WO2016047548A1 - Liquid-repellent resin sheet, molded article, and method for manufacturing liquid-repellent resin sheet - Google Patents

Liquid-repellent resin sheet, molded article, and method for manufacturing liquid-repellent resin sheet Download PDF

Info

Publication number
WO2016047548A1
WO2016047548A1 PCT/JP2015/076466 JP2015076466W WO2016047548A1 WO 2016047548 A1 WO2016047548 A1 WO 2016047548A1 JP 2015076466 W JP2015076466 W JP 2015076466W WO 2016047548 A1 WO2016047548 A1 WO 2016047548A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
convex shape
liquid
resin sheet
Prior art date
Application number
PCT/JP2015/076466
Other languages
French (fr)
Japanese (ja)
Inventor
純平 藤原
知弘 大澤
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to JP2016550150A priority Critical patent/JP6641284B2/en
Priority to CN201580051844.1A priority patent/CN107073910B/en
Publication of WO2016047548A1 publication Critical patent/WO2016047548A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention relates to a resin sheet having liquid repellency and a molded product obtained by heating and stretching the resin sheet.
  • Patent Document 1 proposes a sheet in which a nonwoven fabric is coated with a fluorine-based copolymer.
  • Patent Documents 2 and 3 also propose liquid repellents for paper and cloth.
  • Patent Document 4 a film obtained by coating an PET resin with an oil repellent has been proposed. Furthermore, a film in which a water-repellent agent is coated on an uneven surface has been proposed for automotive parts (Patent Document 5).
  • the present invention has been made in view of the above circumstances, and in the main aspect of the present invention, when used as a food container or a household product container, an oil-based or surfactant-based liquid adheres.
  • An object is to provide a reduced liquid-repellent resin sheet. It is another object of the present invention to provide a molded product having excellent liquid repellency and oxygen barrier properties obtained by heating and stretching the liquid repellent resin sheet.
  • the present inventor considered that it is sufficient to impart liquid repellency to prevent the adhesion of oil-based liquids and surfactant-based liquids, and as a result of examining various means for expressing liquid repellency,
  • One surface of the concavo-convex layer containing a cross-linked product of a polymer resin has at least one type of convex shape, and the surface having the convex shape contains hydrophobic oxide fine particles and a fluorine-based copolymer resin. It has been found that a liquid-repellent resin sheet provided with a liquid layer can maintain a high liquid repellency while maintaining a fine uneven shape even after the sheet is heated and stretched, and the present invention has been completed.
  • the present invention for solving the above-described problems is constituted as follows.
  • One surface has a concavo-convex shape layer having at least one or more convex shapes, the concavo-convex shape layer contains a polyolefin-based resin crosslinked body, and a hydrophobic oxide is formed on the convex shape surface.
  • a liquid repellent resin sheet provided with a liquid repellent layer containing fine particles and a fluorinated copolymer resin.
  • the liquid repellent resin sheet according to (2) wherein the resin composition containing the polyolefin resin contains 35 to 100% by mass of the polyolefin resin.
  • it can also be configured as follows.
  • the convex shape includes a first convex shape and a second convex shape, and the height of the first convex shape and the height of the second convex shape are 20 ⁇ m to 150 ⁇ m, respectively, and are adjacent to each other.
  • the first convex shape and the second convex shape are staggered, and the ratio of the height of the second convex shape to the first convex shape is 0.4 or more and 0.8 or less (6)
  • the repellent material according to any one of (1) to (7), wherein the cross-linked polyolefin resin is a cross-linked polyolefin resin having a melt mass flow rate at 230 ° C. of 5 g / 10 min or more. Liquid resin sheet.
  • the content of the hydrophobic oxide fine particles in the liquid repellent layer is 20 to 70% by mass, and the content of the fluorocopolymer resin is 70 to 30% by mass.
  • a method for producing a liquid repellent resin sheet is a method for producing a liquid repellent resin sheet.
  • a concavo-convex shape layer having at least one or more convex shapes is formed on one surface of the liquid repellent resin sheet, the concavo-convex shape layer contains a polyolefin-based resin cross-linked body, and the convex shape surface is hydrophobic.
  • the liquid-repellent resin sheet provided with a liquid-repellent layer containing fine oxide particles and a fluorine-based copolymer resin significantly improves the anti-adhesion property to oil-based liquids and surfactant-based liquids on the sheet surface. I found out. Furthermore, it has also been found that the liquid repellency is exhibited even after heat-stretching by including a crosslinked body in the resin forming the uneven shape layer.
  • At least one layer made of a resin selected from a styrene resin, an olefin resin, a polyester resin, a nylon resin, an ethylene-vinyl alcohol copolymer resin, and an acrylic resin is formed on the other surface of the uneven layer.
  • a resin selected from a styrene resin, an olefin resin, a polyester resin, a nylon resin, an ethylene-vinyl alcohol copolymer resin, and an acrylic resin is formed on the other surface of the uneven layer.
  • the liquid-repellent resin sheet according to the present invention (hereinafter abbreviated as “resin sheet”) has a concavo-convex shape layer having at least one convex shape formed on one surface of the resin sheet.
  • a liquid repellent resin sheet comprising a cross-linked polyolefin resin and having a liquid repellent layer containing hydrophobic oxide fine particles and a fluorocopolymer resin on a convex surface.
  • “Polyolefin-based resin cross-linked body” means that the polyolefin-based resin contained in the concavo-convex shape layer at least partially forms a three-dimensional cross-linked structure.
  • the cross-linked body is not limited to the uneven layer
  • the base material layer laminated on the other surface of the uneven layer may form a cross-linked body as long as the effects of the present invention are not impaired.
  • various embodiments of the resin sheet will be described, and then a method for manufacturing the resin sheet will be described. However, when the specific description described for one embodiment also applies to other embodiments, in other embodiments The explanation is omitted.
  • the resin sheet according to the present invention includes not only a non-stretched sheet but also a sheet stretched by heating.
  • “liquid repellency” of a resin sheet having liquid repellency means that the liquid repellency is sufficient to prevent adhesion of oil-based liquid and surfactant-based liquid to the resin sheet. Means sex. Specifically, the contact angle of the liquid with respect to the resin sheet is 130 ° or more and the falling angle is 40 ° or less. Further, in a molded product obtained by heating and stretching a resin sheet, the contact angle between the surface of the uneven layer on which the liquid repellent layer is formed and the oil-based liquid or surfactant-based liquid is 120 ° or more and falls. It shall mean that an angle is 70 degrees or less.
  • the thickness of this resin sheet is preferably 150 ⁇ m to 1200 ⁇ m, more preferably 300 ⁇ m to 1000 ⁇ m. If the thickness is less than 150 ⁇ m, the thickness distribution of the molded product obtained by thermoforming may be poor, and if it exceeds 1200 ⁇ m, the production cost of the container may increase.
  • the resin sheet according to the first embodiment of the present invention has a concavo-convex shape layer (1a) having at least one type of convex shape on one surface, and has a concavo-convex shape.
  • the layer (1a) contains a crosslinked polyolefin resin.
  • a liquid repellent layer (2) is provided on one surface of the convex shape, and the liquid repellent layer is made of a fluorine-based copolymer resin containing hydrophobic oxide fine particles.
  • the convex shape may be one type of convex shape as shown in FIG. 1, but preferably has a first convex shape and a second convex shape having different shapes as shown in FIG. Moreover, you may provide 3 or more types of convex shapes from which a shape differs.
  • the height of the first convex shape is higher than the height of the second convex shape.
  • the arrangement form of the convex shape is not particularly limited, and there are a grid arrangement and a zigzag arrangement arranged vertically and horizontally. A staggered arrangement is preferred if more liquid repellency is desired.
  • the convex shape preferably has a height (h) of 20 ⁇ m to 150 ⁇ m. If the height of the convex shape is less than 20 ⁇ m, the liquid repellency may not be sufficiently secured. If the height of the convex shape exceeds 150 ⁇ m, the size of the concave / convex shape in the mold for imparting the concave / convex shape becomes unstable. There is a case.
  • the height of the convex shape is obtained by adding the thickness (100 nm to 4000 nm) of the liquid repellent layer described later.
  • the apex interval (t) between adjacent convex shapes is preferably 20 ⁇ m to 100 ⁇ m.
  • the vertex interval is the interval between adjacent convex vertices and means the interval between the convex shapes if they are adjacent to each other even if their convex shapes are different.
  • the vertex interval is less than 20 ⁇ m, the uneven shape dimension in the mold for providing the uneven shape may become unstable. Moreover, when it exceeds 100 micrometers, liquid repellency may fall.
  • the ratio of the height of the second convex shape to the first convex shape is preferably 0.4 or more and 0.8 or less. By making the height ratio 0.4 or more and 0.8 or less, liquid repellency can be obtained more effectively.
  • the bottom surface of the convex shape may be a pyramid shape such as a triangular pyramid, a quadrangular pyramid, a hexagonal pyramid, an octagonal pyramid, a cone, a truncated pyramid shape, or a truncated cone shape, but the present inventor has various configurations in the resin sheet according to the present embodiment. As a result of examination, it has been found that a hexagonal pyramid convex shape is particularly preferable.
  • the concavo-convex shape layer contains a crosslinked polyolefin resin.
  • the cross-linked polyolefin resin is preferably a cross-linked resin composition containing 35 to 100% by mass of a polyolefin resin. By setting the content to 35% by mass or more, it is possible to improve the transferability and crosslinkability of the uneven shape.
  • the crosslinked polyolefin resin is preferably a crosslinked polyolefin resin having a melt mass flow rate at 230 ° C. of 5 g / 10 min or more. By setting it to 5 g / 10 minutes, the transferability of the concavo-convex shape can be improved.
  • the polyolefin resin means a resin composed of a polymer containing an ⁇ -olefin as a monomer, and particularly preferably includes a polyethylene resin and a polypropylene resin.
  • the polyethylene resin include high-density polyethylene, low-density polyethylene, linear low-density polyethylene, linear medium-density polyethylene, and the like, as well as copolymers, grafts, and blends having their structure. Things are also included.
  • Examples of the latter resin include ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid ester copolymer, ethylene-vinyl acetate-vinyl chloride copolymer
  • Examples thereof include those obtained by copolymerizing and blending a resin having a polar group in a polyethylene chain, such as a blend, or a terpolymer of such a copolymer and an acid anhydride.
  • a resin having a polar group in a polyethylene chain such as a blend
  • a terpolymer of such a copolymer and an acid anhydride Considering the crosslinkability by electron beam irradiation, it is desirable to use linear low density polyethylene and linear medium density polyethylene.
  • examples of the polypropylene resin include homopolypropylene, random polypropylene, and block polypropylene.
  • the structure of the homopolypropylene may be any of isotactic, atactic, and syndiotactic.
  • the ⁇ -olefin copolymerized with propylene preferably includes those having 2 to 20 carbon atoms, more preferably 4 to 12 carbon atoms, such as ethylene, 1-butene, 1-pentene, 1 Examples include -hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like.
  • block polypropylene When block polypropylene is used, a block copolymer (block polypropylene), a block copolymer containing a rubber component, a graft copolymer, or the like can be given. In addition to using these olefin resins alone, other olefin resins can also be used in combination. Considering the crosslinkability by electron beam irradiation, it is desirable to use random polypropylene or block polypropylene.
  • a method of forming a crosslinked polyolefin-based resin As a method of forming a crosslinked polyolefin-based resin, as described later, after molding a resin sheet, a method of irradiating an electron beam onto a surface having a convex shape, or a polyolefin-based resin composition in which an organic peroxide is added in advance
  • molding is mentioned. In these, it is preferable to form a crosslinked body by irradiation of an electron beam.
  • the adjustment of the degree of formation of the crosslinked body can be arbitrarily adjusted according to the shape of the molded product.
  • About evaluation of the formation degree of a crosslinked body it can evaluate from the tensile strength change rate before and behind electron beam irradiation of the shape
  • the liquid repellent layer includes hydrophobic oxide fine particles and a fluorinated copolymer resin.
  • the thickness of the liquid repellent layer is preferably 100 nm to 4000 nm, but is not limited to this numerical range as long as the effects of the present invention can be obtained.
  • the hydrophobic oxide fine particles may be any particles having a hydrophobic group, and may be those hydrophobized by surface treatment.
  • fine particle silica in which hydrophilic oxide fine particle silica is subjected to a surface treatment with a silane coupling agent or the like to make the surface state hydrophobic.
  • the type of oxide is not limited as long as it has hydrophobicity.
  • silica silicon dioxide
  • alumina alumina
  • titania titania
  • silica silica
  • silica product names “AEROSIL R972”, “AEROSIL R972V”, “AEROSIL R972CF”, “AEROSIL R974”, “AEROSIL RX200”, “AEROSIL RY200” (above, made by Nippon Aerosil Co., Ltd.), “AEROSIL R202” “, AEROSIL R805", “AEROSIL R812”, “AEROSIL R812S” (above, manufactured by Evonik Degussa).
  • titania include the product name “AEROXIDE TiO2 T805” (Evonik Degussa).
  • the alumina include fine particles in which the product name “AEROXIDE Alu C” (manufactured by Evonik Degussa) or the like is treated with a silane coupling agent to make the particle surface hydrophobic.
  • hydrophobic silica fine particles can be suitably used.
  • hydrophobic silica fine particles having a trimethylsilyl group or a dimethylsiloxane group on the surface are preferable in that superior liquid repellency can be obtained.
  • commercially available products corresponding to this include “AEROSIL R812”, “AEROSIL R812S”, “AEROSIL RY300” (both manufactured by Evonik Degussa).
  • the hydrophobic oxide fine particles preferably have an average primary particle diameter of 5 nm to 1000 nm, more preferably 7 nm to 200 nm.
  • the average particle diameter of the primary particles means a numerical value obtained by measuring an arbitrary 3000 to 5000 particles of hydrophobic oxide fine particles from an electron micrograph and arithmetically averaging the particle diameter.
  • the fluorine-based copolymer preferably contains a copolymer (1) and a copolymer (2).
  • the copolymer (1) and the copolymer (2) can contain the structural units (a) to (d).
  • the copolymer (1) contains the structural unit (a) and the structural unit (b)
  • the copolymer (2) contains the structural unit (a) and the structural unit (c).
  • the copolymer (1) mainly contributes to the expression of the liquid repellency of the resin sheet
  • the copolymer (2) mainly contributes to the durability of the resin sheet.
  • the structural unit (a) is a group in which some or all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms, and has 1 to 6 carbon atoms.
  • (A) may be a chain polyfluorohydrocarbon group having one or more unsaturated groups such as a carbon-carbon unsaturated double bond.
  • unsaturated group (meth) acrylate is preferable.
  • the structural unit (b) is preferably a monomer having a saturated hydrocarbon group having 16 to 40 carbon atoms, and is preferably a (meth) acrylate containing an alkyl group having 16 to 40 carbon atoms. More preferred are stearyl (meth) acrylate and behenyl (meth) acrylate.
  • the structural unit (c) is a monomer derived from a monomer that does not contain a fluorine atom and has a functional group capable of crosslinking.
  • Crosslinkable functional groups include isocyanate groups, blocked isocyanate groups, alkoxysilyl groups, amino groups, alkoxymethylamide groups, silanol groups, ammonium groups, amide groups, epoxy groups, hydroxyl groups, oxazoline groups, carboxyl groups, alkenyl groups. A sulfonic acid group and the like are preferable.
  • an epoxy group, a hydroxyl group, a blocked isocyanate group, an alkoxysilyl group, an amino group, and a carboxyl group are more preferable.
  • Preferred examples of the monomer that forms the structural unit (c) include (meth) acrylates, compounds having two or more copolymerizable groups, vinyl ethers, and vinyl esters.
  • the structural unit (c) may be derived from a mixture of two or more.
  • the structural unit (c) mainly affects the film-forming property of the liquid-repellent film and the adhesiveness and adhesion of the liquid-repellent composition to the base material, and contributes to enhancing the durability.
  • the structural unit (d) is a structural unit derived from a monomer having a polymerizable group other than the structural units (a), (b), and (c). Moreover, it is preferable that it is derived from the monomer which has favorable film forming property and can obtain a uniform copolymer solution or dispersion.
  • the structural unit (d) is particularly preferably derived from vinyl chloride, vinylidene chloride, cyclohexyl methacrylate, polyoxyethylene di (meth) acrylate, alkyl ether of polyoxyethylene di (meth) acrylate, or dioctyl maleate. .
  • the structural unit (d) can contribute to improving the adhesion of the composition to the substrate and improving the dispersibility.
  • AG-E070 As commercial products corresponding to this, “AG-E070”, “AG-E550D” (manufactured by Asahi Glass Co., Ltd.) and the like can be mentioned.
  • the liquid repellent layer preferably has a content of hydrophobic oxide fine particles of 20% by mass to 70% by mass and a content of fluorine-based copolymer resin of 70% by mass to 30% by mass.
  • a composition in this range the falling property of the liquid can be obtained.
  • the content of the hydrophobic oxide fine particles is less than 20% by mass, satisfactory liquid repellency and liquid falling property may not be obtained, and the content of the hydrophobic oxide fine particles is 70% by mass. Exceeding may cause the hydrophobic oxide fine particles to peel off.
  • a dispersion in which hydrophobic oxide fine particles are added to isopropyl alcohol (IPA) in advance is prepared, and then an aqueous dispersion of a fluororesin copolymer is used.
  • IPA isopropyl alcohol
  • a method of applying a dispersion liquid adjusted at an arbitrary ratio onto the uneven surface with a coater or the like is employed.
  • the layer structure of the resin sheet according to the second embodiment includes a liquid repellent layer (2), an uneven shape layer (1), a sealant resin layer (3), and a base material layer (4) from top to bottom. is there.
  • the liquid repellent layer and the concavo-convex shape layer are the same as those described in the first embodiment, and thus description thereof is omitted.
  • the thickness of the concavo-convex shape layer is preferably 50 ⁇ m to 200 ⁇ m. If it is less than 50 ⁇ m, the uneven transfer may be poor. Moreover, when it exceeds 200 micrometers, production cost may become high.
  • Base material layer is made of styrene resin (impact polystyrene, polybutadiene-polystyrene-polyacrylonitrile graft polymer, etc.), olefin resin (polyethylene, polypropylene, etc.), polycarbonate, polyester resin (polyethylene terephthalate, polybutylene terephthalate, etc.)
  • Thermoplastic resins such as nylon resins (nylon 6, nylon-66, etc.), ethylene-vinyl alcohol copolymers, and acrylic resins are preferred.
  • lamination there are lamination by co-extrusion molding, extrusion lamination molding using an unstretched film, biaxially stretched film, and lamination by dry lamination molding.
  • the styrenic resin is preferably 60% by mass to 15% by mass, more preferably 55% by mass to 15% by mass polystyrene resin, and 40% by mass to 85% by mass, more preferably 45% by mass to 85% by mass.
  • a styrene-based substrate layer comprising a high-impact polystyrene resin is preferred.
  • polyester resins examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polymethylene terephthalate, and copolymer components such as diol components such as diethylene glycol, neopentyl glycol, polyalkylene glycol, and adipic acid.
  • Polyester resins obtained by copolymerizing dicarboxylic acid components such as sebacic acid, phthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid can be used.
  • nylon resins include lactam polymers such as caprolactam and laurolactam; polymers of aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid; hexamethylenediamine, decamethylenediamine, and dodeca Aliphatic diamines such as methylenediamine, 2,2,4- or 2,4,4-trimethylhexamethylenediamine, 1,3- or 1,4-bis (aminomethyl) cyclohexane, bis (p-aminocyclohexylmethane) Diamine units such as alicyclic diamines such as m- or p-xylylenediamine, aliphatic dicarboxylic acids such as adipic acid, suberic acid and sebacic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid Aromatic dicarboxylic acids such as acid,
  • nylon 6 nylon 9, nylon 11, nylon 12, nylon 66, nylon 610, nylon 611, nylon 612, nylon 6T, nylon 6I, nylon MXD6, nylon 6/66, nylon 6/610, nylon 6 / 6T, nylon 6I / 6T, etc.
  • nylon 6 and nylon MXD6 are preferable.
  • the acrylic resin is not particularly limited as long as it is a vinyl polymer based on a methacrylic acid ester monomer.
  • the methacrylic acid ester monomer include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, pentyl methacrylate and hexyl methacrylate. Of these, methyl methacrylate is particularly preferred.
  • alkyl groups such as propyl group, butyl group, pentyl group and hexyl group in the methacrylic acid ester monomer may be linear or branched.
  • the methacrylic ester resin blended in the resin composition of the present embodiment may be a homopolymer of a methacrylic ester monomer or a copolymer of a plurality of methacrylic ester monomers. Alternatively, it may have a monomer unit derived from ethylene, propylene, butadiene, styrene, ⁇ -methylstyrene, acrylonitrile, acrylic acid and the like, which are known vinyl compounds other than methacrylic acid esters.
  • the base material layer may have a colorant such as pigment or dye, a release agent such as silicone oil, a fibrous reinforcing agent such as glass fiber, talc, clay, etc.
  • a colorant such as pigment or dye
  • a release agent such as silicone oil
  • a fibrous reinforcing agent such as glass fiber, talc, clay, etc.
  • Additives such as colorants such as silica, salt compounds of sulfonic acid and alkali metal, antistatic agents such as polyalkylene glycol, ultraviolet absorbers and antibacterial agents can be added.
  • the scrap resin generated in the production process of the multilayer resin sheet of the present invention can be mixed and used.
  • a sealant resin layer expresses the adhesiveness of an uneven
  • the resin component include 100% by mass of a modified olefin resin or 100% by mass of a hydrogenated styrene thermoplastic elastomer.
  • modified olefin resins include olefins having about 2 to 8 carbon atoms such as ethylene, propylene, and butene-1; these olefins, ethylene, propylene, butene-1, 3-methylbutene-1, pentene-1, 4- Copolymers with other olefins having about 2 to 20 carbon atoms such as methylpentene-1, hexene-1, octene-1, decene-1, etc., vinyl acetate, vinyl chloride, acrylic acid, methacrylic acid, acrylic ester Olefin resins such as copolymers with vinyl compounds such as methacrylic acid esters and styrene; ethylene-propylene copolymers, ethylene-propylene-diene copolymers, ethylene-butene-1 copolymers, propylene-butene- 1 Copolymer or other olefinic rubber is mixed with acrylic acid, methacrylic acid, crotonic
  • ethylene-propylene-diene copolymer or “ethylene-propylene or butene-1 copolymer rubber” modified with unsaturated dicarboxylic acid or its anhydride, particularly maleic acid or its anhydride, is preferable. .
  • Hydrogenated styrene thermoplastic elastomers include hydrogenated products of copolymers of styrene monomers and butadiene and isoprene, and hydrogenated products of styrene-butadiene-styrene block copolymers (styrene-ethylene / butylene-styrene block copolymer). Polymer), hydrogenated product of styrene-isoprene-styrene block copolymer (styrene-ethylene / propylene-styrene block copolymer), and the like. Of these, styrene-ethylene / butylene-styrene block copolymers are particularly preferred.
  • the thickness of the sealant resin layer is preferably 20 ⁇ m to 90 ⁇ m, more preferably 40 ⁇ m to 80 ⁇ m. When the thickness is less than 20 ⁇ m, delamination may occur between the concavo-convex shape layer and the base material layer, and when it exceeds 90 ⁇ m, the production cost may increase.
  • the resin sheet according to the third embodiment of the present invention does not use the sealant resin layer (3) shown in the second embodiment, and the uneven layer (1) and the base material layer (4 ) Directly laminated. That is, the layer structure of the resin sheet according to the third embodiment is the liquid repellent layer (2), the concavo-convex shape layer (1), and the base material layer (4) from top to bottom.
  • the thermoplastic resin sheet has a layer configuration in which the sealant resin layer is removed.
  • the liquid repellent layer and the concavo-convex shape layer are the same as the layers in the first embodiment and the second embodiment, and thus description thereof is omitted.
  • the base material layer (4) in this embodiment has sufficient adhesiveness with the concavo-convex shape layer.
  • a styrene resin that is excellent in adhesiveness to the uneven shape layer.
  • a styrene resin composition to which a hydrogenated styrene thermoplastic elastomer is added can also be used.
  • the impact-resistant polystyrene resin and hydrogenated styrene thermoplastic elastomer are used in combination, 5 to 10 parts by mass of hydrogenated styrene-based heat with respect to 90 to 95 parts by mass of the impact-resistant polystyrene resin. It is preferable to add a plastic elastomer.
  • the addition amount of the hydrogenated styrene-based thermoplastic elastomer is less than 5 parts by mass, the adhesiveness with the concavo-convex layer becomes insufficient, and delamination may occur. May be higher.
  • the resin sheet according to the fourth embodiment of the present invention includes a liquid repellent layer (2), a concavo-convex shape layer (1), a first sealant resin layer (3a), an oxygen barrier base material layer ( 5) A resin sheet in which a second sealant resin layer (3b) and a base material layer (4) are laminated in this order.
  • the first sealant resin layer and the second sealant resin layer may have the same composition or different compositions.
  • the thickness of the uneven layer is preferably 50 ⁇ m to 250 ⁇ m. If it is less than 50 ⁇ m, the uneven transfer may be poor. Moreover, when it exceeds 200 micrometers, production cost may become high.
  • oxygen barrier substrate layer examples include ethylene-vinyl alcohol copolymer resin and nylon resin. Among these, ethylene-vinyl alcohol copolymer resin is preferable in terms of processability and moldability.
  • the ethylene-vinyl alcohol copolymer resin is usually obtained by saponifying an ethylene-vinyl acetate copolymer, and has an ethylene content of 10 mol in order to have oxygen barrier properties, processability, and moldability. % To 65 mol%, preferably 20 mol% to 50 mol%, and a saponification degree of 90% or more, preferably 95% or more.
  • nylon resins include lactam polymers such as caprolactam and laurolactam; polymers of aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid; hexamethylenediamine, decamethylenediamine , Dodecamethylenediamine, aliphatic diamine such as 2,2,4- or 2,4,4-trimethylhexamethylenediamine, 1,3- or 1,4-bis (aminomethyl) cyclohexane, bis (p-aminocyclohexyl) Methane) and other alicyclic diamines, m- or p-xylylenediamine and other aromatic diamines and other diamine units, adipic acid, suberic acid, sebacic acid and other aliphatic dicarboxylic acids, cyclohexanedicarboxylic acid and other alicyclic rings Aromatic dicarbohydrates such as dicar
  • nylon resins include nylon 6, nylon 9, nylon 11, nylon 12, nylon 66, nylon 610, nylon 611, nylon 612, nylon 6T, nylon 6I, nylon MXD6, nylon 6/66, nylon 6 / 610, nylon 6 / 6T, nylon 6I / 6T, etc., among which nylon 6 and nylon MXD6 are preferred.
  • modified olefin resin As the sealant resin layer, a modified olefin resin is preferable.
  • modified olefin resins include homopolymers of olefins having about 2 to 8 carbon atoms such as ethylene, propylene, and butene-1; homopolymers of these olefins and ethylene, propylene, butene-1, 3-methylbutene- Copolymers with other olefins having about 2 to 20 carbon atoms such as 1, pentene-1, 4-methylpentene-1, hexene-1, octene-1, decene-1, etc., vinyl acetate, vinyl chloride, acrylic Olefin resins such as acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, copolymers with vinyl compounds such as styrene; ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-butene-1 Olefin
  • an ethylene-based resin, a propylene-based resin, or an ethylene-propylene or butene-1 copolymer rubber modified with an unsaturated dicarboxylic acid or an anhydride thereof, particularly maleic acid or an anhydride thereof is preferable.
  • the thickness of the sealant resin layer is preferably 10 ⁇ m to 50 ⁇ m, more preferably 20 ⁇ m to 40 ⁇ m on either side. If the thickness is less than 10 ⁇ m, sufficient interlayer adhesion strength may not be obtained, and if it exceeds 50 ⁇ m, the production cost may increase.
  • the method for producing the resin sheet according to the present invention is not limited and may be any method, but typically includes a single-layer sheet having at least one or more types of convex shapes on one surface or the concavo-convex shaped layer.
  • the method includes the steps of preparing a laminated resin sheet, then crosslinking the concavo-convex shape layer, and forming a liquid repellent layer on the surface.
  • any resin sheet molding method can be used.
  • a single-screw extruder is used, and in the case of a multi-layer, each raw material resin is melt-extruded using a single-screw extruder, and a resin sheet is obtained by a T-die. It is done.
  • a multi-manifold die may be used.
  • the layer structure of each embodiment of the resin sheet of the present invention is basically the same as described above.
  • scrap raw materials generated in the manufacturing process of the resin sheet of the present invention and the molded container are used as physical properties. As long as deterioration such as the above is not observed, it may be added to the base material layer or may be laminated as a further layer.
  • the concavo-convex shape is formed on the single-layer or multilayer resin sheet, but this method is also not particularly limited, and any method known to those skilled in the art can be used.
  • a manufacturing method using an extrusion molding method a manufacturing method using a photolithography method, a manufacturing method using a hot press method, a manufacturing method using a pattern roll and a UV curable resin, and the like.
  • a crosslinked body is formed on the uneven layer.
  • this crosslinking treatment it is preferable to irradiate the surface of the sheet on which the uneven shape layer of the resin sheet exists with an electron beam. That is, as described above, the concavo-convex layer is formed using a composition containing a polyolefin resin.
  • the polyolefin polyethylene and polypropylene are preferable.
  • Polyolefin is a cross-linked polymer in which molecular chain cross-linking proceeds preferentially by electron beam irradiation, like polyvinylidene fluoride, polymethyl acrylate, polyvinyl chloride, polybutadiene, vinyl alcohol, polyamide and the like.
  • linear low density polyethylene, linear medium density polyethylene, random polypropylene, and block polypropylene are easily crosslinked, and linear low density polyethylene is most easily crosslinked. Therefore, when an electron beam is irradiated to the sheet surface on which the uneven shape layer exists, the uneven shape layer can be made into a crosslinked body.
  • the electron beam irradiation conditions for the polyolefin resin composition are preferably an acceleration voltage of 110 kV to 210 kV and a dose of 120 kGy to 350 kGy.
  • the degree of cross-linking of the concavo-convex shape layer is not particularly limited, but the height of the convex shape is sufficiently maintained after molding of the resin sheet, preferably the reduction rate of the height is 30% or less, more preferably Is crosslinked to an extent of 25% or less, more preferably 20% or less.
  • desired liquid repellency can be obtained in combination with the liquid repellent layer described above.
  • a liquid repellent layer is formed on the surface of the uneven layer.
  • the method for forming the liquid repellent layer is not particularly limited, and for example, a known coating method such as roll coating, gravure coating, bar coating, doctor blade coating, brush coating, or electrostatic powder method can be employed.
  • the solvent for preparing the coating liquid is not particularly limited. In addition to water, for example, alcohol (ethanol), cyclohexane, toluene, acetone IPA, propylene glycol, hexylene glycol, butyl diglycol, pentamethylene glycol, normal An organic solvent such as pentane, normal hexane, and hexyl alcohol can be appropriately selected. At this time, a very small amount of a dispersant, a colorant, an anti-settling agent, a viscosity modifier and the like can be used in combination.
  • the molded product of the present invention is formed by molding the resin sheet of the present invention.
  • Forming methods include general vacuum forming, pressure forming, and as an application thereof, a plug assist method in which a plug is brought into contact with one side of a sheet, and a pair of male and female dies are brought into contact with both sides of the sheet.
  • a method called so-called “match mold molding” is performed, but the method is not limited thereto.
  • a known sheet heating method such as radiation heating with an infrared heater or the like which is non-contact heating can be applied.
  • the reduction rate of the convex shape height with respect to the convex shape height of the resin sheet is preferably 30% or less, more preferably 25% or less, and still more preferably 20% or less. By setting the reduction rate to 30% or less, desired liquid repellency can be obtained in the container.
  • the rate of decrease in the convex shape height can be calculated by the following formula by measuring the convex height of the resin sheet used for molding and the bottom portion of the molded tray container using a laser microscope or the like.
  • Decrease rate of convex shape height [(the height of the convex portion of the resin sheet) ⁇ (the height of the convex portion of the bottom portion of the tray container)] / the height of the convex portion of the resin sheet ⁇ 100 (%)
  • the electron beam irradiation conditions acceleration voltage, dose
  • the ratio of the thickness of the bottom surface portion to the thickness of the flange portion is preferably 0.40 to 0.95. By adjusting the thickness ratio within this range, desired liquid repellency can be obtained in the container.
  • H Hydrogenated styrene-based thermoplastic elastomer “Tuftec M1943” (manufactured by Asahi Kasei Corporation)
  • K HIPS resin “Toyostyrene H850N” (manufactured by Toyo Styrene Co., Ltd., butadiene content: 9.0% by mass)
  • L GPPS resin “HRM23” (manufactured by Toyo Styrene Co., Ltd.)
  • M PET resin “TRN-8550FF” (manufactured by Teijin Limited)
  • N Nylon 6 resin “1022B” (manufactured by Ube Industries)
  • O Ethylene-vinyl alcohol copolymer “EVAL J-171B” (manufactured by Kuraray Co., Ltd.)
  • P Acrylic resin “HBS000” (Mitsubishi Chemical Corporation)
  • Q Polycarbonate resin “L-1225L” (manufactured
  • molded using the resin sheet is as follows.
  • Convex shape height, convex shape vertex interval The convex shape of the sheet and the convex shape height and convex shape vertex interval of the bottom part of the formed tray container (see FIG. 8) are measured with a laser microscope VK-X100 (manufactured by Keyence Corporation). ). In addition, the measured sample used what cut
  • the heights of the first convex shape and the second convex shape were determined in the same manner for each.
  • the apex interval the apex intervals of 10 convex shapes adjacent to each other were measured from arbitrary three locations of the sheet and the molded product, and the arithmetic average value of the 30 measured values was used.
  • the vertex interval between the first convex shape and the second convex shape was measured, and the arithmetic average value of the 30 measured values was used.
  • the liquid repellency when the falling angle is 40 ° or less, the liquid repellency is high, and it can be determined that the adhesion of the liquid can be prevented. In the case of a tray container, it can be determined that if the contact angle is 120 ° or more, the liquid repellency is high and liquid adhesion can be prevented. Further, when the falling angle is 70 ° or less, the liquid repellency is high, and it can be determined that the adhesion of the liquid can be prevented.
  • molded tray container was cut out, and it heat-sealed using the heat seal tester (made by Sagawa Seisakusho).
  • the seal iron width of the heat seal tester is 1.0 mm
  • the seal material is a lid material used for milk portion containers (based on a laminate of PET resin and aluminum foil, with an acrylic resin or sealant agent)
  • the sealing temperature is 210 ° C. and the sealing pressure is 0.36 MPa.
  • the peel strength was measured using a strograph VE1D (manufactured by Toyo Seiki Co., Ltd.) with a lid member sandwiched between one chuck part of the strograph and a sheet sample sandwiched between the other chuck part.
  • the peeling speed is 200 mm / min. It can be determined that the sealing property is good when the peel strength is 2.8 N or more.
  • Thickness ratio Bottom thickness / Flange thickness
  • Oxygen transmission rate The oxygen transmission rate of the sheet was measured using an OX-TRAN oxygen transmission measuring device (manufactured by Mocon) in accordance with JIS K7126-B method at a temperature of 25 ° C. and a relative humidity of 65%. Measured below. It can be determined that the oxygen barrier property is good when the oxygen permeability is less than 3.0 ml / m 2 ⁇ day ⁇ atm.
  • Example 1 (layer structure of FIG. 1)> A single 65 mm single screw extruder was used to extrude the resin sheet by the T-die method. This extruded sheet was cast with a transfer roll having a concavo-convex shape on the surface by a laser engraving method and a touch roll to obtain a resin sheet comprising a concavo-convex shape layer having a concavo-convex shape on the surface.
  • the resin sheet provided with the uneven shape obtained above is irradiated with an electron beam under irradiation conditions of acceleration voltage: 200 kV, dose: 250 kGy, and crosslinking treatment of the uneven shape layer Carried out.
  • hydrophobic silica and a fluorinated copolymer resin are used, the hydrophobic silica in the liquid repellent layer is 66 mass%, and the fluorinated copolymer resin is 34%.
  • a dispersion (mixed solution of purified water / isopropyl alcohol) was prepared by mixing so as to be mass%. The mixed dispersion was coated on the corona-treated concavo-convex layer surface using a bar coater, and dried at 90 ° C. to 150 ° C. to form a liquid repellent layer.
  • Table 1 shows the composition of a resin sheet in which a liquid repellent layer is formed on the surface of the uneven layer.
  • Comparative Example 1 a liquid repellent layer is not formed, and in Comparative Example 2, an uneven shape is not provided.
  • Comparative Example 3 does not contain hydrophobic silica, and Comparative Example 4 has a composition in which no fluorinated copolymer resin is used in the liquid repellent layer.
  • the liquid repellent layer is a composition using silica that has not been subjected to a hydrophobic surface treatment.
  • the concave-convex shape is a bell-shaped resin sheet using only a HIPS resin. 7 does not carry out electron beam irradiation.
  • Example 13 (layer structure of FIG. 5)> A multilayer resin having a thickness of 500 ⁇ m using three 40 mm single-screw extruders and having a layer configuration of an uneven shape layer of 80 ⁇ m, a sealant resin layer of 40 ⁇ m, and a base material layer (nylon-based resin) of 380 ⁇ m in this order by a feed block method. The sheet was extruded by the T-die method.
  • the extruded sheet obtained above was cast with a transfer roll and a touch roll having a concavo-convex shape on the surface by a laser engraving method to obtain a multilayer resin sheet having a concavo-convex shape on the sheet surface.
  • the resin sheet provided with the uneven shape obtained above is irradiated with an electron beam under irradiation conditions of acceleration voltage: 200 kV, dose: 250 kGy, and crosslinking treatment of the uneven shape layer Carried out.
  • hydrophobic silica and fluorine-based copolymer resin are used so that the hydrophobic silica is 66% by mass and the fluorine-based copolymer resin is 34% by mass.
  • the solvent is a mixture of purified water and isopropyl alcohol.
  • the mixed dispersion was coated on the corona-treated concavo-convex layer surface using a bar coater, and dried at 90 ° C. to 150 ° C. to form a liquid repellent layer.
  • Table 4 shows the composition and layer structure of each layer of the resin sheet in which the liquid repellent layer is formed on the surface of the uneven layer.
  • Example 14 to 24 Comparative Examples 8, 10 to 14>
  • Examples 14 to 24 and Comparative Example 8 were the same as Example 13 except that the composition, thickness, and MFR of the uneven layer, liquid repellent layer, and other multilayer resin sheets were set as shown in Table 4. Resin sheets according to 10 to 14 were produced. An evaluation test similar to that in Example 13 was performed using a tray container formed with the resin sheet, and the results are shown in Tables 5 and 6.
  • Comparative Example 9 the oil repellent layer was not formed.
  • Comparative Example 10 polyethylene having an MFR of 1.1 g / 10 min was used for the concavo-convex shape layer, so that the transferability was poor.
  • Comparative Example 11 the hydrophobic layer was not used in the liquid repellent layer.
  • Comparative Example 12 is a composition that does not use a fluorinated copolymer resin in the liquid repellent layer
  • Comparative Example 13 is a composition that uses silica that has not been subjected to hydrophobic surface treatment in the liquid repellent layer. 14 does not carry out electron beam irradiation.
  • Example 25 (layer structure of FIG. 6)> Using two 40 mm single-screw extruders, a 700 ⁇ m-thick resin sheet having a layer structure of an uneven shape layer of 90 ⁇ m and a base material layer of 610 ⁇ m was extruded from a T die by a feed block method.
  • a base material layer what mixed impact-resistant polystyrene resin and hydrogenated styrene thermoplastic elastomer by mass ratio 95/5 (HIPS / hydrogenated styrene type thermoplastic elastomer) was used.
  • the extruded sheet obtained above was subjected to the same evaluation test as in Example 13. The results are shown in Tables 5 and 6.
  • Example 26 Comparative Example 9>
  • the resin sheets according to Example 26 and Comparative Example 9 were the same as Example 25 except that the composition, thickness, and MFR of the concavo-convex shape layer, liquid repellent layer, and styrene resin layer were set as shown in Table 3.
  • Tables 5 and 6 show the results of evaluation and evaluation of the characteristics.
  • the comparative example 9 is a composition which has not provided uneven
  • Example 27 (layer structure of FIG. 7)> Using five 40 mm single-screw extruders, by a feed block method, an uneven shape layer 80 ⁇ m, a first sealant resin layer 10 ⁇ m, an oxygen barrier resin layer 15 ⁇ m, a second sealant resin layer 10 ⁇ m, and a base material layer 385 ⁇ m A multilayer resin sheet having a thickness of 500 ⁇ m in this order was extruded from a T die.
  • the extruded sheet obtained above was cast with a transfer roll and a touch roll having a concavo-convex shape on the surface by a laser engraving method to obtain a resin sheet having a concavo-convex shape on the sheet surface.
  • the resin sheet provided with the uneven shape obtained above is irradiated with an electron beam under irradiation conditions of acceleration voltage: 200 kV, dose: 250 kGy, and crosslinking treatment of the uneven shape layer Carried out.
  • hydrophobic silica and fluorine-based copolymer resin are used so that the hydrophobic silica is 66% by mass and the fluorine-based copolymer resin is 34% by mass.
  • the solvent is a mixture of purified water and isopropyl alcohol.
  • the mixed dispersion was coated on the corona-treated concavo-convex layer surface using a bar coater, and dried at 90 ° C. to 150 ° C. to form a liquid repellent layer.
  • Table 7 shows the configuration of each layer, and Tables 8 and 9 show the evaluation results.
  • Example 28 to 39 Comparative Examples 15 to 21> Examples 28 to 39 and Comparative Examples 15 to 39 were the same as Example 27 except that the composition, thickness, and MFR of each layer of the concavo-convex shape layer, liquid repellent layer, and other multilayer resin sheets were set as shown in Table 7. A resin sheet according to No. 21 was produced.
  • Comparative Example 15 a liquid repellent layer was not formed, and in Comparative Example 16, an uneven shape was not provided.
  • Comparative Example 17 polyethylene having an MFR of 1.1 g / 10 min was used for the concavo-convex shape layer, so the transferability was poor.
  • Comparative Example 18 the composition was such that hydrophobic silica was not used in the liquid repellent layer.
  • Comparative Example 19 has a composition that does not use a fluorinated copolymer
  • Comparative Example 20 has a composition that uses silica that has not been subjected to a hydrophobic surface treatment for the liquid repellent layer
  • Comparative Example 21 has an electron beam irradiation. Is not implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

 Provided is a liquid-repellent resin sheet having an excellent liquid repellency. Also provided is a molded article having excellent liquid repellency, oxygen barrier performance, and weather resistance in which the resin-repellent resin sheet is used. A liquid-repellent resin sheet in which a concavo-convex feature layer having at least one type of convex feature is formed on one surface, wherein the concavo-convex feature layer contains a crosslinked polyolefin resin and the surface having the convex feature is provided with a liquid-repellent layer containing hydrophobic oxide microparticles and a fluorine-based copolymer resin, whereby a liquid-repellent resin sheet having excellent liquid repellency is obtained.

