WO2016046489A1 - Propriétés insecticides d'un extrait de sextonia rubra, et de ses constituants - Google Patents

Propriétés insecticides d'un extrait de sextonia rubra, et de ses constituants Download PDF

Info

Publication number
WO2016046489A1
WO2016046489A1 PCT/FR2015/052537 FR2015052537W WO2016046489A1 WO 2016046489 A1 WO2016046489 A1 WO 2016046489A1 FR 2015052537 W FR2015052537 W FR 2015052537W WO 2016046489 A1 WO2016046489 A1 WO 2016046489A1
Authority
WO
WIPO (PCT)
Prior art keywords
extract
mosquito
rubrynolide
sextonia
rubra
Prior art date
Application number
PCT/FR2015/052537
Other languages
English (en)
Inventor
Michaël FALKOWSKI
Alice DE SOUZA RODRIGUES
Véronique ÉPARVIER
Isabelle DUSFOUR
Emeline HOUËL
Didier Stien
Original Assignee
Centre National De La Recherche Scientifique - Cnrs -
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique - Cnrs - filed Critical Centre National De La Recherche Scientifique - Cnrs -
Priority to BR112017005863-4A priority Critical patent/BR112017005863B1/pt
Priority to AU2015323631A priority patent/AU2015323631B2/en
Priority to US15/513,874 priority patent/US10834926B2/en
Publication of WO2016046489A1 publication Critical patent/WO2016046489A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/24Lauraceae [Laurel family], e.g. laurel, avocado, sassafras, cinnamon or camphor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/06Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings
    • A01N43/08Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings with oxygen as the ring hetero atom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to the use of a new naturally occurring substance with insecticidal activity, especially against harmful insects.
  • Mez Sextonia rubra
  • Lauraceae van der Werff
  • the present invention relates in particular to the fields of public health, plant health and agrochemistry.
  • references in brackets ([]) refer to the list of references at the end of the text.
  • the Aedes aegypti mosquito is an arthropod of the insect class, of the order Diptera and the family Culicidae. It is now well established in tropical and subtropical regions, particularly in urban areas. In fact, this domestic species, whose females feed mainly on human blood, reproduces mainly in man-made breeding sites, that is to say in any container or container likely to retain stagnant water (uncleaned gutters). , used tires, cups of flower pots, etc.). The rainy season is very conducive to its development (Simmons et al., N. Engl J.
  • This mosquito is considered one of the most important vectors of diseases, especially for the transmission of arboviruses as yellow fever or chikungunya. It is also the main vector of dengue fever. This disease is often benign although it is incapacitating, with symptoms similar to those of infectious diseases. But in some cases it may be in a more serious form known as dengue haemorrhagic fever (1% of cases).
  • dengue haemorrhagic fever 1% of cases.
  • the main endemic areas are Southeast Asia and South America. The incidence of this vector-borne disease has been increasing rapidly in recent decades, and more than 2.5 billion people, or 40% of the world's population, are at risk of contracting dengue fever. Each year, between 50 and 100 million people are infected worldwide (WHO (WHO), 2014, previously cited) [2].
  • Vector control is carried out at two levels: the destruction of larval breeding sites or their treatment with a suitable insecticide, and the control of adult mosquitoes (imagocide) via, for example, intra- and peri-domiciliary spraying.
  • insecticides currently used against mosquitoes come from several sources: purely synthetic, such as propoxur (carbamate), dichlorvos (organochlorine) or malathion
  • organophosphorus synthetic derived from a natural origin, such as pyrethroids (deltamethrin, cypermethrin, etc.); or of natural origin (pyrethrum, spinosad, Bti).
  • a natural origin such as pyrethroids (deltamethrin, cypermethrin, etc.); or of natural origin (pyrethrum, spinosad, Bti).
  • this product has a very low remanence in the environment (15 days to 2 months depending on the load in organic matter, exposure to UV, leaching, etc.), limiting its action over time and thus allowing not reliably predict its duration of action.
  • Other larvicides have use constraints to limit the effects on non-target species. This is for example spinosad produced by Saccharopolyspora spinosa and consisting of two toxins (spinosyn A and D), but marketed with restrictions because of its high toxicity on bees.
  • the European regulation reduces year by year the number of these molecules because of their toxicity or by the non renewal of their marketing authorizations (MA).
  • MA marketing authorizations
  • the last authorized molecules are pyrethroids.
  • Larvicides are more diverse, including Bti, spinosad; methoprene, pyriproxifene (growth inhibitors), etc., but for some their persistence and restrictions of use are not optimal for their use in vector control or mosquito control; for others the development of resistance has already been observed.
  • wood is a very competitive material compared to others: it is renewable, biodegradable, low energy consumption during its transformation and it participates in the storage of carbon, the valuation of this raw material thus has advantages from an ecological and economic point of view.
  • Sextonia rubra is a fairly common forest species on the Guiana Shield, where it is known as the French Cranberry, and in the Brazilian Amazon (Van der Weff, Novon, 7: 436-439, 1997) [5].
  • French Guiana its wood is widely used in carpentry. It represents 9% of the log population in the department.
  • the inventors have now quite unexpectedly brought to light new insecticide products, in particular larvicides, extracted from the wood species Sextonia rubra, with respect to Culicidae forming a family of insects commonly called mosquitoes. more particularly with respect to the Aedes genus, preferentially with respect to the Aedes aegypti species.
  • the ethyl acetate extract of Sextonia rubra as well as its two constituents (rubrenolide and rubrynolide) taken independently have demonstrated in the laboratory an excellent larvicidal activity with respect to the mosquito Aedes aegypti, with in particular an LD50 (median lethal dose ) of 3.15 g / ml at 24 h on the PAEA laboratory strain, and LD50s of 0.6 and 3.8 g / ml for rubrenolide and rubrynolide, respectively, on this same strain.
  • LD50 median lethal dose
  • the present invention therefore relates to the use of a composition
  • a composition comprising an extract of Sextonia rubra or one of its constituents (rubrenolide and / or rubrynolide) as an insecticidal agent vis-à-vis Culicidae (or mosquitoes) ), in particular as a larvicidal agent, more particularly with regard to mosquitoes of the Aedes genus, preferentially with respect to the Aedes aegypti species.
