WO2016045434A1 - 电磁线圈绝缘结构及电磁线圈外包壳体及电磁线圈内骨架 - Google Patents

电磁线圈绝缘结构及电磁线圈外包壳体及电磁线圈内骨架 Download PDF

Info

Publication number
WO2016045434A1
WO2016045434A1 PCT/CN2015/084093 CN2015084093W WO2016045434A1 WO 2016045434 A1 WO2016045434 A1 WO 2016045434A1 CN 2015084093 W CN2015084093 W CN 2015084093W WO 2016045434 A1 WO2016045434 A1 WO 2016045434A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic coil
outer casing
gap
insulating
inner skeleton
Prior art date
Application number
PCT/CN2015/084093
Other languages
English (en)
French (fr)
Inventor
喻杰
Original Assignee
喻杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 喻杰 filed Critical 喻杰
Publication of WO2016045434A1 publication Critical patent/WO2016045434A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/12Means for moving control elements to desired position
    • G21C7/14Mechanical drive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • H01F27/325Coil bobbins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to the field of reactor control, and more particularly to an electromagnetic coil for a pressurized water reactor control rod drive mechanism.
  • the reactor is the core part of the nuclear power plant, and the control rod drive mechanism installed on the top cover of the reactor pressure shell can raise, lower or maintain the position of the control rod in the core to control the fission rate of the reactor and realize the start and stop of the reactor. And the adjustment of the stack power; under the accident condition, the control rod drive mechanism can also quickly insert the control rod (fast drop rod), so that the reactor can be emergencyly shut down in a short time to ensure safety.
  • the realization of these functions is inseparable from the electromagnetic coil assembly of the control rod drive mechanism. Because of its special working environment and function, it is required that the electromagnetic coil must have safety, reliability, high working temperature, good insulation performance and radiation resistance. .
  • the temperature resistance of the electromagnetic coil assembly of the control rod drive mechanism of nuclear power plants can only reach 250 °C or so, and the temperature of the reactor coolant is above 300 °C. Therefore, in practical applications, the control rod can only be driven by air cooling.
  • the electromagnetic coil assembly of the mechanism is cooled, resulting in a complicated structure of the nuclear reactor top cover.
  • the object of the present invention is to overcome the problem of insufficient high temperature resistance of the electromagnetic coil assembly of the control rod drive mechanism of the existing nuclear power plant, and to provide a high temperature resistant electromagnetic coil insulation structure and an electromagnetic coil outer casing and an inner skeleton.
  • the outer casing in the insulation structure is used to improve the overall strength of the coil insulation structure, not only enhances the resistance of the electromagnetic coil to moisture and vibration, but also effectively maintains the integrity of the electromagnetic coil at high temperatures for a long period of time and prevents
  • the high temperature resistant insulating impregnating varnish and quartz sand are gradually lost and the insulation structure is destroyed, which can obviously improve the temperature resistance performance and service life of the electromagnetic coil.
  • the electromagnetic coil insulation structure comprises an outer casing, an inner skeleton, a coil winding and a potting insulation layer, and the coil winding is wound on the inner skeleton; one end of the outer casing is connected with one outer edge of the inner frame, and the outer casing is another One end is not connected to the inner skeleton, and the potting insulating layer is disposed between the coil winding and the outer casing.
  • the outer casing is made of metal, and the outer casing has a gap extending through the upper end and the lower end of the outer casing, and the gap is connected and fixed by the insulating connecting strip; the inner skeleton is made of metal, and the inner skeleton is opened through the upper end of the inner skeleton. And the gap at the lower end; also includes an insulating strip embedded in the gap.
  • the insulated connecting strip is made of ceramic; the insulating strip is made of ceramic or mica.
  • outer casing and the inner skeleton are composed of non-magnetic stainless steel.
