WO2016047175A1 - Copper alloy sheet and process for producing copper alloy sheet - Google Patents

Copper alloy sheet and process for producing copper alloy sheet Download PDF

Info

Publication number
WO2016047175A1
WO2016047175A1 PCT/JP2015/059359 JP2015059359W WO2016047175A1 WO 2016047175 A1 WO2016047175 A1 WO 2016047175A1 JP 2015059359 W JP2015059359 W JP 2015059359W WO 2016047175 A1 WO2016047175 A1 WO 2016047175A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
temperature
mass
heat treatment
stress relaxation
Prior art date
Application number
PCT/JP2015/059359
Other languages
French (fr)
Japanese (ja)
Inventor
恵一郎 大石
孝一 須崎
教男 高崎
孝 外薗
Original Assignee
三菱伸銅株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱伸銅株式会社 filed Critical 三菱伸銅株式会社
Priority to JP2015539901A priority Critical patent/JP5879464B1/en
Priority to KR1020167032742A priority patent/KR101777987B1/en
Priority to CN201580027152.3A priority patent/CN106460097B/en
Publication of WO2016047175A1 publication Critical patent/WO2016047175A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention is a copper alloy plate excellent in stress corrosion cracking resistance, stress relaxation characteristics, tensile strength, proof stress, electrical conductivity, bending workability, and solder wettability, particularly for terminals / connectors and electrical / electronic components. It is related with the copper alloy plate used for a use, and the manufacturing method of this copper alloy plate. This application claims priority based on Japanese Patent Application No. 2014-196430 filed in Japan on September 26, 2014, the contents of which are incorporated herein by reference.
  • the high-conductivity high-strength copper alloy beryllium copper, phosphor bronze, white, brass, or brass added with Sn is generally known. Further, as an alloy for satisfying the demand for high conductivity and high strength, for example, a Cu—Zn—Sn alloy as disclosed in Patent Document 1 is known.
  • Phosphor bronze and western white are generally manufactured by horizontal continuous casting because they have poor hot workability and are difficult to manufacture by hot rolling. Therefore, productivity is poor, energy costs are high, and yield is poor. Moreover, since the phosphor bronze for springs and the white for springs, which are representative varieties of high-strength copper alloys, contain a large amount of expensive Sn and Ni, they are poor in conductivity and have a problem in economical efficiency.
  • Zn which is the main element of brass, is cheaper than Cu, and by adding Zn to Cu, the density decreases, and the strength, that is, tensile strength, yield strength or yield stress, spring limit value, and fatigue strength are high.
  • the Zn content increases, the stress corrosion cracking sensitivity becomes very high, and the reliability as a material is impaired.
  • brass has poor stress relaxation characteristics as is well known, and cannot be used for parts that reach high temperatures such as around the engine room. Further, as the Zn content increases, the strength improves, but the ductility and bending workability deteriorate, and the balance between strength and ductility deteriorates.
  • brass and brass with simple addition of Sn are inexpensive, but are not satisfactory in strength, have poor stress relaxation characteristics, poor conductivity, and have problems with corrosion resistance (stress corrosion and dezincification corrosion) Therefore, it is unsuitable as a product component for achieving the above-mentioned miniaturization and high performance.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and is excellent in stress corrosion cracking resistance, stress relaxation characteristics, tensile strength, proof stress, conductivity, bending workability, and solder wettability. It is an object of the present invention to provide an alloy plate, in particular, a highly reliable terminal / connector that can withstand harsh use environments, a copper alloy plate suitable for electric / electronic components, and a method of manufacturing the copper alloy plate.
  • Ni and Sn were added to a Cu—Zn alloy containing 4 to 14 mass% of Zn.
  • the total content of Ni and Sn and the ratio of the content are within the proper range, and further, the interaction between Zn, Ni and Sn
  • f1 [Zn] + 3 ⁇ [Sn] + 2 ⁇ [Ni]
  • f2 [Zn] ⁇ 0.3 ⁇ [Sn] ⁇ 1.8 ⁇ [Ni]
  • f3 Adjust Zn, Ni, and Sn so that (3 ⁇ [Ni] + 0.5 ⁇ [Sn]) / [Zn] is set to appropriate values at the same time, and set the appropriate amounts of Ni and Sn, and P and Ni.
  • high strength is obtained without impairing ductility and bending workability by dissolving appropriate amounts of Zn, Ni, and Sn in a matrix and containing P.
  • Sn having a valence (or the number of valence electrons, the same shall apply hereinafter) of Sn (divalent valence number of 4), divalent Zn, Ni and pentavalent P can be added, thereby causing stress corrosion cracking resistance, Improves stress relaxation characteristics, simultaneously lowers stacking fault energy, and makes crystal grains finer during recrystallization. Further, by forming a fine compound mainly composed of Ni and P, crystal grain growth is suppressed and fine crystal grains are maintained.
  • the strength mainly including tensile strength and proof stress can be remarkably improved. That is, the strength increases as the average crystal grain size decreases.
  • the addition of Zn, Sn, and Ni to Cu has an effect of increasing the nucleation sites of recrystallization nuclei.
  • Addition of P and Ni to the Cu—Zn—Sn—Ni alloy has an effect of suppressing grain growth. Therefore, by using these effects, it is possible to obtain a Cu—Zn—Sn—Ni—P-based alloy having fine crystal grains.
  • the minimum crystal grain size in the standard photograph described in JIS H 0501 is 0.010 mm. From this, it can be said that those having an average crystal grain of less than 0.010 mm may be referred to as crystal grains being refined.
  • composition relational expression f1 [Zn] + 3 ⁇ [Sn] + 2 ⁇ [Ni]
  • the composition relational expression f2 [Zn] ⁇ 0.3 ⁇ [Sn] ⁇ 1.8 ⁇ [Ni]
  • f3 The three compositional relational expressions of (3 ⁇ [Ni] + 0.5 ⁇ [Sn]) / [Zn] need to be within a predetermined range.
  • the lower limit values of the compositional relational expressions f1 and f2 are the minimum necessary values for obtaining high strength even when the interaction of each element of Zn, Ni, and Sn is taken into consideration.
  • f1 and f2 exceed the upper limit value or lower than the lower limit value of the compositional relational expression f3, although the strength is increased, the stress relaxation property or the stress corrosion cracking resistance is impaired.
  • the upper limit value of the compositional relational expression f1 [Zn] + 3 ⁇ [Sn] + 2 ⁇ [Ni] is a value indicating whether the conductivity of the alloy of the present invention exceeds 24% IACS.
  • the critical drawbacks of Cu—Zn alloys are high sensitivity to stress corrosion cracking and poor stress relaxation characteristics.
  • the lower limit value of the compositional relational expression f3 (3 ⁇ [Ni] + 0.5 ⁇ [Sn]) / [Zn] is a boundary value for obtaining good stress relaxation properties.
  • the Cu—Zn alloy is an alloy having excellent cost performance.
  • the stress relaxation property is poor, and even if it has a high strength, the high strength cannot be utilized.
  • brass alloys have poor stress relaxation properties, but by optimizing the balance of (3 ⁇ [Ni] + 0.5 ⁇ [Sn]) and [Zn], that is, the compounding ratio, higher stress Relaxation characteristics can be realized.
  • the upper limit value increases the amount of Ni and Sn, increases the cost, or deteriorates the electrical conductivity, and saturates the stress relaxation characteristics.
  • the first condition is to co-add 1 to 2.4% by mass of Ni and 0.1 to 1% by mass of Sn.
  • an ingot manufacturing process and a hot rolling process blended with predetermined components As a method of manufacturing the above-described copper alloy sheet, an ingot manufacturing process and a hot rolling process blended with predetermined components, a continuous casting process in which a hot rolling process is omitted in some cases, a cold rolling process, A crystallization heat treatment step and a finish cold rolling step.
  • the hot rolling start temperature of the hot rolling step is 800 to 950 ° C.
  • the final rolling is finished at 750 ° C. to 500 ° C.
  • the recrystallization heat treatment step there are a batch method in which heating is performed for a long time and a continuous heat treatment method in which short-time heating is continuously performed at high temperature.
  • a tension leveler may be used to improve the distortion of the material.
  • recovery heat treatment may be performed by a continuous heat treatment method, or when used in terminals / connectors, electrical / electronic parts, molten Sn plating, reflow Sn plating, regardless of the presence or absence of the recovery heat treatment step.
  • a plating process such as Depending on the thickness of the copper alloy plate, the cold rolling step and the annealing step that are paired between the hot rolling step and the cold rolling step may be performed once or a plurality of times.
  • the cold work rate in the said cold rolling process is 55% or more
  • the said recrystallization heat treatment process is a continuous heat treatment furnace.
  • the copper alloy plate according to the first aspect of the present invention is composed of 4 to 14% by mass of Zn, 0.1 to 1% by mass of Sn. 0.005 to 0.08 mass% P and 1.0 to 2.4 mass% Ni, the balance being made of Cu and inevitable impurities, Zn content [Zn] mass%, Between the Sn content [Sn] mass%, the P content [P] mass%, and the Ni content [Ni] mass%, 7 ⁇ [Zn] + 3 ⁇ [Sn] + 2 ⁇ [Ni] ⁇ 18, 0 ⁇ [Zn] ⁇ 0.3 ⁇ [Sn] ⁇ 1.8 ⁇ [Ni] ⁇ 11, 0.3 ⁇ (3 ⁇ [Ni] + 0.5 ⁇ [Sn]) / [Zn] ⁇ 1.6, 1.8 ⁇ [Ni] / [Sn] ⁇ 10, 16 ⁇ [Ni] / [P] ⁇ 250, And the average crystal grain
  • the copper alloy sheet according to the second aspect of the present invention comprises 4 to 12% by mass of Zn, 0.1 to 0.9% by mass of Sn, 0.008 to 0.07% by mass of P, 1 0.05 to 2.2% by mass of Ni, the balance being Cu and inevitable impurities, Zn content [Zn]% by mass, Sn content [Sn]% by mass, and P content Between [P] mass% and Ni content [Ni] mass%, 7 ⁇ [Zn] + 3 ⁇ [Sn] + 2 ⁇ [Ni] ⁇ 16, 0 ⁇ [Zn] ⁇ 0.3 ⁇ [Sn] ⁇ 1.8 ⁇ [Ni] ⁇ 9, 0.3 ⁇ (3 ⁇ [Ni] + 0.5 ⁇ [Sn]) / [Zn] ⁇ 1.3, 2 ⁇ [Ni] / [Sn] ⁇ 8, 18 ⁇ [Ni] / [P] ⁇ 180,
  • the average crystal grain size is 2 to 9 ⁇ m, and the average particle size of the circular or elli
  • the copper alloy plate according to the third aspect of the present invention is the above-described copper alloy plate, further comprising Al, Fe, Co, Mg, Mn, Ti, Zr, Cr, Si, Sb, As, Pb, and a rare earth element. It is characterized by containing at least one or two or more selected from 0.0005% by mass to 0.05% by mass, and a total of 0.0005% by mass to 0.2% by mass.
  • the copper alloy sheet according to the fourth aspect of the present invention is implemented after the finish cold rolling step in which the copper alloy material is cold-rolled in the above-described copper alloy plate and, if necessary, the finish cold rolling step.
  • a recovery heat treatment step wherein the electrical conductivity is C (% IACS), 150 ° C., and the effective stress at 1000 hours is Pw (N / mm 2 ), Pw ⁇ 300, Pw ⁇ (C / 100) 1/2 ⁇ 190
  • the ratio of the yield strength YS 90 in the direction forming 90 degrees with respect to the rolling direction and the yield strength YS 0 in the direction forming 0 degrees with respect to the rolling direction, YS 90 / YS 0 is 0.95.
  • ⁇ YS 90 / YS 0 ⁇ 1.07 is set.
  • the copper alloy plate according to the fifth aspect of the present invention is used for electronic / electric equipment parts such as connectors, terminals, relays, switches, and semiconductors.
  • the manufacturing method of the copper alloy plate which is the 6th aspect of this invention is a manufacturing method of the copper alloy plate which manufactures the above-mentioned copper alloy plate, Comprising: A hot rolling process, a cold rolling process, and a recrystallization heat processing Process and finish cold rolling process in this order, the cold working rate in the cold rolling process is 55% or more, the recrystallization heat treatment process using a continuous heat treatment furnace, after cold rolling A heating step for heating the copper alloy material to a predetermined temperature, a holding step for holding the copper alloy material at a predetermined temperature for a predetermined time after the heating step, and the copper alloy material to a predetermined temperature after the holding step.
  • a cooling step for cooling wherein in the recrystallization heat treatment step, a maximum temperature of the copper alloy material is Tmax (° C.), and a temperature from a temperature that is 50 ° C. lower than the maximum temperature of the copper alloy material to a maximum temperature When heated
  • Tmax ° C.
  • the paired cold rolling step and annealing step may be performed once or a plurality of times between the hot rolling step and the cold rolling step.
  • the method for producing a copper alloy sheet according to the seventh aspect of the present invention includes a recovery heat treatment step that is performed after the finish cold rolling step, and the recovery heat treatment step uses a predetermined copper alloy material after finish cold rolling.
  • the maximum temperature of the copper alloy material is defined as Tmax2 (° C.), and the time during which the copper alloy material is heated and held in the temperature range from a temperature 50 ° C.
  • the manufacturing method of the copper alloy plate which is the 8th aspect of this invention is a manufacturing method of the copper alloy plate which manufactures the above-mentioned copper alloy plate, Comprising: The cold rolling process and annealing process used as a pair, Cold rolling Including a process, a recrystallization heat treatment process, a finish cold rolling process, a recovery heat treatment process, and after performing the cold rolling process and the annealing process to be paired one or more times without performing hot working A combination of the cold rolling step and the recrystallization treatment step, and a combination of the finish cold rolling step and the recovery heat treatment step, or both, and the cold
  • the cold working rate in the rolling process is 55% or more
  • the recrystallization heat treatment step uses a continuous heat treatment furnace to heat the copper alloy material after cold rolling to a predetermined temperature, and the heating step Later, the copper alloy material is set to a predetermined temperature.
  • the recovery heat treatment step includes a heating step for heating the copper alloy material after finish cold rolling to a predetermined temperature, a holding step for holding the copper alloy material at a predetermined temperature for a predetermined time after the heating step, and the holding A cooling step of cooling the copper alloy material to a predetermined temperature after the step, wherein the maximum reached temperature of the copper alloy material is Tmax2 (° C.), and the maximum reached from a temperature that is 50 ° C.
  • a copper alloy plate excellent in stress corrosion cracking resistance, stress relaxation characteristics, tensile strength, proof stress, conductivity, bending workability, and solder wettability in particular, capable of withstanding harsh use environments.
  • Terminal, connector, copper alloy plate suitable for electric / electronic parts, and a method for producing the copper alloy plate can be provided.
  • the copper alloy plate according to the present embodiment is used as a constituent material for connectors, terminals, relays, springs, switches, semiconductors, lead frames, etc. used for automobile parts, electrical parts, electronic parts, communication equipment, electronic / electric equipment, etc. It is used.
  • an element symbol in parentheses such as [Zn] indicates the content (% by mass) of the element.
  • a plurality of compositional relational expressions are defined as follows.
  • Composition relation f1 [Zn] + 3 ⁇ [Sn] + 2 ⁇ [Ni]
  • Compositional relation f2 [Zn] ⁇ 0.3 ⁇ [Sn] ⁇ 1.8 ⁇ [Ni]
  • Compositional relation f3 (3 ⁇ [Ni] + 0.5 ⁇ [Sn]) / [Zn]
  • Composition relation f4 [Ni] / [Sn]
  • Compositional relation f5 [Ni] / [P]
  • the copper alloy sheet according to the first embodiment of the present invention has 4 to 14% by mass of Zn, 0.1 to 1% by mass of Sn, 0.005 to 0.08% by mass of P, and 1. It contains 0 to 2.4% by mass of Ni, the balance is made of Cu and inevitable impurities, the composition relational expression f1 is in the range of 7 ⁇ f1 ⁇ 18, and the compositional relational expression f2 is in the range of 0 ⁇ f2 ⁇ 11.
  • composition relational expression f3 is in the range of 0.3 ⁇ f3 ⁇ 1.6
  • the compositional relational expression f4 is in the range of 1.8 ⁇ f4 ⁇ 10
  • the compositional relational expression f5 is in the range of 16 ⁇ f5 ⁇ 250. ing.
  • the copper alloy sheet according to the second embodiment of the present invention comprises 4 to 12% by mass of Zn, 0.1 to 0.9% by mass of Sn, 0.008 to 0.07% by mass of P, 1.05 to 2.2% by mass of Ni, the balance being made of Cu and inevitable impurities, the compositional relational expression f1 being in the range of 7 ⁇ f1 ⁇ 16, and the compositional relational expression f2 being 0 ⁇ f2 ⁇ 9 Within the range, the composition relational expression f3 is within the range of 0.3 ⁇ f3 ⁇ 1.3, the compositional relational expression f4 is within the range of 2 ⁇ f4 ⁇ 8, and the compositional relational expression f5 is within the range of 18 ⁇ f5 ⁇ 180. ing.
  • the copper alloy plate according to the third embodiment of the present invention has 4 to 14% by mass of Zn, 0.1 to 1% by mass of Sn, 0.005 to 0.08% by mass of P, and 1. 0 to 2.4% by mass of Ni and at least one or more selected from Al, Fe, Co, Mg, Mn, Ti, Zr, Cr, Si, Sb, As, Pb and rare earth elements, respectively 0.0005% by mass or more and 0.05% by mass or less and a total of 0.0005% by mass or more and 0.2% by mass or less, with the balance being Cu and inevitable impurities, and the compositional relational expression f1 is 7 ⁇ f1 ⁇ 18, composition relational expression f2 is in the range of 0 ⁇ f2 ⁇ 11, composition relational expression f3 is in the range of 0.3 ⁇ f3 ⁇ 1.6, and composition relational expression f4 is 1.8 ⁇ f4 ⁇ 10. In this range, the compositional relational expression f5 is in the range of 16 ⁇ f
  • the copper alloy sheet according to the fourth embodiment of the present invention comprises 4 to 12% by mass of Zn, 0.1 to 0.9% by mass of Sn, 0.008 to 0.07% by mass of P, 1.05 to 2.2% by mass of Ni and at least one or more selected from Al, Fe, Co, Mg, Mn, Ti, Zr, Cr, Si, Sb, As, Pb and rare earth elements 0.0005 mass% or more and 0.05 mass% or less in total and 0.0005 mass% or more and 0.2 mass% or less in total, and the balance is made of Cu and inevitable impurities, and the compositional relational formula f1 is 7 ⁇ f1 ⁇ 16, composition relational expression f2 is in the range of 0 ⁇ f2 ⁇ 9, composition relational expression f3 is in the range of 0.3 ⁇ f3 ⁇ 1.3, and compositional relational expression f4 is 2 ⁇ f4 ⁇ 8 In this range, the compositional relational expression f5 is in the range of 18 ⁇ f5 ⁇
  • the average crystal grain size is 2 to 9 ⁇ m.
  • the average particle diameter of the circular or elliptical precipitate is 3 to 75 nm, or the particle diameter is within the precipitate.
  • the ratio of the number of precipitates of 3 to 75 nm is 70% or more.
  • the average particle diameter of the circular or elliptical precipitate is 3 to 60 nm, or the particle diameter is 3 in the precipitate.
  • the ratio of the number of precipitates of ⁇ 60 nm is 70% or more.
  • the conductivity is 24% IACS or more, or the conductivity is 26% IACS or more, and the stress relaxation resistance is 150 ° C.
  • the stress relaxation rate is 25% or less at 1000 hours, or 23% or less at 150 ° C. and 1000 hours.
  • the balance index f6 is defined as follows as an index representing the balance between the conductivity and the stress relaxation characteristics.
  • the yield strength YS 90 in the direction forming 90 degrees with respect to the rolling direction and the yield strength YS 0 in the direction forming 0 degrees with respect to the rolling direction are preferably in the range of 0.95 ⁇ YS 90 / YS 0 ⁇ 1.07.
  • (Zn) Zn is a main element constituting the copper alloy plate of the present embodiment
  • the valence is bivalent
  • the stacking fault energy is lowered
  • the number of recrystallized nucleus generation sites is increased during annealing
  • the recrystallized grains are refined. Ultra-fine.
  • the solid solution of Zn improves the tensile strength, proof stress, spring characteristics, etc. without impairing the bending workability, improves the heat resistance and stress relaxation characteristics of the matrix, and improves the solder wettability and migration resistance.
  • Improve. Zn is inexpensive, lowers the specific gravity of the copper alloy, and has economic advantages.
  • the lower limit of the Zn content is 4% by mass or more, preferably 4.5% by mass or more, and optimally 5% by mass or more.
  • the upper limit of the Zn content is 14% by mass, preferably 12% by mass or less, 11% by mass or less, and optimally 9% by mass or less.
  • Zn is in a suitable composition range, the heat resistance of the matrix is improved, the stress relaxation characteristics are improved by the interaction with Ni, Sn, and P. Excellent bending workability, high strength, Young's modulus, desired It has conductivity.
  • Sn is a main element constituting the copper alloy plate according to the present embodiment, has a valence of 4 and lowers stacking fault energy, and combined with Zn and Ni, increases the number of recrystallization nucleus generation sites during annealing.
  • the recrystallized grains are made finer and ultrafine.
  • Sn dissolves in the matrix and improves tensile strength, yield strength, spring characteristics, etc., improves heat resistance of the matrix, improves stress relaxation characteristics, and improves stress corrosion cracking resistance.
  • Sn In order to exert the above effects, Sn needs to be contained at least 0.1% by mass or more. For this reason, the minimum of content of Sn is 0.1 mass% or more, and is 0.2 mass% or more optimally. On the other hand, the inclusion of a large amount of Sn deteriorates the conductivity, deteriorates the bending workability, Young's modulus, and solder wettability, and on the other hand decreases the stress relaxation characteristics and stress corrosion cracking resistance. In particular, the stress relaxation characteristics are greatly affected by the compounding ratio with Ni. For this reason, the upper limit of the content of Sn is 1% by mass or less, preferably 0.9% by mass or less, and optimally 0.8% by mass or less.
  • Cu Since Cu is a main element constituting the copper alloy plate according to the present embodiment, it is the remainder. However, in order to secure conductivity and stress corrosion cracking resistance depending on the Cu concentration, and to maintain stress relaxation characteristics, elongation, Young's modulus, and solder wettability, the lower limit of the Cu content is 84% by mass or more. Furthermore, 86 mass% or more is preferable. On the other hand, in order to obtain high strength, the upper limit of the Cu content is preferably 94.5% by mass or less, and more preferably 94% by mass or less.
  • (P) P has a valence of pentavalent and an effect of refining crystal grains and an effect of suppressing the growth of recrystallized grains, but the latter effect is large because of its low content. Moreover, although it is trace amount, it has the effect
  • the average particle diameter of the precipitates is 3 to 75 nm, or of the precipitated particles having a particle diameter of 3 to 75 nm. It is necessary that the ratio of the number occupied is 70% or more.
  • This precipitate has a larger action and effect of suppressing the growth of recrystallized grains during annealing than precipitation strengthening, and is distinguished from a strengthening action caused simply by precipitation.
  • P has the effect of remarkably improving the stress relaxation characteristic, which is one of the subjects of the present application, by the interaction with Ni under the inclusion of Zn and Sn within the above-mentioned range.
  • the lower limit of the P content is 0.005% by mass or more, preferably 0.008% by mass or more, and optimally 0.01% by mass or more.
  • the upper limit of content of P is 0.08 mass%, Preferably it is 0.07 mass% or less.
  • Ni Ni
  • P P
  • Zn P
  • Sn solder wettability and stress corrosion cracking resistance
  • the growth of recrystallized grains is suppressed by the formed compound.
  • the lower limit of the Ni content is 1% by mass or more, preferably 1.05% by mass or more, and optimally 1.1% by mass or more.
  • the upper limit of the Ni content is 2.4% by mass or less, preferably 2.2% by mass or less. Is 2% by mass or less.
  • the Ni content is 1.8% of the Sn content. It is preferably contained more than twice, and more preferably twice or more. This is because the stress relaxation characteristics are particularly improved by containing divalent Ni in an atomic concentration of 3.5 times or more, particularly 4 times or more of tetravalent Sn.
  • the Ni content is preferably 10 times or less, more preferably 8 times or less, and most preferably 6 times or less of the Sn content from the relationship between strength and electrical conductivity and stress relaxation characteristics.
  • the copper alloy plate of the third embodiment and the copper alloy plate of the fourth embodiment contain at least one or more selected from these elements.
  • Al, Fe, Co, Mg, Mn, Ti, Zr, Cr, Si, Sb, As, Pb, and rare earth elements make the crystal grains of the alloy fine.
  • Al, Fe, Co, Mg, Mn, Ti, and Zr form a compound together with P or Ni, suppress the growth of recrystallized grains during annealing, and have a large effect of crystal grain refinement.
  • Fe and Co have a large effect, and form a compound of Ni and P containing Fe or Co, thereby reducing the particle size of the compound.
  • the fine compound further refines the size of recrystallized grains during annealing and improves the strength.
  • Al, Sb and As have the effect of improving the stress corrosion cracking resistance and corrosion resistance of the copper alloy, Sb having a valence of 5 improves stress relaxation characteristics, and Pb improves press formability.
  • any of the selected elements exceeds 0.05% by mass, the effect is saturated.
  • the stress relaxation characteristics also deteriorate.
  • any element selected is 0.03% by weight or less.
  • the upper limit of the total content of these elements is 0.2% by mass or less, preferably 0.15% by mass or less, and more preferably 0.1% by mass or less.
  • Copper alloy sheets contain unavoidable elements such as oxygen, hydrogen, carbon, sulfur, and water vapor in the production process including the raw material including the return material and mainly when dissolved in the atmosphere. Of course, these inevitable impurities are included.
  • elements other than the specified component elements may be treated as inevitable impurities, and the total content of inevitable impurities is preferably 0.2% by mass or less, more Preferably it is 0.1 mass% or less.
  • elements other than Zn, Ni, Sn, P, and Cu among the elements defined in the copper alloy plate of the present embodiment may be contained as impurities in a range less than the lower limit defined above.
  • composition relational expression f1 [Zn] + 3 ⁇ [Sn] + 2 ⁇ [Ni]
  • the alloy of the present embodiment is a boundary value at which high strength is obtained, and is also a boundary value that improves stress relaxation characteristics. Therefore, the lower limit of the compositional relational expression f1 is 7 or more, preferably 7.5 or more.
  • the upper limit of the compositional relational expression f1 is 18 or less, preferably 16 or less, and optimally 14 or less.
  • composition relational expression f2 [Zn] ⁇ 0.3 ⁇ [Sn] ⁇ 1.8 ⁇ [Ni] is 11 or 10
  • the boundary of whether or not cracking occurs in a severe stress corrosion cracking environment Value is 11 or 10
  • it is a boundary value for obtaining excellent ductility, bending workability, good solder wettability, and good stress relaxation characteristics.
  • a critical defect of the Cu—Zn alloy is high sensitivity to stress corrosion cracking. In the case of Cu—Zn alloy, the sensitivity of stress corrosion cracking depends on the Zn content, Sensitivity of stress corrosion cracking is increased at a Zn content of about 10% by mass.
  • the upper limit of the compositional relational expression f2 is 11, preferably 9 or less, and optimally 8 or less.
  • the coefficient of Ni is large, and the stress corrosion cracking sensitivity can be particularly lowered by the inclusion of Ni.
  • the lower limit of the compositional relational expression f2 is 0 or more, preferably 0.5 or more, and more preferably 1 or more.
  • compositional relational expression f3 (3 ⁇ [Ni] + 0.5 ⁇ [Sn]) / [Zn], that is, the blending ratio of (3 ⁇ [Ni] + 0.5 ⁇ [Sn]) and [Zn] is appropriately set As a result, excellent stress relaxation characteristics are exhibited despite containing Zn in an amount of 4 to 14% by mass.
  • the value of f3 is 0.3 or more, that is, the value of (3 ⁇ [Ni] + 0.5 ⁇ [Sn]) is 0.3 or more with respect to [Zn]
  • good stress relaxation characteristics are exhibited. become.
  • it is 0.35 or more, more preferably 0.4 or more.
  • the upper limit value of the compositional relational expression f3 is 1.6 or less, preferably 1.3 or less, and optimally 1.2 or less.
  • compositional relational expression f4 [Ni] / [Sn] indicating the mixing ratio of Ni and Sn is important.
  • the mass concentration ratio of Ni with a valence of 2 is 1.8 times and the atomic concentration ratio is 3.5 times or more with respect to Sn with an valence of 4
  • the stress relaxation characteristics are remarkably improved.
  • the value of f4 is 2 or more, that is, if there are 4 or more divalent Ni atoms per 1 tetravalent Sn atom, the stress relaxation characteristics are further improved, and the bending workability and stress corrosion resistance are improved. The cracking property is also improved.
  • the upper limit of the compositional relational expression f4 is 10 or less, preferably 8 or less, and optimally 6 or less. When in this range, the effects of Ni and Sn can be maximized.
  • the compositional relational expression f5 [Ni] / [P] exceeds 250, the amount of the compound formed by Ni and P and the amount of P in solid solution are reduced, so that the stress relaxation property is deteriorated. In addition, the effect of making the crystal grains finer is reduced, and the strength of the alloy is reduced. For this reason, the upper limit of f5 is 250 or less, preferably 180 or less, and optimally 120 or less.
  • the average crystal grain size can be about 1.5 ⁇ m.
  • the average crystal grain size of the copper alloy plate according to this embodiment is refined to 1.5 ⁇ m, the proportion of crystal grain boundaries formed with a width of several atoms increases, and the elongation, bending workability, stress The relaxation characteristics are deteriorated. Therefore, in order to provide high strength, high elongation, and good stress relaxation characteristics, the average crystal grain size needs to be 2.0 ⁇ m or more.
  • the lower limit of the average crystal grain size is preferably 3 ⁇ m or more, and optimally 4 ⁇ m or more.
  • the average crystal grain size needs to be reduced to 9 ⁇ m or less.
  • the upper limit of the average crystal grain size is preferably 8 ⁇ m or less, particularly 7 ⁇ m or less when the strength is important.
  • Precipitate For example, when annealing a rolled material that has been cold-rolled at a cold working rate of 50% or more, there is a relationship with time, but if a certain critical temperature is exceeded, the grain boundary where machining strain is accumulated is the center. Recrystallization nuclei are formed in Although it depends on the alloy composition, in the case of the copper alloy plate of this embodiment, the grain size of the recrystallized grains formed after nucleation is 1 ⁇ m, 2 ⁇ m, or smaller recrystallized grains. In addition, the processed structure is not replaced with recrystallized grains all at once.
  • the properties of the compound itself and the particle size of the compound are important. That is, from the research results, in the composition range of the copper alloy plate according to the present embodiment, the compound produced by P and Ni (precipitate containing P and Ni) basically hardly inhibits the elongation. It was found that when the grain size of 3 to 75 nm is 3 to 75 nm, the growth of crystal grains is effectively suppressed with little inhibition of elongation.
  • the precipitate containing P and Ni that suppresses the growth of recrystallized grains has a circular or elliptical precipitate at the stage of the recrystallization heat treatment step, and the average particle diameter of the precipitate is 3 to 75 nm, or The proportion of the number of particles having a particle diameter of 3 to 75 nm in the precipitated particles may be 70% or more.
  • the circular or elliptical precipitate includes not only a perfect circular or elliptical shape but also a shape approximated to a circular or elliptical shape.
  • the average particle diameter of the circular or elliptical precipitates is 3 to 60 nm, or the ratio of the number of the particle diameters of 3 to 60 nm in the precipitated particles is 70. % Or more is preferable. Optimally, the average particle size is 5 to 20 nm.
  • conductivity In the copper alloy plate according to the present embodiment, current-carrying members such as connectors, terminals, relays, springs, switches, semiconductors, lead frames, etc. used in automobile parts, electrical parts, electronic parts, communication equipment, electronic / electric equipment, etc. Therefore, it is necessary to secure a conductivity of 24% IACS or more, preferably 26% IACS or more, and more preferably 28% IACS or more.
  • Stress relaxation characteristics For example, when the terminal and connector are used in a place close to the engine room of an automobile, the temperature rises to about 100 ° C. Therefore, the stress is applied at 80 ° C. for 1000 hours at 80 ° C.
  • the relaxation rate should be 25% or less, preferably 23% or less, and optimally 20% or less. This is because when the stress relaxation rate increases, the strength (contact pressure, spring pressure) corresponding to the stress relaxation rate is substantially impaired.
  • the value of the previous equation be high. If the proof stress ⁇ 80% ⁇ (100% ⁇ stress relaxation rate (%)) is 270 N / mm 2 or more in a test at 150 ° C. for 1000 hours, it is the lowest level that can withstand use in a high temperature state, 300 N / If it is mm 2 or more, it is suitable for use in a high temperature state, and if it is 330 N / mm 2 or more, it is optimal.
  • (C / 100) 1/2 which is an index of electrical characteristics, can be a criterion for terminal / connector evaluation in an environment close to a severe engine room where the product of effective stress is severe.
  • the balance index f6 needs to be at least 180, preferably 190 or more, more preferably 200 or more, and optimally 210 or more.
  • yield ratio YS 90 / YS 0 Yield ratio YS 90 / YS 0
  • the crystal grains are stretched in the rolling direction and compressed in the thickness direction, and the specimen taken in the rolling direction and the sample taken in the vertical direction are collected.
  • Test specimens have differences in tensile strength, proof stress, and bending workability.
  • the specific metal structure is that if the crystal grain is a cross section parallel to the rolling surface, it is an elongated crystal grain, and if it is viewed in the cross section, it becomes a crystal grain compressed in the thickness direction and sampled perpendicular to the rolling direction.
  • the tensile strength TS 90 and the proof strength YS 90 of the rolled material obtained are higher than the tensile strength TS 0 and the proof strength YS 0 of the rolled material collected in the parallel direction, and the strength ratio TS 90 / TS 0 and the proof strength ratio YS 90 / YS. 0 exceeds 1.05, further exceeds 1.07, and may reach 1.1 in some cases.
  • these strength ratio TS 90 / TS 0 and proof stress ratio YS 90 / YS 0 become higher than 1.05, the bending workability of specimens taken perpendicular to the rolling direction deteriorates.
  • the strength ratio TS 90 / TS 0 and the yield strength ratio YS 90 / YS 0 may be 0.97, and in some cases, less than 0.95.
  • the proof stress ratio YS 90 / YS 0 and the tensile strength ratio TS 90 / TS 0 are both preferably 1.07 or less, more preferably 1.05 or less, optimally Is 1.03 or less, or preferably 0.95 or more, more preferably 0.97 or more, and most preferably 0.99 or more.
  • Various members such as terminals and connectors targeted by the copper alloy plate according to the present embodiment are in the rolling direction, the vertical direction, that is, the direction parallel to the rolling direction during actual use and processing from the rolled material to the product. Both vertical directions are often used, and it is desired that there is no difference in properties such as tensile strength, proof stress, and bending workability in the rolling direction and the vertical direction from the actual use surface and the product processing surface.
  • the interaction of Zn, Sn, P, and Ni, the compositional relational expressions f1 to f5 are satisfied, the average crystal grain size is 2 to 9 ⁇ m, and P
  • the size of precipitates formed of Ni and Ni and the ratio between these elements are controlled to predetermined values, and a rolled material is produced by the manufacturing process described below, whereby a direction that forms 0 degrees with respect to the rolling direction The difference in the tensile strength and proof stress of the rolled material collected in the direction of the degree is eliminated.
  • the ratio YS 90 / YS 0 and YS 0 becomes in the range of 0.95 ⁇ YS 90 / YS 0 ⁇ 1.07.
  • the ratio TS 90 / TS 0 of the tensile strength TS 90 in the direction forming 90 degrees with respect to the rolling direction and the tensile strength TS 0 in the direction forming 0 degrees with respect to the rolling direction is It is in the range of 0.95 ⁇ TS 90 / TS 0 ⁇ 1.07.
  • the copper alloy plate according to the present embodiment it is preferable to define the characteristics other than the above-described conductivity and stress relaxation resistance as follows.
  • the bending workability when evaluated by W bending is preferably R / t ⁇ 1.0, more preferably R / t ⁇ 0.5.
  • the bending workability is R / t ⁇ 1.0 in W bending with respect to bending in both directions parallel and perpendicular to the rolling direction. It is preferable that R / t ⁇ 0.5.
  • terminals, connectors, and the like are usually subjected to Sn plating on the surface in terms of corrosion resistance, contact resistance, and bonding.
  • Sn plating in the state of the coil (strip), the Sn plating is performed after the molten Sn plating, the reflow Sn plating, or the terminal or connector shape. Therefore, it is necessary to have good Sn plating property, that is, solder wettability, for terminal / connector material use or for electric / electronic parts.
  • the Sn plating property is not particularly problematic in the state of the coil.
  • Sn plating, particularly Pb-free solder plating is performed after forming the terminals and connectors, due to production, it is not immediately after forming but for a certain period.
  • solder wettability There is a case where plating is performed after being left standing, and there is a possibility that plating property and solder wettability may deteriorate due to surface oxidation during the standing time. There is a need for a copper alloy that has good solder wettability, and has good surface wettability after being left in the atmosphere, even if there is some surface oxidation or hardly surface oxidation. There are various evaluations of solder wettability, but from the viewpoint of industrial production, it is appropriate to evaluate the solder wettability quickly.
  • processing performed at a temperature lower than the recrystallization temperature of the copper alloy material to be processed is referred to as cold processing
  • processing performed at a temperature higher than the recrystallization temperature is referred to as hot processing.
  • the forming processes are defined as cold rolling and hot rolling, respectively.
  • recrystallization is defined as a change from one crystal structure to another crystal structure or the formation of a strain having a strain caused by processing into a new, unstrained crystal structure.
  • an ingot having the above-described component composition is prepared, and hot working (typically hot rolling) is performed on the ingot.
  • the hot rolling start temperature is 800 ° C. or higher, preferably 840 ° C. or higher, so that each element is in a solid solution state, and 950 ° C. or lower, preferably 920 ° C. or lower, from the viewpoint of energy cost and hot ductility. .
  • the temperature at the end of the final rolling or a temperature range from 650 ° C. to 350 ° C. so that at least these precipitates do not become coarse precipitates that hinder elongation. Is preferably cooled at a cooling rate of 1 ° C./second or more.
  • the precipitates become coarse in the hot rolling stage, it is difficult to be eliminated by a heat treatment such as a subsequent annealing step, which hinders the elongation of the final rolled product.
  • a plate-shaped ingot having a thickness of about 15 to 20 mm is manufactured by a continuous casting method, hot working (hot rolling) can be omitted.
  • homogenization heat treatment may be performed at 650 ° C. to 850 ° C. after casting.
  • heat treatment is performed at about 700 ° C. or about 800 ° C. for 1 hour or longer, and a coarse compound of Ni and P generated at the casting stage is once made into a solid solution state, Sn having a low melting point, It is preferable to make the concentration distribution of Ni or the like having a high content uniform.
  • the cold rolling step, the annealing step, or the recrystallization heat treatment step is performed once or a plurality of times depending on the final product thickness.
  • an annealing method and a recrystallization heat treatment method there are a batch-type heat treatment method in which heat is maintained for a long time and a method in which heat treatment is continuously performed at a high temperature for a short time.
  • the final recrystallization heat treatment method the high temperature-short time heat treatment has particularly improved stress relaxation characteristics. This is because P does not completely precipitate with Ni, and a certain concentration of P exists in a solid solution state.
  • a continuous heat treatment furnace is used to heat the copper alloy material to a predetermined temperature, and after the heating step, the copper alloy material is heated to a predetermined temperature.
  • the maximum temperature of the copper alloy material is Tmax (° C.), In a temperature range from a temperature that is 50 ° C.
  • cooling in the recrystallization heat treatment step it is preferable to cool under the condition of 5 ° C./second or more, more preferably 10 ° C./second or more in the temperature range from “maximum reached temperature ⁇ 50 ° C.” to 400 ° C. Cooling under the above conditions, and optimally, cooling at 15 ° C./second or more improves the stress relaxation characteristics.
  • the cooling rate is slow, coarse precipitates appear, the ratio of P and Ni precipitates increases, the amount of P that dissolves decreases, and stress relaxation characteristics and bending workability deteriorate.
  • the cold working rate in the cold rolling before the recrystallization heat treatment step needs to be 55% or more, and preferably 60% or more.
  • the cold work rate of the cold rolling before the recrystallization heat treatment process is increased too much, problems such as distortion occur, so 98% or less is desirable and optimally 96% or less.
  • the recrystallization heat treatment step can be heat-treated even by batch annealing, and is maintained at a temperature in the range of 400 ° C. to 650 ° C. for 1 to 24 hours.
  • the average crystal grain size and the grain size of the precipitates are within the predetermined range in the final heat treatment step, whether it is a high temperature-short time continuous heat treatment or batch annealing. It is necessary to adjust the conditions so that
  • the final heat treatment process is preferably a high-temperature-short-time continuous heat treatment that can bring a certain concentration of P into a solid solution state, and the intermediate recrystallization heat treatment performed as necessary, that is, the annealing process is a batch type. Even if it is a high-temperature-short-time continuous heat treatment, it does not significantly affect the properties of the final rolled material.
  • finish rolling is performed on the copper alloy material subjected to the final recrystallization heat treatment step.
  • the maximum temperature reached 150 to 580 ° C.
  • the holding time in the temperature range from the “maximum temperature reached ⁇ 50 ° C.” to the maximum temperature was 0.02 to 100 minutes, It is preferable to perform a recovery heat treatment step in which a heat treatment index It2 defined below satisfies a relationship of 120 ⁇ It2 ⁇ 390.
  • a heating step for heating the copper alloy material to a predetermined temperature a holding step for holding the copper alloy material at a predetermined temperature for a predetermined time after the heating step, and the holding A cooling step of cooling the copper alloy material to a predetermined temperature after the step, wherein the maximum reached temperature of the copper alloy material is Tmax2 (° C.), and the maximum reached from a temperature that is 50 ° C.
  • This recovery heat treatment process does not involve recrystallization, improves the stress relaxation rate, spring limit value, bending workability and elongation of the rolled material by low-temperature or short-time recovery heat treatment, and reduces the conductivity reduced by cold rolling. It is a heat treatment for recovering the rate.
  • the lower limit is preferably 200 or more, and the upper limit is preferably 380 or less.
  • an Sn plating process such as hot-dip Sn plating or reflow Sn plating
  • it is heated at about 150 ° C. to about 300 ° C. for a short time, after being formed into a rolled material, and in some cases terminals and connectors. Even if this Sn plating step is performed after the recovery heat treatment, the properties after the recovery heat treatment are hardly affected.
  • the heating step of the Sn plating step is an alternative to the recovery heat treatment step, and improves the stress relaxation characteristics, spring strength, and bending workability of the rolled material.
  • the copper alloy sheets according to the first to fourth embodiments of the present invention are manufactured.
  • the copper alloy sheets according to the first to fourth embodiments of the present invention have excellent stress corrosion cracking resistance and stress relaxation characteristics, high strength, and good bending workability. From these characteristics, it becomes a suitable material for electronic / electric equipment parts such as connectors, terminals, relays, switches, and automobile parts with excellent cost performance. Furthermore, the average crystal grain size is 2 to 9 ⁇ m, the conductivity is 24% IACS or more, preferably 26% IACS or more, and the upper limit is not particularly specified. If a precipitate having a shape is present and the average particle size of the precipitate is 3 to 75 nm, the balance of strength, strength and bending workability is further improved, and stress relaxation characteristics, stress relaxation characteristics and electrical conductivity Since the effective stress at 150 ° C. is increased, it is a suitable material for electronic / electric equipment parts such as connectors, terminals, relays, switches, and automobile parts used in harsh environments.
  • the sample manufacturing process was performed in three types A, B, and C, and the manufacturing conditions were further changed in each manufacturing process.
  • Manufacturing process A was performed with actual mass production equipment, and manufacturing processes B and C were performed with experimental equipment.
  • Table 4 shows the manufacturing conditions of each manufacturing process.
  • the heat treatment index is out of the set condition range of the present invention.
  • the raw material was melted in a medium frequency melting furnace having an internal volume of 10 tons, and an ingot having a thickness of 190 mm and a width of 630 mm was manufactured by semi-continuous casting.
  • the ingots are each cut to a length of 1.5 m, and then in the processes A1 to A9 and A31 to A33, hot rolling process (sheet thickness 13 mm) -cooling process-milling process (sheet thickness 12 mm) -first cold Cold rolling step (sheet thickness 1.5 mm)-Annealing step (540 ° C, hold for 4 hours) or (670 ° C, 0.24 minutes))-Second cold rolling step (plate thickness 0.5 mm, cold working) 67%)-Final annealing step (recrystallization heat treatment step)-Finish cold rolling step (sheet thickness 0.3 mm, cold working rate 40%)-Recovery heat treatment step.
  • the first cold rolling process and the annealing process were omitted.
  • the above holding time is the time for holding in the high temperature range from the highest temperature to the highest temperature of -50 ° C.
  • the hot rolling start temperature in the hot rolling process was set to 860 ° C., and after hot rolling to a plate thickness of 13 mm, shower water cooling was performed in the cooling process.
  • the hot rolling start temperature and the ingot heating temperature have the same meaning.
  • the average cooling rate in the cooling step is the rolling material temperature after the final hot rolling, or the average cooling rate in the temperature region from when the rolled material temperature is 650 ° C. to 350 ° C. Measured at the edge. The measured average cooling rate was 4 ° C./second.
  • the maximum achieved temperature Tmax (° C.) of the rolled material and the holding time tm (min) in the temperature region from the temperature 50 ° C. lower than the maximum achieved temperature of the rolled material to the maximum achieved temperature are (690 C, 0.09 min), (660 ° C., 0.07 min), (710 ° C., 0.16 min), (770 ° C., 0.25 min), (620 ° C., 0.06 min).
  • the recrystallization heat treatment was performed using batch annealing at 470 ° C. for 4 hours. Of the steps in which high-temperature-short-time recrystallization heat treatment was performed, steps A31 and A32 had an average cooling rate in the range of 50 ° C. to 400 ° C. lower than the maximum temperature of the rolled material during cooling. The cooling was performed at 20 to 30 ° C./second in the other steps.
  • the cold working rate of the finish cold rolling process was set to 40%.
  • the maximum achieved temperature Tmax (° C.) of the rolled material is set to 450 (° C.), and the holding time tm (min) in the temperature region from the temperature 50 ° C. lower than the maximum achieved temperature of the rolled material to the maximum achieved temperature is set. 0.05 minutes.
  • the recovery heat treatment process was not performed in the manufacturing process A6.
  • the obtained sample was heated in an electric furnace at 300 ° C. for 30 minutes and air-cooled.
  • the obtained sample was completely immersed in an oil bath at 350 ° C. for 0.07 minutes and air-cooled. This heat treatment is a heat treatment condition corresponding to the hot Sn plating treatment.
  • the production process B (B1 to B4) was performed as follows.
  • a laboratory test ingot having a thickness of 40 mm, a width of 120 mm, and a length of 190 mm is cut out from the ingot of the manufacturing process A, and then a hot rolling process (sheet thickness 6 mm) -cooling process (shower water cooling) -pickling process -Cold rolling step (thickness 0.5 mm)-Recrystallization heat treatment step-Finish cold rolling step (plate thickness 0.3 mm, processing rate 40%)-Recovery heat treatment step was performed.
  • the hot rolling step the ingot was heated to 860 ° C. and hot rolled to a thickness of 6 mm.
  • the cooling rate in the cooling step (the temperature of the rolled material after hot rolling or the cooling rate from when the temperature of the rolled material is 650 ° C. to 350 ° C.) was 3 ° C./second.
  • the recrystallization heat treatment step is performed at a Tmax of 690 (° C.), a holding time tm of 0.09 minutes, and an average cooling rate of 640 ° C. to 400 ° C. at 25 ° C./second. went.
  • Manufacturing process B1 performed recrystallization heat processing on the conditions hold
  • the recovery heat treatment step was carried out under the conditions of Tmax of 450 (° C.) and holding time tm of 0.05 minutes for manufacturing step B1 and manufacturing step B2.
  • manufacturing process B4 it heated to the 300 degreeC electric furnace for 30 minutes, and air-cooled.
  • the obtained sample was completely immersed in an oil bath at 250 ° C. for 0.15 minutes and air-cooled.
  • This heat treatment is also a heat treatment condition corresponding to the hot Sn plating treatment.
  • the plate thickness is 6 mm by cold rolling after homogeneous annealing at 700 ° C. for 4 hours, and annealing is performed again at 620 ° C. for 4 hours.
  • the plate thickness is 0.5 mm
  • Tmax is 690 (° C.)
  • holding time tm is 0.09 minutes
  • an average cooling rate from 640 ° C. to 400 ° C. is 25 ° C./second.
  • recrystallization heat treatment was performed using batch annealing under the condition of holding at 480 ° C. for 4 hours. And it cold-rolled to 0.3 mm by the finish cold rolling process, and the recovery heat treatment process was implemented on the conditions of heating for 30 minutes to a 300 degreeC electric furnace.
  • the process corresponding to the short-time heat treatment performed in the manufacturing process A in a continuous annealing line or the like is substituted by immersing the rolled material in a salt bath, and reaches the maximum.
  • the temperature was the salt bath liquid temperature
  • the time during which the rolled material was completely immersed was the holding time
  • air cooling was performed after the immersion.
  • a salt (solution) a mixture of BaCl, KCl, and NaCl was used.
  • the manufacturing process C (C1, C1A, C2) was performed as follows. It melt
  • the production process C1 has a Tmax of 690 (° C.), a holding time tm of 0.09 minutes, an average cooling rate of 640 ° C. to 400 ° C., conditions of 25 ° C./second, and the production process C1A
  • the conditions of 470 ° C. for 4 hours and the production process C2 were performed under the conditions of 380 ° C. for 4 hours.
  • the average grain size of the recrystallized grains is determined by appropriately selecting a magnification according to the size of the crystal grains in metal microscope photographs such as 600 times, 300 times, and 150 times, and a copper grain size test in JIS H 0501. The measurement was performed according to the quadrature method. Twins are not regarded as crystal grains. What was difficult to judge from a metallographic microscope was determined by the FE-SEM-EBSP (Electron Back Scattering Diffraction Pattern) method. That is, FE-SEM is JSM-7000F manufactured by JEOL Ltd., and TSL Solutions OIM-Ver.
  • the average crystal grain size was determined from a grain size map (Grain map) with an analysis magnification of 200 times and 500 times.
  • the calculation method of the average crystal grain size is based on the quadrature method (JIS H 0501).
  • JIS H 0501 the quadrature method
  • One crystal grain is elongated by rolling, but the volume of the crystal grain hardly changes by rolling.
  • the cross section obtained by cutting the plate material in parallel with the rolling direction it is possible to estimate the average crystal grain size in the recrystallization stage from the average crystal grain size measured by the quadrature method.
  • the average particle size of the precipitate was determined as follows.
  • the transmission electron image by TEM of 500,000 times and 100,000 times (detection limits are 1.0 nm and 5 nm, respectively) is elliptically approximated to the precipitate contrast using image analysis software “Win ROOF”.
  • the geometrical average value of the short axes was obtained for all the precipitated particles in the field of view, and the average value was taken as the average particle diameter.
  • the detection limits of the particle diameter were 1.0 nm and 5 nm, respectively, and those smaller than that were treated as noise and were not included in the calculation of the average particle diameter.
  • the average particle diameter was measured at 500,000 times when the average particle size was approximately 10 nm or less, and 100,000 times when the average particle size was more than 100,000 nm.
  • it is difficult to accurately grasp the information of precipitates because the dislocation density is high in a cold-worked material.
  • the observation this time was the recrystallization portion after the recrystallization heat treatment step before the finish cold rolling step.
  • the measurement positions were two places where the length of the plate thickness was 1 ⁇ 4 from both the front and back surfaces of the rolled material, and the measured values at the two places were averaged.
  • Stress relaxation characteristics The measurement of the stress relaxation rate was performed as follows according to JCBA T309: 2004.
  • a cantilever screw type jig was used for the stress relaxation test of the specimen.
  • the test piece was taken from the direction of 0 degrees (parallel) and 90 degrees (vertical) in the rolling direction, and the shape of the test piece was set to plate thickness t ⁇ width 10 mm ⁇ length 60 mm.
  • the stress applied to the specimen was 80% of the 0.2% proof stress, and the specimen was exposed to an atmosphere at 150 ° C. and 120 ° C. for 1000 hours.
  • the stress relaxation rate is preferably small.
  • Yield strength and stress relaxation characteristics may not be collected from the relationship between the slitter width after slitting, that is, when the width is smaller than 60 mm, the direction is 90 degrees (perpendicular) to the rolling direction. In this case, the test piece is evaluated only in the direction of 0 degree (parallel) to the rolling direction, and stress relaxation characteristics and Pw are evaluated.
  • Test No. in T3 and T36 (alloys No.
  • Stress corrosion cracking resistance The stress corrosion cracking resistance was measured using a test container and a test liquid defined in JIS H 3250, and using a liquid in which an equal amount of ammonia water and water were mixed.
  • a rolled material with a bending stress of 80% of the proof stress was applied in the above ammonia atmosphere using a resin cantilever screw type jig.
  • the stress corrosion cracking resistance was evaluated from the stress relaxation rate. That is, if fine cracks are generated, they do not return to their original state, and the stress relaxation rate increases as the degree of cracks increases, so that the stress corrosion cracking resistance can be evaluated.
  • a material having a stress relaxation rate of 25% or less after 48 hours exposure is evaluated as A with excellent stress corrosion cracking resistance, and even if the stress relaxation rate exceeds 25% for 48 hours exposure, it is 25% or less for 24 hours exposure.
  • Those having good corrosion cracking resistance (no problem in practical use) were evaluated as B, and those having a stress relaxation rate exceeding 25% after 24 hours exposure were inferior in stress corrosion cracking resistance (practical) Evaluation C was assigned as a problem).
  • required by this application assumes high reliability and a severe case.
  • solder wettability Solder wettability was carried out by the meniscograph method.
  • the test equipment is PHESCA (Reska) model: SAT-5200.
  • a test piece was taken from the rolling direction and cut into a thickness: 0.3 mm ⁇ width: 10 mm ⁇ length: 25 mm.
  • the used solder is Sn-3.5 mass% Ag-0.7 mass% Cu and pure Sn.
  • acetone degreasing ⁇ 15% sulfuric acid washing ⁇ water washing ⁇ acetone degreasing was performed.
  • a standard rosin flux (NA200 manufactured by Tamura Corporation) was used as the flux.
  • An evaluation test was performed under the conditions of a solder bath temperature of 270 ° C., an immersion depth of 2 mm, an immersion speed of 15 mm / sec, and an immersion time of 15 sec.
  • solder wettability was performed with zero cross time. That is, it is the time required for the solder to completely get wet after being immersed in the bath, and if the zero cross time is within 5 seconds, that is, within 5 seconds after being immersed in the solder bath, the solder wettability has a practical problem.
  • Evaluation B was given as no evaluation, and evaluation A was given as being particularly excellent when the zero crossing time was within 2 seconds. When the zero crossing time exceeds 5 seconds, there is a problem in practical use, and thus the evaluation is C.
  • the sample was washed with sulfuric acid after the final step of finish rolling or recovery heat treatment, and the surface was polished with No. 800 abrasive paper to obtain a non-oxidized surface for 3 days or 10 days.
  • the tensile strength, proof stress, and elongation were measured according to the methods specified in JIS Z 2201 and JIS Z 2241, and the shape of the test piece was a No. 5 test piece. The test was performed in a direction of 0 ° with respect to the rolling direction and a direction of 90 ° with respect to the rolling direction.
  • the bending workability was evaluated by W bending with a bending angle of 90 degrees defined by JIS H 3110.
  • the bending test (W-bending) was performed as follows.
  • Samples were taken from a direction called 90 ° with respect to the rolling direction in a so-called bad way and a direction called 0 ° in the rolling direction called a good way.
  • the comparative alloys are as follows. Alloy No. 100 and 121 contain less Zn than the composition range of the alloys according to the invention. Alloy No. No. 101 has a Sn content smaller than the composition range of the inventive alloy. Alloy No. 102 has more P content than the composition range of an alloy according to the invention. Alloy No. 103 has more Zn content than the composition range of an alloy according to the invention. Alloy No. 104 has less P content than the composition range of the alloy according to the invention. Alloy No. No. 105 has a Sn content higher than the composition range of the inventive alloy. Alloy No.
  • Alloy No. 107 does not satisfy the range of the compositional relational expressions f2 and f3 of the invention alloy.
  • Alloy No. 108 and 109 do not satisfy the range of the compositional relational expression f1 of the invention alloy.
  • Alloy No. 110 to 113 do not satisfy the range of the compositional relational expression f4 of the invention alloy.
  • Alloy No. 114 does not satisfy the range of the compositional relational expression f3 of the alloy according to the invention.
  • Alloy No. 115 and 116 do not satisfy the range of the compositional relational expression f5 of the alloy according to the invention.
  • Alloy No. Reference numerals 118 to 120 are general brass. Alloy No. 117 and 123 have a large content of Fe and Co.
  • the average particle size of the precipitated particles after the recrystallization heat treatment step is small, the average crystal particle size is small, and the bending workability and the stress relaxation rate are deteriorated. (Refer to Alloy No. 102 etc.).
  • the content of P is less than the range of the alloy of the present invention, or when Ni / P in the compositional relational expression f5 is set, more than 250, the average grain size and average crystal of the precipitated particles after the recrystallization heat treatment step The particle size increases, the tensile strength and proof stress decrease, and the stress relaxation rate deteriorates.
  • Ni / P is 180 or less, and further 120 or less, the tensile strength and the proof stress are increased, and the stress relaxation rate is improved.
  • Ni / P of f5 is smaller than the set range, bending workability and stress relaxation rate deteriorate (see Alloy Nos. 104, 116, 115, 13, 18, etc.).
  • the Zn content is less than the range of the alloy of the present invention, the average crystal grain size after the recrystallization heat treatment step becomes large and the tensile strength becomes low. Moreover, the effect corresponding to Ni content is not acquired, but a stress relaxation rate deteriorates (refer alloy No. 100 grade
  • the amount of Zn: around 4% by mass is a boundary value for satisfying the tensile strength, stress relaxation characteristics, and effective stress Pw (see Alloy Nos. 1, 10, 100, etc.). If the Zn content exceeds the condition range of the alloy according to the invention, the electrical conductivity, tensile strength, proof stress, stress relaxation rate, bending workability, stress corrosion cracking resistance, and solder wettability will deteriorate. When the Zn content is 12% by mass or less, and further 10% by mass or less, the above characteristics are improved (see Alloy Nos. 103, 12, 15, 18, etc.).
  • compositional relational expression f1 When the compositional relational expression f1 is smaller than the condition range of the alloy according to the invention, the average crystal grain size after the recrystallization heat treatment step is large, the tensile strength and the proof stress are low, and the stress relaxation property is the Ni content. A reasonable effect is not obtained and it is bad.
  • the compositional relational expression f1 is larger than the condition range of the alloy according to the invention, the stress corrosion cracking resistance, bending workability, solder wettability are poor, and the conductivity is also low. Moreover, an effect commensurate with the Ni content cannot be obtained, and the stress relaxation characteristics are poor.
  • the value of f1 corresponds to the boundary value of these characteristics, about 7 on the lower limit side and about 18 or about 16 on the upper limit side. When the value of f1 is smaller than 14, the characteristics are slightly improved (see Alloy Nos. 108, 109, 12, 1, 15, 18, etc.).
  • compositional relational expression f2 When the compositional relational expression f2 is larger than the condition range of the invention alloy, the stress corrosion cracking resistance is deteriorated, and the stress relaxation characteristics and bending workability are also deteriorated.
  • the values of the composition relational expression f2, 9 to 11, correspond to the boundary values regarding the quality of these characteristics. When the value of f2 is smaller than 8, stress corrosion cracking resistance, stress relaxation characteristics, and bending workability are improved (see Alloy Nos. 107, 103, 12, 15, 18, etc.).
  • (6) When the compositional relational expression f3 is smaller than the condition range of the alloy according to the invention, the stress corrosion cracking resistance, stress relaxation characteristics, and bending workability deteriorate. The value of the boundary of f3 is around 0.3 to 0.35. When the value of f3 is larger than 0.4, the stress corrosion cracking resistance, the stress relaxation property, and the bending workability are improved (see Alloy Nos. 107, 114, 2, 15, etc.).
  • compositional relational expression f4 When the compositional relational expression f4 is smaller than the condition range of the alloy according to the invention, the stress relaxation characteristics are deteriorated, and the bending workability and the stress corrosion cracking resistance are also lowered. The tensile strength and proof stress in the vertical direction increase with respect to the rolling direction. When the compositional relational expression f4 is larger than the condition range of the alloy according to the invention, the stress relaxation characteristics are deteriorated (see Alloy Nos. 110 to 113, 14, 17, etc.).
  • the stress corrosion resistance Does not satisfy any of crackability, stress relaxation characteristics, strength, bending workability, solder wettability, and conductivity.
  • the copper alloy plate of the present invention when used, it was as follows. (1) In the example alloys of the manufacturing process A using mass production equipment and the manufacturing process B using experimental equipment, if the manufacturing conditions are the same, the metallographic structure after the recrystallization heat treatment in both processes is the average crystal grains and precipitates Their average particle diameters are almost the same, almost the same mechanical properties, stress relaxation characteristics (stress relaxation rate, effective stress relaxation characteristics, product of effective stress and conductivity to the power of 1/2) Stress corrosion cracking resistance and solder wettability are obtained (see Test Nos. T10, T12, T26, T28, etc.).
  • the particle size of the precipitate is slightly larger than in the process that passes through the hot rolling process, but almost the same mechanical properties, stress relaxation characteristics, and stress corrosion cracking resistance. And solder wettability (see Test Nos. T14, T15, T46, T47, etc.).
  • the coefficient It1 of the recrystallization heat treatment is large within the set range, the average crystal grain size, precipitates, and the size increase, and the yield strength is slightly low, but the stress relaxation characteristics are slightly good. If the coefficient It1 of the recrystallization heat treatment is small within the set range, the average crystal grain size and precipitates become small, and the proof stress is a little high, but the stress relaxation characteristics are a little bad.
  • the It1 is lower than the set condition, the recrystallized structure is not completely obtained, and the bending workability is deteriorated. If It1 is too large, the average crystal grain size becomes large, the grain size of the precipitates becomes large, the proof stress is low, and the stress relaxation property is low (see Test Nos. T3, T3C, T7, T8, T9, etc.). .
  • the copper alloy sheet of the present invention has excellent stress corrosion cracking resistance and stress relaxation properties, high strength, good solder wettability, and balance between strength, bending workability, effective stress relaxation properties and conductivity. Excellent.
  • the copper alloy plate of the present invention can be suitably applied as a component for electrical and electronic parts such as relays, springs, switches, semiconductors, and lead frames as well as connectors and terminals.

