WO2016047606A1 - Carbon-coated vanadium dioxide particles - Google Patents

Carbon-coated vanadium dioxide particles Download PDF

Info

Publication number
WO2016047606A1
WO2016047606A1 PCT/JP2015/076722 JP2015076722W WO2016047606A1 WO 2016047606 A1 WO2016047606 A1 WO 2016047606A1 JP 2015076722 W JP2015076722 W JP 2015076722W WO 2016047606 A1 WO2016047606 A1 WO 2016047606A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium dioxide
carbon
dioxide particles
film
coating layer
Prior art date
Application number
PCT/JP2015/076722
Other languages
French (fr)
Japanese (ja)
Inventor
孫 仁徳
省二 野里
中壽賀 章
中村 雅則
直之 永谷
圭吾 大鷲
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2015553973A priority Critical patent/JP5926868B1/en
Priority to CN201580035664.4A priority patent/CN106660822B/en
Priority to EP15843182.5A priority patent/EP3199494B1/en
Publication of WO2016047606A1 publication Critical patent/WO2016047606A1/en
Priority to US15/465,766 priority patent/US10647912B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0006Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black containing bismuth and vanadium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/26Thermosensitive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/29Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for multicolour effects
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins

Definitions

  • the present invention is a carbon coating that can suppress sintering between particles during high-temperature firing, has high crystallinity and durability, and can maintain excellent thermochromic properties even when stored or used for a long time. It relates to vanadium dioxide particles.
  • the present invention also relates to a resin composition, a coating film, a film, an interlayer film for laminated glass, a laminated glass, and a film for pasting obtained using the carbon-coated vanadium dioxide particles.
  • thermochromic properties of vanadium dioxide for example, it has been proposed to automatically block infrared rays (heat rays) at high temperatures in summer and conversely transmit infrared rays at low temperatures in winter. ing.
  • infrared rays heat rays
  • infrared rays heat rays
  • low temperatures in winter low temperatures
  • a thin film or a film is desirable as the form of the automatic light control material.
  • Patent Document 1 discloses that vanadium dioxide dispersion is obtained by applying a composition containing vanadium dioxide fine particles, a translucent resin, and an organic solvent capable of dissolving the translucent resin to an appropriate substrate. A method for forming a resin layer is disclosed.
  • vanadium dioxide fine particles are dispersed and kneaded in a resin, and can be produced by a process such as pressing or extrusion molding. Furthermore, a laminated glass in which the above film is sandwiched between two glasses can also be produced.
  • Patent Document 2 describes an interlayer film for laminated glass containing vanadium dioxide particles and a method for producing the same.
  • laminated glass showing the property that by dispersing fine particles of vanadium dioxide, a large amount of infrared light is transmitted at a temperature lower than the phase transition temperature of vanadium dioxide, and infrared rays are blocked when the temperature is higher than the phase transition temperature. It is expected that an intermediate film will be obtained.
  • the interlayer film for laminated glass in which such vanadium dioxide particles are dispersed has a problem that when stored or used, the thermochromic property decreases with time and the durability is low.
  • thermochromic properties by improving the performance of vanadium dioxide particles themselves. It is known that the crystallinity of vanadium dioxide particles decreases as the particle size decreases. The thermochromic property of the vanadium dioxide particles is greatly influenced by the crystallinity, and generally, the higher the crystallinity, the better the thermochromic property. On the other hand, in order to improve the transparency, it is necessary to use nanoparticles having a particle size of 100 nm or less, but there is also a problem that the thermochromic property is remarkably lowered by reducing the particle size.
  • the present invention can suppress sintering between particles during high-temperature firing, has high crystallinity and durability, and maintains excellent thermochromic properties even when stored or used for a long time.
  • An object of the present invention is to provide carbon-coated vanadium dioxide particles that can be used.
  • Another object of the present invention is to provide a resin composition, a coating film, a film, an interlayer film for laminated glass, a laminated glass, and a pasting film obtained using the carbon-coated vanadium dioxide particles.
  • the present invention is a carbon-coated vanadium dioxide particle having a coating layer made of amorphous carbon on the surface of the vanadium dioxide particle, the amorphous carbon is derived from carbon contained in the oxazine resin, and measured by a Raman spectrum. Carbon having a peak intensity ratio of G band to D band of 1.5 or more, an average film thickness of the coating layer of 50 nm or less, and a coefficient of variation (CV value) of the film thickness of the coating layer of 7% or less. Coated vanadium dioxide particles.
  • the present invention is described in detail below.
  • the inventor has formed a coating layer having predetermined physical properties on the surface of vanadium dioxide particles, and has high crystallinity and oxidation resistance, and is stored for a long time. Or it discovered that it could be set as the carbon covering vanadium dioxide particle which can maintain the outstanding thermochromic property even if it used, and came to complete this invention.
  • the carbon-coated vanadium dioxide particles of the present invention have a coating layer made of amorphous carbon on the surface of the vanadium dioxide particles.
  • the vanadium dioxide particles have thermochromic properties. It is known that vanadium dioxide constituting the vanadium dioxide particles has various crystal structures such as A-type, B-type, and M-type. Among them, the phase transition behavior is manifested only when the rutile structure is formed. Below the transition temperature, it becomes a monoclinic structure and exhibits semiconductor characteristics, and above the transition temperature, it becomes a tetragonal structure and changes to metal characteristics. As a result, the optical characteristics, electrical characteristics, and thermal characteristics reversibly change according to temperature changes. By using this reversible change, there is an advantage that dimming is automatically performed only by a change in environmental temperature, for example.
  • vanadium dioxide particles some vanadium atoms are atoms such as tungsten, molybdenum, tantalum, niobium, chromium, iron, gallium, aluminum, fluorine, thallium, tin, rhenium, iridium, osmium, ruthenium, germanium, and phosphorus. Also included are substituted vanadium dioxide particles substituted with. As the substituted vanadium dioxide which is the substituted vanadium dioxide particles, for example, those having a structure represented by the following general formula (1) are preferable.
  • M is at least one element selected from tungsten, molybdenum, tantalum, niobium, chromium, iron, gallium, aluminum, fluorine, and phosphorus.
  • X represents a numerical value of 0 to 0.05.
  • the phase transition temperature can be adjusted, for example, by substituting a part of vanadium atoms in vanadium dioxide with atoms such as tungsten. Therefore, the performance of the resulting film or the like can be controlled by appropriately selecting vanadium dioxide particles or substituted vanadium dioxide particles, or appropriately selecting the atomic species and substitution rate to be substituted in the substituted vanadium dioxide particles.
  • the preferable lower limit of the metal atom substitution rate is 0.1 atomic%
  • the preferable upper limit is 10 atomic%.
  • the substitution rate is a value indicating the ratio of the number of substituted atoms to the total of the number of vanadium atoms and the number of substituted atoms, expressed as a percentage.
  • the vanadium dioxide particles may be particles composed essentially of vanadium dioxide, or may be particles having vanadium dioxide attached to the surface of the core particles.
  • the substituted vanadium dioxide particles may be substantially composed of only substituted vanadium dioxide, or may be particles in which the substituted vanadium dioxide is attached to the surface of the core particles.
  • the core particles include silicon oxide, silica gel, titanium oxide, glass, zinc oxide, zinc hydroxide, aluminum oxide, aluminum hydroxide, titanium hydroxide, zirconium oxide, zirconium hydroxide, zirconium phosphate, and hydrotalcite compound.
  • the average crystallite diameter is preferably 1 to 100 nm.
  • the crystallite diameter means a crystallite size obtained from a half-value width of a diffraction peak in an X-ray diffraction method.
  • the crystallite size can be calculated by, for example, calculating the half width from diffraction data obtained from an X-ray diffractometer (manufactured by Rigaku Corporation, RINT1000) and applying the Scherrer equation. Specifically, it can be measured by adopting the crystallite size calculated from the half-value width when the strongest peak 2 ⁇ of rutile VO 2 is 27.86 °. In the series of analyzes, for example, the half width and the crystallite size can be calculated using analysis software (PDXL manufactured by Rigaku Corporation).
  • the vanadium dioxide particles preferably have a crystallinity of 90% or more.
  • Thermochromic properties are improved because the crystal ratio in the particles increases due to the high degree of crystallinity.
  • the degree of crystallinity can be calculated, for example, by performing XRD measurement of the composition and using analysis software (PDXL manufactured by Rigaku Corporation).
  • Examples of the method for producing the vanadium dioxide particles include a hydrothermal synthesis method, a supercritical method, a complex decomposition method, a solid phase method, a sol-gel method, and the like. Is preferable because vanadium dioxide nanoparticles having crystallinity are easily obtained.
  • the carbon-coated vanadium dioxide particles of the present invention have a coating layer made of amorphous carbon.
  • a coating layer made of amorphous carbon.
  • Such a carbon coating layer has a higher affinity with a matrix resin than a conventional oxide coating layer (for example, SiO 2 , TiO 2 ), so that the dispersibility in the resin is improved and the product thermochromic is improved. Leads to improvement of sex.
  • a conventional oxide coating layer for example, SiO 2 , TiO 2
  • the coating layer may be formed on at least part of the surface of the vanadium dioxide particles, or may be formed so as to cover the entire surface of the vanadium dioxide particles. Since the oxidation of the vanadium dioxide particles can be further suppressed, the coating layer is preferably formed so as to cover the entire surface of the vanadium dioxide particles.
  • the coating layer is more preferably dense.
  • the inventors of the present application have found that the oxidation of vanadium dioxide particles by oxygen and the reduction of vanadium dioxide particles by reducing substances (aldehydes) generated from a resin such as polyvinyl butyral resin under irradiation of ultraviolet rays are reduced in thermochromic properties ( It was found to be the two main causes of deterioration.
  • reducing substances aldehydes
  • the amorphous carbon constituting the coating layer has an amorphous structure in which sp2 bonds and sp3 bonds are mixed, and is composed of carbon.
  • the peak intensity ratio between the G band and the D band is 1. .5 or more.
  • the amorphous carbon is measured by Raman spectroscopy, two peaks of a G band corresponding to sp2 bond (near 1580 cm ⁇ 1 ) and a D band corresponding to sp3 bond (near 1360 cm ⁇ 1 ) are clearly observed. Note that, when the carbon material is crystalline, one of the two bands is minimized. For example, in the case of single crystal diamond, the G band near 1580 cm ⁇ 1 is hardly observed.
  • the denseness of the formed amorphous carbon film is particularly high when the peak intensity ratio of the G band and the D band (peak intensity in the G band / peak intensity in the D band) is 1.5 or more.
  • the effect of suppressing sintering between particles at a high temperature is also excellent.
  • the peak intensity ratio is preferably 1.7 or more, and preferably 10 or less.
  • the coating layer may contain an element other than carbon. Examples of elements other than carbon include nitrogen, hydrogen, and oxygen. The content of such an element is preferably 10 atomic% or less with respect to the total of carbon and elements other than carbon.
  • the amorphous carbon constituting the coating layer is derived from carbon contained in the oxazine resin. Since the oxazine resin can be carbonized at a low temperature, the cost can be reduced.
  • the oxazine resin is a resin generally classified as a phenol resin, but is a thermosetting resin obtained by adding and reacting amines in addition to phenols and formaldehyde.
  • phenol when a type in which the phenol ring further has an amino group, for example, phenol such as paraaminophenol, is used, it is not necessary to add amines in the above reaction, and carbonization tends to be easily performed. In terms of easiness of carbonization, the use of a naphthalene ring instead of a benzene ring makes carbonization easier.
  • the oxazine resin examples include a benzoxazine resin and a naphthoxazine resin, and among these, the naphthoxazine resin is preferable because it is easily carbonized at the lowest temperature.
  • a partial structure of the benzoxazine resin is shown in Formula (1)
  • a partial structure of the naphthoxazine resin is shown in Formula (2).
  • the oxazine resin refers to a resin having a 6-membered ring added to a benzene ring or naphthalene ring, and the 6-membered ring contains oxygen and nitrogen, which is the origin of the name. Yes.
  • the oxazine resin By using the oxazine resin, it is possible to obtain an amorphous carbon film at a considerably lower temperature than other resins such as epoxy resins. Specifically, carbonization is possible at a temperature of 200 ° C. or lower. In particular, carbonization can be performed at a lower temperature by using a naphthoxazine resin. Thus, by carbonizing at a lower temperature using an oxazine resin, it is possible to form a coating layer having amorphous carbon and high density.
  • the amorphous carbon has a dense coating layer
  • naphthalene oxazine resin is used as the oxazine resin
  • the naphthalene structure in the resin is locally connected by low-temperature heating, This is probably because a layered structure is formed at the molecular level. Since the above layered structure is not treated at a high temperature, it does not progress to a long-distance periodic structure such as graphite, and thus does not exhibit crystallinity.
  • Whether the obtained carbon is a graphite-like structure or an amorphous structure is confirmed by whether or not a peak is detected at a position where 2 ⁇ is 26.4 ° by an X-ray diffraction method to be described later. be able to.
  • Dihydroxynaphthalene which is a phenol, formaldehyde, and amines are used as raw materials for the naphthoxazine resin. These will be described in detail later.
  • the amorphous carbon is preferably obtained by heat-treating the oxazine resin at a temperature of 150 to 350 ° C.
  • amorphous carbon can be obtained at a relatively low temperature. By being obtained at such a low temperature, there is an advantage that it can be manufactured by a simpler process at a lower cost than before.
  • the temperature of the heat treatment is preferably 170 to 300 ° C.
  • the upper limit of the average film thickness of the coating layer is 50 nm. When the average film thickness of the coating layer exceeds 50 nm, particles after coating become large, and the transparency of the thermochromic material produced using the same may be lowered.
  • a preferable upper limit is 30 nm. In addition, although it does not specifically limit about a minimum, 0.5 nm is preferable.
  • the variation coefficient (CV value) of the film thickness of the coating layer is 7% or less.
  • the CV value of the film thickness of the coating layer is 7% or less, the coating film is uniform and there is little variation in film thickness, so that the barrier property against oxygen and water vapor can be made high.
  • having the coating layer not only prevents the sintering of vanadium dioxide nanoparticles during firing, but also contributes to the improvement of oxidation resistance and water resistance of the carbon-coated vanadium dioxide particles, resulting in long-term thermochromic properties. Will bring stability.
  • the upper limit with preferable CV value of the film thickness of the said coating layer is 5%. In addition, although it does not specifically limit about a minimum, 0.5% is preferable.
  • the coating layer preferably has good adhesion to the vanadium dioxide particles. Although there is no clear definition regarding adhesiveness, it is preferable that the coating layer does not peel even when a mixture containing carbon-coated vanadium dioxide particles, a resin, a plasticizer and a dispersant is treated with a bead mill.
  • the coating layer is measured by time-of-flight secondary ion mass spectrometry (TOF-SIMS)
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • a mass spectrum derived from a benzene ring and a mass spectrum derived from a naphthalene ring is detected. It is preferable.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • a mass spectrum derived from a benzene ring refers to a mass spectrum near 77.12
  • a mass spectrum derived from a naphthalene ring refers to a mass spectrum near 127.27.
  • FIG. 5 shows an example of measurement results when measurement is performed by TOF-SIMS.
  • a mass spectrum derived from the benzene ring is detected at 77.16
  • a mass spectrum derived from the naphthalene ring is detected at 127.27.
  • the above measurement can be performed using, for example, a TOF-SIMS device (manufactured by ION-TOF).
  • the coating layer when the coating layer is measured by the X-ray diffraction method, it is preferable that no peak is detected at a position where 2 ⁇ is 26.4 °.
  • the peak at the position where 2 ⁇ is 26.4 ° is a crystal peak of graphite, and since the peak is not detected at such a position, it can be said that the carbon forming the coating layer has an amorphous structure.
  • the above measurement can be performed using, for example, an X-ray diffractometer (SmartLab Multipurpose, manufactured by Rigaku Corporation).
  • the method for producing the carbon-coated vanadium dioxide particles of the present invention includes a step of preparing a mixed solution containing formaldehyde, an aliphatic amine and dihydroxynaphthalene, a step of adding vanadium dioxide particles to the mixed solution, and a reaction step.
  • a method having a heat treatment step at a temperature of 150 to 350 ° C. can be used.
  • a step of preparing a mixed solution containing formaldehyde, an aliphatic amine and dihydroxynaphthalene is performed. Since the formaldehyde is unstable, it is preferable to use formalin which is a formaldehyde solution. Formalin usually contains a small amount of methanol as a stabilizer in addition to formaldehyde and water.
  • the formaldehyde used in the present invention may be formalin as long as the formaldehyde content is clear.
  • formaldehyde has paraformaldehyde as its polymerization form, and this form can also be used as a raw material. However, since the reactivity is poor, the above-described formalin is preferably used.
  • the aliphatic amine is represented by the general formula R—NH 2 , and R is preferably an alkyl group having 5 or less carbon atoms.
  • R is preferably an alkyl group having 5 or less carbon atoms.
  • the alkyl group having 5 or less carbon atoms include, but are not limited to, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, s-butyl group, t -Butyl group, cyclobutyl group, cyclopropylmethyl group, n-pentyl group, cyclopentyl group, cyclopropylethyl group, and cyclobutylmethyl group.
  • the substituent R is preferably a methyl group, an ethyl group, a propyl group or the like, and methylamine, ethylamine, propylamine or the like can be preferably used as the actual compound name. Most preferred is methylamine with the lowest molecular weight.
  • the dihydroxynaphthalene has many isomers. For example, 1,3-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene Is mentioned. Of these, 1,5-dihydroxynaphthalene and 2,6-dihydroxynaphthalene are preferred because of their high reactivity. Further, 1,5-dihydroxynaphthalene is preferred because it has the highest reactivity.
  • the ratio of the three components of dihydroxynaphthalene, aliphatic amine, and formaldehyde in the above mixed solution it is most preferable to mix 1 mol of aliphatic amine and 2 mol of formaldehyde with respect to 1 mol of dihydroxynaphthalene.
  • the raw materials are lost due to volatilization during the reaction, so the optimum blending ratio is not necessarily exactly the above ratio, but the aliphatic amine is 0.8 to 1.2 per mole of dihydroxynaphthalene.
  • Mole and formaldehyde are preferably blended in the range of 1.6 to 2.4 moles.
  • an oxazine ring By setting the aliphatic amine to 0.8 mol or more, an oxazine ring can be sufficiently formed, and polymerization can be favorably proceeded.
  • the amount is 1.2 mol or less, the formaldehyde necessary for the reaction is not excessively consumed, so that the reaction proceeds smoothly and the desired naphthoxazine can be obtained.
  • the formaldehyde is 1.6 mol or more, the oxazine ring can be sufficiently formed, and the polymerization can proceed suitably.
  • it since it can reduce generation
  • the mixed solution preferably contains a solvent for dissolving and reacting the three raw materials.
  • the solvent include alcohols such as methanol, ethanol and isopropanol, and solvents usually used for dissolving a resin such as tetrahydrofuran, dioxane, dimethylformamide, dimethylacetamide, dimethylsulfoxide and N-methylpyrrolidone.
  • the addition amount of the solvent in the mixed solution is not particularly limited, but when the raw material containing dihydroxynaphthalene, aliphatic amine, and formaldehyde is 100 parts by mass, it is usually preferably blended at 300 to 20000 parts by mass. Since the solute can be sufficiently dissolved by setting it to 300 parts by mass or more, a uniform film can be formed when the film is formed, and it is necessary for forming the coating layer by setting it to 20000 parts by mass or less. A high concentration can be ensured.
  • a step of adding vanadium dioxide particles to the mixed solution and reacting them is performed.
  • a layer of naphthoxazine resin can be formed on the surface of the vanadium dioxide particles.
  • the above reaction proceeds even at room temperature, it is preferable to warm to 40 ° C. or higher because the reaction time can be shortened.
  • the produced oxazine ring opens, and when polymerization occurs, the molecular weight increases and a so-called polynaphthoxazine resin is obtained. If the reaction is too advanced, the viscosity of the solution increases and it is not suitable for coating.
  • a method of reacting a mixed solution of formaldehyde, an aliphatic amine and dihydroxynaphthalene for a certain time and then adding vanadium dioxide particles may be used.
  • the particles are dispersed during the coating reaction.
  • known methods such as stirring, ultrasonic waves, and rotation can be used.
  • an appropriate dispersant may be added.
  • the resin may be uniformly coated on the surface of the vanadium dioxide particles by drying and removing the solvent with hot air or the like. There is no restriction
  • a heat treatment step at a temperature of 150 to 350 ° C. is then performed.
  • the resin coated in the previous step is carbonized to form a coating layer made of amorphous carbon.
  • the heat treatment method is not particularly limited, and examples thereof include a method using a heating oven or an electric furnace.
  • the temperature in the heat treatment is 150 to 350 ° C.
  • a preferable upper limit of the heating temperature in this case is 250 ° C.
  • the heat treatment may be performed in air or in an inert gas such as nitrogen or argon. When the heat treatment temperature is 250 ° C. or higher, an inert gas atmosphere is more preferable.
  • thermochromic coating film or a film for application By using the resin composition containing the carbon-coated vanadium dioxide particles of the present invention and a thermosetting resin, a thermochromic coating film or a film for application can be obtained. Such a resin composition, a coating film, and a sticking film are also one aspect of the present invention.
  • a window glass having automatic light control By applying the resin composition to window glass, a window glass having automatic light control can be produced.
  • automatic light control property can also be provided by sticking the said film for affixing on a window glass.
  • the film containing the carbon-coated vanadium dioxide particles of the present invention and a thermoplastic resin is a film having excellent thermochromic properties. Such a film is also one aspect of the present invention.
  • the film of the present invention having such excellent thermochromic properties can be used as an interlayer film for laminated glass.
  • Such an interlayer film for laminated glass using the film of the present invention is also one aspect of the present invention.
  • a laminated glass in which the interlayer film for laminated glass of the present invention is sandwiched between two transparent plates is also one aspect of the present invention.
  • the manufacturing method of the laminated glass of this invention is not specifically limited, A conventionally well-known manufacturing method can be used.
  • the said transparent plate is not specifically limited,
  • the transparent plate glass generally used can be used. Examples thereof include inorganic glass such as float plate glass, polished plate glass, mold plate glass, meshed plate glass, wire-containing plate glass, colored plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, and green glass.
  • organic plastics boards such as a polycarbonate and a polyacrylate, can also be used.
  • the two transparent plates may be the same type of transparent plate or different types of transparent plates.
  • Examples of the combination of different kinds of transparent plates include a combination of a transparent float plate glass and a colored plate glass such as green glass, and a combination of an inorganic glass and an organic plastic plate.
  • the film of the present invention can also be used as an adhesive film.
  • Such a pasting film using the thermochromic film of the present invention is also one aspect of the present invention.
  • the affixing film may further have an adhesive layer. It does not specifically limit as said adhesive layer, The layer containing the well-known adhesive agent which can adhere
  • carbon-coated carbon dioxide that can suppress sintering between particles during high-temperature firing, has high crystallinity and durability, and can maintain excellent thermochromic properties even when stored or used for a long time.
  • Vanadium particles can be provided.
  • a resin composition obtained by using the carbon-coated vanadium dioxide particles, a coating film, a film, an interlayer film for laminated glass, a laminated glass, a film for pasting, and a method for producing the carbon-coated vanadium dioxide particles are also provided. It becomes possible.
  • FIG. 4 is an electron micrograph of particles before baking of vanadium dioxide particles obtained in Example 3.
  • FIG. 4 is an electron micrograph of particles after firing of vanadium dioxide particles obtained in Example 3.
  • FIG. 2 is an electron micrograph of particles after firing of vanadium dioxide particles obtained in Comparative Example 1.
  • FIG. It is an example of the measurement result in the case of measuring by TOF-SIMS.
  • Example 1 Production of vanadium dioxide particles
  • aqueous dispersion containing 1.299 g of ammonium metavanadate (NH 4 VO 3 ) 4 ml of a 10% hydrazine aqueous solution was slowly added dropwise and reacted at room temperature for 1 hour. Thereafter, the reaction solution was transferred to a stainless steel pressure vessel with a fluororesin inner cylinder and reacted at 270 ° C. for 48 hours. After the reaction, the particles were separated from the solution by centrifugation and washed three times. Thereafter, the particles were recovered by drying at 50 ° C. Further, the particle size (volume average particle size) of the obtained vanadium dioxide particles was measured using a particle size distribution meter (Microtrack UAM-1 manufactured by Nikkiso Co., Ltd.).
  • Example 2 Carbon-coated vanadium dioxide particles were produced in the same manner as in Example 1 except that vanadium dioxide particles were produced by the method described below. In “(Formation of coating layer)” in Example 1, “heating at 150 ° C. for 2 hours” was changed to “heating at 200 ° C. for 2 hours”.
  • Example 3 Carbon-coated vanadium dioxide particles were produced in the same manner as in Example 1 except that the vanadium dioxide particles obtained in Example 2 were used and a coating layer was formed by the following method.
  • FIG. 1 is a transmission electron micrograph of particles that have been surface-coated. A dense coating layer having a thickness of about 4 nm was detected on the surface. That this coating layer is carbon has been confirmed by elemental analysis using an energy dispersive X-ray detector attached to a transmission electron microscope.
  • Example 4 Carbon-coated vanadium dioxide particles were produced in the same manner as in Example 1 except that the vanadium dioxide particles obtained in Example 2 were used and a coating layer was formed by the following method.
  • Example 5 Carbon-coated vanadium dioxide particles were produced in the same manner as in Example 1 except that vanadium dioxide particles were produced by the method described below.
  • Example 1 The vanadium dioxide particles produced in Example 2 were used as they were without performing “(formation of coating layer)”.
  • Example 3 Carbon-coated vanadium dioxide particles were produced in the same manner as in Example 1 except that the vanadium dioxide particles obtained in Example 2 were used and a coating layer was formed by the following method.
  • TOF-SIMS measurement The coating layer of the obtained particles was subjected to time-of-flight secondary ion mass spectrometry (Time-of-Flight Secondary Ion) using a TOF-SIMS type 5 apparatus (manufactured by ION-TOF). The mass spectrum derived from the benzene ring (near 77.12) and the mass spectrum derived from the naphthalene ring (near 127.27) were confirmed by Mass Spectrometry, TOF-SIMS). The TOF-SIMS measurement was performed under the following conditions. Further, in order to avoid contamination derived from the air or a storage case as much as possible, the sample was stored in a clean case for storing silicon wafers. Primary ion: 209Bi + 1 Ion voltage: 25 kV Ion current: 1 pA Mass range: 1 to 300 mass Analysis area: 500 ⁇ 500 ⁇ m Charge prevention: electron irradiation neutralization random raster scan
  • Phase transition energy (thermochromic)
  • ⁇ H mJ / mg
  • ⁇ H mJ / mg
  • the laminated glass interlayer film was subjected to an accelerated weather resistance test under the following conditions using a weather meter (Super Xenon SX-75, manufactured by Suga Test Instruments Co., Ltd.). The test was performed for 500 hours under the conditions of radiation intensity: 180 W / m 2 (300 to 400 nm), temperature (BPT): 63 ° C., watering: 18 minutes / 120 minutes. Durability was evaluated by the thermochromic retention rate of the interlayer film after the test.
  • Carbon coated vanadium dioxide particles can be provided.
  • the carbon-coated vanadium dioxide particles obtained in the present invention can be used for a resin composition, a coating film, a film, an interlayer film for laminated glass, a laminated glass, a pasting film, and the like.

