WO2016048023A1 - Optical fiber tip capable of radial firing, method for manufacturing same, and medical optical fiber device comprising same - Google Patents

Optical fiber tip capable of radial firing, method for manufacturing same, and medical optical fiber device comprising same Download PDF

Info

Publication number
WO2016048023A1
WO2016048023A1 PCT/KR2015/009993 KR2015009993W WO2016048023A1 WO 2016048023 A1 WO2016048023 A1 WO 2016048023A1 KR 2015009993 W KR2015009993 W KR 2015009993W WO 2016048023 A1 WO2016048023 A1 WO 2016048023A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
hollow
tip
fiber tip
heat treatment
Prior art date
Application number
PCT/KR2015/009993
Other languages
French (fr)
Korean (ko)
Inventor
한원택
이승호
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2016048023A1 publication Critical patent/WO2016048023A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/14Re-forming fibres or filaments, i.e. changing their shape
    • C03B37/15Re-forming fibres or filaments, i.e. changing their shape with heat application, e.g. for making optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2205Characteristics of fibres
    • A61B2018/2222Fibre material or composition
    • A61B2018/2227Hollow fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2261Optical elements at the distal end of probe tips with scattering, diffusion or dispersion of light

Definitions

  • the present invention relates to an optical fiber tip, and more particularly, to an optical fiber tip capable of radial irradiation, a method of manufacturing the same, and a medical optical fiber device comprising the optical fiber tip.
  • Conventional medical optical fiber devices are designed so that the laser transmitted through the optical fiber can be forward-fired in the tip region of its distal end, but tubular tissue such as varicose vein or prostatic hyperplasia Since it is difficult to remove or treat radially growing lesions on the outer wall of the intestine, there is a need for developing a fiber tip that can be applied to various tissue types.
  • a conventional side-firing optical fiber device is perpendicular to the end cross section of the optical fiber through the transmission optical fiber.
  • the end surface of the optical fiber is obliquely cut through the processing process (see FIG. 1 (a)) or 30 ° to 45 °
  • the metal coating is applied to the entire surface of the optical fiber tip in the post-treatment process (see FIG. 1B), or a metal reflector or a transparent cover is bonded.
  • the side irradiation optical fiber has a disadvantage in that the manufacturing process is complicated due to the processing process and the post-treatment process, and the overall volume of the optical fiber device may be large.
  • the laser is irradiated only in one direction of the side of the optical fiber tip, in order to treat the outer wall of the capillary or tubular tissue, a precision device for finely rotating the optical fiber tip is additionally required to irradiate the radiation uniformly. .
  • a radial-firing optical fiber device manufactured through a manufacturing process as shown in FIG. 2A has recently been provided.
  • the radially irradiated optical fiber processes the end face of the optical fiber step by step through a laser technology, so that the center portion of the optical fiber has a deep negative conical tip as shown in the image shown in FIG. Can be irradiated radially.
  • this is polished by using an arc discharge, a cross section of an optical fiber terminal having a shape as shown in FIG. 2C can be formed.
  • the radially irradiated optical fiber device has an interface with an incomplete cross section at the end of the optical fiber, and thus requires a post-treatment process requiring coating with a metal or bonding a transparent cover as shown in FIG. 2D.
  • the processing process for etching the end surface of the optical fiber terminal using the laser technology because processing the quartz glass as the main material of the optical fiber takes a lot of processing time, and precisely control the optical fiber to perform micro etching In order to require the ultra-precision stage, there is a problem that the manufacturing cost is increased and the manufacturing process is not efficient.
  • one aspect of the present invention comprises the steps of preparing a hollow fiber to be processed into an optical fiber tip, the first heat treatment of the hollow fiber to seal the cladding layer of one end of the hollow fiber And sealing the cladding layer at the other end of the hollow optical fiber by secondary heat treatment of the hollow optical fiber to form an air-pocket inside the optical fiber tip.
  • the cladding layer of the hollow optical fiber may be provided in the form of a wrap around the air bag to provide a method for manufacturing a radially irradiable optical fiber tip.
  • the hollow fiber may be one selected from a hollow optical fiber (HOF), a hollow core fiber (HCF), and a photonics crystal fiber (PCF).
  • HAF hollow optical fiber
  • HCF hollow core fiber
  • PCF photonics crystal fiber
  • the heat treatment may be to use arc discharge or laser heating.
  • the shape of the optical fiber tip may be controlled by adjusting a position at which the first heat treatment and the second heat treatment are performed on the hollow optical fiber.
  • another aspect of the present invention is an optical fiber tip formed by processing a hollow optical fiber including a cladding layer, an air pocket disposed inside the optical fiber tip, and the air. It is possible to provide a radially irradiable optical fiber tip comprising a cladding layer of the hollow optical fiber disposed in the form of surrounding the bag.
  • the air bag may be blocked from the outside by the cladding layer of the hollow optical fiber.
  • Another aspect of the present invention to achieve the above object including the optical fiber tip and the transmission optical fiber fused with the optical fiber tip, characterized in that the laser is transmitted to the optical fiber tip through the transmission optical fiber
  • a medical optical fiber device can be provided.
  • the laser may be totally reflected in the radial direction by the air bag disposed inside the optical fiber tip and transmitted to the outside.
  • the irradiation direction and irradiation pattern of the laser may be changed by the shape and inclination of the air bag provided in the optical fiber tip.
  • a laser beam may be irradiated radially by an optical fiber tip having an air pocket disposed therein, thereby treating or removing various types of radially progressing lesions in body tissues. It can be used widely.
  • the manufacturing method of the optical fiber tip of the present invention can simplify the post-treatment process and the packaging process, and can be used to treat micro-structured tissues by miniaturizing the optical fiber tip.
  • the radially irradiated optical fiber tip of the present invention is formed by processing the optical fiber itself, it may be harmless to the human body because it is composed only of silica glass (silica glass) which is a stable material of the optical fiber itself.
  • FIG. 1 is a schematic diagram showing a processing step and a post-treatment step of a conventional side irradiation optical fiber.
  • FIGS. 2A to 2D are schematic diagrams showing a processing step and a post-treatment step of a conventional radial irradiation optical fiber.
  • 3A to 3D are schematic views showing a method of manufacturing an optical fiber tip by processing a hollow optical fiber according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a hollow optical fiber used in an embodiment of the present invention.
  • 5A to 5B are schematic views of different shapes of optical fiber tips formed by changing heat treatment positions according to an embodiment of the present invention.
  • Figure 6 is an image showing the laser irradiation direction of each of the medical optical fiber device not fused to the optical fiber tip and the medical optical fiber device fused to the optical fiber tip of the present invention.
  • FIGS. 7A to 7B are diagrams each showing a schematic diagram of a method of measuring a transmission distribution for each angle of a laser transmitted by a general transmission optical fiber, a transmission optical fiber fused to an optical fiber tip of the present invention, and a measurement result.
  • FIG. 8 is a schematic view showing a medical optical fiber device in which an optical fiber tip manufactured by varying the shape and inclination of an air bag according to an embodiment of the present invention is fused.
  • FIG. 9 is a schematic view showing a method of manufacturing a medical optical fiber device is fused optical fiber tip according to another embodiment of the present invention.
  • One aspect of the present invention may provide a method for manufacturing an optical fiber tip capable of radial irradiation. Specifically, 1) preparing a hollow fiber to be processed into an optical fiber tip, 2) sealing the cladding layer of one end of the hollow fiber by primary heat treatment of the hollow fiber, and 3) Secondary heat treatment of the hollow optical fiber to seal the cladding layer at the other end of the hollow optical fiber, thereby forming an air pocket inside the optical fiber tip, wherein the primary heat treatment and the second The cladding layer of the hollow optical fiber may be disposed in a form surrounding the air bag by the differential heat treatment.
  • 3A to 3D are schematic views showing a method of manufacturing an optical fiber tip by processing a hollow optical fiber according to an embodiment of the present invention.
  • step 1) is a step of preparing a hollow fiber to be processed into an optical fiber tip.
  • the hollow optical fiber 100 further includes a core layer in addition to a cladding layer or an optical fiber including a cladding layer, and has a hollow structure or a structure having a through hole therein.
  • General term for the optical fiber having a, and various hollow fiber can be used.
  • the hollow optical fiber 100 is any one selected from a hollow optical fiber (HOF), a hollow core fiber (HCF), and a photonics crystal fiber (PCF). It may be to use.
  • the hollow optical fiber is a tube-shaped optical fiber, and a through hole is disposed therein, and only the cladding layer surrounds the through hole without a core layer.
  • the Middle East core optical fiber is a tube-shaped optical fiber, a through hole is formed therein, it may be composed of a core layer surrounding the through hole, and a cladding layer surrounding the core layer.
  • the photonic crystal optical fiber is a tube-shaped optical fiber, and a plurality of through holes having a small diameter are disposed therein, and may have a structure in which a cladding layer surrounds the through holes.
  • step 2) is a step of sealing the cladding layer of one end of the hollow optical fiber by primary heat treatment of the hollow optical fiber.
  • the end of one end of the cladding layer of the hollow optical fiber 100 by heat-treating the cladding layer of one end of the hollow optical fiber 100 to be processed into the optical fiber tip of the step 1) 111 and 112 can be joined and sealed. That is, in the region in which the cladding layer of one end of the hollow optical fiber is sealed, the hollow of the hollow optical fiber may be blocked.
  • the heat treatment may be to use arc discharge or laser heating.
  • Arc discharge is generally a state where gas discharge reaches its peak when an electric current flows between electrodes, and a part of the electrode material is evaporated and becomes a gas as the electrode is heated. The electrical conduction phenomenon may occur in the gas. At this time, a large current may flow between the cathode and the anode placed in the gas by a high temperature plasma. Accordingly, arc discharge is useful for fusion or bonding of materials through high temperature heat treatment because the voltage drop is relatively small and the current density is large. For example, this may be to use a heat treatment apparatus using a general arc discharge.
  • laser heating uses a general laser welding apparatus, and heat treatment of the region using a laser capable of generating high temperature heat.
  • the heat treatment using the arc discharge or laser heating may be performed for a proper time in an appropriate temperature range to seal the cladding layers at one end and the other end of the hollow optical fiber. This may vary depending on the type and size of the optical fiber to be used, and is not particularly limited.
  • step 3 seals the cladding layer at the other end of the hollow optical fiber by secondary heat treatment of the hollow optical fiber, and an air-pocket inside the optical fiber tip. Forming a step.
  • the heat treatment may be to seal the cladding layer of the other end of the hollow optical fiber. That is, the other end of the hollow optical fiber may also have a structure in which the hollow of the hollow optical fiber is blocked in a region where the cladding layer is sealed.