Abstract

Provided is a copper alloy sheet which is excellent in terms of resistance to stress corrosion cracking, stress relaxation property, tensile strength, proof stress, electrical conductivity, bendability, and solder wettability. The copper alloy sheet contains 4-14 mass% Zn, 0.1-1 mass% Sn, 0.005-0.08 mass% P, and 1.0-2.4 mass% Ni, with the remainder comprising Cu and unavoidable impurities, and satisfies the relational expressions 7≤[Zn]+3×[Sn]+2×[Ni]≤18, 0≤[Zn]-0.3×[Sn]-1.8×[Ni]≤11, 0.3≤(3×[Ni]+0.5×[Sn])/[Zn]≤1.6, 1.8≤[Ni]/[Sn]≤10, and 16≤[Ni]/[P]≤250. The copper alloy sheet has an average crystal grain diameter of 2-9 μm and contains circular or elliptic precipitates which have an average grain diameter of 3-75 nm or in which precipitate grains each having a grain diameter of 3-75 nm account for 70% by number or more of all the circular or elliptic precipitates. The copper alloy sheet has an electrical conductivity of 24% IACS or greater and a degree of stress relaxation, measured at 150°C for 1,000 hours as an index to resistance to stress relaxation, of 25% or less.

Description

銅合金板及び銅合金板の製造方法Copper alloy plate and method for producing copper alloy plate
本発明は、耐応力腐食割れ性、応力緩和特性、引張強さ、耐力、導電率、曲げ加工性、はんだ濡れ性に優れた銅合金板であって、特に端子・コネクタ、電気・電子部品の用途に用いられる銅合金板、及び、この銅合金板の製造方法に関する。
本願は、2014年9月26日に、日本に出願された特願2014-196430号に基づき優先権を主張し、その内容をここに援用する。
The present invention is a copper alloy plate excellent in stress corrosion cracking resistance, stress relaxation characteristics, tensile strength, proof stress, electrical conductivity, bending workability, and solder wettability, particularly for terminals / connectors and electrical / electronic components. It is related with the copper alloy plate used for a use, and the manufacturing method of this copper alloy plate.
This application claims priority based on Japanese Patent Application No. 2014-196430 filed in Japan on September 26, 2014, the contents of which are incorporated herein by reference.
従来、自動車部品、電気部品、電子部品、通信機器、電子・電気機器等に使用されるコネクタ、端子、リレー、ばね、スイッチ、半導体、リードフレーム等の構成材として、高導電で高強度を有する銅合金板が使用されている。しかしながら、近年のかかる機器の小型化、軽量化、高性能化に伴って、それらに使用される構成材料にも、極めて厳しい特性改善が要求されている。例えば、コネクタのバネ接点部には極薄板が使用されるが、かかる極薄板を構成する高強度銅合金には、薄肉化を図るために、高い強度や、伸びと強度との高度なバランスを有することが要求される。さらに、生産性、経済性に優れること及び導電性、使用中の材料の劣化を抑制する耐食性(耐応力腐食割れ,耐脱亜鉛腐食,耐マイグレーション)、応力緩和特性、そしてはんだ濡れ性等において問題のないことが要求される。 Conventionally, it has high conductivity and high strength as a component of connectors, terminals, relays, springs, switches, semiconductors, lead frames, etc. used in automobile parts, electrical parts, electronic parts, communication equipment, electronic / electrical equipment, etc. A copper alloy plate is used. However, with recent downsizing, weight reduction, and high performance of such devices, extremely strict characteristic improvements are required for the constituent materials used for them. For example, an ultra-thin plate is used for the spring contact portion of the connector, but the high-strength copper alloy that constitutes such an ultra-thin plate has a high strength and a high balance between elongation and strength in order to reduce the thickness. It is required to have. Furthermore, there are problems in terms of productivity, economic efficiency, conductivity, corrosion resistance (stress corrosion cracking resistance, dezincification corrosion resistance, migration resistance), stress relaxation characteristics, solder wettability, etc. that suppress deterioration of the material during use. It is required that there is no.
しかしながら、強度と導電率とは、相反する特性であり、強度が向上すれば、一般に導電率は下がる。また、例えば自動車のエンジンルームに近いような使用環境温度が高いところでは、例えば100℃~150℃にも上昇することがあり、応力緩和特性、耐熱性が更に優れることを求められる部品がある。さらに、近年、自動車エンジン電子制御技術の進化に伴い、高温下で使用される部品が増大し、高温環境下で高い信頼性を確保できる銅合金材料が求められる。勿論、自動車部品や電機・電子機器部品は、厳しい競争下に晒されており、低いコストの銅合金素材が求められている。また、グローバル調達の観点から、製造の容易な銅合金素材が切望されている。 However, strength and electrical conductivity are contradictory properties, and as the strength increases, the electrical conductivity generally decreases. For example, in places where the operating environment temperature is high, such as near the engine room of an automobile, there are parts that may rise to, for example, 100 ° C. to 150 ° C., and are required to have further excellent stress relaxation characteristics and heat resistance. Furthermore, in recent years, with the evolution of automobile engine electronic control technology, the number of parts used at high temperatures has increased, and a copper alloy material that can ensure high reliability in high temperature environments is required. Of course, automobile parts and electrical / electronic equipment parts are exposed to severe competition, and low-cost copper alloy materials are required. From the viewpoint of global procurement, a copper alloy material that is easy to manufacture is desired.
ここで、高導電高強度銅合金としては、一般に、ベリリウム銅、りん青銅、洋白、黄銅やSnを添加した黄銅が周知である。
また、高導電、高強度の要請を満たすための合金として、例えば特許文献1に示されるようなCu-Zn-Sn合金が知られている。
Here, as the high-conductivity high-strength copper alloy, beryllium copper, phosphor bronze, white, brass, or brass added with Sn is generally known.
Further, as an alloy for satisfying the demand for high conductivity and high strength, for example, a Cu—Zn—Sn alloy as disclosed in Patent Document 1 is known.
特開2007-056365号公報JP 2007-056365 A
しかしながら、上述のベリリウム銅、りん青銅、洋白、黄銅のような一般的な高強度銅合金には次のような問題があり、上記した要求に応えることができなかった。
ベリリウム銅は、銅合金中、最も高い強度を有するものであるが、ベリリウムが人体に非常に有害である(特に、溶融状態ではベリリウム蒸気が極微量であっても非常に危険である)。このため、ベリリウム銅製部材又はこれを含む製品の廃棄処理(特に焼却処理)が困難であり、製造に使用する溶解設備に要するイニシャルコストが極めて高くなる。したがって、所定の特性を得るために製造の最終段階で溶体化処理が必要となることとも相俟って、製造コストを含む経済性に問題がある。
However, general high-strength copper alloys such as the above-mentioned beryllium copper, phosphor bronze, white and brass have the following problems, and have not been able to meet the above requirements.
Beryllium copper has the highest strength among copper alloys, but beryllium is very harmful to the human body (particularly in the molten state, even a very small amount of beryllium vapor is very dangerous). For this reason, it is difficult to dispose (especially incineration) a beryllium copper member or a product including the member, and the initial cost required for the melting equipment used for manufacturing becomes extremely high. Accordingly, there is a problem in economic efficiency including manufacturing cost, in combination with the necessity of solution treatment at the final stage of manufacturing in order to obtain predetermined characteristics.
りん青銅、洋白は、熱間加工性が悪く、熱間圧延による製造が困難であるため、一般に横型連続鋳造により製造される。したがって、生産性が悪く、エネルギーコストが高く、歩留りも悪い。
また、高強度銅合金の代表品種であるばね用りん青銅やばね用洋白には、高価なSn,Niが多量に含有されているため、導電性が悪く、経済性にも問題がある。
Phosphor bronze and western white are generally manufactured by horizontal continuous casting because they have poor hot workability and are difficult to manufacture by hot rolling. Therefore, productivity is poor, energy costs are high, and yield is poor.
Moreover, since the phosphor bronze for springs and the white for springs, which are representative varieties of high-strength copper alloys, contain a large amount of expensive Sn and Ni, they are poor in conductivity and have a problem in economical efficiency.
黄銅の主要元素であるZnは、Cuに比べ安価であり、CuにZnを添加することにより、密度が小さくなり、強度、すなわち引張強さ、耐力または降伏応力、ばね限界値、疲労強度が高くなる。ところが、黄銅においては、Zn含有量を増すに従って、応力腐食割れ感受性が非常に高くなり、材料としての信頼性が損なわれる。一方、黄銅においては、応力緩和特性が周知のごとく悪く、エンジンルーム周辺など高温に達する部品には到底使うことはできない。また、Zn含有量が増すに従って、強度は向上するものの、延性、曲げ加工性が悪くなり、強度と延性のバランスが悪くなる。
以上のように、黄銅及び単にSnを添加した黄銅は安価であるが、強度的に満足できるものでなく、応力緩和特性が悪く、導電性が悪く、耐食性に問題(応力腐食及び脱亜鉛腐食)があり、上記した小型化,高性能化を図る製品構成材としては不適当である。
Zn, which is the main element of brass, is cheaper than Cu, and by adding Zn to Cu, the density decreases, and the strength, that is, tensile strength, yield strength or yield stress, spring limit value, and fatigue strength are high. Become. However, in brass, as the Zn content increases, the stress corrosion cracking sensitivity becomes very high, and the reliability as a material is impaired. On the other hand, brass has poor stress relaxation characteristics as is well known, and cannot be used for parts that reach high temperatures such as around the engine room. Further, as the Zn content increases, the strength improves, but the ductility and bending workability deteriorate, and the balance between strength and ductility deteriorates.
As described above, brass and brass with simple addition of Sn are inexpensive, but are not satisfactory in strength, have poor stress relaxation characteristics, poor conductivity, and have problems with corrosion resistance (stress corrosion and dezincification corrosion) Therefore, it is unsuitable as a product component for achieving the above-mentioned miniaturization and high performance.
したがって、このような一般的高導電・高強度銅合金は、前述した如く小型化,軽量化,高性能化される傾向にある各種機器の部品構成材として到底満足できるものではなく、新たな高導電、高強度銅合金の開発が強く要請されている。
また、特許文献1に記載されたCu-Zn-Sn合金においても、導電性や強度を含む諸特性は十分でなかった。
Therefore, such a general high-conductivity and high-strength copper alloy is not completely satisfactory as a component material for various devices that tend to be reduced in size, weight, and performance as described above. There is a strong demand for the development of conductive and high-strength copper alloys.
In addition, the Cu—Zn—Sn alloy described in Patent Document 1 does not have sufficient properties including conductivity and strength.
本発明は、上記の従来技術の問題を解決するためになされたものであり、耐応力腐食割れ性、応力緩和特性、引張強度、耐力、導電性、曲げ加工性、はんだ濡れ性に優れた銅合金板、特に、過酷な使用環境に耐え得る、信頼性の高い端子・コネクタ、電気・電子部品に適した銅合金板、及び、この銅合金板の製造方法を提供することを課題とする。 The present invention has been made to solve the above-mentioned problems of the prior art, and is excellent in stress corrosion cracking resistance, stress relaxation characteristics, tensile strength, proof stress, conductivity, bending workability, and solder wettability. It is an object of the present invention to provide an alloy plate, in particular, a highly reliable terminal / connector that can withstand harsh use environments, a copper alloy plate suitable for electric / electronic components, and a method of manufacturing the copper alloy plate.
本発明者は、上記課題を解決するため、様々な角度から検討を重ね、種々の研究、実験を重ねたところ、4~14質量%のZnを含むCu-Zn合金に、まずNiとSnを適正量添加し、同時に、NiとSnの相互作用を最適化するために、NiとSnの合計含有量、及び含有量の比率を適正な範囲内とし、さらに、ZnとNiとSnの相互作用を鑑み、3つの組成関係式、f1=[Zn]+3×[Sn]+2×[Ni]、f2=[Zn]-0.3×[Sn]-1.8×[Ni]、およびf3=(3×[Ni]+0.5×[Sn])/[Zn]を同時に適正値とするようにZn、Ni、Snを調整し、かつNi量とSn量、およびP量とNi量を適正な範囲内の含有比率とし、形成される析出物の大きさ、および結晶粒径を適正に調整することにより、コストパフォーマンスに優れ、密度が小さく、高い強度と伸び・曲げ加工性と導電率のバランスと、耐応力腐食割れ性、応力緩和特性に優れ、様々な使用環境に対応できる銅合金を見出し、本発明を成すに至った。 In order to solve the above problems, the present inventor has repeatedly studied from various angles and conducted various studies and experiments. As a result, first, Ni and Sn were added to a Cu—Zn alloy containing 4 to 14 mass% of Zn. In order to optimize the interaction between Ni and Sn at the same time, the total content of Ni and Sn and the ratio of the content are within the proper range, and further, the interaction between Zn, Ni and Sn In view of the above, three compositional relational expressions, f1 = [Zn] + 3 × [Sn] + 2 × [Ni], f2 = [Zn] −0.3 × [Sn] −1.8 × [Ni], and f3 = Adjust Zn, Ni, and Sn so that (3 × [Ni] + 0.5 × [Sn]) / [Zn] is set to appropriate values at the same time, and set the appropriate amounts of Ni and Sn, and P and Ni. To adjust the content ratio within the appropriate range and appropriately adjust the size of the precipitates formed and the crystal grain size. We found a copper alloy that has excellent cost performance, low density, high strength, elongation / bending workability and electrical conductivity, excellent stress corrosion cracking resistance, and stress relaxation characteristics, and can be used in various usage environments. The present invention has been accomplished.
具体的には、適量のZn、Ni、Snをマトリックスに固溶させ、Pを含有することにより、延性、曲げ加工性を損なわずに、高い強度を得る。そして、原子価(または、価電子数、以下同様)が4価(価電子数が4)のSn、2価のZn、Niと、5価のPの共添加により、耐応力腐食割れ性、応力緩和特性を良くし、同時に、積層欠陥エネルギーを低くさせ、再結晶時の結晶粒を微細にする。また、NiとPを主体とする微細な化合物を形成することによって結晶粒成長を抑制し、微細な結晶粒を維持する。 Specifically, high strength is obtained without impairing ductility and bending workability by dissolving appropriate amounts of Zn, Ni, and Sn in a matrix and containing P. Further, Sn having a valence (or the number of valence electrons, the same shall apply hereinafter) of Sn (divalent valence number of 4), divalent Zn, Ni and pentavalent P can be added, thereby causing stress corrosion cracking resistance, Improves stress relaxation characteristics, simultaneously lowers stacking fault energy, and makes crystal grains finer during recrystallization. Further, by forming a fine compound mainly composed of Ni and P, crystal grain growth is suppressed and fine crystal grains are maintained.
また、結晶粒(再結晶粒)を微細化させることにより、引張強度、耐力を主とする強度を顕著に向上させることができる。すなわち、平均結晶粒径が小さくなるに従って強度も増大される。具体的にはCuに対するZn、Sn、Niの添加は、再結晶核の核生成サイトを増加させる効果がある。Cu-Zn-Sn-Ni合金に対するP、Niの添加は粒成長を抑制する効果がある。このため、これらの効果を利用することで、微細な結晶粒を有するCu-Zn-Sn-Ni-P系合金を得ることが可能である。再結晶核の核生成サイトの増加は、それぞれ原子価が2価、2価、4価であるZn、Ni、Sn添加により、積層欠陥エネルギーを低くさせることが主原因の1つであると考えられる。その生成した微細な再結晶粒を微細なまま維持させる結晶粒成長の抑制は、P、Niの添加による微細な析出物の生成が原因していると考えられる。ただし、この中で再結晶粒の超微細化を目指すだけでは、強度、伸び、曲げ加工性のバランスが取れない。バランスを保つには、再結晶粒の微細化に余裕を持たせ、ある範囲の大きさの結晶粒微細化領域が良いことが判明した。結晶粒の微細化又は超微細化については、JIS H 0501において、記載されている標準写真で最小の結晶粒度が0.010mmである。このことから、0.010mm未満の平均結晶粒を有するものは結晶粒が微細化されていると称しても差し支えないと考える。 Further, by refining crystal grains (recrystallized grains), the strength mainly including tensile strength and proof stress can be remarkably improved. That is, the strength increases as the average crystal grain size decreases. Specifically, the addition of Zn, Sn, and Ni to Cu has an effect of increasing the nucleation sites of recrystallization nuclei. Addition of P and Ni to the Cu—Zn—Sn—Ni alloy has an effect of suppressing grain growth. Therefore, by using these effects, it is possible to obtain a Cu—Zn—Sn—Ni—P-based alloy having fine crystal grains. The increase in the nucleation sites of recrystallized nuclei is thought to be one of the main reasons that the stacking fault energy is lowered by adding Zn, Ni, and Sn, each having a valence of 2, 2, or 4. It is done. Suppression of crystal grain growth that maintains the fine recrystallized grains thus produced is considered to be caused by the production of fine precipitates by the addition of P and Ni. However, the balance of strength, elongation, and bending workability cannot be achieved simply by aiming at ultrafine recrystallized grains. In order to maintain the balance, it has been found that a crystal grain refinement region having a certain range of sizes is good by providing a margin for refinement of recrystallized grains. Regarding the refinement or ultrafine refinement of crystal grains, the minimum crystal grain size in the standard photograph described in JIS H 0501 is 0.010 mm. From this, it can be said that those having an average crystal grain of less than 0.010 mm may be referred to as crystal grains being refined.
CuにZn、Ni、Snの各元素を固溶させることによって、延性、曲げ加工性を損なわずに、強度を向上させ、応力緩和特性、耐応力腐食割れ性を良くするためには、Zn、Ni、Snの各元素の性質を始め、種々の観点から、元素間の相互作用を考慮にいれる必要がある。すなわち、単に、Znと、Niと、Snの各元素の含有量を規定するだけでは、応力緩和特性、耐応力腐食割れ性を良くし、延性、曲げ加工性を損なわずに、高い強度を必ずしも得ることはできない。
そこで、組成関係式f1=[Zn]+3×[Sn]+2×[Ni]と、組成関係式f2=[Zn]-0.3×[Sn]-1.8×[Ni]と、f3=(3×[Ni]+0.5×[Sn])/[Zn]と、の3つの組成関係式を所定の範囲内とする必要がある。
In order to improve the strength and improve the stress relaxation characteristics and stress corrosion cracking resistance without impairing the ductility and bending workability by dissolving each element of Zn, Ni, and Sn in Cu, It is necessary to consider the interaction between elements from various viewpoints including the properties of each element of Ni and Sn. In other words, simply defining the content of each element of Zn, Ni, and Sn improves stress relaxation characteristics and stress corrosion cracking resistance, and does not necessarily reduce high ductility and bending workability. I can't get it.
Therefore, the composition relational expression f1 = [Zn] + 3 × [Sn] + 2 × [Ni], the composition relational expression f2 = [Zn] −0.3 × [Sn] −1.8 × [Ni], and f3 = The three compositional relational expressions of (3 × [Ni] + 0.5 × [Sn]) / [Zn] need to be within a predetermined range.
組成関係式f1、f2の下限の値は、Zn、Ni、Snの各元素の相互作用を考慮した場合であっても、高い強度を得るための最低の必要値であり、一方、組成関係式f1、f2が上限値を超えると、或いは、組成関係式f3の下限値を下回ると、強度は高くなるものの、応力緩和特性、または耐応力腐食割れ性が損なわれる。
また、組成関係式f1=[Zn]+3×[Sn]+2×[Ni]の上限の値は、本発明合金の導電率が24%IACSを超えるかどうかの値である。
組成関係式f2=[Zn]-0.3×[Sn]-1.8×[Ni]の上限の値は、優れた応力緩和特性、耐応力腐食割れ性と、良好な延性、曲げ加工性、はんだ濡れ性を得るための境界値でもある。前記のとおり、Cu-Zn合金の致命的な欠点として、応力腐食割れの感受性が高いこと、応力緩和特性が悪いことである。
組成関係式f3=(3×[Ni]+0.5×[Sn])/[Zn]の下限の値は、良好な応力緩和性を得るための境界の値である。前記のとおりCu-Zn合金は、コストパフォーマンスに優れた合金であるが、応力緩和特性が乏しく、高い強度を有しても、高強度を活かすことができなかった。一般的に、黄銅合金は、応力緩和特性が乏しいが、(3×[Ni]+0.5×[Sn])と[Zn]のバランス、すなわち配合比を最適化することにより、より高度な応力緩和特性を実現できる。上限の値は、Ni、Snの量が増え、コスト増、または導電率が悪くなり、応力緩和特性も飽和する。
The lower limit values of the compositional relational expressions f1 and f2 are the minimum necessary values for obtaining high strength even when the interaction of each element of Zn, Ni, and Sn is taken into consideration. When f1 and f2 exceed the upper limit value or lower than the lower limit value of the compositional relational expression f3, although the strength is increased, the stress relaxation property or the stress corrosion cracking resistance is impaired.
The upper limit value of the compositional relational expression f1 = [Zn] + 3 × [Sn] + 2 × [Ni] is a value indicating whether the conductivity of the alloy of the present invention exceeds 24% IACS.
The upper limit value of the compositional relational expression f2 = [Zn] −0.3 × [Sn] −1.8 × [Ni] is excellent stress relaxation characteristics, stress corrosion cracking resistance, good ductility, bending workability It is also a boundary value for obtaining solder wettability. As described above, the critical drawbacks of Cu—Zn alloys are high sensitivity to stress corrosion cracking and poor stress relaxation characteristics.
The lower limit value of the compositional relational expression f3 = (3 × [Ni] + 0.5 × [Sn]) / [Zn] is a boundary value for obtaining good stress relaxation properties. As described above, the Cu—Zn alloy is an alloy having excellent cost performance. However, the stress relaxation property is poor, and even if it has a high strength, the high strength cannot be utilized. In general, brass alloys have poor stress relaxation properties, but by optimizing the balance of (3 × [Ni] + 0.5 × [Sn]) and [Zn], that is, the compounding ratio, higher stress Relaxation characteristics can be realized. The upper limit value increases the amount of Ni and Sn, increases the cost, or deteriorates the electrical conductivity, and saturates the stress relaxation characteristics.
また、本願において、Ni量とSn量、およびP量とNi量と適正な含有比率にすることが重要で、優れた応力緩和特性、強度、曲げ加工性を実現することができる。特に、Cu-Zn合金の応力緩和を向上させる為には、1~2.4質量%のNiと、0.1~1質量%のSnを共添加させることがまず第1の条件であり、NiとSnの含有量比率が重要であり、組成関係式f4=[Ni]/[Sn]を所定の範囲内とする必要がある。詳細は、後述するが、Sn原子1つに対し、Ni原子が少なくとも3.5個以上が必要である。そして、応力緩和特性、結晶粒の大きさ、強度、曲げ加工性に重要なNiとPについては、固溶するNiとP、析出する、NiとPの化合物との関係から、組成関係式f5=[Ni]/[P]を所定の範囲内とする必要がある。 Further, in the present application, it is important to set the Ni content and the Sn content, and the P content and the Ni content to an appropriate content ratio, so that excellent stress relaxation characteristics, strength, and bending workability can be realized. In particular, in order to improve the stress relaxation of the Cu—Zn alloy, the first condition is to co-add 1 to 2.4% by mass of Ni and 0.1 to 1% by mass of Sn. The content ratio of Ni and Sn is important, and the compositional relational expression f4 = [Ni] / [Sn] needs to be within a predetermined range. Although details will be described later, at least 3.5 Ni atoms are required for one Sn atom. For Ni and P, which are important for stress relaxation characteristics, crystal grain size, strength, and bending workability, the compositional relational expression f5 is obtained from the relationship between Ni and P that are dissolved and the compound of Ni and P that is precipitated. = [Ni] / [P] must be within a predetermined range.
また、上述の銅合金板においては、前記仕上げ冷間圧延工程後に回復熱処理工程、それに準じる熱処理を実施することが望ましい。この場合、回復熱処理を行うので、応力緩和率、ヤング率、ばね限界値、及び伸びが向上する。 Moreover, in the above-mentioned copper alloy sheet, it is desirable to carry out a recovery heat treatment step and a heat treatment according thereto after the finish cold rolling step. In this case, since the recovery heat treatment is performed, the stress relaxation rate, Young's modulus, spring limit value, and elongation are improved.
 上述の銅合金板を製造する方法としては、所定の成分に配合した鋳塊製造工程と熱間圧延工程、場合によっては熱間圧延工程を省略した連続鋳造工程と、冷間圧延工程と、再結晶熱処理工程と、仕上げ冷間圧延工程とを順に含み、前記熱間圧延工程の熱間圧延開始温度が800~950℃であって、最終圧延が750℃から500℃で終了し、その後、空冷あるいは、水冷による強制冷却で常温にまで冷却される。再結晶熱処理工程は、長時間加熱するバッチ式と高温で短時間の加熱を連続で行う連続熱処理方法がある。最終仕上げ圧延後、材料のひずみを良好にするためのテンションレベラーを行うこともある。また、連続熱処理方法で回復熱処理が施されることもあり、或は、さらに端子・コネクタ、電気・電子部品に用いられる場合は、回復熱処理工程の有無にかかわらず、溶融Snめっき、リフローSnメッキなどのメッキ処理工程を含むこともある。
なお、銅合金板の板厚によっては、前記熱間圧延工程と前記冷間圧延工程との間に対となる冷間圧延工程と焼鈍工程とを1回又は複数回行ってもよい。
As a method of manufacturing the above-described copper alloy sheet, an ingot manufacturing process and a hot rolling process blended with predetermined components, a continuous casting process in which a hot rolling process is omitted in some cases, a cold rolling process, A crystallization heat treatment step and a finish cold rolling step. The hot rolling start temperature of the hot rolling step is 800 to 950 ° C., the final rolling is finished at 750 ° C. to 500 ° C., and then air cooling Or it cools to normal temperature by the forced cooling by water cooling. As the recrystallization heat treatment step, there are a batch method in which heating is performed for a long time and a continuous heat treatment method in which short-time heating is continuously performed at high temperature. After final finish rolling, a tension leveler may be used to improve the distortion of the material. In addition, recovery heat treatment may be performed by a continuous heat treatment method, or when used in terminals / connectors, electrical / electronic parts, molten Sn plating, reflow Sn plating, regardless of the presence or absence of the recovery heat treatment step. In some cases, a plating process such as
Depending on the thickness of the copper alloy plate, the cold rolling step and the annealing step that are paired between the hot rolling step and the cold rolling step may be performed once or a plurality of times.
そして、特に端子・コネクタ材等に用いられる銅合金板の製造方法は、好ましくは、前記冷間圧延工程での冷間加工率が55%以上であり、前記再結晶熱処理工程は、連続熱処理炉を用い、前記銅合金材料を所定の温度に加熱する加熱ステップと、該加熱ステップ後に該銅合金材料を所定の温度に所定の時間保持する保持ステップと、該保持ステップ後に該銅合金材料を所定の温度まで冷却する冷却ステップを具備し、前記再結晶熱処理工程において、該銅合金材料の最高到達温度をTmax(℃)とし、該銅合金材料の最高到達温度より50℃低い温度から最高到達温度までの温度域で、加熱保持される時間をtm(min)としたときに、560≦Tmax≦790、0.04≦tm≦1.0、520≦It1=(Tmax-30×tm-1/2)≦690であり、そしてさらに、仕上げ冷間圧延工程後、銅合金材料を所定の温度に加熱する加熱ステップと、該加熱ステップ後に該銅合金材料を所定の温度に所定の時間保持する保持ステップと、該保持ステップ後に該銅合金材料を所定の温度まで冷却する冷却ステップを具備し、該銅合金材料の最高到達温度をTmax2(℃)とし、該銅合金材料の最高到達温度より50℃低い温度から最高到達温度までの温度域で、加熱保持される時間をtm2(min)とし、150≦Tmax2≦580、0.02≦tm2≦100、120≦It2=(Tmax2-25×tm2-1/2)≦390である回復熱処理工程、或いはSnメッキを含む方法で製造される。高温の短時間の再結晶熱処理、そして回復熱処理工程を実施することにより、応力緩和率、ヤング率、ばね限界値、曲げ加工性及び伸びを向上させることができる。 And especially the manufacturing method of the copper alloy plate used for a terminal, a connector material, etc., Preferably, the cold work rate in the said cold rolling process is 55% or more, The said recrystallization heat treatment process is a continuous heat treatment furnace. A heating step for heating the copper alloy material to a predetermined temperature, a holding step for holding the copper alloy material at a predetermined temperature for a predetermined time after the heating step, and a predetermined step for holding the copper alloy material after the holding step. A cooling step for cooling to a temperature of 5 ° C., and in the recrystallization heat treatment step, the maximum reached temperature of the copper alloy material is Tmax (° C.), and the maximum reached temperature is 50 ° C. lower than the maximum reached temperature of the copper alloy material. in a temperature range up to the time to be heated maintained when the tm (min), 560 ≦ Tmax ≦ 790,0.04 ≦ tm ≦ 1.0,520 ≦ It1 = (Tmax-30 × tm 1/2) is ≦ 690, and further, after the finish cold rolling step, a heating step of heating the copper alloy material to a predetermined temperature for a predetermined time the copper alloy material to a predetermined temperature after the heating step is kept And a cooling step for cooling the copper alloy material to a predetermined temperature after the holding step, wherein the maximum reached temperature of the copper alloy material is Tmax2 (° C.), and from the maximum reached temperature of the copper alloy material In the temperature range from the temperature lower by 50 ° C. to the highest temperature, the time for heating and holding is tm2 (min), 150 ≦ Tmax2 ≦ 580, 0.02 ≦ tm2 ≦ 100, 120 ≦ It2 = (Tmax2-25 × tm2 −1/2 ) ≦ 390, a recovery heat treatment step, or a method including Sn plating. By carrying out a high-temperature short-time recrystallization heat treatment and a recovery heat treatment step, the stress relaxation rate, Young's modulus, spring limit value, bending workability and elongation can be improved.
本発明は、上述の知見に基づいてなされたものであって、本発明の第1の態様である銅合金板は、4~14質量%のZnと、0.1~1質量%のSnと、0.005~0.08質量%のPと、1.0~2.4質量%のNiとを含有し、残部がCu及び不可避不純物からなり、Znの含有量[Zn]質量%と、Snの含有量[Sn]質量%と、Pの含有量[P]質量%と、Niの含有量[Ni]質量%との間に、
7≦[Zn]+3×[Sn]+2×[Ni]≦18、
0≦[Zn]-0.3×[Sn]-1.8×[Ni]≦11、
0.3≦(3×[Ni]+0.5×[Sn])/[Zn]≦1.6、
1.8≦[Ni]/[Sn]≦10、
16≦[Ni]/[P]≦250、
の関係を有し、平均結晶粒径が2~9μmであり、円形状又は楕円形状の析出物の平均粒子径が3~75nmであるか、又は、前記析出物の内で粒子径が3~75nmの析出物が占める個数の割合が70%以上であり、導電率が24%IACS以上であり、耐応力緩和特性として150℃、1000時間で応力緩和率が25%以下であることを特徴とする。
The present invention has been made on the basis of the above-mentioned knowledge, and the copper alloy plate according to the first aspect of the present invention is composed of 4 to 14% by mass of Zn, 0.1 to 1% by mass of Sn. 0.005 to 0.08 mass% P and 1.0 to 2.4 mass% Ni, the balance being made of Cu and inevitable impurities, Zn content [Zn] mass%, Between the Sn content [Sn] mass%, the P content [P] mass%, and the Ni content [Ni] mass%,
7 ≦ [Zn] + 3 × [Sn] + 2 × [Ni] ≦ 18,
0 ≦ [Zn] −0.3 × [Sn] −1.8 × [Ni] ≦ 11,
0.3 ≦ (3 × [Ni] + 0.5 × [Sn]) / [Zn] ≦ 1.6,
1.8 ≦ [Ni] / [Sn] ≦ 10,
16 ≦ [Ni] / [P] ≦ 250,
And the average crystal grain size is 2 to 9 μm, the average particle size of the circular or elliptical precipitate is 3 to 75 nm, or the particle size is 3 to The ratio of the number of precipitates of 75 nm is 70% or more, the conductivity is 24% IACS or more, and the stress relaxation rate is 150% at 1000 ° C. and the stress relaxation rate is 25% or less at 1000 hours. To do.
本発明の第2の態様である銅合金板は、4~12質量%のZnと、0.1~0.9質量%のSnと、0.008~0.07質量%のPと、1.05~2.2質量%のNiとを含有し、残部がCu及び不可避不純物からなり、Znの含有量[Zn]質量%と、Snの含有量[Sn]質量%と、Pの含有量[P]質量%と、Niの含有量[Ni]質量%との間に、
7≦[Zn]+3×[Sn]+2×[Ni]≦16、
0≦[Zn]-0.3×[Sn]-1.8×[Ni]≦9、
0.3≦(3×[Ni]+0.5×[Sn])/[Zn]≦1.3、
2≦[Ni]/[Sn]≦8、
18≦[Ni]/[P]≦180、
の関係を有し、平均結晶粒径が2~9μmであり、円形状又は楕円形状の析出物の平均粒子径が3~60nmであるか、又は、前記析出物の内で粒子径が3~60nmの析出物が占める個数の割合が70%以上であり、導電率が26%IACS以上であり、耐応力緩和特性として150℃、1000時間で応力緩和率が23%以下であることを特徴とする。
The copper alloy sheet according to the second aspect of the present invention comprises 4 to 12% by mass of Zn, 0.1 to 0.9% by mass of Sn, 0.008 to 0.07% by mass of P, 1 0.05 to 2.2% by mass of Ni, the balance being Cu and inevitable impurities, Zn content [Zn]% by mass, Sn content [Sn]% by mass, and P content Between [P] mass% and Ni content [Ni] mass%,
7 ≦ [Zn] + 3 × [Sn] + 2 × [Ni] ≦ 16,
0 ≦ [Zn] −0.3 × [Sn] −1.8 × [Ni] ≦ 9,
0.3 ≦ (3 × [Ni] + 0.5 × [Sn]) / [Zn] ≦ 1.3,
2 ≦ [Ni] / [Sn] ≦ 8,
18 ≦ [Ni] / [P] ≦ 180,
The average crystal grain size is 2 to 9 μm, and the average particle size of the circular or elliptical precipitate is 3 to 60 nm, or the particle size of 3 to The ratio of the number of precipitates of 60 nm is 70% or more, the conductivity is 26% IACS or more, and the stress relaxation rate is 23% or less at 150 ° C. for 1000 hours as stress relaxation characteristics. To do.
本発明の第3の態様である銅合金板は、上述の銅合金板において、さらに、Al、Fe、Co、Mg、Mn、Ti、Zr、Cr、Si、Sb、As、Pb及び希土類元素から選択される少なくとも1種または2種以上を、各々0.0005質量%以上0.05質量%以下、かつ、合計で0.0005質量%以上0.2質量%以下含有することを特徴とする。 The copper alloy plate according to the third aspect of the present invention is the above-described copper alloy plate, further comprising Al, Fe, Co, Mg, Mn, Ti, Zr, Cr, Si, Sb, As, Pb, and a rare earth element. It is characterized by containing at least one or two or more selected from 0.0005% by mass to 0.05% by mass, and a total of 0.0005% by mass to 0.2% by mass.
本発明の第4態様である銅合金板は、上述の銅合金板において、銅合金材料が冷間圧延される仕上げ冷間圧延工程と、必要に応じて前記仕上げ冷間圧延工程の後に実施される回復熱処理工程と、を含む製造工程によって製造され、導電率をC(%IACS)、150℃、1000時間での実効応力をPw(N/mm)としたとき、
Pw≧300、
Pw×(C/100)1/2≧190
の関係を有し、圧延方向に対して90度をなす方向の耐力YS90と、圧延方向に対して0度をなす方向の耐力YSとの比、YS90/YSが、0.95≦YS90/YS≦1.07の範囲内とされていることを特徴とする。
The copper alloy sheet according to the fourth aspect of the present invention is implemented after the finish cold rolling step in which the copper alloy material is cold-rolled in the above-described copper alloy plate and, if necessary, the finish cold rolling step. And a recovery heat treatment step, wherein the electrical conductivity is C (% IACS), 150 ° C., and the effective stress at 1000 hours is Pw (N / mm 2 ),
Pw ≧ 300,
Pw × (C / 100) 1/2 ≧ 190
The ratio of the yield strength YS 90 in the direction forming 90 degrees with respect to the rolling direction and the yield strength YS 0 in the direction forming 0 degrees with respect to the rolling direction, YS 90 / YS 0 is 0.95. ≦ YS 90 / YS 0 ≦ 1.07 is set.
本発明の第5の態様である銅合金板は、コネクタ、端子、リレー、スイッチ、半導体用途等電子・電気機器部品に用いられることを特徴とする。 The copper alloy plate according to the fifth aspect of the present invention is used for electronic / electric equipment parts such as connectors, terminals, relays, switches, and semiconductors.
本発明の第6の態様である銅合金板の製造方法は、上述の銅合金板を製造する銅合金板の製造方法であって、熱間圧延工程と、冷間圧延工程と、再結晶熱処理工程と、仕上げ冷間圧延工程と、をこの順に含み、前記冷間圧延工程での冷間加工率が55%以上であり、前記再結晶熱処理工程は、連続熱処理炉を用い、冷間圧延後の銅合金材料を所定の温度に加熱する加熱ステップと、該加熱ステップ後に該銅合金材料を所定の温度に所定の時間保持する保持ステップと、該保持ステップ後に該銅合金材料を所定の温度まで冷却する冷却ステップを具備し、前記再結晶熱処理工程において、該銅合金材料の最高到達温度をTmax(℃)とし、該銅合金材料の最高到達温度より50℃低い温度から最高到達温度までの温度域で、加熱保持される時間をtm(min)としたときに、