Abstract

The present invention provides carbon-coated vanadium dioxide particles, in which sintering between particles can be suppressed during high temperature baking, which have high crystallinity and oxidation resistance, and in which excellent thermochromic properties can be maintained despite long-term storage or use. Furthermore, the purpose of the present invention is to provide a resin composition, a coating film, a film, an interlayer film for laminated glass, laminated glass, and a pasting film, which are obtained using said carbon-coated vanadium dioxide particles. The present invention pertains to carbon-coated vanadium dioxide particles having a coating layer comprising amorphous carbon on the surfaces of the vanadium dioxide particles, the amorphous carbon being derived from carbon contained in an oxazine resin, wherein the ratio of G-band peak intensity to D-band peak intensity as measured by Raman spectrum is 1.5 or more, the average thickness of the coating layer is 50 nm or less, and the coefficient of variation (CV value) of the thickness of the coating layer is 7% or less.

Description

カーボン被覆二酸化バナジウム粒子Carbon coated vanadium dioxide particles
本発明は、高温焼成時の粒子間の焼結を抑制することができ、結晶性及び耐久性が高く、長時間保管又は使用しても優れたサーモクロミック性を維持することが可能なカーボン被覆二酸化バナジウム粒子に関する。また、本発明は、該カーボン被覆二酸化バナジウム粒子を用いて得られる樹脂組成物、塗布膜、フィルム、合わせガラス用中間膜、合わせガラス及び貼り付け用フィルムに関する。 The present invention is a carbon coating that can suppress sintering between particles during high-temperature firing, has high crystallinity and durability, and can maintain excellent thermochromic properties even when stored or used for a long time. It relates to vanadium dioxide particles. The present invention also relates to a resin composition, a coating film, a film, an interlayer film for laminated glass, a laminated glass, and a film for pasting obtained using the carbon-coated vanadium dioxide particles.
二酸化バナジウムのサーモクロミック特性を利用して、例えば、夏場の高い温度では赤外線(熱線)を自動的に遮断し、逆に冬場の低い温度では赤外線を透過させる自動調光材料として用いることが提案されている。このような自動調光材料は、自動車や建築物の窓へ適用した場合に、車内又は室内の温度を自動的に調節し、冷暖房効率を改善する効果が期待される。
上記自動調光材料の形態としては薄膜又はフィルムが望ましい。薄膜状の自動調光材料を製造する方法としては、従来、スパッタ等の乾式製膜法が検討されていたが、高コストの問題や、大面積の成膜が困難である等の問題から、微粒子を用いた塗布法や印刷法による製造方法が提案されている。
例えば、特許文献1には、二酸化バナジウム微粒子と、透光性樹脂と、該当透光性樹脂を溶解可能な有機溶剤とを含有する組成物を適切な基材に塗布することにより、二酸化バナジウム分散樹脂層を形成する方法が開示されている。
また、フィルム状の自動調光材料を製造する方法としては、二酸化バナジウムの微粒子を樹脂に分散・混練し、プレスや押出成形などの工程により製造することができる。
更に、上記フィルムを二枚のガラスに挟んだ合わせガラスを製造することもできる。
Utilizing the thermochromic properties of vanadium dioxide, for example, it has been proposed to automatically block infrared rays (heat rays) at high temperatures in summer and conversely transmit infrared rays at low temperatures in winter. ing. When such an automatic light control material is applied to a window of an automobile or a building, an effect of automatically adjusting the temperature in the vehicle or the room and improving the heating and cooling efficiency is expected.
A thin film or a film is desirable as the form of the automatic light control material. As a method for producing a thin film-form automatic light-modulating material, conventionally, a dry film-forming method such as sputtering has been studied, but due to problems such as high cost and difficulty in forming a large area, A manufacturing method by a coating method or a printing method using fine particles has been proposed.
For example, Patent Document 1 discloses that vanadium dioxide dispersion is obtained by applying a composition containing vanadium dioxide fine particles, a translucent resin, and an organic solvent capable of dissolving the translucent resin to an appropriate substrate. A method for forming a resin layer is disclosed.
In addition, as a method for producing a film-like automatic light control material, vanadium dioxide fine particles are dispersed and kneaded in a resin, and can be produced by a process such as pressing or extrusion molding.
Furthermore, a laminated glass in which the above film is sandwiched between two glasses can also be produced.
また、特許文献2には、二酸化バナジウム粒子を含有する合わせガラス用中間膜及びその製造方法が記載されている。
このような合わせガラス用中間膜では、二酸化バナジウムの微粒子を分散させることにより、二酸化バナジウムの相転移温度未満では赤外線を多く透過し、相転移温度以上になると赤外線が遮断される性質を示す合わせガラス用中間膜が得られることが期待される。
しかしながら、このような二酸化バナジウム粒子を分散させた合わせガラス用中間膜は、保管又は使用する時に、経時によりサーモクロミック性が低下し、耐久性が低いという問題があった。
Patent Document 2 describes an interlayer film for laminated glass containing vanadium dioxide particles and a method for producing the same.
In such an interlayer film for laminated glass, laminated glass showing the property that by dispersing fine particles of vanadium dioxide, a large amount of infrared light is transmitted at a temperature lower than the phase transition temperature of vanadium dioxide, and infrared rays are blocked when the temperature is higher than the phase transition temperature. It is expected that an intermediate film will be obtained.
However, the interlayer film for laminated glass in which such vanadium dioxide particles are dispersed has a problem that when stored or used, the thermochromic property decreases with time and the durability is low.
また、二酸化バナジウム粒子自体の性能を改善することで、サーモクロミック性を向上させる試みも行われている。二酸化バナジウム粒子は、粒子径が小さくなると、その結晶性が低下することが知られている。二酸化バナジウム粒子のサーモクロミック性は結晶性に大きく影響され、一般的に、結晶性が高いほどサーモクロミック性が良いという傾向がある。
一方で、透明性を向上するためには、粒子径が100nm以下のナノ粒子を用いる必要があるが、小粒径化によってサーモクロミック性が著しく低下するという課題もあった。
Attempts have also been made to improve thermochromic properties by improving the performance of vanadium dioxide particles themselves. It is known that the crystallinity of vanadium dioxide particles decreases as the particle size decreases. The thermochromic property of the vanadium dioxide particles is greatly influenced by the crystallinity, and generally, the higher the crystallinity, the better the thermochromic property.
On the other hand, in order to improve the transparency, it is necessary to use nanoparticles having a particle size of 100 nm or less, but there is also a problem that the thermochromic property is remarkably lowered by reducing the particle size.
このような課題に対しては、二酸化バナジウムナノ粒子を高温で焼成することにより、高結晶性の粒子が得る方法が行われているが、この方法で得られる粒子は、複数の粒子が焼結した粗大な粒子となり、粒子径が小さい二酸化バナジウムナノ粒子が得られないという問題があった。 For such problems, a method of obtaining highly crystalline particles by firing vanadium dioxide nanoparticles at a high temperature has been carried out, but the particles obtained by this method are sintered by a plurality of particles. There was a problem that vanadium dioxide nanoparticles having a small particle diameter could not be obtained.
特開2013-184091号公報JP 2013-184091 A 特開2013-75806号公報JP 2013-75806 A
本発明は、上記現状に鑑み、高温焼成時の粒子間の焼結を抑制することができ、結晶性及び耐久性が高く、長時間保管又は使用しても優れたサーモクロミック性を維持することが可能なカーボン被覆二酸化バナジウム粒子を提供することを目的とする。また、本発明は、該カーボン被覆二酸化バナジウム粒子を用いて得られる樹脂組成物、塗布膜、フィルム、合わせガラス用中間膜、合わせガラス及び貼り付け用フィルムを提供することを目的とする。 In view of the above situation, the present invention can suppress sintering between particles during high-temperature firing, has high crystallinity and durability, and maintains excellent thermochromic properties even when stored or used for a long time. An object of the present invention is to provide carbon-coated vanadium dioxide particles that can be used. Another object of the present invention is to provide a resin composition, a coating film, a film, an interlayer film for laminated glass, a laminated glass, and a pasting film obtained using the carbon-coated vanadium dioxide particles.
本発明は、二酸化バナジウム粒子の表面に、アモルファスカーボンからなる被覆層を有するカーボン被覆二酸化バナジウム粒子であり、前記アモルファスカーボンは、オキサジン樹脂が含有するカーボンに由来するものであり、ラマンスペクトルで測定した場合のGバンドとDバンドのピーク強度比が1.5以上、前記被覆層の平均膜厚が50nm以下、かつ、前記被覆層の膜厚の変動係数(CV値)が7%以下であるカーボン被覆二酸化バナジウム粒子である。
以下、本発明を詳述する。
The present invention is a carbon-coated vanadium dioxide particle having a coating layer made of amorphous carbon on the surface of the vanadium dioxide particle, the amorphous carbon is derived from carbon contained in the oxazine resin, and measured by a Raman spectrum. Carbon having a peak intensity ratio of G band to D band of 1.5 or more, an average film thickness of the coating layer of 50 nm or less, and a coefficient of variation (CV value) of the film thickness of the coating layer of 7% or less. Coated vanadium dioxide particles.
The present invention is described in detail below.
本発明者は、鋭意検討した結果、二酸化バナジウム粒子の表面に所定の樹脂由来のカーボンからなり、所定の物性を有する被覆層を形成することで、結晶性及び耐酸化性が高く、長時間保管又は使用しても優れたサーモクロミック性を維持することが可能なカーボン被覆二酸化バナジウム粒子とすることができることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the inventor has formed a coating layer having predetermined physical properties on the surface of vanadium dioxide particles, and has high crystallinity and oxidation resistance, and is stored for a long time. Or it discovered that it could be set as the carbon covering vanadium dioxide particle which can maintain the outstanding thermochromic property even if it used, and came to complete this invention.
本発明のカーボン被覆二酸化バナジウム粒子は、二酸化バナジウム粒子の表面に、アモルファスカーボンからなる被覆層を有する。
上記二酸化バナジウム粒子は、サーモクロミック特性を有するものである。
上記二酸化バナジウム粒子を構成する二酸化バナジウムは、A型、B型、M型等様々な結晶構造が存在することが知られている。その中で上記ルチル型構造を形成した場合のみ相転移挙動を発現する。転移温度以下では単斜晶構造になり半導体特性を示し、転移温度以上では正方晶構造になり金属特性に変わる。その結果、温度変化に応じて光学特性、電気特性、熱的特性が可逆的に変化する。この可逆的変化を利用して、例えば環境温度の変化のみで自動的に調光するなどの利点がある。
The carbon-coated vanadium dioxide particles of the present invention have a coating layer made of amorphous carbon on the surface of the vanadium dioxide particles.
The vanadium dioxide particles have thermochromic properties.
It is known that vanadium dioxide constituting the vanadium dioxide particles has various crystal structures such as A-type, B-type, and M-type. Among them, the phase transition behavior is manifested only when the rutile structure is formed. Below the transition temperature, it becomes a monoclinic structure and exhibits semiconductor characteristics, and above the transition temperature, it becomes a tetragonal structure and changes to metal characteristics. As a result, the optical characteristics, electrical characteristics, and thermal characteristics reversibly change according to temperature changes. By using this reversible change, there is an advantage that dimming is automatically performed only by a change in environmental temperature, for example.
上記二酸化バナジウム粒子としては、バナジウム原子の一部が、タングステン、モリブデン、タンタル、ニオブ、クロム、鉄、ガリウム、アルミニウム、フッ素、タリウム、スズ、レニウム、イリジウム、オスミウム、ルテニウム、ゲルマニウム及びリン等の原子で置換された置換二酸化バナジウム粒子も含まれる。
この置換二酸化バナジウム粒子である置換二酸化バナジウムとしては、例えば、下記一般式(1)に示す構造を有するものが好ましい。
As the vanadium dioxide particles, some vanadium atoms are atoms such as tungsten, molybdenum, tantalum, niobium, chromium, iron, gallium, aluminum, fluorine, thallium, tin, rhenium, iridium, osmium, ruthenium, germanium, and phosphorus. Also included are substituted vanadium dioxide particles substituted with.
As the substituted vanadium dioxide which is the substituted vanadium dioxide particles, for example, those having a structure represented by the following general formula (1) are preferable.
1-x   (1)
式(1)中、Mはタングステン、モリブデン、タンタル、ニオブ、クロム、鉄、ガリウム、アルミニウム、フッ素及びリンから選択される少なくとも1種の元素である。また、xは0~0.05の数値を表す。
V 1-x M x O 2 (1)
In formula (1), M is at least one element selected from tungsten, molybdenum, tantalum, niobium, chromium, iron, gallium, aluminum, fluorine, and phosphorus. X represents a numerical value of 0 to 0.05.
上記相転移温度は、例えば、二酸化バナジウム中のバナジウム原子の一部をタングステン等の原子で置換することにより調整することができる。従って、二酸化バナジウム粒子又は置換二酸化バナジウム粒子を適宜選択したり、置換二酸化バナジウム粒子において置換する原子種や置換率を適宜選択したりすることにより、得られるフィルム等の性能を制御することができる。
上記置換二酸化バナジウムを用いる場合、金属原子の置換率の好ましい下限は0.1原子%、好ましい上限は10原子%である。置換率が0.1原子%以上であると、上記置換二酸化バナジウムの相転移温度を容易に調整することができ、10原子%以下であると、優れたサーモクロミック性を得ることができる。
なお、置換率とは、バナジウム原子数と置換された原子数との合計に占める、置換された原子数の割合を百分率で示した値である。
The phase transition temperature can be adjusted, for example, by substituting a part of vanadium atoms in vanadium dioxide with atoms such as tungsten. Therefore, the performance of the resulting film or the like can be controlled by appropriately selecting vanadium dioxide particles or substituted vanadium dioxide particles, or appropriately selecting the atomic species and substitution rate to be substituted in the substituted vanadium dioxide particles.
When the substituted vanadium dioxide is used, the preferable lower limit of the metal atom substitution rate is 0.1 atomic%, and the preferable upper limit is 10 atomic%. When the substitution rate is 0.1 atomic% or more, the phase transition temperature of the substituted vanadium dioxide can be easily adjusted, and when it is 10 atomic% or less, excellent thermochromic properties can be obtained.
The substitution rate is a value indicating the ratio of the number of substituted atoms to the total of the number of vanadium atoms and the number of substituted atoms, expressed as a percentage.
上記二酸化バナジウム粒子は、実質的に二酸化バナジウムのみで構成された粒子であってもよく、コア粒子の表面に二酸化バナジウムが付着した粒子であってもよい。同様に、上記置換二酸化バナジウム粒子は、実質的に置換二酸化バナジウムのみで構成された粒子であってもよく、コア粒子の表面に置換二酸化バナジウムが付着した粒子であってもよい。
上記コア粒子として、例えば、酸化ケイ素、シリカゲル、酸化チタン、ガラス、酸化亜鉛、水酸化亜鉛、酸化アルミニウム、水酸化アルミニウム、水酸化チタン、酸化ジルコニウム、水酸化ジルコニウム、リン酸ジルコニウム、ハイドロタルサイト化合物、ハイドロタルサイト化合物の焼成物、及び、炭酸カルシウム等の無機粒子が挙げられる。
The vanadium dioxide particles may be particles composed essentially of vanadium dioxide, or may be particles having vanadium dioxide attached to the surface of the core particles. Similarly, the substituted vanadium dioxide particles may be substantially composed of only substituted vanadium dioxide, or may be particles in which the substituted vanadium dioxide is attached to the surface of the core particles.
