more reference points to identify the unknown location of an object.
  • the reference points may be the locations of static readers 306 distributed in the workplace.
  • the computing module 314 will then analyze the response time of signal exchange between the readers 306 and the communication device 308 to determine the distance between them so as to locate the object associated with the corresponding communication device 308.
  • the computing module utilizes a triangulation method for the location determination, i. e. mapping.
  • the triangulation method applies the theory of least squares to accurately position the object by receiving signals from different reference points such as the readers.
  • the computing module calculates the distance (e. g. d n ) of the communication device from each of the static reader, based upon the lag time between when the static reader send a signal to the communication device and receives the answer back.
  • the triangulation method thus accurately pinpoints each object in a workplace.
  • the workplace may be arranged to have a plurality of readers for referencing.
  • the distance d n retrieved for each object relative to one or more (preferably four or more) known location readers may be dropped or removed and recalculated if the distance value shows a likely error due to having erratic values. This is advantageous in that the distance measured may at times experience interference which will cause the value to be rendered useless.
  • GPS global positioning system
  • the computing module may comprise one or more methods to remove undesirable noise from the raw signals.
  • Noise-filtering may be necessary when background noise and interfering signal are significant. This is particularly advantageous if the communication devices and static readers are susceptible to signal reflections or interferences from buildings or obstructions in the workplace.
  • noise-filtering method With reference to Figure 4, there is illustrated an example of noise-filtering method.
  • the original signals 402 received are firstly processed by removing wild values that are obviously invalid.
  • the signals with wild values removed 404 are then filtered by noise-filtering methods such as Infinite-impulse-response (IIR) Low Pass Filter method to minimize invalid data and improve the accuracy of mapping.
  • IIR Infinite-impulse-response
  • the noise-filtering method is arranged to perform four functional steps. These include:
  • the computing module may further comprise other signal processing methods to increase the smoothness of the information tracked. Due to the time delay during signal transmission or other factors, the data retrieved may lack smoothness in reflecting the real situation for real-time management. Therefore, methods like interpolation and/or extrapolation may be used to facilitate a smoother tracking of object. Interpolation method fills in the location points between the locations determined from the previous processing. In contrast, extrapolation method creates tangential line at the end of the location retrieved and predicts the possible location of the object. As such, a user can have a more complete picture of the status of the object in the workplace.
  • a user interface 500 for monitoring a workplace The user interface 500 is arranged to allow a user to interact with the system by defining a set of monitoring parameters. These parameters may include alarm conditions, arrangements of communication device associated with different objects, and reference points for mapping.
  • the user interface 500 enables a user to monitor objects in a construction site.
  • the objects include workers, vehicles and machines.
  • the user is allowed to arrange different work zones and define where the danger zones 504 are. Accordingly, when the data retrieved match the defined zone points 506 of danger zones 504, an alert will be given to the user and the corresponding worker who access the danger zone 504. As such, both parties are notified to be aware of the danger.
  • the user may also define the arrangement of the communication devices such as type and number of communication devices being provided, as well as distribution of the objects in the workplace.
  • sensors are provided to the objects.
  • the user interface 500 marked the sensors 508 according to different work zone and object types.
  • cranes 516 are attached with specific crane sensors 518 for detection while the workers carry mobile sensors allocated with different work zones 510.
  • Different work zones are also defined with specific location points 512.
  • the user may also define the reference point 514 of readers distributed in the work zone for mapping locations of the objects.
  • the interactive mode of the user interface allows the user to update the management parameters at any time when there is any change during operation. The user may simply add, edit or remove any monitoring items in the workplace in accordance with the practical need. Accordingly, an updated record for real-time management can be maintained.
  • the system may be used to monitor a construction site having one or more workers or vehicles in the site.
  • a user such as a site manager, may be employed to monitor the entire site, and all the workers and devices in the site.
  • the site manager does not only manage the working progress, but also monitor the safety of the workers in the site.
  • the system 600 may be provided with a wired or wireless communication network 602 to facilitate the site manager in monitoring the real-time status of the workers and vehicles.
  • a 3G telecommunication network 602 enables the site manager to pinpoint the workers or vehicles in the site via a web-based user interface (not shown) .
  • the site manager is allowed to check the status of all the workers and devices associated with communication devices in the site at any time and at any place through a portable device such as a smart phone, a laptop computer and a tablet computer.
  • the communication devices 604 are carried by the workers or affixed to the vehicles or devices to actively communicate with the readers 606 distributed in the site.
  • RF1D device such as RFID tag is used as a communication device 604 to actively receive and transmit signals to the readers 606.
  • a router 608 is arranged to direct the signals to a computing module 610.
  • the computing module 610 processes the signals received from the readers 606, and determines status of each worker or vehicle.
  • the processed data including geolocation information of the objects are then transferred to a web server 612 via the telecommunication network 602 so as to be accessible by the site manager through the web-based user interface.
  • the site manager can readily access the user interface to obtain the real-time status of the site when he travels around the site or off the site.
  • the information retrieved by the computing module 610 will also be stored up in a database 614.
  • the database 614 may also carry out subsequent processing of the stored data.
  • the site manager is also allowed to obtain the stored data from the database by sending queries through the user interface.
  • the statuses of these objects are considered to match the predetermined alarm condition with location and movement determined by the computing module 610.
  • the computing module 610 will send commands to the communication devices 604 associated with the corresponding worker and send commands to the user interface to alert both the worker at risk and the site manager about the status.
  • An audio, physical or visual alert may then be generated on the communication devices to alert the worker, as well as generated on the user interface to remind the site manager to inspect the site. Accordingly, the worker is then altered to check the working environment and to pay attention to the hidden safety risk.
  • the monitoring system provides a real time monitoring approach for the site manager to monitor the entire site and be informed once there is abnormality occurs.
  • a real time monitoring system tracking the location and monitoring safety of the objects in the site, the safety of the workers is greatly enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Alarm Systems (AREA)