560≦Tmax≦790、
0.04≦tm≦1.0、
520≦It1=(Tmax-30×tm-1/2)≦690であり、かつ、前記再結晶熱処理工程において、最高到達温度より50℃低い温度から400℃までの温度領域において、5℃/秒以上の条件で冷却することを特徴とする。なお、銅合金板の板厚によっては、前記熱間圧延工程と前記冷間圧延工程との間に、対となる冷間圧延工程と焼鈍工程とを1回又は複数回行ってもよい。
The manufacturing method of the copper alloy plate which is the 6th aspect of this invention is a manufacturing method of the copper alloy plate which manufactures the above-mentioned copper alloy plate, Comprising: A hot rolling process, a cold rolling process, and a recrystallization heat processing Process and finish cold rolling process in this order, the cold working rate in the cold rolling process is 55% or more, the recrystallization heat treatment process using a continuous heat treatment furnace, after cold rolling A heating step for heating the copper alloy material to a predetermined temperature, a holding step for holding the copper alloy material at a predetermined temperature for a predetermined time after the heating step, and the copper alloy material to a predetermined temperature after the holding step. A cooling step for cooling, wherein in the recrystallization heat treatment step, a maximum temperature of the copper alloy material is Tmax (° C.), and a temperature from a temperature that is 50 ° C. lower than the maximum temperature of the copper alloy material to a maximum temperature When heated The when and tm (min),
560 ≦ Tmax ≦ 790,
0.04 ≦ tm ≦ 1.0,
520 ≦ It1 = (Tmax−30 × tm −1/2 ) ≦ 690 and, in the recrystallization heat treatment step, 5 ° C./second in a temperature range from a temperature 50 ° C. lower than the highest temperature to 400 ° C. Cooling is performed under the above conditions. Depending on the thickness of the copper alloy plate, the paired cold rolling step and annealing step may be performed once or a plurality of times between the hot rolling step and the cold rolling step.
本発明の第7の態様である銅合金板の製造方法は、前記仕上げ冷間圧延工程後に実施する回復熱処理工程を有し、前記回復熱処理工程は、仕上げ冷間圧延後の銅合金材料を所定の温度に加熱する加熱ステップと、該加熱ステップ後に該銅合金材料を所定の温度に所定の時間保持する保持ステップと、該保持ステップ後に該銅合金材料を所定の温度まで冷却する冷却ステップを具備し、該銅合金材料の最高到達温度をTmax2(℃)とし、該銅合金材料の最高到達温度より50℃低い温度から最高到達温度までの温度域で、加熱保持される時間をtm2(min)としたときに、
150≦Tmax2≦580、
0.02≦tm2≦100、
120≦It2=(Tmax2-25×tm2-1/2)≦390
とされていることを特徴とする。
The method for producing a copper alloy sheet according to the seventh aspect of the present invention includes a recovery heat treatment step that is performed after the finish cold rolling step, and the recovery heat treatment step uses a predetermined copper alloy material after finish cold rolling. A heating step for heating to a predetermined temperature; a holding step for holding the copper alloy material at a predetermined temperature for a predetermined time after the heating step; and a cooling step for cooling the copper alloy material to a predetermined temperature after the holding step. The maximum temperature of the copper alloy material is defined as Tmax2 (° C.), and the time during which the copper alloy material is heated and held in the temperature range from a temperature 50 ° C. lower than the maximum temperature of the copper alloy material to the maximum temperature is tm2 (min) And when
150 ≦ Tmax2 ≦ 580,
0.02 ≦ tm2 ≦ 100,
120 ≦ It2 = (Tmax2−25 × tm2 −1/2 ) ≦ 390
It is said that it is said.
本発明の第8の態様である銅合金板の製造方法は、上述の銅合金板を製造する銅合金板の製造方法であって、対となる冷間圧延工程及び焼鈍工程と、冷間圧延工程と、再結晶熱処理工程と、仕上げ冷間圧延工程と、回復熱処理工程と、含み、熱間加工を行うことなく、対となる冷間圧延工程及び焼鈍工程を1回または複数回行った後に、前記冷間圧延工程と前記再結晶処理工程との組み合わせ、及び、前記仕上げ冷間圧延工程と前記回復熱処理工程との組み合わせ、のいずれか一方又は両方を行う構成とされており、前記冷間圧延工程での冷間加工率が55%以上であり、前記再結晶熱処理工程は、連続熱処理炉を用い、冷間圧延後の銅合金材料を所定の温度に加熱する加熱ステップと、該加熱ステップ後に該銅合金材料を所定の温度に所定の時間保持する保持ステップと、該保持ステップ後に該銅合金材料を所定の温度まで冷却する冷却ステップを具備し、前記再結晶熱処理工程において、該銅合金材料の最高到達温度をTmax(℃)とし、該銅合金材料の最高到達温度より50℃低い温度から最高到達温度までの温度域で、加熱保持される時間をtm(min)としたときに、
560≦Tmax≦790、
0.04≦tm≦1.0、
520≦It1=(Tmax-30×tm-1/2)≦690であり、かつ、前記再結晶熱処理工程において、最高到達温度より50℃低い温度から400℃までの温度領域において、5℃/秒以上の条件で冷却する。前記回復熱処理工程は、仕上げ冷間圧延後の銅合金材料を所定の温度に加熱する加熱ステップと、該加熱ステップ後に該銅合金材料を所定の温度に所定の時間保持する保持ステップと、該保持ステップ後に該銅合金材料を所定の温度まで冷却する冷却ステップを具備し、該銅合金材料の最高到達温度をTmax2(℃)とし、該銅合金材料の最高到達温度より50℃低い温度から最高到達温度までの温度域で、加熱保持される時間をtm2(min)としたときに、
150≦Tmax2≦580、
0.02≦tm2≦100、
120≦It2=(Tmax2-25×tm2-1/2)≦390
とされていることを特徴とする。
The manufacturing method of the copper alloy plate which is the 8th aspect of this invention is a manufacturing method of the copper alloy plate which manufactures the above-mentioned copper alloy plate, Comprising: The cold rolling process and annealing process used as a pair, Cold rolling Including a process, a recrystallization heat treatment process, a finish cold rolling process, a recovery heat treatment process, and after performing the cold rolling process and the annealing process to be paired one or more times without performing hot working A combination of the cold rolling step and the recrystallization treatment step, and a combination of the finish cold rolling step and the recovery heat treatment step, or both, and the cold The cold working rate in the rolling process is 55% or more, and the recrystallization heat treatment step uses a continuous heat treatment furnace to heat the copper alloy material after cold rolling to a predetermined temperature, and the heating step Later, the copper alloy material is set to a predetermined temperature. A holding step for holding for a time, and a cooling step for cooling the copper alloy material to a predetermined temperature after the holding step, and in the recrystallization heat treatment step, the maximum temperature of the copper alloy material is Tmax (° C.), In the temperature range from a temperature 50 ° C. lower than the maximum temperature of the copper alloy material to the maximum temperature, when the heating and holding time is tm (min),
560 ≦ Tmax ≦ 790,
0.04 ≦ tm ≦ 1.0,
520 ≦ It1 = (Tmax−30 × tm −1/2 ) ≦ 690 and, in the recrystallization heat treatment step, 5 ° C./second in a temperature range from a temperature 50 ° C. lower than the highest temperature to 400 ° C. Cool under the above conditions. The recovery heat treatment step includes a heating step for heating the copper alloy material after finish cold rolling to a predetermined temperature, a holding step for holding the copper alloy material at a predetermined temperature for a predetermined time after the heating step, and the holding A cooling step of cooling the copper alloy material to a predetermined temperature after the step, wherein the maximum reached temperature of the copper alloy material is Tmax2 (° C.), and the maximum reached from a temperature that is 50 ° C. lower than the maximum reached temperature of the copper alloy material When the heating and holding time is tm2 (min) in the temperature range up to the temperature,
150 ≦ Tmax2 ≦ 580,
0.02 ≦ tm2 ≦ 100,
120 ≦ It2 = (Tmax2−25 × tm2 −1/2 ) ≦ 390
It is said that it is said.
本発明によれば、耐応力腐食割れ性、応力緩和特性、引張強度、耐力、導電性、曲げ加工性、はんだ濡れ性に優れた銅合金板、特に、過酷な使用環境に耐え得る、信頼性の高い端子・コネクタ、電気・電子部品に適した銅合金板、及び、この銅合金板の製造方法を提供することができる。 According to the present invention, a copper alloy plate excellent in stress corrosion cracking resistance, stress relaxation characteristics, tensile strength, proof stress, conductivity, bending workability, and solder wettability, in particular, capable of withstanding harsh use environments. Terminal, connector, copper alloy plate suitable for electric / electronic parts, and a method for producing the copper alloy plate can be provided.
 以下に、本発明の実施形態に係る銅合金板及び銅合金板の製造方法について説明する。本実施形態である銅合金板は、自動車部品、電気部品,電子部品,通信機器,電子・電気機器等に使用されるコネクタ、端子、リレー、ばね、スイッチ、半導体、リードフレーム等の構成材として用いられるものである。
ここで、本明細書では、[Zn]のように括弧付の元素記号は当該元素の含有量(質量%)を示すものとする。
そして、本実施形態では、この含有量の表示方法を用いて、以下のように、複数の組成関係式を規定している。なお、Co、Fe等の有効添加元素および不可避不純物は、本実施形態で規定される含有量では、銅合金板の特性への影響が少ないので、後述するそれぞれの計算式に含めていない。さらに、例えば、0.005質量%未満のCrは不可避不純物としている。
Below, the manufacturing method of the copper alloy plate and copper alloy plate which concern on embodiment of this invention is demonstrated. The copper alloy plate according to the present embodiment is used as a constituent material for connectors, terminals, relays, springs, switches, semiconductors, lead frames, etc. used for automobile parts, electrical parts, electronic parts, communication equipment, electronic / electric equipment, etc. It is used.
Here, in this specification, an element symbol in parentheses such as [Zn] indicates the content (% by mass) of the element.
And in this embodiment, using this content display method, a plurality of compositional relational expressions are defined as follows. Note that effective additive elements such as Co and Fe and unavoidable impurities are not included in the respective calculation formulas described later because the contents specified in the present embodiment have little influence on the properties of the copper alloy sheet. Furthermore, for example, Cr less than 0.005% by mass is an inevitable impurity.
 組成関係式f1=[Zn]+3×[Sn]+2×[Ni]
 組成関係式f2=[Zn]-0.3×[Sn]-1.8×[Ni]
 組成関係式f3=(3×[Ni]+0.5×[Sn])/[Zn]
 組成関係式f4=[Ni]/[Sn]
 組成関係式f5=[Ni]/[P]
Composition relation f1 = [Zn] + 3 × [Sn] + 2 × [Ni]
Compositional relation f2 = [Zn] −0.3 × [Sn] −1.8 × [Ni]
Compositional relation f3 = (3 × [Ni] + 0.5 × [Sn]) / [Zn]
Composition relation f4 = [Ni] / [Sn]
Compositional relation f5 = [Ni] / [P]
本発明の第1の実施形態に係る銅合金板は、4~14質量%のZnと、0.1~1質量%のSnと、0.005~0.08質量%のPと、1.0~2.4質量%のNiとを含有し、残部がCu及び不可避不純物からなり、組成関係式f1が7≦f1≦18の範囲内、組成関係式f2が0≦f2≦11の範囲内、組成関係式f3が0.3≦f3≦1.6の範囲内、組成関係式f4が1.8≦f4≦10の範囲内、組成関係式f5が16≦f5≦250の範囲内とされている。 The copper alloy sheet according to the first embodiment of the present invention has 4 to 14% by mass of Zn, 0.1 to 1% by mass of Sn, 0.005 to 0.08% by mass of P, and 1. It contains 0 to 2.4% by mass of Ni, the balance is made of Cu and inevitable impurities, the composition relational expression f1 is in the range of 7 ≦ f1 ≦ 18, and the compositional relational expression f2 is in the range of 0 ≦ f2 ≦ 11. The composition relational expression f3 is in the range of 0.3 ≦ f3 ≦ 1.6, the compositional relational expression f4 is in the range of 1.8 ≦ f4 ≦ 10, and the compositional relational expression f5 is in the range of 16 ≦ f5 ≦ 250. ing.
本発明の第2の実施形態に係る銅合金板は、4~12質量%のZnと、0.1~0.9質量%のSnと、0.008~0.07質量%のPと、1.05~2.2質量%のNiとを含有し、残部がCu及び不可避不純物からなり、組成関係式f1が7≦f1≦16の範囲内、組成関係式f2が0≦f2≦9の範囲内、組成関係式f3が0.3≦f3≦1.3の範囲内、組成関係式f4が2≦f4≦8の範囲内、組成関係式f5が18≦f5≦180の範囲内とされている。 The copper alloy sheet according to the second embodiment of the present invention comprises 4 to 12% by mass of Zn, 0.1 to 0.9% by mass of Sn, 0.008 to 0.07% by mass of P, 1.05 to 2.2% by mass of Ni, the balance being made of Cu and inevitable impurities, the compositional relational expression f1 being in the range of 7 ≦ f1 ≦ 16, and the compositional relational expression f2 being 0 ≦ f2 ≦ 9 Within the range, the composition relational expression f3 is within the range of 0.3 ≦ f3 ≦ 1.3, the compositional relational expression f4 is within the range of 2 ≦ f4 ≦ 8, and the compositional relational expression f5 is within the range of 18 ≦ f5 ≦ 180. ing.
本発明の第3の実施形態に係る銅合金板は、4~14質量%のZnと、0.1~1質量%のSnと、0.005~0.08質量%のPと、1.0~2.4質量%のNiと、Al、Fe、Co、Mg、Mn、Ti、Zr、Cr、Si、Sb、As、Pb及び希土類元素から選択される少なくとも1種または2種以上を各々0.0005質量%以上0.05質量%以下かつ合計で0.0005質量%以上0.2質量%以下と、を含有し、残部がCu及び不可避不純物からなり、組成関係式f1が7≦f1≦18の範囲内、組成関係式f2が0≦f2≦11の範囲内、組成関係式f3が0.3≦f3≦1.6の範囲内、組成関係式f4が1.8≦f4≦10の範囲内、組成関係式f5が16≦f5≦250の範囲内とされている。 The copper alloy plate according to the third embodiment of the present invention has 4 to 14% by mass of Zn, 0.1 to 1% by mass of Sn, 0.005 to 0.08% by mass of P, and 1. 0 to 2.4% by mass of Ni and at least one or more selected from Al, Fe, Co, Mg, Mn, Ti, Zr, Cr, Si, Sb, As, Pb and rare earth elements, respectively 0.0005% by mass or more and 0.05% by mass or less and a total of 0.0005% by mass or more and 0.2% by mass or less, with the balance being Cu and inevitable impurities, and the compositional relational expression f1 is 7 ≦ f1 ≦ 18, composition relational expression f2 is in the range of 0 ≦ f2 ≦ 11, composition relational expression f3 is in the range of 0.3 ≦ f3 ≦ 1.6, and composition relational expression f4 is 1.8 ≦ f4 ≦ 10. In this range, the compositional relational expression f5 is in the range of 16 ≦ f5 ≦ 250.
本発明の第4の実施形態に係る銅合金板は、4~12質量%のZnと、0.1~0.9質量%のSnと、0.008~0.07質量%のPと、1.05~2.2質量%のNiと、Al、Fe、Co、Mg、Mn、Ti、Zr、Cr、Si、Sb、As、Pb及び希土類元素から選択される少なくとも1種または2種以上を各々0.0005質量%以上0.05質量%以下かつ合計で0.0005質量%以上0.2質量%以下と、を含有し、残部がCu及び不可避不純物からなり、組成関係式f1が7≦f1≦16の範囲内、組成関係式f2が0≦f2≦9の範囲内、組成関係式f3が0.3≦f3≦1.3の範囲内、組成関係式f4が2≦f4≦8の範囲内、組成関係式f5が18≦f5≦180の範囲内とされている。 The copper alloy sheet according to the fourth embodiment of the present invention comprises 4 to 12% by mass of Zn, 0.1 to 0.9% by mass of Sn, 0.008 to 0.07% by mass of P, 1.05 to 2.2% by mass of Ni and at least one or more selected from Al, Fe, Co, Mg, Mn, Ti, Zr, Cr, Si, Sb, As, Pb and rare earth elements 0.0005 mass% or more and 0.05 mass% or less in total and 0.0005 mass% or more and 0.2 mass% or less in total, and the balance is made of Cu and inevitable impurities, and the compositional relational formula f1 is 7 ≦ f1 ≦ 16, composition relational expression f2 is in the range of 0 ≦ f2 ≦ 9, composition relational expression f3 is in the range of 0.3 ≦ f3 ≦ 1.3, and compositional relational expression f4 is 2 ≦ f4 ≦ 8 In this range, the compositional relational expression f5 is in the range of 18 ≦ f5 ≦ 180.
そして、上述した本発明の第1~4の実施形態に係る銅合金板においては、平均結晶粒径が2~9μmとされている。
また、本発明の第1、3の実施形態に係る銅合金板においては、円形状又は楕円形状の析出物の平均粒子径が3~75nmであるか、又は、前記析出物の内で粒子径が3~75nmの析出物が占める個数の割合が70%以上とされている。
本発明の第2、4の実施形態に係る銅合金板においては、円形状又は楕円形状の析出物の平均粒子径が3~60nmであるか、又は、前記析出物の内で粒子径が3~60nmの析出物が占める個数の割合が70%以上とされている。
さらに、上述した本発明の第1~4の実施形態に係る銅合金板においては、導電率が24%IACS以上、または導電率が26%IACS以上とされており、耐応力緩和特性として150℃、1000時間で応力緩和率が25%以下、もしくは、150℃、1000時間で応力緩和率が23%以下とされている。
In the copper alloy plates according to the first to fourth embodiments of the present invention described above, the average crystal grain size is 2 to 9 μm.
In the copper alloy plates according to the first and third embodiments of the present invention, the average particle diameter of the circular or elliptical precipitate is 3 to 75 nm, or the particle diameter is within the precipitate. The ratio of the number of precipitates of 3 to 75 nm is 70% or more.
In the copper alloy plates according to the second and fourth embodiments of the present invention, the average particle diameter of the circular or elliptical precipitate is 3 to 60 nm, or the particle diameter is 3 in the precipitate. The ratio of the number of precipitates of ˜60 nm is 70% or more.
Furthermore, in the above-described copper alloy plates according to the first to fourth embodiments of the present invention, the conductivity is 24% IACS or more, or the conductivity is 26% IACS or more, and the stress relaxation resistance is 150 ° C. The stress relaxation rate is 25% or less at 1000 hours, or 23% or less at 150 ° C. and 1000 hours.
また、本発明の第1~4の実施形態に係る銅合金板においては、導電率と応力緩和特性のバランスを表す指標としてバランス指数f6を次のように定めている。導電率をC(%IACS)、150℃、1000℃での実効応力をPw(N/mm)としたとき、バランス指数f6は、f6=Pw×(C/100)1/2で定義される。すなわち、バランス指数f6は、Pwと(C/100)1/2の積である。本実施形態においては、Pw≧300、f6≧190とされていることが好ましい。
さらに、本発明の第1~4の実施形態に係る銅合金板においては、圧延方向に対して90度をなす方向の耐力YS90と、圧延方向に対して0度をなす方向の耐力YSとの比、YS90/YSが、0.95≦YS90/YS≦1.07の範囲内とされていることが好ましい。
In the copper alloy sheets according to the first to fourth embodiments of the present invention, the balance index f6 is defined as follows as an index representing the balance between the conductivity and the stress relaxation characteristics. The balance index f6 is defined as f6 = Pw × (C / 100) 1/2 when the electrical conductivity is C (% IACS), the effective stress at 150 ° C. and 1000 ° C. is Pw (N / mm 2 ). The That is, the balance index f6 is a product of Pw and (C / 100) 1/2 . In the present embodiment, it is preferable that Pw ≧ 300 and f6 ≧ 190.
Furthermore, in the copper alloy sheets according to the first to fourth embodiments of the present invention, the yield strength YS 90 in the direction forming 90 degrees with respect to the rolling direction and the yield strength YS 0 in the direction forming 0 degrees with respect to the rolling direction. The ratio YS 90 / YS 0 is preferably in the range of 0.95 ≦ YS 90 / YS 0 ≦ 1.07.
以下に、成分組成、組成関係式f1、f2、f3、f4、f5、金属組織、各種特性を、上述のように規定した理由について説明する。 The reasons why the component composition, the composition relational expressions f1, f2, f3, f4, f5, the metal structure, and various characteristics are defined as described above will be described below.
(Zn)
Znは、本実施形態である銅合金板を構成する主要な元素であり、原子価が2価で積層欠陥エネルギーを下げ、焼鈍時に再結晶核の生成サイトを増やし、再結晶粒を微細化、超微細化する。また、Znの固溶により、曲げ加工性を損なわずに引張強度や耐力、ばね特性等を向上させ、マトリックスの耐熱性、および応力緩和特性を向上させ、また、はんだ濡れ性、耐マイグレーション性を向上させる。Znは、安価であり、銅合金の比重を下げ、経済的なメリットもある。Sn等の他の添加元素との関係にもよるが、前記の効果を発揮するためには、Znは、少なくとも4質量%以上含有する必要がある。このため、Znの含有量の下限は、4質量%以上、好ましくは4.5質量%以上、最適には5質量%以上である。一方、Sn等の他の添加元素との関係にもよるが、Znを、14質量%を超えて含有しても、結晶粒の微細化と強度の向上に関し、含有量に見合った顕著な効果が出なくなり始め、導電率が低下し、応力腐食割れの感受性が高くなり、ヤング率が低くなり、伸び、曲げ加工性が悪くなり、応力緩和特性が低下し、はんだ濡れ性も悪くなる。そのため、Znの含有量の上限は14質量%であり、好ましくは12質量%以下、11質量%以下、最適には9質量%以下である。Znが好適な組成範囲であるとき、マトリックスの耐熱性が向上し、Ni、Sn、Pとの相互作用により、応力緩和特性が向上し、優れた曲げ加工性、高い強度、ヤング率、所望の導電性を備える。
(Zn)
Zn is a main element constituting the copper alloy plate of the present embodiment, the valence is bivalent, the stacking fault energy is lowered, the number of recrystallized nucleus generation sites is increased during annealing, and the recrystallized grains are refined. Ultra-fine. In addition, the solid solution of Zn improves the tensile strength, proof stress, spring characteristics, etc. without impairing the bending workability, improves the heat resistance and stress relaxation characteristics of the matrix, and improves the solder wettability and migration resistance. Improve. Zn is inexpensive, lowers the specific gravity of the copper alloy, and has economic advantages. Although depending on the relationship with other additive elements such as Sn, Zn needs to be contained in an amount of at least 4% by mass in order to exhibit the above effects. For this reason, the lower limit of the Zn content is 4% by mass or more, preferably 4.5% by mass or more, and optimally 5% by mass or more. On the other hand, although depending on the relationship with other additive elements such as Sn, a remarkable effect commensurate with the content with regard to the refinement of crystal grains and the improvement of strength even when Zn is contained in an amount exceeding 14 mass%. Begins to disappear, conductivity decreases, sensitivity to stress corrosion cracking increases, Young's modulus decreases, elongation and bending workability deteriorate, stress relaxation characteristics decrease, and solder wettability also deteriorates. Therefore, the upper limit of the Zn content is 14% by mass, preferably 12% by mass or less, 11% by mass or less, and optimally 9% by mass or less. When Zn is in a suitable composition range, the heat resistance of the matrix is improved, the stress relaxation characteristics are improved by the interaction with Ni, Sn, and P. Excellent bending workability, high strength, Young's modulus, desired It has conductivity.
原子価が2価のZnの含有量が上記の範囲であっても、Zn単独の添加であれば、結晶粒を微細化することは困難である。結晶粒を所定の粒径にまで微細にするためには、後述するSn、Ni、Pとの共添加と共に、組成関係式f1の値を考慮する必要がある。同様に、耐熱性、応力緩和特性、強度、ばね特性を向上させるためには、後述するSn、Ni、Pとの共添加と共に、組成関係式f1、f2、f3の値を考慮する必要がある。
なお、Znが、9質量%以上のとき、高い引張強さと耐力を得ることができるが、前記のようにZnの増量に伴って、曲げ加工性、耐応力腐食割れ性、応力緩和特性が悪くなり、またヤング率が低くなる。これらの特性をさらに向上させるためには、NiあるいはSnとの相互作用、および組成関係式f1、f2、f3の値がより重要となる。
Even if the content of Zn having a valence of 2 is within the above range, it is difficult to make crystal grains fine if Zn alone is added. In order to make the crystal grains finer to a predetermined grain size, it is necessary to consider the value of the compositional relational expression f1 along with co-addition with Sn, Ni, and P described later. Similarly, in order to improve heat resistance, stress relaxation characteristics, strength, and spring characteristics, it is necessary to consider the values of the compositional relational expressions f1, f2, and f3 together with co-addition with Sn, Ni, and P described later. .
In addition, when Zn is 9 mass% or more, high tensile strength and yield strength can be obtained. However, as described above, bending workability, stress corrosion cracking resistance, and stress relaxation characteristics are worse with increasing amount of Zn. And the Young's modulus is low. In order to further improve these characteristics, the interaction with Ni or Sn and the values of the compositional relational expressions f1, f2, and f3 are more important.
(Sn)
Snは、本実施形態である銅合金板を構成する主要な元素であり、原子価が4価で積層欠陥エネルギーを下げ、Zn、Niの含有と相まって、焼鈍時に再結晶核の生成サイトを増やし、再結晶粒を微細化、超微細化する。特に4質量%以上の2価のZn、2価のNiとの共添加により、その効果は、Snが少量の含有であっても顕著に現れる。また、Snは、マトリックスに固溶し、引張強度や耐力、ばね特性等を向上させ、マトリックスの耐熱性を向上させ、応力緩和特性を向上させ、耐応力腐食割れ性も向上させる。前記の効果を発揮するためには、Snは、少なくとも0.1質量%以上含有する必要がある。このため、Snの含有量の下限は、0.1質量%以上であり、最適には0.2質量%以上である。一方、Snの多量の含有は導電率を悪くし、曲げ加工性、ヤング率、はんだ濡れ性を悪くし、却って応力緩和特性、耐応力腐食割れ性を低下させる。特に応力緩和特性はNiとの配合比に大きく影響される。このため、Snの含有量の上限値は、1質量%以下であり、好ましくは、0.9質量%以下であり、最適には0.8質量%以下である。
(Sn)
Sn is a main element constituting the copper alloy plate according to the present embodiment, has a valence of 4 and lowers stacking fault energy, and combined with Zn and Ni, increases the number of recrystallization nucleus generation sites during annealing. The recrystallized grains are made finer and ultrafine. In particular, by co-addition with 4% by mass or more of divalent Zn and divalent Ni, the effect appears remarkably even when Sn is contained in a small amount. Sn dissolves in the matrix and improves tensile strength, yield strength, spring characteristics, etc., improves heat resistance of the matrix, improves stress relaxation characteristics, and improves stress corrosion cracking resistance. In order to exert the above effects, Sn needs to be contained at least 0.1% by mass or more. For this reason, the minimum of content of Sn is 0.1 mass% or more, and is 0.2 mass% or more optimally. On the other hand, the inclusion of a large amount of Sn deteriorates the conductivity, deteriorates the bending workability, Young's modulus, and solder wettability, and on the other hand decreases the stress relaxation characteristics and stress corrosion cracking resistance. In particular, the stress relaxation characteristics are greatly affected by the compounding ratio with Ni. For this reason, the upper limit of the content of Sn is 1% by mass or less, preferably 0.9% by mass or less, and optimally 0.8% by mass or less.
(Cu)
Cuは、本実施形態である銅合金板を構成する主要な元素であるので残部とする。ただし、Cu濃度に依存する導電性、耐応力腐食割れ性を確保し、応力緩和特性、伸び、ヤング率、はんだ濡れ性を保持するためには、Cuの含有量の下限は、84質量%以上、さらには86質量%以上が好ましい。一方で、高強度を得るには、Cuの含有量の上限は94.5質量%以下、さらには94質量%以下にすることが好ましい。
(Cu)
Since Cu is a main element constituting the copper alloy plate according to the present embodiment, it is the remainder. However, in order to secure conductivity and stress corrosion cracking resistance depending on the Cu concentration, and to maintain stress relaxation characteristics, elongation, Young's modulus, and solder wettability, the lower limit of the Cu content is 84% by mass or more. Furthermore, 86 mass% or more is preferable. On the other hand, in order to obtain high strength, the upper limit of the Cu content is preferably 94.5% by mass or less, and more preferably 94% by mass or less.
(P)
Pは、原子価が5価で結晶粒を微細化する作用と、再結晶粒の成長を抑制する作用を持つが、含有量が少ないので後者の作用が大きい。また、微量であるが、マトリックスに固溶するP、および、PとNiと化合する析出物に応力緩和特性を向上させる作用を持つ。Pの一部は、後述するNiと化合して析出物を形成し、場合によっては、Niを主とし、Co又はFe等と化合して析出物を形成し、結晶粒成長抑制効果をさらに強化することができる。結晶粒成長を抑制するためには、円形又は楕円形の析出物が存在し、その析出物の平均粒子径が3~75nm、又は、析出粒子の内で粒子径が3~75nmの析出粒子の占める個数の割合が70%以上であることが必要である。この析出物は、析出強化よりも、焼鈍時の再結晶粒の成長を抑制する作用や効果のほうが大きく、単に析出による強化作用とは区別される。そしてPは、上述した範囲内のZnとSnの含有のもと、Niとの相互作用により、本願の主題の1つである応力緩和特性を顕著に向上させる効果を有する。
 これらの効果を発揮するためには、Pの含有量の下限値は、0.005質量%以上であり、好ましくは0.008質量%以上、最適には0.01質量%以上である。一方、0.08質量%を超えて含有しても、析出物による再結晶粒成長の抑制効果は飽和し、却って析出物が過多に存在すると、伸び、曲げ加工性、応力緩和特性が低下する。このため、Pの含有量の上限値は、0.08質量%であり、好ましくは0.07質量%以下である。
(P)
P has a valence of pentavalent and an effect of refining crystal grains and an effect of suppressing the growth of recrystallized grains, but the latter effect is large because of its low content. Moreover, although it is trace amount, it has the effect | action which improves a stress relaxation characteristic to the precipitate which combines with the solid solution P and P and Ni in P. Part of P forms precipitates by combining with Ni, which will be described later, and in some cases, Ni is mainly used to form precipitates by combining with Co or Fe, etc., further strengthening the effect of suppressing grain growth can do. In order to suppress the growth of crystal grains, there are circular or elliptical precipitates, and the average particle diameter of the precipitates is 3 to 75 nm, or of the precipitated particles having a particle diameter of 3 to 75 nm. It is necessary that the ratio of the number occupied is 70% or more. This precipitate has a larger action and effect of suppressing the growth of recrystallized grains during annealing than precipitation strengthening, and is distinguished from a strengthening action caused simply by precipitation. And P has the effect of remarkably improving the stress relaxation characteristic, which is one of the subjects of the present application, by the interaction with Ni under the inclusion of Zn and Sn within the above-mentioned range.
In order to exhibit these effects, the lower limit of the P content is 0.005% by mass or more, preferably 0.008% by mass or more, and optimally 0.01% by mass or more. On the other hand, even if the content exceeds 0.08% by mass, the effect of suppressing recrystallized grain growth due to precipitates is saturated. On the other hand, if excessive precipitates are present, elongation, bending workability, and stress relaxation characteristics are degraded. . For this reason, the upper limit of content of P is 0.08 mass%, Preferably it is 0.07 mass% or less.
(Ni)
Niは、一部はPと結合し化合物を作り、その他は固溶する。Niは、上述のように規定される濃度範囲で含有されるP、Zn、Snとの相互作用により、応力緩和特性を向上させ、合金のヤング率を高め、はんだ濡れ性、耐応力腐食割れ性を向上させ、形成される化合物により再結晶粒の成長を抑制させる。これらの作用を顕著に発揮するためには、1質量%以上の含有が必要である。よって、Niの含有量の下限値は、1質量%以上であり、好ましくは1.05質量%以上、最適には、1.1質量%以上である。一方、Niの増量は導電率を阻害し、応力緩和特性も飽和するので、Niの含有量の上限値は、2.4質量%以下であり、好ましくは2.2質量%以下であり、最適には2質量%以下である。また、Snとの関係において、後述する組成関係式を満足すると同時に、特に応力緩和特性、ヤング率、曲げ加工性を向上させるためには、Niの含有量は、Snの含有量の1.8倍以上、さらに2倍以上含有されるのが好ましい。これは、原子濃度において、2価のNiが、4価のSnの3.5倍以上、特に4倍以上に含有させることによって、応力緩和特性が特に向上するためである。一方で、強度と導電率の関係、応力緩和特性から、Niの含有量は、Snの含有量の10倍以下、さらには8倍以下、最適には6倍以下に留めておくことが好ましい。
(Ni)
A part of Ni is combined with P to form a compound, and the other is in solid solution. Ni improves the stress relaxation characteristics, increases the Young's modulus of the alloy, interacts with P, Zn, Sn contained in the concentration range specified as described above, and improves solder wettability and stress corrosion cracking resistance. And the growth of recrystallized grains is suppressed by the formed compound. In order to exert these effects remarkably, it is necessary to contain 1% by mass or more. Therefore, the lower limit of the Ni content is 1% by mass or more, preferably 1.05% by mass or more, and optimally 1.1% by mass or more. On the other hand, increasing the amount of Ni inhibits the electrical conductivity and saturates the stress relaxation characteristics, so the upper limit of the Ni content is 2.4% by mass or less, preferably 2.2% by mass or less. Is 2% by mass or less. In addition, in order to satisfy the compositional relational expression described later in relation to Sn, and at the same time, in order to improve stress relaxation characteristics, Young's modulus, and bending workability in particular, the Ni content is 1.8% of the Sn content. It is preferably contained more than twice, and more preferably twice or more. This is because the stress relaxation characteristics are particularly improved by containing divalent Ni in an atomic concentration of 3.5 times or more, particularly 4 times or more of tetravalent Sn. On the other hand, the Ni content is preferably 10 times or less, more preferably 8 times or less, and most preferably 6 times or less of the Sn content from the relationship between strength and electrical conductivity and stress relaxation characteristics.
(Al、Fe、Co、Mg、Mn、Ti、Zr、Cr、Si、Sb、As、Pb及び希土類元素から選択される少なくとも1種または2種以上)
Al、Fe、Co、Mg、Mn、Ti、Zr、Cr、Si、Sb、As、Pb及び希土類元素といった元素は、各種特性を向上させる作用効果を有する。そこで、第3の実施形態の銅合金板及び第4の実施形態の銅合金板においては、これらの元素から選択される少なくとも1種または2種以上を含有するものとされている。
 ここで、Al、Fe、Co、Mg、Mn、Ti、Zr、Cr、Si、Sb、As、Pb及び希土類元素は、合金の結晶粒を微細にする。Al、Fe、Co、Mg、Mn、Ti、Zrは、PまたはNiともに化合物を形成し、焼鈍時の再結晶粒の成長を抑制し、結晶粒微細化の効果が大きい。特にFe、Coは、その効果が大きく、FeまたはCoを含有したNiとPの化合物を形成し、化合物の粒径を微細にする。微細な化合物は、焼鈍時の再結晶粒の大きさを一層微細にし、強度を向上させる。ただし、その効果が過剰になると、曲げ加工性、応力緩和特性を損なう。さらにAl、Sb、Asは、銅合金の耐応力腐食割れ性、耐食性を向上させる効果を有し、原子価が5価のSbは、応力緩和特性を向上させ、Pbは、プレス成形性を向上させる効果を有する。
 これらの効果を発揮するには、Al、Fe、Co、Mg、Mn、Ti、Zr、Cr、Si、Sb、As、Pb及び希土類元素から選択される少なくとも1種または2種以上のいずれの元素も、各々0.0005質量%以上の含有が必要である。一方、選択されたいずれの元素も、0.05質量%を超えると効果が飽和するどころか、却って、曲げ加工性を阻害する。特に、Pと化合物を形成しやすいFe、Co等が、0.05質量%を超えると、応力緩和特性も悪くする。好ましくは、選択されたいずれの元素も0.03質量%以下である。さらに、これら元素の合計含有量も、0.2質量%を超えると、効果が飽和するどころか、却って、曲げ加工性を阻害する。よって、これらの元素の合計含有量の上限は、0.2質量%以下であり、好ましくは0.15質量%以下、さらに好ましくは0.1質量%以下である。
(At least one or more selected from Al, Fe, Co, Mg, Mn, Ti, Zr, Cr, Si, Sb, As, Pb and rare earth elements)
Elements such as Al, Fe, Co, Mg, Mn, Ti, Zr, Cr, Si, Sb, As, Pb, and rare earth elements have the effect of improving various characteristics. Therefore, the copper alloy plate of the third embodiment and the copper alloy plate of the fourth embodiment contain at least one or more selected from these elements.