Description

撥液性樹脂シート、成形品及び撥液性樹脂シートの製造方法Liquid repellent resin sheet, molded product, and method for producing liquid repellent resin sheet
 本発明は、撥液性を備えた樹脂シート、及びそれを加熱延伸してなる成形品に関する。 The present invention relates to a resin sheet having liquid repellency and a molded product obtained by heating and stretching the resin sheet.
 従来から、壁紙などの建材用シート、清涼飲料水や果汁飲料、嗜好飲食品等の食品や生活用品の包装材用シートとしては、紙材に、高分子素材をコートしたシートが用いられてきた。例えば、特許文献1には、不織布にフッ素系共重合体をコートしたシートが提案されている。また、特許文献2、3では、紙材用、布用の撥液剤も提案されている。 Conventionally, as a sheet for building materials such as wallpaper, soft drinks and fruit juices, foods such as taste foods and beverages, and sheets for packaging materials for daily life, sheets of paper coated with a polymer material have been used. . For example, Patent Document 1 proposes a sheet in which a nonwoven fabric is coated with a fluorine-based copolymer. Patent Documents 2 and 3 also propose liquid repellents for paper and cloth.
 一方、ディスプレイ部材などにおいては、PET樹脂に撥油剤をコートしたフィルムが提案されている(特許文献4)。さらに、自動車用部品においては、凹凸形状の表面に撥水剤をコートしたフィルムも提案されている(特許文献5)。 On the other hand, for display members and the like, a film obtained by coating an PET resin with an oil repellent has been proposed (Patent Document 4). Furthermore, a film in which a water-repellent agent is coated on an uneven surface has been proposed for automotive parts (Patent Document 5).
 上記紙材やPET樹脂などに撥油剤をコートしたシート及びフィルムを、食品や生活用包装材料として用いる場合、これらのシートを使用した容器などでは、食品(油系液体)、界面活性剤が付着する問題があった。しかしながら、特許文献1~4に記載された手段では、このような問題を十分には解消できなかった。また、特許文献5に記載された手段でも、油系の液体、界面活性剤系の液体などに対しては、このような問題を十分には解消できなかった。 When using the above-mentioned sheet or film coated with an oil repellent on paper or PET resin as food or packaging materials for daily use, food (oil-based liquid) and surfactant adhere to containers using these sheets. There was a problem to do. However, the means described in Patent Documents 1 to 4 cannot sufficiently solve such problems. Further, even the means described in Patent Document 5 cannot sufficiently solve such problems for oil-based liquids and surfactant-based liquids.
特開2010-196196号公報JP 2010-196196 A 特開2009-256506号公報JP 2009-256506 A 特開2007-291373号公報JP 2007-291373 A 特開2009-104054号公報JP 2009-104054 A 特開2008-122435号公報JP 2008-122435 A
 本発明は上記事情に鑑みてなされたもので、本発明の主たる態様では、食品用容器や生活品用容器として使用した場合に、油系又は界面活性剤系の液体が付着してしまうことを低減した撥液性樹脂シートを提供することを目的とする。並びに該撥液性樹脂シートを加熱延伸してなる撥液性および酸素バリア性に優れる成形品を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in the main aspect of the present invention, when used as a food container or a household product container, an oil-based or surfactant-based liquid adheres. An object is to provide a reduced liquid-repellent resin sheet. It is another object of the present invention to provide a molded product having excellent liquid repellency and oxygen barrier properties obtained by heating and stretching the liquid repellent resin sheet.
 すなわち、本発明者は、油系の液体、および界面活性剤系の液体の付着を防止するには撥液性を付与すればよいと考え、様々な撥液性発現手段を検討した結果、ポリオレフィン系樹脂の架橋体を含有する凹凸形状層の一方の面に、少なくとも1種類以上の凸形状を有し、凸形状を有する面に疎水性酸化物微粒子およびフッ素系共重合体樹脂を含有する撥液層を備えた撥液性樹脂シートにより、シートの加熱延伸後も微細な凹凸形状を保って高い撥液性を維持できることを見出し、本発明を完成するに至った。 That is, the present inventor considered that it is sufficient to impart liquid repellency to prevent the adhesion of oil-based liquids and surfactant-based liquids, and as a result of examining various means for expressing liquid repellency, One surface of the concavo-convex layer containing a cross-linked product of a polymer resin has at least one type of convex shape, and the surface having the convex shape contains hydrophobic oxide fine particles and a fluorine-based copolymer resin. It has been found that a liquid-repellent resin sheet provided with a liquid layer can maintain a high liquid repellency while maintaining a fine uneven shape even after the sheet is heated and stretched, and the present invention has been completed.
 上記課題を解決する本発明は、下記より構成される。
(1)一方の面に、少なくとも1種以上の凸形状を有する凹凸形状層を有し、前記凹凸形状層がポリオレフィン系樹脂架橋体を含有し、前記凸形状を有する面上に疎水性酸化物微粒子およびフッ素系共重合体樹脂を含有する撥液層を備えた撥液性樹脂シート。
(2)前記凹凸形状層が、ポリオレフィン系樹脂を含む樹脂組成物に電子線照射して架橋させてなる(1)に記載の撥液性樹脂シート。
(3)前記ポリオレフィン系樹脂を含有する樹脂組成物が、ポリオレフィン系樹脂を35~100質量%含む(2)に記載の撥液性樹脂シート。別の態様では、次のように構成することもできる。前記ポリオレフィン系樹脂架橋体を含有する凹凸形状層は、ポリオレフィン系樹脂35~100質量%からなる凹凸形状層を架橋させたものである(1)または(2)に記載の撥液性樹脂シート。
(4)前記凹凸形状層の他方の面に、スチレン系樹脂、オレフィン系樹脂、ポリエステル系樹脂、ナイロン系樹脂、エチレン-ビニルアルコール共重合体樹脂、及びアクリル系樹脂から選択される樹脂からなる層を少なくとも1層以上有する基材層を積層した(1)から(3)のいずれか一つに記載の撥液性樹脂シート。
(5)前記凹凸形状層と前記基材層との間に、変性オレフィン系樹脂および水添スチレン系熱可塑性エラストマーから選択される1種又は2種の樹脂を含有するシーラント樹脂層を有する、(1)から(4)の何れか一つに記載の撥液性樹脂シート。
(6)前記凸形状が、第1の凸形状と第2の凸形状とからなり、第1の凸形状の高さおよび第2の凸形状の高さがそれぞれ20μm~150μmであり、隣接する凸形状の頂点間隔が20μm~100μmである(1)から(5)の何れか一つに記載の撥液性樹脂シート。
(7)前記第1の凸形状と第2の凸形状が千鳥配置され、第1の凸形状に対する第2の凸形状の高さの比が0.4以上0.8以下である(6)に記載の撥液性樹脂シート。
(8)前記ポリオレフィン系樹脂架橋体が、230℃でのメルトマスフローレートが5g/10分以上であるポリオレフィン系樹脂の架橋体である(1)から(7)の何れか一つに記載の撥液性樹脂シート。
(9)前記疎水性酸化物微粒子が、その表面にトリメチルシリル基を有する疎水性シリカ微粒子である(1)から(8)の何れか一つに記載の撥液性樹脂シート。
(10)前記撥液層中の前記疎水性酸化物微粒子の含有量が、20~70質量%であり、前記フッ素系共重合体樹脂の含有量が70~30質量%である(1)から(9)の何れか一つに記載の撥液性樹脂シート。
(11)前記凹凸形状層の厚みが、50μm~200μmである(1)から(10)の何れか一つに記載の撥液性樹脂シート。
(12)前記凹凸形状層の表面の油系の液体または界面活性剤系の液体との接触角が、130°以上、かつ転落角が40°以下である(1)から(11)の何れか一つに記載の撥液性樹脂シート。
(13)(1)から(12)の何れか一つに記載の撥液性樹脂シートを加熱延伸してなる成形品。
(14)前記凹凸形状層の表面と油系の液体または界面活性剤系の液体との接触角が120°以上、かつ転落角が70°以下である(13)に記載の成形品。
(15)前記撥液性樹脂シートの凸形状高さに対する、凸形状高さの低下率が30%以下である、(13)または(14)に記載の成形品。
(16)フランジ部および底面部を有する成形品であって、フランジ部の厚みに対する底面部の厚みの比が0.40~0.95である、(13)から(15)の何れか一つに記載の成形品。
(17)生活品用容器である(13)から(16)の何れか一つに記載の成形品。
(18)食品用容器である(13)から(16)の何れか一つに記載の成形品。
(19)一方の面に、少なくとも1種以上の凸形状を有する凹凸形状層を形成する工程と、前記凹凸形状層がポリオレフィン系樹脂を含有する樹脂組成物からなり、前記凹凸形状層の表面に電子線を照射してポリオレフィン系樹脂を架橋する工程と、前記凹凸形状層の前記凸形状を有する面上に、疎水性酸化物微粒子およびフッ素系共重合体樹脂を含有する撥液層を形成する工程と、を有する撥液性樹脂シートの製造方法。
The present invention for solving the above-described problems is constituted as follows.
(1) One surface has a concavo-convex shape layer having at least one or more convex shapes, the concavo-convex shape layer contains a polyolefin-based resin crosslinked body, and a hydrophobic oxide is formed on the convex shape surface. A liquid repellent resin sheet provided with a liquid repellent layer containing fine particles and a fluorinated copolymer resin.
(2) The liquid-repellent resin sheet according to (1), wherein the concavo-convex layer is formed by crosslinking a resin composition containing a polyolefin resin by electron beam irradiation.
(3) The liquid repellent resin sheet according to (2), wherein the resin composition containing the polyolefin resin contains 35 to 100% by mass of the polyolefin resin. In another aspect, it can also be configured as follows. The liquid repellent resin sheet according to (1) or (2), wherein the uneven shape layer containing the crosslinked polyolefin resin is obtained by crosslinking an uneven shape layer comprising 35 to 100% by mass of a polyolefin resin.
(4) A layer made of a resin selected from a styrene resin, an olefin resin, a polyester resin, a nylon resin, an ethylene-vinyl alcohol copolymer resin, and an acrylic resin on the other surface of the uneven layer. The liquid repellent resin sheet according to any one of (1) to (3), wherein a base material layer having at least one layer is laminated.
(5) A sealant resin layer containing one or two kinds of resins selected from a modified olefin resin and a hydrogenated styrene thermoplastic elastomer is provided between the uneven shape layer and the base material layer. The liquid repellent resin sheet according to any one of 1) to (4).
(6) The convex shape includes a first convex shape and a second convex shape, and the height of the first convex shape and the height of the second convex shape are 20 μm to 150 μm, respectively, and are adjacent to each other. The liquid-repellent resin sheet according to any one of (1) to (5), wherein a convex vertex interval is 20 μm to 100 μm.
(7) The first convex shape and the second convex shape are staggered, and the ratio of the height of the second convex shape to the first convex shape is 0.4 or more and 0.8 or less (6) The liquid repellent resin sheet described in 1.
(8) The repellent material according to any one of (1) to (7), wherein the cross-linked polyolefin resin is a cross-linked polyolefin resin having a melt mass flow rate at 230 ° C. of 5 g / 10 min or more. Liquid resin sheet.
(9) The liquid repellent resin sheet according to any one of (1) to (8), wherein the hydrophobic oxide fine particles are hydrophobic silica fine particles having a trimethylsilyl group on the surface thereof.
(10) The content of the hydrophobic oxide fine particles in the liquid repellent layer is 20 to 70% by mass, and the content of the fluorocopolymer resin is 70 to 30% by mass. The liquid repellent resin sheet according to any one of (9).
(11) The liquid-repellent resin sheet according to any one of (1) to (10), wherein the uneven shape layer has a thickness of 50 μm to 200 μm.
(12) Any one of (1) to (11), wherein a contact angle between the surface of the concavo-convex shape layer and an oil-based liquid or a surfactant-based liquid is 130 ° or more and a falling angle is 40 ° or less. The liquid repellent resin sheet according to one.
(13) A molded product obtained by heating and stretching the liquid-repellent resin sheet according to any one of (1) to (12).
(14) The molded article according to (13), wherein a contact angle between the surface of the concavo-convex shape layer and an oil-based liquid or a surfactant-based liquid is 120 ° or more and a falling angle is 70 ° or less.
(15) The molded article according to (13) or (14), wherein a decrease rate of the convex shape height with respect to the convex shape height of the liquid-repellent resin sheet is 30% or less.
(16) The molded article having a flange portion and a bottom portion, wherein the ratio of the thickness of the bottom portion to the thickness of the flange portion is 0.40 to 0.95, any one of (13) to (15) Articles described in 1.
(17) The molded product according to any one of (13) to (16), which is a container for household goods.
(18) The molded article according to any one of (13) to (16), which is a food container.
(19) A step of forming a concavo-convex shape layer having at least one convex shape on one surface, and the concavo-convex shape layer comprises a resin composition containing a polyolefin resin, and the surface of the concavo-convex shape layer is formed. A step of crosslinking the polyolefin resin by irradiating with an electron beam, and forming a liquid repellent layer containing hydrophobic oxide fine particles and a fluorine-based copolymer resin on the surface of the uneven layer having the convex shape And a method for producing a liquid repellent resin sheet.
 撥液性樹脂シートの一方の面に、少なくとも1種以上の凸形状を有する凹凸形状層が形成され、前記凹凸形状層がポリオレフィン系樹脂架橋体を含有し、前記凸形状を有する面に疎水性酸化物微粒子およびフッ素系共重合体樹脂を含有する撥液層、を備えた撥液性樹脂シートにより、シート表面に油系の液体および界面活性剤系の液体に対する付着防止性が顕著に改善されることを見出した。さらに凹凸形状層を形成する樹脂に架橋体を含有することで加熱延伸後も撥液性を発現させることも見出した。また、前記凹凸形状層の他方の面にスチレン系樹脂、オレフィン系樹脂、ポリエステル系樹脂、ナイロン系樹脂、エチレン-ビニルアルコール共重合体樹脂、アクリル系樹脂から選択される樹脂からなる層を少なくとも1層以上有する基材層を積層することにより、酸素バリア性および耐候性が良好となる。このため、本発明の撥液性樹脂シート及び該樹脂シートを加熱延伸した成形品は、生活品用容器、食品用容器に好適に用いることができる。 A concavo-convex shape layer having at least one or more convex shapes is formed on one surface of the liquid repellent resin sheet, the concavo-convex shape layer contains a polyolefin-based resin cross-linked body, and the convex shape surface is hydrophobic. The liquid-repellent resin sheet provided with a liquid-repellent layer containing fine oxide particles and a fluorine-based copolymer resin significantly improves the anti-adhesion property to oil-based liquids and surfactant-based liquids on the sheet surface. I found out. Furthermore, it has also been found that the liquid repellency is exhibited even after heat-stretching by including a crosslinked body in the resin forming the uneven shape layer. Further, at least one layer made of a resin selected from a styrene resin, an olefin resin, a polyester resin, a nylon resin, an ethylene-vinyl alcohol copolymer resin, and an acrylic resin is formed on the other surface of the uneven layer. By laminating a base material layer having at least one layer, oxygen barrier properties and weather resistance are improved. For this reason, the liquid-repellent resin sheet of the present invention and a molded product obtained by heating and stretching the resin sheet can be suitably used for containers for household goods and food containers.
本発明の第一実施形態に係る撥液性樹脂シートを示す概略縦側断面図である。It is a schematic longitudinal cross-sectional view which shows the liquid repellent resin sheet which concerns on 1st embodiment of this invention. 図1の撥液性樹脂シートの概略平面図である。It is a schematic plan view of the liquid repellent resin sheet of FIG. 本発明の第一実施形態に係る撥液性樹脂シートの他の形態の概略縦側断面図である。It is a schematic longitudinal cross-sectional view of the other form of the liquid repellent resin sheet which concerns on 1st embodiment of this invention. 図3の撥液性樹脂シートの概略平面図である。It is a schematic plan view of the liquid repellent resin sheet of FIG. 本発明の第二実施形態に係る撥液性樹脂シートの積層構造を示す概略縦側断面図である。It is a schematic longitudinal cross-sectional view which shows the laminated structure of the liquid repellent resin sheet which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る撥液性樹脂シートの積層構造を示す概略縦側断面図である。It is a schematic longitudinal cross-sectional view which shows the laminated structure of the liquid repellent resin sheet which concerns on 3rd embodiment of this invention. 本発明の第四実施形態に係る撥液性樹脂シートの積層構造を示す概略縦側断面図である。It is a schematic longitudinal cross-sectional view which shows the laminated structure of the liquid repellent resin sheet which concerns on 4th embodiment of this invention. 撥液性樹脂シートを使用し、真空成形した容器である。This is a vacuum-formed container using a liquid repellent resin sheet.
<樹脂シート>
 本発明に係る撥液性樹脂シート(以下、「樹脂シート」と略す。)は、樹脂シートの一方の面に、少なくとも1種以上の凸形状を有する凹凸形状層が形成され、凹凸形状層がポリオレフィン系樹脂架橋体を含有し、凸形状を有する面に疎水性酸化物微粒子およびフッ素系共重合体樹脂を含有する撥液層を備えた撥液性樹脂シートである。「ポリオレフィン系樹脂架橋体」とは、凹凸形状層に含有されるポリオレフィン系樹脂が、少なくとも部分的に三次元的な架橋構造を形成することを意味する。架橋体は、凹凸形状層のみならず、本発明の効果を損なわない範囲であれば、凹凸形状層の他方の面に積層する基材層が架橋体を形成したものであってもかまわない。以下、樹脂シートの種々の実施形態を説明し、ついで樹脂シートの製造方法について説明するが、一実施形態について記載した特定の説明が他の実施形態についても当てはまる場合には、他の実施形態においてはその説明を省略している。
<Resin sheet>
The liquid-repellent resin sheet according to the present invention (hereinafter abbreviated as “resin sheet”) has a concavo-convex shape layer having at least one convex shape formed on one surface of the resin sheet. A liquid repellent resin sheet comprising a cross-linked polyolefin resin and having a liquid repellent layer containing hydrophobic oxide fine particles and a fluorocopolymer resin on a convex surface. “Polyolefin-based resin cross-linked body” means that the polyolefin-based resin contained in the concavo-convex shape layer at least partially forms a three-dimensional cross-linked structure. As long as the cross-linked body is not limited to the uneven layer, the base material layer laminated on the other surface of the uneven layer may form a cross-linked body as long as the effects of the present invention are not impaired. Hereinafter, various embodiments of the resin sheet will be described, and then a method for manufacturing the resin sheet will be described. However, when the specific description described for one embodiment also applies to other embodiments, in other embodiments The explanation is omitted.
 ここで、本発明に係る樹脂シートは、非延伸のシートのみならず、加熱により延伸したシートも包含するものである。さらに、本発明において、撥液性を有する樹脂シートの「撥液性」とは、樹脂シートへの油系の液体、界面活性剤系の液体の付着を防止するのに十分な程度の撥液性を意味する。具体的には、樹脂シートに対する液体の接触角が、130°以上、転落角が40°以下である。また、樹脂シートを加熱延伸した成形品においては、撥液層を形成した凹凸形状層の表面と、油系の液体、または界面活性剤系の液体との接触角が、120°以上、かつ転落角が70°以下であることを意味するものとする。 Here, the resin sheet according to the present invention includes not only a non-stretched sheet but also a sheet stretched by heating. Furthermore, in the present invention, “liquid repellency” of a resin sheet having liquid repellency means that the liquid repellency is sufficient to prevent adhesion of oil-based liquid and surfactant-based liquid to the resin sheet. Means sex. Specifically, the contact angle of the liquid with respect to the resin sheet is 130 ° or more and the falling angle is 40 ° or less. Further, in a molded product obtained by heating and stretching a resin sheet, the contact angle between the surface of the uneven layer on which the liquid repellent layer is formed and the oil-based liquid or surfactant-based liquid is 120 ° or more and falls. It shall mean that an angle is 70 degrees or less.
 この樹脂シートの厚みは、好ましくは150μm~1200μm、より好ましくは300μm~1000μmである。150μm未満では、熱成形して得られる成形品の厚み分布が不良となる可能性があり、1200μmを超えると、容器の製造コストが高くなる場合がある。 The thickness of this resin sheet is preferably 150 μm to 1200 μm, more preferably 300 μm to 1000 μm. If the thickness is less than 150 μm, the thickness distribution of the molded product obtained by thermoforming may be poor, and if it exceeds 1200 μm, the production cost of the container may increase.
[第一実施形態]
 本発明の第一実施形態に係る樹脂シートは、図1および図3に示すように、一方の面に少なくとも1種類以上の凸形状を備えた、凹凸形状層(1a)を有し、凹凸形状層(1a)はポリオレフィン系樹脂架橋体を含む。また、凸形状の一方の面には撥液層(2)を備え、撥液層は、疎水性酸化物微粒子を含むフッ素系共重合体樹脂からなる。
[First embodiment]
As shown in FIGS. 1 and 3, the resin sheet according to the first embodiment of the present invention has a concavo-convex shape layer (1a) having at least one type of convex shape on one surface, and has a concavo-convex shape. The layer (1a) contains a crosslinked polyolefin resin. Moreover, a liquid repellent layer (2) is provided on one surface of the convex shape, and the liquid repellent layer is made of a fluorine-based copolymer resin containing hydrophobic oxide fine particles.
(凹凸形状層)
 凸形状は、図1に示すように1種類の凸形状であってもかまわないが、図3に示すように、形状の異なる第1の凸形状と第2の凸形状を有することが好ましい。また、形状の異なる3種以上の凸形状を設けてもよい。ここで、第1の凸形状の高さは、第2の凸形状の高さより高いものとする。第1の凸形状と、第2の凸形状を用いる場合、その配置には制約がないが、第1の凸形状と第2の凸形状は交互に配置されていることが撥液性の面で好ましい。凸形状の配置形態は特に限定はされず、縦横に配置した碁盤目配置、千鳥配置がある。より撥液性を維持したければ、千鳥配置が好ましい。
(Uneven shape layer)
The convex shape may be one type of convex shape as shown in FIG. 1, but preferably has a first convex shape and a second convex shape having different shapes as shown in FIG. Moreover, you may provide 3 or more types of convex shapes from which a shape differs. Here, the height of the first convex shape is higher than the height of the second convex shape. When the first convex shape and the second convex shape are used, there is no restriction on the arrangement, but the first convex shape and the second convex shape are arranged alternately so that the surface is liquid repellent. Is preferable. The arrangement form of the convex shape is not particularly limited, and there are a grid arrangement and a zigzag arrangement arranged vertically and horizontally. A staggered arrangement is preferred if more liquid repellency is desired.
 凸形状は、高さ(h)が20μm~150μmであることが好ましい。凸形状高さが20μm未満では、撥液性を十分には確保できない場合があり、凸形状高さが150μmを超えると凹凸形状を付与するための金型での凹凸形状寸法が不安定になる場合がある。なお、凸形状高さは、後述する撥液層の厚み(100nm~4000nm)を加えたものである。 The convex shape preferably has a height (h) of 20 μm to 150 μm. If the height of the convex shape is less than 20 μm, the liquid repellency may not be sufficiently secured. If the height of the convex shape exceeds 150 μm, the size of the concave / convex shape in the mold for imparting the concave / convex shape becomes unstable. There is a case. The height of the convex shape is obtained by adding the thickness (100 nm to 4000 nm) of the liquid repellent layer described later.
 隣接する凸形状の頂点間隔(t)は20μm~100μmであることが好ましい。なお頂点間隔とは、隣接する凸形状の頂点の間隔であり、相互の凸形状が異なっても隣接するものであれば、その凸形状の間隔を意味する。頂点間隔が20μm未満では、凹凸形状を付与するための金型での凹凸形状寸法が不安定になる場合がある。また、100μmを超えると撥液性が低下する場合がある。 The apex interval (t) between adjacent convex shapes is preferably 20 μm to 100 μm. Note that the vertex interval is the interval between adjacent convex vertices and means the interval between the convex shapes if they are adjacent to each other even if their convex shapes are different. When the vertex interval is less than 20 μm, the uneven shape dimension in the mold for providing the uneven shape may become unstable. Moreover, when it exceeds 100 micrometers, liquid repellency may fall.
 2種類の凸形状を用いる場合、第1の凸形状に対する第2の凸形状の高さの比は、0.4以上0.8以下であることが好ましい。高さの比を0.4以上0.8以下にすることで、より効果的に撥液性を得ることができる。 When two kinds of convex shapes are used, the ratio of the height of the second convex shape to the first convex shape is preferably 0.4 or more and 0.8 or less. By making the height ratio 0.4 or more and 0.8 or less, liquid repellency can be obtained more effectively.