Examples of the core particles include silicon oxide, silica gel, titanium oxide, glass, zinc oxide, zinc hydroxide, aluminum oxide, aluminum hydroxide, titanium hydroxide, zirconium oxide, zirconium hydroxide, zirconium phosphate, and hydrotalcite compound. , A fired product of a hydrotalcite compound, and inorganic particles such as calcium carbonate.
上記二酸化バナジウム粒子において、平均結晶子径は1~100nmであることが好ましい。
上記平均結晶子径が1nm未満であると、粒子全体の結晶性が低く、高いサーモクロミック性は望めない。また、100nmを超えると、これを用いて作製したサーモクロミック材料の透明性が低くなる恐れがある。
本明細書中、結晶子径とは、X線回折法における回折ピークの半価幅から求められる結晶子のサイズを意味する。結晶子径は、例えば、X線回折装置(リガク社製、RINT1000)から得られる回折データから半価幅を算出し、Scherrerの式をあてはめることで結晶子サイズを算出できる。具体的には、ルチル型VOの最強ピーク2θ=27.86°の時の半価幅から算出した結晶子サイズを採用することで測定できる。
これら一連の解析は、例えば、解析ソフト(リガク社製PDXL)を用いて半価幅、結晶子サイズを算出できる。
In the vanadium dioxide particles, the average crystallite diameter is preferably 1 to 100 nm.
When the average crystallite diameter is less than 1 nm, the crystallinity of the entire particle is low, and high thermochromic properties cannot be expected. Moreover, when it exceeds 100 nm, there exists a possibility that the transparency of the thermochromic material produced using this may become low.
In the present specification, the crystallite diameter means a crystallite size obtained from a half-value width of a diffraction peak in an X-ray diffraction method. The crystallite size can be calculated by, for example, calculating the half width from diffraction data obtained from an X-ray diffractometer (manufactured by Rigaku Corporation, RINT1000) and applying the Scherrer equation. Specifically, it can be measured by adopting the crystallite size calculated from the half-value width when the strongest peak 2θ of rutile VO 2 is 27.86 °.
In the series of analyzes, for example, the half width and the crystallite size can be calculated using analysis software (PDXL manufactured by Rigaku Corporation).
上記二酸化バナジウム粒子は、結晶化度が90%以上であることが好ましい。結晶化度が高いことで粒子内の結晶割合が増えるため、サーモクロミック性は向上する。結晶化度は、例えば、組成物のXRD測定を行い、解析ソフト(リガク社製PDXL)を利用することで算出できる。 The vanadium dioxide particles preferably have a crystallinity of 90% or more. Thermochromic properties are improved because the crystal ratio in the particles increases due to the high degree of crystallinity. The degree of crystallinity can be calculated, for example, by performing XRD measurement of the composition and using analysis software (PDXL manufactured by Rigaku Corporation).
上記二酸化バナジウム粒子を作製する方法としては、水熱合成法、超臨界法、錯体分解法、固相法、ゾル-ゲル法などが挙げられ、この中にも、水熱合成法と超臨界法が結晶性を有する二酸化バナジウムナノ粒子が得られやすいため好適である。 Examples of the method for producing the vanadium dioxide particles include a hydrothermal synthesis method, a supercritical method, a complex decomposition method, a solid phase method, a sol-gel method, and the like. Is preferable because vanadium dioxide nanoparticles having crystallinity are easily obtained.
本発明のカーボン被覆二酸化バナジウム粒子は、アモルファスカーボンからなる被覆層を有する。このような被覆層を有することで、高温焼成した後でも、粒子間の焼結が起こらず、二酸化バナジウムナノ粒子がそのサイズが維持されたままで結晶性が向上することができる。これにより、サーモクロミック性が改善され、透明性とサーモクロミック性の両立が可能になる。また、このような被覆層を有することで、使用時の二酸化バナジウム粒子の酸化又は還元が抑制され、サーモクロミック材料の耐久性が向上することとなる。更に、このようなカーボン被覆層は、従来の酸化物被覆層(例えば、SiO、TiO)に比べ、マトリックス樹脂との親和性が高いため、樹脂における分散性が向上され、製品のサーモクロミック性の改善につながる。 The carbon-coated vanadium dioxide particles of the present invention have a coating layer made of amorphous carbon. By having such a coating layer, even after high-temperature firing, sintering between particles does not occur, and the crystallinity can be improved while maintaining the size of the vanadium dioxide nanoparticles. Thereby, thermochromic property is improved and both transparency and thermochromic property can be achieved. Moreover, by having such a coating layer, the oxidation or reduction of vanadium dioxide particles during use is suppressed, and the durability of the thermochromic material is improved. Further, such a carbon coating layer has a higher affinity with a matrix resin than a conventional oxide coating layer (for example, SiO 2 , TiO 2 ), so that the dispersibility in the resin is improved and the product thermochromic is improved. Leads to improvement of sex.
上記被覆層は、二酸化バナジウム粒子の表面の少なくとも一部に形成されていてもよく、二酸化バナジウム粒子の表面全体を被覆するように形成されていてもよい。上記二酸化バナジウム粒子の酸化をより一層抑制できることから、上記被覆層は、二酸化バナジウム粒子の表面全体を被覆するように形成されていることが好ましい。 The coating layer may be formed on at least part of the surface of the vanadium dioxide particles, or may be formed so as to cover the entire surface of the vanadium dioxide particles. Since the oxidation of the vanadium dioxide particles can be further suppressed, the coating layer is preferably formed so as to cover the entire surface of the vanadium dioxide particles.
上記被覆層は、緻密性が高いことがより好ましい。
本願発明者らは、酸素による二酸化バナジウム粒子の酸化、及び、紫外線照射下でポリビニルブチラール樹脂等の樹脂から発生した還元性物質(アルデヒド類)による二酸化バナジウム粒子の還元が、サーモクロミック性の低下(劣化)を引き起こす二つの主な原因であることを見出した。
これに対して、本発明では、緻密性の高い被覆層が形成されることで、二酸化バナジウム粒子と、酸素や還元性物質との接触が遮断され、粒子の酸化又は還元を抑制することができる。
なお、緻密な被覆層としての“緻密性”の厳密な定義はないが、本発明では、高解像度の透過電子顕微鏡を用いて一個一個のナノ粒子を観察した時に、図1のように、粒子表面の被覆層がはっきり観察され、かつ、被覆層が連続に形成されていることを“緻密”と定義する。
The coating layer is more preferably dense.
The inventors of the present application have found that the oxidation of vanadium dioxide particles by oxygen and the reduction of vanadium dioxide particles by reducing substances (aldehydes) generated from a resin such as polyvinyl butyral resin under irradiation of ultraviolet rays are reduced in thermochromic properties ( It was found to be the two main causes of deterioration.
On the other hand, in the present invention, by forming a dense coating layer, contact between the vanadium dioxide particles and oxygen or a reducing substance is blocked, and oxidation or reduction of the particles can be suppressed. .
Although there is no strict definition of “denseness” as a dense coating layer, in the present invention, when each nanoparticle is observed using a high-resolution transmission electron microscope, as shown in FIG. “Dense” means that the coating layer on the surface is clearly observed and the coating layer is continuously formed.
上記被覆層を構成するアモルファスカーボンは、sp2結合とsp3結合が混在したアモルファス構造を有し、炭素からなるものであるが、ラマンスペクトルを測定した場合のGバンドとDバンドのピーク強度比が1.5以上である。
上記アモルファスカーボンをラマン分光で測定した場合、sp2結合に対応したGバンド(1580cm-1付近)及びsp3結合に対応したDバンド(1360cm-1付近)の2つのピークが明確に観察される。なお、炭素材料が結晶性の場合には、上記の2バンドのうち、何れかのバンドが極小化してゆく。例えば、単結晶ダイヤモンドの場合は1580cm-1付近のGバンドが殆ど観察されない。一方、高純度グラファイト構造の場合は、1360cm-1付近のDバンドが殆ど現れない。
本発明では、特にGバンドとDバンドのピーク強度比(Gバンドでのピーク強度/Dバンドでのピーク強度)が1.5以上であることで、形成されたアモルファスカーボン膜の緻密性が高く、高温における粒子間の焼結抑制効果も優れることとなる。
上記ピーク強度比が1.5未満であると、膜の緻密性と高温における焼結抑制効果が不十分であることだけではなく、膜の密着性及び膜強度も低下することとなる。
上記ピーク強度比は1.7以上であることが好ましく、10以下であることが好ましい。
上記被覆層は、カーボン以外の元素を含有しても良い。カーボン以外の元素としては、例えば、窒素、水素、酸素等が挙げられる。このような元素の含有量は、カーボンとカーボン以外の元素との合計に対して、10原子%以下であることが好ましい。
The amorphous carbon constituting the coating layer has an amorphous structure in which sp2 bonds and sp3 bonds are mixed, and is composed of carbon. However, when the Raman spectrum is measured, the peak intensity ratio between the G band and the D band is 1. .5 or more.
When the amorphous carbon is measured by Raman spectroscopy, two peaks of a G band corresponding to sp2 bond (near 1580 cm −1 ) and a D band corresponding to sp3 bond (near 1360 cm −1 ) are clearly observed. Note that, when the carbon material is crystalline, one of the two bands is minimized. For example, in the case of single crystal diamond, the G band near 1580 cm −1 is hardly observed. On the other hand, in the case of a high purity graphite structure, the D band near 1360 cm −1 hardly appears.
In the present invention, the denseness of the formed amorphous carbon film is particularly high when the peak intensity ratio of the G band and the D band (peak intensity in the G band / peak intensity in the D band) is 1.5 or more. In addition, the effect of suppressing sintering between particles at a high temperature is also excellent.
When the peak intensity ratio is less than 1.5, not only the film denseness and the sintering suppression effect at high temperature are insufficient, but also the film adhesion and film strength are lowered.
The peak intensity ratio is preferably 1.7 or more, and preferably 10 or less.
The coating layer may contain an element other than carbon. Examples of elements other than carbon include nitrogen, hydrogen, and oxygen. The content of such an element is preferably 10 atomic% or less with respect to the total of carbon and elements other than carbon.
上記被覆層を構成するアモルファスカーボンは、オキサジン樹脂が含有するカーボンに由来するものである。上記オキサジン樹脂は低温で炭化が可能であることから、コストを低減することが可能となる。
上記オキサジン樹脂は、一般にフェノール樹脂に分類される樹脂であるが、フェノール類とホルムアルデヒドに加えて、さらにアミン類を加えて反応させることで得られる熱硬化樹脂である。なお、フェノール類において、フェノール環にさらにアミノ基があるようなタイプ、例えば、パラアミノフェノールのようなフェノールを用いる場合には、上記反応でアミン類を加える必要はなく、炭化もしやすい傾向にある。炭化のしやすさでは、ベンゼン環ではなく、ナフタレン環を用いることで、さらに炭化がしやすくなる。
The amorphous carbon constituting the coating layer is derived from carbon contained in the oxazine resin. Since the oxazine resin can be carbonized at a low temperature, the cost can be reduced.
The oxazine resin is a resin generally classified as a phenol resin, but is a thermosetting resin obtained by adding and reacting amines in addition to phenols and formaldehyde. In addition, in the phenols, when a type in which the phenol ring further has an amino group, for example, phenol such as paraaminophenol, is used, it is not necessary to add amines in the above reaction, and carbonization tends to be easily performed. In terms of easiness of carbonization, the use of a naphthalene ring instead of a benzene ring makes carbonization easier.
上記オキサジン樹脂としては、ベンゾオキサジン樹脂、ナフトオキサジン樹脂があり、このうち、ナフトオキサジン樹脂は、最も低温で炭化しやすいため好適である。以下にオキサジン樹脂の構造の一部として、ベンゾオキサジン樹脂の部分構造を式(1)に、ナフトキサジン樹脂の部分構造を式(2)に示す。
このように、オキサジン樹脂とは、ベンゼン環又はナフタレン環に付加した6員環をもつ樹脂のことをさし、その6員環には、酸素と窒素が含まれ、これが名前の由来となっている。
Examples of the oxazine resin include a benzoxazine resin and a naphthoxazine resin, and among these, the naphthoxazine resin is preferable because it is easily carbonized at the lowest temperature. Hereinafter, as a part of the structure of the oxazine resin, a partial structure of the benzoxazine resin is shown in Formula (1), and a partial structure of the naphthoxazine resin is shown in Formula (2).
Thus, the oxazine resin refers to a resin having a 6-membered ring added to a benzene ring or naphthalene ring, and the 6-membered ring contains oxygen and nitrogen, which is the origin of the name. Yes.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
上記オキサジン樹脂を用いることにより、エポキシ樹脂等の他の樹脂に比べてかなり低温でアモルファスカーボンの皮膜を得ることが可能となる。具体的には200℃以下の温度で炭化が可能である。特に、ナフトキサジン樹脂を用いることで、より低温で炭化させることができる。
このように、オキサジン樹脂を用いて、より低温で炭化させることにより、アモルファスカーボンを有し、緻密性の高い被覆層を形成することができる。
アモルファスカーボンを有し、緻密性の高い被覆層を形成できる理由については明らかではないが、例えば、オキサジン樹脂としてナフタレンオキサジン樹脂を使用した場合、樹脂中のナフタレン構造が低温加熱によって局部的に繋がり、分子レベルで層状構造が形成されるためであると考えられる。上記層状構造は、高温処理されていないため、グラファイトのような長距離の周期構造までは進展しないため、結晶性は示さない。
得られたカーボンが、グラファイトのような構造であるか、アモルファス構造であるかは、後述するX線回折法によって、2θが26.4°の位置にピークが検出されるか否かにより確認することができる。
By using the oxazine resin, it is possible to obtain an amorphous carbon film at a considerably lower temperature than other resins such as epoxy resins. Specifically, carbonization is possible at a temperature of 200 ° C. or lower. In particular, carbonization can be performed at a lower temperature by using a naphthoxazine resin.
Thus, by carbonizing at a lower temperature using an oxazine resin, it is possible to form a coating layer having amorphous carbon and high density.
Although it is not clear why the amorphous carbon has a dense coating layer, for example, when naphthalene oxazine resin is used as the oxazine resin, the naphthalene structure in the resin is locally connected by low-temperature heating, This is probably because a layered structure is formed at the molecular level. Since the above layered structure is not treated at a high temperature, it does not progress to a long-distance periodic structure such as graphite, and thus does not exhibit crystallinity.
Whether the obtained carbon is a graphite-like structure or an amorphous structure is confirmed by whether or not a peak is detected at a position where 2θ is 26.4 ° by an X-ray diffraction method to be described later. be able to.
上記ナフトキサジン樹脂の原料として用いられるのは、フェノール類であるジヒドロキシナフタレンと、ホルムアルデヒドと、アミン類とである。なお、これらについては後に詳述する。 Dihydroxynaphthalene, which is a phenol, formaldehyde, and amines are used as raw materials for the naphthoxazine resin. These will be described in detail later.
上記アモルファスカーボンは、上記オキサジン樹脂を150~350℃の温度で熱処理することにより得られるものであることが好ましい。本発明では、低温で炭化が可能なナフトオキサジン樹脂を用いていることで、比較的低温でアモルファスカーボンとすることが可能となる。
このように低温で得られることで、従来より低コスト、且つ簡便なプロセスで作製できるという利点がある。
上記熱処理の温度は170~300℃であることが好ましい。
The amorphous carbon is preferably obtained by heat-treating the oxazine resin at a temperature of 150 to 350 ° C. In the present invention, by using a naphthoxazine resin that can be carbonized at a low temperature, amorphous carbon can be obtained at a relatively low temperature.
By being obtained at such a low temperature, there is an advantage that it can be manufactured by a simpler process at a lower cost than before.
The temperature of the heat treatment is preferably 170 to 300 ° C.