Here, Al, Fe, Co, Mg, Mn, Ti, Zr, Cr, Si, Sb, As, Pb, and rare earth elements make the crystal grains of the alloy fine. Al, Fe, Co, Mg, Mn, Ti, and Zr form a compound together with P or Ni, suppress the growth of recrystallized grains during annealing, and have a large effect of crystal grain refinement. In particular, Fe and Co have a large effect, and form a compound of Ni and P containing Fe or Co, thereby reducing the particle size of the compound. The fine compound further refines the size of recrystallized grains during annealing and improves the strength. However, if the effect becomes excessive, bending workability and stress relaxation characteristics are impaired. Furthermore, Al, Sb and As have the effect of improving the stress corrosion cracking resistance and corrosion resistance of the copper alloy, Sb having a valence of 5 improves stress relaxation characteristics, and Pb improves press formability. Has the effect of
In order to exert these effects, at least one element selected from Al, Fe, Co, Mg, Mn, Ti, Zr, Cr, Si, Sb, As, Pb, and rare earth elements, or any two or more elements However, it is necessary to contain 0.0005 mass% or more of each. On the other hand, if any of the selected elements exceeds 0.05% by mass, the effect is saturated. In particular, when Fe, Co, etc., which easily form a compound with P, exceed 0.05 mass%, the stress relaxation characteristics also deteriorate. Preferably, any element selected is 0.03% by weight or less. Furthermore, if the total content of these elements is more than 0.2% by mass, the effect is not saturated but the bending workability is inhibited. Therefore, the upper limit of the total content of these elements is 0.2% by mass or less, preferably 0.15% by mass or less, and more preferably 0.1% by mass or less.
(不可避不純物)
 銅合金板には、リターン材を含む原料、および、主として大気での溶解時を含む製造工程で、微量であるが、酸素、水素、炭素、硫黄、水蒸気等の元素が、不可避的に含有され、当然これらの不可避不純物を含む。
 ここで、本実施形態である銅合金においては、規定した成分元素以外の元素は不可避不純物として扱ってもよく、不可避不純物の合計の含有量は0.2質量%以下とすることが好ましく、より好ましくは0.1質量%以下である。また、本実施形態の銅合金板において規定した元素のうちZn、Ni、Sn、P、Cu以外の元素については、不純物として上記で規定した下限値未満の範囲で含有していてもよい。
(Inevitable impurities)
Copper alloy sheets contain unavoidable elements such as oxygen, hydrogen, carbon, sulfur, and water vapor in the production process including the raw material including the return material and mainly when dissolved in the atmosphere. Of course, these inevitable impurities are included.
Here, in the copper alloy of the present embodiment, elements other than the specified component elements may be treated as inevitable impurities, and the total content of inevitable impurities is preferably 0.2% by mass or less, more Preferably it is 0.1 mass% or less. Moreover, elements other than Zn, Ni, Sn, P, and Cu among the elements defined in the copper alloy plate of the present embodiment may be contained as impurities in a range less than the lower limit defined above.
(組成関係式f1)
 組成関係式f1=[Zn]+3×[Sn]+2×[Ni]が7のとき、本実施形態合金が、高い強度が得られる境界値であり、応力緩和特性を向上させる境界値でもある。よって組成関係式f1の下限は、7以上であり、好ましくは7.5以上である。一方、f1の値が、18を超えると所望の導電率が得られなくなり、応力緩和特性、耐応力腐食割れ性、曲げ加工性、はんだ濡れ性に対しても悪い影響を受ける。よって、組成関係式f1の上限は、18以下であり、好ましくは16以下であり、最適には14以下である。
(Composition relational expression f1)
When the compositional relational expression f1 = [Zn] + 3 × [Sn] + 2 × [Ni] is 7, the alloy of the present embodiment is a boundary value at which high strength is obtained, and is also a boundary value that improves stress relaxation characteristics. Therefore, the lower limit of the compositional relational expression f1 is 7 or more, preferably 7.5 or more. On the other hand, if the value of f1 exceeds 18, desired conductivity cannot be obtained, and the stress relaxation property, stress corrosion cracking resistance, bending workability, and solder wettability are also adversely affected. Therefore, the upper limit of the compositional relational expression f1 is 18 or less, preferably 16 or less, and optimally 14 or less.
(組成関係式f2)
組成関係式f2=[Zn]-0.3×[Sn]-1.8×[Ni]が、11または10のとき、過酷な応力腐食割れ性環境下で、割れが起こるかどうかの境界の値である。同時に優れた延性、曲げ加工性、良好なはんだ濡れ性、良好な応力緩和特性を得るための境界値でもある。前記のとおり、Cu-Zn合金の致命的な欠点として、応力腐食割れの感受性が高いことが挙げられるが、Cu-Zn合金の場合、応力腐食割れの感受性は、Znの含有量に依存し、Zn含有量が約10質量%を境にして応力腐食割れの感受性が高くなる。このため、組成関係式f2の上限は、11であり、好ましくは9以下であり、最適には8以下である。また、組成関係式f2=10は、Cu-Zn2元合金の場合のZn含有量が10質量%或いは9質量%に相当する。本願のNi、Snが共添加される組成範囲内で、組成関係式f2において、Niの係数が大きく、Niの含有によって、特に応力腐食割れ感受性を低くできる。一方、f2が0未満であると強度が低くなるため、組成関係式f2の下限値は0以上であり、好ましくは0.5以上であり、より好ましくは1以上である。
(Composition relational expression f2)
When the compositional relational expression f2 = [Zn] −0.3 × [Sn] −1.8 × [Ni] is 11 or 10, the boundary of whether or not cracking occurs in a severe stress corrosion cracking environment Value. At the same time, it is a boundary value for obtaining excellent ductility, bending workability, good solder wettability, and good stress relaxation characteristics. As described above, a critical defect of the Cu—Zn alloy is high sensitivity to stress corrosion cracking. In the case of Cu—Zn alloy, the sensitivity of stress corrosion cracking depends on the Zn content, Sensitivity of stress corrosion cracking is increased at a Zn content of about 10% by mass. For this reason, the upper limit of the compositional relational expression f2 is 11, preferably 9 or less, and optimally 8 or less. Further, the compositional relational expression f2 = 10 corresponds to a Zn content of 10% by mass or 9% by mass in the case of a Cu—Zn binary alloy. Within the composition range in which Ni and Sn of the present application are co-added, in the compositional relational expression f2, the coefficient of Ni is large, and the stress corrosion cracking sensitivity can be particularly lowered by the inclusion of Ni. On the other hand, if f2 is less than 0, the strength is low, so the lower limit of the compositional relational expression f2 is 0 or more, preferably 0.5 or more, and more preferably 1 or more.
(組成関係式f3)
組成関係式f3=(3×[Ni]+0.5×[Sn])/[Zn]、すなわち、(3×[Ni]+0.5×[Sn])と[Zn]の配合比を適切にすることにより、Znを4~14質量%含むにもかかわらず、優れた応力緩和特性を発揮する。f3の値が0.3以上、すなわち、[Zn]に対して、(3×[Ni]+0.5×[Sn])の値が0.3以上であると良好な応力緩和特性を示すようになる。好ましくは、0.35以上でり、より好ましくは0.4以上である。同時に、はんだ濡れ性、耐応力腐食割れ性もよくなる。一方、f3の値が1.6を超えても、その効果が飽和するどころか、寧ろ導電率、応力緩和特性が悪くなるし、Znに比して、高価なSn、Niを多く含むことになり、経済面でも問題となる。よって、組成関係式f3の上限値は、1.6以下であり、好ましくは1.3以下であり、最適には1.2以下である。
(Composition relational expression f3)
The compositional relational expression f3 = (3 × [Ni] + 0.5 × [Sn]) / [Zn], that is, the blending ratio of (3 × [Ni] + 0.5 × [Sn]) and [Zn] is appropriately set As a result, excellent stress relaxation characteristics are exhibited despite containing Zn in an amount of 4 to 14% by mass. When the value of f3 is 0.3 or more, that is, the value of (3 × [Ni] + 0.5 × [Sn]) is 0.3 or more with respect to [Zn], good stress relaxation characteristics are exhibited. become. Preferably, it is 0.35 or more, more preferably 0.4 or more. At the same time, solder wettability and stress corrosion cracking resistance are improved. On the other hand, even if the value of f3 exceeds 1.6, rather than the effect being saturated, the conductivity and stress relaxation characteristics are worsened, and more expensive Sn and Ni are contained compared to Zn. This is also an economic problem. Therefore, the upper limit value of the compositional relational expression f3 is 1.6 or less, preferably 1.3 or less, and optimally 1.2 or less.
(組成関係式f4)
Cu-Zn-Ni-Sn-P合金において、応力緩和特性を良くするためには、NiとSnの配合割合を示す組成関係式f4=[Ni]/[Sn]が重要である。原子価が4であるSnに対し、原子価が2のNiの質量濃度比で、1.8倍、原子濃度比で3.5倍以上のとき、顕著に応力緩和特性が向上する。f4の値が2以上、すなわち、4価のSn原子1個に対して、2価のNi原子が、4個以上あれば、さらに応力緩和特性に優れたものとなり、曲げ加工性、耐応力腐食割れ性も良くなる。一方で、Niの原子が多すぎると、応力緩和特性は飽和し、場合によっては却って悪くなり、強度も低くなる。組成関係式f4の上限値は10以下であり、好ましくは8以下であり、最適には6以下である。前記範囲にあるとき、NiとSnの効果を最大限に発揮することができる。
(Composition relational expression f4)
In order to improve the stress relaxation characteristics in the Cu—Zn—Ni—Sn—P alloy, the compositional relational expression f4 = [Ni] / [Sn] indicating the mixing ratio of Ni and Sn is important. When the mass concentration ratio of Ni with a valence of 2 is 1.8 times and the atomic concentration ratio is 3.5 times or more with respect to Sn with an valence of 4, the stress relaxation characteristics are remarkably improved. If the value of f4 is 2 or more, that is, if there are 4 or more divalent Ni atoms per 1 tetravalent Sn atom, the stress relaxation characteristics are further improved, and the bending workability and stress corrosion resistance are improved. The cracking property is also improved. On the other hand, when there are too many Ni atoms, the stress relaxation characteristics are saturated, and in some cases, it becomes worse and the strength is lowered. The upper limit of the compositional relational expression f4 is 10 or less, preferably 8 or less, and optimally 6 or less. When in this range, the effects of Ni and Sn can be maximized.
(組成関係式f5)
さらに、応力緩和特性は、固溶状態にあるNiと、Pと、そしてNiとPの化合物に影響を受ける。ここで、組成関係式f5=〔Ni〕/〔P〕が16未満であると、固溶状態にあるNiに対するNiとPの化合物の割合が多くなるので、応力緩和特性が悪くなり、曲げ加工性も悪くなる。すなわち、組成関係式f5=〔Ni〕/〔P〕が16以上、好ましくは18以上、最適には20以上であると、応力緩和特性、および曲げ加工性が良くなる。一方で、組成関係式f5=〔Ni〕/〔P〕が250を超えると、NiとPで形成される化合物の量、固溶するPの量が少なくなるので、応力緩和特性が悪くなる。また、結晶粒を細かくする作用も小さくなり、合金の強度が低くなる。このため、f5の上限値は、250以下であり、好ましくは180以下であり、最適には120以下である。
(Composition relational expression f5)
Furthermore, the stress relaxation property is affected by Ni, P, and a compound of Ni and P in a solid solution state. Here, if the compositional relational expression f5 = [Ni] / [P] is less than 16, the ratio of the Ni and P compounds to Ni in the solid solution state increases, so that the stress relaxation characteristics are deteriorated and bending work is performed. Also worse. That is, when the compositional relational expression f5 = [Ni] / [P] is 16 or more, preferably 18 or more, and optimally 20 or more, stress relaxation characteristics and bending workability are improved. On the other hand, when the compositional relational expression f5 = [Ni] / [P] exceeds 250, the amount of the compound formed by Ni and P and the amount of P in solid solution are reduced, so that the stress relaxation property is deteriorated. In addition, the effect of making the crystal grains finer is reduced, and the strength of the alloy is reduced. For this reason, the upper limit of f5 is 250 or less, preferably 180 or less, and optimally 120 or less.
(平均結晶粒径)
 本実施形態である銅合金板においては、プロセスによるが、平均結晶粒径を1.5μm程度とすることが可能である。しかしながら、本実施形態である銅合金板の平均結晶粒径を1.5μmまで微細化すると、数原子程度の幅で形成される結晶粒界の占める割合が大きくなり、伸び、曲げ加工性、応力緩和特性が悪くなる。したがって、高強度と高い伸び、良好な応力緩和特性を備えるためには、平均結晶粒径は2.0μm以上が必要である。平均結晶粒径の下限は、好ましくは3μm以上であり、最適には4μm以上である。一方、結晶粒が大きくなるにつれ、良好な伸び、曲げ加工性を示すが、所望の引張強度、耐力が得られなくなる。少なくとも、平均結晶粒径を9μm以下に細かくする必要がある。平均結晶粒径の上限は、好ましくは8μm以下であり、特に強度を重視する場合は7μm以下である。このように、平均結晶粒径をより狭い範囲に設定することにより、曲げ加工性、伸び、強度、導電性、或いは、応力緩和特性の間で高度に優れたバランスを得ることができる。
(Average crystal grain size)
In the copper alloy plate of the present embodiment, although depending on the process, the average crystal grain size can be about 1.5 μm. However, when the average crystal grain size of the copper alloy plate according to this embodiment is refined to 1.5 μm, the proportion of crystal grain boundaries formed with a width of several atoms increases, and the elongation, bending workability, stress The relaxation characteristics are deteriorated. Therefore, in order to provide high strength, high elongation, and good stress relaxation characteristics, the average crystal grain size needs to be 2.0 μm or more. The lower limit of the average crystal grain size is preferably 3 μm or more, and optimally 4 μm or more. On the other hand, as the crystal grains become larger, good elongation and bending workability are exhibited, but desired tensile strength and yield strength cannot be obtained. At least, the average crystal grain size needs to be reduced to 9 μm or less. The upper limit of the average crystal grain size is preferably 8 μm or less, particularly 7 μm or less when the strength is important. Thus, by setting the average crystal grain size in a narrower range, it is possible to obtain a highly excellent balance among bending workability, elongation, strength, conductivity, or stress relaxation characteristics.
(析出物)
例えば50%以上の冷間加工率で冷間圧延を施した圧延材を焼鈍する時、時間との関係もあるが、ある臨界の温度を超えると、加工ひずみの蓄積された結晶粒界を中心に再結晶核が生じる。合金組成にもよるが本実施形態である銅合金板の場合、核生成後にできた再結晶粒の粒径は、1μmや2μm、又はそれより小さな再結晶粒であるが、圧延材に熱を加えても、加工組織が一度にすべて再結晶粒に置き換わることはない。すべて、又は、例えば95%以上が再結晶粒に置き換わるには、再結晶の核生成が開始する温度よりも更に高い温度、又は再結晶の核生成が開始する時間よりも更に長い時間が必要である。この焼鈍の間、最初にできた再結晶粒は、温度、時間と共に成長し、結晶粒径は大きくなる。微細な再結晶粒径を維持するためには、再結晶粒の成長を抑制する必要がある。再結晶粒の成長を抑制するために、本実施形態では、PとNiが含有される。PとNiで生成する化合物(PとNiを含む析出物)は、再結晶粒の成長を抑制するピンのように作用する。PとNiで生成する化合物(PとNiを含む析出物)が、上述のようにピンの役目を果たすには、化合物そのものの性質と化合物の粒径が重要である。すなわち、研究結果から、本実施形態である銅合金板の組成範囲において、PとNiで生成する化合物(PとNiを含む析出物)は、基本的に伸びを阻害することが少なく、特に化合物の粒径が3~75nmであれば、伸びを阻害することが少なく結晶粒成長を効果的に抑制することが分かった。
(Precipitate)
For example, when annealing a rolled material that has been cold-rolled at a cold working rate of 50% or more, there is a relationship with time, but if a certain critical temperature is exceeded, the grain boundary where machining strain is accumulated is the center. Recrystallization nuclei are formed in Although it depends on the alloy composition, in the case of the copper alloy plate of this embodiment, the grain size of the recrystallized grains formed after nucleation is 1 μm, 2 μm, or smaller recrystallized grains. In addition, the processed structure is not replaced with recrystallized grains all at once. In order to replace all or, for example, 95% or more with recrystallized grains, a temperature higher than the temperature at which recrystallization nucleation starts or a time longer than the time at which recrystallization nucleation starts is required. is there. During this annealing, the first recrystallized grains grow with temperature and time, and the crystal grain size increases. In order to maintain a fine recrystallized grain size, it is necessary to suppress the growth of the recrystallized grains. In this embodiment, P and Ni are contained in order to suppress the growth of recrystallized grains. A compound produced by P and Ni (precipitate containing P and Ni) acts like a pin that suppresses the growth of recrystallized grains. In order for a compound produced by P and Ni (a precipitate containing P and Ni) to serve as a pin as described above, the properties of the compound itself and the particle size of the compound are important. That is, from the research results, in the composition range of the copper alloy plate according to the present embodiment, the compound produced by P and Ni (precipitate containing P and Ni) basically hardly inhibits the elongation. It was found that when the grain size of 3 to 75 nm is 3 to 75 nm, the growth of crystal grains is effectively suppressed with little inhibition of elongation.
再結晶粒の成長を抑制するPとNiを含む析出物は、再結晶熱処理工程の段階で、円形又は楕円形の析出物が存在し、その析出物の平均粒子径が3~75nm、又は、析出粒子の内で粒子径3~75nmの個数の占める割合が70%以上であればよい。析出物の平均粒径が小さくなると、析出物の析出強化と、結晶粒成長の抑制効果が効き過ぎて再結晶粒が小さくなり、圧延材の強度は上がるが、曲げ加工性が悪くなる。また析出物が例えば100nmにも達すると、ほとんど結晶粒成長の抑制効果もなくなり、曲げ加工性が悪くなる。尚、円形又は楕円形の析出物には、完全な円形や楕円形だけでなく、円形や楕円形に近似した形状も含まれる。
なお、上述の作用効果を確実に奏功せしめるためには、円形又は楕円形の析出物の平均粒子径が3~60nm、又は、析出粒子の内で粒子径3~60nmの個数の占める割合が70%以上であることが好ましい。最適には、平均粒子径が5~20nmである。
The precipitate containing P and Ni that suppresses the growth of recrystallized grains has a circular or elliptical precipitate at the stage of the recrystallization heat treatment step, and the average particle diameter of the precipitate is 3 to 75 nm, or The proportion of the number of particles having a particle diameter of 3 to 75 nm in the precipitated particles may be 70% or more. When the average grain size of the precipitates is reduced, the precipitation strengthening of the precipitates and the effect of suppressing the growth of crystal grains are too effective, the recrystallized grains are reduced, the strength of the rolled material is increased, but the bending workability is deteriorated. Further, when the precipitate reaches, for example, 100 nm, the effect of suppressing the crystal grain growth is almost lost and the bending workability is deteriorated. Incidentally, the circular or elliptical precipitate includes not only a perfect circular or elliptical shape but also a shape approximated to a circular or elliptical shape.
In order to ensure that the above-described effects are achieved, the average particle diameter of the circular or elliptical precipitates is 3 to 60 nm, or the ratio of the number of the particle diameters of 3 to 60 nm in the precipitated particles is 70. % Or more is preferable. Optimally, the average particle size is 5 to 20 nm.
(導電率)
本実施形態である銅合金板においては、自動車部品、電気部品,電子部品,通信機器,電子・電気機器等に使用されるコネクタ、端子、リレー、ばね、スイッチ、半導体、リードフレーム等の通電部材に用いられるものであることから、導電率として24%IACS以上、好ましくは、26%IACS以上、更には28%IACS以上を確保する必要がある。
(conductivity)
In the copper alloy plate according to the present embodiment, current-carrying members such as connectors, terminals, relays, springs, switches, semiconductors, lead frames, etc. used in automobile parts, electrical parts, electronic parts, communication equipment, electronic / electric equipment, etc. Therefore, it is necessary to secure a conductivity of 24% IACS or more, preferably 26% IACS or more, and more preferably 28% IACS or more.
(耐応力緩和特性)
 端子、コネクタは、例えば、自動車のエンジンルームに近い場所で使われるとき、100℃程度にまで温度上昇するので、150℃で1000時間、合金の耐力の80%の応力を付加した状態で、応力緩和率が25%以下、好ましくは23%以下、最適には20%以下であることが必要である。応力緩和率が大きくなると、実質的に応力緩和率分の強度(接触圧、ばね圧)が損なわれてしまうからである。または、実効の最大の接触圧、ばね圧でも評価ができる。すなわち、実効の最大の接触圧、ばね圧(実効応力)Pwは、Pw=耐力×80%×(100%-応力緩和率(%))で表され、単に常温の耐力、または150℃で1000時間での応力緩和特性が高いだけでなく、前式の値が高いことが望まれる。150℃で1000時間の試験で耐力×80%×(100%-応力緩和率(%))が、270N/mm以上あれば、高温状態での使用に耐え得る最低のレベルであり、300N/mm以上であれば、高温状態での使用に適しており、330N/mm以上であれば最適である。因みに、例えば、耐力が500N/mmである黄銅の代表的な合金であるCu-30質量%Znの場合、150℃で1000時間の試験において、耐力×80%×(100%-応力緩和率(%))の値が約70N/mm、同様に耐力が550N/mmであるCu-6質量%Snのりん青銅で、約180N/mmであり、現行の実用合金では、到底満足できない。
(Stress relaxation characteristics)
For example, when the terminal and connector are used in a place close to the engine room of an automobile, the temperature rises to about 100 ° C. Therefore, the stress is applied at 80 ° C. for 1000 hours at 80 ° C. The relaxation rate should be 25% or less, preferably 23% or less, and optimally 20% or less. This is because when the stress relaxation rate increases, the strength (contact pressure, spring pressure) corresponding to the stress relaxation rate is substantially impaired. Alternatively, evaluation can be performed with the maximum effective contact pressure and spring pressure. That is, the effective maximum contact pressure, spring pressure (effective stress) Pw is expressed by Pw = proof stress × 80% × (100% −stress relaxation rate (%)), and is simply proof stress at normal temperature or 1000 at 150 ° C. In addition to high stress relaxation characteristics over time, it is desirable that the value of the previous equation be high. If the proof stress × 80% × (100% −stress relaxation rate (%)) is 270 N / mm 2 or more in a test at 150 ° C. for 1000 hours, it is the lowest level that can withstand use in a high temperature state, 300 N / If it is mm 2 or more, it is suitable for use in a high temperature state, and if it is 330 N / mm 2 or more, it is optimal. Incidentally, for example, in the case of Cu-30 mass% Zn which is a typical alloy of brass having a proof stress of 500 N / mm 2 , the proof stress × 80% × (100% −stress relaxation rate) in a test at 150 ° C. for 1000 hours. (%)) values of phosphor bronze of about 70N / mm 2, likewise yield strength is 550N / mm 2 Cu-6 wt% Sn, and about 180 N / mm 2, in the current practical alloys, far from satisfactory Can not.
(バランス指数f6)
 仕上げ冷間圧延後の圧延材、又は仕上げ冷間圧延後に回復熱処理を施した圧延材、またはリフローSnめっき、或いは、溶融Snめっきを施した圧延材においては、W曲げ試験においてR/t=1.0(Rは曲げ部の曲率半径、tは圧延材の厚み)で割れが生じず、好ましくは、R/t=0.5で割れが生じないことが前提で、導電率と応力緩和特性のバランスを表す指標としてバランス指数f6=Pw×(C/100)1/2が重要となる。このバランス指数f6が高い値であると、過酷なエンジンルームに近い環境での、端子・コネクタの好適素材となり得る。すなわち、電気特性の指標である(C/100)1/2と、実効応力の積が過酷なエンジンルームに近い環境での、端子・コネクタの評価の基準となり得る。バランス指数f6は、少なくとも180以上が必要であり、好ましくは190以上であり、より好ましくは200以上であれば良好であり、最適には210以上である。
(Balance index f6)
In the rolled material after finish cold rolling, the rolled material subjected to recovery heat treatment after finish cold rolling, or the rolled material subjected to reflow Sn plating or hot Sn plating, R / t = 1 in the W bending test. 0.0 (where R is the radius of curvature of the bent portion and t is the thickness of the rolled material), preferably no cracking occurs, preferably on the premise that no cracking occurs at R / t = 0.5. The balance index f6 = Pw × (C / 100) 1/2 is important as an index representing the balance of If this balance index f6 is a high value, it can be a suitable material for terminals and connectors in an environment close to a severe engine room. In other words, (C / 100) 1/2 , which is an index of electrical characteristics, can be a criterion for terminal / connector evaluation in an environment close to a severe engine room where the product of effective stress is severe. The balance index f6 needs to be at least 180, preferably 190 or more, more preferably 200 or more, and optimally 210 or more.
(耐力比YS90/YS
 一般的に、仕上げ冷間圧延材の金属組織を観察すると、圧延方向に、結晶粒が伸び、厚さ方向に圧縮された様相を呈し、圧延方向に採取した試験片と、垂直方向に採取した試験片では、引張強度、耐力、曲げ加工性において差が生じる。具体的な金属組織は、結晶粒は圧延面に平行の断面を見れば、伸長した結晶粒であり、横断面で見れば、厚み方向に圧縮された結晶粒になり、圧延方向に垂直に採取した圧延材の引張強度TS90、耐力YS90は、平行方向に採取した圧延材の引張強度TS、耐力YSよりも高くなり、その強度比TS90/TS及び耐力比YS90/YSは、1.05を超え、さらに1.07を超え、場合によっては1.1に達することもある。これらの強度比TS90/TS及び耐力比YS90/YSが1.05を超えて高くなるにしたがって圧延方向に垂直に採取した試験片の曲げ加工性は悪くなる。逆に、製造プロセスによっては、強度比TS90/TS及び耐力比YS90/YSが0.97、場合によっては0.95未満になることもある。強度面の異方性においては、耐力比YS90/YS、および、引張強度比TS90/TSは、ともに1.07以下であることが好ましく、より好ましくは1.05以下、最適には1.03以下であり、または、0.95以上であることが好ましく、より好ましくは0.97以上、最適には0.99以上である。本実施形態である銅合金板が対象としている端子、コネクタ等の各種部材は、実際の使用、圧延材から製品へ加工の際に、圧延方向、垂直方向、つまり圧延方向に対して平行方向と垂直方向の両方向が使用されることが多く、実使用面、製品加工面から、圧延方向、垂直方向で、引張強度、耐力、曲げ加工性等の特性差がないことが望まれている。
(Yield ratio YS 90 / YS 0 )
In general, when observing the metal structure of the finished cold-rolled material, it appears that the crystal grains are stretched in the rolling direction and compressed in the thickness direction, and the specimen taken in the rolling direction and the sample taken in the vertical direction are collected. Test specimens have differences in tensile strength, proof stress, and bending workability. The specific metal structure is that if the crystal grain is a cross section parallel to the rolling surface, it is an elongated crystal grain, and if it is viewed in the cross section, it becomes a crystal grain compressed in the thickness direction and sampled perpendicular to the rolling direction. The tensile strength TS 90 and the proof strength YS 90 of the rolled material obtained are higher than the tensile strength TS 0 and the proof strength YS 0 of the rolled material collected in the parallel direction, and the strength ratio TS 90 / TS 0 and the proof strength ratio YS 90 / YS. 0 exceeds 1.05, further exceeds 1.07, and may reach 1.1 in some cases. As these strength ratio TS 90 / TS 0 and proof stress ratio YS 90 / YS 0 become higher than 1.05, the bending workability of specimens taken perpendicular to the rolling direction deteriorates. Conversely, depending on the manufacturing process, the strength ratio TS 90 / TS 0 and the yield strength ratio YS 90 / YS 0 may be 0.97, and in some cases, less than 0.95. In the anisotropy of the strength surface, the proof stress ratio YS 90 / YS 0 and the tensile strength ratio TS 90 / TS 0 are both preferably 1.07 or less, more preferably 1.05 or less, optimally Is 1.03 or less, or preferably 0.95 or more, more preferably 0.97 or more, and most preferably 0.99 or more. Various members such as terminals and connectors targeted by the copper alloy plate according to the present embodiment are in the rolling direction, the vertical direction, that is, the direction parallel to the rolling direction during actual use and processing from the rolled material to the product. Both vertical directions are often used, and it is desired that there is no difference in properties such as tensile strength, proof stress, and bending workability in the rolling direction and the vertical direction from the actual use surface and the product processing surface.
本発明の第1~第4の実施形態である銅合金板においては、Zn、Sn、P、Niの相互作用、組成関係式f1~f5を満たし、平均結晶粒径を2~9μmとし、PとNiで形成される析出物の大きさと、それら元素間の割合を所定の数値にコントロールし、次に述べる製造プロセスで圧延材を作ることにより、圧延方向に対して0度をなす方向と90度をなす方向で採取した圧延材の引張強度、耐力の差が無くなる。これにより、本発明の第1~第4の実施形態である銅合金板においては、圧延方向に対して90度をなす方向の耐力YS90と、圧延方向に対して0度をなす方向の耐力YSとの比YS90/YSが、0.95≦YS90/YS≦1.07の範囲内となる。また、本実施形態では、圧延方向に対して90度をなす方向の引張強度TS90と、圧延方向に対して0度をなす方向の引張強度TSとの比TS90/TSについても、0.95≦TS90/TS≦1.07の範囲内となる。 In the copper alloy plates according to the first to fourth embodiments of the present invention, the interaction of Zn, Sn, P, and Ni, the compositional relational expressions f1 to f5 are satisfied, the average crystal grain size is 2 to 9 μm, and P The size of precipitates formed of Ni and Ni and the ratio between these elements are controlled to predetermined values, and a rolled material is produced by the manufacturing process described below, whereby a direction that forms 0 degrees with respect to the rolling direction The difference in the tensile strength and proof stress of the rolled material collected in the direction of the degree is eliminated. Thus, in the copper alloy sheets according to the first to fourth embodiments of the present invention, the proof stress YS 90 in the direction forming 90 degrees with respect to the rolling direction and the proof stress in the direction forming 0 degrees with respect to the rolling direction. the ratio YS 90 / YS 0 and YS 0 becomes in the range of 0.95 ≦ YS 90 / YS 0 ≦ 1.07. In this embodiment, the ratio TS 90 / TS 0 of the tensile strength TS 90 in the direction forming 90 degrees with respect to the rolling direction and the tensile strength TS 0 in the direction forming 0 degrees with respect to the rolling direction is It is in the range of 0.95 ≦ TS 90 / TS 0 ≦ 1.07.
(その他の特性)
 本実施形態である銅合金板においては、上述した導電率及び耐応力緩和特性以外の特性についても、以下のように規定することが好ましい。
本実施形態である銅合金板においては、多くの用途において、高い強度を有するとともに、W曲げで評価したときの曲げ加工性がR/t≦1.0であることが好ましく、より好ましくは、R/t≦0.5である。特に、端子、コネクタ、電気・電子部品用途においては、圧延方向に対して、平行、および、垂直の両方向の曲げに対して、曲げ加工性が、W曲げでR/t≦1.0であることが好ましく、R/t≦0.5であることがより好ましい。
(Other characteristics)
In the copper alloy plate according to the present embodiment, it is preferable to define the characteristics other than the above-described conductivity and stress relaxation resistance as follows.
In the copper alloy plate of the present embodiment, in many applications, it has high strength, and the bending workability when evaluated by W bending is preferably R / t ≦ 1.0, more preferably R / t ≦ 0.5. In particular, in terminals, connectors, and electric / electronic component applications, the bending workability is R / t ≦ 1.0 in W bending with respect to bending in both directions parallel and perpendicular to the rolling direction. It is preferable that R / t ≦ 0.5.
 また、端子、コネクタ等は、通常、耐食性、接触抵抗、接合の点から、表面にSnめっきが施されることがある。この場合、コイル(条)の状態で、溶融Snめっきされるか、リフローSnめっきされる、または、端子、コネクタ形状になってから、Snめっきが施される。したがって、端子・コネクタ材用途、または電気・電子部品用では、Snめっき性すなわち、はんだ濡れ性がよいことが必要となる。なお、Snめっき性は、特にコイルの状態では問題はないが、端子、コネクタに成形された後に、Snめっき、特にPbフリーはんだめっきされる場合、生産の関係上、成形直後ではなく、ある期間放置されてから、めっきがされることがあり、その放置期間、表面酸化により、めっき性、はんだ濡れ性が劣化するおそれがある。材質上、はんだ濡れ性がよく、多少の表面酸化があっても、または表面酸化し難く、大気放置後のはんだ濡れ性のよい銅合金が求められる。はんだ濡れ性の評価は、様々であるが、工業性生産の観点から、はんだが早く濡れる時間で評価するのが適切である。 Also, terminals, connectors, and the like are usually subjected to Sn plating on the surface in terms of corrosion resistance, contact resistance, and bonding. In this case, in the state of the coil (strip), the Sn plating is performed after the molten Sn plating, the reflow Sn plating, or the terminal or connector shape. Therefore, it is necessary to have good Sn plating property, that is, solder wettability, for terminal / connector material use or for electric / electronic parts. The Sn plating property is not particularly problematic in the state of the coil. However, when Sn plating, particularly Pb-free solder plating is performed after forming the terminals and connectors, due to production, it is not immediately after forming but for a certain period. There is a case where plating is performed after being left standing, and there is a possibility that plating property and solder wettability may deteriorate due to surface oxidation during the standing time. There is a need for a copper alloy that has good solder wettability, and has good surface wettability after being left in the atmosphere, even if there is some surface oxidation or hardly surface oxidation. There are various evaluations of solder wettability, but from the viewpoint of industrial production, it is appropriate to evaluate the solder wettability quickly.
 次に、本発明の第1~4の実施形態に係る銅合金板の製造方法について説明する。
なお、本明細書においては、加工される銅合金材料の再結晶温度より低い温度で行われる加工を冷間加工、再結晶温度より高い温度で行われる加工を熱間加工とし、それらがロールによって成形される加工を各々、冷間圧延、熱間圧延と定義する。また、再結晶は、一つの結晶組織から別の結晶組織への変化あるいは、加工によって生じるひずみの存在する組織から、新しい、歪みのない結晶組織へ形成されることと定義される。
Next, a method for manufacturing a copper alloy plate according to the first to fourth embodiments of the present invention will be described.
In this specification, processing performed at a temperature lower than the recrystallization temperature of the copper alloy material to be processed is referred to as cold processing, and processing performed at a temperature higher than the recrystallization temperature is referred to as hot processing. The forming processes are defined as cold rolling and hot rolling, respectively. In addition, recrystallization is defined as a change from one crystal structure to another crystal structure or the formation of a strain having a strain caused by processing into a new, unstrained crystal structure.
まず、上述の成分組成とされた鋳塊を準備し、この鋳塊に対して熱間加工(代表的には熱間圧延)を行う。熱間圧延の開始温度は、各元素を固溶状態にするために800℃以上、好ましく840℃以上とし、また、エネルギーコスト、熱間延性の点から950℃以下、好ましくは920℃以下とする。そしてP、Niをより固溶状態にするために、少なくともこれらの析出物が伸びを阻害するような粗大な析出物とならないように、最終圧延終了時の温度又は650℃から350℃の温度領域を1℃/秒以上の冷却速度で冷却することが好ましい。熱間圧延段階で析出物が粗大化すると、後の焼鈍工程等の熱処理で消滅させることが難しく、最終圧延品の伸びを阻害する。
なお、連続鋳造法によって厚み15~20mm程度の板状の鋳塊を製造した場合には、熱間加工(熱間圧延)を省略することができる。この場合、鋳造後に650℃~850℃で均質化熱処理を行ってもよい。熱間圧延を経ない場合は、約700℃または約800℃で1時間以上熱処理し、鋳物の段階で生成した、NiとPとの粗大な化合物を一旦固溶状態にし、低融点のSn、含有量の多いNiなどの濃度分布を均一にすることが好ましい。