  • the inner and outer surfaces of the inner bobbin are provided with a high temperature resistant insulating layer, and the high temperature resistant insulating layer may be composed of mica or a silicone insulating material.
  • the outer casing of the electromagnetic coil is composed of metal, and the outer casing is provided with a gap extending through the upper end and the lower end of the outer casing, and the gap is connected and fixed by the insulating connecting strip.
  • the insulated connecting strip is made of ceramic.
  • the outer casing is composed of non-magnetic stainless steel.
  • the inner frame of the electromagnetic coil is composed of metal, and the inner skeleton is provided with a gap penetrating the upper end and the lower end of the inner frame; and an insulating strip embedded in the gap is further included.
  • the insulating strip is composed of ceramic or mica.
  • the inner skeleton is composed of a non-magnetic magnetic stainless steel; the surface of the inner skeleton is provided with an insulating layer, and the insulating layer is composed of a high temperature resistant insulating material.
  • the nuclear power plant reactor can only cool the electromagnetic coil assembly of the control rod drive mechanism by air cooling method, which complicates the reactor top cover structure.
  • the present invention provides an electromagnetic coil insulation structure having high high temperature resistance.
  • the invention adopts a metal material to form an outer casing and an inner skeleton of the coil, and fundamentally solves the problem that the non-metallic material coil skeleton is softened and deformed at a high temperature and is easily broken.
  • the service life, high temperature resistance and overall strength of the electromagnetic coil can be greatly improved, and the seismic performance and moisture resistance of the electromagnetic coil are greatly improved.
  • the electromagnetic coil using this insulating structure can work for a long time without air-cooling in a high temperature environment close to 440 ° C, which can make the additional cooling device required for the control rod drive mechanism. Cancelled to simplify the top structure.
  • the metal electromagnetic coil outer casing and the inner skeleton generate harmful eddy currents during operation.
  • a cutting gap is disposed on the outer casing and the inner skeleton, and a high temperature resistant insulating strip is embedded in the gap. Insulation is connected to the strip to prevent eddy currents from forming a loop and to ensure proper operation of the solenoid.
  • the electromagnetic coil of the control rod drive mechanism of the air-cooling device is used, and the operation in the environment below 200 ° C can meet the 60-year life requirement.
  • the electromagnetic coil works directly in an environment close to 400 ° C, its life will be greatly reduced, and even quickly failed within a few days due to the destruction of the insulation structure.
  • the present invention preferably solves this problem by enabling the control rod drive mechanism solenoid to have a long working life at high temperatures.
  • 1 is a schematic structural view of an electromagnetic coil outer casing
  • FIG. 2 is a schematic structural view of a skeleton of an electromagnetic coil
  • FIG. 3 is a schematic cross-sectional structural view of an electromagnetic coil insulation structure
  • the electromagnetic coil outer casing includes an outer casing 1, and the outer casing 1 is made of metal.
  • the outer casing 1 is provided with a gap 101 extending through the upper end and the lower end of the outer casing 1, and the gap 101 is insulated.
  • the card strip 102 is fixedly connected.
  • the outer casing 1 is provided with an inward L-shaped bend at the gap 101
  • the insulating connecting strip 102 is a rectangular cylindrical structure provided with an opening, and the inside of the insulating connecting strip 102 accommodates the L-shaped bent portion at the gap 101.
  • the insulated connecting strip 102 may be made of ceramic. However, this does not mean that the insulating connecting strip 102 can only be made of ceramic, and other insulating materials such as mica having high temperature resistance can also be used to form the insulating connecting strip 102.