  • insecticidal agent / larvicide vis-à-vis a strain of mosquito within the meaning of the present invention, a compound leading to a mortality of mosquito larvae placed in the presence of this compound, for example in the context of a cup test carried out according to the protocol recommended by WHO (Guidelines for Laboratory and Field Testing of Mosquito Larvicides,
  • Sextonia rubra extract within the meaning of the present invention, a crude extract of Sextonia rubra or an extract comprising at least one of its constituents, namely rubrynolide and / or rubrenolide, which may be used as an insecticidal agent in the scope of the present invention.
  • Amazonian sustainable wood extracts are obtained from logging waste by any suitable solvent and method, including solvent extraction methods, or new extraction technologies (CO 2 , supercritical, micro - waves, ultrasound, etc.).
  • the extraction process is not critical, and may be selected by those skilled in the art depending on the desired extractable concentration, and the type of larvicidal product expected.
  • the durable Amazonian wood extracts are obtained by a solvent extraction process, preferably by polar solvent.
  • polar solvent in the sense of the present invention, a solvent having a dipole moment other than zero, and in particular greater than 1, 5.
  • the polar solvent is a protic solvent such as water or an alcohol (methanol, ethanol, etc.) or a mixture thereof for example hydroalcoholic, or an aprotic solvent such as an ester (acetate of ethyl, etc.)
  • the extraction method used is maceration in a polar solvent (water, alcohol for example methanol, ethanol, hydroalcoholic mixture, ester for example ethyl acetate, etc.), for 12 to 72 hours, preferably during 24 hours, at a temperature of 22 to 27 ° C, preferably at room temperature (25 ° C).
  • a volume of 2 to 5 liters of solvent, preferably about 3 liters of solvent is used for 300 to 1000 g of wood chips, preferably for about 800 g of wood chips.
  • the sextonia extract is an ethyl acetate extract.
  • the present invention further relates to a method of larviciding, said method comprising applying an effective amount of a composition comprising Sextonia rubra extract, rubrynolide and / or rubrenolide to breeding sites.
  • the term "effective amount" means a dose leading to 100% mortality of the larvae studied, in order to avoid any development of the resistance phenomena.
  • the minimum concentration corresponding to an effective amount is therefore 18 g / ml (ppm) for Sextonia rubra extract to obtain 100% mortality at 24 hours.
  • ppm g / ml
  • For rubrynolide, this value is 17 g / ml at 24 hours.
  • the application is carried out by spraying.
  • sextonia rubra extract, rubrynolide and / or rubrenolide are dissolved in ethanol and then diluted in water until the desired concentration is achieved, and then Hydro-alcoholic preparations are then sprayed on the breeding sites.
  • the Sextonia rubra wood powder (200 g) was placed in an Erlenmeyer flask and extracted (3 x 500 ml of ethyl acetate) with stirring, at room temperature for 48 hours. After each extraction, the solution was filtered, the solutions from the various extractions were combined, and the solvent was evaporated under reduced pressure at a temperature of 30 ° C. The yield obtained for the extract was 4.2%.
  • the extract (3.6 g) was then purified according to a method previously described in Rodrigues et al. (2010, previously cited) [6], by chromatography on an open column of silica using ethyl acetate (600 ml) and then methanol (rinsing) as eluent.
  • the eluate obtained with ethyl acetate was then evaporated (obtaining 3.0 g of beige residue), and triturated with hexane.
  • the insoluble fraction was then recovered by filtration and dried under vacuum (316.6 mg). This fraction contains a mixture of rubrenolide and rubrynolide.
  • the organic phase was dried with magnesium sulfate (Mg 2 SO 4 ), filtered, and the solvent was evaporated under reduced pressure. Pure rubrynolide was thus obtained (21.6 mg).
  • the dry residue obtained from the filtrate was taken up in 80 ml of MilliQ water and extracted with 80 ml of diethyl ether.
  • the organic phase containing a yellow precipitate was recovered, filtered and dried once clear on magnesium sulfate before being filtered again. After evaporation of the solvent, 106.8 mg of pure rubrenolide were obtained.
  • the ethyl acetate used for the extraction has no toxicity, the only risks identified being irritations of the eyes, drowsiness or vertigo.
  • Alcoholic extracts of Sextonia rubra were obtained by maceration in methanol or wood ethanol previously dried at room temperature and ground.
  • wood chips of Sextonia rubra 200 mg were macerated in 5 ml of each of the selected solvents at room temperature. The mixture was then placed in an ultrasonic bath for 4 x 15 minutes, then centrifuged and filtered to recover the solution. The solvent was evaporated under reduced pressure at a temperature of 30 ° C.
  • the extraction yields obtained for the various solvents are as follows: ethanol, 4.6%; methanol, 5.1%. An ethyl acetate extract was obtained under the same conditions and an extraction yield of 4.2% was obtained.
  • EXAMPLE 2 INSECTICIDAL ACTIVITY OF THE ETHYL ACETATE EXTRACT OF SEXTONIA RUBRA AND ITS COMPONENTS
  • the bioassays were performed on Aedes aegypti mosquito larvae of the PAEA laboratory strain susceptible to all insecticides.
  • the protocol described below has been adapted according to WHO protocols.
  • This strain originally from French Polynesia, has been kept for about ten years at the Insectarium of the Pasteur Institute of Guyana, in Cayenne.
  • the breeding of mosquitoes was carried out under natural conditions: temperature of 28 ° C ⁇ 2 ° C, humidity of 80% ⁇ 20%, and duration of the day 12: 12h ⁇ 20min during the year.
  • the eggs of Aedes aegypti were kept dry on strips of blotting paper at the temperature of the insectarium.
  • the hatching was done by placing these strips in the water under a vacuum bell for at least 20min.
  • the larvae thus obtained were fed with yeast tablets.
  • Larvae at the 3-4th stage of growth were then used for activity testing of the extracts and constituents. 100 larvae were transferred to plastic cups containing 99 ml of distilled water.
  • the present study shows that the ethyl acetate extract of Sextonia rubra has a larvicidal activity, particularly with regard to the larvae of the mosquito Aedes aegypti.
  • rubrenolide obtained from the ethyl acetate extract of Sextonia rubra wood leads to mortalities on larvae of the PAEA strain of the same order of magnitude or better than those obtained for products known for their larvicidal activity, like spinosad or Bti used as an anti-larval treatment in French Guiana.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Environmental Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)

Abstract

La présente invention se rapporte à l'utilisation d'un extrait de Sextonia rubra ou de ses constituants, rubrénolide et/ou rubrynolide, en tant qu'agent insecticide vis-à-vis des moustiques, en particulier comme agent larvicide.