First, an ingot having the above-described component composition is prepared, and hot working (typically hot rolling) is performed on the ingot. The hot rolling start temperature is 800 ° C. or higher, preferably 840 ° C. or higher, so that each element is in a solid solution state, and 950 ° C. or lower, preferably 920 ° C. or lower, from the viewpoint of energy cost and hot ductility. . And in order to make P and Ni into a more solid solution state, the temperature at the end of the final rolling or a temperature range from 650 ° C. to 350 ° C. so that at least these precipitates do not become coarse precipitates that hinder elongation. Is preferably cooled at a cooling rate of 1 ° C./second or more. If the precipitates become coarse in the hot rolling stage, it is difficult to be eliminated by a heat treatment such as a subsequent annealing step, which hinders the elongation of the final rolled product.
When a plate-shaped ingot having a thickness of about 15 to 20 mm is manufactured by a continuous casting method, hot working (hot rolling) can be omitted. In this case, homogenization heat treatment may be performed at 650 ° C. to 850 ° C. after casting. When hot rolling is not performed, heat treatment is performed at about 700 ° C. or about 800 ° C. for 1 hour or longer, and a coarse compound of Ni and P generated at the casting stage is once made into a solid solution state, Sn having a low melting point, It is preferable to make the concentration distribution of Ni or the like having a high content uniform.
 そして、銅合金材料に対して冷間圧延を行って所定の厚さにし、冷間圧延に続いて再結晶熱処理を行う。冷間圧延工程と、焼鈍工程、または再結晶熱処理工程は、最終の製品厚みにより、1回または複数回実施される。
焼鈍方法、再結晶熱処理方法としては、長時間加熱保持するバッチ式の熱処理方法と、高温-短時間で、連続的に熱処理される方法がある。最終の再結晶熱処理方法は、高温-短時間の熱処理の方が、特に、応力緩和特性が良くなる。何故なら、Pが、完全にNiと析出状態にならず、ある濃度のPが固溶状態で存在するからである。高温-短時間の連続熱処理による再結晶熱処理工程においては、連続熱処理炉を用い、銅合金材料を所定の温度に加熱する加熱ステップと、該加熱ステップ後に該銅合金材料を所定の温度に所定の時間保持する保持ステップと、該保持ステップ後に該銅合金材料を所定の温度まで冷却する冷却ステップを具備し、再結晶熱処理工程において、該銅合金材料の最高到達温度をTmax(℃)とし、該銅合金材料の最高到達温度より50℃低い温度から最高到達温度までの温度域で、加熱保持される時間をtm(min)としたときに、
560≦Tmax≦790、
0.04≦tm≦1.0、
520≦It1=(Tmax-30×tm-1/2)≦690
とする。
And it cold-rolls with respect to a copper alloy material, it is set as predetermined thickness, and recrystallization heat processing is performed following cold rolling. The cold rolling step, the annealing step, or the recrystallization heat treatment step is performed once or a plurality of times depending on the final product thickness.
As an annealing method and a recrystallization heat treatment method, there are a batch-type heat treatment method in which heat is maintained for a long time and a method in which heat treatment is continuously performed at a high temperature for a short time. As the final recrystallization heat treatment method, the high temperature-short time heat treatment has particularly improved stress relaxation characteristics. This is because P does not completely precipitate with Ni, and a certain concentration of P exists in a solid solution state. In the recrystallization heat treatment step by high-temperature-short-time continuous heat treatment, a continuous heat treatment furnace is used to heat the copper alloy material to a predetermined temperature, and after the heating step, the copper alloy material is heated to a predetermined temperature. A holding step for holding for a period of time, and a cooling step for cooling the copper alloy material to a predetermined temperature after the holding step. In the recrystallization heat treatment step, the maximum temperature of the copper alloy material is Tmax (° C.), In a temperature range from a temperature that is 50 ° C. lower than the highest temperature of the copper alloy material to the highest temperature, when the heating and holding time is tm (min),
560 ≦ Tmax ≦ 790,
0.04 ≦ tm ≦ 1.0,
520 ≦ It1 = (Tmax−30 × tm −1/2 ) ≦ 690
And
最終の再結晶熱処理の条件で、高温-短時間の連続熱処理の条件の最高到達温度、保持時間、又は熱処理指数It1の範囲の下限を下回ると、未再結晶部分が残る、または、平均結晶粒径が2μmより小さな超微細結晶粒の状態になる。また、最高到達温度、保持時間、又は熱処理指数It1の範囲の上限を超えて焼鈍すると、平均結晶粒径が9μm以下の微細な金属組織が得られない。そして、範囲外の条件で行うと固溶するNi量、P量、NiとPの析出物のバランスが崩れ、応力緩和特性が悪くなる。
 また、再結晶熱処理工程の冷却時には、「最高到達温度-50℃」から400℃までの温度領域において、5℃/秒以上の条件で冷却することが好ましく、より好ましくは、10℃/秒以上の条件で冷却、最適には15℃/秒以上の条件で冷却すると応力緩和特性が良くなる。冷却速度が遅いと、粗大な析出物が出現し、PとNiの析出物の割合が増え、固溶するPの量が少なくなり、応力緩和特性、曲げ加工性が悪くなる。
When the final recrystallization heat treatment conditions are below the maximum temperature, holding time, or lower limit of the range of the heat treatment index It1 of the high temperature-short time continuous heat treatment conditions, unrecrystallized portions remain or average grain size It becomes a state of ultrafine crystal grains whose diameter is smaller than 2 μm. Further, if the annealing is performed exceeding the upper limit of the range of the maximum temperature reached, the holding time, or the heat treatment index It1, a fine metal structure having an average crystal grain size of 9 μm or less cannot be obtained. And if it carries out on the conditions outside a range, the balance of the amount of Ni which dissolves, the amount of P, and the precipitate of Ni and P will collapse, and a stress relaxation characteristic will worsen.
Further, at the time of cooling in the recrystallization heat treatment step, it is preferable to cool under the condition of 5 ° C./second or more, more preferably 10 ° C./second or more in the temperature range from “maximum reached temperature −50 ° C.” to 400 ° C. Cooling under the above conditions, and optimally, cooling at 15 ° C./second or more improves the stress relaxation characteristics. When the cooling rate is slow, coarse precipitates appear, the ratio of P and Ni precipitates increases, the amount of P that dissolves decreases, and stress relaxation characteristics and bending workability deteriorate.
 再結晶熱処理工程で、混粒の無い均一で細かな再結晶粒を得るためには、積層欠陥エネルギーを低くするだけでは不十分なので、再結晶核の生成サイトを増やすために、冷間圧延によるひずみ、具体的には、結晶粒界でのひずみの蓄積が必要である。そのために、再結晶熱処理工程前の冷間圧延での冷間加工率が55%以上必要であり、好ましくは、60%以上である。一方、再結晶熱処理工程前の冷間圧延の冷間加工率を上げ過ぎると、ひずみ等の問題が生じるので98%以下が望ましく、最適には96%以下である。すなわち、物理的な作用による再結晶核の生成サイトを増やすためには、冷間加工率を高くすることが有効であり、製品のひずみを許容できる範囲で、高い加工率を付加することにより、より微細な再結晶粒を得ることができる。 In order to obtain uniform and fine recrystallized grains without mixed grains in the recrystallization heat treatment process, it is not enough to lower the stacking fault energy. Strain, specifically, the accumulation of strain at the grain boundaries is necessary. Therefore, the cold working rate in the cold rolling before the recrystallization heat treatment step needs to be 55% or more, and preferably 60% or more. On the other hand, if the cold work rate of the cold rolling before the recrystallization heat treatment process is increased too much, problems such as distortion occur, so 98% or less is desirable and optimally 96% or less. In other words, in order to increase the number of recrystallization nucleation production sites due to physical action, it is effective to increase the cold work rate, and by adding a high work rate within a range that can tolerate distortion of the product, Finer recrystallized grains can be obtained.
なお、再結晶熱処理工程は、バッチ式の焼鈍でも熱処理でき、400℃から650℃の範囲の温度で、1時間から24時間保持する。但し、高温―短時間の連続熱処理であっても、バッチ式の焼鈍であっても、最終熱処理工程の場合、平均結晶粒径、および析出物の粒径が、前記の所定の大きさの範囲になるように条件を調整する必要がある。なお、最終熱処理工程は、ある一定濃度のPを固溶状態にできる、高温―短時間の連続熱処理がよく、必要に応じて実施される中間の再結晶熱処理、すなわち焼鈍工程は、バッチ式であっても、高温―短時間の連続熱処理であっても、最終の圧延材の特性に大きな影響を与えない。 The recrystallization heat treatment step can be heat-treated even by batch annealing, and is maintained at a temperature in the range of 400 ° C. to 650 ° C. for 1 to 24 hours. However, the average crystal grain size and the grain size of the precipitates are within the predetermined range in the final heat treatment step, whether it is a high temperature-short time continuous heat treatment or batch annealing. It is necessary to adjust the conditions so that The final heat treatment process is preferably a high-temperature-short-time continuous heat treatment that can bring a certain concentration of P into a solid solution state, and the intermediate recrystallization heat treatment performed as necessary, that is, the annealing process is a batch type. Even if it is a high-temperature-short-time continuous heat treatment, it does not significantly affect the properties of the final rolled material.
 次に、最終の再結晶熱処理工程が施された銅合金材料に仕上げ圧延を行う。この仕上げ冷間圧延後に、最高到達温度が150~580℃で、「最高到達温度-50℃」から最高到達温度までの温度領域での保持時間が0.02~100分の熱処理であって、下記で定義する熱処理指数It2が120≦It2≦390の関係を満たす回復熱処理工程を行うことが好ましい。
 具体的には、仕上げ冷間圧延工程後、銅合金材料を所定の温度に加熱する加熱ステップと、該加熱ステップ後に該銅合金材料を所定の温度に所定の時間保持する保持ステップと、該保持ステップ後に該銅合金材料を所定の温度まで冷却する冷却ステップを具備し、該銅合金材料の最高到達温度をTmax2(℃)とし、該銅合金材料の最高到達温度より50℃低い温度から最高到達温度までの温度域で、加熱保持される時間をtm2(min)とし、
150≦Tmax2≦580、
0.02≦tm2≦100、
120≦It2=(Tmax2-25×tm2-1/2)≦390
である回復熱処理工程で製造されることが好ましい。
Next, finish rolling is performed on the copper alloy material subjected to the final recrystallization heat treatment step. After the finish cold rolling, the maximum temperature reached 150 to 580 ° C., and the holding time in the temperature range from the “maximum temperature reached −50 ° C.” to the maximum temperature was 0.02 to 100 minutes, It is preferable to perform a recovery heat treatment step in which a heat treatment index It2 defined below satisfies a relationship of 120 ≦ It2 ≦ 390.
Specifically, after the finish cold rolling process, a heating step for heating the copper alloy material to a predetermined temperature, a holding step for holding the copper alloy material at a predetermined temperature for a predetermined time after the heating step, and the holding A cooling step of cooling the copper alloy material to a predetermined temperature after the step, wherein the maximum reached temperature of the copper alloy material is Tmax2 (° C.), and the maximum reached from a temperature that is 50 ° C. lower than the maximum reached temperature of the copper alloy material In the temperature range up to the temperature, the heating and holding time is tm2 (min),
150 ≦ Tmax2 ≦ 580,
0.02 ≦ tm2 ≦ 100,
120 ≦ It2 = (Tmax2−25 × tm2 −1/2 ) ≦ 390
It is preferable to manufacture by the recovery heat treatment process which is.
この回復熱処理工程は、再結晶を伴わず、低温又は短時間の回復熱処理により、圧延材の応力緩和率、ばね限界値、曲げ加工性及び伸びを向上させ、また、冷間圧延により低下した導電率を回復させるための熱処理である。なお、熱処理指数It2において、下限は200以上が好ましく、上限は380以下が好ましい。前記の回復熱処理工程を施すことにより、熱処理前に比べ、応力緩和率は1/2程度になり、応力緩和特性が向上し、ばね限界値は、1.5倍~2倍に向上し、導電率は、0.5~2%IACS向上する。
なお、溶融SnめっきやリフローSnめっき等のSnめっき工程において、約150℃~約300℃で、短時間であるが圧延材、場合によっては端子、コネクタに成形後、加熱される。このSnめっき工程は、回復熱処理後に行っても、回復熱処理後の特性にほとんど影響を与えない。一方で、Snめっき工程の加熱工程は、回復熱処理工程の代替の工程になり、圧延材の応力緩和特性、ばね強度、曲げ加工性を向上させる。
This recovery heat treatment process does not involve recrystallization, improves the stress relaxation rate, spring limit value, bending workability and elongation of the rolled material by low-temperature or short-time recovery heat treatment, and reduces the conductivity reduced by cold rolling. It is a heat treatment for recovering the rate. In the heat treatment index It2, the lower limit is preferably 200 or more, and the upper limit is preferably 380 or less. By performing the recovery heat treatment step, the stress relaxation rate is reduced to about 1/2 compared to before the heat treatment, the stress relaxation characteristics are improved, and the spring limit value is improved by 1.5 to 2 times. The rate is improved by 0.5-2% IACS.
In an Sn plating process such as hot-dip Sn plating or reflow Sn plating, it is heated at about 150 ° C. to about 300 ° C. for a short time, after being formed into a rolled material, and in some cases terminals and connectors. Even if this Sn plating step is performed after the recovery heat treatment, the properties after the recovery heat treatment are hardly affected. On the other hand, the heating step of the Sn plating step is an alternative to the recovery heat treatment step, and improves the stress relaxation characteristics, spring strength, and bending workability of the rolled material.
 以上のような製造工程により、本発明の第1~第4の実施形態である銅合金板が製造される。 Through the manufacturing process as described above, the copper alloy sheets according to the first to fourth embodiments of the present invention are manufactured.
以上のように、本発明の第1~4の実施形態に係る銅合金板においては、耐応力腐食割れ性、応力緩和特性に優れ、強度が高く、曲げ加工性がよい。これらの特性から、コストパフォーマンスに優れた、コネクタ、端子、リレー、スイッチ等電子・電気機器部品、自動車部品の好適素材となる。
さらに、平均結晶粒径が2~9μmで、導電率が、24%IACS以上、好ましくは、26%IACS以上であり上限は特に規定しないが敢えて言えば、42%IACS以下であり、円形又は楕円形の析出物が存在し、該析出物の平均粒子径が3~75nmであると、より一層、強度、強度と曲げ加工性のバランスが優れ、応力緩和特性、応力緩和特性と電気伝導性とのバランス、150℃の実効応力が高くなるので、過酷な環境で使用される、コネクタ、端子、リレー、スイッチ等電子・電気機器部品、自動車部品の好適素材となる。
As described above, the copper alloy sheets according to the first to fourth embodiments of the present invention have excellent stress corrosion cracking resistance and stress relaxation characteristics, high strength, and good bending workability. From these characteristics, it becomes a suitable material for electronic / electric equipment parts such as connectors, terminals, relays, switches, and automobile parts with excellent cost performance.
Furthermore, the average crystal grain size is 2 to 9 μm, the conductivity is 24% IACS or more, preferably 26% IACS or more, and the upper limit is not particularly specified. If a precipitate having a shape is present and the average particle size of the precipitate is 3 to 75 nm, the balance of strength, strength and bending workability is further improved, and stress relaxation characteristics, stress relaxation characteristics and electrical conductivity Since the effective stress at 150 ° C. is increased, it is a suitable material for electronic / electric equipment parts such as connectors, terminals, relays, switches, and automobile parts used in harsh environments.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更することが可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It is possible to change suitably in the range which does not deviate from the technical idea of the invention.
以下、本発明の効果を確認すべく行った確認実験の結果を示す。なお以下の実施例は、本発明の効果を説明するためのものであって、実施例に記載された構成、プロセス、条件が本発明の技術的範囲を限定するものでない。
上述した本発明の第1~4の実施形態に係る銅合金板及び比較用の組成の銅合金板を用い、製造工程を変えて試料を作製した。銅合金の組成を表1~3に示す。なお、表1~3には、上述した実施形態に示す組成関係式f1、f2、f3、f4、f5の値を示している。
Hereinafter, the result of the confirmation experiment conducted to confirm the effect of the present invention will be shown. The following examples are for explaining the effects of the present invention, and the configurations, processes, and conditions described in the examples do not limit the technical scope of the present invention.
Using the copper alloy plate according to the first to fourth embodiments of the present invention described above and the copper alloy plate having a comparative composition, samples were produced by changing the manufacturing process. The compositions of the copper alloy are shown in Tables 1-3. Tables 1 to 3 show the values of the composition relational expressions f1, f2, f3, f4, and f5 shown in the above-described embodiment.
試料の製造工程はA、B、Cの3種類で行い、それぞれの製造工程で更に製造条件を変化させた。製造工程Aは、実際の量産設備で行い、製造工程B、Cは実験設備で行った。表4に各製造工程の製造条件を示す。なお、製造工程A8及び製造工程A9は、熱処理指数が本発明の設定条件範囲から外れている。 The sample manufacturing process was performed in three types A, B, and C, and the manufacturing conditions were further changed in each manufacturing process. Manufacturing process A was performed with actual mass production equipment, and manufacturing processes B and C were performed with experimental equipment. Table 4 shows the manufacturing conditions of each manufacturing process. In addition, in the manufacturing process A8 and the manufacturing process A9, the heat treatment index is out of the set condition range of the present invention.
製造工程A(A1~A33)は、内容積10トンの中周波溶解炉で原料を溶解し、半連続鋳造で断面が厚み190mm、幅630mmの鋳塊を製造した。鋳塊は、各々長さ1.5mに切断し、その後、A1~A9、A31~A33工程では、熱間圧延工程(板厚13mm)―冷却工程-ミーリング工程(板厚12mm)―第1冷間圧延工程(板厚1.5mm)―焼鈍工程(540℃、4時間保持)、または(670℃、0.24分))―第2冷間圧延工程(板厚0.5mm、冷間加工率67%)―最終焼鈍工程(再結晶熱処理工程)-仕上げ冷間圧延工程(板厚0.3mm、冷間加工率40%)-回復熱処理工程を行った。製造工程A10では、第1冷間圧延工程と、焼鈍工程を省いた。なお、上述の保持時間は、最高到達温度から最高到達温度-50℃の高温領域で保持される時間である。 In the manufacturing process A (A1 to A33), the raw material was melted in a medium frequency melting furnace having an internal volume of 10 tons, and an ingot having a thickness of 190 mm and a width of 630 mm was manufactured by semi-continuous casting. The ingots are each cut to a length of 1.5 m, and then in the processes A1 to A9 and A31 to A33, hot rolling process (sheet thickness 13 mm) -cooling process-milling process (sheet thickness 12 mm) -first cold Cold rolling step (sheet thickness 1.5 mm)-Annealing step (540 ° C, hold for 4 hours) or (670 ° C, 0.24 minutes))-Second cold rolling step (plate thickness 0.5 mm, cold working) 67%)-Final annealing step (recrystallization heat treatment step)-Finish cold rolling step (sheet thickness 0.3 mm, cold working rate 40%)-Recovery heat treatment step. In the manufacturing process A10, the first cold rolling process and the annealing process were omitted. The above holding time is the time for holding in the high temperature range from the highest temperature to the highest temperature of -50 ° C.
熱間圧延工程での熱間圧延開始温度は860℃とし、板厚13mmまで熱間圧延した後、冷却工程でシャワー水冷した。本明細書では、熱間圧延開始温度と鋳塊加熱温度とは同一の意味としている。冷却工程での平均冷却速度は、最終の熱間圧延後の圧延材温度、又は、圧延材の温度が650℃のときから350℃までの温度領域での平均の冷却速度とし、圧延板の後端において測定した。測定した平均冷却速度は4℃/秒であった。 The hot rolling start temperature in the hot rolling process was set to 860 ° C., and after hot rolling to a plate thickness of 13 mm, shower water cooling was performed in the cooling process. In this specification, the hot rolling start temperature and the ingot heating temperature have the same meaning. The average cooling rate in the cooling step is the rolling material temperature after the final hot rolling, or the average cooling rate in the temperature region from when the rolled material temperature is 650 ° C. to 350 ° C. Measured at the edge. The measured average cooling rate was 4 ° C./second.
再結晶熱処理工程では、圧延材の最高到達温度Tmax(℃)と、圧延材の最高到達温度より50℃低い温度から最高到達温度までの温度領域での保持時間tm(min)とを、(690℃、0.09min)、(660℃、0.07min)、(710℃、0.16min)、(770℃、0.25min)、(620℃、0.06min)に変化させた。なお、製造工程A1においては、再結晶熱処理を、バッチ焼鈍を用いて470℃で4時間保持の条件で実施した。なお、高温-短時間の再結晶熱処理を行った工程の中で、工程A31、A32は、冷却時、圧延材の最高到達温度より50℃低い温度から400℃の範囲の平均冷却速度を、3℃/秒、12℃/秒とし、それ以外の工程は、20~30℃/秒で冷却した。 In the recrystallization heat treatment step, the maximum achieved temperature Tmax (° C.) of the rolled material and the holding time tm (min) in the temperature region from the temperature 50 ° C. lower than the maximum achieved temperature of the rolled material to the maximum achieved temperature are (690 C, 0.09 min), (660 ° C., 0.07 min), (710 ° C., 0.16 min), (770 ° C., 0.25 min), (620 ° C., 0.06 min). In the production step A1, the recrystallization heat treatment was performed using batch annealing at 470 ° C. for 4 hours. Of the steps in which high-temperature-short-time recrystallization heat treatment was performed, steps A31 and A32 had an average cooling rate in the range of 50 ° C. to 400 ° C. lower than the maximum temperature of the rolled material during cooling. The cooling was performed at 20 to 30 ° C./second in the other steps.
そして、上述したように仕上げ冷間圧延工程の冷間加工率を40%とした。
回復熱処理工程では、圧延材の最高到達温度Tmax(℃)を450(℃)とし、圧延材の最高到達温度より50℃低い温度から最高到達温度までの温度領域での保持時間tm(min)を0.05分とした。ただし、製造工程A6では、回復熱処理工程を行わなかった。また、製造工程A5では、得られた試料を300℃の電気炉に30分間加熱し、空冷した。製造工程A4では、得られた試料を350℃の油浴に0.07分間完全に浸漬し、空冷した。この熱処理は、溶融Snめっき処理に相当する熱処理条件である。
And as mentioned above, the cold working rate of the finish cold rolling process was set to 40%.
In the recovery heat treatment step, the maximum achieved temperature Tmax (° C.) of the rolled material is set to 450 (° C.), and the holding time tm (min) in the temperature region from the temperature 50 ° C. lower than the maximum achieved temperature of the rolled material to the maximum achieved temperature is set. 0.05 minutes. However, the recovery heat treatment process was not performed in the manufacturing process A6. In production step A5, the obtained sample was heated in an electric furnace at 300 ° C. for 30 minutes and air-cooled. In the production step A4, the obtained sample was completely immersed in an oil bath at 350 ° C. for 0.07 minutes and air-cooled. This heat treatment is a heat treatment condition corresponding to the hot Sn plating treatment.
また、製造工程B(B1~B4)は、次のように行った。
製造工程Aの鋳塊から厚み40mm、幅120mm、長さ190mmの実験室での試験用鋳塊を切り出し、その後、熱間圧延工程(板厚6mm)―冷却工程(シャワー水冷)-酸洗工程―冷間圧延工程(厚み0.5mm)―再結晶熱処理工程-仕上げ冷間圧延工程(板厚0.3mm、加工率40%)-回復熱処理工程を行った。
熱間圧延工程は、860℃に鋳塊を加熱し、厚み6mmにまで熱間圧延した。冷却工程での冷却速度(熱間圧延後の圧延材温度、又は、圧延材の温度が650℃のときから350℃までの冷却速度)は、3℃/秒で行った。
The production process B (B1 to B4) was performed as follows.
A laboratory test ingot having a thickness of 40 mm, a width of 120 mm, and a length of 190 mm is cut out from the ingot of the manufacturing process A, and then a hot rolling process (sheet thickness 6 mm) -cooling process (shower water cooling) -pickling process -Cold rolling step (thickness 0.5 mm)-Recrystallization heat treatment step-Finish cold rolling step (plate thickness 0.3 mm, processing rate 40%)-Recovery heat treatment step was performed.
In the hot rolling step, the ingot was heated to 860 ° C. and hot rolled to a thickness of 6 mm. The cooling rate in the cooling step (the temperature of the rolled material after hot rolling or the cooling rate from when the temperature of the rolled material is 650 ° C. to 350 ° C.) was 3 ° C./second.
板厚0.5mmに冷間圧延後、再結晶熱処理工程は、Tmaxを690(℃)、保持時間tmを0.09分で、640℃から400℃の平均冷却速度を、25℃/秒で行った。製造工程B1は、再結晶熱処理を、バッチ焼鈍を用いて480℃で4時間保持の条件で行った。そして、仕上げ冷間圧延工程で0.3mmまで冷間圧延した。回復熱処理工程は、製造工程B1と製造工程B2については、Tmaxを450(℃)、保持時間tmを0.05分の条件で実施した。製造工程B4では、300℃の電気炉に30分間加熱し、空冷した。製造工程B3では、得られた試料を250℃の油浴に0.15分間完全に浸漬し、空冷した。この熱処理も、溶融Snめっき処理に相当する熱処理条件である。 After cold rolling to a sheet thickness of 0.5 mm, the recrystallization heat treatment step is performed at a Tmax of 690 (° C.), a holding time tm of 0.09 minutes, and an average cooling rate of 640 ° C. to 400 ° C. at 25 ° C./second. went. Manufacturing process B1 performed recrystallization heat processing on the conditions hold | maintained at 480 degreeC for 4 hours using batch annealing. And it cold-rolled to 0.3 mm at the finish cold rolling process. The recovery heat treatment step was carried out under the conditions of Tmax of 450 (° C.) and holding time tm of 0.05 minutes for manufacturing step B1 and manufacturing step B2. In manufacturing process B4, it heated to the 300 degreeC electric furnace for 30 minutes, and air-cooled. In the production process B3, the obtained sample was completely immersed in an oil bath at 250 ° C. for 0.15 minutes and air-cooled. This heat treatment is also a heat treatment condition corresponding to the hot Sn plating treatment.
なお、製造工程B5及び製造工程B5Aは、熱間圧延を省略し、700℃、4時間の均質焼鈍後、冷間圧延により、板厚を6mmとし、620℃で4時間の条件で焼鈍、再び冷間圧延により、板厚を0.5mmとし、製造工程B5では、Tmaxを690(℃)、保持時間tmを0.09分、640℃から400℃の平均冷却速度を、25℃/秒の条件で、製造工程B5Aでは、バッチ焼鈍を用いて480℃で4時間保持の条件で再結晶熱処理を施した。そして、仕上げ冷間圧延工程で0.3mmまで冷間圧延し、回復熱処理工程は、300℃の電気炉に30分間加熱の条件で実施した。 In addition, in the manufacturing process B5 and the manufacturing process B5A, hot rolling is omitted, the plate thickness is 6 mm by cold rolling after homogeneous annealing at 700 ° C. for 4 hours, and annealing is performed again at 620 ° C. for 4 hours. By cold rolling, the plate thickness is 0.5 mm, and in manufacturing step B5, Tmax is 690 (° C.), holding time tm is 0.09 minutes, and an average cooling rate from 640 ° C. to 400 ° C. is 25 ° C./second. In the manufacturing process B5A, recrystallization heat treatment was performed using batch annealing under the condition of holding at 480 ° C. for 4 hours. And it cold-rolled to 0.3 mm by the finish cold rolling process, and the recovery heat treatment process was implemented on the conditions of heating for 30 minutes to a 300 degreeC electric furnace.
なお、製造工程B及び後述する製造工程Cにおいては、製造工程Aで、連続焼鈍ライン等で行う短時間の熱処理に相当する工程は、ソルトバスに圧延材を浸漬することにより代用とし、最高到達温度をソルトバスの液温度とし、圧延材が完全に浸漬している時間を保持時間とし、浸漬後空冷した。なお、ソルト(溶液)は、BaCl、KCl、NaClの混合物を使用した。 In addition, in the manufacturing process B and the manufacturing process C to be described later, the process corresponding to the short-time heat treatment performed in the manufacturing process A in a continuous annealing line or the like is substituted by immersing the rolled material in a salt bath, and reaches the maximum. The temperature was the salt bath liquid temperature, the time during which the rolled material was completely immersed was the holding time, and air cooling was performed after the immersion. As a salt (solution), a mixture of BaCl, KCl, and NaCl was used.
さらに、実験室テストとして製造工程C(C1、C1A、C2)を次のように行った。実験室の電気炉で所定の成分になるように溶解、鋳造し、厚み40mm、幅120mm、長さ190mmの実験室での試験用鋳塊を得た。以後、前述の製造工程Bと同じプロセスで製作した。すなわち、860℃に鋳塊を加熱し、厚み6mmにまで熱間圧延し、熱間圧延後に、圧延材の温度が熱間圧延後の圧延材温度、又は、650℃のときから350℃までの温度範囲を冷却速度3℃/秒で冷却した。冷却後に表面を酸洗し、冷間圧延により、板厚を0.5mmにした。再結晶熱処理工程は、製造工程C1は、Tmaxを690(℃)、保持時間tmを0.09分、640℃から400℃の平均冷却速度を、25℃/秒の条件、製造工程C1Aは、470℃、4時間の条件、製造工程C2は、380℃、4時間の条件で実施した。そして、仕上げ冷間圧延工程で0.3mmに冷間圧延し、回復熱処理工程は、製造工程C1及び製造工程C1Aでは、実験室の電気炉を用いて300℃で30分間保持、製造工程C2では、230℃で30分間保持の条件で実施した。 Furthermore, as a laboratory test, the manufacturing process C (C1, C1A, C2) was performed as follows. It melt | dissolved and cast so that it might become a predetermined component with the electric furnace of a laboratory, and the ingot for a test in a laboratory of thickness 40mm, width 120mm, and length 190mm was obtained. Thereafter, it was manufactured by the same process as the manufacturing process B described above. That is, the ingot is heated to 860 ° C., hot-rolled to a thickness of 6 mm, and after hot rolling, the temperature of the rolled material is the rolled material temperature after hot rolling, or from 650 ° C. to 350 ° C. The temperature range was cooled at a cooling rate of 3 ° C./second. After cooling, the surface was pickled and the plate thickness was reduced to 0.5 mm by cold rolling. In the recrystallization heat treatment process, the production process C1 has a Tmax of 690 (° C.), a holding time tm of 0.09 minutes, an average cooling rate of 640 ° C. to 400 ° C., conditions of 25 ° C./second, and the production process C1A The conditions of 470 ° C. for 4 hours and the production process C2 were performed under the conditions of 380 ° C. for 4 hours. And it cold-rolls to 0.3 mm by a finish cold rolling process, and the recovery heat treatment process hold | maintains for 30 minutes at 300 degreeC using the electric furnace of a laboratory in manufacturing process C1 and manufacturing process C1A, and in manufacturing process C2. , At a temperature of 230 ° C. for 30 minutes.
上述した方法により作成した銅合金板の評価として、金属組織観察(平均結晶粒径及び析出物の平均粒径)、導電率、応力緩和特性、耐応力腐食割れ性、はんだ濡れ性、引張強度、耐力、伸び、曲げ加工性を評価した。評価結果を表5~20に示す。 As an evaluation of the copper alloy plate prepared by the method described above, metal structure observation (average crystal grain size and average grain size of precipitates), conductivity, stress relaxation characteristics, stress corrosion cracking resistance, solder wettability, tensile strength, Yield strength, elongation, and bending workability were evaluated. The evaluation results are shown in Tables 5-20.
(平均結晶粒径)
 再結晶粒の平均粒径の測定は、600倍、300倍、及び150倍等の金属顕微鏡写真で結晶粒の大きさに応じ、適宜倍率を選定し、JIS H 0501における伸銅品結晶粒度試験方法の求積法に準じて測定した。なお、双晶は結晶粒とはみなさない。金属顕微鏡から判断が困難なものは、FE-SEM-EBSP(Electron Back Scattering diffraction Pattern)法によって求めた。すなわち、FE-SEMは日本電子株式会社製 JSM-7000F、解析にはTSLソリューションズOIM-Ver.5.1を使用し、平均結晶粒度は解析倍率200倍と500倍の粒度マップ(Grainマップ)から求めた。平均結晶粒径の算出方法は求積法(JIS H 0501)による。
 なお、1つの結晶粒は、圧延により伸ばされるが、結晶粒の体積は、圧延によってほとんど変化することは無い。板材を圧延方向に平行に切断した断面において、求積法によって測定された平均結晶粒径から、再結晶段階での平均結晶粒径を推定することが可能である。
(Average crystal grain size)
The average grain size of the recrystallized grains is determined by appropriately selecting a magnification according to the size of the crystal grains in metal microscope photographs such as 600 times, 300 times, and 150 times, and a copper grain size test in JIS H 0501. The measurement was performed according to the quadrature method. Twins are not regarded as crystal grains. What was difficult to judge from a metallographic microscope was determined by the FE-SEM-EBSP (Electron Back Scattering Diffraction Pattern) method. That is, FE-SEM is JSM-7000F manufactured by JEOL Ltd., and TSL Solutions OIM-Ver. 5.1 was used, and the average crystal grain size was determined from a grain size map (Grain map) with an analysis magnification of 200 times and 500 times. The calculation method of the average crystal grain size is based on the quadrature method (JIS H 0501).
One crystal grain is elongated by rolling, but the volume of the crystal grain hardly changes by rolling. In the cross section obtained by cutting the plate material in parallel with the rolling direction, it is possible to estimate the average crystal grain size in the recrystallization stage from the average crystal grain size measured by the quadrature method.
(析出物の粒径)
 析出物の平均粒径は次のようにして求めた。500,000倍及び100,000倍(検出限界はそれぞれ、1.0nm、5nm)のTEMによる透過電子像を画像解析ソフト「Win ROOF」を用いて析出物のコントラストを楕円近似し、長軸と短軸の相乗平均値を視野内の中の全ての析出粒子に対して求め、その平均値を平均粒子径とした。なお、50万倍、10万倍の測定で、粒径の検出限界をそれぞれ1.0nm、5nmとし、それ未満のものは、ノイズとして扱い、平均粒径の算出には含めなかった。なお、平均粒径が、概ね10nmを境にしてそれ以下のものは、50万倍で、それ以上のものは、10万倍で測定した。透過型電子顕微鏡の場合、冷間加工材では転位密度が高いので析出物の情報を正確に把握することは難しい。また、析出物の大きさは、冷間加工によっては変化しないので、今回の観察は、仕上げ冷間圧延工程前の再結晶熱処理工程後の再結晶部分を観察した。測定位置は、圧延材の表面、裏面の両面から板厚の1/4の長さ入った2箇所とし、2箇所の測定値を平均した。
(Precipitate particle size)