  • the outer casing 1 can be composed of non-magnetic stainless steel. However, this does not mean that only the non-magnetic stainless steel can be used to form the outer casing 1, and other metal materials having a temperature resistance of 400 ° C or higher, such as an aluminum alloy, a copper alloy or the like, can be used to form the outer casing 1.
  • the inner frame of the electromagnetic coil includes an inner bobbin 2, and the inner bobbin 2 is made of metal.
  • the inner bobbin 2 is provided with a gap 201 penetrating the upper end and the lower end of the inner bobbin 2; and an insulating strip 202 embedded in the gap 201 is further included. .
  • the insulating strip 202 may be composed of mica. However, this does not mean that the insulating strip 202 can only be composed of mica, and other insulating materials such as ceramics having high temperature resistance can also be used to form the insulating strip 202.
  • the inner skeleton 2 may be composed of non-magnetic stainless steel. However, this does not mean that the inner skeleton 2 can only be formed by non-magnetic stainless steel. Other metal materials with temperature resistance up to 400 ° C, such as aluminum alloy, copper alloy, etc., can be used to form the inner skeleton.
  • the present embodiment describes an electromagnetic coil insulation structure including the electromagnetic coil outer casing described in Embodiment 1, and the electromagnetic coil inner skeleton described in Embodiment 2.
  • the electromagnetic coil insulation structure includes an outer casing 1, an inner skeleton 2, a coil winding 3, and a potting insulating layer 4.
  • the coil winding 3 is wound around the inner bobbin 2, and one end of the outer casing 1 is wrapped.
  • the potting insulating layer 4 is disposed between the coil winding 3 and the outer casing 1.
  • the coil winding 3 is wound by a high temperature resistant winding wire, and after the working current is passed through the coil winding 3, the required electromagnetic force is generated.
  • the potting insulating layer 4 can be made of high temperature resistant insulating varnish, and the quartz sand is solidified by vacuum pressure to improve the electrical insulation performance and mechanical strength of the electromagnetic coil.
  • the outer casing 1 is made of metal, and the outer casing 1 is opened through the upper end of the outer casing 1 And the gap 101 at the lower end, the gap 101 is connected and fixed by the insulating connecting strip 102.
  • the inner bobbin 2 is made of metal, and the inner bobbin 2 is provided with a gap 201 penetrating the upper end and the lower end of the inner bobbin 2; and an insulating strip 202 embedded in the gap 201 is further included.
  • the outer casing 1 and the inner frame 2 are made of metal, so that the high temperature resistance of the electromagnetic coil is greatly improved.
  • the outer casing 1 and the inner frame 2 may be selected from non-magnetic stainless steel, such as 304 steel, 316 steel, SUS304 steel, SUS304L steel, SUS316L steel, or the like.
  • a gap 101 may be formed in the outer casing 1, and an insulating connecting strip 102 may be disposed in the gap 101; a gap 201 may be formed in the inner frame 2, and the insulating strip 202 may be embedded in the gap 201.
  • the insulated connecting strips 102 and the insulating strips 202 act to block eddy currents and prevent eddy currents from forming a loop.
  • the insulating connecting strip 102 and the insulating strip 202 are required to have the insulating property and the ability to be deformed and not melted at a high temperature. Therefore, the insulating connecting strip 102 and the insulating strip 202 may be selected from mica, ceramic or other conforming properties. The required material composition.
  • the electromagnetic coil insulation structure described in this embodiment is generally used on a reactor control rod drive mechanism, so that the air-cooling device required for the conventional control rod drive mechanism can be eliminated, so that the reactor roof structure can be simplified.
  • this insulation structure is also suitable for high temperature electromagnetic coils for other purposes.
  • the inner and outer surfaces of the inner bobbin 2 are provided with an insulating layer 203 for improving the insulation performance of the electromagnetic coil.
  • the insulating layer 203 may be composed of an insulating material such as mica, ceramic, or silicone.
  • the present invention can be preferably implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnets (AREA)