Description

PROPRIÉTÉS INSECTICIDES D'UN EXTRAIT DE SEXTONIA RUBRA,
ET DE SES CONSTITUANTS
DESCRIPTION
Domaine technique
La présente invention se rapporte à l'utilisation d'une nouvelle substance d'origine naturelle à activité insecticide, notamment vis-à-vis des insectes nuisibles.
En particulier, elle se rapporte à l'utilisation d'un extrait de bois durable amazonien de l'espèce Sextonia rubra (Mez) van der Werff (Lauraceae) et/ou d'au moins l'un de ses constituants comme agent insecticide, en particulier pour la lutte contre les larves de moustiques, plus particulièrement du genre Culicidae, plus particulièrement du genre Aedes, tout particulièrement de l'espèce de moustique Aedes aegypti.
La présente invention concerne en particulier les domaines de la santé publique, phytosanitaire et de l'agrochimie.
Dans la description ci-dessous, les références entre crochets ([ ]) renvoient à la liste des références présentée à la fin du texte.
Etat de la technique
Le moustique Aedes aegypti est un arthropode de la classe des insectes, de l'ordre des diptères et de la famille des Culicidae. Il est aujourd'hui bien établi dans les régions tropicales et subtropicales, particulièrement dans les zones urbaines. En effet, cette espèce domestique dont les femelles se nourrissent principalement de sang humain se reproduit surtout dans les gîtes créés par l'homme, c'est-à-dire dans tout récipient ou contenant susceptible de retenir l'eau stagnante (gouttières non nettoyées, pneus usés, coupelles de pots de fleurs, etc .). La saison des pluies est très propice à son développement (Simmons et al., N. Engl. J. Med., 366 : 1423-1432, 2012 ; OMS (WHO), Dengue et dengue hémorragique, http://www.who.int/mediacentre/factsheets/fs1 17/fr/, 2014) [1 , 2].
Ce moustique est considéré comme l'un des vecteurs de maladies les plus importants, notamment pour la transmission d'arboviroses comme la fièvre jaune ou le chikungunya. Il est aussi le principal vecteur de la dengue. Cette maladie est souvent bénigne bien qu'invalidante, avec des symptômes semblables à ceux des maladies infectieuses. Mais dans certains cas, elle peut se présenter sous une forme plus grave connue sous le nom de dengue hémorragique (1 % des cas). Les principales zones d'endémies sont le sud-est asiatique et l'Amérique du Sud. L'incidence de cette maladie vectorielle est en pleine progression ces dernières décennies, et plus de 2,5 milliards de personnes, soit 40% de la population mondiale, sont susceptibles de contracter la dengue. Chaque année, entre 50 et 100 millions de personnes sont infectées dans le monde (OMS (WHO), 2014, précédemment cité) [2]. Des cas importés de dengue et de chikungunya sont également relevés en France métropolitaine, et la surveillance s'accroit dans le sud du pays, du fait de la présence du moustique Aedes albopictus (ou moustique tigre), qui est également vecteur de ces maladies.
Il n'existe actuellement aucun traitement ou vaccin contre la dengue ou le chikungunya. Les seuls moyens de contrôle de ces maladies sont la lutte antivectorielle et la protection des personnes. La lutte antivectorielle s'effectue à deux niveaux : la destruction des gîtes larvaires ou leur traitement par un insecticide adapté, et la lutte contre les moustiques adultes (imagocide) via par exemple des pulvérisations intra- et péri- domiciliaires.
Les insecticides actuellement utilisés contre les moustiques sont issus de plusieurs origines : purement synthétique comme le propoxur (carbamate), le dichlorvos (organochloré) ou le malathion
(organophosphoré) ; synthétique dérivé d'une origine naturelle, comme les pyréthrinoïdes (deltaméthrine, cyperméthrine, etc ..) ; ou d'origine naturelle (pyrèthre, spinosad, Bti).
Cependant, un usage massif et parfois non raisonné des insecticides a conduit au développement de résistances dans les populations d'Aedes aegypti. A l'échelle mondiale, une première campagne d'éradication d'Aedes aegypti à base d'insecticides organochlorés, DDT (dichlorodiphényltrichloroéthane) et dieldrine, avait été mise en oeuvre dans les années 40. La campagne fut réussie dans les régions d'Europe du Sud, d'Afrique et d'Amérique du Nord traitées au DDT. Cependant dans les années 60 et 70, à l'arrêt du programme, une réinfestation progressive des territoires a été observée, les moustiques ayant développé une résistance à cette famille d'insecticides. Ce phénomène a été particulièrement observé en Guyane. (Jansen et Beebe, Microbes Infect., 12(4) : 272-279, 2010 ; Fouque et Carinci, Bull. Soc. Pathol. Exot. 89(2) : 1 15-1 19, 1996) [10, 1 1 ].
Actuellement en Guyane, l'ensemble des populations du moustique est maintenant résistant à la deltaméthrine, un pyréthrinoïde utilisé pour la lutte contre les Aedes aegypti adultes, ainsi qu'au fénitrothion, un organophosphoré aujourd'hui interdit (Dusfour et al., Mem. Inst. Oswaldo Cruz, 106 : 346-352, 201 1 ) [3].
La lutte contre Aedes aegypti, le vecteur de la dengue en Guyane, est menée par les services de démoustication du Conseil général de la Guyane. Celle-ci repose en ce qui concerne la lutte antilarvaire sur le traitement des gîtes larvaires de manière mécanique ou chimique avec une formulation en granulés de Bacillus thuringiensis var israelensis ou Bti (Vectobac®G). Aucune résistance au Bti (formulation d'origine naturelle produite par la bactérie Gram positif Bacillus thuringiensis var. israelensis ou Bti et dont l'activité provient de la toxine thuringiensine), utilisé en Guyane pour la lutte larvicide, n'existe actuellement. Cependant, ce produit possède une très faible rémanence dans l'environnement (15 jours à 2 mois en fonction de la charge en matière organique, l'exposition aux UV, lessivage, etc .), limitant son action dans le temps et ne permettant donc pas de prévoir de façon fiable sa durée d'action. D'autres larvicides ont des contraintes d'utilisation pour limiter les effets sur les espèces non cibles. Il s'agit par exemple du spinosad produit par Saccharopolyspora spinosa et constitué de deux toxines (spinosyne A et D), mais commercialisé avec des restrictions du fait de sa forte toxicité sur les abeilles. En outre, l'usage de pesticides, en particulier des produits de synthèse (tels que les organochlorés comme le DDT, les organophosphorés et les carbamates) a provoqué d'autres dommages, notamment une contamination des sols par les molécules trop fortement rémanentes (par exemple le chlordécone aux Antilles) ainsi que des effets nocifs sur les organismes non cibles (Regnault-Roger et al., Biopesticides d'origine végétale, Paris : Tec & Doc Lavoisier, 2008) [4]. Ces difficultés touchent également les substances larvicides, dont le nombre est en diminution. Par exemple, le dichlorvos a été jugé comportant un risque inacceptable pour la santé humaine et l'environnement et ne sera pas ajouté aux Annexes I, IA ou IB de la Directive 98/8/EC. Son interdiction a pris effet le 1 er mai 2013.
Ainsi la réglementation européenne réduit année après année le nombre de ces molécules du fait de leur toxicité ou bien par le non renouvellement de leurs autorisations de mise sur le marché (AMM). Les dernières molécules autorisées sont les pyréthrinoïdes. Les larvicides sont plus divers dont le Bti, le spinosad ; le méthoprène, la pyriproxifène (inhibiteurs de croissance), etc .. mais pour certains leur rémanence et les restrictions d'utilisation ne sont pas optimales pour leur utilisation en lutte antivectorielle ou antimoustique ; pour d'autres le développement de résistance a d'ores et déjà été observé.
Il est donc nécessaire de trouver de nouvelles solutions en vue de remplacer ces insecticides palliant les défauts, inconvénients et obstacles de l'art antérieur. En particulier, des substances plus écologiques comme les biopesticides, les molécules issues de produits naturels tels que les plantes ou les microorganismes, semblent représenter une alternative prometteuse.
Par exemple, le bois est un matériau très compétitif par rapport à d'autres : il est renouvelable, biodégradable, peu consommateur d'énergie lors de sa transformation et il participe au stockage du carbone, la valorisation de cette matière première présente donc des avantages d'un point de vue écologique et économique. En particulier Sextonia rubra est une espèce forestière plutôt fréquente sur le plateau des Guyanes, où il est connu sous le nom de grignon franc, et en Amazonie brésilienne (Van der Weff, Novon, 7 : 436-439, 1997) [5]. En Guyane, son bois est largement exploité en menuiserie. Il représente 9% de la population des grumes dans le département. De façon générale, il est important de noter qu'entre l'abattage et le sciage plus de 50% de la matière ligneuse est perdue, ce qui représente une grande quantité de déchet produite par le secteur de la filière bois (Rodrigues, Analyse et valorisation bioinspirée des métabolites secondaires à l'origine de la durabilité naturelle des bois exploités de Guyane française, Thèse de doctorat, 2010) [6]. A ce jour, seule une activité termicide vis-à-vis des termites Nasutitermes macrocephalus a été décrite pour un extrait de Sextonia rubra à l'acétate d'éthyle ainsi que pour l'un de ses constituants (rubrynolide) (Rodrigues et al., Pest. Manag. Sci., 67 : 1420-1423, 201 1 ) [7], ainsi qu'une activité fongicide vis-à-vis des champignons du bois (Demande de Brevet FR 2959642) [8]. Toutefois, ces rémanents de l'industrie forestière (ou déchets de scieries) ne sont actuellement pas valorisés en Guyane.
Description de l'invention
Les Inventeurs ont maintenant mis en évidence de manière tout à fait inattendue de nouveaux produits insecticides, en particulier larvicides, extraits à partir de l'espèce de bois Sextonia rubra, vis-à-vis des Culicidae formant une famille d'insectes communément appelés moustiques, plus particulièrement vis-à-vis du genre Aedes, préférentiellement vis-à-vis de l'espèce Aedes aegypti.
Ainsi l'extrait acétate d'éthyle de Sextonia rubra ainsi que ses deux constituants (rubrénolide et rubrynolide) pris indépendamment ont démontré au laboratoire une excellente activité larvicide vis-à-vis du moustique Aedes aegypti, avec en particulier une DL50 (dose létale médiane) de 3,15 g/ml à 24h sur la souche de laboratoire PAEA, et des DL50 de 0,6 et 3,8 g/ml pour le rubrénolide et le rubrynolide, respectivement, sur cette même souche.
Les avantages quant à la production et l'utilisation de ces nouveaux agents insecticides vis-à-vis du moustique sont multiples : efficacité, renouvelable, meilleure biodégradabilité en général, un meilleur bilan CO2, pas de bioaccumulation dans la chaîne alimentaire, pas de persistance dans l'environnement et un rapport prix/performance très acceptable. En outre, ces produits naturels n'induisent pas de surexploitation forestière puisqu'ils peuvent être préparés à partir des déchets d'exploitation forestière qui actuellement ne sont pas valorisés.
La présente invention a donc pour objet l'utilisation d'une composition comprenant un extrait de Sextonia rubra ou l'un de ses constituants (rubrénolide et/ou rubrynolide) en tant qu'agent insecticide vis-à-vis des Culicidae (ou moustiques), en particulier en tant qu'agent larvicide, plus particulièrement vis-à-vis des moustiques du genre Aedes, préférentiellement vis-à-vis de l'espèce Aedes aegypti. On entend par « agent insecticide/larvicide vis-à-vis d'une souche de moustique » au sens de la présente invention, un composé conduisant à une mortalité des larves de moustiques mises en présence de ce composé, par exemple dans le cadre d'un essai en gobelets réalisés suivant le protocole recommandé par l'OMS (Guidelines for Laboratory and Field Testing of Mosquito Larvicides,
WHO/CDS/WHOPES/GCDPP/2005.13, 2005) [12], et pour lequel, selon les critères de l'OMS pour valider les tests, la mortalité dans les lots témoin est inférieure à 20%.
Selon un mode de réalisation particulier de l'invention, on entend par
« extrait de Sextonia rubra » au sens de la présente invention, un extrait brut de Sextonia rubra ou un extrait comprenant au moins l'un de ses constituants, à savoir le rubrynolide et/ou le rubrénolide, qui peuvent être utilisés comme agent insecticide dans le cadre de la présente invention.
Lesdits extraits de bois durables amazoniens sont obtenus à partir de déchets d'exploitation forestière par n'importe quel solvant et méthode appropriés, y compris des méthodes d'extraction par solvant, ou de nouvelles technologies d'extraction (CO2, supercritique, micro-ondes, ultrasons, etc .). Le procédé d'extraction n'est pas critique, et peut être sélectionné par l'homme du métier en fonction de la concentration en extractibles souhaitée, et du type de produit larvicide attendu. De préférence, les extraits de bois durable amazonien sont obtenus par un procédé d'extraction par solvant, préférentiellement par solvant polaire. On entend par « solvant polaire » au sens de la présente invention, un solvant présentant un moment dipolaire différent de zéro, et en particulier supérieur à 1 ,5. Par exemple, le solvant polaire est un solvant protique tel que l'eau ou un alcool (méthanol, éthanol, etc ..) ou un mélange de ceux-ci par exemple hydroalcoolique, ou un solvant aprotique tel qu'un ester (acétate d'éthyle, etc.)
Par exemple, la méthode d'extraction utilisée est la macération dans un solvant polaire (eau ; alcool par exemple méthanol, éthanol ; mélange hydroalcoolique ; ester par exemple acétate d'éthyle, etc .), pendant 12 à 72 heures, de préférence pendant 24 heures, à une température de 22 à 27 °C, de préférence à température ambiante (25°C). Pour ce faire un volume de 2 à 5 litres de solvant, de préférence d'environ 3 litres de solvant est utilisé pour 300 à 1000 g de copeaux de bois, de préférence pour environ 800 g de copeaux de bois.
Selon un mode de réalisation particulier de l'invention, l'extrait de Sextonia est un extrait acétate d'éthyle.
La présente invention a encore pour objet un procédé de traitement larvicide, ledit procédé comprenant l'application d'une quantité efficace d'une composition comprenant un extrait de Sextonia rubra, du rubrynolide et/ou du rubrénolide sur les gîtes larvaires.
On entend par « quantité efficace » au sens de la présente invention, une dose conduisant à 100% de mortalité des larves étudiées, afin d'éviter tout développement des phénomènes de résistance. Par exemple, la concentration minimale correspondant à une quantité efficace est donc de 18 g/ml (ppm) pour l'extrait de Sextonia rubra pour obtenir 100% de mortalité à 24h. Concernant le rubrénolide, cette valeur est de 2 g/ml à 24h. Concernant le rubrynolide, cette valeur est de 17 g/ml à 24h.
Selon un mode de réalisation particulier du procédé de l'invention, l'application est réalisée par pulvérisation. Par exemple, l'extrait de Sextonia rubra, du rubrynolide et/ou du rubrénolide est(sont) dissous dans de l'éthanol puis dilué(s) dans de l'eau jusqu'à l'obtention de la concentration souhaitée, puis ces préparations hydro-alcooliques sont ensuite pulvérisées sur les gîtes larvaires.
D'autres avantages pourront encore apparaître à l'homme du à la lecture des exemples ci-dessous.
EXEMPLES
EXEMPLE 1 : PREPARATION D'EXTRAITS BRUTS DE SEXTONIA RUBRA, A PARTIR DESQUELS SONT EXTRAITS SES CONSTITUANTS
Extrait acétate d'éthyle
Un extrait acétate d'éthyle de Sextonia rubra a été obtenu selon la procédure précédemment décrite dans Rodrigues et al. (2010, précédemment cité) [6] par macération dans le solvant de bois préalablement séché à température ambiante et broyé.
Pour ce faire, la poudre de bois de Sextonia rubra (200g) a été placée dans un erlenmeyer et extraite (3 x 500ml d'acétate d'éthyle) sous agitation, à température ambiante pendant 48h. Après chaque extraction, la solution a été filtrée, les solutions issues des différentes extractions ont été combinées, et le solvant a été évaporé sous pression réduite à une température de 30°C. Le rendement obtenu pour l'extrait a été de 4,2%.
L'extrait (3,6g) a ensuite été purifié selon une méthode précédemment décrite dans Rodrigues et al. (2010, précédemment cité) [6], par chromatographie sur colonne ouverte de silice en utilisant comme éluant l'acétate d'éthyle (600ml) puis le méthanol (rinçage). L'éluat obtenu avec l'acétate d'éthyle a ensuite été évaporé (obtention de 3,0g de résidu beige), et trituré avec de l'hexane. La fraction insoluble a ensuite été récupérée par filtration et séchée sous vide (316,6mg). Cette fraction contient un mélange de rubrénolide et de rubrynolide. La séparation des deux constituants a ensuite été effectuée selon la procédure décrite dans Thijs et Zwanenburg (Tetrahedron, 60 : 5237-5252, 2004) [9]. Le mélange a été dissout dans 6,5ml d'éthanol absolu. Une solution de nitrate d'argent (1 g dans 15ml d'éthanol) a ensuite été ajoutée. L'ensemble a été laissé à précipiter pendant 4h. Le précipité (contenant le rubrynolide à purifier) a ensuite été récupéré par filtration et séché sous vide. Le filtrat a été évaporé sous pression réduite pour conduire au rubrénolide à purifier. Le précipité contenant le rubrynolide a été dissout dans 5ml de solution de cyanure de sodium (NaCN) et le mélange a été extrait avec 10ml d'éther diéthylique. La phase organique a été séchée au sulfate de magnésium (Mg2SO4), filtrée, et le solvant a été évaporé sous pression réduite. Le rubrynolide pur a ainsi été obtenu (21 ,6mg). Le résidu sec obtenu à partir du filtrat a été repris dans 80ml d'eau MilliQ et extrait avec 80ml d'éther diéthylique. La phase organique contenant un précipité jaune a été récupérée, filtrée et séchée une fois limpide sur sulfate de magnésium avant d'être à nouveau filtrée. Après évaporation du solvant, 106,8mg de rubrénolide pur ont été obtenus. L'acétate d'éthyle utilisé pour l'extraction ne présente pas de toxicité, les seuls risques relevés étant des irritations des yeux, des somnolences ou des vertiges. L'emploi de ce solvant permet donc d'obtenir un extrait dans de bonnes conditions de sécurité. Enfin, les rendements de l'extrait brut >4%, de l'extrait du rubrynolide de 0,6% et de l'extrait du rubrénolide (molécule la plus active) de 2,9% obtenus, font de ce procédé d'extraction par macération un procédé simple à mettre en œuvre et efficace en termes de rendement ; ce qui permet d'envisager favorablement un passage à l'échelle industrielle en ce qui concerne la production de l'extrait et de ses composés.
Extraits alcooliques
Des extraits alcooliques de Sextonia rubra ont été obtenus par macération dans le méthanol ou l'éthanol de bois préalablement séché à température ambiante et broyé.
Pour ce faire, des copeaux de bois de Sextonia rubra (200mg) ont été mis à macérer dans 5 ml de chacun des solvants choisis, à température ambiante. Le mélange a alors été placé dans un bain à ultrasons pendant 4 x 15 minutes, puis centrifugé et filtré afin de récupérer la solution. Le solvant a été évaporé sous pression réduite à une température de 30°C.
Les rendements d'extraction obtenus pour les différents solvants sont les suivants : éthanol, 4,6% ; méthanol, 5,1 %. Un extrait acétate d'éthyle a été obtenu dans les mêmes conditions et un rendement d'extraction de 4,2% a été obtenu.
La composition relative des extraits remis en suspension dans le méthanol a ensuite été analysée par chromatographie liquide haute performance (CLPH) en utilisant une colonne de type C18 et un gradient eau/acétonitrile additionné de 0,1 % d'acide formique pour l'élution. Par comparaison avec des standards, le rubrénolide et le rubrynolide ont été identifiés grâce à un détecteur à diffusion de lumière (DEDL), et les aires respectives des pics correspondants ont été mesurées. Cette analyse a permis de mettre en évidence que les extraits sont quasi-exclusivement composés de ces deux composés. Les proportions relatives de chacun des composés dans les différents extraits obtenus ont ainsi été calculées. Les résultats suivants ont été obtenus :
Figure imgf000011_0001
Les proportions relatives en rubrynolide et rubrénolide dans les trois extraits sont équivalentes. Dans la mesure où il a été précédemment démontré que cette activité est associée à ces deux composés, ces extraits doivent présenter des activités larvicides équivalentes.
Il est à noter que même si le méthanol permet d'obtenir un rendement >5%, légèrement supérieur aux deux autres solvants, il présente un risque de toxicité par inhalation, par contact cutané et en cas d'ingestion qui nécessite des précautions supplémentaires lors de sa manipulation en laboratoire.
En revanche tout comme l'acétate d'éthyle, l'éthanol utilisé pour l'extraction ne présente pas de problèmes majeurs de toxicité lors de la manipulation au laboratoire, les seuls risques relevés étant des irritations des yeux et des somnolences. L'emploi de ces solvants permet donc d'obtenir des extraits dans de bonnes conditions de sécurité. Enfin, les rendements des extraits bruts >4% et les proportions en rubrynolide et rubrénolide obtenus, font de ce procédé d'extraction par macération un procédé simple à mettre en œuvre et efficace ; ce qui permet d'envisager favorablement un passage à l'échelle industrielle en ce qui concerne la production des extraits et de ses composés.
EXEMPLE 2 : ACTIVITE INSECTICIDE DE L'EXTRAIT ACETATE D'ETHYLE DE SEXTONIA RUBRA, ET DE SES CONSTITUANTS
Les essais biologiques ont été réalisés sur larves de moustiques Aedes aegypti de la souche de laboratoire PAEA sensible à tous les insecticides. Le protocole décrit ci-après a été adapté d'après les protocoles de l'OMS. Cette souche originaire de Polynésie française, est maintenue depuis une dizaine d'années à l'insectarium de l'Institut Pasteur de la Guyane, à Cayenne. L'élevage des moustiques a été réalisé en conditions naturelles : température de 28°C±2°C, humidité de 80%±20%, et durée du jour 12:12h±20min au cours de l'année. Les œufs ô'Aedes aegypti ont été maintenus secs sur des bandes de papier buvard à la température de l'insectarium. L'éclosion a été réalisée en plaçant ces bandes dans l'eau sous une cloche à vide pendant au moins 20min. Les larves ainsi obtenues ont été nourries avec des comprimés de levure. Les larves au stade 3-4eme stade de croissance ont ensuite été utilisées pour les essais d'activité des extraits et constituants. 100 larves ont été transférées dans des gobelets en plastique contenant 99ml d'eau distillée. Quatre gobelets par concentration (4 x 25 larves) et au moins 5 concentrations de chaque extrait ou constituant dilué dans l'éthanol (extrait brut de Sextonia rubra : 1 , 2, 3, 4, 5, 7, 10, 25, 35, 50, 75, 100 pg/ml ; rubrénolide : 0,1 , 0.3, 0.5, 0.7, 1 , 1 .5, 2 pg/ml ; rubrynolide : 0.1 , 0.3, 0.5, 0.7, 1 , 1 .5, , 4, 6, 8 pg/ml) ont été utilisés pour mesurer des mortalités allant de 0 à 100%. Chaque concentration d'extrait ou de constituant (1 ml) a été ajoutée dans le gobelet. Des témoins ont également été réalisés en ajoutant au gobelet 1 ml d'éthanol. La mortalité a été évaluée à 24h et 48h après exposition des larves au produit à tester (extrait brut, constituant isolé, éthanol).
Les valeurs de mortalité suivantes (en pg/ml, équivalent ppm) ont été obtenues :
A 24h A 48h
Extrait/Constituant DL50 (ES) LD90 (ES) LD50 (ES) LD90 (ES)
Sextonia rubra 3, 150 (0,018) 8,442 (0,029) 2,062 (0,018) 4,513 (0,022)
Rubrénolide 0,605 (0,023) 2, 1 10 (0,041 ) 0,300(0,024) 0,788 (0,027)
Rubrynolide 3,840 (0,018) 8,909 (0,031 ) 2, 105 (0,023) 8,200 (0,043)
Dichlorvos 0,039 (0,012) 0,064 (0,026) 0,029 (0,012) 0,049 (0,020)
Spinosad 0,387 (0,025) 1 , 1 18 (0,065) 0, 193 (0,020) 0,444 (0,028) Témoin négatif [éthanol à 1 % en volume (1 ml d'éthanol ajouté à 99 ml d'eau)] : mortalité moyenne sur 100 larves : A 24h, moyenne 0,63 % (ES 0,52%), à 48h moyenne 1 ,75 % (ES 1 ,1 1 %).
Les valeurs obtenues, en particulier pour le rubrénolide, sont dans la même gamme que celles obtenues pour le spinosad (DL50 à 24h de 0,6 g/ml pour le rubrénolide contre 0,4 g/ml pour le spinosad).
En comparaison, en Guyane, la lutte antilarvaire repose sur le traitement des gîtes de manière mécanique ou chimique avec une formulation en granulés de Bacillus thuringiensis var. israeliensis ou Bti (Vectobac®G). Ce produit n'a pas été testé dans le cadre de la présente étude, mais des expériences menées à l'Institut Pasteur de la Guyane ont démontré pour cette formulation des valeurs de DL50 à 24h de 0,1 1 g/ml et des valeurs de DL95 à 24h de 0,22 g/ml, sur la souche PAEA.
Il ressort de la présente étude que l'extrait acétate d'éthyle de Sextonia rubra présente une activité larvicide, en particulier vis-à-vis des larves du moustique Aedes aegypti. De plus, le rubrénolide issu de l'extrait acétate d'éthyle de bois de Sextonia rubra, conduit à des mortalités sur les larves de la souche PAEA du même ordre de grandeur ou meilleures que celles obtenues pour des produits connus pour leur activité larvicide, comme le spinosad ou le Bti utilisé comme traitement antilarvaire en Guyane.
Listes des références
1 ) Simmons et al., N. Engl. J. Med., 366 : 1423-1432, 2012
2) OMS (WHO), Dengue et dengue hémorragique, http://www.who.int/mediacentre/factsheets/fs1 17/fr/, 2014
3) Dusfour et al., Mem. Inst. Oswaldo Cruz, 106 : 346-352, 201 1
4) Regnault-Roger et al., Biopesticides d'origine végétale, Paris : Tec & Doc Lavoisier, 2008
5) Van der Weff, Novon, 7 : 436-439, 1997
6) Rodrigues, Analyse et valorisation bioinspirée des métabolites secondaires à l'origine de la durabilité naturelle des bois exploités de Guyane française, Thèse de doctorat, 2010
7) Rodrigues et al., Pest. Manag. Sci., 67 : 1420-1423, 201 1
8) Demande de Brevet FR 2959642
9) Thijs et Zwanenburg, Tetrahedron, 60 : 5237-5252, 2004
10) Jansen et Beebe, Microbes Infect., 12(4) : 272-279, 2010
1 1 ) Fouque et Carincil, Bull. Soc. Pathol. Exot., 89(2) : 1 15-1 19, 1996
12) OMS (WHO), Guidelines for Laboratory and Field Testing of Mosquito Larvicides, WHO/CDS/WHOPES/GCDPP/2005.13, 2005