The average particle size of the precipitate was determined as follows. The transmission electron image by TEM of 500,000 times and 100,000 times (detection limits are 1.0 nm and 5 nm, respectively) is elliptically approximated to the precipitate contrast using image analysis software “Win ROOF”. The geometrical average value of the short axes was obtained for all the precipitated particles in the field of view, and the average value was taken as the average particle diameter. In addition, in the measurement of 500,000 times and 100,000 times, the detection limits of the particle diameter were 1.0 nm and 5 nm, respectively, and those smaller than that were treated as noise and were not included in the calculation of the average particle diameter. In addition, the average particle diameter was measured at 500,000 times when the average particle size was approximately 10 nm or less, and 100,000 times when the average particle size was more than 100,000 nm. In the case of a transmission electron microscope, it is difficult to accurately grasp the information of precipitates because the dislocation density is high in a cold-worked material. In addition, since the size of the precipitate does not change depending on the cold working, the observation this time was the recrystallization portion after the recrystallization heat treatment step before the finish cold rolling step. The measurement positions were two places where the length of the plate thickness was ¼ from both the front and back surfaces of the rolled material, and the measured values at the two places were averaged.
(導電率)
導電率の測定は、日本フェルスター株式会社製の導電率測定装置(SIGMATEST D2.068)を用いた。なお、本明細書においては、「電気伝導」と「導電」の言葉を同一の意味に使用している。また、熱伝導性と電気伝導性は強い相関があるので、導電率が高い程、熱伝導性が良いことを示す。
(conductivity)
The conductivity was measured using a conductivity measuring device (SIGMATEST D2.068) manufactured by Nippon Felster Co., Ltd. In the present specification, the terms “electric conduction” and “conduction” are used in the same meaning. Further, since there is a strong correlation between thermal conductivity and electrical conductivity, the higher the conductivity, the better the thermal conductivity.
(耐応力緩和特性)
応力緩和率の測定は、JCBA T309:2004に従って、次のように行った。供試材の応力緩和試験には片持ち梁ねじ式治具を使用した。試験片は圧延方向に0度(平行)、90度(垂直)をなす方向から採取し、試験片の形状は、板厚t×幅10mm×長さ60mmとした。供試材への負荷応力は0.2%耐力の80%とし、150℃、120℃の雰囲気中に1000時間暴露した。応力緩和率は、
応力緩和率=(開放後の変位/応力負荷時の変位)×100(%)
として求めた。本発明においては、応力緩和率は値が小さいのが好ましい。
120℃の評価では、応力緩和率が8%以下を評価A(優れる)とし、8%超え13%以下を評価B(良)とし、13%を超えるものを評価C(不可)と評価した。本願で求める応力緩和特性は、高い信頼性や過酷な場合を想定したものである。
また、150℃で1000時間の条件での実効応力Pwを、
Pw=耐力{(YS+YS90)/2}×80%×(100%-応力緩和率(%))
の式で算出した。耐力、および応力緩和特性は、スリッター後のスリッター幅の関係から、つまり、幅が60mmより小さい場合、圧延方向に90度(垂直)をなす方向から採取できない場合がある。その場合、試験片は圧延方向に0度(平行)方向のみで、応力緩和特性、およびPwを評価するものとする。
 なお、試験No.T3及びT36(合金No.1,3)において、圧延方向に90度(垂直)をなす方向及び圧延方向に0度(平行)方向での応力緩和試験の結果から算出した実効応力Pwと、圧延方向に0度(平行)方向のみでの応力緩和試験の結果から算出した実効応力Pwと、圧延方向に90度(垂直)方向のみでの応力緩和試験の結果から算出した実効応力Pwとで大きな差がないことを確認した。
(Stress relaxation characteristics)
The measurement of the stress relaxation rate was performed as follows according to JCBA T309: 2004. A cantilever screw type jig was used for the stress relaxation test of the specimen. The test piece was taken from the direction of 0 degrees (parallel) and 90 degrees (vertical) in the rolling direction, and the shape of the test piece was set to plate thickness t × width 10 mm × length 60 mm. The stress applied to the specimen was 80% of the 0.2% proof stress, and the specimen was exposed to an atmosphere at 150 ° C. and 120 ° C. for 1000 hours. The stress relaxation rate is
Stress relaxation rate = (displacement after opening / displacement under stress load) × 100 (%)
As sought. In the present invention, the stress relaxation rate is preferably small.
In the evaluation at 120 ° C., a stress relaxation rate of 8% or less was evaluated as A (excellent), 8% and 13% or less was evaluated as B (good), and those exceeding 13% were evaluated as evaluation C (impossible). The stress relaxation characteristics required in the present application assume high reliability and severe cases.
Also, the effective stress Pw under the condition of 1000 hours at 150 ° C.
Pw = yield strength {(YS 0 + YS 90 ) / 2} × 80% × (100% −stress relaxation rate (%))
It was calculated by the following formula. Yield strength and stress relaxation characteristics may not be collected from the relationship between the slitter width after slitting, that is, when the width is smaller than 60 mm, the direction is 90 degrees (perpendicular) to the rolling direction. In this case, the test piece is evaluated only in the direction of 0 degree (parallel) to the rolling direction, and stress relaxation characteristics and Pw are evaluated.
In addition, Test No. In T3 and T36 (alloys No. 1 and 3), the effective stress Pw calculated from the results of the stress relaxation test in the direction of 90 degrees (perpendicular) in the rolling direction and in the direction of 0 degrees (parallel) in the rolling direction, and rolling The effective stress Pw calculated from the result of the stress relaxation test in only the 0 degree (parallel) direction in the direction and the effective stress Pw calculated from the result of the stress relaxation test in only the 90 degree (perpendicular) direction in the rolling direction are large. It was confirmed that there was no difference.
(バランス指数f6)
 測定した導電率C(%IACS)及び実効応力Pw(N/mm)から、以下の式によって、バランス指数f6を算出した。
 f6=Pw×(C/100)1/2
(Balance index f6)
From the measured conductivity C (% IACS) and effective stress Pw (N / mm 2 ), the balance index f6 was calculated by the following equation.
f6 = Pw × (C / 100) 1/2
(耐応力腐食割れ性)
耐応力腐食割れ性の測定は、JIS H 3250に規定された試験容器と試験液とを使用して行い、等量のアンモニア水と水を混合した液を使用して行った。
応力腐食割れ試験は、負荷応力に対する応力腐食割れの感受性を調べるため、樹脂製の片持ち梁ねじ式治具を用い、耐力の80%の曲げ応力を加えた圧延材を、上記のアンモニア雰囲気中に暴露し、応力緩和率から、耐応力腐食割れ性の評価を行った。つまり、微細なクラックが発生しておれば、元には戻らず、そのクラックの度合いが大きくなると応力緩和率が大きくなるので、耐応力腐食割れ性を評価できる。48時間暴露で応力緩和率が25%以下のものを、耐応力腐食割れ性に優れるものとして評価Aとし、応力緩和率が48時間暴露では25%を超えても24時間暴露では25%以下のものを、耐腐食割れ性が良好なもの(実用上の問題はない)として評価Bとし、24時間暴露で応力緩和率が25%を超えるものを、耐応力腐食割れ性に劣るもの(実用上問題あり)として評価Cとした。なお、本願で求める耐応力腐食割れ性は、高い信頼性や過酷な場合を想定したものである。
(Stress corrosion cracking resistance)
The stress corrosion cracking resistance was measured using a test container and a test liquid defined in JIS H 3250, and using a liquid in which an equal amount of ammonia water and water were mixed.
In the stress corrosion cracking test, in order to investigate the sensitivity of the stress corrosion cracking to the load stress, a rolled material with a bending stress of 80% of the proof stress was applied in the above ammonia atmosphere using a resin cantilever screw type jig. The stress corrosion cracking resistance was evaluated from the stress relaxation rate. That is, if fine cracks are generated, they do not return to their original state, and the stress relaxation rate increases as the degree of cracks increases, so that the stress corrosion cracking resistance can be evaluated. A material having a stress relaxation rate of 25% or less after 48 hours exposure is evaluated as A with excellent stress corrosion cracking resistance, and even if the stress relaxation rate exceeds 25% for 48 hours exposure, it is 25% or less for 24 hours exposure. Those having good corrosion cracking resistance (no problem in practical use) were evaluated as B, and those having a stress relaxation rate exceeding 25% after 24 hours exposure were inferior in stress corrosion cracking resistance (practical) Evaluation C was assigned as a problem). In addition, the stress corrosion cracking resistance calculated | required by this application assumes high reliability and a severe case.
(はんだ濡れ性)
はんだ濡れ性は、メニスコグラフ法で実施した。試験設備は、PHESCA(レスカ)製 型式:SAT-5200である。圧延方向から試験片を採取し、厚さ:0.3mm×幅:10mm×長さ:25mmに切断した。使用したはんだは、Sn-3.5質量%Ag-0.7質量%Cuと純Snである。前処理として、アセトン脱脂→15%硫酸洗浄→水洗→アセトン脱脂、を実施した。フラックスとして、標準ロジンフラックス(株式会社タムラ製作所製NA200)を用いた。はんだ浴温度を270℃、浸漬深さを2mm,浸漬速度を15mm/sec、浸漬時間15secの条件で評価試験を実施した。
(Solder wettability)
Solder wettability was carried out by the meniscograph method. The test equipment is PHESCA (Reska) model: SAT-5200. A test piece was taken from the rolling direction and cut into a thickness: 0.3 mm × width: 10 mm × length: 25 mm. The used solder is Sn-3.5 mass% Ag-0.7 mass% Cu and pure Sn. As pretreatment, acetone degreasing → 15% sulfuric acid washing → water washing → acetone degreasing was performed. A standard rosin flux (NA200 manufactured by Tamura Corporation) was used as the flux. An evaluation test was performed under the conditions of a solder bath temperature of 270 ° C., an immersion depth of 2 mm, an immersion speed of 15 mm / sec, and an immersion time of 15 sec.
はんだ濡れ性の評価は、ゼロクロスタイムで行った。すなわち、はんだが浴に浸漬後、完全に濡れるまでに要する時間であり、ゼロクロスタイムが5秒以内、すなわちはんだ浴に浸漬後5秒以内に完全に濡れれば、はんだ濡れ性は実用上問題がないとして評価Bとし、ゼロクロスタイムが2秒以内の場合は、特に優れるとして評価Aとした。ゼロクロスタイムが5秒を超えると、実用上問題があるので評価Cとした。なお、試料は、仕上げ圧延、または、回復熱処理の最終工程後、硫酸で洗浄、表面を800番の研磨紙で研磨し、酸化のない表面を得て、3日間、または、10日間、室内環境で放置したものを使用した。なお、表で、「-1」、「-2」は、Sn-3.5質量%Ag-0.7質量%Cuのはんだを用い、それぞれ3日間、10日間放置した試験結果、「-3」は、純Snを用い、3日間での試験結果である。 The evaluation of solder wettability was performed with zero cross time. That is, it is the time required for the solder to completely get wet after being immersed in the bath, and if the zero cross time is within 5 seconds, that is, within 5 seconds after being immersed in the solder bath, the solder wettability has a practical problem. Evaluation B was given as no evaluation, and evaluation A was given as being particularly excellent when the zero crossing time was within 2 seconds. When the zero crossing time exceeds 5 seconds, there is a problem in practical use, and thus the evaluation is C. The sample was washed with sulfuric acid after the final step of finish rolling or recovery heat treatment, and the surface was polished with No. 800 abrasive paper to obtain a non-oxidized surface for 3 days or 10 days. What was left in was used. In the table, “−1” and “−2” indicate the results of tests using a solder of Sn-3.5 mass% Ag-0.7 mass% Cu and left for 3 days and 10 days, respectively. "Is a test result for 3 days using pure Sn.
(機械的特性)
引張強度、耐力、及び伸びの測定は、JIS Z 2201、JIS Z 2241に規定される方法に従い、試験片の形状は、5号試験片で実施した。圧延方向に対して0°の方向と、圧延方向に対して90°の方向で、それぞれ試験を行った。
(Mechanical properties)
The tensile strength, proof stress, and elongation were measured according to the methods specified in JIS Z 2201 and JIS Z 2241, and the shape of the test piece was a No. 5 test piece. The test was performed in a direction of 0 ° with respect to the rolling direction and a direction of 90 ° with respect to the rolling direction.
(曲げ加工性)
曲げ加工性は、JIS H 3110で規定されている曲げ角度90度のW曲げで評価した。曲げ試験(W曲げ)は、次のように行った。曲げ治具の先端の曲げ半径(R)は、材料の厚さ(t)の1倍(曲げ半径=0.3mm、R/t=1.0)、0.5倍(曲げ半径=0.15mm、R/t=0.5)、とした。サンプルは、いわゆるバッドウェイ(Bad Way)と言われる方向で圧延方向に対して90度をなす方向、及びグッドウェイ(Good Way)と言われる方向で圧延方向に0度をなす方向から採取した。曲げ加工性の判定は、50倍の実体顕微鏡で観察してクラックの有無で判定し、曲げ半径が、材料の厚さの0.5倍(R/t=0.5)で、クラックが生じなかったものを評価A、曲げ半径が、材料の厚さの1.0倍で、クラックが生じなかったものを評価B、材料の厚さの1倍(R/t=1.0)で、クラックが生じたものを評価Cとした。なお、曲げ加工性がR/t≦0.5とは、曲げ半径が材料の厚さの0.5倍(R/t=0.5)以下の曲げ試験で、クラックが生じないことである。
(Bending workability)
The bending workability was evaluated by W bending with a bending angle of 90 degrees defined by JIS H 3110. The bending test (W-bending) was performed as follows. The bending radius (R) at the tip of the bending jig is 1 times the thickness (t) of the material (bending radius = 0.3 mm, R / t = 1.0) and 0.5 times (bending radius = 0.0). 15 mm, R / t = 0.5). Samples were taken from a direction called 90 ° with respect to the rolling direction in a so-called bad way and a direction called 0 ° in the rolling direction called a good way. Judgment of bending workability is determined by the presence or absence of cracks observed with a 50-fold stereomicroscope. Cracks occur when the bending radius is 0.5 times the thickness of the material (R / t = 0.5). No evaluation was A, the bending radius was 1.0 times the thickness of the material, and no cracks were evaluated B, and the thickness of the material was 1 time (R / t = 1.0). A crack was evaluated as C. The bending workability of R / t ≦ 0.5 means that no cracks are generated in a bending test in which the bending radius is 0.5 times or less the thickness of the material (R / t = 0.5). .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 以上の評価結果から、組成及び組成関係式と特性に関して、次のようなことが確認された。 From the above evaluation results, the following was confirmed with respect to the composition and the compositional relational expression and characteristics.
銅合金板の組成については、下記のような結果となった。なお、比較合金は以下の通りである。
合金No.100、121は、発明合金の組成範囲よりもZnの含有量が少ない。
合金No.101は、発明合金の組成範囲よりもSnの含有量が少ない。
合金No.102は、発明合金の組成範囲よりもPの含有量が多い。
合金No.103は、発明合金の組成範囲よりもZnの含有量が多い。
合金No.104は、発明合金の組成範囲よりもPの含有量が少ない。
合金No.105は、発明合金の組成範囲よりもSnの含有量が多い。
合金No.106、122は、発明合金の組成範囲よりもNiの含有量が少ない。
合金No.107は、発明合金の組成関係式f2、f3の範囲を満たさない。
合金No.108、109は、発明合金の組成関係式f1の範囲を満たさない。
合金No.110~113は、発明合金の組成関係式f4の範囲を満たさない。
合金No.114は、発明合金の組成関係式f3の範囲を満たさない。
合金No.115、116は、発明合金の組成関係式f5の範囲を満たさない。
合金No.118~120は、一般の黄銅である。
合金No.117、123は、Fe、Coの含有量が多い。
Regarding the composition of the copper alloy plate, the following results were obtained. The comparative alloys are as follows.
Alloy No. 100 and 121 contain less Zn than the composition range of the alloys according to the invention.
Alloy No. No. 101 has a Sn content smaller than the composition range of the inventive alloy.
Alloy No. 102 has more P content than the composition range of an alloy according to the invention.
Alloy No. 103 has more Zn content than the composition range of an alloy according to the invention.
Alloy No. 104 has less P content than the composition range of the alloy according to the invention.
Alloy No. No. 105 has a Sn content higher than the composition range of the inventive alloy.
Alloy No. 106 and 122 have less Ni content than the composition range of the alloys according to the invention.
Alloy No. No. 107 does not satisfy the range of the compositional relational expressions f2 and f3 of the invention alloy.
Alloy No. 108 and 109 do not satisfy the range of the compositional relational expression f1 of the invention alloy.
Alloy No. 110 to 113 do not satisfy the range of the compositional relational expression f4 of the invention alloy.
Alloy No. 114 does not satisfy the range of the compositional relational expression f3 of the alloy according to the invention.
Alloy No. 115 and 116 do not satisfy the range of the compositional relational expression f5 of the alloy according to the invention.
Alloy No. Reference numerals 118 to 120 are general brass.
Alloy No. 117 and 123 have a large content of Fe and Co.
(1)Pの含有量が、本発明合金の範囲より多いと、再結晶熱処理工程後の析出粒子の平均粒径が小さく、平均結晶粒径が小さくなり、曲げ加工性、応力緩和率が悪化する(合金No.102等参照)。Pの含有量が、本発明合金の範囲より少ない、または、組成関係式f5のNi/Pが設定された範囲、250より大きいと、再結晶熱処理工程後の析出粒子の平均粒径、平均結晶粒径が大きくなり、引張強さ、耐力が低くなり、応力緩和率が悪化する。Ni/Pが、180以下、さらには120以下であると、引張強さ、耐力が高くなり、応力緩和率がよくなる。f5のNi/Pが設定された範囲より小さいと、曲げ加工性、応力緩和率が悪化する(合金No.104、116、115、13、18等参照)。 (1) If the P content is larger than the range of the alloy of the present invention, the average particle size of the precipitated particles after the recrystallization heat treatment step is small, the average crystal particle size is small, and the bending workability and the stress relaxation rate are deteriorated. (Refer to Alloy No. 102 etc.). When the content of P is less than the range of the alloy of the present invention, or when Ni / P in the compositional relational expression f5 is set, more than 250, the average grain size and average crystal of the precipitated particles after the recrystallization heat treatment step The particle size increases, the tensile strength and proof stress decrease, and the stress relaxation rate deteriorates. When Ni / P is 180 or less, and further 120 or less, the tensile strength and the proof stress are increased, and the stress relaxation rate is improved. When Ni / P of f5 is smaller than the set range, bending workability and stress relaxation rate deteriorate (see Alloy Nos. 104, 116, 115, 13, 18, etc.).
(2)Znの含有量が本発明合金の範囲より少ないと、再結晶熱処理工程後の平均結晶粒径が大きくなり、引張強度が低くなる。また、Ni含有量に見合った効果が得られず、応力緩和率が悪化する(合金No.100等参照)。Zn量:4質量%付近が、引張強度、応力緩和特性、実効応力Pwを満足するための、境界値である(合金No.1、10、100等参照)。Znの含有量が発明合金の条件範囲より多いと、導電率、引張強さ、耐力、応力緩和率、曲げ加工性、耐応力腐食割れ性、はんだ濡れ性が悪化する。Znの含有量が、12質量%以下、さらには10質量%以下であると、前記特性はよくなる(合金No.103、12、15、18等参照)。 (2) If the Zn content is less than the range of the alloy of the present invention, the average crystal grain size after the recrystallization heat treatment step becomes large and the tensile strength becomes low. Moreover, the effect corresponding to Ni content is not acquired, but a stress relaxation rate deteriorates (refer alloy No. 100 grade | etc.,). The amount of Zn: around 4% by mass is a boundary value for satisfying the tensile strength, stress relaxation characteristics, and effective stress Pw (see Alloy Nos. 1, 10, 100, etc.). If the Zn content exceeds the condition range of the alloy according to the invention, the electrical conductivity, tensile strength, proof stress, stress relaxation rate, bending workability, stress corrosion cracking resistance, and solder wettability will deteriorate. When the Zn content is 12% by mass or less, and further 10% by mass or less, the above characteristics are improved (see Alloy Nos. 103, 12, 15, 18, etc.).
(3)Snの含有量が、本発明の範囲より多いと、曲げ加工性、応力緩和特性も悪くなり、導電率も低下する。圧延方向に対して、垂直方向の引張強さ、耐力が大きくなる。一方、Snの含有量が、本発明の範囲より少ないと、強度が低く、応力緩和特性が悪くなる。Ni含有量が少ないと、優れた応力緩和特性が得られないが、Ni含有量が1.0質量%を超えると、応力緩和特性が良くなる(合金No.101、105、106、122、17、19等参照)。 (3) If the content of Sn is larger than the range of the present invention, bending workability and stress relaxation characteristics are also deteriorated, and the conductivity is also lowered. The tensile strength and proof stress in the vertical direction increase with respect to the rolling direction. On the other hand, if the Sn content is less than the range of the present invention, the strength is low and the stress relaxation characteristics are deteriorated. When the Ni content is low, excellent stress relaxation characteristics cannot be obtained, but when the Ni content exceeds 1.0 mass%, the stress relaxation characteristics are improved (Alloy Nos. 101, 105, 106, 122, 17). , 19 etc.).
(4)組成関係式f1が発明合金の条件範囲よりも小さいと、再結晶熱処理工程後の平均結晶粒径が大きく、引張強さ、耐力が低く、また、応力緩和特性は、Ni含有量に見合った効果が得られず、悪い。組成関係式f1が発明合金の条件範囲よりも大きいと、耐応力腐食割れ性、曲げ加工性、はんだ濡れ性が悪く、導電率も低くなる。また、Ni含有量に見合った効果が得られず、応力緩和特性が悪い。f1の値が、下限側で、約7が、上限側で約18あるいは約16が、これら特性の境界値に相当する。f1の値が14より小さいと、前記特性が少し良くなる(合金No.108、109、12、1、15、18等参照)。 (4) When the compositional relational expression f1 is smaller than the condition range of the alloy according to the invention, the average crystal grain size after the recrystallization heat treatment step is large, the tensile strength and the proof stress are low, and the stress relaxation property is the Ni content. A reasonable effect is not obtained and it is bad. When the compositional relational expression f1 is larger than the condition range of the alloy according to the invention, the stress corrosion cracking resistance, bending workability, solder wettability are poor, and the conductivity is also low. Moreover, an effect commensurate with the Ni content cannot be obtained, and the stress relaxation characteristics are poor. The value of f1 corresponds to the boundary value of these characteristics, about 7 on the lower limit side and about 18 or about 16 on the upper limit side. When the value of f1 is smaller than 14, the characteristics are slightly improved (see Alloy Nos. 108, 109, 12, 1, 15, 18, etc.).
(5)組成関係式f2が発明合金の条件範囲よりも大きいと、耐応力腐食割れ性が悪くなり、応力緩和特性、曲げ加工性も悪い。組成関係式f2の値、9~11が、これらの特性の良否に関し、境界の値に相当する。f2の値が8より小さいと、耐応力腐食割れ性、応力緩和特性、曲げ加工性が改善される(合金No.107、103、12、15、18等参照)。
(6)組成関係式f3が発明合金の条件範囲よりも小さいと、耐応力腐食割れ性、応力緩和特性、曲げ加工性が悪くなる。f3の境界の値は、0.3~0.35付近である。f3の値が0.4より大きいと、耐応力腐食割れ性、応力緩和特性、曲げ加工性がよくなる(合金No.107、114、2、15等参照)。
(5) When the compositional relational expression f2 is larger than the condition range of the invention alloy, the stress corrosion cracking resistance is deteriorated, and the stress relaxation characteristics and bending workability are also deteriorated. The values of the composition relational expression f2, 9 to 11, correspond to the boundary values regarding the quality of these characteristics. When the value of f2 is smaller than 8, stress corrosion cracking resistance, stress relaxation characteristics, and bending workability are improved (see Alloy Nos. 107, 103, 12, 15, 18, etc.).
(6) When the compositional relational expression f3 is smaller than the condition range of the alloy according to the invention, the stress corrosion cracking resistance, stress relaxation characteristics, and bending workability deteriorate. The value of the boundary of f3 is around 0.3 to 0.35. When the value of f3 is larger than 0.4, the stress corrosion cracking resistance, the stress relaxation property, and the bending workability are improved (see Alloy Nos. 107, 114, 2, 15, etc.).
(7)組成関係式f4が発明合金の条件範囲よりも小さいと、応力緩和特性が悪くなり、曲げ加工性や、耐応力腐食割れ性も低下する。圧延方向に対して、垂直方向の引張強さ、耐力が大きくなる。組成関係式f4が発明合金の条件範囲よりも大きいと、応力緩和特性が悪くなる(合金No.110~113、14、17等参照)。
 以上のように、Zn、Sn、Ni,Pの濃度が、所定の濃度範囲にあっても、組成関係式f1、f2、f3、f4、f5の値が所定の範囲から外れると、耐応力腐食割れ性、応力緩和特性、強度、曲げ加工性、はんだ濡れ性、導電率のいずれかを満足しない。
(7) When the compositional relational expression f4 is smaller than the condition range of the alloy according to the invention, the stress relaxation characteristics are deteriorated, and the bending workability and the stress corrosion cracking resistance are also lowered. The tensile strength and proof stress in the vertical direction increase with respect to the rolling direction. When the compositional relational expression f4 is larger than the condition range of the alloy according to the invention, the stress relaxation characteristics are deteriorated (see Alloy Nos. 110 to 113, 14, 17, etc.).
As described above, even if the concentrations of Zn, Sn, Ni, and P are within a predetermined concentration range, if the values of the composition relational expressions f1, f2, f3, f4, and f5 are out of the predetermined range, the stress corrosion resistance Does not satisfy any of crackability, stress relaxation characteristics, strength, bending workability, solder wettability, and conductivity.
(8)Al、Fe、Co、Mg、Mn、Ti、Zr、Cr、Si、Sb、As、およびPbから選択される1種以上を含有すると、結晶粒の微細化による強度の向上、応力緩和特性、耐応力腐食割れ性の向上が認められる(合金No.20~32等参照)。
(9)Feを0.08質量%、またはCoを0.07質量%含有すると、平均結晶粒径が小さくなり、曲げ加工性、応力緩和特性が悪くなる(合金No.117、123参照)。
(8) When one or more selected from Al, Fe, Co, Mg, Mn, Ti, Zr, Cr, Si, Sb, As, and Pb are contained, the strength is improved by the refinement of crystal grains, and the stress is relaxed Improvements in characteristics and resistance to stress corrosion cracking are observed (see Alloy Nos. 20 to 32, etc.).
(9) When 0.08% by mass of Fe or 0.07% by mass of Co is contained, the average crystal grain size becomes small, and bending workability and stress relaxation characteristics deteriorate (see Alloy Nos. 117 and 123).
また、本発明の銅合金板を用いた場合において、下記のようであった。
(1)量産設備を用いた製造工程Aと実験設備を用いた製造工程Bの実施例合金では、製造条件が同等なら、両工程の再結晶熱処理後の金属組織は、平均結晶粒および析出物の大きさも揃い、それらの平均粒径もほぼ同等であり、ほぼ同等の機械的性質、応力緩和特性(応力緩和率、実効の応力緩和特性、実効の応力と導電率の1/2乗の積を含む)、耐応力腐食割れ性、はんだ濡れ性が得られる(試験No.T10、T12、T26、T28等参照)。
Further, when the copper alloy plate of the present invention was used, it was as follows.
(1) In the example alloys of the manufacturing process A using mass production equipment and the manufacturing process B using experimental equipment, if the manufacturing conditions are the same, the metallographic structure after the recrystallization heat treatment in both processes is the average crystal grains and precipitates Their average particle diameters are almost the same, almost the same mechanical properties, stress relaxation characteristics (stress relaxation rate, effective stress relaxation characteristics, product of effective stress and conductivity to the power of 1/2) Stress corrosion cracking resistance and solder wettability are obtained (see Test Nos. T10, T12, T26, T28, etc.).
(2)焼鈍(再結晶熱処理工程)の回数が1回であっても、2回であっても、平均結晶粒径に差がなく、ほぼ同等の機械的性質、応力緩和特性、耐応力腐食割れ性、はんだ濡れ性が得られる(試験No.T2、T3、T10、T18、T19、T26等参照)。
(3)最終の再結晶熱処理工程が、高温-短時間の熱処理の方が、バッチの焼鈍よりも、応力緩和特性が良い(試験No.T1、T2、T3、T17、T18、T19、T102、T103等参照)。さらに、高温-短時間の熱処理において、冷却速度が、5℃/秒を境にして、応力緩和が少しよくなる。10℃/秒以上、或は15℃/秒以上であるとさらに少しよくなる。また、平均結晶粒粒径が3~4μmより、5~7μmの方が、耐力は少し低いが、応力緩和特性が少し良い(試験No.T18、T23、T34、T39、T50、T55、T3A、T3B、T3等参照)。
(2) Even if the number of annealing (recrystallization heat treatment process) is one or two, there is no difference in the average crystal grain size, and almost the same mechanical properties, stress relaxation characteristics, stress corrosion resistance Crackability and solder wettability can be obtained (see Test Nos. T2, T3, T10, T18, T19, T26, etc.).
(3) In the final recrystallization heat treatment step, high temperature-short time heat treatment has better stress relaxation characteristics than batch annealing (Test Nos. T1, T2, T3, T17, T18, T19, T102, (See T103 etc.). Further, in the high temperature-short time heat treatment, the stress relaxation is slightly improved at the cooling rate of 5 ° C./second. When it is 10 ° C./second or more, or 15 ° C./second or more, it becomes a little better. Further, when the average grain size is 5 to 7 μm than 3 to 4 μm, the proof stress is slightly lower, but the stress relaxation characteristics are slightly better (Test Nos. T18, T23, T34, T39, T50, T55, T3A, See T3B, T3, etc.).
(4)熱間圧延を経ない工程であっても、熱間圧延工程を通る工程に比べ、析出物の粒径が少し大きいが、ほぼ同等の機械的性質、応力緩和特性、耐応力腐食割れ性、はんだ濡れ性が得られる(試験No.T14、T15、T46、T47等参照)。
(5)再結晶熱処理の係数It1が、設定範囲内で大きいと、平均結晶粒径、析出物、大きくなり、耐力は少し低いが、応力緩和特性が少し良い。再結晶熱処理の係数It1が、設定範囲内で小さいと、平均結晶粒径、析出物が小さくなり、耐力は少し高いが、応力緩和特性が少し悪い。It1が設定された条件より、低いと完全に再結晶組織とならず、曲げ加工性が悪くなる。It1が、大き過ぎると、平均結晶粒径が大きくなり、析出物の粒径も大きくなり、耐力が低く、応力緩和特性も低くなる(試験No.T3、T3C、T7、T8、T9等参照)。
(4) Even in a process that does not undergo hot rolling, the particle size of the precipitate is slightly larger than in the process that passes through the hot rolling process, but almost the same mechanical properties, stress relaxation characteristics, and stress corrosion cracking resistance. And solder wettability (see Test Nos. T14, T15, T46, T47, etc.).
(5) When the coefficient It1 of the recrystallization heat treatment is large within the set range, the average crystal grain size, precipitates, and the size increase, and the yield strength is slightly low, but the stress relaxation characteristics are slightly good. If the coefficient It1 of the recrystallization heat treatment is small within the set range, the average crystal grain size and precipitates become small, and the proof stress is a little high, but the stress relaxation characteristics are a little bad. If the It1 is lower than the set condition, the recrystallized structure is not completely obtained, and the bending workability is deteriorated. If It1 is too large, the average crystal grain size becomes large, the grain size of the precipitates becomes large, the proof stress is low, and the stress relaxation property is low (see Test Nos. T3, T3C, T7, T8, T9, etc.). .
(6)f1の値が、上限に近い約16であると、曲げ加工性、はんだ濡れ性が少し悪くなり、耐応力腐食割れの感受性が少し高くなる(合金No.12、27等参照)。
(7)f2の値が、約9であると、耐応力腐食割れの感受性が少し高くなる(合金No.15、20、22等参照)。
(6) When the value of f1 is about 16, which is close to the upper limit, bending workability and solder wettability are slightly deteriorated, and the resistance to stress corrosion cracking is slightly increased (see Alloy Nos. 12, 27, etc.).
(7) When the value of f2 is about 9, the susceptibility to stress corrosion cracking is slightly increased (see Alloy Nos. 15, 20, 22, etc.).
(8)f3の値が、設定範囲の低めの約0.35であると、応力緩和特性が少し悪く、耐応力腐食割れの感受性が少し高くなる(合金No.20、27、31等参照)。
(9)f4の値が、設定範囲の少し低めの1.8~2であると、応力緩和特性が少し悪くなる(合金No.14等参照)。
(10)f5の値が、設定範囲の低めの約19であると、また、上限に近い約250であると応力緩和特性が少し悪くなる(合金No.13、15等参照)。
(8) If the value of f3 is about 0.35, which is a lower setting range, the stress relaxation characteristics are a little worse and the susceptibility to stress corrosion cracking is a little higher (see Alloy Nos. 20, 27, 31, etc.). .
(9) When the value of f4 is 1.8 to 2, which is a little lower than the set range, the stress relaxation characteristics are slightly deteriorated (see alloy No. 14 and the like).
(10) When the value of f5 is about 19 which is a lower setting range, and is about 250 which is close to the upper limit, the stress relaxation characteristics are slightly deteriorated (see alloy Nos. 13 and 15, etc.).
(11)Co、Feを含有すると平均結晶粒径が小さくなり、引張強さ、耐力が高くなるが、伸びは低く、曲げ加工性は少し悪くなる(合金No.22、123等参照)。
(12)回復熱処理の条件を、Snめっきに相当する条件で熱処理しても、回復熱処理前、他の回復熱処理の条件で製作した銅合金材と比べ、概ね同等の引張強さ、耐力、応力緩和特性、曲げ加工性、伸び、導電率、耐応力腐食割れ性、はんだ濡れ性が得られる(試験No.T3~T6、T12~T14、T19~T22、T28~30等参照)。
(13)最終の熱処理を470℃×4時間、または、480℃×4時間のバッチ焼鈍で実施しても、高温の短時間焼鈍に比べ、少し、応力緩和特性が悪くなるが、引張強さ、耐力、曲げ加工性、伸び、および耐応力腐食割れ性に関して、良好な特性を備える(試験No.T1、T2、T11、T12、T15、T16、T102、T103等参照)。
(11) When Co and Fe are contained, the average crystal grain size becomes small and the tensile strength and proof stress are increased, but the elongation is low and the bending workability is slightly deteriorated (see Alloy Nos. 22, 123, etc.).
(12) Even if the heat treatment is performed under the conditions corresponding to Sn plating, the tensile strength, proof stress and stress are almost the same as those of the copper alloy material manufactured under other heat treatment conditions before the heat treatment. Relaxation characteristics, bending workability, elongation, electrical conductivity, stress corrosion cracking resistance, and solder wettability can be obtained (see Test Nos. T3 to T6, T12 to T14, T19 to T22, T28 to 30).
(13) Even if the final heat treatment is performed by batch annealing at 470 ° C. × 4 hours or 480 ° C. × 4 hours, the stress relaxation properties are slightly deteriorated as compared with high-temperature short-time annealing, but the tensile strength It has good characteristics with respect to proof stress, bending workability, elongation and stress corrosion cracking resistance (see Test Nos. T1, T2, T11, T12, T15, T16, T102, T103, etc.).
 本発明の銅合金板は、耐応力腐食割れ性と応力緩和特性に優れ、強度が高く、はんだ濡れ性が良好で、且つ、強度、曲げ加工性、実効の応力緩和特性と導電性のバランスに優れる。このため、本発明の銅合金板は、コネクタ、端子は勿論のこと、リレー、ばね、スイッチ、半導体用途、リードフレーム等の電気・電子部品用の構成材等として好適に適用できる。 The copper alloy sheet of the present invention has excellent stress corrosion cracking resistance and stress relaxation properties, high strength, good solder wettability, and balance between strength, bending workability, effective stress relaxation properties and conductivity. Excellent. For this reason, the copper alloy plate of the present invention can be suitably applied as a component for electrical and electronic parts such as relays, springs, switches, semiconductors, and lead frames as well as connectors and terminals.