Abstract

一种电磁线圈绝缘结构,包括外包壳体(1)、内骨架(2)、线圈绕组(3)和灌封绝缘层(4),线圈绕组(3)缠绕在内骨架上(2);外包壳体(1)的一端与内骨架(2)的一个端部外沿连接,灌封绝缘层(4)设置于线圈绕组(3)与外包壳体(1)之间,外包壳体(1)由金属构成,外包壳体(1)上开设贯穿外包壳体(1)上端和下端的间隙(101),间隙由绝缘连接卡条(102)连接固定;内骨架(2)由金属构成,内骨架(2)上开设有贯穿内骨架(2)上端和下端的间隙(201);还包括嵌入间隙中的绝缘条(202)。采用该绝缘结构,电磁线圈的耐高温性能、使用寿命及整体强度可以得到大幅度提高,使用这种绝缘结构的电磁线圈如果运用于反应堆控制棒驱动机构上,可以使得通常控制棒驱动机构所需的附加冷却装置被取消,以简化反应堆结构。

Description

电磁线圈绝缘结构及电磁线圈外包壳体及电磁线圈内骨架 发明领域
本发明涉及反应堆控制领域,尤其涉及用于压水反应堆控制棒驱动机构的电磁线圈。
背景技术
反应堆是核电站的核心部分,而安装在反应堆压力壳顶盖上的控制棒驱动机构可以提升、下插或保持控制棒在堆芯中的位置,用以控制反应堆的裂变速率,实现启动、停止反应堆及堆功率的调节;在事故工况下控制棒驱动机构还可快速下插控制棒(快速落棒),使反应堆在短时间内紧急停堆,以保证安全。实现这些功能离不开控制棒驱动机构电磁线圈组件,由于其特殊的工作环境和功能的至关重要,所以要求电磁线圈必须具有安全、可靠、工作温度高、绝缘性能好、耐辐照等特点。
长期以来,核电站控制棒驱动机构电磁线圈组件的耐温等级最高只能达到250℃左右,而反应堆冷却剂的温度为300℃以上,所以在实际应用中只能以风冷等方法对控制棒驱动机构的电磁线圈组件进行冷却,导致了核反应堆顶盖结构复杂化。
发明概述
本发明的目的即在于克服现有核电站控制棒驱动机构电磁线圈组件耐高温能力不足的问题,提供一种耐高温的电磁线圈绝缘结构及电磁线圈外包壳体及内骨架。这种绝缘结构中的外包壳体,是用以提高线圈绝缘结构的整体强度,不仅可增强电磁线圈抗潮湿、抗震动的能力,还能长期有效地保持电磁线圈在高温下的完整性,防止耐高温绝缘浸渍漆和石英砂逐渐散失而导致绝缘结构破坏,可明显提高电磁线圈的耐温性能及使用寿命。
本发明的目的通过以下技术方案实现:
电磁线圈绝缘结构,包括外包壳体、内骨架、线圈绕组和灌封绝缘层,线圈绕组缠绕在内骨架上;外包壳体的一端与内骨架的一个端部外沿连接,外包壳体的另一端与内骨架不连接,灌封绝缘层设置于线圈绕组与外包壳体之间, 其特征在于:外包壳体由金属构成,外包壳体上开设贯穿外包壳体上端和下端的间隙,间隙由绝缘连接卡条连接固定;内骨架由金属构成,内骨架上开设有贯穿内骨架上端和下端的间隙;还包括嵌入间隙中的绝缘条。
进一步的,所述绝缘连接卡条由陶瓷构成;所述绝缘条由陶瓷或云母构成。
进一步的,所述外包壳体和所述内骨架由非导磁不锈钢构成。
进一步的,所述内骨架的内外表面设置有耐高温绝缘层,耐高温绝缘层可以由云母或有机硅绝缘材料构成。
电磁线圈的外包壳体,外包壳体由金属构成,外包壳体上开设有贯穿外包壳体上端和下端的间隙,间隙由绝缘连接卡条连接固定。