  • the air layer formed in the hollow region is sealed in the hollow optical fiber.
  • an air-pocket 130 may be formed.
  • the air bag 130, the present invention is formed by processing the hollow optical fiber, may be disposed in the interior 210 of the optical fiber tip 200.
  • the cladding layer of the hollow optical fiber by the first heat treatment and the second heat treatment may be arranged to surround the air bag.
  • the sealed structure is disposed in the outer region of the air bag disposed inside the optical fiber tip, and thus the air bag It may be arranged to surround the.
  • the manufacturing method of the optical fiber tip of the present invention it is possible to control the shape of the optical fiber tip by adjusting the position of performing the first heat treatment and the second heat treatment to the hollow optical fiber.
  • 5A to 5B are schematic views of different shapes of optical fiber tips formed by changing heat treatment positions according to an embodiment of the present invention.
  • Figure 5b is a schematic diagram of the optical fiber tip having a structure in which the cladding layer of one end and the other end of the hollow optical fiber is sealed in various forms by adjusting the position to perform the heat treatment to the hollow optical fiber and fused to the optical fiber for transmission. It can be seen that the distal end of the optical fiber tip can be formed in various shapes (rectangular, circular, oblique, etc.). As described above, the present invention can easily control the shape of the optical fiber tip by adjusting the heat treatment performed position, it is possible to form various types of optical fiber tips through a simple manufacturing process.
  • optical fiber tip capable of radial irradiation.
  • the optical fiber tip may be manufactured by the "1. Method for manufacturing an optical fiber tip capable of radial irradiation".
  • the optical fiber tip is an optical fiber tip formed by processing a hollow optical fiber including a cladding layer, an air pocket disposed in the optical fiber tip, and a shape surrounding the air bag. It may be to include a cladding layer of the hollow optical fiber disposed.
  • the optical fiber tip is manufactured by the manufacturing method described in the section "1. Method for manufacturing a radially irradiated optical fiber tip", the optical fiber tip is described in "1. Method for manufacturing a radially irradiated optical fiber tip” item. It may be the same as described above. Thus, the optical fiber tip of the present invention, by using the description of the "1. Method of manufacturing the optical fiber tip that can be radially radiated” to omit the detailed description, and will be described below for the specific configuration of the optical fiber tip. .
  • the air bag disposed inside the optical fiber tip may be blocked from the outside by the cladding layer of the hollow optical fiber. That is, the air bag disposed on the optical fiber tip is blocked from the outside by the structural features of the cladding layer of the hollow optical fiber arranged in such a manner as to surround the air bag, thereby maintaining the total reflection condition and easily irradiating the laser radially. You can.
  • This is an improvement in that the prior art required a post-treatment process for metal coating the optical fiber terminal interface, bonding the reflector, or glass tube to protect the total reflection condition, and also occurred in the polishing process of the optical fiber terminal. Incomplete bending is not formed, which can have the effect of simplifying the manufacturing process and reducing the manufacturing cost.
  • the miniaturization of the optical fiber tip is possible, and thus it can be actively used to treat micro-structured tissue.
  • the radially irradiated optical fiber tip of the present invention is formed by processing the optical fiber itself, it may be harmless to the human body is composed of silica glass (silica glass) which is a stable material of the optical fiber itself.
  • a medical optical fiber device comprising a fiber tip capable of radial irradiation.
  • Another aspect of the present invention may provide a medical optical fiber device including an optical fiber tip capable of radial irradiation.
  • the medical optical fiber device may be manufactured including the "2. optical fiber tip capable of radial irradiation".
  • the medical optical fiber device may include the optical fiber tip capable of radiating the radiation, and a transmission optical fiber fused with the optical fiber tip, the laser may be delivered to the optical fiber tip through the transmission optical fiber. .
  • the optical fiber for transmission may be an optical fiber including a cladding layer or an optical fiber including a core layer and a cladding layer.
  • the optical fiber for transmission can use all the optical fiber which can carry out general laser transmission, and it does not specifically limit.
  • the transmission optical fiber may be a single mode optical fiber (SMF), a multimode optical fiber (MMF), an optical amplified fiber (EDF), anhydrous optical fiber (LWPF), or a distributed transition optical fiber (DSF).
  • SMF single mode optical fiber
  • MMF multimode optical fiber
  • EDF optical amplified fiber
  • LWPF hydrous optical fiber
  • DSF distributed transition optical fiber
  • Fusion of the optical fiber tip and the transmission optical fiber may be performed through a known optical fiber fusion splicer.
  • the optical fiber fusion splicer may be using arc discharge, but is not limited thereto.
  • a laser beam transmitted through the core layer or the air layer of the transmission optical fiber may be delivered to the optical fiber tip of the medical optical fiber device.
  • the laser beam transmitted through the transmission optical fiber is almost straight in the structure in which the cladding layer constituting the optical fiber tip is sealed, and may come into contact with an interface with an air bag disposed inside the optical fiber tip.
  • the laser beam delivered to the optical fiber tip may be totally reflected in a radial direction by an air bag disposed inside the optical fiber tip and transmitted to the outside.
  • the laser beam transmitted through the optical fiber for transmission in the medical optical fiber device due to the air layer of the air bag inside the optical fiber tip is refracted radially at the interface with the air layer constituting the air bag disposed inside the optical fiber tip.
  • the laser may be totally reflected in the radial direction, in this form the medical optical fiber device may be to transmit the laser to the outside.
  • Figure 6 is an image showing the laser irradiation direction of each of the medical optical fiber device not fused to the optical fiber tip and the medical optical fiber device fused to the optical fiber tip of the present invention.
  • the conventional medical optical fiber device which does not fuse the optical fiber tip is irradiated by directing the laser toward the forward as the laser irradiation direction is transmitted through the optical fiber for transmission, and transmitting it to the outside. You can see that.
  • the medical optical fiber device in which the optical fiber tip and the optical fiber for fusion are fused is disposed in an air pocket in which the laser irradiation direction transmitted through the optical fiber for transmission is disposed inside the optical fiber tip. It can be confirmed that the laser is transmitted to the outside while spreading radially.
  • FIGS. 7A to 7B are schematic diagrams of measurement methods for measuring transmission distributions for each angle of a laser transmitted by a general medical optical fiber device, in which a fiber tip is not fused, and a medical fiber device in which the optical fiber tip is fused, respectively, and measurement results. The diagram shown.
  • a He-Ne laser beam is irradiated to a general medical optical fiber device and a medical optical fiber device in which an optical fiber tip of the present invention is fused, and irradiated at a fiber distal end or an optical fiber tip of each optical fiber device.
  • the transmission distribution for each angle of the laser was measured in such a way that the laser was calculated through the lens and the transmission laser.
  • FIG. 7B showing the result, in the case of a general medical optical fiber device in which the optical fiber tip of the present invention is not fused, it can be seen that the laser irradiation amount is concentrated only at a specific angle in front. On the contrary, it can be seen that the medical optical fiber device fused with the optical fiber tip of the present invention irradiates a laser at an angle of -87 ° to 87 ° from the axial direction of the optical fiber.
  • the medical optical fiber device in which the optical fiber tip of the present invention is fused can be irradiated with a laser beam by an air bag disposed inside the optical fiber tip, so that the medical optical fiber device can radially travel in various forms in body tissues. It can be widely used to treat or remove lesions.
  • the medical optical fiber device in which the radially irradiated optical fiber tip of the present invention is fused the irradiation direction and irradiation pattern of the laser may be changed through the shape and inclination of the air bag disposed inside the optical fiber tip.
  • FIG. 8 is a schematic view showing a medical optical fiber device in which an optical fiber tip manufactured by varying the shape and inclination of an air bag according to an embodiment of the present invention is fused.
  • the shape of the air bag disposed inside the optical fiber tip of the medical optical fiber device and the slope in which the air bag is disposed may be formed in various structures or shapes.
  • the laser transmitted to the optical fiber tip of the medical optical fiber device, while total reflection at the interface of the air bag arranged in various shapes and inclination, the direction in which the laser irradiation is concentrated depending on the shape of the air bag In general, the laser is totally radially reflected and can be transmitted externally.
  • the medical optical fiber device of the present invention may form an optical fiber tip which may be laterally irradiated by fusion with the axis of the optical fiber for transmission, when the optical fiber tip and the optical fiber for transmission are fused.
  • 9 is a schematic view showing a method of manufacturing a medical optical fiber device is fused optical fiber tip according to another embodiment of the present invention.
  • the hollow optical fiber is heat-treated according to the optical fiber tip manufacturing method of the present invention. It can be processed with an optical fiber tip with an air pocket inside. Accordingly, as the optical fiber tip is fused in the form as shown in FIG. 9 (b), a medical optical fiber device capable of totally reflecting the laser beam transmitted through the transmission optical fiber to the side by the air bag of the optical fiber tip may be provided. . As such, the medical optical fiber device of the present invention may be capable of side irradiation depending on the type of fusion between the optical fiber tip to be fused and the optical fiber for transmission.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laser Surgery Devices (AREA)

Abstract

Provided are an optical fiber tip capable of radial firing, a method for manufacturing the same, and a medical optical fiber device comprising the same. Particularly, the method comprises the steps of: preparing a hollow optical fiber, which is to be processed into an optical fiber tip; uniting a cladding layer on one end of the hollow optical fiber through primary heat treatment of the hollow optical fiber; and uniting the cladding layer on the other end of the hollow optical fiber through secondary heat treatment of the hollow optical fiber, thereby forming an air pocket inside the optical fiber tip, wherein the cladding layer of the hollow optical fiber may be arranged in such a shape as to enclose the air pocket through the primary heat treatment and the secondary heat treatment. Accordingly, the medical optical fiber device according to the present invention can emit lasers radially by means of the optical fiber tip, which has an air pocket arranged therein, such that the same can be widely used to cure or remove lesions that propagate radially in various shapes inside body tissues. In addition, a post-treatment process and a package process can be simplified, and the optical fiber tip can be made small such that the same can be actively used to cure micro-unit tissues. Furthermore, the radial-firing optical fiber tip according to the present invention is formed by processing the optical fiber itself, and is solely made of silica glass, which is a stable substance of the optical fiber itself; therefore, the same may be harmless to human bodies.