Claims (8)

  1. 4~14質量%のZnと、0.1~1質量%のSnと、0.005~0.08質量%のPと、1.0~2.4質量%のNiとを含有し、残部がCu及び不可避不純物からなり、
    Znの含有量[Zn]質量%と、Snの含有量[Sn]質量%と、Pの含有量[P]質量%と、Niの含有量[Ni]質量%との間に、
    7≦[Zn]+3×[Sn]+2×[Ni]≦18、
    0≦[Zn]-0.3×[Sn]-1.8×[Ni]≦11、
    0.3≦(3×[Ni]+0.5×[Sn])/[Zn]≦1.6、
    1.8≦[Ni]/[Sn]≦10、
    16≦[Ni]/[P]≦250、
    の関係を有し、
    平均結晶粒径が2~9μmであり、
    円形状又は楕円形状の析出物の平均粒子径が3~75nmであるか、又は、前記析出物の内で粒子径が3~75nmの析出物が占める個数の割合が70%以上であり、
    導電率が24%IACS以上であり、
    耐応力緩和特性として150℃、1000時間で応力緩和率が25%以下であることを特徴とする銅合金板。
    4 to 14% by mass of Zn, 0.1 to 1% by mass of Sn, 0.005 to 0.08% by mass of P, and 1.0 to 2.4% by mass of Ni, and the balance Consists of Cu and inevitable impurities,
    Between Zn content [Zn] mass%, Sn content [Sn] mass%, P content [P] mass%, and Ni content [Ni] mass%,
    7 ≦ [Zn] + 3 × [Sn] + 2 × [Ni] ≦ 18,
    0 ≦ [Zn] −0.3 × [Sn] −1.8 × [Ni] ≦ 11,
    0.3 ≦ (3 × [Ni] + 0.5 × [Sn]) / [Zn] ≦ 1.6,
    1.8 ≦ [Ni] / [Sn] ≦ 10,
    16 ≦ [Ni] / [P] ≦ 250,
    Have the relationship
    The average grain size is 2-9 μm,
    The average particle diameter of the circular or elliptical precipitates is 3 to 75 nm, or the ratio of the number of the precipitates having a particle diameter of 3 to 75 nm in the precipitates is 70% or more,
    Conductivity is 24% IACS or higher,
    A copper alloy sheet having a stress relaxation rate of 25% or less at 150 ° C. for 1000 hours as stress relaxation resistance.
  2. 4~12質量%のZnと、0.1~0.9質量%のSnと、0.008~0.07質量%のPと、1.05~2.2質量%のNiとを含有し、残部がCu及び不可避不純物からなり、
    Znの含有量[Zn]質量%と、Snの含有量[Sn]質量%と、Pの含有量[P]質量%と、Niの含有量[Ni]質量%との間に、
    7≦[Zn]+3×[Sn]+2×[Ni]≦16、
    0≦[Zn]-0.3×[Sn]-1.8×[Ni]≦9、
    0.3≦(3×[Ni]+0.5×[Sn])/[Zn]≦1.3、
    2≦[Ni]/[Sn]≦8、
    18≦[Ni]/[P]≦180、
    の関係を有し、
    平均結晶粒径が2~9μmであり、
    円形状又は楕円形状の析出物の平均粒子径が3~60nmであるか、又は、前記析出物の内で粒子径が3~60nmの析出物が占める個数の割合が70%以上であり、
    導電率が26%IACS以上であり、
    耐応力緩和特性として150℃、1000時間で応力緩和率が23%以下であることを特徴とする銅合金板。
    4-12% by mass of Zn, 0.1-0.9% by mass of Sn, 0.008-0.07% by mass of P, and 1.05-2.2% by mass of Ni. The balance consists of Cu and inevitable impurities,
    Between Zn content [Zn] mass%, Sn content [Sn] mass%, P content [P] mass%, and Ni content [Ni] mass%,
    7 ≦ [Zn] + 3 × [Sn] + 2 × [Ni] ≦ 16,
    0 ≦ [Zn] −0.3 × [Sn] −1.8 × [Ni] ≦ 9,
    0.3 ≦ (3 × [Ni] + 0.5 × [Sn]) / [Zn] ≦ 1.3,
    2 ≦ [Ni] / [Sn] ≦ 8,
    18 ≦ [Ni] / [P] ≦ 180,
    Have the relationship
    The average grain size is 2-9 μm,
    The average particle diameter of the circular or elliptical precipitates is 3 to 60 nm, or the ratio of the number of the precipitates having a particle diameter of 3 to 60 nm in the precipitates is 70% or more,
    Conductivity is 26% IACS or higher,
    A copper alloy sheet having a stress relaxation resistance of 23% or less at 150 ° C. for 1000 hours as stress relaxation resistance.
  3.  さらに、Al、Fe、Co、Mg、Mn、Ti、Zr、Cr、Si、Sb、As、Pb及び希土類元素から選択される少なくとも1種または2種以上を、各々0.0005質量%以上0.05質量%以下、かつ、合計で0.0005質量%以上0.2質量%以下含有することを特徴とする請求項1又は請求項2に記載の銅合金板。 Furthermore, at least one or two or more selected from Al, Fe, Co, Mg, Mn, Ti, Zr, Cr, Si, Sb, As, Pb, and rare earth elements are each 0.0005% by mass or more and 0.0. The copper alloy sheet according to claim 1, wherein the copper alloy sheet is contained in an amount of 05 mass% or less and a total of 0.0005 mass% or more and 0.2 mass% or less.
  4. 銅合金材料が冷間圧延される仕上げ冷間圧延工程と、必要に応じて前記仕上げ冷間圧延工程の後に実施される回復熱処理工程と、を含む製造工程によって製造され、
    導電率をC(%IACS)、150℃、1000時間での実効応力をPw(N/mm)としたとき、
    Pw≧300、
    Pw×(C/100)1/2≧190
    の関係を有し、
    圧延方向に対して90度をなす方向の耐力YS90と、圧延方向に対して0度をなす方向の耐力YSとの比、YS90/YSが、0.95≦YS90/YS≦1.07の範囲内とされていることを特徴とする請求項1から請求項3のいずれか一項に記載の銅合金板。
    Manufactured by a manufacturing process including a finish cold rolling process in which the copper alloy material is cold-rolled, and a recovery heat treatment process performed after the finish cold-rolling process as necessary,
    When the electrical conductivity is C (% IACS), the effective stress at 150 ° C. and 1000 hours is Pw (N / mm 2 ),
    Pw ≧ 300,
    Pw × (C / 100) 1/2 ≧ 190
    Have the relationship
    The ratio of the yield strength YS 90 in the direction forming 90 degrees to the rolling direction and the yield strength YS 0 in the direction forming 0 degrees relative to the rolling direction, YS 90 / YS 0 is 0.95 ≦ YS 90 / YS 0 The copper alloy sheet according to any one of claims 1 to 3, wherein the copper alloy sheet is within a range of ≦ 1.07.
  5. コネクタ、端子、リレー、スイッチ、半導体用途等電子・電気機器部品に用いられることを特徴とする請求項1から請求項4のいずれか一項に記載の銅合金板。 The copper alloy plate according to any one of claims 1 to 4, wherein the copper alloy plate is used for electronic / electric equipment parts such as connectors, terminals, relays, switches, and semiconductors.
  6. 請求項1から請求項5のいずれか一項に記載の銅合金板を製造する銅合金板の製造方法であって、
    熱間圧延工程と、冷間圧延工程と、再結晶熱処理工程と、仕上げ冷間圧延工程と、をこの順に含み、
    前記冷間圧延工程での冷間加工率が55%以上であり、
    前記再結晶熱処理工程は、連続熱処理炉を用い、冷間圧延後の銅合金材料を所定の温度に加熱する加熱ステップと、該加熱ステップ後に該銅合金材料を所定の温度に所定の時間保持する保持ステップと、該保持ステップ後に該銅合金材料を所定の温度まで冷却する冷却ステップを具備し、前記再結晶熱処理工程において、該銅合金材料の最高到達温度をTmax(℃)とし、該銅合金材料の最高到達温度より50℃低い温度から最高到達温度までの温度域で、加熱保持される時間をtm(min)としたときに、
    560≦Tmax≦790、
    0.04≦tm≦1.0、
    520≦It1=(Tmax-30×tm-1/2)≦690
    とされ、かつ、前記再結晶熱処理工程において、最高到達温度より50℃低い温度から400℃までの温度領域において、5℃/秒以上の条件で冷却することを特徴とする銅合金板の製造方法。
    It is a manufacturing method of the copper alloy plate which manufactures the copper alloy plate according to any one of claims 1 to 5,
    Including a hot rolling step, a cold rolling step, a recrystallization heat treatment step, and a finish cold rolling step in this order,
    The cold working rate in the cold rolling step is 55% or more,
    The recrystallization heat treatment step uses a continuous heat treatment furnace to heat the copper alloy material after cold rolling to a predetermined temperature, and hold the copper alloy material at the predetermined temperature for a predetermined time after the heating step. A holding step, and a cooling step for cooling the copper alloy material to a predetermined temperature after the holding step, wherein the maximum temperature of the copper alloy material is Tmax (° C.) in the recrystallization heat treatment step, and the copper alloy When the heating and holding time is tm (min) in the temperature range from the temperature 50 ° C. lower than the highest temperature of the material to the highest temperature,
    560 ≦ Tmax ≦ 790,
    0.04 ≦ tm ≦ 1.0,
    520 ≦ It1 = (Tmax−30 × tm −1/2 ) ≦ 690
    And in the recrystallization heat treatment step, cooling is performed under a condition of 5 ° C./second or more in a temperature range from a temperature 50 ° C. lower than the highest temperature to 400 ° C. .
  7.  前記仕上げ冷間圧延工程後に実施する回復熱処理工程を有し、
    前記回復熱処理工程は、仕上げ冷間圧延後の銅合金材料を所定の温度に加熱する加熱ステップと、該加熱ステップ後に該銅合金材料を所定の温度に所定の時間保持する保持ステップと、該保持ステップ後に該銅合金材料を所定の温度まで冷却する冷却ステップを具備し、該銅合金材料の最高到達温度をTmax2(℃)とし、該銅合金材料の最高到達温度より50℃低い温度から最高到達温度までの温度域で、加熱保持される時間をtm2(min)としたときに、
    150≦Tmax2≦580、
    0.02≦tm2≦100、
    120≦It2=(Tmax2-25×tm2-1/2)≦390
    とされていることを特徴とする請求項6に記載の銅合金板の製造方法。
    A recovery heat treatment step performed after the finish cold rolling step;
    The recovery heat treatment step includes a heating step for heating the copper alloy material after finish cold rolling to a predetermined temperature, a holding step for holding the copper alloy material at a predetermined temperature for a predetermined time after the heating step, and the holding A cooling step of cooling the copper alloy material to a predetermined temperature after the step, wherein the maximum reached temperature of the copper alloy material is Tmax2 (° C.), and the maximum reached from a temperature that is 50 ° C. lower than the maximum reached temperature of the copper alloy material When the heating and holding time is tm2 (min) in the temperature range up to the temperature,
    150 ≦ Tmax2 ≦ 580,
    0.02 ≦ tm2 ≦ 100,
    120 ≦ It2 = (Tmax2−25 × tm2 −1/2 ) ≦ 390
    The method for producing a copper alloy sheet according to claim 6, wherein:
  8. 請求項1から請求項5のいずれか一項に記載の銅合金板の製造方法であって、
    対となる冷間圧延工程及び焼鈍工程と、冷間圧延工程と、再結晶熱処理工程と、仕上げ冷間圧延工程と、回復熱処理工程と、含み、熱間加工を行うことなく、対となる冷間圧延工程及び焼鈍工程を1回または複数回行った後に、前記冷間圧延工程と前記再結晶処理工程との組み合わせ、及び、前記仕上げ冷間圧延工程と前記回復熱処理工程との組み合わせ、のいずれか一方又は両方を行う構成とされており、
    前記冷間圧延工程での冷間加工率が55%以上であり、
    前記再結晶熱処理工程は、連続熱処理炉を用い、冷間圧延後の銅合金材料を所定の温度に加熱する加熱ステップと、該加熱ステップ後に該銅合金材料を所定の温度に所定の時間保持する保持ステップと、該保持ステップ後に該銅合金材料を所定の温度まで冷却する冷却ステップを具備し、前記再結晶熱処理工程において、該銅合金材料の最高到達温度をTmax(℃)とし、該銅合金材料の最高到達温度より50℃低い温度から最高到達温度までの温度域で、加熱保持される時間をtm(min)としたときに、
    560≦Tmax≦790、
    0.04≦tm≦1.0、
    520≦It1=(Tmax-30×tm-1/2)≦690
    とされ、かつ、前記再結晶熱処理工程において、最高到達温度より50℃低い温度から400℃までの温度領域において、5℃/秒以上の条件で冷却され、
    前記回復熱処理工程は、仕上げ冷間圧延後の銅合金材料を所定の温度に加熱する加熱ステップと、該加熱ステップ後に該銅合金材料を所定の温度に所定の時間保持する保持ステップと、該保持ステップ後に該銅合金材料を所定の温度まで冷却する冷却ステップを具備し、該銅合金材料の最高到達温度をTmax2(℃)とし、該銅合金材料の最高到達温度より50℃低い温度から最高到達温度までの温度域で、加熱保持される時間をtm2(min)としたときに、
    150≦Tmax2≦580、
    0.02≦tm2≦100、
    120≦It2=(Tmax2-25×tm2-1/2)≦390
    とされていることを特徴とする銅合金板の製造方法。
    It is a manufacturing method of the copper alloy plate according to any one of claims 1 to 5,
    Including a cold rolling process and an annealing process, a cold rolling process, a recrystallization heat treatment process, a finish cold rolling process, and a recovery heat treatment process, and a pair of cold rolling processes without performing hot working. After performing the cold rolling step and the annealing step one or more times, any one of the combination of the cold rolling step and the recrystallization treatment step, and the combination of the finish cold rolling step and the recovery heat treatment step It is configured to do either or both,
    The cold working rate in the cold rolling step is 55% or more,
    The recrystallization heat treatment step uses a continuous heat treatment furnace to heat the copper alloy material after cold rolling to a predetermined temperature, and hold the copper alloy material at the predetermined temperature for a predetermined time after the heating step. A holding step, and a cooling step for cooling the copper alloy material to a predetermined temperature after the holding step, wherein the maximum temperature of the copper alloy material is Tmax (° C.) in the recrystallization heat treatment step, and the copper alloy When the heating and holding time is tm (min) in the temperature range from the temperature 50 ° C. lower than the highest temperature of the material to the highest temperature,
    560 ≦ Tmax ≦ 790,
    0.04 ≦ tm ≦ 1.0,
    520 ≦ It1 = (Tmax−30 × tm −1/2 ) ≦ 690
    And in the recrystallization heat treatment step, in a temperature range from 50 ° C. lower than the highest temperature to 400 ° C., cooling is performed at a condition of 5 ° C./second or more,
    The recovery heat treatment step includes a heating step for heating the copper alloy material after finish cold rolling to a predetermined temperature, a holding step for holding the copper alloy material at a predetermined temperature for a predetermined time after the heating step, and the holding A cooling step of cooling the copper alloy material to a predetermined temperature after the step, wherein the maximum reached temperature of the copper alloy material is Tmax2 (° C.), and the maximum reached from a temperature that is 50 ° C. lower than the maximum reached temperature of the copper alloy material When the heating and holding time is tm2 (min) in the temperature range up to the temperature,
    150 ≦ Tmax2 ≦ 580,
    0.02 ≦ tm2 ≦ 100,
    120 ≦ It2 = (Tmax2−25 × tm2 −1/2 ) ≦ 390
    The manufacturing method of the copper alloy board characterized by the above-mentioned.
PCT/JP2015/059359 2014-09-26 2015-03-26 Copper alloy sheet and process for producing copper alloy sheet WO2016047175A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015539901A JP5879464B1 (en) 2014-09-26 2015-03-26 Copper alloy plate and method for producing copper alloy plate
KR1020167032742A KR101777987B1 (en) 2014-09-26 2015-03-26 Copper alloy sheet and process producing copper alloy sheet
CN201580027152.3A CN106460097B (en) 2014-09-26 2015-03-26 The manufacture method of copper alloy plate and copper alloy plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-196430 2014-09-26
JP2014196430 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047175A1 true WO2016047175A1 (en) 2016-03-31