Claims

REVENDICATIONS
1 ) Utilisation d'une composition comprenant un extrait brut de Sextonia rubra, du rubrynolide et/ou du rubrénolide en tant qu'agent insecticide vis-à-vis d'une souche de moustique.
2) Utilisation selon la revendication 1 , où l'agent insecticide est un agent larvicide. 3) Utilisation selon la revendication 1 ou 2, où la souche de moustique est choisie parmi la famille des Culicidae.
4) Utilisation selon la revendication 3, où la souche de moustique est du genre Aedes.
5) Utilisation selon la revendication 4, où la souche de moustique est l'espèce Aedes aegypti.
6) Utilisation selon l'une quelconque des revendications 1 à 5, où l'extrait brut de Sextonia rubra est un extrait acétate d'éthyle.
7) Procédé de traitement larvicide, ledit procédé comprenant l'application d'une quantité efficace d'une composition comprenant un extrait brut de Sextonia rubra, du rubrynolide et/ou du rubrénolide sur les gîtes larvaires.
8) Procédé selon la revendication 6, où l'application se fait par pulvérisation.
PCT/FR2015/052537 2014-09-23 2015-09-22 Propriétés insecticides d'un extrait de sextonia rubra, et de ses constituants WO2016046489A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112017005863-4A BR112017005863B1 (pt) 2014-09-23 2015-09-22 uso de uma composição, e, processo de tratamento larvicida
AU2015323631A AU2015323631B2 (en) 2014-09-23 2015-09-22 Insecticide properties of an extract of Sextonia rubra, and the constituents thereof
US15/513,874 US10834926B2 (en) 2014-09-23 2015-09-22 Insecticide properties of an extract of Sextonia rubra, and the constituents thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1458946 2014-09-23
FR1458946A FR3025979B1 (fr) 2014-09-23 2014-09-23 Proprietes insecticides d'un extrait de sextonia rubra, et de ses constituants

Publications (1)

Publication Number Publication Date
WO2016046489A1 true WO2016046489A1 (fr) 2016-03-31

Family

ID=51932470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/052537 WO2016046489A1 (fr) 2014-09-23 2015-09-22 Propriétés insecticides d'un extrait de sextonia rubra, et de ses constituants

Country Status (5)

Country Link
US (1) US10834926B2 (fr)
AU (1) AU2015323631B2 (fr)
BR (1) BR112017005863B1 (fr)
FR (1) FR3025979B1 (fr)
WO (1) WO2016046489A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4245139A1 (fr) 2022-03-15 2023-09-20 Centre national de la recherche scientifique Compositions comprenant un extrait botanique en tant qu'agent insecticide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011138570A1 (fr) * 2010-05-07 2011-11-10 Centre National De La Recherche Scientifique Extraits de bois durables amazoniens, leur procédé d'obtention, et leur utilisation comme agent biocide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011138570A1 (fr) * 2010-05-07 2011-11-10 Centre National De La Recherche Scientifique Extraits de bois durables amazoniens, leur procédé d'obtention, et leur utilisation comme agent biocide
FR2959642A1 (fr) 2010-05-07 2011-11-11 Centre Nat Rech Scient Extraits de bois durables amazoniens, leur procede d'obtention, et leur utilisation comme agent biocide