Description

방사상 조사가 가능한 광섬유 팁, 이의 제조방법, 및 이를 포함하는 의료용 광섬유 장치Optical fiber tip that can be irradiated, manufacturing method thereof, and medical optical fiber device comprising the same
본 발명은 광섬유 팁에 관한 것으로, 보다 상세하게는 방사상 조사가 가능한 광섬유 팁, 이를 제조하는 방법, 및 상기 광섬유 팁을 포함하는 의료용 광섬유 장치에 관한 것이다.The present invention relates to an optical fiber tip, and more particularly, to an optical fiber tip capable of radial irradiation, a method of manufacturing the same, and a medical optical fiber device comprising the optical fiber tip.
레이저를 이용하는 임상학적 수술치료는, 일반적인 외과수술시 신체 내부의 출혈로 인해 야기되는 시야확보의 어려움이 발생되지 않아 광범위하게 이용되고 있다. 이에, 최근에는 광섬유를 이용하여 레이저 빔을 신체 내부 조직이나 장기로 전달시켜, 종양이나 유해한 조직을 제거할 수 있는 광섬유 기반의 내시경 수술(endoscopic surgery) 시스템 개발이 더욱 각광받고 있다.Clinical surgical treatment using a laser has been widely used because it is difficult to secure a field of vision caused by bleeding inside the body during general surgery. In recent years, the development of an optical fiber-based endoscopic surgery system capable of removing tumors or harmful tissues by delivering a laser beam to internal tissues or organs using optical fibers has been in the spotlight.
종래의 의료용 광섬유 장치는 광섬유를 통해 전달된 레이저가 그 말단 부분의 팁(tip) 영역에서 전면조사(forward-firing) 될 수 있도록 설계되었으나, 하지정맥류나 전립선 비대증과 같은 관(tubular) 형태의 조직의 외벽에서 방사상으로 성장하는 병변을 제거하거나 치료하기에는 어려움이 있기 때문에, 다양한 조직형태에도 응용할 수 있는 광섬유 팁에 대한 개발이 요구되고 있다.Conventional medical optical fiber devices are designed so that the laser transmitted through the optical fiber can be forward-fired in the tip region of its distal end, but tubular tissue such as varicose vein or prostatic hyperplasia Since it is difficult to remove or treat radially growing lesions on the outer wall of the intestine, there is a need for developing a fiber tip that can be applied to various tissue types.
이와 관련한 기술 중에서, 도 1의 (a) 내지 도 1의 (b)에 나타낸 바와 같이, 기존의 측면 조사 광섬유(side-firing optical fiber) 장치는 상기 전송용 광섬유를 통해 광섬유의 말단 단면에 수직으로 조사하는 레이저를 광섬유의 측면으로 전반사(total internal refraction) 할 수 있도록, 광섬유 팁 형성시, 가공 공정(도 1의 (a) 참조)을 통해 상기 광섬유의 말단면을 경사지게 절단하거나 30°내지 45°정도의 각도로 비스듬하게 연마한 뒤, 후처리 공정(도 1의 (b) 참조)에서 광섬유 팁 전면에 금속 코팅을 하거나, 금속 반사체 또는 투명 덮개를 접합시킨 구조로 제공되고 있다. 그러나, 상기 측면 조사 광섬유는 가공 공정 및 후처리 공정으로 인해 제조공정이 복잡한 단점이 있고, 광섬유 장치의 전체 부피가 커질 수 있는 문제점이 있다. 또한, 광섬유 팁의 측면의 한쪽 방향으로만 레이저가 조사되기 때문에 모세관이나 관 형태의 조직의 외벽을 치료하기 위해서는 방사상으로 균일하게 조사되도록, 상기 광섬유 팁을 미세하게 회전시키기 위한 정밀장치가 추가적으로 요구된다.In the related art, as shown in Figs. 1A to 1B, a conventional side-firing optical fiber device is perpendicular to the end cross section of the optical fiber through the transmission optical fiber. To form a total internal refraction of the irradiated laser to the side of the optical fiber, at the time of forming the optical fiber tip, the end surface of the optical fiber is obliquely cut through the processing process (see FIG. 1 (a)) or 30 ° to 45 ° After slanting at an angle, the metal coating is applied to the entire surface of the optical fiber tip in the post-treatment process (see FIG. 1B), or a metal reflector or a transparent cover is bonded. However, the side irradiation optical fiber has a disadvantage in that the manufacturing process is complicated due to the processing process and the post-treatment process, and the overall volume of the optical fiber device may be large. In addition, since the laser is irradiated only in one direction of the side of the optical fiber tip, in order to treat the outer wall of the capillary or tubular tissue, a precision device for finely rotating the optical fiber tip is additionally required to irradiate the radiation uniformly. .
이에, 상기 측면 조사 광섬유의 문제점을 해결하기 위하여, 최근 관련 분야에는 도 2a와 같은 제조공정을 통해 제조된 방사상 조사 광섬유(radial-firing optical fiber) 장치가 제공되고 있다. 구체적으로, 상기 방사상 조사 광섬유는 레이저 기술을 통해 단계적으로 광섬유 말단의 단면을 가공하여, 도 2b에서 나타낸 이미지와 같이, 광섬유의 단면 중앙부분이 깊은 음각의 원뿔 팁을 가지게 함으로써, 전면으로 조사된 레이저가 방사상으로 조사되게 할 수 있다. 이를 아크방전을 이용하여 연마하면, 도 2c와 같은 형태를 가진 광섬유 말단의 단면을 형성시킬 수 있다. 하지만, 상기 방사상 조사 광섬유 장치는 상기 광섬유 말단의 단면이 불완전한 계면을 가지고 있어, 도 2d와 같이 금속으로 코팅하거나 투명 덮개를 접합시켜야 하는 후처리 공정이 요구된다. 아울러, 상기 레이저 기술을 이용하여 광섬유 말단의 단면을 식각하는 가공 공정은, 광섬유의 주재료인 석영유리를 정밀하게 가공하는 것이기 때문에 공정시간이 많이 소요되며, 상기 광섬유를 정밀하게 제어하여 마이크로식각을 하기 위해서는 초정밀 스테이지가 필요하므로, 이에 제조비용이 증가되고 제조공정이 효율적이지 못한 문제점이 있다.Accordingly, in order to solve the problem of the side irradiation optical fiber, a radial-firing optical fiber device manufactured through a manufacturing process as shown in FIG. 2A has recently been provided. In detail, the radially irradiated optical fiber processes the end face of the optical fiber step by step through a laser technology, so that the center portion of the optical fiber has a deep negative conical tip as shown in the image shown in FIG. Can be irradiated radially. When this is polished by using an arc discharge, a cross section of an optical fiber terminal having a shape as shown in FIG. 2C can be formed. However, the radially irradiated optical fiber device has an interface with an incomplete cross section at the end of the optical fiber, and thus requires a post-treatment process requiring coating with a metal or bonding a transparent cover as shown in FIG. 2D. In addition, the processing process for etching the end surface of the optical fiber terminal using the laser technology, because processing the quartz glass as the main material of the optical fiber takes a lot of processing time, and precisely control the optical fiber to perform micro etching In order to require the ultra-precision stage, there is a problem that the manufacturing cost is increased and the manufacturing process is not efficient.
본 발명이 해결하고자 하는 과제는, 후처리 공정이 요구되지 않으면서도, 방사상으로 조사가 가능한 광섬유 팁, 및 이의 제조방법, 및 이를 포함하는 의료용 광섬유 장치를 제공하는 데에 있다.Disclosure of Invention Problems to be solved by the present invention are to provide an optical fiber tip capable of irradiating radially, and a method of manufacturing the same, and a medical optical fiber device including the same without requiring a post-treatment step.
상기 과제를 이루기 위하여 본 발명의 일 측면은, 광섬유 팁(tip)으로 가공시킬 중공형 광섬유를 준비하는 단계, 상기 중공형 광섬유를 1차 열처리하여 상기 중공형 광섬유의 일단의 클래딩층을 봉합시키는 단계, 및 상기 중공형 광섬유를 2차 열처리하여 상기 중공형 광섬유의 타단의 클래딩층을 봉합시켜, 상기 광섬유 팁의 내부에 공기주머니(air-pocket)를 형성시키는 단계를 포함하며, 상기 1차 열처리 및 상기 2차 열처리에 의해 상기 중공형 광섬유의 클래딩층을, 상기 공기주머니를 감싸는 형태로 배치하는 것을 특징으로 하는 방사상 조사가 가능한 광섬유 팁의 제조방법을 제공할 수 있다.In order to achieve the above object, one aspect of the present invention comprises the steps of preparing a hollow fiber to be processed into an optical fiber tip, the first heat treatment of the hollow fiber to seal the cladding layer of one end of the hollow fiber And sealing the cladding layer at the other end of the hollow optical fiber by secondary heat treatment of the hollow optical fiber to form an air-pocket inside the optical fiber tip. By the secondary heat treatment, the cladding layer of the hollow optical fiber may be provided in the form of a wrap around the air bag to provide a method for manufacturing a radially irradiable optical fiber tip.
상기 중공형 광섬유는 중공 광섬유(hollow optical fiber, HOF), 중공코어 광섬유(hollow core fiber, HCF), 및 광자 결정 광섬유(photonics crystal fiber, PCF) 중에서 선택되는 어느 하나를 사용하는 것일 수 있다. The hollow fiber may be one selected from a hollow optical fiber (HOF), a hollow core fiber (HCF), and a photonics crystal fiber (PCF).
상기 열처리는 아크방전 또는 레이저 가열을 이용하는 것일 수 있다. The heat treatment may be to use arc discharge or laser heating.
상기 중공형 광섬유에 상기 1차 열처리 및 상기 2차 열처리를 수행하는 위치를 조절하여 상기 광섬유 팁의 형태를 제어하는 것일 수 있다. The shape of the optical fiber tip may be controlled by adjusting a position at which the first heat treatment and the second heat treatment are performed on the hollow optical fiber.
상기 과제를 이루기 위하여 본 발명의 다른 측면은, 클래딩층을 포함하는 중공형 광섬유를 가공하여 형성된 광섬유 팁(tip)으로, 상기 광섬유 팁의 내부에 배치된 공기주머니(air-pocket), 및 상기 공기주머니를 감싸는 형태로 배치된 상기 중공형 광섬유의 클래딩층을 포함하는 것을 특징으로 하는 방사상 조사가 가능한 광섬유 팁을 제공할 수 있다.In order to achieve the above object, another aspect of the present invention is an optical fiber tip formed by processing a hollow optical fiber including a cladding layer, an air pocket disposed inside the optical fiber tip, and the air. It is possible to provide a radially irradiable optical fiber tip comprising a cladding layer of the hollow optical fiber disposed in the form of surrounding the bag.
상기 공기주머니는, 상기 중공형 광섬유의 클래딩층에 의해 외부로부터 차단되는 것일 수 있다. The air bag may be blocked from the outside by the cladding layer of the hollow optical fiber.
상기 과제를 이루기 위하여 본 발명의 또 다른 측면은, 상기 광섬유 팁, 및 상기 광섬유 팁과 융착시킨 전송용 광섬유를 포함하는 것으로, 상기 전송용 광섬유를 통해 상기 광섬유 팁에 레이저가 전달되는 것을 특징으로 하는 의료용 광섬유 장치를 제공할 수 있다.Another aspect of the present invention to achieve the above object, including the optical fiber tip and the transmission optical fiber fused with the optical fiber tip, characterized in that the laser is transmitted to the optical fiber tip through the transmission optical fiber A medical optical fiber device can be provided.
상기 레이저는, 상기 광섬유 팁 내부에 배치된 공기주머니에 의해 방사상 방향으로 전반사되며 외부로 전달되는 것일 수 있다.The laser may be totally reflected in the radial direction by the air bag disposed inside the optical fiber tip and transmitted to the outside.
상기 의료용 광섬유 장치는, 상기 광섬유 팁 내부에 구비된 공기주머니의 모양 및 기울기에 의해 상기 레이저의 조사방향 및 조사패턴이 변화되는 것일 수 있다.In the medical optical fiber device, the irradiation direction and irradiation pattern of the laser may be changed by the shape and inclination of the air bag provided in the optical fiber tip.
본 발명의 광섬유 팁을 포함하는 의료용 광섬유 장치는, 내부에 공기주머니가 배치된 광섬유 팁에 의해 레이저가 방사상으로 조사될 수 있어, 신체 조직 내에서 다양한 형태의 방사상으로 진행하는 병변을 치료하거나 제거하는 데에 폭넓게 사용될 수 있다.In the medical optical fiber device including the optical fiber tip of the present invention, a laser beam may be irradiated radially by an optical fiber tip having an air pocket disposed therein, thereby treating or removing various types of radially progressing lesions in body tissues. It can be used widely.
또한, 본 발명의 광섬유 팁의 제조방법은 후처리 공정 및 패키지 공정을 간소화시킬 수 있으며, 광섬유 팁의 소형화가 가능하여 마이크로 단위의 조직을 치료하는 데에 적극 활용될 수 있다. In addition, the manufacturing method of the optical fiber tip of the present invention can simplify the post-treatment process and the packaging process, and can be used to treat micro-structured tissues by miniaturizing the optical fiber tip.