上記被覆層の平均膜厚の上限は50nmである。上記被覆層の平均膜厚が50nmを超えると、被覆後の粒子が大きくなり、これを用いて作製したサーモクロミック材料の透明性が低くなることがある。好ましい上限は30nmである。なお、下限については特に限定されないが0.5nmが好ましい。 The upper limit of the average film thickness of the coating layer is 50 nm. When the average film thickness of the coating layer exceeds 50 nm, particles after coating become large, and the transparency of the thermochromic material produced using the same may be lowered. A preferable upper limit is 30 nm. In addition, although it does not specifically limit about a minimum, 0.5 nm is preferable.
上記被覆層の膜厚の変動係数(CV値)は、7%以下である。上記被覆層の膜厚のCV値が7%以下であると、被覆膜が均一で膜厚のバラツキが少ないことから、酸素や水蒸気に対するバリア性が高いものとすることができる。その結果、上記被覆層を有することで、焼成時の二酸化バナジウムナノ粒子の焼結防止だけではなく、カーボン被覆二酸化バナジウム粒子の耐酸化性や耐水性の向上にも寄与し、サーモクロミック性の長期安定性をもたらすこととなる。上記被覆層の膜厚のCV値の好ましい上限は5%である。なお、下限については特に限定されないが0.5%が好ましい。
膜厚のCV値(%)とは、標準偏差を平均膜厚で割った値を百分率で表したものであり、下記式により求められる数値のことである。CV値が小さいほど膜厚のばらつきが小さいことを意味する。
 膜厚のCV値(%)=(膜厚の標準偏差/平均膜厚)×100
平均膜厚及び標準偏差は、例えば、FE-TEMを用いて測定することができる。
The variation coefficient (CV value) of the film thickness of the coating layer is 7% or less. When the CV value of the film thickness of the coating layer is 7% or less, the coating film is uniform and there is little variation in film thickness, so that the barrier property against oxygen and water vapor can be made high. As a result, having the coating layer not only prevents the sintering of vanadium dioxide nanoparticles during firing, but also contributes to the improvement of oxidation resistance and water resistance of the carbon-coated vanadium dioxide particles, resulting in long-term thermochromic properties. Will bring stability. The upper limit with preferable CV value of the film thickness of the said coating layer is 5%. In addition, although it does not specifically limit about a minimum, 0.5% is preferable.
The CV value (%) of the film thickness is a value obtained by dividing the standard deviation by the average film thickness as a percentage, and is a numerical value obtained by the following formula. The smaller the CV value, the smaller the variation in film thickness.
CV value of film thickness (%) = (standard deviation of film thickness / average film thickness) × 100
The average film thickness and standard deviation can be measured using, for example, FE-TEM.
上記被覆層は、二酸化バナジウム粒子との間に良好な密着性を有することが好ましい。密着性に関する明確な定義はないが、カーボン被覆二酸化バナジウム粒子と、樹脂と、可塑剤と分散剤とを含有した混合物をビーズミルで処理しても、被覆層が剥離しないことが好ましい。 The coating layer preferably has good adhesion to the vanadium dioxide particles. Although there is no clear definition regarding adhesiveness, it is preferable that the coating layer does not peel even when a mixture containing carbon-coated vanadium dioxide particles, a resin, a plasticizer and a dispersant is treated with a bead mill.
本発明では、飛行時間型二次イオン質量分析法(TOF-SIMS)によって被覆層を測定した場合、ベンゼン環に由来する質量スペクトル、及び、ナフタレン環に由来する質量スペクトルのうち少なくとも1つが検出されることが好ましい。
このようなベンゼン環、ナフタレン環に由来する質量スペクトルが検出されることで、オキサジン樹脂が含有するカーボンに由来するものであることを確認できると同時に、緻密性の高い被覆膜を得ることができる。
本願発明において、ベンゼン環に由来する質量スペクトルとは、77.12付近の質量スペクトルをいい、ナフタレン環に由来する質量スペクトルとは、127.27付近の質量スペクトルをいう。
TOF-SIMSによって測定を行った場合における測定結果の一例を図5に示す。図5では、77.16にベンゼン環に由来する質量スペクトル、127.27にナフタレン環に由来する質量スペクトルが検出されている。
なお、上記測定は、例えば、TOF-SIMS装置(ION-TOF社製)等を用いて行うことができる。
In the present invention, when the coating layer is measured by time-of-flight secondary ion mass spectrometry (TOF-SIMS), at least one of a mass spectrum derived from a benzene ring and a mass spectrum derived from a naphthalene ring is detected. It is preferable.
By detecting a mass spectrum derived from such a benzene ring or naphthalene ring, it can be confirmed that it is derived from carbon contained in the oxazine resin, and at the same time, a highly dense coating film can be obtained. it can.
In the present invention, a mass spectrum derived from a benzene ring refers to a mass spectrum near 77.12, and a mass spectrum derived from a naphthalene ring refers to a mass spectrum near 127.27.
FIG. 5 shows an example of measurement results when measurement is performed by TOF-SIMS. In FIG. 5, a mass spectrum derived from the benzene ring is detected at 77.16, and a mass spectrum derived from the naphthalene ring is detected at 127.27.
The above measurement can be performed using, for example, a TOF-SIMS device (manufactured by ION-TOF).
本発明では、X線回折法によって被覆層を測定した場合、2θが26.4°の位置にピークが検出されないことが好ましい。
上記2θが26.4°の位置のピークは、グラファイトの結晶ピークであり、このような位置にピークが検出されないことで、被覆層を形成するカーボンがアモルファス構造であるということができる。
なお、上記測定は、例えば、X線回折装置(SmartLab Multipurpose、リガク社製)等を用いて行うことができる。
In the present invention, when the coating layer is measured by the X-ray diffraction method, it is preferable that no peak is detected at a position where 2θ is 26.4 °.
The peak at the position where 2θ is 26.4 ° is a crystal peak of graphite, and since the peak is not detected at such a position, it can be said that the carbon forming the coating layer has an amorphous structure.
The above measurement can be performed using, for example, an X-ray diffractometer (SmartLab Multipurpose, manufactured by Rigaku Corporation).
本発明のカーボン被覆二酸化バナジウム粒子を製造する方法としては、ホルムアルデヒド、脂肪族アミン及びジヒドロキシナフタレンを含有する混合溶液を調製する工程と、二酸化バナジウム粒子を前記混合溶液に添加し、反応させる工程と、150~350℃の温度での熱処理する工程を有する方法を用いることができる。 The method for producing the carbon-coated vanadium dioxide particles of the present invention includes a step of preparing a mixed solution containing formaldehyde, an aliphatic amine and dihydroxynaphthalene, a step of adding vanadium dioxide particles to the mixed solution, and a reaction step. A method having a heat treatment step at a temperature of 150 to 350 ° C. can be used.
本発明のカーボン被覆二酸化バナジウム粒子の製造方法では、ホルムアルデヒド、脂肪族アミン及びジヒドロキシナフタレンを含有する混合溶液を調製する工程を行う。
上記ホルムアルデヒドは不安定であるので、ホルムアルデヒド溶液であるホルマリンを用いることが好ましい。ホルマリンは、通常、ホルムアルデヒド及び水に加えて、安定剤として少量のメタノールが含有されている。本発明で用いられるホルムアルデヒドは、ホルムアルデヒド含量が明確なものであれば、ホルマリンであっても構わない。
また、ホルムアルデヒドには、その重合形態としてパラホルムアルデヒドがあり、こちらの方も原料として使用可能であるが、反応性が劣るため、好ましくは上記したホルマリンが用いられる。
In the method for producing carbon-coated vanadium dioxide particles of the present invention, a step of preparing a mixed solution containing formaldehyde, an aliphatic amine and dihydroxynaphthalene is performed.
Since the formaldehyde is unstable, it is preferable to use formalin which is a formaldehyde solution. Formalin usually contains a small amount of methanol as a stabilizer in addition to formaldehyde and water. The formaldehyde used in the present invention may be formalin as long as the formaldehyde content is clear.
In addition, formaldehyde has paraformaldehyde as its polymerization form, and this form can also be used as a raw material. However, since the reactivity is poor, the above-described formalin is preferably used.
上記脂肪族アミンは一般式R-NHで表され、Rは炭素数5以下のアルキル基であることが好ましい。炭素数5以下のアルキル基としては、以下に制限されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n―ブチル基、イソブチル基、s-ブチル基、t-ブチル基、シクロブチル基、シクロプロピルメチル基、n-ペンチル基、シクロペンチル基、シクロプロピルエチル基、及びシクロブチルメチル基が挙げられる。
分子量を小さくする方が好ましいので、置換基Rは、メチル基、エチル基、プロピル基などが好ましく、実際の化合物名としては、メチルアミン、エチルアミン、プロピルアミン等が好ましく使用できる。最も好ましいものは、分子量が一番小さなメチルアミンである。
The aliphatic amine is represented by the general formula R—NH 2 , and R is preferably an alkyl group having 5 or less carbon atoms. Examples of the alkyl group having 5 or less carbon atoms include, but are not limited to, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, s-butyl group, t -Butyl group, cyclobutyl group, cyclopropylmethyl group, n-pentyl group, cyclopentyl group, cyclopropylethyl group, and cyclobutylmethyl group.
Since it is preferable to reduce the molecular weight, the substituent R is preferably a methyl group, an ethyl group, a propyl group or the like, and methylamine, ethylamine, propylamine or the like can be preferably used as the actual compound name. Most preferred is methylamine with the lowest molecular weight.
上記ジヒドロキシナフタレンとしては、多くの異性体がある。例えば、1,3-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレンが挙げられる。
このうち、反応性の高さから、1,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレンが好ましい。さらに1,5-ジヒドロキシナフタレンが最も反応性が高いので好ましい。
The dihydroxynaphthalene has many isomers. For example, 1,3-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene Is mentioned.
Of these, 1,5-dihydroxynaphthalene and 2,6-dihydroxynaphthalene are preferred because of their high reactivity. Further, 1,5-dihydroxynaphthalene is preferred because it has the highest reactivity.
上記混合溶液中におけるジヒドロキシナフタレン、脂肪族アミン、ホルムアルデヒドの3成分の比率については、ジヒドロキシナフタレン1モルに対して、脂肪族アミンを1モル、ホルムアルデヒドを2モル配合することが最も好ましい。
反応条件によっては、反応中に揮発などにより原料を失うので、最適な配合比は正確に上記比率とは限らないが、ジヒドロキシナフタレン1モルに対して、脂肪族アミンを0.8~1.2モル、ホルムアルデヒドを1.6~2.4モルの配合比の範囲で配合することが好ましい。
上記脂肪族アミンを0.8モル以上とすることにより、オキサジン環を十分に形成することができ、重合を好適に進めることができる。また1.2モル以下とすることにより、反応に必要なホルムアルデヒドを余計に消費することがないため、反応が順調に進み、所望のナフトキサジンを得ることができる。同様に、ホルムアルデヒドを1.6モル以上とすることで、オキサジン環を充分に形成することができ、重合を好適に進めることができる。また2.4モル以下とすることで、副反応の発生を低減できるため好ましい。
Regarding the ratio of the three components of dihydroxynaphthalene, aliphatic amine, and formaldehyde in the above mixed solution, it is most preferable to mix 1 mol of aliphatic amine and 2 mol of formaldehyde with respect to 1 mol of dihydroxynaphthalene.
Depending on the reaction conditions, the raw materials are lost due to volatilization during the reaction, so the optimum blending ratio is not necessarily exactly the above ratio, but the aliphatic amine is 0.8 to 1.2 per mole of dihydroxynaphthalene. Mole and formaldehyde are preferably blended in the range of 1.6 to 2.4 moles.
By setting the aliphatic amine to 0.8 mol or more, an oxazine ring can be sufficiently formed, and polymerization can be favorably proceeded. When the amount is 1.2 mol or less, the formaldehyde necessary for the reaction is not excessively consumed, so that the reaction proceeds smoothly and the desired naphthoxazine can be obtained. Similarly, when the formaldehyde is 1.6 mol or more, the oxazine ring can be sufficiently formed, and the polymerization can proceed suitably. Moreover, since it can reduce generation | occurrence | production of a side reaction by being 2.4 mol or less, it is preferable.
上記混合溶液は、上記3原料を溶解し、反応させるための溶媒を含有することが好ましい。
上記溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドン等の通常樹脂を溶解するために用いられる溶媒が挙げられる。
上記混合溶液中の溶媒の添加量は特に限定されないが、ジヒドロキシナフタレン、脂肪族アミン及びホルムアルデヒドを含む原料を100質量部とした場合は、通常300~20000質量部で配合することが好ましい。300質量部以上とすることで、溶質を充分に溶解することができるため、皮膜を形成した際に均一な皮膜とすることができ、20000質量部以下とすることで、被覆層の形成に必要な濃度を確保することができる。
The mixed solution preferably contains a solvent for dissolving and reacting the three raw materials.
Examples of the solvent include alcohols such as methanol, ethanol and isopropanol, and solvents usually used for dissolving a resin such as tetrahydrofuran, dioxane, dimethylformamide, dimethylacetamide, dimethylsulfoxide and N-methylpyrrolidone.
The addition amount of the solvent in the mixed solution is not particularly limited, but when the raw material containing dihydroxynaphthalene, aliphatic amine, and formaldehyde is 100 parts by mass, it is usually preferably blended at 300 to 20000 parts by mass. Since the solute can be sufficiently dissolved by setting it to 300 parts by mass or more, a uniform film can be formed when the film is formed, and it is necessary for forming the coating layer by setting it to 20000 parts by mass or less. A high concentration can be ensured.
本発明のカーボン被覆二酸化バナジウム粒子の製造方法では、二酸化バナジウム粒子を上記混合溶液に添加し、反応させる工程を行う。反応を進行させることにより、上記二酸化バナジウム粒子の表面にナフトキサジン樹脂からなる層を形成することができる。
上記反応は常温でも進行するが、反応時間を短縮することができるため、40℃以上に加温することが好ましい。加温を続けることで、作製されたオキサジン環が開き、重合が起こると分子量が増加し、いわゆるポリナフトキサジン樹脂となる。反応が進みすぎると溶液の粘度が増し被覆に適さないため注意を要する。
In the method for producing carbon-coated vanadium dioxide particles of the present invention, a step of adding vanadium dioxide particles to the mixed solution and reacting them is performed. By allowing the reaction to proceed, a layer of naphthoxazine resin can be formed on the surface of the vanadium dioxide particles.
Although the above reaction proceeds even at room temperature, it is preferable to warm to 40 ° C. or higher because the reaction time can be shortened. By continuing the heating, the produced oxazine ring opens, and when polymerization occurs, the molecular weight increases and a so-called polynaphthoxazine resin is obtained. If the reaction is too advanced, the viscosity of the solution increases and it is not suitable for coating.
また、例えば、ホルムアルデヒド、脂肪族アミン及びジヒドロキシナフタレンの混合液を一定時間反応させて後に二酸化バナジウム粒子を添加する方法を用いてもよい。
また、粒子への被覆を均一に行うためには、被覆反応時に粒子が分散された状態が好ましい。分散方法としては、撹拌、超音波、回転など公知の方法が利用できる。また、分散状態を改善するために、適当な分散剤を添加しても良い。
更に、反応工程を行った後に、熱風等により溶媒を乾燥除去することにより、樹脂を二酸化バナジウム粒子表面に均一に被覆してもよい。加熱乾燥方法についても特に制限はない。
Further, for example, a method of reacting a mixed solution of formaldehyde, an aliphatic amine and dihydroxynaphthalene for a certain time and then adding vanadium dioxide particles may be used.
In order to uniformly coat the particles, it is preferable that the particles are dispersed during the coating reaction. As a dispersion method, known methods such as stirring, ultrasonic waves, and rotation can be used. In order to improve the dispersion state, an appropriate dispersant may be added.
Furthermore, after performing the reaction step, the resin may be uniformly coated on the surface of the vanadium dioxide particles by drying and removing the solvent with hot air or the like. There is no restriction | limiting in particular also about the heat-drying method.
本発明のカーボン被覆二酸化バナジウム粒子の製造方法では、次いで、150~350℃の温度での熱処理する工程を行う。
これにより、前工程で被覆した樹脂が炭化されてアモルファスカーボンからなる被覆層とすることができる。
In the method for producing carbon-coated vanadium dioxide particles of the present invention, a heat treatment step at a temperature of 150 to 350 ° C. is then performed.
