WO2016045480A1 - Method for preparing obeticholic acid - Google Patents

Method for preparing obeticholic acid Download PDF

Info

Publication number
WO2016045480A1
WO2016045480A1 PCT/CN2015/088238 CN2015088238W WO2016045480A1 WO 2016045480 A1 WO2016045480 A1 WO 2016045480A1 CN 2015088238 W CN2015088238 W CN 2015088238W WO 2016045480 A1 WO2016045480 A1 WO 2016045480A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
protecting group
group
preparing
Prior art date
Application number
PCT/CN2015/088238
Other languages
French (fr)
Chinese (zh)
Inventor
张富尧
陈谦益
刘鹏
Original Assignee
上海源力生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海源力生物技术有限公司 filed Critical 上海源力生物技术有限公司
Priority to CN201580035031.3A priority Critical patent/CN106459136B/en
Publication of WO2016045480A1 publication Critical patent/WO2016045480A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane
    • C07J9/005Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane containing a carboxylic function directly attached or attached by a chain containing only carbon atoms to the cyclopenta[a]hydrophenanthrene skeleton
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Urology & Nephrology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Steroid Compounds (AREA)

Abstract

Provided are a compound represented by formula (III) and a preparation method therefor, wherein R1 is a hydroxyl protective group and preferably is MOM; and also provided is a method for preparing obeticholic acid by using the compound. The preparation method has moderate reaction conditions, few by-products and simple and convenient operation, and is suitable for large-scale production.