아울러, 본 발명의 방사상 조사 광섬유 팁은 광섬유 자체를 가공시켜 형성한 것으로, 광섬유 자체의 안정적인 물질인 석영유리(silica glass)로만 구성되기 때문에 인체에 무해할 수 있다.In addition, the radially irradiated optical fiber tip of the present invention is formed by processing the optical fiber itself, it may be harmless to the human body because it is composed only of silica glass (silica glass) which is a stable material of the optical fiber itself.
다만, 발명의 효과는 상기에서 언급한 효과로 제한되지 아니하며, 언급되지 않은 또 다른 효과들을 하기의 기재로부터 당업자에게 명확히 이해될 수 있을 것이다.However, the effects of the invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 종래의 측면 조사 광섬유의 가공공정 및 후처리 공정을 나타낸 모식도이다.1 is a schematic diagram showing a processing step and a post-treatment step of a conventional side irradiation optical fiber.
도 2a 내지 도 2d는 종래의 방사상 조사 광섬유의 가공공정 및 후처리공정을 나타낸 모식도이다.2A to 2D are schematic diagrams showing a processing step and a post-treatment step of a conventional radial irradiation optical fiber.
도 3a 내지 도 3d는 본 발명의 일 실시예에 따라 중공형 광섬유를 가공하여 광섬유 팁을 제조하는 방법을 나타낸 모식도이다.3A to 3D are schematic views showing a method of manufacturing an optical fiber tip by processing a hollow optical fiber according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에서 이용하는 중공형 광섬유를 나타낸 모식도이다4 is a schematic diagram showing a hollow optical fiber used in an embodiment of the present invention.
도 5a 내지 도 5b는 본 발명의 일 실시예에 따라 열처리 수행위치를 달리하여 광섬유 팁의 형태를 다르게 조성한 모식도이다.5A to 5B are schematic views of different shapes of optical fiber tips formed by changing heat treatment positions according to an embodiment of the present invention.
도 6은 광섬유 팁을 융착시키지 않은 일반 의료용 광섬유 장치 및 본 발명의 광섬유 팁을 융착시킨 의료용 광섬유 장치의 각각의 레이저 조사방향을 나타낸 이미지이다. Figure 6 is an image showing the laser irradiation direction of each of the medical optical fiber device not fused to the optical fiber tip and the medical optical fiber device fused to the optical fiber tip of the present invention.
도 7a 내지 도 7b는 각각 일반적인 전송용 광섬유, 본 발명의 광섬유 팁을 융착시킨 전송용 광섬유에 의해 전달된 레이저의 각도별 전송분포도 측정방법에 대한 모식도, 및 측정결과를 나타낸 도표이다.7A to 7B are diagrams each showing a schematic diagram of a method of measuring a transmission distribution for each angle of a laser transmitted by a general transmission optical fiber, a transmission optical fiber fused to an optical fiber tip of the present invention, and a measurement result.
도 8은 본 발명의 일 실시예에 따라 공기주머니의 모양 및 기울기를 달리하여 제조한 광섬유 팁을 융착시킨 의료용 광섬유 장치를 나타낸 모식도이다.FIG. 8 is a schematic view showing a medical optical fiber device in which an optical fiber tip manufactured by varying the shape and inclination of an air bag according to an embodiment of the present invention is fused.
도 9는 본 발명의 다른 실시예에 따른 광섬유 팁이 융착된 의료용 광섬유 장치의 제조방법을 나타낸 모식도이다.9 is a schematic view showing a method of manufacturing a medical optical fiber device is fused optical fiber tip according to another embodiment of the present invention.
이하, 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시 예들이 도면들로 예시되어 나타내어지며, 이하에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다. While the invention allows for various modifications and variations, specific embodiments thereof are illustrated by way of example in the drawings and will be described in detail below. However, it is not intended to be exhaustive or to limit the invention to the precise forms disclosed, but rather the invention includes all modifications, equivalents, and alternatives consistent with the spirit of the invention as defined by the claims.
도면들에 있어서, 층 및 영역들의 두께는 명확성을 기하기 위하여 과장 또는 축소된 것일 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.In the drawings, the thicknesses of layers and regions may be exaggerated or reduced for clarity. Like numbers refer to like elements throughout.
1. 방사상 조사가 가능한 광섬유 팁의 제조방법1. Manufacturing method of optical fiber tip capable of radial irradiation
본 발명의 일 측면은, 방사상 조사가 가능한 광섬유 팁의 제조방법을 제공할 수 있다. 상세하게는, 1) 광섬유 팁(tip)으로 가공시킬 중공형 광섬유를 준비하는 단계, 2) 상기 중공형 광섬유를 1차 열처리하여 상기 중공형 광섬유의 일단의 클래딩층을 봉합시키는 단계, 및 3) 상기 중공형 광섬유를 2차 열처리하여 상기 중공형 광섬유의 타단의 클래딩층을 봉합시켜, 상기 광섬유 팁의 내부에 공기주머니(air-pocket)를 형성시키는 단계를 포함하며, 상기 1차 열처리 및 상기 2차 열처리에 의해 상기 중공형 광섬유의 클래딩층을, 상기 공기주머니를 감싸는 형태로 배치하는 것일 수 있다. One aspect of the present invention may provide a method for manufacturing an optical fiber tip capable of radial irradiation. Specifically, 1) preparing a hollow fiber to be processed into an optical fiber tip, 2) sealing the cladding layer of one end of the hollow fiber by primary heat treatment of the hollow fiber, and 3) Secondary heat treatment of the hollow optical fiber to seal the cladding layer at the other end of the hollow optical fiber, thereby forming an air pocket inside the optical fiber tip, wherein the primary heat treatment and the second The cladding layer of the hollow optical fiber may be disposed in a form surrounding the air bag by the differential heat treatment.
구체적으로 이는, 하기 도 3을 참조하여 설명할 수 있으나, 이에 한정되는 것은 아니다.Specifically, this may be described with reference to FIG. 3, but is not limited thereto.
도 3a 내지 도 3d는 본 발명의 일 실시예에 따라 중공형 광섬유를 가공하여 광섬유 팁을 제조하는 방법을 나타낸 모식도이다.3A to 3D are schematic views showing a method of manufacturing an optical fiber tip by processing a hollow optical fiber according to an embodiment of the present invention.
본 발명의 광섬유 팁의 제조방법에 있어서, 단계1)은 광섬유 팁(tip)으로 가공시킬 중공형 광섬유를 준비하는 단계이다. 도 3a와 같이, 상기 중공형 광섬유(100)는 클래딩층을 포함하는 광섬유, 또는 실시예에 따라, 클래딩층 이외에 코어층을 더 포함하는 것으로서, 속이 비어 있는 구조, 또는 내부에 관통홀을 가진 구조를 가진 광섬유를 총칭하며, 다양한 중공형 광섬유를 사용할 수 있다. 예를 들어, 상기 중공형 광섬유(100)는, 중공 광섬유(hollow optical fiber, HOF), 중공코어 광섬유(hollow core fiber, HCF), 및 광자 결정 광섬유(photonics crystal fiber, PCF) 중에서 선택되는 어느 하나를 사용하는 것일 수 있다. In the manufacturing method of the optical fiber tip of the present invention, step 1) is a step of preparing a hollow fiber to be processed into an optical fiber tip. As shown in FIG. 3A, the hollow optical fiber 100 further includes a core layer in addition to a cladding layer or an optical fiber including a cladding layer, and has a hollow structure or a structure having a through hole therein. General term for the optical fiber having a, and various hollow fiber can be used. For example, the hollow optical fiber 100 is any one selected from a hollow optical fiber (HOF), a hollow core fiber (HCF), and a photonics crystal fiber (PCF). It may be to use.
도 4는 본 발명의 일 실시예에서 이용하는 중공형 광섬유를 나타낸 모식도이다. 도 4를 참조하면, 상기 중공 광섬유(HOF)는 관 형태의 광섬유로, 내부에 관통홀이 배치되며, 코어층 없이 클래딩층만이 상기 관통홀을 둘러싸고 있는 구조를 가진 것일 수 있다. 상기 중동코어 광섬유(HCF)는 관 형태의 광섬유로, 내부에 관통홀이 형성되어 있고, 상기 관통홀을 둘러싸는 코어층, 및 상기 코어층을 둘러싸는 클래딩층으로 이루어진 것일 수 있다. 상기 광자 결정 광섬유(PCF)는 관 형태의 광섬유로, 내부에 작은 직경을 가진 복수개의 관통홀이 배치되며, 상기 관통홀을 클래딩층이 둘러싸고 있는 구조를 가진 것일 수 있다. 4 is a schematic diagram showing a hollow optical fiber used in an embodiment of the present invention. Referring to FIG. 4, the hollow optical fiber (HOF) is a tube-shaped optical fiber, and a through hole is disposed therein, and only the cladding layer surrounds the through hole without a core layer. The Middle East core optical fiber (HCF) is a tube-shaped optical fiber, a through hole is formed therein, it may be composed of a core layer surrounding the through hole, and a cladding layer surrounding the core layer. The photonic crystal optical fiber (PCF) is a tube-shaped optical fiber, and a plurality of through holes having a small diameter are disposed therein, and may have a structure in which a cladding layer surrounds the through holes.
본 발명의 광섬유 팁의 제조방법에 있어서, 단계2)는 상기 중공형 광섬유를 1차 열처리하여 상기 중공형 광섬유의 일단의 클래딩층을 봉합시키는 단계이다.In the manufacturing method of the optical fiber tip of the present invention, step 2) is a step of sealing the cladding layer of one end of the hollow optical fiber by primary heat treatment of the hollow optical fiber.
즉, 도 3b와 같이, 상기 단계1)의 광섬유 팁(tip)으로 가공시킬 중공형 광섬유(100)의 일단의 클래딩층을 열처리하여 상기 중공형 광섬유(100)의 클래딩층의 일단의 끝부분(111, 112)을 접합하여 봉합시킬 수 있다. 즉, 상기 중공형 광섬유의 일단의 클래딩층이 봉합된 영역에서는 상기 중공형 광섬유의 중공이 막힌 구조를 가질 수 있다.That is, as shown in Figure 3b, the end of one end of the cladding layer of the hollow optical fiber 100 by heat-treating the cladding layer of one end of the hollow optical fiber 100 to be processed into the optical fiber tip of the step 1) 111 and 112 can be joined and sealed. That is, in the region in which the cladding layer of one end of the hollow optical fiber is sealed, the hollow of the hollow optical fiber may be blocked.
상기 열처리는 아크방전(arc discharge) 또는 레이저 가열을 이용하는 것일 수 있다. 아크방전은 일반적으로, 전극 사이에 전류가 흐를 때 기체방전이 절정에 달하여 전극이 가열되면서 전극 재료의 일부가 증발해서 기체가 된 상태로, 전자와 기체 분자의 충돌로 발생하는 이온 쌍의 운동에 의해 기체 내에 전기 전도 현상이 일어나는 것일 수 있다. 이 때, 상기 기체 내에 놓인 음극과 양극 사이가 고온의 플라즈마로 연결되어 큰 전류가 흐를 수 있다. 이에, 아크방전은 전압강하가 비교적 작고 전류 밀도가 크므로, 고온의 열처리 통해 물질을 융착시키거나 접합시키는 데에 유용하다. 예를 들어, 이는, 일반적인 아크방전을 이용한 열처리 장치를 사용하는 것일 수 있다. 또한, 레이저 가열은 일반적인 레이저 용접장치를 이용하는 것으로, 고온의 열을 생성할 수 있는 레이저를 이용하여 해당 영역을 열처리할 수 있다.The heat treatment may be to use arc discharge or laser heating. Arc discharge is generally a state where gas discharge reaches its peak when an electric current flows between electrodes, and a part of the electrode material is evaporated and becomes a gas as the electrode is heated. The electrical conduction phenomenon may occur in the gas. At this time, a large current may flow between the cathode and the anode placed in the gas by a high temperature plasma. Accordingly, arc discharge is useful for fusion or bonding of materials through high temperature heat treatment because the voltage drop is relatively small and the current density is large. For example, this may be to use a heat treatment apparatus using a general arc discharge. In addition, laser heating uses a general laser welding apparatus, and heat treatment of the region using a laser capable of generating high temperature heat.