Abstract

A system (100) for monitoring objects comprising: one or more reader modules for determining and communicating with one or more communication devices (104) associated with each object being monitored; a computing module (102) for tracking location of each object according to one or more statuses retrieved from the one or more communication devices (104), wherein the computing module (102) compares the location of each object with one or more predetermined alarm conditions; and whereupon the location of each object satisfies the one or more predetermined alarm conditions, triggering an alert.

Description

A SYSTEM AND METHOD FOR MONITORING OBJECTS TECHNICAL FIELD
The present invention relates to a system and method for monitoring objects and particularly, although not exclusively, to a system and method for monitoring objects on a work site for the purpose of tracking the movements of each object.
BACKGROUND
Operators that work or perform tasks at a particular location or site may be at risk of accidents or injuries. Examples of these environments include workers who work at an elevated height, building sites, hospitals, prisons or factories. In these sites, users may be surrounded by dangerous machines or have access to dangerous area. These conditions may put the operator’s life at risk of death or serious injury.
In order to manage operator safety, many work sites and environment have put in place specific regulations or rules as to the operation of the site and the conduct of its workers. Often, a significant amount of time is spent training individual operators so that safety protocols can be followed. However, due to carelessness, lack of training or simply human error, operators may find themselves in dangerous situations, such as the unauthorized movements into danger zones. In these situations, unless there is a safety officer present, workers may not be sufficiently warned before an accident occurs.
SUMMARY OF THE INVENTION
In accordance with a first aspect of the present invention, there is provided a method for monitoring objects comprising the steps of: determining and communicating one or more communication devices associated with each object being monitored with one or more reader modules; tracking location of each object according to one or more statuses retrieved from the one or more communication devices; comparing the location of each object with one or more predetermined alarm conditions; and whereupon the location of each object satisfy the one or more predetermined alarm conditions, trigger an alert.
In one embodiment of the first aspect, the one or more communication devices communicate with the one or more reader modules through a wireless communication network. 
In one embodiment of the first aspect, the one or more reader modules comprise one or more readers.
In one embodiment of the first aspect, the one or more communication devices include one or more wireless communication devices.
In one embodiment, the wireless communication devices may include radio-frequency identification (RFID) devices.
In one embodiment of the first aspect, a computing module uses one or more mapping methods to determine the location of each object.
In one embodiment of the first aspect, the computing module further includes one or more noise filtering method to increase accuracy of the determined location of each object.
In one embodiment of the first aspect, the method further comprises a database being arranged to communicate with the computing module and a user interface to store information retrieved from the computing module and allow subsequent processing of the stored information.
In one embodiment of the first aspect, the user interface allows a user to interact with the one or more communication devices associated with each object being monitored.
In one embodiment of the first aspect, the predetermined alarm conditions include access to danger zone, striking an object, being struck by a moving object, and falling from a height.
In one embodiment of the first aspect, the alert is an audio, physical, visual alert or a combination thereof performed by the communication device associated with the object having the location satisfied with the predetermined alarm conditions.
In accordance with a second aspect of the present invention, there is provided a system for monitoring objects comprising: one or more reader modules for determining and communicating with one or more communication devices associated with each object being monitored; a computing module for tracking location of each object according to one or more statuses retrieved from the one or more communication devices, wherein the computing module compares the location of each object with one or more predetermined alarm conditions; and whereupon the location of each object satisfy the one or more predetermined  alarm conditions, trigger an alert.
In one embodiment of the second aspect, the one or more communication devices communicate with the one or more reader modules through a wireless communication network.
In one embodiment of the second aspect, the one or more reader modules comprise one or more readers.
In one embodiment of the second aspect, the one or more communication devices include one or more wireless communication devices.
In one embodiment of the second aspect, the computing module uses one or more mapping methods to determine the location of each object being monitored from the one or more statuses.
In one embodiment of the second aspect, the computing module further includes one or more noise filtering method to increase accuracy of the determined location of each object.
In one embodiment of the second aspect, the system further comprises a database arranged to communicate with the computing module and a user interface arranged to store information retrieved from the computing module and allow subsequent processing of the stored information.