Thereby, the resin coated in the previous step is carbonized to form a coating layer made of amorphous carbon.
上記熱処理の方法としては、特に限定されず、加熱オーブンや電気炉等を用いる方法等が挙げられる。
上記熱処理における温度は、150~350℃である。本発明では、低温で炭化が可能なナフトキサジン樹脂を用いていることから、更に低温でアモルファスカーボンとすることが可能となる。この場合の加熱温度の好ましい上限は250℃である。
上記加熱処理は、空気中で行っても良いし、窒素、アルゴンなどの不活性ガス中で行っても良い。熱処理温度が250℃以上の場合は、不活性ガス雰囲気の方がより好ましい。
The heat treatment method is not particularly limited, and examples thereof include a method using a heating oven or an electric furnace.
The temperature in the heat treatment is 150 to 350 ° C. In the present invention, since the naphthoxazine resin that can be carbonized at a low temperature is used, amorphous carbon can be obtained at a lower temperature. A preferable upper limit of the heating temperature in this case is 250 ° C.
The heat treatment may be performed in air or in an inert gas such as nitrogen or argon. When the heat treatment temperature is 250 ° C. or higher, an inert gas atmosphere is more preferable.
本発明のカーボン被覆二酸化バナジウム粒子と、熱硬化性樹脂とを含有する樹脂組成物を用いることで、サーモクロミック性を有する塗布膜や貼り付け用フィルムが得られる。このような樹脂組成物、塗布膜及び貼り付け用フィルムもまた本発明の1つである。上記樹脂組成物を窓用のガラスに塗布することにより、自動調光性を有する窓ガラスを作製することができる。また、上記貼り付け用フィルムを窓ガラスに貼りつけることにより自動調光性を付与することもできる。
また、本発明のカーボン被覆二酸化バナジウム粒子と、熱可塑性樹脂とを含有するフィルムは、優れたサーモクロミック性を有するフィルムとなる。このようなフィルムもまた本発明の1つである。
By using the resin composition containing the carbon-coated vanadium dioxide particles of the present invention and a thermosetting resin, a thermochromic coating film or a film for application can be obtained. Such a resin composition, a coating film, and a sticking film are also one aspect of the present invention. By applying the resin composition to window glass, a window glass having automatic light control can be produced. Moreover, automatic light control property can also be provided by sticking the said film for affixing on a window glass.
Moreover, the film containing the carbon-coated vanadium dioxide particles of the present invention and a thermoplastic resin is a film having excellent thermochromic properties. Such a film is also one aspect of the present invention.
このような優れたサーモクロミック性を有する本発明のフィルムは、合わせガラス用中間膜として使用することができる。このような本発明のフィルムを用いた合わせガラス用中間膜もまた、本発明の一つである。 The film of the present invention having such excellent thermochromic properties can be used as an interlayer film for laminated glass. Such an interlayer film for laminated glass using the film of the present invention is also one aspect of the present invention.
本発明の合わせガラス用中間膜が、2枚の透明板の間に挟み込まれている合わせガラスもまた、本発明の1つである。本発明の合わせガラスの製造方法は特に限定されず、従来公知の製造方法を用いることができる。 A laminated glass in which the interlayer film for laminated glass of the present invention is sandwiched between two transparent plates is also one aspect of the present invention. The manufacturing method of the laminated glass of this invention is not specifically limited, A conventionally well-known manufacturing method can be used.
上記透明板は特に限定されず、一般に使用されている透明板ガラスを使用することができる。例えば、フロート板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、線入り板ガラス、着色された板ガラス、熱線吸収板ガラス、熱線反射板ガラス、グリーンガラス等の無機ガラスが挙げられる。また、ポリカーボネートやポリアクリレート等の有機プラスチックス板を用いることもできる。 The said transparent plate is not specifically limited, The transparent plate glass generally used can be used. Examples thereof include inorganic glass such as float plate glass, polished plate glass, mold plate glass, meshed plate glass, wire-containing plate glass, colored plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, and green glass. Moreover, organic plastics boards, such as a polycarbonate and a polyacrylate, can also be used.
上記2枚の透明板は、同種の透明板であってもよいし、異種の透明板であってもよい。異種の透明板の組み合わせは、例えば、透明フロート板ガラスとグリーンガラスのような着色された板ガラスとの組み合わせや、無機ガラスと有機プラスチックス板との組み合わせ等が挙げられる。 The two transparent plates may be the same type of transparent plate or different types of transparent plates. Examples of the combination of different kinds of transparent plates include a combination of a transparent float plate glass and a colored plate glass such as green glass, and a combination of an inorganic glass and an organic plastic plate.
本発明のフィルムはまた、貼り付け用フィルムとして使用することができる。このような本発明のサーモクロミック性フィルムを用いた貼り付け用フィルムもまた、本発明の1つである。
上記貼り付け用フィルムは、更に接着層を有していてもよい。上記接着層としては、特に限定されず、上記貼り付け用フィルムを窓ガラス等に接着し得る公知の接着剤を含む層を挙げることができる。
The film of the present invention can also be used as an adhesive film. Such a pasting film using the thermochromic film of the present invention is also one aspect of the present invention.
The affixing film may further have an adhesive layer. It does not specifically limit as said adhesive layer, The layer containing the well-known adhesive agent which can adhere | attach the said film for affixing on a window glass etc. can be mentioned.
本発明によれば、高温焼成時の粒子間の焼結を抑制でき、結晶性及び耐久性が高く、長時間保管又は使用しても優れたサーモクロミック性を維持することが可能なカーボン被覆二酸化バナジウム粒子を提供することができる。また、該カーボン被覆二酸化バナジウム粒子を用いて得られる樹脂組成物、塗布膜、フィルム、合わせガラス用中間膜、合わせガラス、貼り付け用フィルム及び該カーボン被覆二酸化バナジウム粒子の製造方法を提供することも可能となる。 According to the present invention, carbon-coated carbon dioxide that can suppress sintering between particles during high-temperature firing, has high crystallinity and durability, and can maintain excellent thermochromic properties even when stored or used for a long time. Vanadium particles can be provided. In addition, a resin composition obtained by using the carbon-coated vanadium dioxide particles, a coating film, a film, an interlayer film for laminated glass, a laminated glass, a film for pasting, and a method for producing the carbon-coated vanadium dioxide particles are also provided. It becomes possible.
表面被覆処理した粒子の透過電子顕微鏡写真である。It is a transmission electron micrograph of the particle | grains which carried out the surface coating process. 実施例3で得られた二酸化バナジウム粒子の焼成前の粒子の電子顕微鏡写真である。4 is an electron micrograph of particles before baking of vanadium dioxide particles obtained in Example 3. FIG. 実施例3で得られた二酸化バナジウム粒子の焼成後の粒子の電子顕微鏡写真である。4 is an electron micrograph of particles after firing of vanadium dioxide particles obtained in Example 3. FIG. 比較例1で得られた二酸化バナジウム粒子の焼成後の粒子の電子顕微鏡写真である。2 is an electron micrograph of particles after firing of vanadium dioxide particles obtained in Comparative Example 1. FIG. TOF-SIMSによって測定を行った場合における測定結果の一例である。It is an example of the measurement result in the case of measuring by TOF-SIMS.
以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Examples of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
(実施例1)
(二酸化バナジウム粒子の作製)
1.299gのメタバナジル酸アンモニウム(NHVO)を含有する50mlの水分散液に、10%のヒドラジン水溶液4mlをゆっくり滴下し、室温で1時間反応させた。その後、反応液をフッ素樹脂内筒付のステンレス製の耐圧容器に移し、270℃で48時間を反応させた。反応後に、粒子を遠心分離により溶液から分離し、3回洗浄した。その後、50℃で乾燥により粒子を回収した。
また、粒度分布計(日機装社製、マイクロトラックUAM-1)を用いて、得られた二酸化バナジウム粒子の粒子径(体積平均粒子径)を測定した。
(Example 1)
(Production of vanadium dioxide particles)
To 50 ml of an aqueous dispersion containing 1.299 g of ammonium metavanadate (NH 4 VO 3 ), 4 ml of a 10% hydrazine aqueous solution was slowly added dropwise and reacted at room temperature for 1 hour. Thereafter, the reaction solution was transferred to a stainless steel pressure vessel with a fluororesin inner cylinder and reacted at 270 ° C. for 48 hours. After the reaction, the particles were separated from the solution by centrifugation and washed three times. Thereafter, the particles were recovered by drying at 50 ° C.
Further, the particle size (volume average particle size) of the obtained vanadium dioxide particles was measured using a particle size distribution meter (Microtrack UAM-1 manufactured by Nikkiso Co., Ltd.).
(被覆層の形成)
1,5-ジヒドロキシナフタレン(東京化成社製)0.1gと、40%メチルアミン(和光純薬工業社製)0.05gと、37%ホルムアルデヒド水溶液(和光純薬工業社製)0.1gとをエタノールに順次溶解し、20gのエタノール混合溶液を作製した。
次に、得られた混合液に、二酸化バナジウム粒子0.2gを添加し、超音波槽にて4時間を処理した。溶液を濾過し、エタノールで3回洗浄した後に、50℃で3時間真空乾燥した。更に、上記乾燥した粒子を150℃で2時間加熱することにより、カーボン被覆二酸化バナジウム粒子を得た。
(Formation of coating layer)
0.1 g of 1,5-dihydroxynaphthalene (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.05 g of 40% methylamine (manufactured by Wako Pure Chemical Industries, Ltd.), 0.1 g of 37% formaldehyde aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.), Were sequentially dissolved in ethanol to prepare a 20 g ethanol mixed solution.
Next, 0.2 g of vanadium dioxide particles was added to the obtained mixed solution, and the mixture was treated for 4 hours in an ultrasonic bath. The solution was filtered, washed 3 times with ethanol, and then vacuum dried at 50 ° C. for 3 hours. Further, the dried particles were heated at 150 ° C. for 2 hours to obtain carbon-coated vanadium dioxide particles.
150℃で2時間加熱を行う前の二酸化バナジウム粒子の表面について、核磁気共鳴スペクトル(NMRスペクトル)測定を行ったところ、ナフトキサジン環の「ベンゼン環-CH-N」のメチレン基に対応したピーク(3.95ppm)と、「O-CH-N」のメチレン基に対応したピーク(4.92ppm)がほぼ同強度で検出され、ナフトキサジン環を含有する樹脂成分が粒子の表面に析出したことが確認された。
なお、核磁気共鳴スペクトル測定は、Varian Inova社製のH-NMR(600MHz)を用いて行い、測定に際して、重水素ジメチルスルホキシドを使用し、スペクトル積算回数は256回、緩和時間は10秒とした。
When the surface of the vanadium dioxide particles before being heated at 150 ° C. for 2 hours was subjected to nuclear magnetic resonance spectrum (NMR spectrum) measurement, a peak corresponding to the methylene group of “benzene ring —CH 2 —N” of the naphthoxazine ring was measured. (3.95 ppm) and a peak (4.92 ppm) corresponding to the methylene group of “O—CH 2 —N” were detected at almost the same intensity, and a resin component containing a naphthoxazine ring was deposited on the particle surface. Was confirmed.
The nuclear magnetic resonance spectrum was measured using 1 H-NMR (600 MHz) manufactured by Varian Inova, and deuterium dimethyl sulfoxide was used for the measurement, the number of spectrum integration was 256 times, and the relaxation time was 10 seconds. did.
また、得られたカーボン被覆二酸化バナジウム粒子をAlmega XR(Thermo Fisher Scientific社製)を用いてラマン分光で測定したところ、GバンドとDバンドで共にピークが観察され、ナフトキサジン樹脂はアモルファスカーボンへと変化していると判断できた。
また、GバンドとDバンドのピーク強度比は1.72であった。なお、レーザー光は530nmとした。
Further, when the obtained carbon-coated vanadium dioxide particles were measured by Raman spectroscopy using Almega XR (manufactured by Thermo Fisher Scientific), peaks were observed in both the G band and the D band, and the naphthoxazine resin changed to amorphous carbon. I was able to judge.
The peak intensity ratio between the G band and the D band was 1.72. The laser beam was 530 nm.
(実施例2)
下記に示す方法で二酸化バナジウム粒子を作製した以外は実施例1と同様にしてカーボン被覆二酸化バナジウム粒子を作製した。なお、実施例1の「(被覆層の形成)」において、「150℃で2時間加熱」は、「200℃で2時間加熱」に変更した。
(Example 2)
Carbon-coated vanadium dioxide particles were produced in the same manner as in Example 1 except that vanadium dioxide particles were produced by the method described below. In “(Formation of coating layer)” in Example 1, “heating at 150 ° C. for 2 hours” was changed to “heating at 200 ° C. for 2 hours”.
(二酸化バナジウム粒子の作製)
1.299gメタバナジル酸アンモニウム(NHVO)と0.0329gタングステン酸アンモニウムの水和物((NH101241・5HO)とを含有した50mlの水分散液に、10%のヒドラジン水溶液4.5mlをゆっくり滴下し、室温で1時間反応させた。その後、反応液をフッ素樹脂内筒付のステンレス製の耐圧容器に移し、270℃で48時間を反応させた。反応後に、粒子を遠心分離により溶液から分離し、3回洗浄した。その後、50℃で乾燥により二酸化バナジウム粒子を回収した。
蛍光X線による粒子の組成を測定したところ、二酸化バナジウム粒子中に約1モル%のタングステンが含まれていることが分かった。
(Production of vanadium dioxide particles)
1.299g Metabanajiru ammonium (NH 4 VO 3) and 0.0329g hydrate of ammonium tungstate in ((NH 4) 10 W 12 O 41 · 5H 2 O) and aqueous dispersion of 50ml which contained, 10 % Aqueous hydrazine solution (4.5 ml) was slowly added dropwise and reacted at room temperature for 1 hour. Thereafter, the reaction solution was transferred to a stainless steel pressure vessel with a fluororesin inner cylinder and reacted at 270 ° C. for 48 hours. After the reaction, the particles were separated from the solution by centrifugation and washed three times. Thereafter, vanadium dioxide particles were recovered by drying at 50 ° C.
When the composition of the particles by X-ray fluorescence was measured, it was found that vanadium dioxide particles contained about 1 mol% tungsten.
(実施例3)
実施例2で得られた二酸化バナジウム粒子を用い、下記の方法で被覆層を形成した以外は実施例1と同様にしてカーボン被覆二酸化バナジウム粒子を作製した。
(Example 3)
Carbon-coated vanadium dioxide particles were produced in the same manner as in Example 1 except that the vanadium dioxide particles obtained in Example 2 were used and a coating layer was formed by the following method.
(被覆層の形成)
1,5-ジヒドロキシナフタレン(東京化成社製)0.07gと、40%メチルアミン(和光純薬工業社製)0.03gと、37%ホルムアルデヒド水溶液(和光純薬工業社製)0.07gをエタノールに順次溶解し、20gのエタノール混合溶液を作製した。
次に、得られた混合液に、タングステンドープした二酸化バナジウム粒子0.2gを添加し、超音波槽にて6時間を処理した。溶液を濾過し、エタノールで3回洗浄した後に、50℃で3時間真空乾燥した。更に、上記乾燥した粒子を150℃で2時間加熱することにより、カーボン被覆二酸化バナジウム粒子を得た。
(Formation of coating layer)
0.07 g of 1,5-dihydroxynaphthalene (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.03 g of 40% methylamine (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.07 g of 37% formaldehyde aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) It melt | dissolved in ethanol sequentially and produced the ethanol mixed solution of 20g.
Next, 0.2 g of tungsten-doped vanadium dioxide particles were added to the obtained mixed solution, and the mixture was treated for 6 hours in an ultrasonic bath. The solution was filtered, washed 3 times with ethanol, and then vacuum dried at 50 ° C. for 3 hours. Further, the dried particles were heated at 150 ° C. for 2 hours to obtain carbon-coated vanadium dioxide particles.
図1は表面被覆処理した粒子の透過電子顕微鏡写真である。表面に膜厚約4nmの緻密な被覆層が検出された。この被覆層がカーボンであることは、透過電子顕微鏡に付属されているエネルギー分散型X線検出器を用いた元素分析から確認されている。 FIG. 1 is a transmission electron micrograph of particles that have been surface-coated. A dense coating layer having a thickness of about 4 nm was detected on the surface. That this coating layer is carbon has been confirmed by elemental analysis using an energy dispersive X-ray detector attached to a transmission electron microscope.