 凸形状の底面は、三角錐、四角錘、六角錐、八角錐、円錐などの錐形状、角錐台形状、円錐台形状でもよいが、本発明者が本実施形態に係る樹脂シートの構成において種々検討した結果、六角錐形状の凸形状が特に好ましいことが分かった。 The bottom surface of the convex shape may be a pyramid shape such as a triangular pyramid, a quadrangular pyramid, a hexagonal pyramid, an octagonal pyramid, a cone, a truncated pyramid shape, or a truncated cone shape, but the present inventor has various configurations in the resin sheet according to the present embodiment. As a result of examination, it has been found that a hexagonal pyramid convex shape is particularly preferable.
 凹凸形状層は、ポリオレフィン系樹脂架橋体を含有する。ポリオレフィン系樹脂架橋体は、ポリオレフィン系樹脂を35~100質量%含む樹脂組成物を架橋させたものであることが好ましい。35質量%以上とすることで、凹凸形状の転写性、架橋性を向上することができる。また、ポリオレフィン系樹脂架橋体は、230℃でのメルトマスフローレートが5g/10分以上であるポリオレフィン系樹脂を架橋させたものであることが好ましい。5g/10分とすることで、凹凸形状の転写性を向上することができる。 The concavo-convex shape layer contains a crosslinked polyolefin resin. The cross-linked polyolefin resin is preferably a cross-linked resin composition containing 35 to 100% by mass of a polyolefin resin. By setting the content to 35% by mass or more, it is possible to improve the transferability and crosslinkability of the uneven shape. The crosslinked polyolefin resin is preferably a crosslinked polyolefin resin having a melt mass flow rate at 230 ° C. of 5 g / 10 min or more. By setting it to 5 g / 10 minutes, the transferability of the concavo-convex shape can be improved.
 ポリオレフィン系樹脂とは、α-オレフィンを単量体として含む重合体からなる樹脂を意味し、特にポリエチレン系樹脂及びポリプロピレン系樹脂を含むことが好ましい。ポリエチレン樹脂としては、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状中密度ポリエチレン等が挙げられ、また単体のみならず、それらの構造を有する共重合物やグラフト物やブレンド物も含まれる。後者の樹脂としては、例えばエチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸エステル共重合体、エチレン-酢酸ビニル-塩化ビニル共重合体や、さらにこれらの共重合体と酸無水物との3元共重合体等とブレンドしたもののようにポリエチレン鎖に極性基を有する樹脂を共重合およびブレンドしたものが挙げられる。電子線照射による架橋性を考慮すると、直鎖状低密度ポリエチレン、直鎖状中密度ポリエチレンを用いることが望ましい。 The polyolefin resin means a resin composed of a polymer containing an α-olefin as a monomer, and particularly preferably includes a polyethylene resin and a polypropylene resin. Examples of the polyethylene resin include high-density polyethylene, low-density polyethylene, linear low-density polyethylene, linear medium-density polyethylene, and the like, as well as copolymers, grafts, and blends having their structure. Things are also included. Examples of the latter resin include ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid ester copolymer, ethylene-vinyl acetate-vinyl chloride copolymer Examples thereof include those obtained by copolymerizing and blending a resin having a polar group in a polyethylene chain, such as a blend, or a terpolymer of such a copolymer and an acid anhydride. Considering the crosslinkability by electron beam irradiation, it is desirable to use linear low density polyethylene and linear medium density polyethylene.
 また、ポリプロピレン系樹脂としては、ホモポリプロピレン、ランダムポリプロピレン、ブロックポリプロピレンなどが挙げられる。ホモポリプロピレンを用いる場合、該ホモポリプロピレンの構造は、アイソタクチック、アタクチック、シンジオタクチックのいずれであってもよい。ランダムポリプロピレンを用いる場合、プロピレンと共重合させるαオレフィンとしては、好ましくは炭素数2~20、より好ましくは炭素数4~12のものが挙げられ、例えばエチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセンなどを例示できる。ブロックポリプロピレンを用いる場合、ブロック共重合体(ブロックポリプロピレン)、ゴム成分を含むブロック共重合体あるいはグラフト共重合体等が挙げられる。これらオレフィン樹脂を単独で使用する以外に、他のオレフィン系樹脂を併用することもできる。電子線照射による架橋性を考慮すると、ランダムポリプロピレン、ブロックポリプロピレンを用いることが望ましい。 In addition, examples of the polypropylene resin include homopolypropylene, random polypropylene, and block polypropylene. When using homopolypropylene, the structure of the homopolypropylene may be any of isotactic, atactic, and syndiotactic. In the case of using random polypropylene, the α-olefin copolymerized with propylene preferably includes those having 2 to 20 carbon atoms, more preferably 4 to 12 carbon atoms, such as ethylene, 1-butene, 1-pentene, 1 Examples include -hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like. When block polypropylene is used, a block copolymer (block polypropylene), a block copolymer containing a rubber component, a graft copolymer, or the like can be given. In addition to using these olefin resins alone, other olefin resins can also be used in combination. Considering the crosslinkability by electron beam irradiation, it is desirable to use random polypropylene or block polypropylene.
 ポリオレフィン系樹脂架橋体を形成する方法としては、後述するように、樹脂シートを成形した後、凸形状を有する面に電子線を照射する方法や、予め有機過酸化物を添加したポリオレフィン系樹脂組成物の樹脂シートの凸形状成形時または凸形状成形後に、加熱及び加湿により形成する方法が挙げられる。これらの中では、電子線の照射により架橋体を形成することが好ましい。 As a method of forming a crosslinked polyolefin-based resin, as described later, after molding a resin sheet, a method of irradiating an electron beam onto a surface having a convex shape, or a polyolefin-based resin composition in which an organic peroxide is added in advance The method of forming by the heating and humidification at the time of convex shape shaping | molding of the resin sheet of a thing, or after convex shape shaping | molding is mentioned. In these, it is preferable to form a crosslinked body by irradiation of an electron beam.
 架橋体の形成度合いの調整については、成形品の形状により任意に調整することができる。架橋体の形成度合いの評価については、成形した樹脂シートの、電子線照射前後引張強度変化率および伸びの変化率から評価することができる。 The adjustment of the degree of formation of the crosslinked body can be arbitrarily adjusted according to the shape of the molded product. About evaluation of the formation degree of a crosslinked body, it can evaluate from the tensile strength change rate before and behind electron beam irradiation of the shape | molded resin sheet, and the change rate of elongation.
(撥液層)
 撥液層には、疎水性酸化物微粒子とフッ素系共重合樹脂とを含む。撥液層の厚さは、100nm~4000nmであることが好ましいが、本発明の効果が得られればこの数値範囲に限定されない。
(Liquid repellent layer)
The liquid repellent layer includes hydrophobic oxide fine particles and a fluorinated copolymer resin. The thickness of the liquid repellent layer is preferably 100 nm to 4000 nm, but is not limited to this numerical range as long as the effects of the present invention can be obtained.
 疎水性酸化物微粒子としては、疎水性基を有するものであればよく、表面処理により疎水化されたものであってもよい。例えば、親水性酸化物微粒子シリカをシランカップリング剤等で表面処理を施し、表面状態を疎水性とした微粒子シリカを用いることもできる。酸化物の種類も、疎水性を有するものであれば限定されない。例えばシリカ(二酸化ケイ素)、アルミナ、チタニアまた、シリカ等の少なくとも1種を用いることができる。これらは公知又は市販のものを採用することができる。例えば、シリカとしては、製品名「AEROSIL R972」、「AEROSIL R972V」、「AEROSIL R972CF」、「AEROSIL R974」、「AEROSIL RX200」、「AEROSIL RY200」(以上、日本アエロジル株式会社製)、「AEROSIL R202」、「AEROSIL R805」、「AEROSIL R812」、「AEROSIL R812S」、(以上、エボニック デグサ社製)等が挙げられる。チタニアとしては、製品名「AEROXIDE TiO2 T805」(エボニック デグサ社製)等が例示できる。アルミナとしては、製品名「AEROXIDE Alu C」(エボニック デグサ社製)等をシランカップリング剤で処理して粒子表面を疎水性とした微粒子が例示できる。 The hydrophobic oxide fine particles may be any particles having a hydrophobic group, and may be those hydrophobized by surface treatment. For example, it is possible to use fine particle silica in which hydrophilic oxide fine particle silica is subjected to a surface treatment with a silane coupling agent or the like to make the surface state hydrophobic. The type of oxide is not limited as long as it has hydrophobicity. For example, at least one of silica (silicon dioxide), alumina, titania, and silica can be used. These may be known or commercially available. For example, as silica, product names “AEROSIL R972”, “AEROSIL R972V”, “AEROSIL R972CF”, “AEROSIL R974”, “AEROSIL RX200”, “AEROSIL RY200” (above, made by Nippon Aerosil Co., Ltd.), “AEROSIL R202” ", AEROSIL R805", "AEROSIL R812", "AEROSIL R812S" (above, manufactured by Evonik Degussa). Examples of titania include the product name “AEROXIDE TiO2 T805” (Evonik Degussa). Examples of the alumina include fine particles in which the product name “AEROXIDE Alu C” (manufactured by Evonik Degussa) or the like is treated with a silane coupling agent to make the particle surface hydrophobic.
 このなかでも、具体的には、疎水性シリカ微粒子を好適に用いることができる。とりわけ、より優れた撥液性が得られるという点において、表面にトリメチルシリル基やジメチルシロキサン基を有する疎水性シリカ微粒子が好ましい。これに対応する市販品としては、例えば前記「AEROSIL R812」、「AEROSIL R812S」「AEROSIL RY300」(何れもエボニック デグサ社製)等が挙げられる。 Among these, specifically, hydrophobic silica fine particles can be suitably used. In particular, hydrophobic silica fine particles having a trimethylsilyl group or a dimethylsiloxane group on the surface are preferable in that superior liquid repellency can be obtained. Examples of commercially available products corresponding to this include “AEROSIL R812”, “AEROSIL R812S”, “AEROSIL RY300” (both manufactured by Evonik Degussa).
 疎水性酸化物微粒子としては、一次粒子の平均粒子径が5nm~1000nmであるものが好ましく、7nm~200nmであるものがより好ましい。一次粒子の平均粒子径を5nm~1000nmとすることで、撥液性が良好となると共に、フッ素系共重合体樹脂への分散性が良好となる。なお、一次粒子の平均粒子径は、疎水性酸化物微粒子を電子顕微鏡写真より任意の3000個~5000個の粒子を測定し、その粒子径を算術平均した数値を意味する。 The hydrophobic oxide fine particles preferably have an average primary particle diameter of 5 nm to 1000 nm, more preferably 7 nm to 200 nm. By setting the average particle diameter of the primary particles to 5 nm to 1000 nm, the liquid repellency is improved and the dispersibility in the fluorocopolymer resin is improved. The average particle diameter of the primary particles means a numerical value obtained by measuring an arbitrary 3000 to 5000 particles of hydrophobic oxide fine particles from an electron micrograph and arithmetically averaging the particle diameter.
 フッ素系共重合体は、共重合体(1)と共重合体(2)とを含有することが好ましい。共重合体(1)と共重合体(2)は、構成単位(a)~(d)を含有できる。ただし、共重合体(1)は、構成単位(a)および構成単位(b)を含有し、共重合体(2)は、構成単位(a)および構成単位(c)を含有する。共重合体(1)が主に樹脂シートの撥液性の発現に寄与し、共重合体(2)が主に樹脂シートの耐久性に寄与する。 The fluorine-based copolymer preferably contains a copolymer (1) and a copolymer (2). The copolymer (1) and the copolymer (2) can contain the structural units (a) to (d). However, the copolymer (1) contains the structural unit (a) and the structural unit (b), and the copolymer (2) contains the structural unit (a) and the structural unit (c). The copolymer (1) mainly contributes to the expression of the liquid repellency of the resin sheet, and the copolymer (2) mainly contributes to the durability of the resin sheet.
 構成単位(a)は、アルキル基の水素原子の一部または全てがフッ素原子に置換された基であり、炭素原子数は1~6である。(a)は、炭素-炭素不飽和二重結合などの不飽和基を1個以上有する鎖状ポリフルオロ炭化水素基であってもよい。不飽和基としては(メタ)アクリレートが好ましい。 The structural unit (a) is a group in which some or all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms, and has 1 to 6 carbon atoms. (A) may be a chain polyfluorohydrocarbon group having one or more unsaturated groups such as a carbon-carbon unsaturated double bond. As the unsaturated group, (meth) acrylate is preferable.
 構成単位(b)は、炭素原子数が16~40の飽和炭化水素基を有する単量体であるのが好ましく、炭素原子数16~40のアルキル基を含有する(メタ)アクリレートであるのがより好ましく、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレートであるのがさらに好ましい。 The structural unit (b) is preferably a monomer having a saturated hydrocarbon group having 16 to 40 carbon atoms, and is preferably a (meth) acrylate containing an alkyl group having 16 to 40 carbon atoms. More preferred are stearyl (meth) acrylate and behenyl (meth) acrylate.
 構成単位(c)は、フッ素原子を含まず、架橋しうる官能基を有する単量体に由来する単量体である。架橋しうる官能基としては、イソシアネート基、ブロックドイソシアネート基、アルコキシシリル基、アミノ基、アルコキシメチルアミド基、シラノール基、アンモニウム基、アミド基、エポキシ基、水酸基、オキサゾリン基、カルボキシル基、アルケニル基、スルホン酸基等が好ましい。また、エポキシ基、水酸基、ブロックドイソシアネート基、アルコキシシリル基、アミノ基、カルボキシル基がより好ましい。 The structural unit (c) is a monomer derived from a monomer that does not contain a fluorine atom and has a functional group capable of crosslinking. Crosslinkable functional groups include isocyanate groups, blocked isocyanate groups, alkoxysilyl groups, amino groups, alkoxymethylamide groups, silanol groups, ammonium groups, amide groups, epoxy groups, hydroxyl groups, oxazoline groups, carboxyl groups, alkenyl groups. A sulfonic acid group and the like are preferable. Moreover, an epoxy group, a hydroxyl group, a blocked isocyanate group, an alkoxysilyl group, an amino group, and a carboxyl group are more preferable.
 構成単位(c)を形成する単量体としては、(メタ)アクリレート類、共重合可能な基を2個以上もつ化合物、ビニルエーテル類またはビニルエステル類が好ましく挙げられる。構成単位(c)は、2種以上の混合物を由来としてもよい。構成単位(c)は、主に撥液膜の造膜性、撥液性組成物の基材との接着性や密着性に影響し、耐久性を高めることに寄与する。 Preferred examples of the monomer that forms the structural unit (c) include (meth) acrylates, compounds having two or more copolymerizable groups, vinyl ethers, and vinyl esters. The structural unit (c) may be derived from a mixture of two or more. The structural unit (c) mainly affects the film-forming property of the liquid-repellent film and the adhesiveness and adhesion of the liquid-repellent composition to the base material, and contributes to enhancing the durability.
 構成単位(d)は、構成単位(a)、(b)および(c)以外の重合性基を有する単量体に由来する構成単位である。また、造膜性が良好で、均一な共重合体溶液または分散液が得られる単量体に由来するものであるのが好ましい。構成単位(d)としては、特に、塩化ビニル、塩化ビニリデン、シクロヘキシルメタクリレート、ポリオキシエチレンジ(メタ)アクリレート、ポリオキシエチレンジ(メタ)アクリレートのアルキルエーテル、ジオクチルマレエートを由来とするのが好ましい。構成単位(d)は、組成物の基材への密着性の改良や、分散性の改良に寄与できる。 The structural unit (d) is a structural unit derived from a monomer having a polymerizable group other than the structural units (a), (b), and (c). Moreover, it is preferable that it is derived from the monomer which has favorable film forming property and can obtain a uniform copolymer solution or dispersion. The structural unit (d) is particularly preferably derived from vinyl chloride, vinylidene chloride, cyclohexyl methacrylate, polyoxyethylene di (meth) acrylate, alkyl ether of polyoxyethylene di (meth) acrylate, or dioctyl maleate. . The structural unit (d) can contribute to improving the adhesion of the composition to the substrate and improving the dispersibility.
 これに対応する市販品としては、「AG-E070」、「AG-E550D」(旭硝子社製)等が挙げられる。 As commercial products corresponding to this, “AG-E070”, “AG-E550D” (manufactured by Asahi Glass Co., Ltd.) and the like can be mentioned.
 撥液層は、好ましくは、疎水性酸化物微粒子の含有量が20質量%~70質量%、フッ素系共重合体樹脂の含有量が70質量%~30質量%であることが好ましい。この範囲の組成とすることによって、液体の転落性を得ることができる。これに対して、疎水性酸化物微粒子の含有量が20質量%未満では、満足できる撥液性、液体の転落性を得られない場合があり、疎水性酸化物微粒子の含有量が70質量%を超えると、疎水性酸化物微粒子が剥がれ落ちる場合がある。 The liquid repellent layer preferably has a content of hydrophobic oxide fine particles of 20% by mass to 70% by mass and a content of fluorine-based copolymer resin of 70% by mass to 30% by mass. By adopting a composition in this range, the falling property of the liquid can be obtained. On the other hand, if the content of the hydrophobic oxide fine particles is less than 20% by mass, satisfactory liquid repellency and liquid falling property may not be obtained, and the content of the hydrophobic oxide fine particles is 70% by mass. Exceeding may cause the hydrophobic oxide fine particles to peel off.
 凹凸形状面に撥液層を形成する方法としては、予めイソピルアルコール(IPA)に疎水性酸化物微粒子を添加した分散液を調整し、その後、フッ素系樹脂共重合体の水分散液とで任意の割合で調整した分散液を前記凹凸形状面にコーター等で塗布する方法が採用される。 As a method of forming a liquid repellent layer on the uneven surface, a dispersion in which hydrophobic oxide fine particles are added to isopropyl alcohol (IPA) in advance is prepared, and then an aqueous dispersion of a fluororesin copolymer is used. A method of applying a dispersion liquid adjusted at an arbitrary ratio onto the uneven surface with a coater or the like is employed.
[第二実施形態]
 本発明の第二実施形態に係る樹脂シートの例としては、図5に示すように、表面に撥液層(2)が積層された凹凸形状層(1)と基材層(4)との間に、シーラント樹脂層(3)が形成された樹脂シートである。すなわち、第二実施形態に係る樹脂シートの層構成は、上から下に向かって、撥液層(2)、凹凸形状層(1)、シーラント樹脂層(3)、基材層(4)である。ここで、撥液層と凹凸形状層は、第一実施形態において説明したものと同じであるので、説明を省略する。但し、凹凸形状層の厚みは、好ましくは50μm~200μmである。50μm未満であると、凹凸形状の転写が不良なる場合がある。また、200μmを超えると、生産コストが高くなる場合がある。
[Second Embodiment]
As an example of the resin sheet which concerns on 2nd embodiment of this invention, as shown in FIG. 5, the uneven | corrugated shaped layer (1) by which the liquid-repellent layer (2) was laminated | stacked on the surface, and a base material layer (4) A resin sheet having a sealant resin layer (3) formed therebetween. That is, the layer structure of the resin sheet according to the second embodiment includes a liquid repellent layer (2), an uneven shape layer (1), a sealant resin layer (3), and a base material layer (4) from top to bottom. is there. Here, the liquid repellent layer and the concavo-convex shape layer are the same as those described in the first embodiment, and thus description thereof is omitted. However, the thickness of the concavo-convex shape layer is preferably 50 μm to 200 μm. If it is less than 50 μm, the uneven transfer may be poor. Moreover, when it exceeds 200 micrometers, production cost may become high.
(基材層)
 基材層は、スチレン系樹脂(耐衝撃性ポリスチレン、ポリブタジエン-ポリスチレン-ポリアクリロニトリルグラフト重合体など)、オレフィン系樹脂(ポリエチレン、ポリプロピレンなど)、ポリカーボネート、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレートなど)、ナイロン系樹脂(ナイロン6、ナイロン-66など)、エチレン-ビニルアルコール共重合体、アクリル系樹脂などの熱可塑性樹脂が好ましい。また、積層する場合、共押出成形による積層や無延伸フィルム、二軸延伸フィルムを用いた押出ラミネート成形、ドライラミネート成形による積層がある。
(Base material layer)
Base material layer is made of styrene resin (impact polystyrene, polybutadiene-polystyrene-polyacrylonitrile graft polymer, etc.), olefin resin (polyethylene, polypropylene, etc.), polycarbonate, polyester resin (polyethylene terephthalate, polybutylene terephthalate, etc.) Thermoplastic resins such as nylon resins (nylon 6, nylon-66, etc.), ethylene-vinyl alcohol copolymers, and acrylic resins are preferred. In the case of lamination, there are lamination by co-extrusion molding, extrusion lamination molding using an unstretched film, biaxially stretched film, and lamination by dry lamination molding.
 スチレン系樹脂としては、好ましくは、60質量%~15質量%、より好ましくは55質量%~15質量%のポリスチレン樹脂と、40質量%~85質量%、より好ましくは45質量%~85質量%の耐衝撃性ポリスチレン樹脂とを含んでなるスチレン系基材層が好ましい。 The styrenic resin is preferably 60% by mass to 15% by mass, more preferably 55% by mass to 15% by mass polystyrene resin, and 40% by mass to 85% by mass, more preferably 45% by mass to 85% by mass. A styrene-based substrate layer comprising a high-impact polystyrene resin is preferred.
 ポリエステル系樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリメチレンテレフタレート、および共重合成分として、例えば、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコールなどのジオール成分や、アジピン酸、セバチン酸、フタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸などのジカルボン酸成分などを共重合したポリエステル樹脂などを用いることができる。  Examples of polyester resins include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polymethylene terephthalate, and copolymer components such as diol components such as diethylene glycol, neopentyl glycol, polyalkylene glycol, and adipic acid. Polyester resins obtained by copolymerizing dicarboxylic acid components such as sebacic acid, phthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid can be used. *
 ナイロン系樹脂としては、カプロラクタム、ラウロラクタム等のラクタム重合体;6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸等のアミノカルボン酸の重合体;ヘキサメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-又は2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン、1,3-又は1,4-ビス(アミノメチル)シクロヘキサン、ビス(p-アミノシクロヘキシルメタン)等の脂環式ジアミン、m-又はp-キシリレンジアミン等の芳香族ジアミン等のジアミン単位と、アジピン酸、スベリン酸、セバシン酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸等のジカルボン酸単位との重縮合体;及びこれらの共重合体等が挙げられる。具体的には、ナイロン6、ナイロン9、ナイロン11、ナイロン12、ナイロン66、ナイロン610、ナイロン611、ナイロン612、ナイロン6T、ナイロン6I、ナイロンMXD6、ナイロン6/66、ナイロン6/610、ナイロン6/6T、ナイロン6I/6T等があり、なかでもナイロン6、ナイロンMXD6が好適である。 Examples of nylon resins include lactam polymers such as caprolactam and laurolactam; polymers of aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid; hexamethylenediamine, decamethylenediamine, and dodeca Aliphatic diamines such as methylenediamine, 2,2,4- or 2,4,4-trimethylhexamethylenediamine, 1,3- or 1,4-bis (aminomethyl) cyclohexane, bis (p-aminocyclohexylmethane) Diamine units such as alicyclic diamines such as m- or p-xylylenediamine, aliphatic dicarboxylic acids such as adipic acid, suberic acid and sebacic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid Aromatic dicarboxylic acids such as acid, terephthalic acid, isophthalic acid, etc. Polycondensates of a dicarboxylic acid units; and copolymers thereof. Specifically, nylon 6, nylon 9, nylon 11, nylon 12, nylon 66, nylon 610, nylon 611, nylon 612, nylon 6T, nylon 6I, nylon MXD6, nylon 6/66, nylon 6/610, nylon 6 / 6T, nylon 6I / 6T, etc. Among them, nylon 6 and nylon MXD6 are preferable.
 アクリル系樹脂としては、メタクリル酸エステル単量体に基づくビニル重合体であれば、その構造などは特に限定するものではない。このメタクリル酸エステル単量体としては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ペンチル及びメタクリル酸ヘキシルなどが挙げられる。これらのうち、特にメタクリル酸メチルが好適である。また、メタクリル酸エステル単量体におけるプロピル基、ブチル基、ペンチル基及びヘキシル基などのアルキル基は、直鎖であってもよく、枝分かれしてもよい。また、本実施形態の樹脂組成物に配合されるメタクリル酸エステル樹脂は、メタクリル酸エステル単量体の単独重合体や、複数のメタクリル酸エステル単量体の共重合体であってもよい。又は、メタクリル酸エステル以外の公知のビニル化合物であるエチレン、プロピレン、ブタジエン、スチレン、α-メチルスチレン、アクリロニトリル及びアクリル酸などに由来する単量体単位を有してもよい。 The acrylic resin is not particularly limited as long as it is a vinyl polymer based on a methacrylic acid ester monomer. Examples of the methacrylic acid ester monomer include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, pentyl methacrylate and hexyl methacrylate. Of these, methyl methacrylate is particularly preferred. Further, alkyl groups such as propyl group, butyl group, pentyl group and hexyl group in the methacrylic acid ester monomer may be linear or branched. Further, the methacrylic ester resin blended in the resin composition of the present embodiment may be a homopolymer of a methacrylic ester monomer or a copolymer of a plurality of methacrylic ester monomers. Alternatively, it may have a monomer unit derived from ethylene, propylene, butadiene, styrene, α-methylstyrene, acrylonitrile, acrylic acid and the like, which are known vinyl compounds other than methacrylic acid esters.