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Guidelines for Laboratory and Field Testing of Mosquito Larvicides", WHO/CDS/WHOPES/GCDPP/2005.13, 2005
ALICE MS RODRIGUES ET AL: "The termiticidal activity of Sextonia rubra (Mez) van der Werff (Lauraceae) extract and its active constituent rubrynolide", PEST MANAGEMENT SCIENCE, vol. 67, no. 11, 26 November 2011 (2011-11-26), pages 1420 - 1423, XP055189766, ISSN: 1526-498X, DOI: 10.1002/ps.2167 *
DENGUE ET DENGUE HÉMORRAGIQUE, 2014, Retrieved from the Internet <URL:http://www.who.int/mediacentre/factsheets/fs117/fr>
DUSFOUR ET AL., MEM. INST. OSWALDO CRUZ, vol. 106, 2011, pages 346 - 352
FOUQUE; CARINCI, BULL. SOC. PATHOL. EXOT., vol. 89, no. 2, 1996, pages 115 - 119
FOUQUE; CARINCIL, BULL. SOC. PATHOL. EXOT., vol. 89, no. 2, 1996, pages 115 - 119
JANSEN; BEEBE, MICROBES INFECT., vol. 12, no. 4, 2010, pages 272 - 279
N C FRANCA ET AL: "Rubrenolide and rubrynolide: An alkylene-alkyne pair from Nectandra rubra*", PHYTOCHEMISTRY, 1 January 1977 (1977-01-01), pages 257 - 262, XP055189760, Retrieved from the Internet <URL:http://ac.els-cdn.com/S0031942200867977/1-s2.0-S0031942200867977-main.pdf?_tid=8d73b4ba-fd65-11e4-8d4d-00000aab0f02&acdnat=1431957513_642b120115df4e16b9ddd31b30855b35> [retrieved on 20150518] *
REGNAULT-ROGER ET AL.: "Biopesticides d'origine végétale", 2008, TEC & DOC LAVOISIER
RODRIGUES ET AL., PEST. MANAG. SCI., vol. 67, 2011, pages 1420 - 1423
RODRIGUES: "Analyse et valorisation bioinspirée des métabolites secondaires à l'origine de la durabilité naturelle des bois exploités de Guyane française", THÈSE DE DOCTORAT, 2010
SIMMONS ET AL., N. ENGL. J. MED, vol. 366, 2012, pages 1423 - 1432
SIMMONS ET AL., N. ENGL. J. MED., vol. 366, 2012, pages 1423 - 1432
THÈSE DE DOCTORAT, 2010
THIJS; ZWANENBURG, TETRAHEDRON, vol. 60, 2004, pages 5237 - 5252
VAN DER WEFF, NOVON, vol. 7, 1997, pages 436 - 439

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4245139A1 (fr) 2022-03-15 2023-09-20 Centre national de la recherche scientifique Compositions comprenant un extrait botanique en tant qu'agent insecticide
WO2023174908A1 (fr) 2022-03-15 2023-09-21 Centre National De La Recherche Scientifique Compositions comprenant un extrait botanique en tant qu'agent insecticide

Also Published As

Publication number Publication date
FR3025979A1 (fr) 2016-03-25
BR112017005863A2 (pt) 2018-02-06
AU2015323631A1 (en) 2017-05-04
FR3025979B1 (fr) 2017-12-15
US10834926B2 (en) 2020-11-17
AU2015323631B2 (en) 2019-10-31
US20170238556A1 (en) 2017-08-24
BR112017005863B1 (pt) 2021-03-09

Similar Documents

Publication Publication Date Title
López et al. Composition and anti-insect activity of essential oils from Tagetes L. species (Asteraceae, Helenieae) on Ceratitis capitata Wiedemann and Triatoma infestans Klug
Tabanca et al. Comparative investigation of Umbellularia californica and Laurus nobilis leaf essential oils and identification of constituents active against Aedes aegypti
Jaglan et al. Evaluation of neem (Azadirachta indica A. Juss) extracts against American bollworm, Helicoverpa armigera (Hubner)
EP2405760B1 (fr) Extrait d&#39;euodia suaveolens scheff, compositions repulsives et leur utilisation
WO2018229450A1 (fr) Extrait de noeuds d&#39;arbres appartenant au genre pinus comme fongicide contre les infections à oomycètes
KR101174042B1 (ko) 해충의 살충 및 기피 작용을 갖는 혼합 추출물 및 이를 이용한 제품
Mouna et al. Insecticidal effect of two aqueous extracts from the leaves of Salvia officinalis and Eucalyptus camaldulensis against Aphis fabae
Sigamani et al. Larvicidal potency of the extracts from Chlorella sp. against Aedes aegypti
Srinivasan et al. Chemical composition and larvicidal activity of Elaeagnus indica Servett.(Elaeagnaceae) plant leaf extracts against dengue and malaria vectors
WO2016046489A1 (fr) Propriétés insecticides d&#39;un extrait de sextonia rubra, et de ses constituants
KR100868314B1 (ko) 비사볼란겔론 및 그 유도체를 포함하는 천연 살충제 조성물
Séguin et al. Chemical Composition and Antiplasmodial Activity of the Essential Oil of Rhododendron subarcticum Leaves from Nunavik, Québec, Canada
Boutoumi et al. Essential oil from Ruta montana L.(Rutaceae) chemical composition, insecticidal and larvicidal activities
KR20130026742A (ko) 모기 등 해충의 퇴치를 위해 은행나무에서 추출하는 천연살충성분 및 그의 제조방법.
KR100484887B1 (ko) 천연 모기 기피제 조성물
Santos-Oliveira et al. Toxicity of Azadirachta indica to leaf-cutting ant Atta sexdens rubropilosa (Hymenoptera: Formicidae)
Jani et al. Chemical composition, antibacterial and α-glucosidase inhibitory activities of the essential oils of Neolitsea coccinea (Lauraceae)
RU2619300C2 (ru) Способ получения состава с гербицидной активностью
Saidana et al. Insecticidal activities of Tunisian halophytic plant extracts against larvae and adults of Tribolium confusum
Shunmugadevi et al. An evaluation of toxic compounds from Melia dubia (Cav) leaf extract against stored grain pest Callosobruchus maculatus (Fab.)
KR20070065931A (ko) 정향으로부터 분리, 정제한 유제놀을 함유하는 소나무재선충 방제약제 조성물
JP4621904B2 (ja) 光学活性な3−オキサビシクロ[3.3.0]オクタン骨格を有する化合物およびその使用
Babandi et al. Chemical composition and Larvicidal efficacy of Ficus sycomorus leaf extract against major malaria vector Anopheles coluzzii
FR3031005B1 (fr) Fongicide sous forme de solution biologique et ecologique pour la croissance vegetale
Mahmoudi et al. TROPICAL AGRICULTURAL SCIENCE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15775778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15513874

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017005863

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015323631

Country of ref document: AU

Date of ref document: 20150922

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15775778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112017005863

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170322