In one embodiment of the second aspect, the user interface allows a user to interact with the one or more communication devices associated with each object being monitored.
In one embodiment of the second aspect, the predetermined alarm conditions include access to danger zone, striking an object, being struck by a moving object, and falling from a height.
In one embodiment of the second aspect, the alert is an audio, physical, visual alert or a combination thereof performed by the communication device associated with the object having the location satisfied with the predetermined alarm conditions.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the present invention will now be described, by way of example, with  reference to the accompanying drawings in which:
Figure 1 illustrates an embodiment of a system for monitoring objects in accordance with the present invention;
Figure 2 is a block diagram illustrating an embodiment of Figure 1;
Figure 3 illustrates an arrangement of communication devices and reader modules in accordance with one embodiment of the present invention;
Figure 4 illustrates a noise-filtering method in accordance with one embodiment of the present invention;
Figure 5 shows monitoring parameters that can be defined by a user via a user interface in accordance with one embodiment of the present invention;
Figure 6 illustrates one embodiment of a system for monitoring objects of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
With reference to Figure 1, there is illustrated an embodiment of a system for monitoring objects. In this example, the system 100 for monitoring objects include a computing module 102 arranged to communicate with a plurality of communication devices 104 each arranged to track objects. As shown, the computing module 102 is arranged to communicate with each of the plurality of communication devices 104 over a communication network, such as a wireless telecommunication network.
In this system 100, each of the plurality of communication device 104 is closely associated with an object that is being monitored. The communication device 104 may be arranged to be engaged or otherwise connected with the object being monitored and is further arranged to detect the location of the object in operation. This location, along with identity information of the object to which it is engaged, is transmitted to the computing module 102 for further processing so as to store the location of the object and, if appropriate, raise any necessary alerts or alarms concerning the status or location of the object.
In one example, the computing module 102 processes the information received from the communication device 104 and identifies the location of the object. Preferably, the location of  the object identified is then compared with a set of predetermined alarm conditions to determine if the object satisfies with the alarm condition. If the location retrieved matches the alarm condition, the computing module 102 will trigger an alert to the object that is determined at risk. In this example, the alarm condition may be associated with different dangers that may be present in the area, such as falling from elevated height, striking against a moving object or the presence of the object in a danger zone such as a confined space. Preferably, the alert is an audio, physical, visual alert or a combination thereof and may be made to a manager or supervisor such that appropriate actions can be taken.
With reference to Figure 2, there is illustrated a block diagram showing an embodiment of a system of monitoring objects comprising steps of: one or more reader modules for determining and communicating with one or more communication devices associated with each object being monitored with one or more reader modules; a computing module for tracking location of each object according to one or more statuses retrieved from the one or more communication devices; wherein the computing module compares the location of each object with one or more predetermined alarm conditions; and whereupon the location of each object satisfy the one or more predetermined alarm conditions, trigger an alert.
In this embodiment, the system for monitoring objects provides a real-time management for tracking objects in a workplace through a wired or wireless communication network. In this example, the system 200 is arranged to have three layers, namely a presentation layer 202, a computing layer 204 and a data layer 206.
The presentation layer 202 is a layer that is arranged to be made accessible to users to the system to monitor objects. The presentation layer allows users and objects to interact with the system. It functions to display location information of the objects, prompts alert to a user or objects, and to communicate with the computing layer 204 to transfer information for further processing.
In this embodiment, the computing layer 204 plays a key role in performing detailed processing of information received from other layers. It may involve a plurality of methods to process signals and analyze data for further display and storage. Preferably, it tracks location of the object by determining the object’s status from the signal received from the presentation layer 202 and processes any commands received from the presentation layer 202. The computing layer 204 also communicates with the data layer 206 to store the information retrieved during signal processing.
In this embodiment, the data layer 206 stores the data received from the computing  layer 204 and allows updates for any changes during operation. The data layer 206 is also arranged to be in communication with the presentation layer 202 such that a user is capable to retrieve any data or record from the data layer 206.