상기 아크방전 또는 레이저 가열을 이용하는 열처리는 상기 중공형 광섬유의 일단 및 타단의 클래딩층을 봉합시킬 수 있는 정도의 적정온도 범위에서 적정시간 동안 수행하는 것일 수 있다. 이는, 사용하는 광섬유의 종류 및 크기에 따라 달라질 수 있으므로, 특별히 한정하지는 않는다.The heat treatment using the arc discharge or laser heating may be performed for a proper time in an appropriate temperature range to seal the cladding layers at one end and the other end of the hollow optical fiber. This may vary depending on the type and size of the optical fiber to be used, and is not particularly limited.
본 발명의 광섬유 팁의 제조방법에 있어서, 단계3)은 상기 중공형 광섬유를 2차 열처리하여 상기 중공형 광섬유의 타단의 클래딩층을 봉합시켜, 상기 광섬유 팁의 내부에 공기주머니(air-pocket)를 형성시키는 단계이다. In the manufacturing method of the optical fiber tip of the present invention, step 3) seals the cladding layer at the other end of the hollow optical fiber by secondary heat treatment of the hollow optical fiber, and an air-pocket inside the optical fiber tip. Forming a step.
구체적으로 이는, 도 3c와 같이, 상기 단계2)에서 상기 중공형 광섬유의 일단의 끝부분(111, 112)의 봉합이 수행된 상기 중공형 광섬유의 타단의 끝부분(121, 122)을 상기 단계2)와 같이, 열처리하여 상기 중공형 광섬유의 타단의 클래딩층을 봉합시키는 것일 수 있다. 즉, 상기 중공형 광섬유 타단 또한, 상기 클래딩층이 봉합된 영역에서는 상기 중공형 광섬유의 중공이 막힌 구조를 가질 수 있다.Specifically, as shown in Figure 3c, in the step 2) the end portion 121, 122 of the other end of the hollow optical fiber in which the end portion 111, 112 of one end of the hollow optical fiber is performed; 2), the heat treatment may be to seal the cladding layer of the other end of the hollow optical fiber. That is, the other end of the hollow optical fiber may also have a structure in which the hollow of the hollow optical fiber is blocked in a region where the cladding layer is sealed.
이와 같이, 상기 단계2) 및 상기 단계3)을 통해 상기 중공형 광섬유의 일단과 타단의 클래딩층의 각 끝부분이 봉합됨에 따라, 상기 중공형 광섬유 내부에 중공영역에 형성되어 있는 공기층이 봉합되면서, 도 3d와 같이, 공기주머니(air-pocket)(130)를 형성시킬 수 있다. 상기 공기주머니(130)는, 본 발명이 상기 중공형 광섬유를 가공시켜 형성한 것으로, 상기 광섬유 팁(200)의 내부(210)에 배치되는 것일 수 있다. As such, as each end of the cladding layer at one end and the other end of the hollow optical fiber is sealed through the steps 2) and 3), the air layer formed in the hollow region is sealed in the hollow optical fiber. As shown in FIG. 3D, an air-pocket 130 may be formed. The air bag 130, the present invention is formed by processing the hollow optical fiber, may be disposed in the interior 210 of the optical fiber tip 200.
또한, 상기 1차 열처리 및 상기 2차 열처리에 의해 상기 중공형 광섬유의 클래딩층을, 상기 공기주머니를 감싸는 형태로 배치하는 것일 수 있다. 상기 1차 열처리 및 상기 2차 열처리에 의해 상기 중공형 광섬유의 클래딩층의 일단 및 타단이 각각 봉합됨에 따라 상기 봉합된 구조가 상기 광섬유 팁 내부에 배치된 공기주머니의 외부영역에 배치되어 상기 공기주머니를 감싸는 형태로 배치되는 것일 수 있다.In addition, the cladding layer of the hollow optical fiber by the first heat treatment and the second heat treatment may be arranged to surround the air bag. As one end and the other end of the cladding layer of the hollow optical fiber are sealed by the first heat treatment and the second heat treatment, the sealed structure is disposed in the outer region of the air bag disposed inside the optical fiber tip, and thus the air bag It may be arranged to surround the.
본 발명의 광섬유 팁의 제조방법을 통해, 상기 중공형 광섬유에 상기 1차 열처리 및 상기 2차 열처리를 수행하는 위치를 조절하여 상기 광섬유 팁의 형태를 제어할 수 있다.Through the manufacturing method of the optical fiber tip of the present invention, it is possible to control the shape of the optical fiber tip by adjusting the position of performing the first heat treatment and the second heat treatment to the hollow optical fiber.
도 5a 내지 도 5b는 본 발명의 일 실시예에 따라 열처리 수행위치를 달리하여 광섬유 팁의 형태를 다르게 조성한 모식도이다.5A to 5B are schematic views of different shapes of optical fiber tips formed by changing heat treatment positions according to an embodiment of the present invention.
먼저, 도 5a를 참조하면, 중공형 광섬유에 열처리 수행시, 상기 중공형 광섬유의 일단 및 중앙영역부터 열처리를 시작하여 일단과 타단의 클래딩층을 봉합하는 경우, 도 5a와 같은 형태의 광섬유 팁을 형성할 수 있다. First, referring to FIG. 5A, when heat treatment is performed on a hollow fiber, when the heat treatment is started from one end and a central region of the hollow fiber to seal the cladding layers at one end and the other end, an optical fiber tip having the shape shown in FIG. Can be formed.
도 5b는 중공형 광섬유에 열처리를 수행하는 위치를 조절하여 상기 중공형 광섬유의 일단 및 타단의 클래딩층이 봉합된 구조를 가진 광섬유 팁을 다양한 형태로 형성시켜 전송용 광섬유에 융착시킨 모식도로서, 상기 광섬유 팁의 말단부가 다양한 형태(직각형, 원형, 사선형 등)로 형성될 수 있는 것을 확인할 수 있다. 이와 같이, 본 발명은 열처리 수행위치를 조절하여 광섬유 팁의 모양을 용이하게 제어할 수 있어, 간단한 제조공정을 통해 다양한 형태의 광섬유 팁을 형성할 수 있다.Figure 5b is a schematic diagram of the optical fiber tip having a structure in which the cladding layer of one end and the other end of the hollow optical fiber is sealed in various forms by adjusting the position to perform the heat treatment to the hollow optical fiber and fused to the optical fiber for transmission. It can be seen that the distal end of the optical fiber tip can be formed in various shapes (rectangular, circular, oblique, etc.). As described above, the present invention can easily control the shape of the optical fiber tip by adjusting the heat treatment performed position, it is possible to form various types of optical fiber tips through a simple manufacturing process.
2. 방사상 조사가 가능한 광섬유 팁2. Fiber Optic Tip with Radial Irradiation
본 발명의 다른 측면은, 방사상 조사가 가능한 광섬유 팁을 제공할 수 있다. 상기 광섬유 팁은 상기 "1. 방사상 조사가 가능한 광섬유 팁의 제조방법" 에 의해 제조된 것일 수 있다. 구체적으로 상기 광섬유 팁은, 클래딩층을 포함하는 중공형 광섬유를 가공하여 형성된 광섬유 팁(tip)으로, 상기 광섬유 팁의 내부에 배치된 공기주머니(air-pocket), 및 상기 공기주머니를 감싸는 형태로 배치된 상기 중공형 광섬유의 클래딩층을 포함하는 것일 수 있다.Another aspect of the invention may provide an optical fiber tip capable of radial irradiation. The optical fiber tip may be manufactured by the "1. Method for manufacturing an optical fiber tip capable of radial irradiation". Specifically, the optical fiber tip is an optical fiber tip formed by processing a hollow optical fiber including a cladding layer, an air pocket disposed in the optical fiber tip, and a shape surrounding the air bag. It may be to include a cladding layer of the hollow optical fiber disposed.
상기 광섬유 팁은 상기 "1. 방사상 조사가 가능한 광섬유 팁의 제조방법" 항목에서 설명한 제조방법에 의하여 제조된 것이므로, 상기 광섬유 팁에 관해서는 상기 "1. 방사상 조사가 가능한 광섬유 팁의 제조방법" 항목에서 설명한 바와 동일할 수 있다. 이에, 본 발명의 광섬유 팁은, 상기 "1. 방사상 조사가 가능한 광섬유 팁의 제조방법"의 설명을 원용하여 상세한 설명은 생략하도록 하고, 이하에서는 상기 광섬유 팁의 특이적인 구성에 대해서 설명할 수 있다. Since the optical fiber tip is manufactured by the manufacturing method described in the section "1. Method for manufacturing a radially irradiated optical fiber tip", the optical fiber tip is described in "1. Method for manufacturing a radially irradiated optical fiber tip" item. It may be the same as described above. Thus, the optical fiber tip of the present invention, by using the description of the "1. Method of manufacturing the optical fiber tip that can be radially radiated" to omit the detailed description, and will be described below for the specific configuration of the optical fiber tip. .
상기 광섬유 팁의 내부에 배치된 공기주머니는, 상기 중공형 광섬유의 클래딩층에 의해 외부로부터 차단되는 것일 수 있다. 즉, 상기 광섬유 팁에 배치된 공기주머니는, 상기 공기주머니를 감싸는 형태로 배치된 상기 중공형 광섬유의 클래딩층의 구조적 특징에 의해 외부로부터 차단되어, 전반사 조건을 유지하며 용이하게 레이저를 방사상으로 조사시킬 수 있다. 이는, 종래기술이 전반사 조건을 보호하기 위하여 광섬유 말단 계면을 금속 코팅하거나, 반사체를 접합, 또는 유리튜브를 접합시키는 후처리 공정이 요구되었던 점을 개선한 것이며, 또한, 광섬유 말단부의 연마공정에서 발생되었던 불완전한 굴곡이 형성되지 않아, 제조공정의 간소화 및 제조단가를 절감시킬 수 있는 효과를 가질 수 있다. 또한, 후처리 공정 및 패키지 공정의 간소화로 인해 광섬유 팁의 소형화가 가능하여 마이크로 단위의 조직을 치료하는 데에 적극 활용될 수 있다. 아울러, 본 발명의 방사상 조사가 가능한 광섬유 팁은 광섬유 자체를 가공시켜 형성한 것으로, 광섬유 자체의 안정적인 물질인 석영유리(silica glass)로 구성되어 인체에 무해할 수 있다.The air bag disposed inside the optical fiber tip may be blocked from the outside by the cladding layer of the hollow optical fiber. That is, the air bag disposed on the optical fiber tip is blocked from the outside by the structural features of the cladding layer of the hollow optical fiber arranged in such a manner as to surround the air bag, thereby maintaining the total reflection condition and easily irradiating the laser radially. You can. This is an improvement in that the prior art required a post-treatment process for metal coating the optical fiber terminal interface, bonding the reflector, or glass tube to protect the total reflection condition, and also occurred in the polishing process of the optical fiber terminal. Incomplete bending is not formed, which can have the effect of simplifying the manufacturing process and reducing the manufacturing cost. In addition, due to the simplification of the post-treatment process and the packaging process, the miniaturization of the optical fiber tip is possible, and thus it can be actively used to treat micro-structured tissue. In addition, the radially irradiated optical fiber tip of the present invention is formed by processing the optical fiber itself, it may be harmless to the human body is composed of silica glass (silica glass) which is a stable material of the optical fiber itself.
3. 방사상 조사가 가능한 광섬유 팁을 포함하는 의료용 광섬유 장치.3. A medical optical fiber device comprising a fiber tip capable of radial irradiation.
본 발명의 다른 측면은, 방사상 조사가 가능한 광섬유 팁을 포함하는 의료용 광섬유 장치를 제공할 수 있다. 상기 의료용 광섬유 장치는 상기 "2. 방사상 조사가 가능한 광섬유 팁"을 포함하여 제조된 것일 수 있다. 구체적으로 상기 의료용 광섬유 장치는, 상기 방사상 조사가 가능한 광섬유 팁, 및 상기 광섬유 팁과 융착시킨 전송용 광섬유를 포함하는 것일 수 있으며, 상기 전송용 광섬유를 통해 상기 광섬유 팁에 레이저가 전달되는 것일 수 있다.Another aspect of the present invention may provide a medical optical fiber device including an optical fiber tip capable of radial irradiation. The medical optical fiber device may be manufactured including the "2. optical fiber tip capable of radial irradiation". Specifically, the medical optical fiber device may include the optical fiber tip capable of radiating the radiation, and a transmission optical fiber fused with the optical fiber tip, the laser may be delivered to the optical fiber tip through the transmission optical fiber. .
상기 전송용 광섬유는 클래딩층을 포함하는 광섬유일 수 있으며, 또는 코어층 및 클래딩층을 포함하는 광섬유일 수 있다. 상기 전송용 광섬유는 일반적인 레이저 전송이 가능한 광섬유를 모두 사용할 수 있어, 특별히 한정하지는 않는다. 예를 들어, 상기 전송용 광섬유는 단일모드 광섬유(SMF), 다중모드 광섬유(MMF), 광증폭 광섬유(EDF), 무수 광섬유(LWPF), 또는 분산천이형 광섬유(DSF) 등일 수 있다. The optical fiber for transmission may be an optical fiber including a cladding layer or an optical fiber including a core layer and a cladding layer. The optical fiber for transmission can use all the optical fiber which can carry out general laser transmission, and it does not specifically limit. For example, the transmission optical fiber may be a single mode optical fiber (SMF), a multimode optical fiber (MMF), an optical amplified fiber (EDF), anhydrous optical fiber (LWPF), or a distributed transition optical fiber (DSF).