 基材層には、必要に応じて、本発明の効果を阻害しない範囲で、顔料、染料などの着色剤、シリコンオイル系等の離型剤、ガラス繊維等の繊維状強化剤、タルク、クレイ、シリカなどの着色剤、スルホン酸とアルカリ金属などとの塩化合物やポリアルキレングリコール等の帯電防止剤及び紫外線吸収剤、抗菌剤のような添加剤を添加することができる。また、本発明の多層樹脂シートの製造工程で発生したスクラップ樹脂を混合して用いることもできる。 If necessary, the base material layer may have a colorant such as pigment or dye, a release agent such as silicone oil, a fibrous reinforcing agent such as glass fiber, talc, clay, etc. Additives such as colorants such as silica, salt compounds of sulfonic acid and alkali metal, antistatic agents such as polyalkylene glycol, ultraviolet absorbers and antibacterial agents can be added. Moreover, the scrap resin generated in the production process of the multilayer resin sheet of the present invention can be mixed and used.
(シーラント樹脂層)
 シーラント樹脂層は、凹凸形状層と基材層の接着性を発現させるものである。樹脂成分としては、100質量%の変性オレフィン系樹脂あるいは100質量%の水添スチレン系熱可塑性エラストマーがある。
(Sealant resin layer)
A sealant resin layer expresses the adhesiveness of an uneven | corrugated shaped layer and a base material layer. Examples of the resin component include 100% by mass of a modified olefin resin or 100% by mass of a hydrogenated styrene thermoplastic elastomer.
 変性オレフィン系樹脂としては、エチレン、プロピレン、ブテン-1等の炭素数2~8程度のオレフィン;それらのオレフィンと、エチレン、プロピレン、ブテン-1、3-メチルブテン-1、ペンテン-1、4-メチルペンテン-1、ヘキセン-1、オクテン-1、デセン-1等の炭素数2~20程度の他のオレフィンとの共重合体や、酢酸ビニル、塩化ビニル、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、スチレン等のビニル化合物との共重合体等のオレフィン系樹脂;エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、エチレン-ブテン-1共重合体、プロピレン-ブテン-1共重合体等のオレフィン系ゴムを、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸等の不飽和カルボン酸、または、その酸ハライド、アミド、イミド、無水物、エステル等の誘導体、具体的には、塩化マレニル、マレイミド、無水マレイン酸、無水シトラコン酸、マレイン酸モノメチル、マレイン酸ジメチル、マレイン酸グリシジル等でグラフト反応条件下に変性したものが代表的なものとして挙げられる。 Examples of the modified olefin resins include olefins having about 2 to 8 carbon atoms such as ethylene, propylene, and butene-1; these olefins, ethylene, propylene, butene-1, 3-methylbutene-1, pentene-1, 4- Copolymers with other olefins having about 2 to 20 carbon atoms such as methylpentene-1, hexene-1, octene-1, decene-1, etc., vinyl acetate, vinyl chloride, acrylic acid, methacrylic acid, acrylic ester Olefin resins such as copolymers with vinyl compounds such as methacrylic acid esters and styrene; ethylene-propylene copolymers, ethylene-propylene-diene copolymers, ethylene-butene-1 copolymers, propylene-butene- 1 Copolymer or other olefinic rubber is mixed with acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, male Acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid and other unsaturated carboxylic acids, or derivatives thereof such as acid halides, amides, imides, anhydrides, esters, specifically, maleyl chloride, maleimide, Typical examples include those modified with maleic anhydride, citraconic anhydride, monomethyl maleate, dimethyl maleate, glycidyl maleate and the like under the graft reaction conditions.
 なかでも、不飽和ジカルボン酸またはその無水物、特にマレイン酸またはその無水物で変性した「エチレン-プロピレン-ジエン共重合体」又は「エチレン-プロピレン又はブテン-1共重合体ゴム」が好適である。 Among them, “ethylene-propylene-diene copolymer” or “ethylene-propylene or butene-1 copolymer rubber” modified with unsaturated dicarboxylic acid or its anhydride, particularly maleic acid or its anhydride, is preferable. .
 水添スチレン系熱可塑性エラストマーとしては、スチレン系モノマーとブタジエンやイソプレンとの共重合体の水素添加物、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物(スチレン-エチレン・ブチレン-スチレンブロック共重合体)、スチレン-イソプレン-スチレンブロック共重合体の水素添加物(スチレン-エチレン・プロピレン-スチレンブロック共重合体)などが挙げられる。これらの中では、特にスチレン-エチレン・ブチレン-スチレンブロック共重合体が好ましい。 Hydrogenated styrene thermoplastic elastomers include hydrogenated products of copolymers of styrene monomers and butadiene and isoprene, and hydrogenated products of styrene-butadiene-styrene block copolymers (styrene-ethylene / butylene-styrene block copolymer). Polymer), hydrogenated product of styrene-isoprene-styrene block copolymer (styrene-ethylene / propylene-styrene block copolymer), and the like. Of these, styrene-ethylene / butylene-styrene block copolymers are particularly preferred.
 シーラント樹脂層の厚みは、好ましくは20μm~90μm、より好ましくは40μm~80μmである。20μm未満であると、凹凸形状層と基材層間で層間剥離が発生する場合があり、また、90μmを超えると、生産コストが高くなる場合がある。 The thickness of the sealant resin layer is preferably 20 μm to 90 μm, more preferably 40 μm to 80 μm. When the thickness is less than 20 μm, delamination may occur between the concavo-convex shape layer and the base material layer, and when it exceeds 90 μm, the production cost may increase.
[第三実施形態]
 本発明の第三実施形態に係る樹脂シートは、図6に示すように、第二実施形態で示したシーラント樹脂層(3)を用いずに、凹凸形状層(1)と基材層(4)を直接積層したものである。すなわち、第三実施形態に係る樹脂シートの層構成は、上から下に向かって、撥液層(2)、凹凸形状層(1)、基材層(4)であり、第二実施形態に係る熱可塑性樹脂シートからシーラント樹脂層を除いた層構成を有している。ここで、撥液層と凹凸形状層は、第一実施形態及び第二実施形態における層と同じであるので、説明を省略する。一方、本実施形態における基材層(4)は、凹凸形状層と十分な接着性を備えたものとするのが好ましい。
[Third embodiment]
As shown in FIG. 6, the resin sheet according to the third embodiment of the present invention does not use the sealant resin layer (3) shown in the second embodiment, and the uneven layer (1) and the base material layer (4 ) Directly laminated. That is, the layer structure of the resin sheet according to the third embodiment is the liquid repellent layer (2), the concavo-convex shape layer (1), and the base material layer (4) from top to bottom. The thermoplastic resin sheet has a layer configuration in which the sealant resin layer is removed. Here, the liquid repellent layer and the concavo-convex shape layer are the same as the layers in the first embodiment and the second embodiment, and thus description thereof is omitted. On the other hand, it is preferable that the base material layer (4) in this embodiment has sufficient adhesiveness with the concavo-convex shape layer.
 よって、第三実施形態に係る樹脂シートにおいて、基材層としては、凹凸形状層との接着性に優れるスチレン系樹脂を使用することが好ましい。水添スチレン系熱可塑性エラストマーを添加したスチレン系樹脂組成物を用いることもできる。耐衝撃性ポリスチレン樹脂と水添スチレン系熱可塑性エラストマーとを併用するときは、耐衝撃性ポリスチレン樹脂が90質量部~95質量部に対して、5質量部~10質量部の水添スチレン系熱可塑性エラストマーを添加することが好ましい。この場合、水添スチレン系熱可塑性エラストマーの添加量が5質量部未満では、凹凸形状層との接着性が不十分になり、層間剥離が発生する場合があり、10質量部を超えると生産コストが高くなる場合がある。 Therefore, in the resin sheet according to the third embodiment, as the base material layer, it is preferable to use a styrene resin that is excellent in adhesiveness to the uneven shape layer. A styrene resin composition to which a hydrogenated styrene thermoplastic elastomer is added can also be used. When the impact-resistant polystyrene resin and hydrogenated styrene thermoplastic elastomer are used in combination, 5 to 10 parts by mass of hydrogenated styrene-based heat with respect to 90 to 95 parts by mass of the impact-resistant polystyrene resin. It is preferable to add a plastic elastomer. In this case, if the addition amount of the hydrogenated styrene-based thermoplastic elastomer is less than 5 parts by mass, the adhesiveness with the concavo-convex layer becomes insufficient, and delamination may occur. May be higher.
[第四実施形態]
 本発明の第四実施形態に係る樹脂シートは、図7に示すように、撥液層(2)、凹凸形状層(1)、第1のシーラント樹脂層(3a)、酸素バリア基材層(5)、第2のシーラント樹脂層(3b)、基材層(4)の順に積層した樹脂シートである。第1のシーラント樹脂層と第2のシーラント樹脂層は組成が同じでも異なってもよい。凹凸形状層の厚みは、好ましくは50μm~250μmである。50μm未満であると、凹凸形状の転写が不良なる場合がある。また、200μmを超えると、生産コストが高くなる場合がある。
[Fourth embodiment]
As shown in FIG. 7, the resin sheet according to the fourth embodiment of the present invention includes a liquid repellent layer (2), a concavo-convex shape layer (1), a first sealant resin layer (3a), an oxygen barrier base material layer ( 5) A resin sheet in which a second sealant resin layer (3b) and a base material layer (4) are laminated in this order. The first sealant resin layer and the second sealant resin layer may have the same composition or different compositions. The thickness of the uneven layer is preferably 50 μm to 250 μm. If it is less than 50 μm, the uneven transfer may be poor. Moreover, when it exceeds 200 micrometers, production cost may become high.
(酸素バリア基材層)
 酸素バリア基材層としては、例えば、エチレン-ビニルアルコール共重合体樹脂、ナイロン系樹脂が挙げられる。そのなかでも、加工性、成形性の面でエチレン-ビニルアルコール共重合体樹脂が好ましい。
(Oxygen barrier substrate layer)
Examples of the oxygen barrier base material layer include ethylene-vinyl alcohol copolymer resin and nylon resin. Among these, ethylene-vinyl alcohol copolymer resin is preferable in terms of processability and moldability.
 エチレン-ビニルアルコール共重合体樹脂は、通常、エチレン-酢酸ビニル共重合体を鹸化して得られるものであり、酸素バリア性、加工性、成形性を具備する為に、エチレン含有量が10モル%~65モル%、好ましくは20モル%~50モル%で、鹸化度が90%以上、好ましくは95%以上のものが好ましい。 The ethylene-vinyl alcohol copolymer resin is usually obtained by saponifying an ethylene-vinyl acetate copolymer, and has an ethylene content of 10 mol in order to have oxygen barrier properties, processability, and moldability. % To 65 mol%, preferably 20 mol% to 50 mol%, and a saponification degree of 90% or more, preferably 95% or more.
 また、ナイロン系樹脂としては、カプロラクタム、ラウロラクタム等のラクタム重合体;6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸等のアミノカルボン酸の重合体;ヘキサメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-又は2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン、1,3-又は1,4-ビス(アミノメチル)シクロヘキサン、ビス(p-アミノシクロヘキシルメタン)等の脂環式ジアミン、m-又はp-キシリレンジアミン等の芳香族ジアミン等のジアミン単位と、アジピン酸、スベリン酸、セバシン酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸等のジカルボン酸単位との重縮合体、及びこれらの共重合体等が挙げられる。 Examples of nylon resins include lactam polymers such as caprolactam and laurolactam; polymers of aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid; hexamethylenediamine, decamethylenediamine , Dodecamethylenediamine, aliphatic diamine such as 2,2,4- or 2,4,4-trimethylhexamethylenediamine, 1,3- or 1,4-bis (aminomethyl) cyclohexane, bis (p-aminocyclohexyl) Methane) and other alicyclic diamines, m- or p-xylylenediamine and other aromatic diamines and other diamine units, adipic acid, suberic acid, sebacic acid and other aliphatic dicarboxylic acids, cyclohexanedicarboxylic acid and other alicyclic rings Aromatic dicarbohydrates such as dicarboxylic acid, terephthalic acid and isophthalic acid Polycondensates of a dicarboxylic acid units, such as acid, and copolymers thereof, and the like.
 ナイロン系樹脂として、具体的には、ナイロン6、ナイロン9、ナイロン11、ナイロン12、ナイロン66、ナイロン610、ナイロン611、ナイロン612、ナイロン6T、ナイロン6I、ナイロンMXD6、ナイロン6/66、ナイロン6/610、ナイロン6/6T、ナイロン6I/6T等があり、なかでもナイロン6、ナイロンMXD6が好適である。 Specific examples of nylon resins include nylon 6, nylon 9, nylon 11, nylon 12, nylon 66, nylon 610, nylon 611, nylon 612, nylon 6T, nylon 6I, nylon MXD6, nylon 6/66, nylon 6 / 610, nylon 6 / 6T, nylon 6I / 6T, etc., among which nylon 6 and nylon MXD6 are preferred.
(シーラント樹脂層)
 シーラント樹脂層としては、変性オレフィン系樹脂が好ましい。変性オレフィン系樹脂としては、エチレン、プロピレン、ブテン-1等の炭素数2~8程度のオレフィンの単独重合体;それらのオレフィンの単独重合体と、エチレン、プロピレン、ブテン-1、3-メチルブテン-1、ペンテン-1、4-メチルペンテン-1、ヘキセン-1、オクテン-1、デセン-1等の炭素数2~20程度の他のオレフィンとの共重合体や、酢酸ビニル、塩化ビニル、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、スチレン等のビニル化合物との共重合体等のオレフィン系樹脂;エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、エチレン-ブテン-1共重合体、プロピレン-ブテン-1共重合体等のオレフィン系ゴムを、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸等の不飽和カルボン酸、または、その酸ハライド、アミド、イミド、無水物、エステル等の誘導体、具体的には、塩化マレニル、マレイミド、無水マレイン酸、無水シトラコン酸、マレイン酸モノメチル、マレイン酸ジメチル、マレイン酸グリシジル等でグラフト反応条件下に変性したものが代表的なものとして挙げられる。
(Sealant resin layer)
As the sealant resin layer, a modified olefin resin is preferable. Examples of modified olefin resins include homopolymers of olefins having about 2 to 8 carbon atoms such as ethylene, propylene, and butene-1; homopolymers of these olefins and ethylene, propylene, butene-1, 3-methylbutene- Copolymers with other olefins having about 2 to 20 carbon atoms such as 1, pentene-1, 4-methylpentene-1, hexene-1, octene-1, decene-1, etc., vinyl acetate, vinyl chloride, acrylic Olefin resins such as acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, copolymers with vinyl compounds such as styrene; ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-butene-1 Olefin rubber such as copolymer, propylene-butene-1 copolymer, acrylic acid, methacrylic acid, crotonic acid Unsaturated carboxylic acids such as isocrotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid and tetrahydrophthalic acid, or derivatives thereof such as acid halides, amides, imides, anhydrides and esters, specifically, maleyl chloride Typical examples include those modified with maleimide, maleic anhydride, citraconic anhydride, monomethyl maleate, dimethyl maleate, glycidyl maleate and the like under the graft reaction conditions.
 なかでも、不飽和ジカルボン酸またはその無水物、特にマレイン酸またはその無水物で変性したエチレン系樹脂、プロピレン系樹脂、又はエチレン-プロピレン又はブテン-1共重合体ゴムが好適である。 Among them, an ethylene-based resin, a propylene-based resin, or an ethylene-propylene or butene-1 copolymer rubber modified with an unsaturated dicarboxylic acid or an anhydride thereof, particularly maleic acid or an anhydride thereof is preferable.
 シーラント樹脂層の厚みとしては、何れの側も、好ましくは10μm~50μm、より好ましくは20μm~40μmである。10μm未満であると、十分な層間接着強度が得られなくなる場合があり、また、50μmを超えると、生産コストが高くなる場合がある。 The thickness of the sealant resin layer is preferably 10 μm to 50 μm, more preferably 20 μm to 40 μm on either side. If the thickness is less than 10 μm, sufficient interlayer adhesion strength may not be obtained, and if it exceeds 50 μm, the production cost may increase.
<撥液性樹脂シートの製造>
 本発明に係る樹脂シートの製造方法は、限定されず、如何なる方法によってもよいが、典型的には、一方の面に少なくとも1種類以上の凸形状を有する単層シート又は該凹凸形状層を含む積層樹脂シートを作製し、次いで凹凸形状層を架橋させ、表面に撥液層を形成する工程を含んでなる。
<Manufacture of liquid repellent resin sheet>
The method for producing the resin sheet according to the present invention is not limited and may be any method, but typically includes a single-layer sheet having at least one or more types of convex shapes on one surface or the concavo-convex shaped layer. The method includes the steps of preparing a laminated resin sheet, then crosslinking the concavo-convex shape layer, and forming a liquid repellent layer on the surface.
 先ず、一方の面少なくとも1種以上の凸形状を有する単層シート又は該凹凸形状層を含む多層樹脂シートの作製に際しては、任意の樹脂シート成形方法を使用できる。例えば、単層の場合は1台の単軸押出機を、複層の場合は複数台の単軸押出機を用いて、各々の原料樹脂を溶融押出し、Tダイによって樹脂シートを得る方法が挙げられる。多層の場合は、マルチマニホールドダイを使用してもよい。なお、本発明の樹脂シートの各実施形態の層構成は、基本的に前述した通りであるが、他に、例えば、本発明の樹脂シートや成形容器の製造工程で発生したスクラップ原料を、物性等の劣化が見られない限り、基材層へ添加してもよいし、更なる層として積層してもよい。 First, when producing a single-layer sheet having at least one or more convex shapes on one surface or a multilayer resin sheet including the uneven-shaped layer, any resin sheet molding method can be used. For example, in the case of a single layer, a single-screw extruder is used, and in the case of a multi-layer, each raw material resin is melt-extruded using a single-screw extruder, and a resin sheet is obtained by a T-die. It is done. In the case of multiple layers, a multi-manifold die may be used. The layer structure of each embodiment of the resin sheet of the present invention is basically the same as described above. In addition, for example, scrap raw materials generated in the manufacturing process of the resin sheet of the present invention and the molded container are used as physical properties. As long as deterioration such as the above is not observed, it may be added to the base material layer or may be laminated as a further layer.
 次に、単層又は多層樹脂シートに凹凸形状を形成するが、この方法も特に制限はなく、当業者に知られている任意の方法を使用することができる。例えば、押出成形方式を用いて製造する方法、フォトリソグラフィー方式を用いて製造する方法、熱プレス方式を用いて製造する方法、パターンロールとUV硬化樹脂とを用いて製造する方法等である。 Next, the concavo-convex shape is formed on the single-layer or multilayer resin sheet, but this method is also not particularly limited, and any method known to those skilled in the art can be used. For example, a manufacturing method using an extrusion molding method, a manufacturing method using a photolithography method, a manufacturing method using a hot press method, a manufacturing method using a pattern roll and a UV curable resin, and the like.
 次に、凹凸形状層の凹凸形状を、成形後においても保持し、所望の撥液性を維持するために、凹凸形状層に架橋体を形成する。この架橋処理は、樹脂シートの凹凸形状層が存在しているシート表面に対して電子線を照射することが好ましい。すなわち、前述のように、凹凸形状層は、ポリオレフィン系樹脂を含有する組成物を用いて形成されている。ポリオレフィンとしては、ポリエチレンやポリプロピレンが好ましい。ポリオレフィンは、ポリフッ化ビニリデン、ポリメチルアクリレート、ポリ塩化ビニル、ポリブタジエン、ビニルアルコール、ポリアミドなどと同様に、電子線照射により分子鎖架橋が優先的に進行する架橋型高分子である。なかでも直鎖状低密度ポリエチレンや直鎖状中密度ポリエチレン、ランダムポリプロピレン、ブロックポリプロピレンが架橋しやすく、特に直鎖状低密度ポリエチレンが最も架橋しやすい。よって、凹凸形状層が存在しているシート表面に対して電子線を照射すると、凹凸形状層を架橋体とすることができる。 Next, in order to maintain the uneven shape of the uneven layer after molding and maintain the desired liquid repellency, a crosslinked body is formed on the uneven layer. In this crosslinking treatment, it is preferable to irradiate the surface of the sheet on which the uneven shape layer of the resin sheet exists with an electron beam. That is, as described above, the concavo-convex layer is formed using a composition containing a polyolefin resin. As the polyolefin, polyethylene and polypropylene are preferable. Polyolefin is a cross-linked polymer in which molecular chain cross-linking proceeds preferentially by electron beam irradiation, like polyvinylidene fluoride, polymethyl acrylate, polyvinyl chloride, polybutadiene, vinyl alcohol, polyamide and the like. Among these, linear low density polyethylene, linear medium density polyethylene, random polypropylene, and block polypropylene are easily crosslinked, and linear low density polyethylene is most easily crosslinked. Therefore, when an electron beam is irradiated to the sheet surface on which the uneven shape layer exists, the uneven shape layer can be made into a crosslinked body.
 ポリオレフィン系樹脂組成物に対する電子線照射の条件は、加速電圧が110kV~210kV、線量が120kGy~350kGyであることが好ましい。この条件範囲で電子線を凹凸形状シートの表面に照射することで、成形後でも凹凸形状を維持する架橋体とすることが可能となる。また、単層の場合に凹凸形状シート全体へ照射しても、凹凸形状が形成されている反対面への電子線照射量は少量になるため、物性等に影響する虞はなく、また複層の場合に凹凸形状層を越えて照射しても、シーラント樹脂層等への電子線照射量は少量になるため、層間接着性等に影響する虞はない。これに対して、この条件よりも弱い照射条件では、凹凸形状層の凹凸形状部分を、その形状が加熱延伸後もほぼ維持される程度まで架橋させることができない一方、この条件よりも強い照射条件では、包装用の蓋材とのシール性不良(十分な剥離強度が発生しない)の虞がある。ここで、凹凸形状層の架橋度合いは、特に限定されるものではないが、樹脂シートの成形後に凸形状の高さが十分に維持され、好ましくは高さの低下率が30%以下、より好ましくは25%以下、更に好ましくは20%以下となる程度に架橋させる。この条件を満たすシートによって成形した容器では、前述の撥液層との併用で、所望の撥液性が得られる。 The electron beam irradiation conditions for the polyolefin resin composition are preferably an acceleration voltage of 110 kV to 210 kV and a dose of 120 kGy to 350 kGy. By irradiating the surface of the concavo-convex sheet with the electron beam in this condition range, a crosslinked body that maintains the concavo-convex shape even after molding can be obtained. In the case of a single layer, even if the entire concavo-convex sheet is irradiated, the electron beam irradiation amount on the opposite surface on which the concavo-convex shape is formed is small, so there is no possibility of affecting the physical properties, etc. In this case, even if the irradiation is carried out beyond the concavo-convex shape layer, the amount of electron beam irradiation to the sealant resin layer or the like becomes small, so there is no possibility of affecting the interlayer adhesion or the like. On the other hand, under the irradiation conditions weaker than this condition, the concavo-convex shape portion of the concavo-convex shape layer cannot be cross-linked to the extent that the shape is substantially maintained even after heating and stretching, while the irradiation conditions stronger than this condition Then, there exists a possibility of the sealing performance defect with the cover material for packaging (sufficient peeling strength does not generate | occur | produce). Here, the degree of cross-linking of the concavo-convex shape layer is not particularly limited, but the height of the convex shape is sufficiently maintained after molding of the resin sheet, preferably the reduction rate of the height is 30% or less, more preferably Is crosslinked to an extent of 25% or less, more preferably 20% or less. In a container formed of a sheet satisfying this condition, desired liquid repellency can be obtained in combination with the liquid repellent layer described above.
 最後に、凹凸形状層の表面に撥液層を形成する。撥液層を形成する方法は特に限定されず、例えば、ロールコーティング、グラビアコーティング、バーコート、ドクターブレードコーティング、刷毛塗り、粉体静電法等の公知の塗工方法を採用することができる。また塗工液を調製する際の溶媒も、特に限定されず、水の他、例えばアルコール(エタノール)、シクロヘキサン、トルエン、アセトンIPA、プロピレングリコール、ヘキシレングリコール、ブチルジグリコール、ペンタメチレングリコール、ノルマルペンタン、ノルマルヘキサン、ヘキシルアルコール等の有機溶剤を適宜選択することができる。この際、微量の分散剤、着色剤、沈降防止剤、粘度調整剤等を併用することもできる。 Finally, a liquid repellent layer is formed on the surface of the uneven layer. The method for forming the liquid repellent layer is not particularly limited, and for example, a known coating method such as roll coating, gravure coating, bar coating, doctor blade coating, brush coating, or electrostatic powder method can be employed. Also, the solvent for preparing the coating liquid is not particularly limited. In addition to water, for example, alcohol (ethanol), cyclohexane, toluene, acetone IPA, propylene glycol, hexylene glycol, butyl diglycol, pentamethylene glycol, normal An organic solvent such as pentane, normal hexane, and hexyl alcohol can be appropriately selected. At this time, a very small amount of a dispersant, a colorant, an anti-settling agent, a viscosity modifier and the like can be used in combination.