Description

一种奥贝胆酸的制备方法Preparation method of oleic acid 技术领域Technical field
本发明涉及一种奥贝胆酸的制备方法。The invention relates to a preparation method of oleic acid.
背景技术Background technique
奥贝胆酸(如式I所示)是一种半合成鹅去氧胆酸衍生物,用于治疗门静脉血压过高以及肝脏疾病,包括原发性胆汁性肝硬化、胆汁酸腹泻、非酒精性脂肪性肝炎。奥贝胆酸是通过激活FXR受体发挥作用,FXR是一种核受体,主要在肝脏、肠、肾脏中表达,它能够调节与胆汁酸、脂肪和糖代谢相关基因的表达,还能调节免疫反应。激活FXR能够抑制胆汁酸合成,预防胆汁酸过度积累导致的毒性反应。Abecholic acid (as shown in Formula I) is a semi-synthetic chenodeoxycholic acid derivative for the treatment of portal hypertension and liver disease, including primary biliary cirrhosis, bile acid diarrhea, non-alcohol Sexual steatohepatitis. Obecholic acid acts by activating FXR receptors, a nuclear receptor that is expressed primarily in the liver, intestines, and kidneys. It regulates the expression of genes involved in bile acids, fats, and glucose metabolism, and regulates immune response. Activation of FXR inhibits bile acid synthesis and prevents toxic reactions caused by excessive accumulation of bile acids.
Figure PCTCN2015088238-appb-000001
Figure PCTCN2015088238-appb-000001
WO2002072598首次公开了奥贝胆酸的制备方法(如下所示),该方法通过化合物VI在强碱性条件下用碘乙烷直接烷基化得到化合物VII,化合物VII经过还原和羧基脱保护制得奥贝胆酸。但由于用碘乙烷直接烷基化的选择性差和收率过低,该合成过程很难实现放大合成。WO2002072598 discloses for the first time the preparation method of oleic acid (as shown below), which is obtained by direct alkylation of compound VI with ethyl iodide under strong basic conditions to obtain compound VII, which is obtained by reduction and decarboxylation of compound VII. Abecholic acid. However, due to the poor selectivity and low yield of direct alkylation with iodoethane, it is difficult to achieve amplification synthesis in this synthesis process.
Figure PCTCN2015088238-appb-000002
Figure PCTCN2015088238-appb-000002
奥贝胆酸合成方法(WO2002072598)Method for synthesizing oleic acid (WO2002072598)
WO2006122977对以上合成工艺进行了改进(如下所示),该方法通过把化合物IX转化为硅基保护的烯醇化合物X,化合物X与乙醛缩合脱水后得到化合物Vb,化合物Vb经过在碱性条件下钯碳加氢还原得到化合物XI,化合物XI经过羰基还原后制得奥贝胆酸。 WO2006122977 has improved the above synthesis process (as shown below) by converting compound IX to a silicon-based protected enol compound X, which is condensed and dehydrated with acetaldehyde to give compound Vb, and compound Vb is subjected to basic conditions. The lower palladium carbon is hydrogenated and reduced to obtain compound XI, and compound XI is reduced by carbonyl to obtain oleic acid.
Figure PCTCN2015088238-appb-000003
Figure PCTCN2015088238-appb-000003
奥贝胆酸合成方法(WO2006122977)Method for synthesizing oleic acid (WO2006122977)
该合成工艺虽然可以实现放大合成,然而,在化合物Vb在强碱性条件下钯碳加氢还原和强碱性高温处理制备化合物XI过程中产生大量的副产物,从而导致该步反应的分离收率较低(约60%),该步反应的低收率可能是由于化合物Vb和XI中的未保护羟基在强碱性(30%NaOH)和高温(95-105℃)条件下发生脱水等副反应造成的。Although the synthesis process can achieve amplification synthesis, however, a large amount of by-products are generated during the preparation of compound XI by the hydrogenation reduction of palladium carbon and the high-alkaline high-temperature treatment of compound Vb under strong alkaline conditions, thereby causing the separation of the reaction. The rate is low (about 60%), and the low yield of this step may be due to dehydration of unprotected hydroxyl groups in compounds Vb and XI under strong alkaline (30% NaOH) and high temperature (95-105 ° C) conditions. Caused by side reactions.
发明内容Summary of the invention
针对现有奥贝胆酸的合成方法中存在的缺点,发明人经过潜心研究发现,通过对化合物V的羟基进行保护,可以避免强碱性和高温条件下发生脱水等副反应,大大提高了奥贝胆酸的合成效率,从而提供了一种副产物少,操作简便,合成成本低廉,适于大规模生产的奥贝胆酸制备方法。In view of the shortcomings in the synthetic method of the existing oleic acid, the inventors have discovered through enthusiasm that by protecting the hydroxyl group of the compound V, side reactions such as dehydration under strong alkaline and high temperature conditions can be avoided, and the ozone is greatly improved. The synthesis efficiency of choline acid provides a preparation method of oleic acid which is less suitable for large-scale production, has less by-products, is easy to operate, and has low synthesis cost.
本发明提供了一种合成奥贝胆酸的新方法, The invention provides a new method for synthesizing oleic acid,
Figure PCTCN2015088238-appb-000004
Figure PCTCN2015088238-appb-000004
其中,R1为羟基保护基,R2为羧基保护基。Wherein R 1 is a hydroxy protecting group and R 2 is a carboxy protecting group.
具体来说,该合成方法包括以下步骤:Specifically, the synthesis method includes the following steps:
1)式V化合物通过羟基保护得到如式IV所示的化合物;1) a compound of formula V is protected by a hydroxy group to give a compound of formula IV;
2)式IV在碱性条件下通过钯碳催化加氢反应制得如式III所示的化合物;2) Formula IV is obtained by catalytic hydrogenation of palladium on carbon under basic conditions to obtain a compound of formula III;
3)式III经过还原制得如式II所示的化合物;3) Formula III is reduced to obtain a compound of formula II;
4)式II在酸性条件下脱除羟基保护制得如式I所示的奥贝胆酸。4) Formula II is deprotected by hydroxy groups under acidic conditions to produce oleic acid as shown in Formula I.
其中,化合物V根据WO2006122977中描述的方法合成得到。Among them, the compound V is synthesized according to the method described in WO2006122977.
本发明一个优选的实施方案中,羟基保护基R1为MOM,羧基保护基R2为乙基。In a preferred embodiment of the invention, the hydroxy protecting group R 1 is MOM and the carboxy protecting group R 2 is ethyl.
本发明另一个优选的实施方案中,羟基保护基R1为MOM,羧基保护基R2为甲基。In another preferred embodiment of the invention, the hydroxy protecting group R 1 is MOM and the carboxy protecting group R 2 is methyl.
在一个特别优选的实施方案中,本发明提供奥贝胆酸的合成路线如下: In a particularly preferred embodiment, the present invention provides a synthetic route for oleic acid as follows:
Figure PCTCN2015088238-appb-000005
Figure PCTCN2015088238-appb-000005
具体来说,该合成方法包括以下步骤:Specifically, the synthesis method includes the following steps:
1)式Va化合物与MOMCl反应得到如式IVa所示的化合物;1) reacting a compound of formula Va with MOMCl to give a compound of formula IVa;
2)式IVa在碱性条件下通过钯碳催化加氢反应制得如式IIIa所示的化合物;2) Formula IVa is obtained by catalytic hydrogenation of palladium on carbon under basic conditions to obtain a compound of formula IIIa;
3)式IIIa经过硼氢化钠还原制得如式IIa所示的化合物;3) a compound of formula IIIa is obtained by reduction of sodium borohydride of formula IIIa;
4)式IIa经过盐酸水解脱除羟基保护制得如式I所示的奥贝胆酸。4) Formula IIa is hydrolyzed by hydrochloric acid to remove hydroxy group protection to obtain oleic acid as shown in Formula I.
其中,化合物Va根据WO2006122977中描述的方法合成得到。Among them, the compound Va is synthesized according to the method described in WO2006122977.
本发明还提供一种如式IV所示的化合物,The invention also provides a compound of formula IV,
Figure PCTCN2015088238-appb-000006
Figure PCTCN2015088238-appb-000006
其中,R1为羟基保护基,R2为羧基保护基。Wherein R 1 is a hydroxy protecting group and R 2 is a carboxy protecting group.
本发明一个优选的实施方案中,羟基保护基R1为MOM,羧基保护基R2为乙基。In a preferred embodiment of the invention, the hydroxy protecting group R 1 is MOM and the carboxy protecting group R 2 is ethyl.
本发明另一个优选的实施方案中,羟基保护基R1为MOM,羧基保护基R2为甲基。In another preferred embodiment of the invention, the hydroxy protecting group R 1 is MOM and the carboxy protecting group R 2 is methyl.
本发明进一步提供一种如式IV所示的化合物的制备方法,化合物IV通过如式V所示的化合物进行羟基保护后制得。 The invention further provides a process for the preparation of a compound of formula IV, which is prepared by hydroxy protecting a compound of formula V.
Figure PCTCN2015088238-appb-000007
Figure PCTCN2015088238-appb-000007
其中,R1为羟基保护基,R2为羧基保护基。Wherein R 1 is a hydroxy protecting group and R 2 is a carboxy protecting group.
本发明还提供一种如式III所示的化合物,The invention also provides a compound of formula III,
Figure PCTCN2015088238-appb-000008
Figure PCTCN2015088238-appb-000008
其中,R1为羟基保护基。Wherein R 1 is a hydroxy protecting group.
本发明一个优选的实施方案中,羟基保护基R1为MOM。In a preferred embodiment of the invention, the hydroxy protecting group R 1 is MOM.
本发明进一步提供一种如式III所示的化合物的制备方法,化合物III通过如式VI所示的化合物在碱性条件下通过钯碳催化加氢反应制得,The invention further provides a process for the preparation of a compound of formula III, which is prepared by catalytic hydrogenation of palladium on carbon under basic conditions by a compound of formula VI.
Figure PCTCN2015088238-appb-000009
Figure PCTCN2015088238-appb-000009
其中,R1为羟基保护基。Wherein R 1 is a hydroxy protecting group.
本发明一个优选的实施方案中,羟基保护基R1为MOM。In a preferred embodiment of the invention, the hydroxy protecting group R 1 is MOM.
本发明还提供一种如式II所示的化合物, The invention also provides a compound of formula II,
Figure PCTCN2015088238-appb-000010
Figure PCTCN2015088238-appb-000010
其中,R1为羟基保护基。Wherein R 1 is a hydroxy protecting group.
本发明一个优选的实施方案中,羟基保护基R1为MOM。In a preferred embodiment of the invention, the hydroxy protecting group R 1 is MOM.
本发明进一步提供一种如式II所示的化合物的制备方法,化合物II通过如式III所示的化合物经过还原反应后制得,The present invention further provides a process for the preparation of a compound of the formula II, which is obtained by subjecting a compound of the formula III to a reduction reaction.
Figure PCTCN2015088238-appb-000011
Figure PCTCN2015088238-appb-000011
其中,R1为羟基保护基。Wherein R 1 is a hydroxy protecting group.
本发明一个优选的实施方案中,羟基保护基R1为MOM。In a preferred embodiment of the invention, the hydroxy protecting group R 1 is MOM.
本发明所使用的术语,除有相反的表述外,具有如下的含义:The terminology used in the present invention has the following meanings, unless stated to the contrary:
本发明的羟基保护基是本领域已知的适当的用于羟基保护的基团,参见文献(“Protective Groups in Organic Synthesis”,5Th Ed.T.W.Greene&P.G.M.Wuts)中的羟基保护基团。作为示例,优选地,所述的羟基保护基可以是(C1-10烷基或芳基)3硅烷基,例如:三乙基硅基,三异丙基硅基,叔丁基二甲基硅基,叔丁基二苯基硅基等;可以是C1-10烷基或取代烷基,优选烷氧基或芳基取代的烷基,更优选C1-6烷氧基取代的C1-6烷基或苯基取代的C1-6烷基,最优选C1-4烷氧基取代的C1-4烷基,例如:甲基,叔丁基,烯丙基,苄基,甲氧基甲基,乙氧基乙基,2-四氢吡喃基(THP)等;可以是(C1-10烷基或芳香基)酰基,例如:甲酰基,乙酰基,苯甲酰基等;可以是(C1-6烷基或C6-10芳基)磺酰基;也可以是(C1-6烷氧基或C6-10芳基氧基)羰基。The hydroxy protecting group of the present invention is a suitable group for hydroxy protection known in the art, see the hydroxy protecting group in the literature ("Protective Groups in Organic Synthesis", 5 Th Ed. TW Greene & P. GM Wuts). As an example, preferably, the hydroxy protecting group may be a (C 1-10 alkyl or aryl) 3 silane group, for example: triethylsilyl, triisopropylsilyl, tert-butyldimethyl Silyl, tert-butyldiphenylsilyl, etc.; may be a C 1-10 alkyl or substituted alkyl group, preferably an alkoxy or aryl substituted alkyl group, more preferably a C 1-6 alkoxy substituted C a 1-6 alkyl or phenyl substituted C 1-6 alkyl group, most preferably a C 1-4 alkoxy substituted C 1-4 alkyl group, for example: methyl, tert-butyl, allyl, benzyl , methoxymethyl, ethoxyethyl, 2-tetrahydropyranyl (THP), etc.; may be (C 1-10 alkyl or aryl) acyl, for example: formyl, acetyl, benzoyl An acyl group or the like; may be a (C 1-6 alkyl or C 6-10 aryl)sulfonyl group; or a (C 1-6 alkoxy group or a C 6-10 aryloxy)carbonyl group.
“羧酸保护基”是本领域已知的适当的用于羧酸保护的基团,参见文献(“Protective Groups in Organic Synthesis”,5Th Ed.T.W.Greene&P.G.M.Wuts) 中的羧酸保护基团,作为示例,优选地,所述的羧酸保护基可以是取代或非取代的C1-10的直链或支链烷基、取代或非取代的C2-10的直链或支链烯基或炔基、取代或非取代的C3-8的环状烷基、取代或非取代的C5-10的芳基或杂芳基、或(C1-8烷基或芳基)3硅烷基;优选C1-6的直链或支链烷基,更优选C1-4的直链或支链烷基。"Carboxylic acid protecting group" is a suitable group for carboxylic acid protection known in the art, see the carboxylic acid protecting group in the literature ("Protective Groups in Organic Synthesis", 5 Th Ed. TW Greene & P. GMWuts), As an example, preferably, the carboxylic acid protecting group may be a substituted or unsubstituted C 1-10 linear or branched alkyl group, a substituted or unsubstituted C 2-10 linear or branched alkenyl group. Or alkynyl, substituted or unsubstituted C 3-8 cyclic alkyl, substituted or unsubstituted C 5-10 aryl or heteroaryl, or (C 1-8 alkyl or aryl) 3 silane A straight or branched alkyl group of C 1-6 is preferred, and a linear or branched alkyl group of C 1-4 is more preferred.
本发明中所采用英文缩写具有如下意义:The English abbreviation used in the present invention has the following meanings:
缩写abbreviation 全称Full name
MOMClMOMCl 氯甲基甲醚Chloromethyl methyl ether
MOMMOM 甲氧基甲基Methoxymethyl
TMSTMS 三甲基硅基Trimethylsilyl
下表为实施例中所涉及的化合物的结构式The following table shows the structural formula of the compounds involved in the examples.
Figure PCTCN2015088238-appb-000012
Figure PCTCN2015088238-appb-000012
具体实施方式detailed description
以下将结合具体实例详细地解释本发明,使得本专业技术人员更全面地理解本发明,具体实例仅用于说明本发明的技术方案,并不以任何方式限定本发明。The invention will be explained in detail below with reference to specific examples, which are intended to provide a more complete understanding of the invention.
实施例1:制备化合物IVaExample 1: Preparation of Compound IVa
将化合物Va(646克,根据WO2006122977中的方法制得)溶于7升二氯甲烷中,加入762毫升二异丙乙基胺,冷却到0℃,加入166毫升MOMCl,反应体系升温至20℃,反应16小时,加水淬灭反应,加入10升乙酸乙酯萃取,分出有机相,有机相用无水硫酸钠干燥,过滤浓缩后得到696克化合物IVa,产率98%。Compound Va (646 g, prepared according to the method of WO2006122977) was dissolved in 7 liters of dichloromethane, 762 ml of diisopropylethylamine was added, cooled to 0 ° C, 166 ml of MOMCl was added, and the reaction system was heated to 20 ° C. After reacting for 16 hours, the reaction was quenched with water, and extracted with 10 liters of ethyl acetate. The organic phase was separated, and the organic phase was dried over anhydrous sodium sulfate and filtered to give 696 g of compound IVa.
1H NMR(400MHz,CDCl3)δ6.16(q,1H),4.76–4.59(m,2H),4.28–4.01(m,2H),3.70–3.48(m,1H),3.42–3.29(m,3H),2.56(dd,1H),2.46–2.14(m,4H),2.07–1.87(m,4H),1.87–1.68(m,5H),1.55–1.04(m,16H),1.00(s,3H),0.92(t,3H),0.78–0.62(m,3H). 1 H NMR (400 MHz, CDCl 3 ) δ 6.16 (q, 1H), 4.76 - 4.59 (m, 2H), 4.28 - 4.01 (m, 2H), 3.70 - 3.48 (m, 1H), 3.42 - 3.29 (m) , 3H), 2.56 (dd, 1H), 2.46–2.14 (m, 4H), 2.07–1.87 (m, 4H), 1.87–1.68 (m, 5H), 1.55–1.04 (m, 16H), 1.00 (s) , 3H), 0.92 (t, 3H), 0.78–0.62 (m, 3H).
实施例2:制备化合物IIIaExample 2: Preparation of Compound IIIa
将化合物IVa(696g)溶于乙醇(7升)中,加入钯碳(76g,10wt%)和500克30%氢氧化钠水溶液,在氢气(1.5大气压)和20℃下反应16h,然后升温到95℃,搅拌16小时,冷却到20℃后,过滤,浓缩后的母液用2N盐酸中和,加10升乙酸乙酯萃取,萃取液经浓缩后,析晶,过滤,干燥后得到606克化合物IIIa,产率92%。Compound IVa (696g) was dissolved in ethanol (7 liters), palladium on carbon (76 g, 10 wt%) and 500 g of 30% aqueous sodium hydroxide solution were added, and reacted under hydrogen (1.5 atm) and 20 ° C for 16 h, then warmed to After stirring at 95 ° C for 16 hours, cooling to 20 ° C, filtration, the concentrated mother liquor was neutralized with 2N hydrochloric acid, and extracted with 10 liters of ethyl acetate. The extract was concentrated, crystallized, filtered, and dried to give 606 g of compound. IIIa, yield 92%.
1H NMR(400MHz,CDCl3)δ4.74–4.55(m,2H),3.52–3.39(m,1H),3.38–3.30(m,3H),2.68(dd,1H),2.49–2.13(m,4H),2.02–1.65(m,9H),1.58–1.02(m,15H),0.95(dd,4H),0.86–0.77(m,3H),0.67(d,3H). 1 H NMR (400 MHz, CDCl 3 ) δ 4.74 - 4.55 (m, 2H), 3.52 - 3.39 (m, 1H), 3.38 - 3.30 (m, 3H), 2.68 (dd, 1H), 2.49 - 2.13 (m , 4H), 2.02–1.65 (m, 9H), 1.58–1.02 (m, 15H), 0.95 (dd, 4H), 0.86–0.77 (m, 3H), 0.67 (d, 3H).
实施例3:制备化合物IIaExample 3: Preparation of Compound IIa
将化合物IIIa(606克)溶于7升乙醇中,冷却到0℃,加入50克硼氢化钠,升温到20℃,反应8小时,缓慢滴加磷酸直至pH=6,固体析出,过滤,固体用水洗涤,干燥后得到584克化合物IVa,产率96%。Compound IIIa (606 g) was dissolved in 7 liters of ethanol, cooled to 0 ° C, 50 g of sodium borohydride was added, the temperature was raised to 20 ° C, and the reaction was carried out for 8 hours. Phosphoric acid was slowly added dropwise until pH = 6, solids were precipitated, filtered, solid After washing with water and drying, 584 g of Compound IVa was obtained in a yield of 96%.
1HNMR(400MHz,CDCl3)δ4.66(s,2H),3.72(m,2H),3.35(m,4H),2.25-1.07(m,28H),0.90(m,8H),0.65(s,3H).1H NMR (400MHz, CDCl 3 ) δ 4.66 (s, 2H), 3.72 (m, 2H), 3.35 (m, 4H), 2.25-1.07 (m, 28H), 0.90 (m, 8H), 0.65 (s, 3H).
实施例4:制备奥贝胆酸 Example 4: Preparation of oleic acid
将化合物IIa(584克)溶于6升四氢呋喃中,冷却到0℃,加入5升4N盐酸水溶液,升温到20℃,反应8小时,加10升乙酸乙酯萃取,萃取液经浓缩后,析晶,过滤,干燥得到497克奥贝胆酸,产率94%。The compound IIa (584 g) was dissolved in 6 liters of tetrahydrofuran, cooled to 0 ° C, 5 liters of 4N aqueous hydrochloric acid was added, the temperature was raised to 20 ° C, and the reaction was carried out for 8 hours, and 10 liters of ethyl acetate was added thereto, and the extract was concentrated and analyzed. Crystallization, filtration and drying gave 497 g of oleic acid in a yield of 94%.
1HNMR(400MHz,CD3OD)δ3.65(m,1H),3.30(m,1H),2.32(m,1H),2.20(m,1H),2.03-1.65(m,8H),1.60-1.06(m,18H),0.90(m,9H),0.67(s,3H).1H NMR (400MHz, CD 3 OD) δ 3.65 (m, 1H), 3.30 (m, 1H), 2.32 (m, 1H), 2.20 (m, 1H), 2.03-1.65 (m, 8H), 1.60-1.06 (m, 18H), 0.90 (m, 9H), 0.67 (s, 3H).
实施例5:制备化合物IVbExample 5: Preparation of Compound IVb
将化合物Vb(500克,根据WO2006122977中的方法制得)溶于5升二氯甲烷中,加入650毫升二异丙乙基胺,冷却到0℃,加入147毫升MOMCl,反应体系逐渐升到20℃,反应16小时,加水淬灭反应,加入10升乙酸乙酯萃取,分出有机相,有机相用无水硫酸钠干燥,过滤浓缩后得到524克化合物IVb,产率95%。Compound Vb (500 g, prepared according to the method of WO2006122977) was dissolved in 5 liters of dichloromethane, 650 ml of diisopropylethylamine was added, cooled to 0 ° C, 147 ml of MOMCl was added, and the reaction system was gradually increased to 20 After reacting for 16 hours, the reaction was quenched with water. EtOAc (EtOAc)EtOAc.
1HNMR(400MHz,CDCl3)δ6.16(m,1H),4.65(s,2H),3.66(s,3H),3.55(m,1H),3.34(s,3H),3.08(m,1H),2.55(m,2H),2.53(m,2H),2.22(m,2H),1.96(m,6H),1.80(m,2H),1.69(m,4H),1.56-1.01(m,14H),0.93(m,3H),0.62(s,3H).1H NMR (400MHz, CDCl 3 ) δ 6.16 (m, 1H), 4.65 (s, 2H), 3.66 (s, 3H), 3.55 (m, 1H), 3.34 (s, 3H), 3.08 (m, 1H) , 2.55 (m, 2H), 2.53 (m, 2H), 2.22 (m, 2H), 1.96 (m, 6H), 1.80 (m, 2H), 1.69 (m, 4H), 1.56-1.01 (m, 14H) ), 0.93 (m, 3H), 0.62 (s, 3H).
实施例6:制备化合物IIIaExample 6: Preparation of Compound IIIa
将化合物IVb(70g)溶于乙醇(750豪升)中,加入钯碳(8g,10wt%)和50克30%氢氧化钠水溶液,在氢气(1.5大气压)和20℃下反应10h,然后升温到100℃,搅拌10小时,冷却到20℃后,过滤,浓缩后的母液用2N盐酸中和,加1升乙酸乙酯萃取,萃取液经浓缩后,析晶,过滤,干燥后得到65克化合物IIIa,产率95%。Compound IVb (70 g) was dissolved in ethanol (750 liters), palladium on carbon (8 g, 10 wt%) and 50 g of 30% aqueous sodium hydroxide solution were added, and reacted under hydrogen (1.5 atm) at 20 ° C for 10 h, then warmed up. After stirring to 100 ° C, stirring for 10 hours, cooling to 20 ° C, filtration, the concentrated mother liquor was neutralized with 2N hydrochloric acid, extracted with 1 liter of ethyl acetate, the extract was concentrated, crystallized, filtered, dried to give 65 g Compound IIIa, yield 95%.
1H NMR(400MHz,CDCl3)δ4.62(m,2H),3.43(m,1H),3.34(m,3H),2.68(m,1H),2.25(m,4H),1.82(m,9H),1.58–1.02(m,15H),0.95(m,4H),0.80(m,3H),0.66(s,3H). 1 H NMR (400MHz, CDCl 3 ) δ4.62 (m, 2H), 3.43 (m, 1H), 3.34 (m, 3H), 2.68 (m, 1H), 2.25 (m, 4H), 1.82 (m, 9H), 1.58–1.02 (m, 15H), 0.95 (m, 4H), 0.80 (m, 3H), 0.66 (s, 3H).
由于已根据其特殊的实施方案描述了本发明,某些修饰和等价变化对于精通此领域的技术人员是显而易见的且包括在本发明的范围内。 Since the present invention has been described in terms of its specific embodiments, certain modifications and equivalents are obvious to those skilled in the art and are included within the scope of the invention.

Claims (11)

  1. 一种如式III所示的化合物,a compound of formula III,
    Figure PCTCN2015088238-appb-100001
    Figure PCTCN2015088238-appb-100001
    其中,R1为羟基保护基,优选为MOM。Wherein R 1 is a hydroxy protecting group, preferably MOM.
  2. 一种如式III所示的化合物的制备方法,其特征在于通过如式V所示的化合物经过羟基的保护制得化合物IV,化合物IV通过加氢反应制得化合物III,优选为在碱性条件下通过钯碳催化加氢反应,A process for the preparation of a compound of the formula III, characterized in that the compound IV is obtained by protecting a compound of the formula V by a hydroxyl group, and the compound IV is obtained by hydrogenation to obtain a compound III, preferably under basic conditions. Catalytic hydrogenation of palladium on carbon,
    Figure PCTCN2015088238-appb-100002
    Figure PCTCN2015088238-appb-100002
    其中,R1为羟基保护基,优选为MOM;R2为羧基保护基,优选为C1-10的直链或支链烷基,更优选为乙基或甲基。Wherein R 1 is a hydroxy protecting group, preferably MOM; R 2 is a carboxy protecting group, preferably a C 1-10 straight or branched alkyl group, more preferably an ethyl group or a methyl group.
  3. 一种如式IIIa所示的化合物的制备方法,其特征在于包括如下步骤,A method for preparing a compound as shown in Formula IIIa, which comprises the steps of
    Figure PCTCN2015088238-appb-100003
    Figure PCTCN2015088238-appb-100003
    1)式Va化合物与MOMCl反应得到如式IVa所示的化合物;1) reacting a compound of formula Va with MOMCl to give a compound of formula IVa;
    2)式IVa在碱性条件下通过钯碳催化加氢反应制得如式IIIa所示的化合物。2) Formula IVa is obtained by catalytic hydrogenation of palladium on carbon under basic conditions to give a compound of formula IIIa.
  4. 一种如式IV所示的化合物, a compound of formula IV,
    Figure PCTCN2015088238-appb-100004
    Figure PCTCN2015088238-appb-100004
    其中,R1和R2如权利要求2中定义。Wherein R 1 and R 2 are as defined in claim 2.
  5. 一种如式IV所示的化合物的制备方法,其特征在于,通过如式V所示的化合物经过羟基保护后制得,A process for the preparation of a compound of the formula IV, which is obtained by protecting a compound of the formula V with a hydroxyl group,
    Figure PCTCN2015088238-appb-100005
    Figure PCTCN2015088238-appb-100005
    其中,R1和R2如权利要求2中定义。Wherein R 1 and R 2 are as defined in claim 2.
  6. 一种如式II所示的化合物,a compound of formula II,
    Figure PCTCN2015088238-appb-100006
    Figure PCTCN2015088238-appb-100006
    其中,R1如权利要求1中定义。Wherein R 1 is as defined in claim 1.
  7. 一种如式II所示的化合物的制备方法,其特征在于,通过如式III所示的化合物经过羰基还原后制得,优选使用硼氢化钠还原, A process for the preparation of a compound of the formula II, which is obtained by reduction of a compound of the formula III after carbonyl reduction, preferably with sodium borohydride,
    Figure PCTCN2015088238-appb-100007
    Figure PCTCN2015088238-appb-100007
    其中,R1如权利要求1中定义。Wherein R 1 is as defined in claim 1.
  8. 一种如式IIa所示的化合物的制备方法,其特征在于包括如下步骤,A method for preparing a compound as shown in Formula IIa, which comprises the steps of
    Figure PCTCN2015088238-appb-100008
    Figure PCTCN2015088238-appb-100008
    1)式Va化合物与MOMCl反应得到如式IVa所示的化合物;1) reacting a compound of formula Va with MOMCl to give a compound of formula IVa;
    2)式IVa在碱性条件下通过钯碳催化加氢反应制得如式IIIa所示的化合物;2) Formula IVa is obtained by catalytic hydrogenation of palladium on carbon under basic conditions to obtain a compound of formula IIIa;
    3)式IIIa经过硼氢化钠还原制得如式IIa所示的化合物。3) The compound of formula IIIa is obtained by reduction of sodium borohydride of formula IIIa.
  9. 一种奥贝胆酸的制备方法,其特征在于包括式II所示化合物经过羟基保护基脱除制备奥贝胆酸的步骤,A method for preparing oleic acid, which comprises the steps of preparing a compound of formula II by removing a hydroxy protecting group to prepare oleic acid.
    Figure PCTCN2015088238-appb-100009
    Figure PCTCN2015088238-appb-100009
    其中,R1如权利要求1中定义。Wherein R 1 is as defined in claim 1.
  10. 根据权利要求9所述的奥贝胆酸的制备方法,其特征在于还包括权利要求7所述的制备式II所示的化合物的步骤。The method for producing oleic acid according to claim 9, which further comprises the step of preparing the compound of the formula II according to claim 7.
  11. 根据权利要求10所述的奥贝胆酸的制备方法,其特征在于还包括权利要求2所述的制备如式III所示的化合物的步骤。 The method for producing oleic acid according to claim 10, which further comprises the step of preparing a compound of formula III according to claim 2.
PCT/CN2015/088238 2014-09-28 2015-08-27 Method for preparing obeticholic acid WO2016045480A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580035031.3A CN106459136B (en) 2014-09-28 2015-08-27 A kind of preparation method of Austria's shellfish cholic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410509597 2014-09-28
CN201410509597.2 2014-09-28

Publications (1)

Publication Number Publication Date
WO2016045480A1 true WO2016045480A1 (en) 2016-03-31

Family

ID=55580269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088238 WO2016045480A1 (en) 2014-09-28 2015-08-27 Method for preparing obeticholic acid

Country Status (2)

Country Link
CN (1) CN106459136B (en)
WO (1) WO2016045480A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016173524A1 (en) * 2015-04-29 2016-11-03 正大天晴药业集团股份有限公司 Chenodeoxycholic acid derivative
CN106279336A (en) * 2016-08-18 2017-01-04 合肥诺瑞吉医药科技有限公司 A kind of synthetic method of shellfish cholic acid difficult to understand
WO2017111979A1 (en) * 2015-12-22 2017-06-29 Intercept Pharmaceuticals, Inc. Polymorphic crystalline forms of obeticholic acid
CN107400154A (en) * 2016-05-18 2017-11-28 北京凯因科技股份有限公司 One kind prepares 3 α, the method for the 7 α-α of bis-hydroxy-6-β of ethyl-5-cholanic acid
WO2017207648A1 (en) * 2016-05-31 2017-12-07 Bionice, S.L.U Process and intermediates for the preparation of obeticholic acid and derivatives thereof
WO2018010651A1 (en) * 2016-07-13 2018-01-18 江苏恒瑞医药股份有限公司 Method for manufacturing obeticholic acid and intermediate thereof
US9982008B2 (en) 2012-06-19 2018-05-29 Intercept Pharmaceuticals, Inc. Preparation and uses of obeticholic acid
CN108264533A (en) * 2016-12-30 2018-07-10 上海现代制药股份有限公司 A kind of Preparation Method And Their Intermediate of Austria's shellfish cholic acid
CN108264532A (en) * 2016-12-30 2018-07-10 上海现代制药股份有限公司 A kind of Preparation Method And Their Intermediate of Austria's shellfish cholic acid
CN108659086A (en) * 2017-03-29 2018-10-16 杭州源昶医药科技有限公司 A kind of synthetic method of Austria's shellfish cholic acid
WO2019145977A1 (en) * 2018-01-25 2019-08-01 Msn Laboratories Private Limited, R&D Center PROCESS FOR THE PREPARATION OF 3α,7α-DIHYDROXY6α-ETHYL-5β-CHOLAN-24-OIC ACID
CN112898369A (en) * 2019-12-04 2021-06-04 博瑞生物医药(苏州)股份有限公司 Process for the preparation of obeticholic acid
CN113264972A (en) * 2020-02-14 2021-08-17 四川科伦药物研究院有限公司 Method for preparing obeticholic acid
WO2021204142A1 (en) * 2020-04-08 2021-10-14 西安奥立泰医药科技有限公司 Bile acid derivative salt, crystal structure thereof, preparation method therefor and use thereof
US11161871B2 (en) 2016-03-31 2021-11-02 Jiangsu Hengrui Medicine Co., Ltd. Crystalline form of obeticholic acid and preparation method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006122977A2 (en) * 2005-05-19 2006-11-23 Erregierre S.P.A. PROCESS FOR PREPARING 3α(β)-7α(β)-DIHYDROXY-6α(β)-ALKYL-5β-CHOLANIC ACID
US20090062526A1 (en) * 2007-08-28 2009-03-05 Yu Donna D novel method of synthesizing alkylated bile acid derivatives
WO2014085474A1 (en) * 2012-11-28 2014-06-05 Intercept Pharmaceuticals, Inc. Treatment of pulmonary disease
CN104558086A (en) * 2014-12-25 2015-04-29 康美(北京)药物研究院有限公司 Preparation method for 5 beta-3 alpha, 7 alpha-dihydroxy-6 alpha-ethyl-cholanic acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2656320C (en) * 2006-06-27 2015-04-28 Intercept Pharmaceuticals, Inc. Bile acid derivatives as fxr ligands for the prevention or treatment of fxr-mediated diseases or conditions
EP3789394A1 (en) * 2012-06-19 2021-03-10 Intercept Pharmaceuticals, Inc. Crystalline forms c of obeticholic acid
SG11201609403UA (en) * 2014-05-29 2016-12-29 Bar Pharmaceuticals S R L Cholane derivatives for use in the treatment and/or prevention of fxr and tgr5/gpbar1 mediated diseases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006122977A2 (en) * 2005-05-19 2006-11-23 Erregierre S.P.A. PROCESS FOR PREPARING 3α(β)-7α(β)-DIHYDROXY-6α(β)-ALKYL-5β-CHOLANIC ACID
US20090062526A1 (en) * 2007-08-28 2009-03-05 Yu Donna D novel method of synthesizing alkylated bile acid derivatives
WO2014085474A1 (en) * 2012-11-28 2014-06-05 Intercept Pharmaceuticals, Inc. Treatment of pulmonary disease
CN104558086A (en) * 2014-12-25 2015-04-29 康美(北京)药物研究院有限公司 Preparation method for 5 beta-3 alpha, 7 alpha-dihydroxy-6 alpha-ethyl-cholanic acid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CLAUDIO D'AMOREET ET AL.: "Design, Synthesis, and Biological Evaluation of Potent Dual Agonists of Nuclear and Membrane Bile Acid Receptors", JOURNAL OF MEDICINAL CHEMISTRY, vol. 57, 4 January 2014 (2014-01-04) *
VALENTINA SEPEET ET AL.: "Conicasterol E, a Small Heterodimer Partner Sparing Farnesoid X Receptor Modulator Endowed with a Pregnane X Receptor Agonistic Activity, from the Marine Sponge Theonella swinhoei", JOURNAL OF MEDICINAL CHEMISTRY, vol. 55, 29 November 2011 (2011-11-29) *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9982008B2 (en) 2012-06-19 2018-05-29 Intercept Pharmaceuticals, Inc. Preparation and uses of obeticholic acid
WO2016173524A1 (en) * 2015-04-29 2016-11-03 正大天晴药业集团股份有限公司 Chenodeoxycholic acid derivative
CN107531743A (en) * 2015-04-29 2018-01-02 正大天晴药业集团股份有限公司 Chenodeoxycholic acid derivatives
CN107531743B (en) * 2015-04-29 2020-05-05 正大天晴药业集团股份有限公司 Chenodeoxycholic acid derivatives
WO2017111979A1 (en) * 2015-12-22 2017-06-29 Intercept Pharmaceuticals, Inc. Polymorphic crystalline forms of obeticholic acid
US11161871B2 (en) 2016-03-31 2021-11-02 Jiangsu Hengrui Medicine Co., Ltd. Crystalline form of obeticholic acid and preparation method therefor
CN107400154A (en) * 2016-05-18 2017-11-28 北京凯因科技股份有限公司 One kind prepares 3 α, the method for the 7 α-α of bis-hydroxy-6-β of ethyl-5-cholanic acid
WO2017207648A1 (en) * 2016-05-31 2017-12-07 Bionice, S.L.U Process and intermediates for the preparation of obeticholic acid and derivatives thereof
CN108602850A (en) * 2016-07-13 2018-09-28 江苏恒瑞医药股份有限公司 It is a kind of Austria shellfish cholic acid and its intermediate preparation method
WO2018010651A1 (en) * 2016-07-13 2018-01-18 江苏恒瑞医药股份有限公司 Method for manufacturing obeticholic acid and intermediate thereof
CN106279336A (en) * 2016-08-18 2017-01-04 合肥诺瑞吉医药科技有限公司 A kind of synthetic method of shellfish cholic acid difficult to understand
CN108264533A (en) * 2016-12-30 2018-07-10 上海现代制药股份有限公司 A kind of Preparation Method And Their Intermediate of Austria's shellfish cholic acid
CN108264532A (en) * 2016-12-30 2018-07-10 上海现代制药股份有限公司 A kind of Preparation Method And Their Intermediate of Austria's shellfish cholic acid
CN108264533B (en) * 2016-12-30 2020-12-04 上海现代制药股份有限公司 Preparation method and intermediate of obeticholic acid
CN108264532B (en) * 2016-12-30 2021-02-26 上海现代制药股份有限公司 Preparation method and intermediate of obeticholic acid
CN108659086A (en) * 2017-03-29 2018-10-16 杭州源昶医药科技有限公司 A kind of synthetic method of Austria's shellfish cholic acid
WO2019145977A1 (en) * 2018-01-25 2019-08-01 Msn Laboratories Private Limited, R&D Center PROCESS FOR THE PREPARATION OF 3α,7α-DIHYDROXY6α-ETHYL-5β-CHOLAN-24-OIC ACID
US11434256B2 (en) 2018-01-25 2022-09-06 Msn Laboratories Private Limited, R&D Center Process for the preparation of 3α,7α-dihydroxy-6α-ethyl-5β-cholan-24-oic acid
WO2021109883A1 (en) * 2019-12-04 2021-06-10 博瑞生物医药(苏州)股份有限公司 Method for use in preparing obeticholic acid
CN112898369A (en) * 2019-12-04 2021-06-04 博瑞生物医药(苏州)股份有限公司 Process for the preparation of obeticholic acid
CN113264972A (en) * 2020-02-14 2021-08-17 四川科伦药物研究院有限公司 Method for preparing obeticholic acid
WO2021204142A1 (en) * 2020-04-08 2021-10-14 西安奥立泰医药科技有限公司 Bile acid derivative salt, crystal structure thereof, preparation method therefor and use thereof
JP2023504015A (en) * 2020-04-08 2023-02-01 西安奥立泰医薬科技有限公司 Bile acid derivative salts, crystal structures thereof, methods for their preparation and use

Also Published As

Publication number Publication date
CN106459136A (en) 2017-02-22
CN106459136B (en) 2018-06-26

Similar Documents

Publication Publication Date Title
WO2016045480A1 (en) Method for preparing obeticholic acid
TWI540121B (en) Method and novel intermediate for preparing treprostinil diethanolamine
JP2011508767A5 (en)
JP7339946B2 (en) Method for producing 2-(5-methoxyisochroman-1-yl)-4,5-dihydro-1H-imidazole and hydrogen sulfate thereof
JP2011046751A (en) Synthesis of himbacine analog
US11384116B2 (en) Methods of making cholic acid derivatives and starting materials therefor
CN108602850B (en) Preparation method of obeticholic acid and intermediate thereof
US20110160469A1 (en) Process and intermediates for the synthesis of 1,2-substituted 3,4-dioxo-1-cyclobutene compounds
JP5622842B2 (en) Method for producing alkylamine derivative
JP6248202B2 (en) Method for producing silodosin and its intermediate
CA2702873C (en) Improved process for preparing 2-(substituted phenyl)-2-hydroxy-ethyl carbamates
JP2016513623A (en) Process for the production of 2-amino-1,3-propanediol compounds and salts thereof
WO2012056468A1 (en) A process for the preparation of bosentan
CN108976140B (en) Preparation method and intermediate of 2-amino-6-ethylbenzoic acid
JP5351103B2 (en) Method for producing sulfonium salt and sulfonium salt produced thereby
JP2001302658A (en) Method for manufacturing of 3-isochromanones
WO2014146581A1 (en) Method for preparing acrylate compound
CN114057684B (en) Synthesis method of tiotropium bromide intermediate methyl bis (2-dithienyl) glycolate
CN107759483B (en) Preparation method of methylamino-substituted alkyl cyclopentanecarboxylate
JP4829418B2 (en) Optically active halohydrin derivative and method of using the same
US20220298202A1 (en) Methods of making cholic acid derivatives and starting materials therefor
JP5144656B2 (en) Gabapentin preparation process
JPH07316137A (en) Production of (hexahydro-1-methyl-1h-azepin-4-yl)-hydrazine or salt thereof
KR101142052B1 (en) Method of preparing zanamivir
KR101606395B1 (en) Process for the preparation of agomelatine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 07.06.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15845284

Country of ref document: EP

Kind code of ref document: A1