In accordance with Figure 2, the presentation layer 202 may include a communication device 208 arranged to communicate with a reader module 210, and a user interface 212 in communication with a web server 214. The communication device 208 which may include a wireless communication device and/or a radio-frequency identification (RFID) device being arranged to be carried by the object being monitored or to be affixed on the object. The communication device 208 can actively communicate with the reader module 210 to receive and transmit signals to the reader module 210 for further processing. The reader module 210 is provided with one or more readers distributed in the area being monitored such that the readers are capable to communicate with the communication device 208 via a wireless communication network. In the case that a RFID device is used, the RFID device actively makes use of radio-frequency electromagnetic field to receive and transfer signals to static readers to determine the status of the object and receive command to trigger an alert if necessary. The signals received from the communication device 208 are then directed to a computing module 216 arranged in the computing layer 204 for analysis. On the other hand, when a computing layer 204 sends a command to trigger an alert, the reader module 210 will then transmit the command to the communication device 208 to activate an audio, physical or visual alert on the communication device 208.
Another component of the presentation layer 202 is the user interface 212 which is arranged to display information and allow a user to interact with the system 200. The user interface 212 receives information from the computing layer 204 via a web server 214. In other words, the user interface 212 is preferably a web-based interface such that it enables a user to access the interface 212 at any place and at any time. In one example, portable devices can be used to access the user interface 212 for monitoring the objects in the workplace. The user interface 212 allows a user to interact with the monitoring system 200, such as sending a command to alert the objects in the workplace, redefining any parameters of the computing layer 204, and inputting information for record. The web server 214 is also arranged to communicate with the data layer 206, as such it allows a user to retrieve any data from a database 218 or make any changes to the stored data.
In this embodiment, the computing layer 204 is arranged to perform detailed processing of information. It may comprise a computing module 216 arranged to communicate with the reader module 210 of the presentation layer 202. The computing module 216 processes the signals received from the reader module 210 to determine the statuses of the objects being  monitored. Accordingly, the locations of the objects are identified and tracked for record. The computing module 216 may further analyses the locations determined with a set of predetermined alarm conditions to determine whether the objects are at risk of certain danger.
Examples of these alarm conditions may related to the risks of an object falling from the elevated height, striking against another object, being struck by another object, etc. The computing module 216 checks whether the status of each object falls within the ranging criteria of the above conditions. If the status is found to match the condition, the computing module 216 will send a command to trigger an alert on the corresponding communication device 208 which is associated with the object at risk. Accordingly, the object is alerted to pay attention to the possible danger around him. The computing module 216 also communicates with the user interface 212 via the web server 214. The computing module 216 may also provide real-time statuses of the objects being monitored to a user through displaying the relevant information on the user interface 212. In the case that the computing module 216 identifies an object matches the predetermined alarm conditions, besides triggering an alert on the corresponding communication device 208, the computing module 216 also prompts an alert on the user interfhce 212 to notify the user about the condition. Accordingly, the user is informed to inspect the safety condition of the workplace. In addition, the user may also send a command to the computing module 216 if necessary, for example, to trigger an alert to an object when the status of the object is close to the predetermined alarm conditions but not yet fhll within the criteria.
The data retrieved from the computing module 216 are transferred to a database 218 of the data layer 206 for storage. The data layer 206 mainly includes a database 218 for data storage and updates. The database 218 receives updated information from the computing module 216 and responds to queries from the user interface 212 to retrieve specific data. The database 218 enables the computing module 216 and the user interface 212 to quickly retrieve desired pieces of data for their use whilst also storing information from the computing module 216 for subsequent processing, such as data mining, audits or assessment purposes.
With reference to Figure 3, there is illustrated an embodiment of arrangement of communication device and reader module in a workplace. In one example, a workplace being monitored may have different work zones. Each work zone is provided with a reader module to communicate with one or more communication devices to monitor objects allocated in the work zone via a wired or wireless communication network. In this embodiment, each  work zone  302, 304 is provided with one or more readers 306 distributed in the  work zone  302, 304 to transmit and receive signal from one or more communication devices 308 provided in the zone. Preferably, the communication device 308 is a RFID device such that the RFID device  is carried by the object or affixed to the object to actively receive or transfer signals to the reader 306 for further processing.