进一步的,所述绝缘连接卡条由陶瓷构成。
进一步的,所述外包壳体由非导磁不锈钢构成。
电磁线圈内骨架,内骨架由金属构成,内骨架上开设有贯穿内骨架上端和下端的间隙;还包括嵌入间隙中的绝缘条。
进一步的,所述绝缘条由陶瓷或云母构成。
进一步的,所述内骨架由非导磁不锈钢构成;内骨架的表面设置有绝缘层,绝缘层由耐高温绝缘材料构成。
本发明的优点和有益效果:
当前,核电站反应堆上只能以风冷方法对控制棒驱动机构的电磁线圈组件进行冷却,使得反应堆顶盖结构复杂化。为了简化堆顶结构,本发明提供一种耐高温性能高的电磁线圈绝缘结构。本发明采用金属材料构成线圈的外包壳体和内骨架,根本上解决以往非金属材料线圈骨架在高温下软化变形、易破裂等难题。采用本发明,电磁线圈的使用寿命、耐高温性能及整体强度可以得到大幅度提高,同时其抗震性能、耐潮湿性能大幅度提高。使用这种绝缘结构的电磁线圈如果运用在反应堆控制棒驱动机构上,可以在接近440℃高温环境中,在无风冷的条件下长期工作,可以使得通常控制棒驱动机构所需的附加冷却装置被取消,以简化堆顶结构。但是金属的电磁线圈外包壳体与内骨架在工作时会产生有害涡流,为了阻断涡流,在外包壳体与内骨架上均设置有割断间隙,并在该间隙中嵌入耐高温的绝缘条及绝缘连接卡条,从而避免涡流形成回路,保证电磁线圈正常工作。
目前采用风冷装置的控制棒驱动机构电磁线圈,在200℃以下环境中工作可以满足60年寿命要求。但是电磁线圈如果直接在接近400℃的环境中工作,其寿命将极大幅度地缩减,甚至由于绝缘结构的破坏而在数天内迅速失效。本发明较好地解决了这一问题,使控制棒驱动机构电磁线圈能够在高温下具有很长的工作寿命。
附图的简要描述
为了更清楚地说明本发明的实施例,下面将对描述本发明实施例中所需要用到的附图作简单说明。显而易见的,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域的技术人员来讲,在不付出创造性劳动的情况下,还可以根据下面的附图,得到其它附图。
图1为电磁线圈外包壳体的结构示意图;
图2为电磁线圈内骨架的结构示意图;
图3为电磁线圈绝缘结构的剖面结构示意图;
其中,附图标记对应的零部件名称如下:
1-外包壳体,2-内骨架,3-线圈绕组,4-灌封绝缘层,101-间隙,102-绝缘连接卡条,201-间隙,202-绝缘条,203-绝缘层。
发明的详细说明
为了使本领域的技术人员更好地理解本发明,下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整的描述。显而易见的,下面所述的实施例仅仅是本发明实施例中的一部分,而不是全部。基于本发明记载的实施例,本领域技术人员在不付出创造性劳动的情况下得到的其它所有实施例,均在本发明保护的范围内。
实施例1:
如图1所示,电磁线圈外包壳体,包括外包壳体1,外包壳体1由金属构成,外包壳体1上开设有贯穿外包壳体1上端和下端的间隙101,间隙101由绝缘连接卡条102连接固定。
作为其中一种实现方式,外包壳体1在间隙101处设置有向内的L形折弯 段,绝缘连接卡条102为设置有开口的矩形筒体结构,绝缘连接卡条102的内部容纳间隙101处的L形折弯段。