 なお、上記においては、電子線照射による凹凸形状層の架橋処理を、凹凸形状層の上に撥液層を形成する前に行う例を説明したが、凹凸形状層の上に撥液層を積層した後に架橋処理を行ってもよい。 In the above description, the example of performing the crosslinking treatment of the concavo-convex layer by electron beam irradiation before forming the liquid repellent layer on the concavo-convex layer has been described, but the liquid repellent layer is laminated on the concavo-convex layer. After that, a crosslinking treatment may be performed.
<成形品>
 本発明の成形品は、本発明の樹脂シートを成形してなる。成形方法としては、一般的な真空成形、圧空成形やこれらの応用として、シートの片面にプラグを接触させて成形を行うプラグアシスト法、又、シートの両面に一対をなす雄雌型を接触させて成形を行う、いわゆるマッチモールド成形と称される方法等が挙げられるが、これらに限定されるものではない。また、成形前にシートを加熱軟化させる方法として、非接触加熱である赤外線ヒーター等による輻射加熱等、公知のシート加熱方法を適応することができる。
<Molded product>
The molded product of the present invention is formed by molding the resin sheet of the present invention. Forming methods include general vacuum forming, pressure forming, and as an application thereof, a plug assist method in which a plug is brought into contact with one side of a sheet, and a pair of male and female dies are brought into contact with both sides of the sheet. A method called so-called “match mold molding” is performed, but the method is not limited thereto. Further, as a method for heating and softening the sheet before molding, a known sheet heating method such as radiation heating with an infrared heater or the like which is non-contact heating can be applied.
 樹脂シートの凸形状高さに対する凸形状高さの低下率は、30%以下であることが好ましく、より好ましくは25%以下、更に好ましくは20%以下である。低下率を30%以下とすることで、容器に所望の撥液性が得られる。凸形状高さの低下率は、成形に用いた樹脂シートおよび成形したトレー容器の底面部の凸形状高さを、レーザー顕微鏡等を用いて測定し、下記の式で算出することができる。
  凸形状高さの低下率=[(樹脂シートの凸部高さ)-(トレー容器の底面部凸部高さ)]/樹脂シートの凸部高さ×100(%)
 上述のように、架橋時の電子線照射の条件(加速電圧、線量)を適正にすることにより、成形後の凹凸形状を維持して、凸形状の高さの変化率を少なくすることができる。
The reduction rate of the convex shape height with respect to the convex shape height of the resin sheet is preferably 30% or less, more preferably 25% or less, and still more preferably 20% or less. By setting the reduction rate to 30% or less, desired liquid repellency can be obtained in the container. The rate of decrease in the convex shape height can be calculated by the following formula by measuring the convex height of the resin sheet used for molding and the bottom portion of the molded tray container using a laser microscope or the like.
Decrease rate of convex shape height = [(the height of the convex portion of the resin sheet) − (the height of the convex portion of the bottom portion of the tray container)] / the height of the convex portion of the resin sheet × 100 (%)
As described above, by adjusting the electron beam irradiation conditions (acceleration voltage, dose) at the time of crosslinking, the uneven shape after molding can be maintained, and the rate of change in the height of the convex shape can be reduced. .
 成形品にフランジ部および底面部を有する場合は、ブランジ部の厚みに対する底面部の厚みの比は0.40~0.95であることが好ましい。厚みの比をこの範囲に調整することで、容器に所望の撥液性が得られる。 When the molded product has a flange portion and a bottom surface portion, the ratio of the thickness of the bottom surface portion to the thickness of the flange portion is preferably 0.40 to 0.95. By adjusting the thickness ratio within this range, desired liquid repellency can be obtained in the container.
 以下、本発明を実施例及び比較例を挙げてより具体的に説明するが、本発明は実施例等の内容に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the contents of Examples and the like.
 実施例等で用いた各種原料は以下の通りである。
(1)凹凸形状層
 (A-1)ランダムポリプロピレン「PM921V」(サンアロマー社製)
 (A-2)ブロックポリプロピレン「PM854X」(サンアロマー社製)
 (B-1)直鎖状中密度ポリエチレン樹脂(C4)「ネオゼックス 45200」(プライムポリマー社製)
 (B-2)直鎖状低密度ポリエチレン樹脂(C6)「ウルトゼックス 20200J」(プライムポリマー社製)
 (C)スチレン-共役ジエンブロック共重合体樹脂「730L」(電気化学工業社製)(ジエン含有量25質量%)
 (D)GPPS樹脂「G100C」(東洋スチレン社製)
Various raw materials used in Examples and the like are as follows.
(1) Concavity and convexity layer (A-1) Random polypropylene “PM921V” (manufactured by Sun Allomer)
(A-2) Block polypropylene “PM854X” (manufactured by Sun Allomer)
(B-1) Linear medium density polyethylene resin (C4) “Neozex 45200” (manufactured by Prime Polymer)
(B-2) Linear low density polyethylene resin (C6) “Ultzex 20200J” (manufactured by Prime Polymer Co., Ltd.)
(C) Styrene-conjugated diene block copolymer resin “730L” (manufactured by Denki Kagaku Kogyo) (diene content: 25% by mass)
(D) GPPS resin “G100C” (manufactured by Toyo Styrene Co., Ltd.)
(2)撥液層
 (E)疎水性酸化物微粒子:疎水性シリカ「AEROSIL R812S」(エボニック デグザ社製)
 (F-1)フッ素系共重合体樹脂:「AG-E070」(旭硝子社製)
 (F-2)フッ素系共重合体樹脂:「AG-E550D」(旭硝子社製)
(2) Liquid repellent layer (E) Hydrophobic oxide fine particles: Hydrophobic silica “AEROSIL R812S” (manufactured by Evonik Degussa)
(F-1) Fluorine-based copolymer resin: “AG-E070” (Asahi Glass Co., Ltd.)
(F-2) Fluorine copolymer resin: “AG-E550D” (Asahi Glass Co., Ltd.)
(3)シーラント樹脂層
 (G)水添スチレン系熱可塑性エラストマー「タフテックP2000」(旭化成社製)
 (H)水添スチレン系熱可塑性エラストマー「タフテックM1943」(旭化成社製)
 (I)変性オレフィン系樹脂「モディックF502」(三菱化学社製)
 (J)変性オレフィン系樹脂「アドマー SE810」(三井化学社製)
 (K)HIPS樹脂「トーヨースチロールH850N」(東洋スチレン社製、ブタジエン含量9.0質量%)
(3) Sealant resin layer (G) Hydrogenated styrene thermoplastic elastomer “Tuftec P2000” (manufactured by Asahi Kasei)
(H) Hydrogenated styrene thermoplastic elastomer “Tuftec M1943” (manufactured by Asahi Kasei Corporation)
(I) Modified olefin resin “Modic F502” (Mitsubishi Chemical Corporation)
(J) Modified Olefin Resin “Admer SE810” (Mitsui Chemicals)
(K) HIPS resin “Toyostyrene H850N” (manufactured by Toyo Styrene Co., Ltd., butadiene content: 9.0% by mass)
(4)基材層
 (H)水添スチレン系熱可塑性エラストマー「タフテックM1943」(旭化成社製)
 (K)HIPS樹脂「トーヨースチロールH850N」(東洋スチレン社製、ブタジエン含量9.0質量%)
 (L)GPPS樹脂「HRM23」(東洋スチレン社製)
 (M)PET樹脂「TRN-8550FF」(帝人社製)
 (N)ナイロン6樹脂「1022B」(宇部興産社製)
 (O)エチレン-ビニルアルコール共重合体「エバールJ-171B」(クラレ社製)
 (P)アクリル樹脂 「HBS000」(三菱化学社製)
 (Q)ポリカーボネート樹脂 「L-1225L」(帝人社製)
(4) Base material layer (H) Hydrogenated styrene-based thermoplastic elastomer “Tuftec M1943” (manufactured by Asahi Kasei Corporation)
(K) HIPS resin “Toyostyrene H850N” (manufactured by Toyo Styrene Co., Ltd., butadiene content: 9.0% by mass)
(L) GPPS resin “HRM23” (manufactured by Toyo Styrene Co., Ltd.)
(M) PET resin “TRN-8550FF” (manufactured by Teijin Limited)
(N) Nylon 6 resin “1022B” (manufactured by Ube Industries)
(O) Ethylene-vinyl alcohol copolymer “EVAL J-171B” (manufactured by Kuraray Co., Ltd.)
(P) Acrylic resin “HBS000” (Mitsubishi Chemical Corporation)
(Q) Polycarbonate resin “L-1225L” (manufactured by Teijin Limited)
 実施例および比較例で作製した樹脂シートとその樹脂シートを使用して成形した容器についての各種特性の評価方法は、以下の通りである。 The evaluation method of various characteristics about the resin sheet produced by the Example and the comparative example and the container shape | molded using the resin sheet is as follows.
(1)凸形状高さ、凸形状頂点間隔
 シートの凸形状および成形したトレー容器の底面部(図8参照)の凸形状高さ、凸形状頂点間隔を、レーザー顕微鏡VK-X100(キーエンス社製)を用いて測定した。なお、測定した試料は、ミクロトームを用いて凹凸形状の断面を切断したものを用いた。凸形状高さは、シートおよびの成形品の任意の3箇所より、それぞれ形状が同じ10個の高さを測定し、その30測定値の算術平均値を用いた。凸形状が2種類以上である場合は、第1の凸形状および第2の凸形状の高さをそれぞれについて同様な方法で求めた。頂点間隔については、シートおよび成形品の任意の3箇所より、隣接する10個の凸形状の頂点間隔を測定し、その30測定値の算術平均値を用いた。凸形状が2種類以上である場合は、第1の凸形状と第2の凸形状の頂点間隔を測定し、その30測定値の算術平均値を用いた。
(1) Convex shape height, convex shape vertex interval The convex shape of the sheet and the convex shape height and convex shape vertex interval of the bottom part of the formed tray container (see FIG. 8) are measured with a laser microscope VK-X100 (manufactured by Keyence Corporation). ). In addition, the measured sample used what cut | disconnected the uneven | corrugated shaped cross section using the microtome. The height of the convex shape was obtained by measuring the height of 10 pieces having the same shape from arbitrary three locations of the sheet and the molded product, and using the arithmetic average value of 30 measured values. When there were two or more types of convex shapes, the heights of the first convex shape and the second convex shape were determined in the same manner for each. As for the apex interval, the apex intervals of 10 convex shapes adjacent to each other were measured from arbitrary three locations of the sheet and the molded product, and the arithmetic average value of the 30 measured values was used. When there were two or more types of convex shapes, the vertex interval between the first convex shape and the second convex shape was measured, and the arithmetic average value of the 30 measured values was used.
(2)接触角及び転落角
 接触角及び転落角は、シートおよび成形したトレー容器の底面部について、自動接触角計DM-501(協和界面科学社製)を用いて測定した。また、試験液はサラダ油(日清オイリオグループ社)、ハンドソープ「キレイキレイ」(ライオン社製)、乳液「雪ごこち」(ロート製薬)、絵具「黒」(ぺんてる社製)を用い、滴下量は、接触角測定時は8μL、転落角測定時は20μLとした。
 シートの場合は、接触角が130°以上であると撥液性が高く、液体の付着を防止できると判定できる。また転落角が40°以下であると撥液性が高く、液体の付着を防止できると判定できる。トレー容器の場合は、接触角が120°以上であると撥液性が高く、液体の付着を防止できると判定できる。また転落角が70°以下であると撥液性が高く、液体の付着を防止できると判定できる。
(2) Contact angle and tumbling angle The contact angle and tumbling angle were measured on the bottom of the sheet and the formed tray container using an automatic contact angle meter DM-501 (manufactured by Kyowa Interface Science Co., Ltd.). The test solution is salad oil (Nisshin Oillio Group), hand soap “Kirei Kirei” (Lion Corporation), emulsion “Yukigokochi” (Rohto Pharmaceutical), and paint “Black” (Pentel Corporation). Was 8 μL when measuring the contact angle, and 20 μL when measuring the sliding angle.
In the case of a sheet, it can be determined that if the contact angle is 130 ° or more, the liquid repellency is high and liquid adhesion can be prevented. Further, when the falling angle is 40 ° or less, the liquid repellency is high, and it can be determined that the adhesion of the liquid can be prevented. In the case of a tray container, it can be determined that if the contact angle is 120 ° or more, the liquid repellency is high and liquid adhesion can be prevented. Further, when the falling angle is 70 ° or less, the liquid repellency is high, and it can be determined that the adhesion of the liquid can be prevented.
(3)シール性評価
 成形したトレー容器のフランジ部(図8参照)を切り取り、ヒートシールテスター(佐川製作所製)を用いてヒートシールを実施した。ヒートシールテスターのシールコテ幅は1.0mmのものを使用し、シール材はミルクポーション容器に用いられている蓋材(PET樹脂とアルミニウム箔の積層体を基材とし、シーラント剤にアクリル系樹脂またはポリエステル系樹脂を用いた蓋材、厚さ:80μm)を使用した。シール温度は210℃であり、シール圧は0.36MPaである。また、剥離強度はストログラフVE1D(東洋精機社製)を用いて、ストログラフの一方のチャック部に蓋材を挟み、もう一方のチャック部にはシートサンプルを挟んで測定した。剥離速度は200mm/minである。剥離強度が2.8N以上であると、シール性が良好であると判定できる。
(3) Sealing property evaluation The flange part (refer FIG. 8) of the shape | molded tray container was cut out, and it heat-sealed using the heat seal tester (made by Sagawa Seisakusho). The seal iron width of the heat seal tester is 1.0 mm, and the seal material is a lid material used for milk portion containers (based on a laminate of PET resin and aluminum foil, with an acrylic resin or sealant agent) A cover material using a polyester resin, thickness: 80 μm) was used. The sealing temperature is 210 ° C. and the sealing pressure is 0.36 MPa. Further, the peel strength was measured using a strograph VE1D (manufactured by Toyo Seiki Co., Ltd.) with a lid member sandwiched between one chuck part of the strograph and a sheet sample sandwiched between the other chuck part. The peeling speed is 200 mm / min. It can be determined that the sealing property is good when the peel strength is 2.8 N or more.
(4)厚み比
 成形したトレー容器のフランジ部の厚みに対する底面部(図8参照)の厚みを、下記の式で算出した。
  厚み比=底面部の厚み/フランジ部の厚み
(4) Thickness ratio The thickness of the bottom surface portion (see FIG. 8) relative to the thickness of the flange portion of the formed tray container was calculated by the following equation.
Thickness ratio = Bottom thickness / Flange thickness
(5)凸形状高さの低下率
 凸形状高さの低下率は、成形に用いた樹脂シートおよび成形したトレー容器の底面部の凸形状高さを、レーザー顕微鏡を用いて測定し、下記の式で算出した。低下率が30%以下であると、成形前後で凹凸形状が維持されていると判定できる。
  凸形状高さの低下率=[(樹脂シートの凸部高さ)-(トレー容器の底面部凸部高さ)]/樹脂シートの凸部高さ×100(%)
(5) Decreasing rate of convex shape height The decreasing rate of the convex shape height is measured by measuring the convex shape height of the bottom part of the resin sheet used for molding and the formed tray container using a laser microscope. Calculated by the formula. If the reduction rate is 30% or less, it can be determined that the uneven shape is maintained before and after molding.
Decrease rate of convex shape height = [(the height of the convex portion of the resin sheet) − (the height of the convex portion of the bottom portion of the tray container)] / the height of the convex portion of the resin sheet × 100 (%)
(6)メルトマスフローレート
 JIS K 7210に準拠し、試験温度:230℃、荷重:2.16Kgの条件下で、測定した。使用した試験機器はメルトインデックサ F-F01(株式会社東洋精機製作所製)を用いた。
(6) Melt mass flow rate Based on JIS K7210, it measured on condition of test temperature: 230 degreeC and load: 2.16Kg. The test equipment used was a melt indexer F-F01 (manufactured by Toyo Seiki Seisakusho Co., Ltd.).
(7)酸素透過率
 シートの酸素透過率は、OX-TRAN酸素透過率測定装置(Mocon社製)を用いて、JIS K7126-B法に準拠し、温度25℃、相対湿度65%の測定条件下で測定した。酸素透過率が3.0ml/m・day・atm未満であると酸素バリア性が良好であると判定できる。
(7) Oxygen transmission rate The oxygen transmission rate of the sheet was measured using an OX-TRAN oxygen transmission measuring device (manufactured by Mocon) in accordance with JIS K7126-B method at a temperature of 25 ° C. and a relative humidity of 65%. Measured below. It can be determined that the oxygen barrier property is good when the oxygen permeability is less than 3.0 ml / m 2 · day · atm.
<実施例1(図1の層構成)>
 1台の65mm単軸押出機を使用し、Tダイ法により、樹脂シートを押し出した。この押出しシートを、レーザー彫刻法で表面に凹凸形状を付与した転写ロールとタッチロールでキャスティングし、表面に凹凸形状を付与した凹凸形状層からなる樹脂シートを得た。
<Example 1 (layer structure of FIG. 1)>
A single 65 mm single screw extruder was used to extrude the resin sheet by the T-die method. This extruded sheet was cast with a transfer roll having a concavo-convex shape on the surface by a laser engraving method and a touch roll to obtain a resin sheet comprising a concavo-convex shape layer having a concavo-convex shape on the surface.
 上記で得た凹凸形状を付与した樹脂シートを、電子線照射装置(岩崎電気社製)を用いて、加速電圧:200kV、線量:250kGyの照射条件で電子線照射し、凹凸形状層の架橋処理を実施した。電子線照射前後の樹脂シートの破断点伸び率を測定したところ、電子線照射前の破断点伸び率は700%であったが、電子線照射後の破断点伸び率は10%であった。なお、破断点伸び率は樹脂シートの押出方向に打ち抜いたJIS2号ダンベルを5本作製し、23±1℃、相対湿度50±2℃の条件下、引張速度10mm/分で引張った際に破断するまでの伸び率を算術平均した値である。 Using the electron beam irradiation apparatus (made by Iwasaki Electric Co., Ltd.), the resin sheet provided with the uneven shape obtained above is irradiated with an electron beam under irradiation conditions of acceleration voltage: 200 kV, dose: 250 kGy, and crosslinking treatment of the uneven shape layer Carried out. When the elongation at break of the resin sheet before and after electron beam irradiation was measured, the elongation at break before electron beam irradiation was 700%, but the elongation at break after electron beam irradiation was 10%. The elongation at break was 5 JIS No. 2 dumbbells punched in the extrusion direction of the resin sheet, and fractured when pulled at a tensile rate of 10 mm / min under the conditions of 23 ± 1 ° C. and relative humidity of 50 ± 2 ° C. It is a value obtained by arithmetically averaging the rate of growth until it is done.
 ついで、凹凸形状層の表面に撥液層を形成するために、疎水性シリカとフッ素系共重合体樹脂を、撥液層中の疎水性シリカが66質量%、フッ素系共重合体樹脂が34質量%となるように混合した分散液(溶媒は精製水/イソプロピルアルコールの混合液)を作製した。この混合分散液を、バーコーターを用いて、コロナ処理した凹凸形状層表面にコーティングし、これを90℃~150℃で乾燥させて撥液層を形成させた。この凹凸形状層の表面に撥液層を形成した樹脂シートの組成を表1に示した。 Next, in order to form a liquid repellent layer on the surface of the concavo-convex shape layer, hydrophobic silica and a fluorinated copolymer resin are used, the hydrophobic silica in the liquid repellent layer is 66 mass%, and the fluorinated copolymer resin is 34%. A dispersion (mixed solution of purified water / isopropyl alcohol) was prepared by mixing so as to be mass%. The mixed dispersion was coated on the corona-treated concavo-convex layer surface using a bar coater, and dried at 90 ° C. to 150 ° C. to form a liquid repellent layer. Table 1 shows the composition of a resin sheet in which a liquid repellent layer is formed on the surface of the uneven layer.
 また、上記のようにして作製した樹脂シート、成形したトレー容器について、その各種特性を前述の方法によって評価した。結果を表2、表3に示す。 Further, various characteristics of the resin sheet and the molded tray container produced as described above were evaluated by the above-described methods. The results are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<実施例2~12、比較例1~7>
 凹凸形状層及び撥液層の組成、厚み、MFRを、表1に示すように設定した以外は実施例1と同様にして、実施例2~12及び比較例1~7に係る樹脂シートを作製し、またその樹脂シートを成形したトレー容器を用いて、実施例1におけるものと同様の評価試験を実施し、結果を表2、3に示した。
<Examples 2 to 12, Comparative Examples 1 to 7>
Resin sheets according to Examples 2 to 12 and Comparative Examples 1 to 7 were prepared in the same manner as in Example 1 except that the composition, thickness, and MFR of the uneven shape layer and the liquid repellent layer were set as shown in Table 1. And the evaluation test similar to the thing in Example 1 was implemented using the tray container which shape | molded the resin sheet, and the result was shown to Table 2,3.
 なお、比較例1では撥液層を形成せず、比較例2では凹凸形状を付与していない。比較例3では疎水性シリカを含有せず、比較例4では撥液層にフッ素系共重合体樹脂が用いられていない組成である。比較例5では撥液層に疎水性の表面処理を実施していないシリカを用いた組成であり、比較例6では凹凸形状が釣鐘型の樹脂シートでHIPS樹脂のみ用いた組成であり、比較例7は電子線照射を実施していない。 In Comparative Example 1, a liquid repellent layer is not formed, and in Comparative Example 2, an uneven shape is not provided. Comparative Example 3 does not contain hydrophobic silica, and Comparative Example 4 has a composition in which no fluorinated copolymer resin is used in the liquid repellent layer. In Comparative Example 5, the liquid repellent layer is a composition using silica that has not been subjected to a hydrophobic surface treatment. In Comparative Example 6, the concave-convex shape is a bell-shaped resin sheet using only a HIPS resin. 7 does not carry out electron beam irradiation.
 表2に示した結果から以下のことが明らかになった。実施例1~12の全てにおいて、樹脂シートでの各液体に対する撥液性(接触角、転落角)凸形状高さの低下率に関する評価基準を全て満足する結果が得られた。これに対して、比較例1~4、6、7では、樹脂シートは精製水以外の液体が転がらなかった。比較例5では、すべての液体が転がらなかった。 From the results shown in Table 2, the following became clear. In all of Examples 1 to 12, the results satisfying all the evaluation criteria regarding the reduction rate of the liquid repellency (contact angle, falling angle) convex shape height with respect to each liquid in the resin sheet were obtained. On the other hand, in Comparative Examples 1 to 4, 6, and 7, no liquid other than purified water was rolled on the resin sheet. In Comparative Example 5, all the liquid did not roll.
<実施例13(図5の層構成)>
 3台の40mm単軸押出機を使用し、フィードブロック法により、凹凸形状層80μm、シーラント樹脂層40μm、基材層(ナイロン系樹脂)380μmという層構成をこの順で有する、厚み500μmの多層樹脂シートをTダイ法より押し出した。
<Example 13 (layer structure of FIG. 5)>
A multilayer resin having a thickness of 500 μm using three 40 mm single-screw extruders and having a layer configuration of an uneven shape layer of 80 μm, a sealant resin layer of 40 μm, and a base material layer (nylon-based resin) of 380 μm in this order by a feed block method. The sheet was extruded by the T-die method.
 上記で得た押出シートは、レーザー彫刻法で表面に凹凸形状を付与した転写ロールとタッチロールでキャスティングし、シート表面に凹凸形状を付与した多層樹脂シートを得た。 The extruded sheet obtained above was cast with a transfer roll and a touch roll having a concavo-convex shape on the surface by a laser engraving method to obtain a multilayer resin sheet having a concavo-convex shape on the sheet surface.
 上記で得た凹凸形状を付与した樹脂シートを、電子線照射装置(岩崎電気社製)を用いて、加速電圧:200kV、線量:250kGyの照射条件で電子線照射し、凹凸形状層の架橋処理を実施した。 Using the electron beam irradiation apparatus (made by Iwasaki Electric Co., Ltd.), the resin sheet provided with the uneven shape obtained above is irradiated with an electron beam under irradiation conditions of acceleration voltage: 200 kV, dose: 250 kGy, and crosslinking treatment of the uneven shape layer Carried out.
 ついで、凹凸形状層の表面に撥液層を形成するために、疎水性シリカとフッ素系共重合体樹脂を、疎水性シリカが66質量%、フッ素系共重合体樹脂が34質量%となるように混合した分散液(溶媒は精製水及びイソプロピルアルコールの混合液)を作製した。この混合分散液を、バーコーターを用いて、コロナ処理した凹凸形状層表面にコーティングし、これを90℃~150℃で乾燥させて撥液層を形成させた。この凹凸形状層の表面に撥液層を形成した樹脂シートの各層の組成、層構成を表4に示した。 Next, in order to form a liquid repellent layer on the surface of the concavo-convex shape layer, hydrophobic silica and fluorine-based copolymer resin are used so that the hydrophobic silica is 66% by mass and the fluorine-based copolymer resin is 34% by mass. (The solvent is a mixture of purified water and isopropyl alcohol). The mixed dispersion was coated on the corona-treated concavo-convex layer surface using a bar coater, and dried at 90 ° C. to 150 ° C. to form a liquid repellent layer. Table 4 shows the composition and layer structure of each layer of the resin sheet in which the liquid repellent layer is formed on the surface of the uneven layer.

