WO2016049844A1 - Étiquette d'identification par radiofréquence - Google Patents

Étiquette d'identification par radiofréquence Download PDF

Info

Publication number
WO2016049844A1
WO2016049844A1 PCT/CN2014/087922 CN2014087922W WO2016049844A1 WO 2016049844 A1 WO2016049844 A1 WO 2016049844A1 CN 2014087922 W CN2014087922 W CN 2014087922W WO 2016049844 A1 WO2016049844 A1 WO 2016049844A1
Authority
WO
WIPO (PCT)
Prior art keywords
rfid tag
rfid
tag
accordance
slotted antenna
Prior art date
Application number
PCT/CN2014/087922
Other languages
English (en)
Inventor
Jingtian XI
Chunwai LEUNG
Chilun MAK
Original Assignee
Hong Kong R&D Centre for Logistics and Supply Chain Management Enabling Technologies Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Kong R&D Centre for Logistics and Supply Chain Management Enabling Technologies Limited filed Critical Hong Kong R&D Centre for Logistics and Supply Chain Management Enabling Technologies Limited
Priority to PCT/CN2014/087922 priority Critical patent/WO2016049844A1/fr
Priority to CN201480083744.2A priority patent/CN107087433B/zh
Publication of WO2016049844A1 publication Critical patent/WO2016049844A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas

Definitions

  • the present invention relates to a radio frequency identification tag and particularly, although not exclusively, to a radio frequency identification windshield tag for vehicle applications.
  • RFID technologies have been widely employed for object tracking and identification applications.
  • an RFID tag attached to an object and an RFID reader.
  • the RFID reader communicates with and/or powers up the RFID tag with EM/RF fields/waves/signals.
  • the RFID tag usually contains information associated with the object (for example, the nature of the object, the amount, the time of production, etc. ) and can be read by the RFID reader. In some situations, the RFID reader may also write information into the RFID tag.
  • RFID tags may be classified into active, passive, or semi-passive type depending on whether they include a power source and how the power source operates.
  • Other types of classifications relate to the antenna of the tag, which may utilize linear polarization or circular polarization for RF signal communication.
  • different types of RFID tags are adapted or particularly suitable for specific applications.
  • RFID tags are usually attached to the vehicle, most commonly to the windshield of the vehicle.
  • This type of windshield tags usually have to conform to the “credit card” type form factor, and thus are often limited to using dipole or T-matched dipole as their antenna design.
  • manufacturers of windshield tags to continue manufacturing windshield RFID tags using existing known technologies, and this render the tags rather inflexible in terms of design and manufacture.
  • a radiofrequency identification (RFID) tag comprising a slotted antenna coupled with an integrated circuit module on a substrate, wherein the slotted antenna includes at least one primary opening for receiving the integrated circuit module and for controlling a resonance frequency of the RFID tag.
  • RFID radiofrequency identification
  • the resonance frequency of the RFID tag is controlled by:
  • a size of the at least one primary opening a displacement of the at least one primary opening from an edge of the slotted antenna; and/or a size of the slotted antenna.
  • the resonance frequency of the RFID tag decreases as the size of the at least one primary opening increases, and/or as the displacement of the at least one primary opening from an edge of the slotted antenna decreases.
  • the at least one primary opening is arranged in a central portion of the slotted antenna.
  • the slotted antenna may comprise any shape but is preferably rectangular.
  • the slotted antenna includes two primary openings substantially aligned with one another in the central portion of the slotted antenna.
  • a shape of the at least one primary opening is quadrilateral, triangular, ellipse, circular, sector or polygonal.
  • the slotted antenna further comprises at least one secondary openings arranged adjacent one or both sides of the at least one primary openings.
  • the at least one secondary opening has no substantial effect on the resonance frequency of the RFID tag.
  • the substrate comprises ceramic, paper or plastic materials.
  • the ceramic material comprises aluminium oxide.
  • the RFID tag is arranged to be attached to a glass material.
  • the RFID tag is a passive RFID tag.
  • the RFID tag is at least partially encased in a packaging material
  • the packaging material in one embodiment, comprises plastic materials.
  • the RFID tag is arranged to be attached to a windshield of a vehicle.
  • RFID radiofrequency identification
  • a radiofrequency identification (RFID) windshield tag for vehicles, comprising: an RFID tag having a slotted antenna coupled with an integrated circuit module on a substrate, wherein the slotted antenna includes at least one primary opening for receiving the integrated circuit module and for controlling a resonance frequency of the RFID tag, and the integrated circuit module stores information relating to the vehicle; a packaging material for at least partially encasing the RFID tag; wherein the RFID windshield tag is arranged to be attached to a windshield of a vehicle such that the information relating to the vehicle contained in the integrated circuit module may be read by an RFID reader arranged external to the vehicle.
  • RFID radiofrequency identification
  • the resonance frequency of the RFID tag is controlled by: a size of the at least one primary opening; a displacement of the at least one primary opening from an edge of the slotted antenna; and/or a size of the slotted antenna.
  • the resonance frequency of the RFID tag decreases as the size of the at least one primary opening increases, and/or as the displacement of the at least one primary opening from an edge of the slotted antenna decreases.
  • the at least one primary opening is arranged in a central portion of the slotted antenna.
  • the slotted antenna may comprise any shape but is preferably rectangular.
  • the substrate comprises ceramic, paper or plastic materials.
  • the packaging material comprisiug plastic materials.
  • the RFID windshield tag is a passive type RFID tag.
  • a vehicle attached with a radiofrequency identification (RFID) windshield tag in accordance with the third aspect of the present invention.
  • the radiofrequency identification (RFID) windshield tag is attached on the windshield of the vehicle.
  • FIG. 1 is a schematic diagram of an antenna for an RFID tag in accordance with one embodiment of the present invention
  • FIG. 2 is a schematic diagram of an antenna for an RFID tag in accordance with another embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an antenna for an RFID tag in accordance with yet another embodiment of the present invention.
  • Figure 4 is a diagram for illustrating the key dimensions of the antenna of Figure 1;
  • Figure 5A is a schematic diagram for illustrating how the RFID tag is attached to a glass material in one embodiment of the present invention
  • Figure 5B is a schematic diagram for illustrating how the RFID tag is attached to a glass material in another embodiment of the present invention.
  • Figure 6 illustrates an exemplary application of the RFID tag of the present invention.
  • a radiofrequency identification (RFID) tag comprising a slotted antenna arranged to couple with an integrated circuit module on a substrate, wherein the slotted antenna includes at least one primary opening for receiving the integrated circuit module and for controlling a resonance frequency of the RFID tag.
  • RFID radiofrequency identification
  • FIG. 1 shows a schematic diagram of an antenna 100 for an RFID tag in accordance with one embodiment of the present invention.
  • the antenna 100 is substantially planar and has a substantially rectangular shape.
  • the antenna 100 includes two smaller central openings 102 arranged in its central portion.
  • the smaller central openings 102 as shown in Figure 1 have a substantially square shape and are aligned with one another.
  • Two larger side openings 104 are arranged on both sides of the two smaller central openings 102.
  • the larger side openings 104 are of rectangular shape.
  • the small and large openings 102, 104 are arranged in a substantially symmetric manner about a central short axis of the slotted antenna 100.
  • the feed part 106 accommodates the integrated circuit module/chip (not shown) .
  • the feed part 106 may consist of one or multiple feed gaps.
  • the two smaller central openings 102 are arranged to couple with the feed part. More particularly, the coupling between the antenna 100 and the integrated circuit module/chip allows data communication between the antenna 100 and the integrated circuit module/chip such that the RFID tag can interact with an external RFID reader for reading or writing information from or into the integrated circuit module/chip.
  • the two larger side openings 104 could be arranged to receive objects therein, although this is not preferred in some other embodiments.
  • the slotted antenna 100 and the integrated circuit module/chip are formed on a substrate material such as ceramic (e.g. Al 2 O 3 ) , plastic or paper materials by printing or other attachment methods.
  • FIG. 2 shows an antenna 200 for an RFID tag in accordance with another embodiment of the present invention.
  • the antenna 200 is substantially planar and has a substantially rectangular shape.
  • the antenna 200 includes two smaller central openings 202 arranged in its central portion.
  • the smaller central openings 202 as shown have a substantially circular shape and are aligned with one another.
  • Two larger side openings 204 are arranged on both sides of the two smaller central openings 202.