其中,所述绝缘连接卡条102可以由陶瓷构成。但这并不意味着绝缘连接卡条102只能由陶瓷构成,其它具备较高耐温性能的绝缘材料例如云母等,也能用于构成绝缘连接卡条102。
其中,所述外包壳体1可以由非导磁不锈钢构成。但这并不意味着只能有非导磁不锈钢才能构成外包壳体1,其它耐温性能到达400℃以上的金属材料例如铝合金、铜合金等均可用于构成外包壳体1。
实施例2:
如图2所示,电磁线圈内骨架,包括内骨架2,内骨架2由金属构成,内骨架2上开设有贯穿内骨架2上端和下端的间隙201;还包括嵌入间隙201中的绝缘条202。
其中,所述绝缘条202可以由云母构成。但这并不意味着绝缘条202只能由云母构成,其它具备较高耐温性能的绝缘材料例如陶瓷等,也能用于构成绝缘条202。
其中,所述内骨架2可以由非导磁不锈钢构成。但这并不意味着只能由非导磁不锈钢才能构成内骨架2,其它耐温性能到达400℃以上的金属材料例如铝合金、铜合金等均可用于构成内骨架2.
实施例3:
本实施例记载一种电磁线圈绝缘结构,该电磁线圈绝缘结构包含实施例1中所述的电磁线圈外包壳体,以及实施例2中所述的电磁线圈内骨架。
如图1~图3所示,电磁线圈绝缘结构,包括外包壳体1、内骨架2、线圈绕组3和灌封绝缘层4,线圈绕组3缠绕在内骨架2上,外包壳体1的一端与内骨架2的端部外沿连接,灌封绝缘层4设置于线圈绕组3与外包壳体1之间。
其中,线圈绕组3由耐高温绕组线绕制而成,在线圈绕组3中通工作电流后,产生需要的电磁力。
其中,灌封绝缘层4可由耐高温绝缘漆,石英砂经真空压力浇注后,高温固化,用以提高电磁线圈的电气绝缘性能和机械强度等。
其中,外包壳体1由金属构成,外包壳体1上开设有贯穿外包壳体1上端 和下端的间隙101,间隙101由绝缘连接卡条102连接固定。
其中,内骨架2由金属构成,内骨架2上开设有贯穿内骨架2上端和下端的间隙201;还包括嵌入间隙201中的绝缘条202。
外包壳体1和内骨架2由金属构成,使电磁线圈的耐高温性能得到大大提高。
外包壳体1和内骨架2可以选择由非导磁不锈钢构成,例如304钢、316钢、SUS304钢、SUS304L钢、SUS316L钢等。
为了避免涡流形成回路,还可以在外包壳体1上开设间隙101,在间隙101中设置绝缘连接卡条102;在内骨架2上开设间隙201,在间隙201中嵌入绝缘条202。绝缘连接卡条102和绝缘条202起阻断涡流的作用,防止涡流形成回路。
绝缘连接卡条102和绝缘条202在具备绝缘性能的同时,还需要具备在高温下不变形不熔化的能力,因此,绝缘连接卡条102和绝缘条202可选择由云母、陶瓷或其他符合性能要求的材料构成。
本实施例中描述的电磁线圈绝缘结构通常使用在反应堆控制棒驱动机构上,可以使得通常控制棒驱动机构所需的风冷装置被取消,使反应堆顶盖结构能够被简化。当然,这种绝缘结构也适用于其他用途的高温电磁线圈。
实施例4:
如图3所示,本实施例在实施例2的基础上,内骨架2的内外表面设置有绝缘层203,用以提高电磁线圈的对地绝缘性能。
绝缘层203可以由云母、陶瓷、有机硅等绝缘材料构成。
如上所述,便可较好的实现本发明。

Claims (10)

  1. 电磁线圈绝缘结构,包括外包壳体(1)、内骨架(2)、线圈绕组(3)和灌封绝缘层(4),线圈绕组(3)缠绕在内骨架(2)上;外包壳体(1)的一端与内骨架(2)的一个端部外沿连接,外包壳体(1)的另一端与内骨架(2)不连接,灌封绝缘层(4)设置于线圈绕组(3)与外包壳体(1)之间,其特征在于:
    外包壳体(1)由金属构成,外包壳体(1)上开设贯穿外包壳体(1)上端和下端的间隙(101),间隙(101)由绝缘连接卡条(102)连接固定;
    内骨架(2)由金属构成,内骨架(2)上开设有贯穿内骨架(2)上端和下端的间隙(201);
    还包括嵌入间隙(201)中的绝缘条(202)。
  2. 根据权利要求1所述的电磁线圈绝缘结构,其特征在于:
    所述绝缘连接卡条(102)由陶瓷构成;
    所述绝缘条(202)由陶瓷或云母构成。
  3. 根据权利要求1所述的电磁线圈绝缘结构,其特征在于:
    所述外包壳体(1)和所述内骨架(2)由非导磁不锈钢构成。
  4. 根据权利要求1~3中任意一项所述的电磁线圈绝缘结构,其特征在于:
    所述内骨架(2)的内外表面设置有耐高温绝缘层(203)。
  5. 电磁线圈的外包壳体,其特征在于:
    外包壳体(1)由金属构成,外包壳体(1)上开设有贯穿外包壳体(1)上端和下端的间隙(101),间隙(101)由绝缘连接卡条(102)连接固定。
  6. 根据权利要求5所述的电磁线圈外包壳体,其特征在于:
    所述绝缘连接卡条(102)由陶瓷构成。
  7. 根据权利要求5所述的电磁线圈外包壳体,其特征在于:
    所述外包壳体(1)由非导磁不锈钢构成。
  8. 电磁线圈内骨架,其特征在于:
    内骨架(2)由金属构成,内骨架(2)上开设有贯穿内骨架(2)上端和下端的间隙(201);
    还包括嵌入间隙(201)中的绝缘条(202)。
  9. 根据权利要求8所述的电磁线圈内骨架,其特征在于:
    所述绝缘条(202)由陶瓷或云母构成。
  10. 根据权利要求8所述的电磁线圈内骨架,其特征在于:
    所述内骨架(2)由非导磁不锈钢构成;
    内骨架(2)的表面设置有绝缘层(203),绝缘层由耐高温绝缘材料构成。
PCT/CN2015/084093 2014-09-26 2015-07-15 电磁线圈绝缘结构及电磁线圈外包壳体及电磁线圈内骨架 WO2016045434A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410500311.4A CN104200949A (zh) 2014-08-19 2014-09-26 电磁线圈绝缘结构及电磁线圈外包壳体及电磁线圈内骨架
CN201410500311.4 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016045434A1 true WO2016045434A1 (zh) 2016-03-31

Family

ID=55486366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084093 WO2016045434A1 (zh) 2014-09-26 2015-07-15 电磁线圈绝缘结构及电磁线圈外包壳体及电磁线圈内骨架

Country Status (3)

Country Link
CN (1) CN104200949A (zh)
FR (1) FR3026550B1 (zh)
WO (1) WO2016045434A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104200949A (zh) * 2014-08-19 2014-12-10 四川华都核设备制造有限公司 电磁线圈绝缘结构及电磁线圈外包壳体及电磁线圈内骨架
CN105427997B (zh) 2015-12-31 2017-10-03 黄曦雨 一种反应堆用电磁线圈骨架及其上的内骨架体和外壳体
CN108257761B (zh) 2018-01-16 2023-11-28 喻杰 一种控制棒驱动机构电磁线圈组件及该组件的制造方法
CN113470936A (zh) * 2021-07-14 2021-10-01 合肥博雷电气有限公司 一种导热式变压器骨架

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2949591A (en) * 1955-10-10 1960-08-16 United Transformer Corp Miniature inductive devices
DE102006059375A1 (de) * 2006-12-15 2008-06-19 Trw Automotive Gmbh Elektromagnetischer Aktuator sowie Verfahren zur Herstellung eines Bauteils für einen elektromagnetischen Aktuator
CN103065756A (zh) * 2013-01-22 2013-04-24 北京云电英纳超导电缆有限公司 卡口式金属超导磁体骨架及制作方法
CN203552879U (zh) * 2013-11-18 2014-04-16 赵宜泰 电抗器的磁芯结构
CN103985498A (zh) * 2014-04-22 2014-08-13 四川华都核设备制造有限公司 一种电磁线圈装置及其生产工艺
CN104200949A (zh) * 2014-08-19 2014-12-10 四川华都核设备制造有限公司 电磁线圈绝缘结构及电磁线圈外包壳体及电磁线圈内骨架