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 また上記のようにして作製した樹脂シート、成形したトレー容器について、その各種特性を前述の方法によって評価した。結果を表5、6に示す。 Further, various properties of the resin sheet and the molded tray container produced as described above were evaluated by the above-described methods. The results are shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<実施例14~24、比較例8、10~14>
 凹凸形状層、撥液層、及びその他の多層樹脂シート各層の組成、厚み、MFRを、表4に示すように設定した以外は実施例13と同様にして、実施例14~24及び比較例8、10~14に係る樹脂シートを作製した。その樹脂シートを成形したトレー容器を用いて、実施例13におけるものと同様の評価試験を実施し、結果を表5、6に示した。
<Examples 14 to 24, Comparative Examples 8, 10 to 14>
Examples 14 to 24 and Comparative Example 8 were the same as Example 13 except that the composition, thickness, and MFR of the uneven layer, liquid repellent layer, and other multilayer resin sheets were set as shown in Table 4. Resin sheets according to 10 to 14 were produced. An evaluation test similar to that in Example 13 was performed using a tray container formed with the resin sheet, and the results are shown in Tables 5 and 6.
 なお、比較例9では撥油層を形成していない。比較例10では凹凸形状層にMFRが1.1g/10minのポリエチレンを用いたため、転写性が不良であり、比較例11では撥液層に疎水性シリカが用いられていない組成である。比較例12では撥液層にフッ素系共重合体樹脂を用いていない組成であり、比較例13では撥液層に疎水性の表面処理を実施していないシリカを用いた組成であり、比較例14は電子線照射を実施していない。 In Comparative Example 9, the oil repellent layer was not formed. In Comparative Example 10, polyethylene having an MFR of 1.1 g / 10 min was used for the concavo-convex shape layer, so that the transferability was poor. In Comparative Example 11, the hydrophobic layer was not used in the liquid repellent layer. Comparative Example 12 is a composition that does not use a fluorinated copolymer resin in the liquid repellent layer, and Comparative Example 13 is a composition that uses silica that has not been subjected to hydrophobic surface treatment in the liquid repellent layer. 14 does not carry out electron beam irradiation.
 表5、6に示した結果から以下のことが明らかになった。実施例13~24の全てに、樹脂シートでの各液体に対する撥液性(接触角、転落角)、凸形状高さの低下率、シール性に関する評価基準を全て満足する結果が得られた。これに対して、比較例8、10~12、14では、精製水以外の液体が転がらなかった。また、比較例13ではすべての液体が転がらず、高線量のため、シールが出来なかった(シールコテで凸形状が潰れない)。 From the results shown in Tables 5 and 6, the following became clear. In all of Examples 13 to 24, the results satisfying all the evaluation criteria regarding the liquid repellency (contact angle, falling angle), the reduction rate of the convex shape height, and the sealing property with respect to each liquid in the resin sheet were obtained. On the other hand, in Comparative Examples 8, 10 to 12, and 14, liquids other than purified water did not roll. Further, in Comparative Example 13, all liquids did not roll, and because of the high dose, sealing could not be performed (the convex shape was not crushed by the sealing iron).
<実施例25(図6の層構成)>
 2台の40mm単軸押出機を使用し、フィードブロック法により、凹凸形状層90μm、基材層610μmという層構成を有する、厚み700μmの樹脂シートをTダイより押し出した。なお、基材層として、耐衝撃性ポリスチレン樹脂と水添スチレン熱可塑性エラストマーを質量比95/5(HIPS/水添スチレン系熱可塑性エラストマー)で混合したものを用いた。上記で得た押出シートについて、実施例13と同様の評価試験を行った。結果を表5および6に示す。
<Example 25 (layer structure of FIG. 6)>
Using two 40 mm single-screw extruders, a 700 μm-thick resin sheet having a layer structure of an uneven shape layer of 90 μm and a base material layer of 610 μm was extruded from a T die by a feed block method. In addition, as a base material layer, what mixed impact-resistant polystyrene resin and hydrogenated styrene thermoplastic elastomer by mass ratio 95/5 (HIPS / hydrogenated styrene type thermoplastic elastomer) was used. The extruded sheet obtained above was subjected to the same evaluation test as in Example 13. The results are shown in Tables 5 and 6.
<実施例26、比較例9>
 凹凸形状層、撥液層、スチレン系樹脂層の組成、厚み、MFRを、表3に示すように設定した以外は実施例25と同様にして、実施例26及び比較例9に係る樹脂シートを作製し、その特性の評価結果を表5および6に示した。なお、比較例9は凹凸形状を付与していない組成である。
<Example 26, Comparative Example 9>
The resin sheets according to Example 26 and Comparative Example 9 were the same as Example 25 except that the composition, thickness, and MFR of the concavo-convex shape layer, liquid repellent layer, and styrene resin layer were set as shown in Table 3. Tables 5 and 6 show the results of evaluation and evaluation of the characteristics. In addition, the comparative example 9 is a composition which has not provided uneven | corrugated shape.
 表5および6に示した結果から以下のことが明らかになった。実施例25~26においては、樹脂シートでの各液体に対する撥液性(接触角、転落角)、凸形状高さの低下率、シール性に関する評価基準を全て満足する結果が得られた。これに対して、比較例9では、精製水以外の液体は転落しない結果となった。 From the results shown in Tables 5 and 6, the following became clear. In Examples 25 to 26, the results satisfying all the evaluation criteria concerning the liquid repellency (contact angle, falling angle), the reduction rate of the convex shape height, and the sealing property with respect to each liquid in the resin sheet were obtained. On the other hand, in Comparative Example 9, the liquid other than the purified water did not fall.
<実施例27(図7の層構成)>
 5台の40mm単軸押出機を使用し、フィードブロック法により、凹凸形状層80μm、第1のシーラント樹脂層10μm、酸素バリア性樹脂層15μm、第2のシーラント樹脂層10μm、基材層385μmをこの順で有する、厚み500μmの多層樹脂シートをTダイより押し出した。
<Example 27 (layer structure of FIG. 7)>
Using five 40 mm single-screw extruders, by a feed block method, an uneven shape layer 80 μm, a first sealant resin layer 10 μm, an oxygen barrier resin layer 15 μm, a second sealant resin layer 10 μm, and a base material layer 385 μm A multilayer resin sheet having a thickness of 500 μm in this order was extruded from a T die.
 上記で得た押出しシートは、レーザー彫刻法で表面に凹凸形状を付与した転写ロールとタッチロールでキャスティングし、シート表面に凹凸形状を付与した樹脂シートを得た。 The extruded sheet obtained above was cast with a transfer roll and a touch roll having a concavo-convex shape on the surface by a laser engraving method to obtain a resin sheet having a concavo-convex shape on the sheet surface.
 上記で得た凹凸形状を付与した樹脂シートを、電子線照射装置(岩崎電気社製)を用いて、加速電圧:200kV、線量:250kGyの照射条件で電子線照射し、凹凸形状層の架橋処理を実施した。 Using the electron beam irradiation apparatus (made by Iwasaki Electric Co., Ltd.), the resin sheet provided with the uneven shape obtained above is irradiated with an electron beam under irradiation conditions of acceleration voltage: 200 kV, dose: 250 kGy, and crosslinking treatment of the uneven shape layer Carried out.
 ついで、凹凸形状層の表面に撥液層を形成するために、疎水性シリカとフッ素系共重合体樹脂を、疎水性シリカが66質量%、フッ素系共重合体樹脂が34質量%となるように混合した分散液(溶媒は精製水及びイソプロピルアルコールの混合液)を作製した。この混合分散液を、バーコーターを用いて、コロナ処理した凹凸形状層表面にコーティングし、これを90℃~150℃で乾燥させて撥液層を形成させた。各層の構成を表7に、評価結果を表8および表9に示す。 Next, in order to form a liquid repellent layer on the surface of the concavo-convex shape layer, hydrophobic silica and fluorine-based copolymer resin are used so that the hydrophobic silica is 66% by mass and the fluorine-based copolymer resin is 34% by mass. (The solvent is a mixture of purified water and isopropyl alcohol). The mixed dispersion was coated on the corona-treated concavo-convex layer surface using a bar coater, and dried at 90 ° C. to 150 ° C. to form a liquid repellent layer. Table 7 shows the configuration of each layer, and Tables 8 and 9 show the evaluation results.

Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<実施例28~39、比較例15~21>
 凹凸形状層、撥液層、その他の多層樹脂シート各層の組成、厚み、MFRを、表7に示すように設定した以外は実施例27と同様にして、実施例28~39及び比較例15~21に係る樹脂シートを作製した。
<Examples 28 to 39, Comparative Examples 15 to 21>
Examples 28 to 39 and Comparative Examples 15 to 39 were the same as Example 27 except that the composition, thickness, and MFR of each layer of the concavo-convex shape layer, liquid repellent layer, and other multilayer resin sheets were set as shown in Table 7. A resin sheet according to No. 21 was produced.
 なお、比較例15では撥液層を形成せず、比較例16では凹凸形状を付与していない。比較例17では凹凸形状層にMFRが1.1g/10minのポリエチレンを用いたため、転写性が不良であり、比較例18では撥液層に疎水性シリカが用いられていない組成である。比較例19ではフッ素系共重合体を用いていない組成であり、比較例20では撥液層に疎水性の表面処理を実施していないシリカを用いた組成であり、比較例21は電子線照射を実施していない。 In Comparative Example 15, a liquid repellent layer was not formed, and in Comparative Example 16, an uneven shape was not provided. In Comparative Example 17, polyethylene having an MFR of 1.1 g / 10 min was used for the concavo-convex shape layer, so the transferability was poor. In Comparative Example 18, the composition was such that hydrophobic silica was not used in the liquid repellent layer. Comparative Example 19 has a composition that does not use a fluorinated copolymer, Comparative Example 20 has a composition that uses silica that has not been subjected to a hydrophobic surface treatment for the liquid repellent layer, and Comparative Example 21 has an electron beam irradiation. Is not implemented.
 表8および9に示した結果から以下のことが明らかになった。実施例27~39の全てに、シートでの各液体に対する撥液性(接触角、転落角)、凸形状高さの低下率、シール性、酸素バリア性に関する評価基準を全て満足する結果が得られた。これに対して、比較例15~19、21では精製水以外の液体は転落しない結果となった。また、比較例20ではすべての液体が転がらず、高線量のため、シールが出来なかった(シールコテで凸形状が潰れない)。 From the results shown in Tables 8 and 9, the following became clear. In all of Examples 27 to 39, the results satisfying all the evaluation criteria concerning the liquid repellency (contact angle, falling angle), the reduction rate of the convex shape height, the sealing property, and the oxygen barrier property with respect to each liquid in the sheet are obtained. It was. On the other hand, in Comparative Examples 15 to 19, and 21, liquids other than purified water did not fall. Further, in Comparative Example 20, all liquids did not roll, and because of the high dose, sealing could not be performed (the convex shape was not crushed by the sealing iron).
 以上、様々な実施形態を用いて本発明を説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されないことは言うまでもない。上記実施形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。またその様な変更又は改良を加えた形態も本発明の技術的範囲に含まれうることは、特許請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using various embodiment, it cannot be overemphasized that the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. Further, it is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
1      凹凸形状層
1a     凸形状
1b     凸部頂点
1c     第1の凸形状
1d     第2の凸形状
h      凸形状高さ
t      凸形状頂点間隔
2      撥液層
3      シーラント樹脂層
3a     第1のシーラント樹脂層
3b     第2のシーラント樹脂層
4      基材層
5      酸素バリア性基材層
6      フランジ部
7      底面部
DESCRIPTION OF SYMBOLS 1 Convex shape layer 1a Convex shape 1b Convex part vertex 1c 1st convex shape 1d 2nd convex shape h Convex shape height t Convex shape vertex space | interval 2 Liquid repellent layer 3 Sealant resin layer 3a 1st sealant resin layer 3b 1st 2 sealant resin layer 4 base material layer 5 oxygen barrier base material layer 6 flange portion 7 bottom surface portion