  • the larger side openings 204 are of rectangular shape.
  • the smaller central openings 202 and larger side openings 204 are arranged in an asymmetric manner about a central short axis of the slotted antenna 200.
  • the feed part 206 accommodates the integrated circuit module/chip (not shown) .
  • the feed part 206 may consist of one or multiple feed gaps.
  • the two smaller central openings 202 are arranged to couple with the feed part closely. More particularly, the coupling between the antenna 200 and the integrated circuit module/chip allows data communication between the antenna and the integrated circuit module/chip such that the RFID tag can interact with an external RFID reader for reading or writing information from or into the integrated circuit module/chip.
  • the two larger side openings 204 could be arranged to receive objects therein, although this is not preferred in some other embodiments.
  • the slotted antenna 200 and the integrated circuit module/chip are formed on a substrate material such as ceramic (e.g. Al 2 O 3 ) , plastic or paper materials by printing or other attachment methods.
  • FIG 3 shows an antenna for an RFID tag 300 in accordance with yet another embodiment of the present invention.
  • the antenna 300 is substantially planar and has a substantially rectangular shape.
  • the antenna 300 includes three central openings 302 arranged in its central portion.
  • the three central openings 302 as shown have a substantially rectangular shape and are aligned with one another. Unlike the previous two embodiments in Figures 1 and 2, there are no side openings in the slotted antenna 300 of the present embodiment.
  • the feed part 306 accommodates the integrated circuit module/chip (not shown) .
  • the feed part 306 may consist of one or multiple feed gaps.
  • the three central openings 302 are arranged to couple with the feed part closely. .
  • the coupling between the antenna 300 and the integrated circuit module/chip allows data communication between the antenna 300 and the integrated circuit module/chip such that the RFID tag can interact with an external RFID reader for reading or writing information from or into the integrated circuit module/chip.
  • the slotted antenna 300 and the integrated circuit module/chip are formed on a substrate material such as ceramic (e.g. Al 2 O 3 ) , plastic or paper materials by printing or other attachment methods.
  • the slotted antenna 100, 200, 300 resembles a substantially rectangular shape
  • the slotted antenna must include at least one or preferably at least two central openings.
  • the number of central opening may vary in different embodiments.
  • the shape of the central opening may also vary, having other shapes such as other quadrilateral, circular, ellipse, triangular or even polygonal in different embodiments.
  • the slotted antenna includes at least one side opening (although this is not absolutely necessary) .
  • the slotted antenna may have no side openings.
  • the shape of the side openings may also vary in different embodiments, by having any regular or irregular shapes.
  • the slotted antennas 100, 300 are substantially symmetric about their short or long axis, it is again not absolutely necessary to have the openings/slots arranged in a symmetric manner.
  • the alignment of the central openings and/or the side openings is also non-essential, although in some embodiments this is preferred.
  • the RFID tag is preferably a passive RFID tag. However, it is also possible for the RFID tag to be an active or semi-passive tag having a power source.
  • Figure 4 illustrates the key dimensions of the antenna in the RFID tag antenna 100 of Figure 1.
  • the key dimensions include an overall size of the slotted antenna (C x D) , a size of the central opening (A) , and a offset distance (B) of the central opening from an edge of the slotted antenna 100. More specifically, in this embodiment the key dimensions are: the length (C) and width (D) of the slotted antenna 100, the length (A) of the central opening (along the long axis of the slotted antenna) , and an offset (B) of the central opening from the long edge of the slotted antenna 100 (i.e. the shortest distance of the central opening to the long edge of the slotted antenna) .
  • other factors may also affect the tag resonance frequency (f res ) although the major governing factors of the tag resonance frequency in a slotted antenna are the parameters listed above.
  • the tag resonance frequency increases. More particularly, the rate of increase in tag resonance frequency due to the change in offset (B) is 26.5 MHz/mm.
  • the tag resonance frequency decreases. More particularly, the rate of increase in tag resonance frequency due to the change in length (A) is 22 MHz/mm. This shows that in the present invention the smaller the area of the central openings, the higher the tag resonance frequency (f res ) . This analysis can preferably be extended to central openings having other shapes.
  • Figures 5A and 5B show how the RFID tag of the present invention is arranged to be attached to a glass material.
  • the RFID tag includes a slotted antenna 502A, 502B coupled with an integrated circuit chip (hidden by the slotted antenna) .
  • the slotted antenna 502A, 502B with the integrated circuit chip is formed on a substrate 504A, 504B.
  • the substrate 504A, 504B is a ceramic material, and the slotted antenna with the integrated circuit chip is printed on it.
  • the RFID tag is encased in a packaging material 506A.
  • the packaging material 506A is in turn attached to the glass material layer 508A so that the RFID tag is “indirectly” coupled with or mounted on the glass material layer 508A.
  • the packaging material 506A include plastic or paper material, and the material is preferably water or dust proof/impermeable. By packaging the RFID tag in such packaging material, the tag could be protected from wearing or damaging by the environment for example due to dust or moisture.
  • the RFID tag is “directly” attached to the glass material layer 508B without being packaged in any packaging material.
  • Figure 6 illustrates an application of the RFID tag of the present invention.
  • the RFID tag 602 of the present invention is attached to a windshield of a vehicle 604.
  • the vehicle 604 is a car
  • the vehicle may be a lorry or ship or any other types of vehicles.
  • the RFID tag 602 is attached to the windshield in a similar manner to that illustrated in Figures 5A and 5B.
  • the tag may be attached to other parts of the vehicle 604, i.e. not necessary the windshield.
  • an RFID reader 606 is arranged in a car park entrance for management purposes.
  • the RFID reader 606 detects the presence (e.g. by other sensors) of the car 604 and transmits EM/RF waves (which may include a power signal and a read signal) 607 to the RFID tag 602.
  • the RFID tag 602 without any internal power source, is then powered up to receive a command (which may be in the read signal) from the RFID reader 606.
  • data associated with the vehicle is retrieved from the integrated circuit chip in the RFID tag 602 and is transmitted back to the RFID reader 606.
  • the data associated with the vehicle may include the number of the plate of the car, the type of the car, the owner of the car, the entry time, etc.
  • the data transmitted to the RFID reader 606 will then be stored in a local or remote database 608.
  • the RFID reader 606 again detects the presence of the tag 602 and transmits a power and a read signal 607 to the tag.
  • the tag 602 may then transmits to the reader 606 information relating to the leaving time, the number of the plate of the car, the type of the car, the owuer of the car, etc.
  • the tag reader 606, upon receiving this information, can then transmit the information to the local or remote database 608, which is responsible for calculating charges and send the bill to the user.
  • the tag in the present invention does not utilize dipole or T-matched dipole antennas, but a “true” slotted antenna with at least one (preferably at least two) central openings and optionally any number of side openings.
  • the provision of the at least one (preferably at least two) central openings allows for a more flexible impedance matching and a wider impedance bandwidth (more robust performance) compared to existing RFID tags, especially existing tags for windshield or vehicle applications which is of the credit card type form factor.
  • the provision of the side openings facilitates the reduction of consumption of conductive ink and hence reduces fabrication costs, without affecting the performance of the tag or the tag resonance frequency substantially.

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

On décrit une étiquette d'identification par radiofréquence (RFID) qui comprend une antenne à fente couplée à un module circuit intégré disposé sur un substrat. L'antenne à fente présente au moins une ouverture primaire pour recevoir le module circuit intégré et pour régler une fréquence de résonance de l'étiquette RFID.
PCT/CN2014/087922 2014-09-30 2014-09-30 Étiquette d'identification par radiofréquence WO2016049844A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/087922 WO2016049844A1 (fr) 2014-09-30 2014-09-30 Étiquette d'identification par radiofréquence
CN201480083744.2A CN107087433B (zh) 2014-09-30 2014-09-30 射频识别标签

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087922 WO2016049844A1 (fr) 2014-09-30 2014-09-30 Étiquette d'identification par radiofréquence

Publications (1)

Publication Number Publication Date
WO2016049844A1 true WO2016049844A1 (fr) 2016-04-07

Family

ID=55629271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087922 WO2016049844A1 (fr) 2014-09-30 2014-09-30 Étiquette d'identification par radiofréquence

Country Status (2)

Country Link
CN (1) CN107087433B (fr)
WO (1) WO2016049844A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11213773B2 (en) 2017-03-06 2022-01-04 Cummins Filtration Ip, Inc. Genuine filter recognition with filter monitoring system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492376B (zh) * 2017-10-16 2024-01-23 Gcl国际有限公司 闭合构件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007084A1 (fr) * 2000-07-18 2002-01-24 Marconi Corporation P.L.C. Dispositif de communication sans fil place sur une palette, et procede associe
US20060250250A1 (en) * 2005-05-04 2006-11-09 Youn Tai W RFID tag with small aperture antenna
US20060261950A1 (en) * 2005-03-29 2006-11-23 Symbol Technologies, Inc. Smart radio frequency identification (RFID) items
CN201352357Y (zh) * 2009-02-25 2009-11-25 益实实业股份有限公司 无线射频识别标签改良结构
CN101785145A (zh) * 2007-09-04 2010-07-21 三菱电机株式会社 Rfid标签
CN202093549U (zh) * 2011-06-23 2011-12-28 四川新源现代智能科技有限公司 可贴于汽车挡风玻璃内侧的陶瓷基片远距离无源电子标签