(実施例4)
実施例2で得られた二酸化バナジウム粒子を用い、下記の方法で被覆層を形成した以外は実施例1と同様にしてカーボン被覆二酸化バナジウム粒子を作製した。
Example 4
Carbon-coated vanadium dioxide particles were produced in the same manner as in Example 1 except that the vanadium dioxide particles obtained in Example 2 were used and a coating layer was formed by the following method.
(被覆層の形成)
1,5-ジヒドロキシナフタレン(東京化成社製)0.5gと、40%メチルアミン(和光純薬工業社製)0.5gと、37%ホルムアルデヒド水溶液(和光純薬工業社製)0.25gをエタノールに順次溶解し、20gのエタノール混合溶液を作製した。
次に、得られた混合液に、タングステンドープした二酸化バナジウム粒子0.2gを添加し、超音波槽にて3時間を処理した。溶液を濾過し、エタノールで3回洗浄した後に、50℃で3時間真空乾燥した。更に、上記乾燥した粒子を300℃で2時間加熱することにより、カーボン被覆二酸化バナジウム粒子を得た。
(Formation of coating layer)
0.5 g of 1,5-dihydroxynaphthalene (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.5 g of 40% methylamine (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.25 g of 37% formaldehyde aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) It melt | dissolved in ethanol sequentially and produced the ethanol mixed solution of 20g.
Next, 0.2 g of tungsten-doped vanadium dioxide particles were added to the obtained mixed solution, and the mixture was treated for 3 hours in an ultrasonic bath. The solution was filtered, washed 3 times with ethanol, and then vacuum dried at 50 ° C. for 3 hours. Further, the dried particles were heated at 300 ° C. for 2 hours to obtain carbon-coated vanadium dioxide particles.
(実施例5)
下記に示す方法で二酸化バナジウム粒子を作製した以外は実施例1と同様にしてカーボン被覆二酸化バナジウム粒子を作製した。
(Example 5)
Carbon-coated vanadium dioxide particles were produced in the same manner as in Example 1 except that vanadium dioxide particles were produced by the method described below.
(二酸化バナジウム粒子の作製)
1.299gメタバナジル酸アンモニウム(NHVO)と0.02gモリブデン酸アンモニウムの水和物((NHMo24・4HO)とを含有した50mlの水分散液に、10%のヒドラジン水溶液4.5mlをゆっくり滴下し、室温で1時間反応させた。その後、反応液をフッ素樹脂内筒付のステンレス製の耐圧容器に移し、270℃で48時間を反応させた。反応後に、粒子を遠心分離により溶液から分離し、3回洗浄した。その後、50℃で乾燥により粒子を回収した。
蛍光X線による粒子の組成を測定したところ、粒子中に約1モル%のモリブデンが含まれていることが分かった。
(Production of vanadium dioxide particles)
To a 50 ml aqueous dispersion containing 1.299 g ammonium metavanadate (NH 4 VO 3 ) and 0.02 g ammonium molybdate hydrate ((NH 4 ) 6 Mo 7 O 24 · 4H 2 O), 10 % Aqueous hydrazine solution (4.5 ml) was slowly added dropwise and reacted at room temperature for 1 hour. Thereafter, the reaction solution was transferred to a stainless steel pressure vessel with a fluororesin inner cylinder and reacted at 270 ° C. for 48 hours. After the reaction, the particles were separated from the solution by centrifugation and washed three times. Thereafter, the particles were recovered by drying at 50 ° C.
When the composition of the particles by fluorescent X-rays was measured, it was found that the particles contained about 1 mol% of molybdenum.
(比較例1)
実施例2で作製した二酸化バナジウム粒子について、「(被覆層の形成)」を行わずにそのまま使用した。
(Comparative Example 1)
The vanadium dioxide particles produced in Example 2 were used as they were without performing “(formation of coating layer)”.
(比較例2)
実施例2で得られた二酸化バナジウム粒子を用い、下記の方法でTiO被覆層を形成させた。
(Comparative Example 2)
Using the vanadium dioxide particles obtained in Example 2, a TiO 2 coating layer was formed by the following method.
(被覆層の形成)
実施例2で得られた二酸化バナジウム粒子1.0gを分散した無水エタノール100mlに、チタンイソプロポキシド(関東化学)3.0gを溶解した。次に、2.5gの水(アンモニア水でpHを9.0まで調整)を含有したエタノール溶液50mlを0.5ml/分の速度で上記分散液に滴下した。滴下終了後、更に1時間を撹拌し反応させた。その後、濾過し、洗浄乾燥工程を経て、TiO被覆二酸化バナジウム粒子を得た。
(Formation of coating layer)
In 100 ml of absolute ethanol in which 1.0 g of vanadium dioxide particles obtained in Example 2 was dispersed, 3.0 g of titanium isopropoxide (Kanto Chemical) was dissolved. Next, 50 ml of an ethanol solution containing 2.5 g of water (pH adjusted to 9.0 with aqueous ammonia) was added dropwise to the dispersion at a rate of 0.5 ml / min. After completion of the dropwise addition, the mixture was further reacted for 1 hour with stirring. Thereafter, filtration, through a washing and drying step, to obtain a TiO 2 coated vanadium dioxide particles.
(比較例3)
実施例2で得られた二酸化バナジウム粒子を用い、下記の方法で被覆層を形成した以外は実施例1と同様にしてカーボン被覆二酸化バナジウム粒子を作製した。
(Comparative Example 3)
Carbon-coated vanadium dioxide particles were produced in the same manner as in Example 1 except that the vanadium dioxide particles obtained in Example 2 were used and a coating layer was formed by the following method.
(被覆層の形成)
1.5gのグルコースを溶解した70mlの水に、実施例2で得られた二酸化バナジウム粒子0.5gを添加し、撹拌によって粒子を分散させた。
その後、分散液をフッ化樹脂内筒付のステンレス耐圧容器に移し、180℃で8時間熱処理した。
反応後、室温まで冷却し、遠心分離、洗浄工程を経て、カーボン被覆二酸化バナジウム粒子を得た。
(Formation of coating layer)
0.5 g of vanadium dioxide particles obtained in Example 2 was added to 70 ml of water in which 1.5 g of glucose was dissolved, and the particles were dispersed by stirring.
Thereafter, the dispersion was transferred to a stainless steel pressure vessel with a fluororesin inner cylinder and heat treated at 180 ° C. for 8 hours.
After the reaction, the mixture was cooled to room temperature and subjected to centrifugal separation and washing steps to obtain carbon-coated vanadium dioxide particles.
(比較例4)
被覆処理した後に、熱処理条件を135℃で4時間にした以外は、実施例2と同様にしてカーボン被覆二酸化バナジウム粒子を作製した。
(Comparative Example 4)
Carbon-coated vanadium dioxide particles were produced in the same manner as in Example 2 except that the heat treatment was performed at 135 ° C. for 4 hours after the coating treatment.
(評価方法)
(1)被覆層膜厚測定(平均膜厚及びCV値)
被覆層の平均膜厚及びCV値を、透過顕微鏡(FE-TEM)を用いて評価した。
具体的には、FE-TEMにより任意の20個の粒子について被覆層の断面写真を撮影した後、得られた断面写真から、各粒子の異なる10箇所の膜厚をランダムに測定し、平均膜厚、標準偏差を算出した。得られた数値から膜厚の変動係数を算出した。
なお、表面被覆したカーボンと中のバナジウムとは原子量の差が大きいため、TEM像のコントラストの差から被覆層(カーボン層)の膜厚を見積もることができる。
(Evaluation methods)
(1) Measurement of coating layer thickness (average film thickness and CV value)
The average film thickness and CV value of the coating layer were evaluated using a transmission microscope (FE-TEM).
Specifically, after taking a cross-sectional photograph of the coating layer for any 20 particles by FE-TEM, the film thickness at 10 different locations of each particle was randomly measured from the obtained cross-sectional photograph, and the average film Thickness and standard deviation were calculated. The coefficient of variation in film thickness was calculated from the obtained numerical values.
In addition, since the difference in atomic weight between the surface-coated carbon and the vanadium therein is large, the thickness of the coating layer (carbon layer) can be estimated from the difference in the contrast of the TEM image.
(2)平均粒子径
実施例と比較例で得られた粒子のFE-SEM像を画像解析ソフト(WINROOF、三谷商事社製)を用いて解析することにより、平均粒子径を測定した。
また、800℃で2時間焼成した後の平均粒子径も測定した。
なお、実施例3で得られた二酸化バナジウム粒子について、焼成前(図2)と焼成後(図3)の粒子の電子顕微鏡写真を撮影した。これらを比較したところ、焼成前後で二酸化バナジウム粒子のサイズには変化が殆ど見られなかった。
一方で、被覆層を形成しない場合(比較例1)では、焼成後に粒子が粗大化している(図4)ことから、被覆層を形成することで、高温での粒子間の焼結防止効果を示すことが分かった。
(2) Average particle size The average particle size was measured by analyzing the FE-SEM images of the particles obtained in Examples and Comparative Examples using image analysis software (WINROOF, manufactured by Mitani Corporation).
Moreover, the average particle diameter after baking at 800 degreeC for 2 hours was also measured.
In addition, about the vanadium dioxide particle obtained in Example 3, the electron micrograph of the particle | grains before baking (FIG. 2) and after baking (FIG. 3) was image | photographed. When these were compared, there was almost no change in the size of the vanadium dioxide particles before and after firing.
On the other hand, when the coating layer is not formed (Comparative Example 1), since the particles are coarsened after firing (FIG. 4), by forming the coating layer, the effect of preventing sintering between particles at a high temperature is obtained. I found out that
(3)TOF-SIMS測定
得られた粒子の被覆層について、TOF-SIMS 5型装置(ION-TOF社製)を用いて、飛行時間型二次イオン質量分析法(Time-of-Flight Secondary Ion Mass Spectrometry,TOF-SIMS)によるベンゼン環に由来する質量スペクトル(77.12付近)、及び、ナフタレン環に由来する質量スペクトル(127.27付近)の確認を行った。なお、TOF-SIMS測定は、下記のような条件で行った。また、空気中や保管ケースに由来するコンタミをできるだけ避けるために、サンプル作製後に、シリコンウェハー保管用クリーンケースにて保管した。
一次イオン:209Bi+1
イオン電圧:25kV
イオン電流:1pA
質量範囲:1~300mass
分析エリア:500×500μm
チャージ防止:電子照射中和
ランダムラスタスキャン
(3) TOF-SIMS measurement The coating layer of the obtained particles was subjected to time-of-flight secondary ion mass spectrometry (Time-of-Flight Secondary Ion) using a TOF-SIMS type 5 apparatus (manufactured by ION-TOF). The mass spectrum derived from the benzene ring (near 77.12) and the mass spectrum derived from the naphthalene ring (near 127.27) were confirmed by Mass Spectrometry, TOF-SIMS). The TOF-SIMS measurement was performed under the following conditions. Further, in order to avoid contamination derived from the air or a storage case as much as possible, the sample was stored in a clean case for storing silicon wafers.
Primary ion: 209Bi + 1
Ion voltage: 25 kV
Ion current: 1 pA
Mass range: 1 to 300 mass
Analysis area: 500 × 500μm
Charge prevention: electron irradiation neutralization random raster scan
(4)X線回折
X線回折装置(SmartLab Multipurpose、リガク社製)を用い、以下の測定条件で測定した。X線波長:CuKα1.54A、測定範囲:2θ=10~70°、スキャン速度:4°/min、ステップ:0.02°
得られた回折データについて、2θ=26.4°の位置にピークが検出されるか否かを確認した。
また、得られる回折データから半価幅を算出し、Scherrerの式をあてはめることで結晶子サイズを求めた。具体的には、2θ=27.86°の時の半価幅から算出した平均結晶子径を採用した。また、800℃で2時間焼成した後の平均結晶子径も測定した。
なお、一連の解析は、解析ソフト(PDXL2)を用いて行った。
(4) X-ray diffraction Using an X-ray diffractometer (SmartLab Multipurpose, manufactured by Rigaku Corporation), measurement was performed under the following measurement conditions. X-ray wavelength: CuKα1.54A, measurement range: 2θ = 10 to 70 °, scan speed: 4 ° / min, step: 0.02 °
For the obtained diffraction data, it was confirmed whether or not a peak was detected at a position of 2θ = 26.4 °.
In addition, the half width was calculated from the obtained diffraction data, and the crystallite size was determined by applying the Scherrer equation. Specifically, the average crystallite diameter calculated from the half width at the time of 2θ = 27.86 ° was adopted. Moreover, the average crystallite diameter after baking at 800 degreeC for 2 hours was also measured.
A series of analyzes was performed using analysis software (PDXL2).
(5)相転移エネルギー(サーモクロミック性)
得られた粒子の相転移時の吸熱量ΔH(mJ/mg)を、示差走査熱量計DSC(エスアイアイ・ナノテクノロジー社製「DSC6220」)を用い0℃~100℃までの温度範囲、昇温速度5℃/min、窒素雰囲気下にて測定した。
(5) Phase transition energy (thermochromic)
The endothermic amount ΔH (mJ / mg) at the phase transition of the obtained particles was measured using a differential scanning calorimeter DSC (“DSC 6220” manufactured by SII NanoTechnology Co., Ltd.) in a temperature range from 0 ° C. to 100 ° C. The measurement was performed under a nitrogen atmosphere at a rate of 5 ° C./min.
(6)耐酸化性
実施例及び比較例で得られた二酸化バナジウム粒子を空気雰囲気において、300℃で2時間熱処理し、熱処理後の粒子の相転移エネルギーの保持率(%)で評価した。
(6) Oxidation resistance The vanadium dioxide particles obtained in Examples and Comparative Examples were heat-treated in an air atmosphere at 300 ° C. for 2 hours, and evaluated by the retention rate (%) of the phase transition energy of the heat-treated particles.
(7)耐久性
二酸化バナジウム粒子の耐久性は、その粒子を含有した合せガラス中間膜の促進耐候性試験より評価した。実施例及び比較例で得られた二酸化バナジウム粒子と、ブチラール樹脂と、可塑剤(トリエチレングリコールジ2-エチルヘキサノエート)とを含有した樹脂組成物をホットプレスによりフィルムを形成し、更に、そのフィルムを二枚のガラス板の間に真空ラミネーターにより挟むことにより、合せガラス中間膜を作製した。なお、フィルム中のブチラール樹脂と可塑剤の重量比は3:1であり、フィルム中の二酸化バナジウム粒子の濃度は0.05%であった。上記合わせガラス中間膜をウェザーメーター(スーパーキセノンSX-75、スガ試験機社製)を用いて、下記条件にて促進耐候性試験を行った。放射強度:180W/m(300~400nm)、温度(BPT):63℃、散水:18分/120分の条件で500時間テストした。耐久性はテスト後の中間膜のサーモクロミック性の保持率で評価した。
(7) Durability The durability of the vanadium dioxide particles was evaluated by an accelerated weather resistance test of a laminated glass interlayer film containing the particles. A resin composition containing vanadium dioxide particles obtained in Examples and Comparative Examples, a butyral resin, and a plasticizer (triethylene glycol di-2-ethylhexanoate) was formed into a film by hot pressing, The film was sandwiched between two glass plates with a vacuum laminator to produce a laminated glass interlayer. The weight ratio of butyral resin and plasticizer in the film was 3: 1, and the concentration of vanadium dioxide particles in the film was 0.05%. The laminated glass interlayer film was subjected to an accelerated weather resistance test under the following conditions using a weather meter (Super Xenon SX-75, manufactured by Suga Test Instruments Co., Ltd.). The test was performed for 500 hours under the conditions of radiation intensity: 180 W / m 2 (300 to 400 nm), temperature (BPT): 63 ° C., watering: 18 minutes / 120 minutes. Durability was evaluated by the thermochromic retention rate of the interlayer film after the test.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
本発明によれば、高温焼成時の粒子間の焼結を抑制することができ、結晶性及び耐酸化性が高く、長時間保管又は使用しても優れたサーモクロミック性を維持することが可能なカーボン被覆二酸化バナジウム粒子を提供することができる。
なお、本発明で得られたカーボン被覆二酸化バナジウム粒子は、樹脂組成物、塗布膜、フィルム、合わせガラス用中間膜、合わせガラス、貼り付け用フィルム等に使用することができる。
According to the present invention, sintering between particles during high-temperature firing can be suppressed, crystallinity and oxidation resistance are high, and excellent thermochromic properties can be maintained even when stored or used for a long time. Carbon coated vanadium dioxide particles can be provided.
The carbon-coated vanadium dioxide particles obtained in the present invention can be used for a resin composition, a coating film, a film, an interlayer film for laminated glass, a laminated glass, a pasting film, and the like.