Preferably, the reader 306 receives signals from the communication device 308 and transmits to a repeater 310 for signal amplification. This is advantageous for a long distance re-transmission of signals by covering a longer distance. Each  work zone  302, 304 may be provided with a repeater 310. The repeater 310 is arranged to communicate with the readers 306 and amplify the signal received for further transmission to a router 312. The router 312 is provided in a workplace to exchange information between the reader module and a computing module 314.
On the other hand, the router 312 may be arranged to receive signals from the computing module 314 and direct them to the corresponding repeater 310 for further transmission to the reader 306 and communication device 308. In an alternative embodiment, the repeater 310 may also communicate with the communication device 308 for signal exchange.
In this embodiment, the signals given by the reader module and communication device 308 are directed to the computing module 314 for further processing. The computing module 314 performs detailed information processing to retrieve the statuses of the objects being monitored in the workplace.
Preferably, the computing module 314 comprises one or more methods to determine the statuses of the objects. In this embodiment, the computing module 314 makes use of one or more reference points to identify the unknown location of an object. The reference points may be the locations of static readers 306 distributed in the workplace. The computing module 314 will then analyze the response time of signal exchange between the readers 306 and the communication device 308 to determine the distance between them so as to locate the object associated with the corresponding communication device 308.
In this example, the computing module utilizes a triangulation method for the location determination, i. e. mapping. The triangulation method applies the theory of least squares to accurately position the object by receiving signals from different reference points such as the readers. As illustrated below, provided with known coordinates e. g. (xn, yn) of the static readers, the computing module calculates the distance (e. g. dn) of the communication device from each of the static reader, based upon the lag time between when the static reader send a signal to the communication device and receives the answer back.
Figure PCTCN2014087951-appb-000001
(Generalized Least Squares) 
The triangulation method thus accurately pinpoints each object in a workplace. In order to increase the accuracy of such a location mapping, the workplace may be arranged to have a plurality of readers for referencing. In some example embodiments, in order to improve the accuracy of the location mapping, the distance dn retrieved for each object relative to one or more (preferably four or more) known location readers may be dropped or removed and recalculated if the distance value shows a likely error due to having erratic values. This is advantageous in that the distance measured may at times experience interference which will cause the value to be rendered useless.
Alternatively, other possible mapping methods such as global positioning system (GPS) can also be used to locate the objects. GPS makes use of signals from satellites to determine the location with a high accuracy in an area. This is advantageous for workplace having fewer  large building and underground construction.
In a further embodiment, the computing module may comprise one or more methods to remove undesirable noise from the raw signals. Noise-filtering may be necessary when background noise and interfering signal are significant. This is particularly advantageous if the communication devices and static readers are susceptible to signal reflections or interferences from buildings or obstructions in the workplace.
With reference to Figure 4, there is illustrated an example of noise-filtering method. The original signals 402 received are firstly processed by removing wild values that are obviously invalid. The signals with wild values removed 404 are then filtered by noise-filtering methods such as Infinite-impulse-response (IIR) Low Pass Filter method to minimize invalid data and improve the accuracy of mapping. This method eliminates most of the frequencies above a cutoff frequency while passing those below unchanged. Accordingly, a smoother mapping picture 406 is obtained.
In one example embodiment, the noise-filtering method is arranged to perform four functional steps. These include:
1 -Screen the data (original signals 402 received ) by maximum and minimize distance boundaries;
2 -Use an IIR filter to smooth the distance data;
3 -Use a prediction algorithm to optimize the distance data; and
4 -Use the IIR filter again to smooth the Coordinate information (X-Y-Z) after conversion from the optimized distance.
Preferably, the computing module may further comprise other signal processing methods to increase the smoothness of the information tracked. Due to the time delay during signal transmission or other factors, the data retrieved may lack smoothness in reflecting the real situation for real-time management. Therefore, methods like interpolation and/or extrapolation may be used to facilitate a smoother tracking of object. Interpolation method fills in the location points between the locations determined from the previous processing. In contrast, extrapolation method creates tangential line at the end of the location retrieved and predicts the possible location of the object. As such, a user can have a more complete picture of the status of the object in the workplace.
With reference to Figure 5, there is illustrated an embodiment of a user interface 500 for monitoring a workplace. The user interface 500 is arranged to allow a user to interact with the system by defining a set of monitoring parameters. These parameters may include alarm conditions, arrangements of communication device associated with different objects, and reference points for mapping.