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020067267A1 (en) * 2000-03-15 2002-06-06 Richard Kirkham Package identification system
CN102521645B (zh) * 2011-12-29 2014-12-03 上海大学 宽频带抗金属射频识别标签及其金属表面专用安装结构
CN103208023A (zh) * 2013-02-06 2013-07-17 浙江省公安厅 一种面向车辆标识的无源超高频射频识别电子标签结构
CN103258230B (zh) * 2013-05-16 2016-09-14 浙江汉脑数码科技有限公司 一种面向车辆标识的纸质基材射频识别电子标签结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007084A1 (fr) * 2000-07-18 2002-01-24 Marconi Corporation P.L.C. Dispositif de communication sans fil place sur une palette, et procede associe
US20060261950A1 (en) * 2005-03-29 2006-11-23 Symbol Technologies, Inc. Smart radio frequency identification (RFID) items
US20060250250A1 (en) * 2005-05-04 2006-11-09 Youn Tai W RFID tag with small aperture antenna
CN101785145A (zh) * 2007-09-04 2010-07-21 三菱电机株式会社 Rfid标签
CN201352357Y (zh) * 2009-02-25 2009-11-25 益实实业股份有限公司 无线射频识别标签改良结构
CN202093549U (zh) * 2011-06-23 2011-12-28 四川新源现代智能科技有限公司 可贴于汽车挡风玻璃内侧的陶瓷基片远距离无源电子标签

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OCCHIUZZI, CECILIA ET AL.: "Modeling, Design and Experimentation of Wearable RFID Sensor Tag", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION??, vol. 58, no. 8, 5 August 2010 (2010-08-05), pages 2490, XP011309249 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11213773B2 (en) 2017-03-06 2022-01-04 Cummins Filtration Ip, Inc. Genuine filter recognition with filter monitoring system

Also Published As

Publication number Publication date
CN107087433A (zh) 2017-08-22
CN107087433B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
US7561107B2 (en) RFID device with microstrip antennas
US7501947B2 (en) RFID tag with small aperture antenna
US7800503B2 (en) Radio frequency identification (RFID) tag antenna design
CN101669129B (zh) 具有减少的失谐特征的rfid标签
KR101623953B1 (ko) Rf태그
CN104751223B (zh) 智能交通系统的超高频射频识别电子标签
US20100265041A1 (en) Rfid transponder
WO2009037593A2 (fr) Antennes a etiquette rfid a gain eleve
EP1720216A4 (fr) Tiquette radio
JP4955465B2 (ja) ブースターアンテナ
WO2016049844A1 (fr) Étiquette d'identification par radiofréquence
CN201984509U (zh) 一种多介质结构的uhf_rfid标签及天线
US20080068176A1 (en) RFID inlay structure
US11120324B2 (en) Planar conductive device that forms a coil for an RFID tag when folded
US20080062046A1 (en) Mounting structure for matching an rf integrated circuit with an antenna and rfid device implementing same
JP5061712B2 (ja) 非接触icタグの製造方法
CN201655969U (zh) 一种超高频射频识别标签天线
AU2006252327B8 (en) A radio frequency identification tag with privacy and security capabilities
US20140152527A1 (en) Antenna configuration method and apparatus
CN201655968U (zh) 超高频射频识别标签天线
KR20100034781A (ko) 은재질 인쇄패턴을 갖는 알에프아이디 태그
CN201717362U (zh) 射频识别标签天线
KR200453009Y1 (ko) 유연성을 갖는 브이에취에프 대역의 알에프아이디 태그
KR100842320B1 (ko) 금속 부착형 태그 안테나
KR100720614B1 (ko) 개루프 슬롯를 이용한 분할 와이어 이중 공진 알에프아이디태그 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903312

Country of ref document: EP

Kind code of ref document: A1