Claims (19)

  1.  一方の面に、少なくとも1種以上の凸形状を有する凹凸形状層を有し、前記凹凸形状層が、ポリオレフィン系樹脂架橋体を含有し、前記凸形状を有する面上に疎水性酸化物微粒子およびフッ素系共重合体樹脂を含有する撥液層を備えた、撥液性樹脂シート。 On one surface, it has a concavo-convex shape layer having at least one or more convex shapes, the concavo-convex shape layer contains a polyolefin-based resin crosslinked body, and hydrophobic oxide fine particles on the surface having the convex shape and A liquid repellent resin sheet provided with a liquid repellent layer containing a fluorinated copolymer resin.
  2.  前記凹凸形状層が、ポリオレフィン系樹脂を含む樹脂組成物に電子線照射して架橋させてなる、請求項1に記載の撥液性樹脂シート。 The liquid-repellent resin sheet according to claim 1, wherein the concavo-convex layer is formed by crosslinking a resin composition containing a polyolefin resin by electron beam irradiation.
  3.  前記ポリオレフィン系樹脂を含有する樹脂組成物が、ポリオレフィン系樹脂を35~100質量%含む、請求項2に記載の撥液性樹脂シート。 The liquid-repellent resin sheet according to claim 2, wherein the resin composition containing the polyolefin resin contains 35 to 100% by mass of the polyolefin resin.
  4.  前記凹凸形状層の凸形状を有する面の反対側の面に、スチレン系樹脂、オレフィン系樹脂、ポリエステル系樹脂、ナイロン系樹脂、エチレン-ビニルアルコール共重合体樹脂、及びアクリル系樹脂から選択される樹脂からなる層を少なくとも1層以上有する基材層が積層された、請求項1から3の何れか一項に記載の撥液性樹脂シート。 The surface opposite to the surface having the convex shape of the concave-convex shape layer is selected from styrene resin, olefin resin, polyester resin, nylon resin, ethylene-vinyl alcohol copolymer resin, and acrylic resin. The liquid-repellent resin sheet according to any one of claims 1 to 3, wherein a base material layer having at least one layer made of resin is laminated.
  5.  前記凹凸形状層と前記基材層との間に、変性オレフィン系樹脂および水添スチレン系熱可塑性エラストマーから選択される1種又は2種の樹脂を含有するシーラント樹脂層を有する、請求項1から4の何れか一項に記載の撥液性樹脂シート。 From the said uneven | corrugated shaped layer and the said base material layer, it has the sealant resin layer containing 1 type or 2 types of resin selected from a modified olefin type resin and a hydrogenated styrene type thermoplastic elastomer. The liquid repellent resin sheet according to any one of 4.
  6.  前記凸形状が、第1の凸形状と第2の凸形状とからなり、第1の凸形状の高さおよび第2の凸形状の高さがそれぞれ20μm~150μmであり、隣接する凸形状の頂点間隔が20μm~100μmである、請求項1から5の何れか一項に記載の撥液性樹脂シート。 The convex shape is composed of a first convex shape and a second convex shape, and the height of the first convex shape and the height of the second convex shape are 20 μm to 150 μm, respectively. 6. The liquid repellent resin sheet according to claim 1, wherein the vertex interval is 20 μm to 100 μm.
  7.  前記第1の凸形状及び第2の凸形状が千鳥配置され、第1の凸形状の高さに対する第2の凸形状の高さの比が0.4以上0.8以下である、請求項6に記載の撥液性樹脂シート。 The first convex shape and the second convex shape are staggered, and the ratio of the height of the second convex shape to the height of the first convex shape is 0.4 or more and 0.8 or less. 6. The liquid repellent resin sheet according to 6.
  8.  前記ポリオレフィン系樹脂架橋体が、230℃でのメルトマスフローレートが5g/10分以上であるポリオレフィン系樹脂の架橋体である、請求項1から7の何れか一項に記載の撥液性樹脂シート。 The liquid repellent resin sheet according to any one of claims 1 to 7, wherein the crosslinked polyolefin resin is a crosslinked polyolefin resin having a melt mass flow rate at 230 ° C of 5 g / 10 min or more. .
  9.  前記疎水性酸化物微粒子が、表面にトリメチルシリル基を有する疎水性シリカ微粒子である、請求項1から8の何れか一項に記載の撥液性樹脂シート。 The liquid repellent resin sheet according to any one of claims 1 to 8, wherein the hydrophobic oxide fine particles are hydrophobic silica fine particles having a trimethylsilyl group on a surface thereof.
  10.  前記撥液層中の前記疎水性酸化物微粒子の含有量が20~70質量%であり、前記フッ素系共重合体樹脂の含有量が70~30質量%である、請求項1から9の何れか一項に記載の撥液性樹脂シート。 The content of the hydrophobic oxide fine particles in the liquid repellent layer is 20 to 70% by mass, and the content of the fluorocopolymer resin is 70 to 30% by mass. The liquid-repellent resin sheet according to claim 1.
  11.  前記凹凸形状層の厚みが、50μm~200μmである、請求項1から10の何れか一項に記載の撥液性樹脂シート。 The liquid repellent resin sheet according to any one of claims 1 to 10, wherein the thickness of the concavo-convex shape layer is 50 袖 m to 200 袖 m.
  12.  前記凹凸形状層の表面が、油系液体または界面活性剤系液体と接触したときの接触角が130°以上であり、かつ転落角が40°以下である、請求項1から11の何れか一項に記載の撥液性樹脂シート。 The contact angle when the surface of the concavo-convex shape layer is in contact with an oil-based liquid or a surfactant-based liquid is 130 ° or more, and the falling angle is 40 ° or less. The liquid-repellent resin sheet according to Item.
  13.  請求項1から12の何れか一項に記載の撥液性樹脂シートを加熱延伸して形成された成形品。 A molded product formed by heating and stretching the liquid-repellent resin sheet according to any one of claims 1 to 12.
  14.  前記凹凸形状層の表面が、油系液体または界面活性剤系液体と接触したときの接触角が120°以上であり、かつ転落角が70°以下である、請求項13に記載の成形品。 The molded article according to claim 13, wherein the surface of the concavo-convex shape layer has a contact angle of 120 ° or more and a sliding angle of 70 ° or less when contacted with an oil-based liquid or a surfactant-based liquid.
  15.  前記撥液性樹脂シートの凸形状高さに対する、凸形状高さの低下率が30%以下である、請求項13または14に記載の成形品。 The molded product according to claim 13 or 14, wherein a reduction rate of the convex shape height is 30% or less with respect to the convex shape height of the liquid repellent resin sheet.
  16.  フランジ部および底面部を有する成形品であって、フランジ部の厚みに対する底面部の厚みの比が、0.40~0.95である、請求項13から15の何れか一項に記載の成形品。 The molded article according to any one of claims 13 to 15, wherein the molded article has a flange portion and a bottom portion, and a ratio of a thickness of the bottom portion to a thickness of the flange portion is 0.40 to 0.95. Goods.
  17.  生活品用容器である、請求項13から16の何れか一項に記載の成形品。 The molded article according to any one of claims 13 to 16, which is a container for daily goods.
  18.  食品用容器である、請求項13から16の何れか一項に記載の成形品。 The molded product according to any one of claims 13 to 16, which is a food container.
  19.  一方の面に、少なくとも1種以上の凸形状を有する凹凸形状層を形成する工程と、
     前記凹凸形状層がポリオレフィン系樹脂を含有する樹脂組成物からなり、前記凹凸形状層の表面に電子線を照射してポリオレフィン系樹脂を架橋する工程と、
     前記凹凸形状層の前記凸形状を有する面上に、疎水性酸化物微粒子およびフッ素系共重合体樹脂を含有する撥液層を形成する工程と、を有する撥液性樹脂シートの製造方法。
    Forming a concavo-convex shape layer having at least one convex shape on one surface;
    The uneven shape layer is made of a resin composition containing a polyolefin resin, and the surface of the uneven shape layer is irradiated with an electron beam to crosslink the polyolefin resin;
    Forming a liquid repellent layer containing hydrophobic oxide fine particles and a fluorinated copolymer resin on the surface having the convex shape of the concavo-convex shape layer, and a method for producing a liquid repellent resin sheet.
PCT/JP2015/076466 2014-09-25 2015-09-17 Liquid-repellent resin sheet, molded article, and method for manufacturing liquid-repellent resin sheet WO2016047548A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016550150A JP6641284B2 (en) 2014-09-25 2015-09-17 Liquid-repellent resin sheet, molded article, and method for producing liquid-repellent resin sheet
CN201580051844.1A CN107073910B (en) 2014-09-25 2015-09-17 The manufacturing method of liquid-repellant resin sheet, molded product and liquid-repellant resin sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014195737 2014-09-25
JP2014-195737 2014-09-25

Publications (1)

Publication Number Publication Date
WO2016047548A1 true WO2016047548A1 (en) 2016-03-31

Family

ID=55581075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076466 WO2016047548A1 (en) 2014-09-25 2015-09-17 Liquid-repellent resin sheet, molded article, and method for manufacturing liquid-repellent resin sheet

Country Status (4)

Country Link
JP (1) JP6641284B2 (en)
CN (1) CN107073910B (en)
TW (1) TWI692406B (en)
WO (1) WO2016047548A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018103473A (en) * 2016-12-27 2018-07-05 デンカ株式会社 Liquid-repellent resin sheet and article using the same
JP2019051596A (en) * 2017-09-12 2019-04-04 大日本印刷株式会社 Oil-repellent laminate
JP2019162744A (en) * 2018-03-19 2019-09-26 大成ラミック株式会社 Electron beam-irradiated laminate and method for producing electron beam-irradiated laminate
JPWO2019049897A1 (en) * 2017-09-06 2020-08-20 デンカ株式会社 Resin sheet having hairs and molded product thereof
US20200368956A1 (en) * 2018-01-24 2020-11-26 Denka Company Limited Thermoplastic resin sheet having hairlike bodies and molded product thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778419A1 (en) * 2018-03-27 2021-02-17 Toyo Seikan Group Holdings, Ltd. Packaging member having surface with excellent liquid repellency
CN108925549B (en) * 2018-08-10 2021-03-26 中国科学院深圳先进技术研究院 Cell freezing and storing carrying rod and preparation method and application thereof
JP6522841B6 (en) * 2018-09-27 2019-07-17 大和製罐株式会社 Liquid-repellent film or sheet, and packaging material using the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001736A (en) * 2001-06-27 2003-01-08 Toto Ltd Water repellent highly bright transparent material
JP2003145653A (en) * 2001-11-16 2003-05-20 Toto Ltd Ultra-water-repellent, highly luminous, transparent material and manufacturing method thereof
JP2005132869A (en) * 2003-10-28 2005-05-26 Three M Innovative Properties Co Liquid transport film
JP2007277474A (en) * 2006-04-11 2007-10-25 Three M Innovative Properties Co Liquid carrier film
JP2009028994A (en) * 2007-07-26 2009-02-12 Nissan Motor Co Ltd Water-repellent structure and water-repellent molding
JP2009541033A (en) * 2006-06-23 2009-11-26 スリーエム イノベイティブ プロパティズ カンパニー Articles with durable hydrophobic surfaces
JP2013208816A (en) * 2012-03-30 2013-10-10 Toppan Printing Co Ltd Heat sealing film
WO2014087696A1 (en) * 2012-12-07 2014-06-12 電気化学工業株式会社 Water-repellent, thermoplastic resin sheet, and molded article
WO2014087695A1 (en) * 2012-12-07 2014-06-12 電気化学工業株式会社 Water-repellent, thermoplastic resin sheet, and molded article
JP2014113721A (en) * 2012-12-07 2014-06-26 Denki Kagaku Kogyo Kk Laminate sheet having water repellency and film for laminate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101434802B (en) * 2008-12-19 2011-10-26 天津工业大学 Water system super-hydrophobic surface coating agent and preparation thereof
CN203095961U (en) * 2012-12-28 2013-07-31 吉林大学 Bionic anti-sticking hydrophobic and oleophobic film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001736A (en) * 2001-06-27 2003-01-08 Toto Ltd Water repellent highly bright transparent material
JP2003145653A (en) * 2001-11-16 2003-05-20 Toto Ltd Ultra-water-repellent, highly luminous, transparent material and manufacturing method thereof
JP2005132869A (en) * 2003-10-28 2005-05-26 Three M Innovative Properties Co Liquid transport film
JP2007277474A (en) * 2006-04-11 2007-10-25 Three M Innovative Properties Co Liquid carrier film
JP2009541033A (en) * 2006-06-23 2009-11-26 スリーエム イノベイティブ プロパティズ カンパニー Articles with durable hydrophobic surfaces
JP2009028994A (en) * 2007-07-26 2009-02-12 Nissan Motor Co Ltd Water-repellent structure and water-repellent molding
JP2013208816A (en) * 2012-03-30 2013-10-10 Toppan Printing Co Ltd Heat sealing film
WO2014087696A1 (en) * 2012-12-07 2014-06-12 電気化学工業株式会社 Water-repellent, thermoplastic resin sheet, and molded article
WO2014087695A1 (en) * 2012-12-07 2014-06-12 電気化学工業株式会社 Water-repellent, thermoplastic resin sheet, and molded article
JP2014113721A (en) * 2012-12-07 2014-06-26 Denki Kagaku Kogyo Kk Laminate sheet having water repellency and film for laminate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018103473A (en) * 2016-12-27 2018-07-05 デンカ株式会社 Liquid-repellent resin sheet and article using the same
JPWO2019049897A1 (en) * 2017-09-06 2020-08-20 デンカ株式会社 Resin sheet having hairs and molded product thereof
US11623424B2 (en) 2017-09-06 2023-04-11 Denka Company Limited Resin sheet having capillaceous bodies and molded product thereof
JP7320450B2 (en) 2017-09-06 2023-08-03 デンカ株式会社 Resin sheet having hairy bodies and molded article thereof
JP2019051596A (en) * 2017-09-12 2019-04-04 大日本印刷株式会社 Oil-repellent laminate
JP7185837B2 (en) 2017-09-12 2022-12-08 大日本印刷株式会社 oil repellent laminate
US20200368956A1 (en) * 2018-01-24 2020-11-26 Denka Company Limited Thermoplastic resin sheet having hairlike bodies and molded product thereof
JP2019162744A (en) * 2018-03-19 2019-09-26 大成ラミック株式会社 Electron beam-irradiated laminate and method for producing electron beam-irradiated laminate
JP7028684B2 (en) 2018-03-19 2022-03-02 大成ラミック株式会社 Manufacturing method of electron beam irradiation laminate and electron beam irradiation laminate

Also Published As

Publication number Publication date
CN107073910A (en) 2017-08-18
CN107073910B (en) 2019-10-18
JPWO2016047548A1 (en) 2017-07-13
TWI692406B (en) 2020-05-01
TW201618944A (en) 2016-06-01
JP6641284B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP6298767B2 (en) Thermoplastic resin sheet and molded product with water repellency
JP6641284B2 (en) Liquid-repellent resin sheet, molded article, and method for producing liquid-repellent resin sheet
CN108778733B (en) Liquid-repellent resin sheet and article using same
JP6338535B2 (en) Resin sheet and molded product with water repellency
CN108883596B (en) Liquid-repellent resin sheet and article using same
CN106715124B (en) Liquid-repellent resin sheet, and sheet for building material and sheet for packaging material for living goods each using same
JP2017520642A (en) Film with improved scuff resistance, transparency, and adaptability
JP6895747B2 (en) Liquid-repellent resin sheet and articles using it
JP5604021B1 (en) Molded body and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550150

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845380

Country of ref document: EP

Kind code of ref document: A1