In this embodiment, the user interface 500 enables a user to monitor objects in a construction site. Preferably, the objects include workers, vehicles and machines. The user is allowed to arrange different work zones and define where the danger zones 504 are. Accordingly, when the data retrieved match the defined zone points 506 of danger zones 504, an alert will be given to the user and the corresponding worker who access the danger zone 504. As such, both parties are notified to be aware of the danger.
The user may also define the arrangement of the communication devices such as type and number of communication devices being provided, as well as distribution of the objects in the workplace. In this example, sensors are provided to the objects. The user interface 500 marked the sensors 508 according to different work zone and object types. For example, cranes 516 are attached with specific crane sensors 518 for detection while the workers carry mobile sensors allocated with different work zones 510. Different work zones are also defined with specific location points 512. in addition, the user may also define the reference point 514 of readers distributed in the work zone for mapping locations of the objects. The interactive mode of the user interface allows the user to update the management parameters at any time when there is any change during operation. The user may simply add, edit or remove any monitoring items in the workplace in accordance with the practical need. Accordingly, an updated record for real-time management can be maintained.
With reference to Figure 6, there is provided an exemplary example of a system for monitoring objects. The system may be used to monitor a construction site having one or more workers or vehicles in the site. A user, such as a site manager, may be employed to monitor the entire site, and all the workers and devices in the site. The site manager does not only manage the working progress, but also monitor the safety of the workers in the site.
The system 600 may be provided with a wired or wireless communication network 602 to facilitate the site manager in monitoring the real-time status of the workers and vehicles. In this example, a 3G telecommunication network 602 enables the site manager to pinpoint the workers or vehicles in the site via a web-based user interface (not shown) . With the use of the telecommunication network 602, the site manager is allowed to check the status of all the  workers and devices associated with communication devices in the site at any time and at any place through a portable device such as a smart phone, a laptop computer and a tablet computer.
The communication devices 604 are carried by the workers or affixed to the vehicles or devices to actively communicate with the readers 606 distributed in the site. In this example, RF1D device such as RFID tag is used as a communication device 604 to actively receive and transmit signals to the readers 606. In turn, a router 608 is arranged to direct the signals to a computing module 610. The computing module 610 processes the signals received from the readers 606, and determines status of each worker or vehicle. The processed data including geolocation information of the objects are then transferred to a web server 612 via the telecommunication network 602 so as to be accessible by the site manager through the web-based user interface. As such, the site manager can readily access the user interface to obtain the real-time status of the site when he travels around the site or off the site.
Preferably, the information retrieved by the computing module 610 will also be stored up in a database 614. The database 614 may also carry out subsequent processing of the stored data. The site manager is also allowed to obtain the stored data from the database by sending queries through the user interface.
In the event that a worker accesses a danger zone or a fast moving vehicle is likely to strike against a worker, the statuses of these objects are considered to match the predetermined alarm condition with location and movement determined by the computing module 610. The computing module 610 will send commands to the communication devices 604 associated with the corresponding worker and send commands to the user interface to alert both the worker at risk and the site manager about the status. An audio, physical or visual alert may then be generated on the communication devices to alert the worker, as well as generated on the user interface to remind the site manager to inspect the site. Accordingly, the worker is then altered to check the working environment and to pay attention to the hidden safety risk. This is advantageous in that the monitoring system provides a real time monitoring approach for the site manager to monitor the entire site and be informed once there is abnormality occurs. With such a real time monitoring system tracking the location and monitoring safety of the objects in the site, the safety of the workers is greatly enhanced.
It will also be appreciated that where the methods and systems of the present invention are either wholly implemented by computing system or partly implemented by computing systems then any appropriate computing system architecture may be utilized. This will include stand alone computers, network computers and dedicated hardware devices. Where  the terms “computing module” , “computing system” and “computing device” are used, these terms are intended to cover any appropriate arrangement of computer hardware capable of implementing the function described.
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Any reference to prior art contained herein is not to be taken as an admission that the information is common general knowledge, unless otherwise indicated.