Claims (11)

  1. 二酸化バナジウム粒子の表面に、アモルファスカーボンからなる被覆層を有するカーボン被覆二酸化バナジウム粒子であり、
    前記アモルファスカーボンは、オキサジン樹脂が含有するカーボンに由来するものであり、
    ラマンスペクトルで測定した場合のGバンドとDバンドのピーク強度比が1.5以上、
    前記被覆層の平均膜厚が50nm以下、かつ、
    前記被覆層の膜厚の変動係数(CV値)が7%以下である
    ことを特徴とするカーボン被覆二酸化バナジウム粒子。
    Carbon-coated vanadium dioxide particles having a coating layer made of amorphous carbon on the surface of vanadium dioxide particles,
    The amorphous carbon is derived from carbon contained in the oxazine resin,
    The peak intensity ratio of G band and D band when measured by Raman spectrum is 1.5 or more,
    The coating layer has an average film thickness of 50 nm or less, and
    Carbon-coated vanadium dioxide particles, wherein the coating layer has a coefficient of variation (CV value) of 7% or less.
  2. 飛行時間型二次イオン質量分析法(TOF-SIMS)によって被覆層を測定した場合、ベンゼン環に由来する質量スペクトル、及び、ナフタレン環に由来する質量スペクトルのうち少なくとも1つが検出されることを特徴とする請求項1記載のカーボン被覆二酸化バナジウム粒子。 When the coating layer is measured by time-of-flight secondary ion mass spectrometry (TOF-SIMS), at least one of a mass spectrum derived from a benzene ring and a mass spectrum derived from a naphthalene ring is detected. The carbon-coated vanadium dioxide particles according to claim 1.
  3. X線回折法によって被覆層を測定した場合、2θが26.4°の位置にピークが検出されないことを特徴とする請求項1記載のカーボン被覆二酸化バナジウム粒子。 The carbon-coated vanadium dioxide particles according to claim 1, wherein when the coating layer is measured by an X-ray diffraction method, no peak is detected at a position where 2θ is 26.4 °.
  4. オキサジン樹脂は、ナフトオキサジン樹脂であることを特徴とする請求項1、2又は3記載のカーボン被覆二酸化バナジウム粒子。 The carbon-coated vanadium dioxide particles according to claim 1, wherein the oxazine resin is a naphthoxazine resin.
  5. 二酸化バナジウム粒子は、下記一般式(1)に示す構造を有することを特徴とする請求項1、2、3又は4記載のカーボン被覆二酸化バナジウム粒子。
    1-x2   (1)
    式(1)中、Mはタングステン、モリブデン、タンタル、ニオブ、クロム、鉄、ガリウム、アルミニウム、フッ素及びリンから選択される少なくとも1種の元素である。また、xは0~0.05の数値を表す。
    The carbon-coated vanadium dioxide particles according to claim 1, 2, 3, or 4, wherein the vanadium dioxide particles have a structure represented by the following general formula (1).
    V 1-x M x O 2 (1)
    In formula (1), M is at least one element selected from tungsten, molybdenum, tantalum, niobium, chromium, iron, gallium, aluminum, fluorine, and phosphorus. X represents a numerical value of 0 to 0.05.
  6. 請求項1、2、3、4又は5記載のカーボン被覆二酸化バナジウム粒子と、熱硬化性樹脂とを含有することを特徴とする樹脂組成物。 A resin composition comprising the carbon-coated vanadium dioxide particles according to claim 1, 2, 3, 4 or 5, and a thermosetting resin.
  7. 請求項6記載の樹脂組成物を用いて得られることを特徴とする塗布膜。 A coating film obtained by using the resin composition according to claim 6.
  8. 請求項1、2、3、4又は5記載のカーボン被覆二酸化バナジウム粒子と、熱可塑性樹脂とを含有することを特徴とするフィルム。 A film comprising the carbon-coated vanadium dioxide particles according to claim 1, 2, 3, 4 or 5, and a thermoplastic resin.
  9. 請求項8記載のフィルムを用いて得られることを特徴とする合わせガラス用中間膜。 An interlayer film for laminated glass obtained by using the film according to claim 8.
  10. 請求項9記載の合わせガラス用中間膜が、2枚の透明板の間に挟まれていることを特徴とする合わせガラス。 A laminated glass, wherein the interlayer film for laminated glass according to claim 9 is sandwiched between two transparent plates.
  11. 請求項8記載のフィルムを用いることを特徴とする貼り付け用フィルム。 A film for pasting, wherein the film according to claim 8 is used.
PCT/JP2015/076722 2014-09-22 2015-09-18 Carbon-coated vanadium dioxide particles WO2016047606A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015553973A JP5926868B1 (en) 2014-09-22 2015-09-18 Carbon coated vanadium dioxide particles
CN201580035664.4A CN106660822B (en) 2014-09-22 2015-09-18 Carbon is coated vanadium dioxide particle
EP15843182.5A EP3199494B1 (en) 2014-09-22 2015-09-18 Carbon-coated vanadium dioxide particles
US15/465,766 US10647912B2 (en) 2014-09-22 2017-03-22 Carbon-coated vanadium dioxide particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014192913 2014-09-22
JP2014-192913 2014-09-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/465,766 Continuation US10647912B2 (en) 2014-09-22 2017-03-22 Carbon-coated vanadium dioxide particles