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637610A (en) * 1979-09-05 1981-04-11 Toshiba Corp Electromagnetic coil
JPS5780709A (en) * 1980-11-07 1982-05-20 Toshiba Corp Electromagnetic coil and manufacture thereof
CN201036105Y (zh) * 2007-02-12 2008-03-12 扬州嘉华电子科技有限公司 电磁线圈
CN202049830U (zh) * 2011-05-25 2011-11-23 无锡其诺电气有限公司 电磁线圈

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2949591A (en) * 1955-10-10 1960-08-16 United Transformer Corp Miniature inductive devices
DE102006059375A1 (de) * 2006-12-15 2008-06-19 Trw Automotive Gmbh Elektromagnetischer Aktuator sowie Verfahren zur Herstellung eines Bauteils für einen elektromagnetischen Aktuator
CN103065756A (zh) * 2013-01-22 2013-04-24 北京云电英纳超导电缆有限公司 卡口式金属超导磁体骨架及制作方法
CN203552879U (zh) * 2013-11-18 2014-04-16 赵宜泰 电抗器的磁芯结构
CN103985498A (zh) * 2014-04-22 2014-08-13 四川华都核设备制造有限公司 一种电磁线圈装置及其生产工艺
CN104200949A (zh) * 2014-08-19 2014-12-10 四川华都核设备制造有限公司 电磁线圈绝缘结构及电磁线圈外包壳体及电磁线圈内骨架

Also Published As

Publication number Publication date
FR3026550B1 (fr) 2018-05-04
FR3026550A1 (fr) 2016-04-01
CN104200949A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2016045434A1 (zh) 电磁线圈绝缘结构及电磁线圈外包壳体及电磁线圈内骨架
JP2883225B2 (ja) 耐熱耐圧形永久磁石同期電動機
US11804328B2 (en) Inductor coil and electromagnetic component
KR101118749B1 (ko) 초전도 선재
JP2007095490A (ja) マイカテープおよびこのマイカテープを用いた回転電機コイル
US20100123541A1 (en) Reactor and method of producing the reactor
JP2008153293A (ja) トランス
JP2013201377A (ja) リアクトル装置
EP3739603B1 (en) Electromagnetic coil assembly for control rod drive mechanism, and fabrication method for same
US20170194063A1 (en) Electromagnetic coil bobbin used in reactor as well as inner bobbin and outter shell
Cheng et al. Design and Fabrication Experience With $\hbox {Nb} _ {3}\hbox {Sn} $ Block-Type Coils for High Field Accelerator Dipoles
JP6402107B2 (ja) Fe基アモルファストランス磁心及びその製造方法、並びにトランス
JP2015076478A (ja) リアクトル
JP2014165383A (ja) 超電導コイル及びその製造方法
JP6005386B2 (ja) 超電導コイル装置及びその製造方法
JP2018011078A (ja) 高温超電導コイル及びその高温超電導コイルの製作方法
JP4559176B2 (ja) 永久磁石を磁化するための方法及び装置
JP2014013877A (ja) 超電導パンケーキコイル及びその製造方法
JP2015162495A (ja) 高温超電導コイル
CN208062894U (zh) 一种防短路发电机定子铁心绝缘结构
CN207624511U (zh) 五段混合式立体卷铁心
CN104795923A (zh) 高导热绝缘结构及其制作方法
JP2022133593A (ja) 超電導電磁石装置及び超電導電磁石装置の冷却方法
JPWO2010098029A1 (ja) 変圧器および変圧器の組み立て方法
CN208298673U (zh) 一种新型变压器线圈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844269

Country of ref document: EP

Kind code of ref document: A1