Claims (20)

  1. A method for monitoring objects comprising the steps of:
    -determining and communicating one or more communication devices associated with each object being monitored with one or more reader modules;
    -tracking location of each object according to one or more statuses retrieved from the one or more communication devices;
    -comparing the location of each object with one or more predetermined alarm conditions; and
    whereupon the location of each object satisfy the one or more predetermined alarm conditions, trigger an alert.
  2. A method for monitoring objects in accordance with claim 1, wherein the one or more communication devices communicate with the one or more reader modules through a wireless communication network.
  3. A method for monitoring objects in accordance with claim 1, wherein the one or more reader modules comprise one or more readers.
  4. A method for monitoring objects in accordance with clain 1, wherein the one or more communication devices include one or more wireless communication devices.
  5. A method for monitoring objects in accordance with claim 1, wherein a computing module uses one or more mapping methods to determine the location of each object.
  6. A method for monitoring objects in accordance with claim 5, wherein the computing module further includes one or more noise filtering method to increase accuracy of the determined location of each object.
  7. A method for monitoring objects in accordance with claim 5, further comprising a database arranged to communicate with the computing module and a user interface to store information retrieved from the computing module and allow subsequent processing of the stored information.
  8. A method for monitoring objects in accordance with claim 7, wherein the user interface allows a user to interact with the one or more communication devices associated with each object being monitored.
  9. A method for monitoring objects in accordance with any one of the preceding claims, wherein the predetermined alarm conditions include access to danger zone, striking an object, being struck by a moving object, and falling from a height.
  10. A method for monitoring objects in accordance with any one of the preceding claims, wherein the alert is an audio, physical, visual alert or a combination thereof performed by the communication device associated with the object having the location satisfied with the predetermined alarm conditions.
  11. A system for monitoring objects comprising:
    -one or more reader modules for determining and communicating with one or more communication devices associated with each object being monitored;
    -a computing module for tracking location of each object according to one or more statuses retrieved from the one or more communication devices, wherein the computing module compares the location of each object with one or more predetermined alarm conditions; and
    whereupon the location of each object satisfy the one or more predetermined alarm conditions, trigger an alert.
  12. A system for monitoring objects in accordance with claim 11, wherein the one or more communication devices communicate with the one or more reader modules through a wireless communication network.
  13. A system for monitoring objects in accordance with claim 11, wherein the one or more reader modules comprise one or more readers.
  14. A system for monitoring objects in accordance with claim 11, wherein the one or more communication devices include one or more wireless communications devices.
  15. A system for monitoring objects in accordance with claim 11, wherein the computing module uses one or more mapping methods to determine the location of each object being monitored from the one or more statuses.
  16. A system for monitoring objects in accordance with claim 15, wherein the computing module further includes one or more noise filtering method to increase accuracy of the determined location of each object.
  17. A system for monitoring objects in accordance with claim 11, further comprising a database arranged to communicate with the computing module and a user  interface arranged to store information retrieved from the computing module and allow subsequent processing of the stored information.
  18. A system for monitoring objects in accordance with claim 17, wherein the user interface allows a user to interact with the one or more communication devices associated with each object being monitored.
  19. A system for monitoring objects in accordance with any one of claims 11-18, wherein the predetermined alarm conditions include access to danger zone, striking an object, being struck by a moving object, and falling from a height.
  20. A system for monitoring objects in accordance with any one of claims 11-19, wherein the alert is an audio, physical, visual alert or a combination thereof performed by the communication device associated with the object having the location satisfied with the predetermined alarm conditions.
PCT/CN2014/087951 2014-09-30 2014-09-30 System and method for monitoring objects WO2016049854A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2014/087951 WO2016049854A1 (en) 2014-09-30 2014-09-30 System and method for monitoring objects
CN201480083743.8A CN107408325B (en) 2014-09-30 2014-09-30 System and method for monitoring objects
HK18104598.8A HK1245485A1 (en) 2014-09-30 2018-04-09 A system and method for monitoring objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087951 WO2016049854A1 (en) 2014-09-30 2014-09-30 System and method for monitoring objects