상기 광섬유 팁과 상기 전송용 광섬유를 융착시키는 것은, 공지된 광섬유 융착접속기를 통해서 수행할 수 있다. 예를 들어, 상기 광섬유 융착접속기는 아크방전을 이용한 것일 수 있으나, 이에 한정되지는 않는다.Fusion of the optical fiber tip and the transmission optical fiber may be performed through a known optical fiber fusion splicer. For example, the optical fiber fusion splicer may be using arc discharge, but is not limited thereto.
상기 전송용 광섬유와 상기 광섬유 팁이 융착됨에 따라, 상기 전송용 광섬유의 코어층, 또는 공기층을 통해 전달되는 레이저가 상기 의료용 광섬유 장치의 상기 광섬유 팁에 전달될 수 있다. 구체적으로, 상기 전송용 광섬유를 통해 전달된 레이저는 상기 광섬유 팁을 구성하는 클래딩층이 봉합된 구조에서는 거의 직진하며, 상기 광섬유 팁 내부에 배치된 공기주머니와의 계면에 닿게 될 수 있다. As the transmission optical fiber and the optical fiber tip are fused, a laser beam transmitted through the core layer or the air layer of the transmission optical fiber may be delivered to the optical fiber tip of the medical optical fiber device. Specifically, the laser beam transmitted through the transmission optical fiber is almost straight in the structure in which the cladding layer constituting the optical fiber tip is sealed, and may come into contact with an interface with an air bag disposed inside the optical fiber tip.
이에, 상기 광섬유 팁에 전달된 레이저는 상기 광섬유 팁 내부에 배치된 공기주머니에 의해 방사상 방향으로 전반사되며 외부로 전달되는 것일 수 있다. 구체적으로 이는, 상기 광섬유 팁 내부에 상기 공기주머니의 공기층으로 인해 상기 의료용 광섬유 장치 내 전송용 광섬유를 통해 전달된 레이저가 상기 광섬유 팁 내부에 배치된 공기주머니를 구성하는 공기층과의 계면에서 방사상으로 굴절되면서 상기 레이저가 방사상 방향으로 전반사되는 것일 수 있으며, 이러한 형태로 상기 의료용 광섬유 장치는 외부에 레이저를 전달하게 되는 것일 수 있다.Accordingly, the laser beam delivered to the optical fiber tip may be totally reflected in a radial direction by an air bag disposed inside the optical fiber tip and transmitted to the outside. Specifically, the laser beam transmitted through the optical fiber for transmission in the medical optical fiber device due to the air layer of the air bag inside the optical fiber tip is refracted radially at the interface with the air layer constituting the air bag disposed inside the optical fiber tip. While the laser may be totally reflected in the radial direction, in this form the medical optical fiber device may be to transmit the laser to the outside.
도 6은 광섬유 팁을 융착시키지 않은 일반 의료용 광섬유 장치 및 본 발명의 광섬유 팁을 융착시킨 의료용 광섬유 장치의 각각의 레이저 조사방향을 나타낸 이미지이다. Figure 6 is an image showing the laser irradiation direction of each of the medical optical fiber device not fused to the optical fiber tip and the medical optical fiber device fused to the optical fiber tip of the present invention.
도 6의 (a)를 참조하면, 광섬유 팁을 융착시키지 않은 종래의 의료용 광섬유 장치는 레이저 조사방향이 전송용 광섬유를 통해 전달된 그대로 전방(forward)을 향해서 레이저를 직진시켜 조사하며 외부로 전달시키는 것을 확인할 수 있다. 이와 달리, 도 6의 (b)를 참조하면, 본 발명의 광섬유 팁과 전송용 광섬유를 융착시킨 의료용 광섬유 장치는 전송용 광섬유를 통해 전달된 레이저 조사방향이 상기 광섬유 팁 내부에 배치된 공기주머니에 의해 방사상으로 퍼지면서 레이저를 외부에 전달시키는 것을 확인할 수 있다. Referring to FIG. 6 (a), the conventional medical optical fiber device which does not fuse the optical fiber tip is irradiated by directing the laser toward the forward as the laser irradiation direction is transmitted through the optical fiber for transmission, and transmitting it to the outside. You can see that. On the contrary, referring to FIG. 6 (b), the medical optical fiber device in which the optical fiber tip and the optical fiber for fusion are fused is disposed in an air pocket in which the laser irradiation direction transmitted through the optical fiber for transmission is disposed inside the optical fiber tip. It can be confirmed that the laser is transmitted to the outside while spreading radially.
도 7a 내지 도 7b는 각각 광섬유 팁을 융착시키지 않은 일반 의료용 광섬유 장치, 및 본 발명의 광섬유 팁을 융착시킨 의료용 광섬유 장치에 의해 전달된 레이저의 각도별 전송분포도 측정방법에 대한 모식도, 및 측정결과를 나타낸 도표이다.7A to 7B are schematic diagrams of measurement methods for measuring transmission distributions for each angle of a laser transmitted by a general medical optical fiber device, in which a fiber tip is not fused, and a medical fiber device in which the optical fiber tip is fused, respectively, and measurement results. The diagram shown.
도 7a와 같이, 일반 의료용 광섬유 장치, 및 본 발명의 광섬유 팁이 융착된 의료용 광섬유 장치 각각에 He-Ne 레이저 빔을 조사하여, 각각의 광섬유 장치의 말단부(fiber distal end) 또는 광섬유 팁에서 조사되는 레이저가 렌즈 및 전송용 레이저를 통해 산출되는 방식으로 레이저의 각도별 전송분포도를 측정하였다.As shown in FIG. 7A, a He-Ne laser beam is irradiated to a general medical optical fiber device and a medical optical fiber device in which an optical fiber tip of the present invention is fused, and irradiated at a fiber distal end or an optical fiber tip of each optical fiber device. The transmission distribution for each angle of the laser was measured in such a way that the laser was calculated through the lens and the transmission laser.
그 결과를 나타낸 도 7b를 참조하면, 본 발명의 광섬유 팁을 융착시키지 않은 일반 의료용 광섬유 장치의 경우, 전방의 특정 각도에서만 레이저 조사량이 집중되어 있는 것을 확인할 수 있다. 이와 달리, 본 발명의 광섬유 팁을 융착시킨 의료용 광섬유 장치는 광섬유의 축방향으로부터 -87°내지 87°의 각도로 레이저를 조사시키는 것을 확인할 수 있다.Referring to FIG. 7B showing the result, in the case of a general medical optical fiber device in which the optical fiber tip of the present invention is not fused, it can be seen that the laser irradiation amount is concentrated only at a specific angle in front. On the contrary, it can be seen that the medical optical fiber device fused with the optical fiber tip of the present invention irradiates a laser at an angle of -87 ° to 87 ° from the axial direction of the optical fiber.
이와 같이, 본 발명의 광섬유 팁을 융착시킨 의료용 광섬유 장치는 상기 광섬유 팁 내부에 배치된 공기주머니에 의해 레이저가 방사상으로 조사될 수 있어, 상기 의료용 광섬유 장치를 신체 조직 내에서 다양한 형태의 방사상으로 진행하는 병변을 치료하거나 제거하는 데에 폭넓게 사용될 수 있다.As described above, the medical optical fiber device in which the optical fiber tip of the present invention is fused can be irradiated with a laser beam by an air bag disposed inside the optical fiber tip, so that the medical optical fiber device can radially travel in various forms in body tissues. It can be widely used to treat or remove lesions.
또한, 본 발명의 방사상 조사가 가능한 광섬유 팁을 융착시킨 상기 의료용 광섬유 장치는 상기 광섬유 팁 내부에 배치된 공기주머니의 모양 및 기울기를 통해 상기 레이저의 조사방향 및 조사패턴이 변화되는 것일 수 있다.In addition, the medical optical fiber device in which the radially irradiated optical fiber tip of the present invention is fused, the irradiation direction and irradiation pattern of the laser may be changed through the shape and inclination of the air bag disposed inside the optical fiber tip.
도 8은 본 발명의 일 실시예에 따라 공기주머니의 모양 및 기울기를 달리하여 제조한 광섬유 팁을 융착시킨 의료용 광섬유 장치를 나타낸 모식도이다.FIG. 8 is a schematic view showing a medical optical fiber device in which an optical fiber tip manufactured by varying the shape and inclination of an air bag according to an embodiment of the present invention is fused.
도 8의 (a) 내지 도 8의 (c)와 같이, 상기 의료용 광섬유 장치의 광섬유 팁 내부에 배치된 공기주머니의 모양 및 공기주머니가 배치된 기울기를 다양한 구조 또는 형태로 형성할 수 있다. 이에, 상기 의료용 광섬유 장치의 광섬유 팁에 전달된 레이저는, 다양한 형태의 모양 및 기울기로 배치된 공기주머니의 계면에서 전반사되면서, 상기 공기주머니의 모양에 따라 집중적으로 레이저가 조사되는 방향이 달라질 수 있으며, 전체적으로는 레이저가 방사상으로 전반사되며 외부에 전달될 수 있다. 8 (a) to 8 (c), the shape of the air bag disposed inside the optical fiber tip of the medical optical fiber device and the slope in which the air bag is disposed may be formed in various structures or shapes. Thus, the laser transmitted to the optical fiber tip of the medical optical fiber device, while total reflection at the interface of the air bag arranged in various shapes and inclination, the direction in which the laser irradiation is concentrated depending on the shape of the air bag In general, the laser is totally radially reflected and can be transmitted externally.
실시예에 따라, 본 발명의 의료용 광섬유 장치는 본 발명의 상기 광섬유 팁과 전송용 광섬유와 융착시, 전송용 광섬유의 축과 엇갈리게 융착하여 측면 조사도 가능할 수 있는 광섬유 팁을 형성할 수 있다. 도 9는 본 발명의 다른 실시예에 따른 광섬유 팁이 융착된 의료용 광섬유 장치의 제조방법을 나타낸 모식도이다.According to an embodiment, the medical optical fiber device of the present invention may form an optical fiber tip which may be laterally irradiated by fusion with the axis of the optical fiber for transmission, when the optical fiber tip and the optical fiber for transmission are fused. 9 is a schematic view showing a method of manufacturing a medical optical fiber device is fused optical fiber tip according to another embodiment of the present invention.
도 9의 (a)를 참조하면, 광섬유 팁으로 가공시킬 중공형 광섬유와 전송용 광섬유의 축을 엇갈리게 융착시킨 뒤, 상기 중공형 광섬유를 본 발명의 광섬유 팁 제조방법에 따라 상기 중공형 광섬유를 열처리하여 내부에 공기주머니가 배치된 광섬유 팁으로 가공할 수 있다. 이에, 도 9의 (b)와 같은 형태로 광섬유 팁이 융착됨에 따라, 전송용 광섬유를 통해 전달된 레이저가 상기 광섬유 팁의 공기주머니에 의해 측면으로 전반사될 수 있는 의료용 광섬유 장치를 제공할 수 있다. 이와 같이, 본 발명의 의료용 광섬유 장치는 융착되는 광섬유 팁과 전송용 광섬유와의 융착형태에 따라 측면 조사도 가능해질 수 있다.Referring to (a) of FIG. 9, after the fusion of the shafts of the hollow optical fiber to be processed into the optical fiber tip and the transmission optical fiber are alternately fused, the hollow optical fiber is heat-treated according to the optical fiber tip manufacturing method of the present invention. It can be processed with an optical fiber tip with an air pocket inside. Accordingly, as the optical fiber tip is fused in the form as shown in FIG. 9 (b), a medical optical fiber device capable of totally reflecting the laser beam transmitted through the transmission optical fiber to the side by the air bag of the optical fiber tip may be provided. . As such, the medical optical fiber device of the present invention may be capable of side irradiation depending on the type of fusion between the optical fiber tip to be fused and the optical fiber for transmission.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.On the other hand, the embodiments of the present invention disclosed in the specification and drawings are merely presented specific examples to aid understanding, and are not intended to limit the scope of the present invention. It is apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.
(부호의 설명)(Explanation of the sign)
100: 중공형 광섬유100: hollow fiber
111,112: 중공형 광섬유 일단의 끝부분111,112: end of hollow fiber
112,122: 중공형 광섬유 타단의 끝부분112,122: end of hollow fiber optic end
130: 공기주머니130: pouch
200: 광섬유 팁200: fiber optic tip
210: 내부210: inside
220: 말단부220: distal end