Family

ID=55580717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059359 WO2016047175A1 (en) 2014-09-26 2015-03-26 Copper alloy sheet and process for producing copper alloy sheet

Country Status (4)

Country Link
KR (1) KR101777987B1 (en)
CN (1) CN106460097B (en)
TW (1) TWI540213B (en)
WO (1) WO2016047175A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115852200A (en) * 2022-11-29 2023-03-28 宁波金田铜业(集团)股份有限公司 Brass strip and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331444A (en) * 2017-06-20 2017-11-07 江苏亨通线缆科技有限公司 Track traffic synthetic earth cable
CN108411150B (en) * 2018-01-22 2019-04-05 公牛集团股份有限公司 Sleeve high-performance copper alloy material and manufacturing method
JP6713074B1 (en) * 2019-04-16 2020-06-24 Dowaメタルテック株式会社 Copper alloy sheet and method for producing the same
KR20220041082A (en) * 2019-08-06 2022-03-31 미쓰비시 마테리알 가부시키가이샤 A copper alloy plate, a copper alloy plate with a plating film, and their manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294368A (en) * 2001-03-30 2002-10-09 Kobe Steel Ltd Copper alloy for terminal and connector and production method therefor
JP2007270286A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Cu-Ni-Si-Zn BASED COPPER ALLOY
WO2013039201A1 (en) * 2011-09-16 2013-03-21 三菱伸銅株式会社 Copper alloy sheet and production method for copper alloy sheet
JP2013213237A (en) * 2012-03-30 2013-10-17 Jx Nippon Mining & Metals Corp Cu-Zn-Sn-Ni-P-BASED ALLOY
JP2014141740A (en) * 2012-12-26 2014-08-07 Mitsubishi Materials Corp Copper alloy for electronic/electrical device, copper alloy thin sheet for electronic/electrical device, conductive component for electronic/electrical device and terminal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056365A (en) 2005-07-27 2007-03-08 Mitsui Mining & Smelting Co Ltd Copper-zinc-tin alloy and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294368A (en) * 2001-03-30 2002-10-09 Kobe Steel Ltd Copper alloy for terminal and connector and production method therefor
JP2007270286A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Cu-Ni-Si-Zn BASED COPPER ALLOY
WO2013039201A1 (en) * 2011-09-16 2013-03-21 三菱伸銅株式会社 Copper alloy sheet and production method for copper alloy sheet
JP2013213237A (en) * 2012-03-30 2013-10-17 Jx Nippon Mining & Metals Corp Cu-Zn-Sn-Ni-P-BASED ALLOY
JP2014141740A (en) * 2012-12-26 2014-08-07 Mitsubishi Materials Corp Copper alloy for electronic/electrical device, copper alloy thin sheet for electronic/electrical device, conductive component for electronic/electrical device and terminal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115852200A (en) * 2022-11-29 2023-03-28 宁波金田铜业(集团)股份有限公司 Brass strip and preparation method thereof

Also Published As

Publication number Publication date
TW201612326A (en) 2016-04-01
CN106460097B (en) 2018-04-24
KR20160146943A (en) 2016-12-21
CN106460097A (en) 2017-02-22
KR101777987B1 (en) 2017-09-26
TWI540213B (en) 2016-07-01

Similar Documents

Publication Publication Date Title
JP5933817B2 (en) Copper alloy and copper alloy plate
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5386655B2 (en) Copper alloy plate and method for producing copper alloy plate
JP5309272B1 (en) Copper alloy plate and method for producing copper alloy plate
JP4959141B2 (en) High strength copper alloy
JP5309271B1 (en) Copper alloy plate and method for producing copper alloy plate
WO2009123140A1 (en) Cu-ni-si alloy to be used in electrically conductive spring material
JP5619389B2 (en) Copper alloy material
WO2016171055A1 (en) Copper alloy material and method for producing same
KR101777987B1 (en) Copper alloy sheet and process producing copper alloy sheet
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
JP5468798B2 (en) Copper alloy sheet
JP5879464B1 (en) Copper alloy plate and method for producing copper alloy plate
WO2014115342A1 (en) Copper-alloy plate for terminal/connector material, and method for producing copper-alloy plate for terminal/connector material
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP2010121166A (en) Copper alloy having high strength and high electric conductivity
JP5452778B1 (en) Copper alloy plate for terminal / connector material and method for producing copper alloy plate for terminal / connector material
TWI486462B (en) Copper alloys plate that is materials of terminal and connector and method of producing the same
JP2012046804A (en) Copper alloy material and method for manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015539901

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167032742

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843155

Country of ref document: EP

Kind code of ref document: A1