Publications (1)

Publication Number Publication Date
WO2016049854A1 true WO2016049854A1 (en) 2016-04-07

Family

ID=55629281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087951 WO2016049854A1 (en) 2014-09-30 2014-09-30 System and method for monitoring objects

Country Status (3)

Country Link
CN (1) CN107408325B (en)
HK (1) HK1245485A1 (en)
WO (1) WO2016049854A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996408A (en) * 2006-12-25 2007-07-11 凯立德欣技术(深圳)有限公司 Local alarm method, device, apparatus therefor
CN201617223U (en) * 2010-01-01 2010-11-03 罗轶 RFID monitoring system
JP2012203616A (en) * 2011-03-25 2012-10-22 Hitachi Kokusai Electric Inc Alarm system
CN103116926A (en) * 2013-01-30 2013-05-22 上海城建市政工程(集团)有限公司 Real-time monitoring system based on RFID (Radio Frequency Identification Devices) safety helmet and application method thereof
CN203276296U (en) * 2013-05-15 2013-11-06 山东大学 Positioning and monitoring system based on RFID
CN103473579A (en) * 2013-09-16 2013-12-25 成都翰东科技有限公司 Indoor zone location method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103533521B (en) * 2013-09-30 2016-06-08 重庆梅安森科技股份有限公司 Coal mine safety monitoring remote data inquiry system and inquiry thereof and method for early warning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996408A (en) * 2006-12-25 2007-07-11 凯立德欣技术(深圳)有限公司 Local alarm method, device, apparatus therefor
CN201617223U (en) * 2010-01-01 2010-11-03 罗轶 RFID monitoring system
JP2012203616A (en) * 2011-03-25 2012-10-22 Hitachi Kokusai Electric Inc Alarm system
CN103116926A (en) * 2013-01-30 2013-05-22 上海城建市政工程(集团)有限公司 Real-time monitoring system based on RFID (Radio Frequency Identification Devices) safety helmet and application method thereof
CN203276296U (en) * 2013-05-15 2013-11-06 山东大学 Positioning and monitoring system based on RFID
CN103473579A (en) * 2013-09-16 2013-12-25 成都翰东科技有限公司 Indoor zone location method

Also Published As

Publication number Publication date
HK1245485A1 (en) 2018-08-24
CN107408325B (en) 2021-08-13
CN107408325A (en) 2017-11-28

Similar Documents

Publication Publication Date Title
KR102005188B1 (en) Industrial site safety management system based on artificial intelligence using real-time location tracking and Geographic Information System, and method thereof
US11238717B2 (en) Proximity-based personnel safety system and method
US9342970B2 (en) Mobile entity tracking and analysis
US9760075B2 (en) Location dependent control access in a process control system
US20210216773A1 (en) Personal protective equipment system with augmented reality for safety event detection and visualization
US7298258B1 (en) Construction hard hat having electronic circuitry
US9202374B2 (en) Event warning system and method thereof
US7522051B2 (en) Recording control apparatus, recording control method, control program, recording medium on which control program is recorded, recording control system, and information processing system
CN107679591A (en) Construction site workmen's real-time location method based on safety
US20190041854A1 (en) Systems and methods for providing emergency medical assistance using an automated robotic vehicle
CN110795587A (en) Medical alarm early warning method, service platform and computer readable storage medium
US11450197B2 (en) Apparatus and method of controlling a security system
EP3358301B1 (en) An evacuation system and method for evacuating trapped personnel
CN112488488A (en) Behavior processing method and device based on work ticket, computer and storage medium
CN106801617A (en) Coal mine down-hole personnel injures early warning system
KR102664328B1 (en) Method and sensing device for monitoring region of interest in workspace
KR20160059105A (en) Safety administration system for industries
US20230410519A1 (en) Suspicious person alarm notification system and suspicious person alarm notification method
WO2016049854A1 (en) System and method for monitoring objects
US20200125813A1 (en) System and method of near field tracking, feedback and control
JP3526246B2 (en) Target display system
EP3710947B1 (en) Method for tracking chemical applications and providing warnings regarding chemical exposure times
KR101957982B1 (en) Security activity smart tool box meeting system using beacon tag
CN114325691A (en) Threat disposal starting method for ground target, radar equipment and computer storage medium
US10210719B1 (en) Automated geospatial security alarm routing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903324

Country of ref document: EP

Kind code of ref document: A1