Claims (9)

  1. 클래딩층을 포함하는 중공형 광섬유를 가공하여 형성된 광섬유 팁(tip)으로,An optical fiber tip formed by processing a hollow optical fiber including a cladding layer,
    상기 광섬유 팁의 내부에 배치된 공기주머니(air-pocket); 및An air pocket disposed inside the optical fiber tip; And
    상기 공기주머니를 감싸는 형태로 배치된 상기 중공형 광섬유의 클래딩층을 포함하는 것을 특징으로 하는 방사상 조사가 가능한 광섬유 팁.And a cladding layer of the hollow optical fiber disposed in a form surrounding the air bag.
  2. 제1항에 있어서,The method of claim 1,
    상기 공기주머니는,The air bag,
    상기 중공형 광섬유의 클래딩층에 의해 외부로부터 차단되는 것을 특징으로 하는 방사상 조사가 가능한 광섬유 팁.A radially irradiated optical fiber tip, characterized in that blocked by the cladding layer of the hollow optical fiber from the outside.
  3. 제1항 내지 제2항 중 어느 한 항의 광섬유 팁; 및The optical fiber tip of any one of claims 1 to 2; And
    상기 광섬유 팁과 융착시킨 전송용 광섬유를 포함하는 것으로,To include a transmission optical fiber fused with the optical fiber tip,
    상기 전송용 광섬유를 통해 상기 광섬유 팁에 레이저가 전달되는 것을 특징으로 하는 의료용 광섬유 장치.A medical optical fiber device, characterized in that the laser is transmitted to the optical fiber tip through the transmission optical fiber.
  4. 제3항에 있어서,The method of claim 3,
    상기 레이저는, The laser,
    상기 광섬유 팁 내부에 배치된 공기주머니에 의해 방사상 방향으로 전반사되며 외부로 전달되는 것을 특징으로 하는 의료용 광섬유 장치.Medical optical fiber device characterized in that the total reflection in the radial direction by the air bag disposed inside the optical fiber tip and is transmitted to the outside.
  5. 제3항에 있어서,The method of claim 3,
    상기 의료용 광섬유 장치는, The medical optical fiber device,
    상기 광섬유 팁 내부에 배치된 공기주머니의 모양 및 기울기에 의해 상기 레이저의 조사방향 및 조사패턴이 변화되는 것을 특징으로 하는 의료용 광섬유 장치.The medical optical fiber device, characterized in that the irradiation direction and irradiation pattern of the laser is changed by the shape and the inclination of the air bag disposed inside the optical fiber tip.
  6. 광섬유 팁(tip)으로 가공시킬 중공형 광섬유를 준비하는 단계;Preparing a hollow optical fiber to be processed into an optical fiber tip;
    상기 중공형 광섬유를 1차 열처리하여 상기 중공형 광섬유의 일단의 클래딩층을 봉합시키는 단계; 및Sealing the one end cladding layer of the hollow optical fiber by primary heat treatment of the hollow optical fiber; And
    상기 중공형 광섬유를 2차 열처리하여 상기 중공형 광섬유의 타단의 클래딩층을 봉합시켜, 상기 광섬유 팁의 내부에 공기주머니(air-pocket)를 형성시키는 단계를 포함하며,And heat-treating the hollow optical fiber to seal the cladding layer at the other end of the hollow optical fiber, thereby forming an air pocket inside the optical fiber tip.
    상기 1차 열처리 및 상기 2차 열처리에 의해 상기 중공형 광섬유의 클래딩층을, 상기 공기주머니를 감싸는 형태로 배치하는 것을 특징으로 하는 방사상 조사가 가능한 광섬유 팁의 제조방법.And the cladding layer of the hollow optical fiber is wrapped around the air bag by the first heat treatment and the second heat treatment.
  7. 제6항에 있어서The method of claim 6
    상기 중공형 광섬유는 중공 광섬유(hollow optical fiber, HOF), 중공코어 광섬유(hollow core fiber, HCF), 및 광자 결정 광섬유(photonics crystal fiber, PCF) 중에서 선택되는 어느 하나를 사용하는 것을 특징으로 하는 방사상 조사가 가능한 광섬유 팁의 제조방법.The hollow fiber is a radial optical fiber using any one selected from hollow optical fiber (HOF), hollow core fiber (HCF), and photonics crystal fiber (PCF) Method for manufacturing optical fiber tips that can be irradiated.
  8. 제6항에 있어서The method of claim 6
    상기 열처리는 아크방전 또는 레이저 가열을 이용하는 것을 특징으로 하는 방사상 조사가 가능한 광섬유 팁의 제조방법.The heat treatment is a method of producing a radial irradiation enabled optical fiber tip, characterized in that using arc discharge or laser heating.
  9. 제6항에 있어서The method of claim 6
    상기 중공형 광섬유에 상기 1차 열처리 및 상기 2차 열처리를 수행하는 위치를 조절하여 상기 광섬유 팁의 형태를 제어하는 것을 특징으로 하는 방사상 조사가 가능한 광섬유 팁의 제조방법.The method of manufacturing a fiber-optic tip capable of radial irradiation, characterized in that for controlling the shape of the optical fiber tip by adjusting the position of performing the first heat treatment and the second heat treatment to the hollow optical fiber.
PCT/KR2015/009993 2014-09-24 2015-09-23 Optical fiber tip capable of radial firing, method for manufacturing same, and medical optical fiber device comprising same WO2016048023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0127824 2014-09-24
KR1020140127824A KR101630316B1 (en) 2014-09-24 2014-09-24 Method of fabricating optical fiber tip for radial firing

Publications (1)

Publication Number Publication Date
WO2016048023A1 true WO2016048023A1 (en) 2016-03-31

Family

ID=55581462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009993 WO2016048023A1 (en) 2014-09-24 2015-09-23 Optical fiber tip capable of radial firing, method for manufacturing same, and medical optical fiber device comprising same

Country Status (2)

Country Link
KR (1) KR101630316B1 (en)
WO (1) WO2016048023A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111290072A (en) * 2020-02-21 2020-06-16 北京航空航天大学 Hollow anti-resonance optical fiber waterproof method and device for holmium laser lithotripsy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06154239A (en) * 1992-07-06 1994-06-03 Ceramoptec Inc Laser derivery device in radiotherapy
JP2009063801A (en) * 2007-09-06 2009-03-26 Nippon Telegr & Teleph Corp <Ntt> Optical fiber and method of manufacturing the same
KR20090092513A (en) * 2008-02-27 2009-09-01 광주과학기술원 Photonic quasi-crystal fiber
WO2011062894A2 (en) * 2009-11-18 2011-05-26 Boston Scientific Scimed, Inc. Methods and apparatus related to a distal end of a side-fire optical fiber having multiple capillary components
KR20110112269A (en) * 2011-09-23 2011-10-12 광주과학기술원 Multidirectional side fire optical fiber probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06154239A (en) * 1992-07-06 1994-06-03 Ceramoptec Inc Laser derivery device in radiotherapy
JP2009063801A (en) * 2007-09-06 2009-03-26 Nippon Telegr & Teleph Corp <Ntt> Optical fiber and method of manufacturing the same
KR20090092513A (en) * 2008-02-27 2009-09-01 광주과학기술원 Photonic quasi-crystal fiber
WO2011062894A2 (en) * 2009-11-18 2011-05-26 Boston Scientific Scimed, Inc. Methods and apparatus related to a distal end of a side-fire optical fiber having multiple capillary components
KR20110112269A (en) * 2011-09-23 2011-10-12 광주과학기술원 Multidirectional side fire optical fiber probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111290072A (en) * 2020-02-21 2020-06-16 北京航空航天大学 Hollow anti-resonance optical fiber waterproof method and device for holmium laser lithotripsy

Also Published As

Publication number Publication date
KR101630316B1 (en) 2016-06-14
KR20160035895A (en) 2016-04-01

Similar Documents

Publication Publication Date Title
JP7324202B2 (en) Multi-core fiber in multi-spot laser probe
US4678268A (en) Method and apparatus for constructing microlens ends for optical fibers
US12029477B2 (en) Systems, devices, and related methods for laser lithotripsy
US20200061931A1 (en) Method of welding a protective structure to an optical fiber tip
KR102677212B1 (en) Photonic crystal fiber assembly
IL97130A (en) Contact laser delivery system
CN104220908A (en) Configuring optical fibers to emit radiation by bending
US9272311B2 (en) Laser probe tip fiber cap cleaning
WO2009012456A1 (en) Method and apparatus for generating a plasma field
SE8504498D0 (en) PROCEDURE FOR HEATING GLASSES, EQUIPMENT
WO2016048023A1 (en) Optical fiber tip capable of radial firing, method for manufacturing same, and medical optical fiber device comprising same
WO2019225816A1 (en) Light emitting apparatus
US10782477B2 (en) Surgical optical fiber and process of making the same
CN111110346B (en) Device for laser interstitial thermotherapy system
WO2013073913A1 (en) Medical mask device which uses optical fibers
JP2002336291A (en) Electric sonde
US20210373240A1 (en) Fiber optic tapered coupler
ES2210290T3 (en) FIBER REFLECTOR.
WO2017150840A1 (en) Single optical fiber-based multi-ring laser beam device, and manufacturing method therefor
JP2023515412A (en) Multi-spot laser probe with multiple single-core fibers
JP2004361846A (en) Method for fusion-splicing glass fiber
US7603013B1 (en) Fiberscopes and fiber bundles
CN217506200U (en) Medical laser optical fiber
JPS6016893Y2 (en) fiber optic equipment
JPH0277703A (en) Structure for connecting single mode optical fiber and multimode optical fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, (EPO FORM 1205A DATED 01.08.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15844422

Country of ref document: EP

Kind code of ref document: A1