Publications (1)

Publication Number Publication Date
WO2016047606A1 true WO2016047606A1 (en) 2016-03-31

Family

ID=55581133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076722 WO2016047606A1 (en) 2014-09-22 2015-09-18 Carbon-coated vanadium dioxide particles

Country Status (5)

Country Link
US (1) US10647912B2 (en)
EP (1) EP3199494B1 (en)
JP (1) JP5926868B1 (en)
CN (1) CN106660822B (en)
WO (1) WO2016047606A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063454A (en) * 2013-08-30 2015-04-09 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass
WO2017142087A1 (en) * 2016-02-18 2017-08-24 積水化学工業株式会社 Black particles and process for producing black particles
WO2017212778A1 (en) * 2016-06-07 2017-12-14 コニカミノルタ株式会社 Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor
WO2020171168A1 (en) * 2019-02-20 2020-08-27 積水化学工業株式会社 Resin composition, cured product, black matrix, color filter, liquid crystal display device, organic electroluminescent display device, and method for producing resin composition
JP2020186307A (en) * 2019-05-14 2020-11-19 積水化学工業株式会社 Carbon-coated particles and black pigment
EP3618151A4 (en) * 2017-04-28 2021-01-06 Sekisui Chemical Co., Ltd. Negative electrode active material for lithium ion battery
WO2022045343A1 (en) * 2020-08-31 2022-03-03 積水化学工業株式会社 Near-infrared ray reflective black particle and near-infrared ray reflective laminate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052406A1 (en) 2014-09-29 2016-04-07 積水化学工業株式会社 Carbon coated heat conducting material
CN108565421A (en) * 2018-04-11 2018-09-21 昆明理工大学 A kind of preparation method of carbon-coated vanadium phosphate cathode material
CN109721102A (en) * 2019-03-20 2019-05-07 东北石油大学 A kind of preparation method of chromium tungsten codope hypovanadic oxide powder
CN111215105B (en) * 2020-01-07 2022-12-02 复旦大学 Molybdenum carbide catalyst for hydrogen production by water electrolysis and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216855A (en) * 2004-01-26 2005-08-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary cell and its manufacturing method as well as lithium secondary cell including above
JP2010528967A (en) * 2007-06-06 2010-08-26 コミサリア、ア、レネルジ、アトミク、エ、オ、エネルジ、アルテルナティブ Process for producing carbon-coated nanoparticles of transition metal oxides
JP2013075806A (en) * 2011-09-30 2013-04-25 Sekisui Chem Co Ltd Method for producing vanadium dioxide particle having surface protection layer
JP2013184091A (en) * 2012-03-06 2013-09-19 Kuraray Co Ltd Vo2 dispersion resin layer, method of manufacturing the same, laminate, and composition containing vo2

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162532A (en) * 1998-07-31 2000-12-19 International Business Machines Corporation Magnetic storage medium formed of nanoparticles
US8871335B2 (en) * 2005-08-31 2014-10-28 Kuraray America Inc. Solar control laminate
WO2010055570A1 (en) * 2008-11-13 2010-05-20 住友金属鉱山株式会社 Infrared blocking particle, method for producing the same, infrared blocking particle dispersion using the same, and infrared blocking base
US8765302B2 (en) * 2011-06-17 2014-07-01 Nanotek Instruments, Inc. Graphene-enabled vanadium oxide cathode and lithium cells containing same
CN103773317A (en) * 2012-10-24 2014-05-07 深圳市润麒麟科技发展有限公司 Multi-layer carbon nanotube composite phase-change energy-storage material and preparation method thereof
US9170465B2 (en) * 2012-11-26 2015-10-27 Guardian Industries Corp. Thermochromic window and method of manufacturing the same
CN103554997B (en) * 2013-10-16 2015-02-11 中国科学院上海硅酸盐研究所 Carbon-coated vanadium dioxide nanoparticles and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216855A (en) * 2004-01-26 2005-08-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary cell and its manufacturing method as well as lithium secondary cell including above
JP2010528967A (en) * 2007-06-06 2010-08-26 コミサリア、ア、レネルジ、アトミク、エ、オ、エネルジ、アルテルナティブ Process for producing carbon-coated nanoparticles of transition metal oxides
JP2013075806A (en) * 2011-09-30 2013-04-25 Sekisui Chem Co Ltd Method for producing vanadium dioxide particle having surface protection layer
JP2013184091A (en) * 2012-03-06 2013-09-19 Kuraray Co Ltd Vo2 dispersion resin layer, method of manufacturing the same, laminate, and composition containing vo2

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3199494A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063454A (en) * 2013-08-30 2015-04-09 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass
WO2017142087A1 (en) * 2016-02-18 2017-08-24 積水化学工業株式会社 Black particles and process for producing black particles
JPWO2017142087A1 (en) * 2016-02-18 2018-12-13 積水化学工業株式会社 Black particle and method for producing black particle
WO2017212778A1 (en) * 2016-06-07 2017-12-14 コニカミノルタ株式会社 Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor
EP3618151A4 (en) * 2017-04-28 2021-01-06 Sekisui Chemical Co., Ltd. Negative electrode active material for lithium ion battery
US11404686B2 (en) 2017-04-28 2022-08-02 Sekisui Chemical Co., Ltd. Negative electrode active material for lithium ion battery
WO2020171168A1 (en) * 2019-02-20 2020-08-27 積水化学工業株式会社 Resin composition, cured product, black matrix, color filter, liquid crystal display device, organic electroluminescent display device, and method for producing resin composition
JP2020186307A (en) * 2019-05-14 2020-11-19 積水化学工業株式会社 Carbon-coated particles and black pigment
JP7289477B2 (en) 2019-05-14 2023-06-12 積水化学工業株式会社 Carbon-coated particles and black pigment
WO2022045343A1 (en) * 2020-08-31 2022-03-03 積水化学工業株式会社 Near-infrared ray reflective black particle and near-infrared ray reflective laminate

Also Published As

Publication number Publication date
EP3199494A1 (en) 2017-08-02
EP3199494B1 (en) 2019-03-13
EP3199494A4 (en) 2018-05-09
CN106660822B (en) 2019-05-03
JPWO2016047606A1 (en) 2017-04-27
US10647912B2 (en) 2020-05-12
CN106660822A (en) 2017-05-10
JP5926868B1 (en) 2016-05-25
US20170190964A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
JP5926868B1 (en) Carbon coated vanadium dioxide particles
TWI547433B (en) Inorganic particles scattering films having high light extraction performance
JP5598857B2 (en) Fine particles, process for producing the same, and paints, films and inks containing such fine particles
TWI640479B (en) Mathod for manufacturing composite-tungsten-oxide nanoparticles
US8828488B2 (en) Methods for producing a thin film consisting of nanosheet monolayer film(s) by spin coat methods, and hyperhydrophilized materials, substrates for an oxide thin film and dielectric materials obtained therefrom
WO2017142087A1 (en) Black particles and process for producing black particles
JP2011178825A (en) Single crystal fine particle, method for producing the same, and application thereof
Prasad et al. Zirconia nanoparticles embedded spinel selective absorber coating for high performance in open atmospheric condition
KR20170066282A (en) Carbon coated heat conducting material
KR20170057224A (en) Lithium ion battery positive electrode active material
Ma et al. Cu1. 5Mn1. 5O4-based ceramic spectrally selective coatings for efficient solar absorber applications
KR101387138B1 (en) Process for preparing composite of tungsten doped vanadium dioxide deposited on hollow silica
KR20180070015A (en) Manufacturing method of vanadium dioxide powder having thermochromic properties and optical properties and manufacturing method of vanadium dioxide thin film using the vanadium dioxide powder
KR101311030B1 (en) Hybrid ink for CZTS film
KR20160133046A (en) Method for manufacturing doped thermochromic nano particle and method for manufacturing thermochromic film
Chibane et al. Development of Molybdenum trioxide (MoO3) by spin coating method for photovoltaic application
Jiménez-García et al. Characterization of nanostructures of ZnO and ZnMnO films deposited by successive ionic layer adsorption and reaction method
KR102142947B1 (en) METHOD FOR FABRICATING NiO NANO PARTICLES AND NiO NANO PARTICLES FABRICATED BY THE SAME
Safa et al. Influence of Cr dopant on the microstructure and optical properties of ZnO nanorods
WO2015010575A1 (en) Infrared-absorbing material and preparation method thereof, and thermal insulation structure comprising same
JP7289477B2 (en) Carbon-coated particles and black pigment
Ahzan et al. Synthesis and Characterization of ZnO Thin Layers Using Sol-Gel Spin Coating Method
JP5885507B2 (en) Indium tin oxide powder and method for producing the same
KR102658084B1 (en) Black particles and process for producing black particles
Kong et al. Influence of annealing temperature on the structural and optical properties of highly-oriented Al and Er co-doped ZnO films

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015553973

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843182

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015843182

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015843182

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE