WO2016045067A1 - 用于确定ue级的反馈cqi的方法、基站、以及ue - Google Patents

用于确定ue级的反馈cqi的方法、基站、以及ue Download PDF

Info

Publication number
WO2016045067A1
WO2016045067A1 PCT/CN2014/087484 CN2014087484W WO2016045067A1 WO 2016045067 A1 WO2016045067 A1 WO 2016045067A1 CN 2014087484 W CN2014087484 W CN 2014087484W WO 2016045067 A1 WO2016045067 A1 WO 2016045067A1
Authority
WO
WIPO (PCT)
Prior art keywords
cqi
channel
base station
weighting value
reference signal
Prior art date
Application number
PCT/CN2014/087484
Other languages
English (en)
French (fr)
Inventor
吴强
刘建琴
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/087484 priority Critical patent/WO2016045067A1/zh
Priority to CN201480082244.7A priority patent/CN107005579A/zh
Publication of WO2016045067A1 publication Critical patent/WO2016045067A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, a base station, and a UE for determining feedback channel quality information (CQI) at a user equipment (UE) level.
  • CQI feedback channel quality information
  • AAS Active Antenna System
  • Passive Antenna System Passive Antenna System
  • the passive antenna system can form four antenna ports, as shown in FIG. 1B.
  • AAS can easily form 3-dimensional MIMO (3D-MIMO).
  • the antenna (or antenna port) of 3D-MIMO refers not only to the horizontal direction but also to the antenna port in the vertical direction.
  • Figure 1 can also represent 3D-MIMO at the same time, in which case one antenna array in Figure 1 represents an antenna.
  • 3D-MIMO can form a beam in the vertical direction, which is useful for 3D user distribution scenarios.
  • a driving network matrix is introduced.
  • the main function of the driving network matrix is to map the vertical physical antenna array to the antenna port. Assuming four columns in the horizontal direction, each column has one horizontal antenna element and eight vertical antenna elements. Assume that the driving network matrix is 2 drives 8 (8 vertical antenna frames form 2 antenna ports), and the receiving antenna is 2, then receive The data can be expressed as:
  • H is a 2 ⁇ 32 channel matrix
  • D is a 32 ⁇ 8 drive network matrix
  • matrix D is a drive network matrix
  • D 1 is a column of 8 ⁇ 2 drive network matrix, and D is a 32 ⁇ 8 matrix.
  • V denotes a precoding matrix, which is an 8 ⁇ L matrix, L is a layer number of transmitted data; s is an L ⁇ 1 vector representing transmitted data; and n represents interference plus noise, which is a 2 ⁇ 1 vector.
  • the base station transmits signals at a fixed downtilt angle.
  • some user signal coverage has some problems. For example, when the base station signal beam downtilt angle is 12 degrees, when the base station height is lower than the surrounding floor height, the high floor users cannot obtain effective signal coverage, especially when the beam width is narrow, the service quality of the upper layer users is greatly limited.
  • a unified and flexible drive network matrix structure can be designed as:
  • Q is a matrix of p x k block matrices, where p is the number of vertical antenna ports in a column, and k represents the number of selectable drive network matrix weighting candidates.
  • a i is a block matrix in Q, which is a z ⁇ 1 vector, which represents a weight vector of z antenna elements mapped onto one antenna port.
  • ⁇ i is the complex value weighting coefficient on the second antenna port.
  • the base station has a height of 10 meters, the floor height is up to 8 floors, and each floor is 3 meters high.
  • the existing 12 degree downtilt beam is still applicable; for a 5-8 floor upstairs user, a downtilt beam from the base station, For example, -6 degrees can be selected to ensure that the signal-to-noise ratio of this part of the user is good enough. So we can design the drive network matrix in this scenario as:
  • a 1 is a downtilt beam vector pointing to 12 degrees
  • a 2 is a downtilt beam vector pointing to -6 degrees.
  • the base station can configure corresponding CSI-RS vertical port information for each user according to different scenarios and corresponding user distributions, where the vertical port information includes the number of ports, port numbers, and the like.
  • the base station can configure the number of CSI-RS vertical ports for the user to be 2, and the corresponding port number is (1, 4).
  • port number 1 corresponds to the first column of the drive network matrix Q of equation (4)
  • port number 4 corresponds to the fourth column of the drive network matrix Q of equation (4)
  • the number of CSI-RS vertical ports that the base station can set for the floor height above the base station is 2, and the corresponding port number is (1, 4).
  • the base station can configure the number of CSI-RS vertical ports to be 1 for the user, and the corresponding port number is (5). ), where port number 1 corresponds to the fifth column of the drive network matrix Q of equation (4).
  • the base station configures the CSI-RS vertical port number to 2 for the user, and the corresponding port number is (1, 2).
  • port number 1 corresponds to the first column of the drive network matrix Q of equation (4)
  • port numbers 2 and 4 correspond to the second and fourth columns of the drive network matrix Q of equation (4), respectively.
  • the driving network matrix Q is as shown in equation (4), but the first and second columns are selected to form two ports, and the actual driving network matrix Q' can be Expressed as
  • T represents the transpose of the matrix, which is equivalent to the port selection matrix.
  • An antenna configuration scheme in the prior art is as follows: for each user, configure the actual optimal driving network matrix of each user.
  • the configuration is vertical to two.
  • Port, W [1,0,0,0,0,0;0,1,0,0,0] T .
  • W [0,0,1,0,0,0;0,0,0,1,0,0] T .
  • W [0,0,1,0,0,0;0,0,0,1,0,0] T .
  • W [1,0,0,0,0,0] T .
  • the base station selects an actual drive network matrix configuration according to the channel quality information returned by the UE. For the example of equation (4), up to 6 ports can be formed (corresponding to each of equations (4)). If you want to form a port, there are up to 6 combinations. If you want to form two ports, there is at most Combination. In order to select the best configuration for the UE, the base station needs to configure the measured reference signals for each possible combination, such as CSI-RS for measurement.
  • the base station In order to determine the CQI of the UE and select the best configuration for the UE, the base station needs to configure the measured reference signal for each possible combination, which results in a large overhead of the reference signal.
  • the present invention provides a method, base station, and UE for determining a feedback CQI at a UE level.
  • the present invention provides a method for determining a feedback CQI at a UE level, the method comprising:
  • the present invention provides a method for determining a feedback CQI at a UE level, the method comprising:
  • Determining a CQI according to the reference signal and the channel weighting value wherein at least one CQI is determined by a channel weight value and at least two channels, the channel being determined by a reference signal;
  • the present invention provides a base station for determining a feedback CQI of a UE level, the base station comprising:
  • a sending device configured to send a reference signal and a channel weighting value to the UE
  • a receiving device configured to receive a CQI sent by the UE, where the at least one CQI is determined by a channel weight value and at least two channels, where the channel is determined by a reference signal.
  • the present invention also provides a UE for determining a feedback CQI, the UE comprising:
  • a receiving device configured to receive a reference signal and a channel weighting value sent by the base station, where the channel weighting value is used to determine a CQI;
  • Processing means for determining a CQI according to the reference signal and the channel weighting value, wherein at least one CQI is determined by a channel weight value and at least two channels, the channel being determined by a reference signal;
  • a sending device configured to send a CQI to the base station.
  • a method, a base station, and a UE for determining a feedback CQI of a UE level receiving a CQI sent by the UE by transmitting a reference signal and a channel weight value to the UE, where at least one CQI is weighted by a channel And a value determined by the at least two channels, wherein the channel is determined by the reference signal, wherein the reference signal sent to the UE corresponds to a part of possible antenna configurations, and the CQI corresponding to the remaining antenna configurations may be determined by the channel weight value and the at least two channels, thereby
  • the UE can be provided with a suitable antenna configuration, which realizes flexible configuration of the UE, reduces the overhead of the reference signal, and saves channel resources.
  • FIG. 1A schematically shows a schematic diagram of a dual-polarized antenna in the prior art
  • Figure 1B shows a schematic diagram of four antenna ports of a passive antenna
  • FIG. 3 is a flow diagram of another embodiment of a method for determining a feedback CQI at a UE level, in accordance with the present invention.
  • FIG. 4 is a structural block diagram of one embodiment of a base station for determining a feedback CQI of a UE level according to the present invention
  • FIG. 5 is a structural block diagram of one embodiment of a UE for determining a feedback CQI at a UE level, provided in accordance with the present invention
  • Figure 6 is an embodiment of a computer system provided by the present invention.
  • the present invention provides a method for determining a feedback CQI of a UE level. As shown in FIG. 2, the method includes:
  • Step 101 Send a reference signal and a channel weighting value to the UE.
  • Step 102 Receive a CQI sent by the UE, where at least one CQI is determined by a channel weight value and at least two channels, where the channel is determined by a reference signal.
  • the channel measured at port 1 is h 1 and the channel measured at port 2 is h 2
  • the channel at port 3 can be h 3 and the weighted channel value at port 1 is 1, port 2
  • the weighted channel value is ⁇
  • the channel weighting value of port 3 is ⁇
  • the channel of the synthesized equivalent virtual port that can be obtained is h 1 + ⁇ h 2 + ⁇ h 3 .
  • the method may be performed by a device such as a base station or a Node B or an eNodeB, and implements flexible configuration for the UE.
  • the reference signal sent to the UE corresponds to a part of possible antenna configurations, and the remaining antenna configurations correspond to CQI.
  • the channel weighting value and the at least two channels can be determined, which reduces the overhead of the reference signal and saves channel resources.
  • the method further comprises determining the channel weighting value according to a relationship of the at least two antenna ports, and optionally, the step may be performed before step 101.
  • the channel weighting value may indicate a relative relationship between the sizes of the obtained channels of the at least two ports, and may be used to combine multiple ports into one equivalent antenna port, and the channel weighting value may be, for example, a base.
  • the station, the Node B or the eNodeB, etc. are determined and sent to the UE.
  • the method further comprises:
  • Step 103 Send a configuration message to the UE, specifically:
  • An optimal CQI is selected in the CQI, and a configuration message is sent to the UE according to the antenna port corresponding to the optimal CQI and the channel weighting value corresponding to the optimal CQI, where the configuration message is used to indicate an antenna configuration of the UE.
  • the optimal CQI may be the one with the highest median value of the channel quality indication, or the optimal CQI is determined according to the channel.
  • the channel weighting value may be, for example, a weighting value between at least two antenna ports, which may be determined by a base station or a Node B, an eNode B, or the like, and then transmitted to the UE. Wherein the channel weighting value can be used to indicate a relative relationship between the sizes of channels of two or more ports.
  • At least one CQI determined by the channel weight value and the at least two channels is represented in differential form for further cost savings.
  • one CQI may be represented in the original form, and the other one or more CQIs are respectively subtracted from the CQI represented by the original form to obtain a corresponding difference, and then the other one or more CQIs are respectively used for the corresponding difference.
  • Value representation when transmitting CQI to the UE, it is possible to transmit only the difference between the CQI of the original form representation and the CQI of the other one or more CQIs and the original form representation, instead of using all CQIs in their original form. Representation and transfer, which reduces the bandwidth used.
  • the method further comprises:
  • the step may be performed prior to step 102.
  • the representation of the CQI may be in a raw form or a differential form.
  • the packet message needs to be grouped in a true sense by different CQIs, or may be a representation that categorizes or indicates CQI.
  • the packet message may be a CQI according to CQI. Different types of partitioning methods, or indicating different CQI representations method.
  • the CQI represented by the original form and the CQI represented by the differential form may be identified by using a plurality of bits, for example, in each group of CQI, the CQI represented by the original form is represented by 4 bits.
  • the CQI represented by the differential form is represented by 2 or 3 bits.
  • the antenna of the UE is configured such that a plurality of vertical antenna elements form a plurality of vertical antenna ports, and a plurality of vertical antenna elements and their corresponding weight values constitute a driving network matrix.
  • the CQI is obtained in a channel state information (CSI) measurement process, which may be performed by a device such as a UE to obtain CSI information including information such as CQI in the measurement process.
  • CSI channel state information
  • the at least one CQI corresponds to a first CSI measurement process
  • the further at least one CQI is obtained from at least one reference signal measurement corresponding to the at least one first CSI measurement process.
  • one or more CQIs in the CQI are obtained in a first CSI measurement process
  • another one or more CQIs in the CQI are according to at least one reference signal corresponding to the first CSI measurement process.
  • the CQI of the first port can be obtained in the first CSI measurement process
  • the CQI of the second port can be obtained in the second CSI measurement process
  • the reference signal of the first port and the reference signal of the second port can be respectively As the reference signals of the third port and the fourth port, it is not necessary to provide respective reference signals for each port, thereby saving reference signal resources.
  • the first M antenna elements corresponding to the vertical direction are weighted by the driving network matrix to form one antenna port; the vertical M antenna elements in the vertical direction are weighted by the driving network matrix to form another antenna port. If a port points to -6 degrees and one points to 12 degrees, the actual drive network matrix is
  • the base station is configured with four reference signal ports, and the drive network matrix corresponding to port 1 is The drive network matrix corresponding to port 2 is The drive network matrix corresponding to port 3 is The drive network matrix corresponding to port 4 is The base station informs the UE to measure channel quality information of the following combinations of driver network matrices: Drive network matrix Corresponding to port 1; Corresponding to port 4; Corresponding to ports 1 and 2; Corresponds to ports 1 and 4. among them with Cannot be obtained from an existing port, but since ⁇ and ⁇ are fixed values. Therefore, the base station transmits the values of ⁇ and ⁇ to the UE. According to the relationship ⁇ between port 1, port 2 and two ports, the UE can obtain the driving network matrix as Channel quality information. According to the relationship between port 1, port 2 and the two ports, the UE can obtain the driving network matrix as Channel quality information. The eNB may select an actual driving network matrix for the UE according to the reporting of the UE.
  • the eNB notifies the configuration parameters of the CQI measurement of the UE, and calculates the CQI corresponding to each antenna port.
  • the eNB informs the UE of at least one weighted configuration value, and the weighting value is used when the multiple ports are combined into one equivalent antenna port. For example, if the eNB configures the port 1 and the port 2 to the UE and notifies the UE of the weighting value ⁇ of the two, the UE combines the two ports into one port by using the weighting value ⁇ . For example, if the channel measured by the UE at port 1 is h 1 and the channel measured at port 2 is h 2 , then the channel assumed by the UE for one (virtual) port is h 1 + ⁇ h 2 .
  • the CQIs of the multiple combinations reported by the UE to the base station may be reported in a differential CQI manner.
  • the base station informs the UE to measure channel quality information of the following combinations of driver network matrices: will As a group; will As another group.
  • the corresponding CQI uses differential CQI reporting, one CQI is represented by 4 bits, and the other two CQIs are differentiated by two or three bits and the first CQI.
  • the corresponding CQI uses differential CQI reporting, one CQI is represented by 4 bits, and the other two CQIs are differentiated by the first CQI by two or three bits.
  • the base station is required to notify the UE which reported CQIs are grouped into one group, which CQI in one group is represented by 4 bits, and which is represented by a differential CQI.
  • the base station configures multiple CSI (channel state information) processes of the UE, and one CSI process is reported by one CSI process. However, the number of groups of reference channels is less than the number of CSI processes.
  • 16 antenna elements are vertically oriented, and 16 antenna elements form two vertical ports.
  • A be the fixed 8 ⁇ 1 weight vector of the first 8 antenna elements.
  • Record B as a fixed 8 ⁇ 1 weighting vector for the last 8 antenna elements.
  • the base station configures four CSI measurement procedures for the UE.
  • the first process configures two ports in the vertical direction, and the corresponding drive network matrix is weighted to
  • the second process configures two ports in the vertical direction, and the corresponding drive network matrix is weighted to
  • the third process configures a port in the vertical direction, and the port of its reference signal comes from the first with
  • the base station notifies the two ports of the U E to obtain the equivalent reference channel port by weighting ⁇ , that is, for example, the channel measured by the UE at port 1 is h 1 , and the channel measured at port 2 is h2 , then the UE assumes one (virtual) The channel of the port is h 1 + ⁇ h 2 .
  • the fourth process configures two ports, the first port from the first process
  • the second port comes from the second process
  • four CSI processes are configured, but only the first two processes are configured with reference signals, and the combination of the reference signals configured by the first two processes constitutes the reference signals of the latter two CSI processes.
  • the resources of the reference signal are saved.
  • the present invention further provides a method for determining a feedback CQI of a UE level.
  • the method includes: Step 201: Receive a reference signal and a channel weight value sent by a base station, where the channel weight value is used to determine CQI; Step 202, determining a CQI according to the reference signal and the channel weighting value, wherein at least one CQI is determined by a channel weight value and at least two channels, the channel is determined by a reference signal; and step 203, sending a CQI to the base station .
  • the method can be performed by a user equipment or the like.
  • the channel weighting value sent by the base station may be received by: receiving a channel weighting value message sent by the base station, where the channel weighting value message is used to indicate the channel weighting value.
  • the channel weighting value is a weighting value between at least two antenna ports.
  • the method further comprises:
  • this step can be performed before step 203.
  • the method further comprises: receiving, by the UE from the base station, a packet message, optionally, the step may be performed before step 203, the packet message being used to indicate a representation of the CQI,
  • the representation of CQI is in the original form or in the form of difference.
  • the CQI of the original form representation is represented by 4 bits
  • the CQI represented by the difference form is represented by 2 or 3 bits.
  • the antenna of the UE is configured such that a plurality of vertical antenna elements form a plurality of vertical antenna ports, and a plurality of vertical antenna elements and their corresponding weight values constitute a driving network matrix.
  • the CQI is obtained during channel state information (CSI) measurement.
  • CSI channel state information
  • the at least one CQI corresponds to the first CSI measurement process, and the other at least one CQI is obtained according to the at least one reference signal measurement corresponding to the at least one first CSI measurement process.
  • step 202 includes performing at least one CSI measurement process and calculating CSI of at least one other CSI measurement process based on the obtained CSI, wherein the measurement result of the CSI measurement process includes a corresponding CQI.
  • the UE performs a first CSI measurement process and a second CSI measurement process to obtain respective CQIs, and then obtains CQIs corresponding to other CSI measurement processes according to the obtained CQIs and channel weighting values.
  • the present invention further provides a base station for determining a feedback CQI of a UE level.
  • the base station includes: a transmitting device 1010, configured to send a reference signal and a channel weighting value to the UE; and the receiving device 1020, Receiving a CQI sent by the UE; wherein at least one CQI is determined by a channel weight value and at least two channels, the channel being determined by a reference signal.
  • the base station further includes:
  • the computing device 1030 is configured to determine the channel weighting value according to the relationship between the at least two antenna ports.
  • the process may be performed before the sending device 1010 sends the reference signal and the channel weighting value to the UE.
  • the base station further comprises a processing device 1040, the processing device 1040 for:
  • the channel weighting value is a weighting value between at least two antenna ports.
  • At least one CQI determined by the channel weight value and the at least two channels is represented by a differential form.
  • the sending device 1010 is further configured to:
  • the packet message is used to indicate a representation of the CQI
  • the process may be performed before the receiving device 1020 receives the CQI sent by the UE, where the representation of the CQI It is either the original form or the differential form.
  • the CQI of the original form representation is represented by 4 bits
  • the CQI represented by the difference form is represented by 2 or 3 bits.
  • the antenna of the UE is configured such that a plurality of vertical antenna elements form a plurality of vertical antenna ports, and a plurality of vertical antenna elements and their corresponding weight values constitute a driving network matrix.
  • the CQI is obtained during channel state information (CSI) measurement.
  • CSI channel state information
  • the at least one CQI corresponds to a first CSI measurement process
  • the further at least one CQI is obtained from at least one reference signal measurement corresponding to the at least one first CSI measurement process.
  • the present invention further provides a UE for determining a feedback CQI of a UE level.
  • the UE includes: a receiving apparatus 2010, configured to receive a reference signal and a channel weighting value sent by a base station, The channel weighting value is used to determine a CQI; the processing device 2020 is configured to determine a CQI according to the reference signal and the channel weighting value, wherein at least one CQI is determined by a channel weighting value and at least two channels, where the channel is determined by The reference signal determines; the transmitting device 2030 is configured to send the CQI to the base station.
  • the sending device 2030 is configured to: receive a channel weighting value message sent by the base station, where the channel weighting value message is used to indicate the channel weighting value.
  • the channel weighting value is a weighting value between at least two antenna ports.
  • the processing device 2020 is further configured to: represent at least one CQI determined by the channel weight value and the at least two channels by a differential form, optionally, the process may be sent to the base station by the sending device 2030. Executed before CQI.
  • the receiving device 2010 is further configured to: receive a packet message of the UE from a base station, optionally, the process may be performed before the sending device 2030 sends a CQI to a base station, the packet message A representation for indicating the CQI, wherein the representation of the CQI is in a raw form or a differential form.
  • the CQI of the original form representation is represented by 4 bits
  • the CQI represented by the difference form is represented by 2 or 3 bits.
  • the antenna of the UE is configured to form a plurality of vertical antenna ports by a plurality of vertical antenna elements, and a plurality of vertical antenna elements and their corresponding weight values constitute a driving network matrix.
  • the CQI is obtained during channel state information (CSI) measurement.
  • the at least one CQI corresponds to a first CSI measurement process
  • the further at least one CQI is obtained from at least one reference signal measurement corresponding to the at least one first CSI measurement process.
  • the processing device 2020 is configured to: perform at least one CSI measurement process, and calculate CSI of at least one other CSI measurement process according to the obtained CSI, wherein the measurement result of the CSI measurement process includes a corresponding CQI.
  • the CQI provides a suitable antenna configuration to the UE according to the vector and/or a combination thereof in the driving network matrix corresponding to the optimal CQI, thereby implementing flexible configuration of the UE while reducing the overhead of the reference signal.
  • Figure 6 illustrates an embodiment of a computer system in accordance with the present invention, which may be a base station or user equipment.
  • the computer system may specifically be a processor based computer such as a general purpose personal computer (PC), a portable device such as a tablet computer, or a smart phone.
  • PC general purpose personal computer
  • portable device such as a tablet computer
  • smart phone a smart phone
  • the above computer system may include a bus, a processor 3010, an input device 3020, an output device 3030, a communication interface 3040, and a memory 3050.
  • the processor 3010, the input device 3020, the output device 3030, the communication interface 3040, and the memory 3050 are connected to each other through a bus. among them:
  • the bus can include a path for communicating information between various components of the computer system.
  • the processor 3010 may be a general-purpose processor, such as a general-purpose central processing unit (CPU), a network processor (NP Processor, NP for short, a microprocessor, etc., or an application-specific integrated circuit (ASIC). , or one or more integrated circuits for controlling the execution of the program of the present invention. It can also be a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a program for executing the technical solution of the present invention is stored in the memory 3050, and an operating system and other applications can also be saved.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 3050 may be a read-only memory (ROM), other types of static storage devices that can store static information and instructions, random access memory (RAM), storable information, and Other types of dynamic storage devices, disk storage, and the like.
  • Input device 3020 can include means for receiving instructions, data, and information input by a user, such as a keyboard, mouse, camera, scanner, light pen, voice input device, touch screen, and the like.
  • Output device 3030 can include devices that allow output of information to the user, such as a display screen, printer, speaker, and the like.
  • Communication interface 3040 may include the use of any means such as a transmitting device, receiving device, or transceiver to communicate with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Network (WLAN), and the like.
  • RAN Radio Access Network
  • WLAN Wireless Local Area Network
  • the processor 3010 executes the program stored in the memory 3050 for implementing the method for determining the feedback CQI of the UE level provided by any embodiment of the present invention and any device according to the embodiment of the present invention.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种用于确定用户设备(UE)级的CQI的方法、基站以及UE,该方法包括:向所述UE发送参考信号和信道加权值;接收所述UE发送的CQI;其中,至少一个CQI由信道加权值和至少两个信道确定,所述信道由参考信号确定,从而实现了对UE的灵活配置,同时减少了参考信号的开销。

Description

用于确定UE级的反馈CQI的方法、基站、以及UE 技术领域
本发明涉及通信领域,具体涉及一种用于确定用户设备(UE)级的反馈信道质量信息(CQI)的方法、基站、以及UE。
背景技术
在通信行业中,有源天线系统(Active Antenna System,AAS)目前成为一种热门的天线形态,相对于无源天线系统(Passive Antenna System),在相同的天线阵子(element)的情况下,AAS可以提供更好的性能。
对无源天线来说,图1A中的一个列的一个极化方向的所有天线阵子,只有一个功率放大器(Power Amplifier,PA,也称为功放)和它们相连。对AAS来说,一个列的一个极化方向的所有天线阵子,有一个或多个PA和它们相连。至多每个天线阵子都和一个PA相连。这样,如图1所示的天线图中,无源天线系统可以形成4个天线端口,如图1B所示。
在有源天线系统中,由于一个列可以有多个PA,从而可以形成更多的天线端口。在进行数据传输时,可以更灵活的在各个天线之间进行加权(预编码),在同样数目的天线阵子的情况下,可以得到更好的性能。AAS可以方便地形成3维MIMO(Three dimensional MIMO,3D-MIMO)。3D-MIMO指的天线(或天线端口),不只是只在水平方向上放置,在垂直方向上也形成天线端口。图1也可以同时表示3D-MIMO,此时图1中的一个天线阵子表示一个天线。3D-MIMO可以在垂直向形成波束,对3D的用户分布场景很有用。
在AAS系统中,引入了驱动网络矩阵,驱动网络矩阵主要作用是将垂直向物理天线阵子映射到天线端口上。假设有水平方向的4列,则每列有1个水平向的天线阵子、8个垂直向的天线阵子。假设驱动网络矩阵为2驱8(8个垂直向的天线阵子形成2个天线端口),接收天线为2,则接收 数据可以表示为:
Y=HDVs+n         (1)
其中H为2×32信道矩阵,D为32×8驱动网络矩阵,矩阵D为驱动网络矩阵,表示为
Figure PCTCN2014087484-appb-000001
其中D1为一列的8×2驱动网络矩阵,D为32×8矩阵。V表示预编码矩阵,为8×L矩阵,L为传输数据的层数;s为L×1向量,表示发送的数据;n表示干扰加噪声,为2×1向量。
在实际通信系统中用户的分布除了水平维度外,还有大量的用户分布在楼层内,即用户分布于水平和垂直两个维度。在传统MIMO通信系统中,基站以固定下倾角发送信号,在一些场景中,部分用户信号覆盖存在一些问题。例如,基站信号波束下倾角为12度时,当基站高度低于周围楼层高度时,高楼层用户无法获得有效信号覆盖,尤其是波束宽度较窄时,高层用户服务质量会受到极大限制。
为解决不同场景和用户分布下适用的天线形态不同的问题,一种统一的、灵活的驱动网络矩阵结构可设计为:
Figure PCTCN2014087484-appb-000002
在等式(3)中,Q为p×k个分块矩阵组成的矩阵,其中p为一列中,垂直向天线端口的数目,k表示可选的驱动网络矩阵加权候选的个数。Ai为Q中的一个分块矩阵,为z×1向量,表示z个天线阵子映射到1个天线端口上的加权向量。而αi为第二个天线端口上的复值加权系数。具体地,当垂直向天线端口数目等于2时,上式可简写为:
Figure PCTCN2014087484-appb-000003
对不同的场景来说,可以通过选择驱动网络矩阵的列来适应不同的场 景。
例如,以3GPP中的3D UMi(3Dimension Urban Micro)场景为例,在此场景中,基站高度为10米,楼层高度最高为8层,每层楼高3米。首先对于低于基站高度的1-4层用户来说,现有的12度的下倾角波束依然适用;而对于5-8层的楼上用户来说,一个从基站向上打的下倾角波束,如-6度可以被选择来保证此部分用户的信噪比足够好。因此我们可以将此场景下的驱动网络矩阵设计为:
Figure PCTCN2014087484-appb-000004
这里驱动网络矩阵中共有6个端口,A1为指向12度的下倾角波束向量,而A2为指向-6度的下倾角波束向量。基站可根据不同的场景和相应的用户分布为每用户配置相应的CSI-RS垂直向端口信息,这里的垂直向端口信息包括端口数目、端口号等。在上述UMi场景下,当一个小区的用户分布在1-8层的高楼中时,基站可为用户配置CSI-RS垂直向端口数目为2,其所对应的端口号为(1,4),这里端口号1对应等式(4)的驱动网络矩阵Q的第1列,而端口号4对应等式(4)的驱动网络矩阵Q的第4列。或者基站可为该基站以上的楼层高度的用户配置CSI-RS垂直向端口数目为2,其所对应的端口号为(1,4)。而在一个小区的所有用户全部分布在基站以下的UMi场景或只有地面和层1用户分布的时候,基站可为用户配置CSI-RS垂直向端口数目为1,其所对应的端口号为(5),这里端口号1对应等式(4)的驱动网络矩阵Q的第5列。或者,基站为用户配置CSI-RS垂直向端口数目为2,其所对应的端口号为(1,2)。这里端口号1对应等式(4)的驱动网络矩阵Q的第1列,而端口号2、4分别对应等式(4)的驱动网络矩阵Q的第2、4列。
以BS侧总共32个天线阵子而水平向4个天线阵子为例,此时垂直向每一列有8个天线阵子,这8个天线阵子根据驱动网络矩阵Q和配置的端口数和端口号形成相应的垂直向端口。比如,驱动网络矩阵Q如等式(4)所示,但是选择其中的第1、2列形成两个端口,则实际驱动网络矩阵Q'可 以表示成
Q'=QW              (6)
其中W=[1,0,0,0,0,0;0,1,0,0,0,0]T,上标T表示矩阵的转置,相当于端口选择矩阵。
现有技术中的一种天线配置的方案如下:针对每个用户,配置每个用户的实际最优驱动网络矩阵,对于等式(4)中的例子,比如对有些用户,配置垂直向两个端口,W=[1,0,0,0,0,0;0,1,0,0,0,0]T。对有些用户,配置垂直向两个端口,W=[0,0,1,0,0,0;0,0,0,1,0,0]T。对有些用户,设置1个垂直向端口,W=[1,0,0,0,0,0]T。基站如果要知道UE选择哪种配置最好,需要发送CSI-RS导频,让UE反馈信道质量信息。基站根据UE返回的信道质量信息,选择实际的驱动网络矩阵配置。对于等式(4)的例子,最多可以形成6个端口(对应等式(4)中每一列)。如果要形成一个端口,则最多有6种组合。如果要形成两个端口,则最多有
Figure PCTCN2014087484-appb-000005
种组合。基站为了给UE选中最好的配置,需要给每一种可能的组合配置测量的参考信号,比如CSI-RS做测量。
基站为了确定UE的CQI、给UE选择最好的配置,需要给每一种可能的组合配置测量的参考信号,这样就导致了参考信号的开销较大。
发明内容
为了减少信号开销,本发明提供了一种用于确定UE级的反馈CQI的方法、基站以及UE。
本发明提供一种用于确定UE级的反馈CQI的方法,该方法包括:
向所述UE发送参考信号和信道加权值;
接收所述UE发送的CQI;其中,至少一个CQI由信道加权值和至少两个信道确定,所述信道由参考信号确定。
本发明提供一种用于确定UE级的反馈CQI的方法,该方法包括:
接收基站发送的参考信号和信道加权值,所述信道加权值用于确定CQI;
根据所述参考信号和所述信道加权值来确定CQI,其中至少一个CQI由信道加权值和至少两个信道确定,所述信道由参考信号确定;
向基站发送CQI。
本发明提供一种用于确定UE级的反馈CQI的基站,该基站包括:
发送装置,用于向所述UE发送参考信号和信道加权值;
接收装置,用于接收所述UE发送的CQI;其中,至少一个CQI由信道加权值和至少两个信道确定,所述信道由参考信号确定。
本发明还提供一种用于确定反馈CQI的UE,该UE包括:
接收装置,用于接收基站发送的参考信号和信道加权值,所述信道加权值用于确定CQI;
处理装置,用于根据所述参考信号和所述信道加权值来确定CQI,其中至少一个CQI由信道加权值和至少两个信道确定,所述信道由参考信号确定;
发送装置,用于向基站发送CQI。
根据本发明提供的用于确定UE级的反馈CQI的方法、基站、以及UE,通过向所述UE发送参考信号和信道加权值,接收所述UE发送的CQI,其中,至少一个CQI由信道加权值和至少两个信道确定,所述信道由参考信号确定,其中向UE发送的参考信号对应一部分可能的天线配置,其余的天线配置对应的CQI可以通过信道加权值和至少两个信道确定,从而能够向UE提供合适的天线配置,实现了对UE的灵活配置,同时减少了参考信号的开销,节省了信道资源。
附图说明
通过阅读下面结合附图对本发明具体实施例的说明,本发明的上述及其他特征和优点将变得更加明显。其中:
图1A示意性地显示了现有技术中双极化天线的示意图;
图1B显示了无源天线的4个天线端口示意图;
图2是根据本发明提供的用于确定UE级的反馈CQI的方法一个实施 例的流程图;
图3是根据本发明提供的用于确定UE级的反馈CQI的方法另一个实施例的流程图;
图4是根据本发明提供的用于确定UE级的反馈CQI的基站的一个实施例的结构框图;
图5是根据本发明提供的用于确定UE级的反馈CQI的UE的一个实施例的结构框图;以及
图6是本发明提供的计算机系统的一个实施例。
具体实施方式
下面结合附图来对本发明的实施例进行详细描述。
本发明提供一种用于确定UE级的反馈CQI的方法,如图2所示,该方法包括:
步骤101,向所述UE发送参考信号和信道加权值;
步骤102,接收所述UE发送的CQI;其中,至少一个CQI由信道加权值和至少两个信道确定,所述信道由参考信号确定。举例来说,假设在端口1处测得的信道为h1,端口2处测得的信道为h2,则端口3处的信道可以为h3,端口1的加权信道值为1,端口2的加权信道值为α,端口3的信道加权值为β,则可以得到的合成的等效虚拟端口的信道为h1+αh2+βh3
该方法可以由例如基站或节点B、e节点B等设备执行,实现了对UE的灵活配置,本实施例中,向UE发送的参考信号对应一部分可能的天线配置,其余的天线配置对应的CQI可以通过信道加权值和至少两个信道确定,减少了参考信号的开销,节省了信道资源。
根据一种实施方式,所述方法还包括:根据至少两个天线端口的关系,确定所述信道加权值,可选地,该步骤可以在步骤101之前执行。其中所述信道加权值可以表明得到的至少两个端口的信道的大小之间的相对关系,用来将多个端口合成一个等效的天线端口,信道加权值可以由例如基 站、节点B或e节点B等确定,并发送给UE。
根据一种实施方式,所述方法还包括:
步骤103,向UE发送配置消息,具体为:
在CQI中选择最优CQI,根据所述最优CQI对应的天线端口,向UE发送配置消息,所述配置消息用于指示UE的天线配置;或者:
在CQI中选择最优CQI,并根据所述最优CQI对应的天线端口和所述最优CQI对应的信道加权值,向UE发送配置消息,所述配置消息用于指示UE的天线配置。
应理解,本发明并不限定选择所述最优CQI的方法。所述最优CQI可以为信道质量指示中值最高的一个,或根据信道确定所述最优CQI。
所述信道加权值可以是例如至少两个天线端口之间的加权值,其可以由基站或节点B、e节点B等设备等确定,并且然后发送给UE。其中所述信道加权值可以用来表明两个或更多个端口的信道的大小之间的相对关系。
可选地,由信道加权值和至少两个信道确定的至少一个CQI由差分形式表示,以便进一步节约开销。例如,可以将一个CQI用原始形式表示,而将另外的一个或多个CQI分别与原始形式表示的CQI相减得出对应的差值,然后将另外的一个或多个CQI用各自对应的差值表示;然后在向UE传送CQI时,可以仅传送一个原始形式表示的CQI、以及另外的一个或多个CQI与原始形式表示的CQI之间的差值,而不是将所有CQI都用原始形式表示和传送,这样就减小了占用的带宽。
根据一种实施方式,所述方法还包括:
向所述UE发送分组消息,所述分组消息用于指示所述CQI的表示形式,可选地,该步骤可以在步骤102之前执行。
可选的,CQI的表示形式可以是原始形式或差分形式。
应理解,本发明并不限定所述分组消息需要将不同的CQI进行真正意义上的分组,也可以是一种归类或指示CQI的表示形式,例如所述分组消息可以是一种根据CQI的类型不同的划分方法,或指示不同CQI的表示 方法。
其中,原始形式表示的CQI和差分形式表示的CQI可以分别使用多个比特来标识,举例来说,在每个组的CQI中,所述原始形式表示的CQI是用4个比特表示的,所述差分形式表示的CQI是用2或3个比特表示的。从而,由于差分形式表示的CQI所需的比特数比用原始形式表示的CQI所需的比特数更少,所以传送CQI所需的总的开销与所有CQI都用原始形式表示的情况相比就减少了。
根据一种实施方式,所述UE的天线配置为:多个垂直向天线阵子形成多个垂直向的天线端口,多个垂直向的天线阵子及其对应的加权值组成驱动网络矩阵。
根据一种实施方式,所述CQI是在信道状态信息(CSI)测量过程中获得的,该CSI测量过程可以由UE等设备执行,以在测量过程中获得包括CQI等信息在内的CSI信息。
根据一种实施方式,至少一个CQI对应第一CSI测量过程,另外的至少一个CQI是根据对至少一个第一CSI测量过程对应的至少一个参考信号测量而获得的。例如,所述CQI中的一个或多个CQI是在第一CSI测量过程中获得的,而所述CQI中的另外的一个或多个CQI是根据第一CSI测量过程对应的至少一个参考信号而获得的,比如在第一CSI测量过程中可以得到第一端口的CQI,在第二CSI测量过程中可以得到第二端口的CQI,第一端口的参考信号和第二端口的参考信号就可以分别作为第三端口和第四端口的参考信号,而不必为每个端口分别提供各自的参考信号,从而节约了参考信号资源。。
下面通过举例对本发明提供的用于确定UE级的反馈CQI的方法进行说明。
实施例一
在实施例一中,假设有垂直向的N个天线阵子,将N个天线阵子分成K份,每份对应M=N/K个天线阵子,即每M个天线阵子形成一个垂直向的端口。比如N=16,K=2,则M=8。将A记为8个天线阵子的固定8×1 加权向量,这8个天线阵子的加权向量将最大的波束方向指向x=-6度。将B记为8个天线阵子的固定8×1加权向量,这8个天线阵子的加权向量将最大的波束方向指向x=12度。如果要垂直向形成的两个端口都指向-6度,则实际的驱动网络矩阵为
Figure PCTCN2014087484-appb-000006
此时,A表示M×1的加权向量(M=8),0表M×1零向量。相当于垂直向的前M个天线阵子通过驱动网络矩阵的加权,形成一个天线端口;垂直向的后M个天线阵子通过驱动网络矩阵的加权,形成另一个天线端口。如果一个端口指向-6度,一个指向12度,则实际的驱动网络矩阵为
Figure PCTCN2014087484-appb-000007
假设驱动网络矩阵在垂直向最多形成6个端口,如下式所示:
Figure PCTCN2014087484-appb-000008
其中
Figure PCTCN2014087484-appb-000009
Figure PCTCN2014087484-appb-000010
为2M×1(M=8)向量。其中
Figure PCTCN2014087484-appb-000011
为垂直向2M=16个天线阵子的加权向量,通过
Figure PCTCN2014087484-appb-000012
将波束的最大方向指向-6度;
Figure PCTCN2014087484-appb-000013
为垂直向2M=16个天线阵子的加权向量,通过
Figure PCTCN2014087484-appb-000014
将波束的最大方向指向12度。其中,α和β为1×1固定的复数。
在一个水平方向的端口,基站配置4个参考信号端口,其端口1对应的驱动网络矩阵为
Figure PCTCN2014087484-appb-000015
端口2对应的驱动网络矩阵为
Figure PCTCN2014087484-appb-000016
端口3对应的驱动网络矩阵为
Figure PCTCN2014087484-appb-000017
端口4对应的驱动网络矩阵为
Figure PCTCN2014087484-appb-000018
基站通知UE测量以下几种驱动网络矩阵组合的信道质量信息:
Figure PCTCN2014087484-appb-000019
Figure PCTCN2014087484-appb-000020
其中驱动网络矩阵
Figure PCTCN2014087484-appb-000021
对应端口1;
Figure PCTCN2014087484-appb-000022
对应端口4;
Figure PCTCN2014087484-appb-000023
对应端口1和2;
Figure PCTCN2014087484-appb-000024
对应端口1和4。其中
Figure PCTCN2014087484-appb-000025
Figure PCTCN2014087484-appb-000026
不能从现有端口得到,但由于α和β为固定的值。所以,基站将α和β的值发给UE。UE根据端口1、端口2和两个端口的关系α,可以得到驱动网络矩阵为
Figure PCTCN2014087484-appb-000027
时的信道质量信息。UE根据端口1,端口2和两个端口的关系β,可以得到 驱动网络矩阵为
Figure PCTCN2014087484-appb-000028
时的信道质量信息。eNB可以根据UE的上报来给UE选择实际的驱动网络矩阵。
综上所述,eNB通知UE CQI测量的配置参数,计算每个天线端口对应的CQI。eNB通知UE至少一个加权配置值,这个加权值的作用,是用于将多个端口合成一个等效天线端口时使用。比如,eNB配置了端口1和端口2给UE,同时通知UE一个两者的加权值α,则UE将两个端口通过加权值α合成一个端口。比如UE在端口1测得的信道为h1,在端口2测得的信道为h2,则UE假设得到的一个(虚拟)端口的信道为h1+αh2
另外,对UE向基站上报的多种组合的CQI,可以按照差分CQI的方式进行上报。
比如基站通知UE测量以下几种驱动网络矩阵组合的信道质量信息:
Figure PCTCN2014087484-appb-000029
Figure PCTCN2014087484-appb-000030
作为一组;将
Figure PCTCN2014087484-appb-000031
作为另一组。
Figure PCTCN2014087484-appb-000032
对应的CQI采用差分的CQI上报,一个CQI用4比特表示,另外两个CQI用两个或三个比特和第一个CQI做差分。
Figure PCTCN2014087484-appb-000033
对应的CQI采用差分的CQI上报,一个CQI用4比特表示,另外两个CQI用两个或三个比特与第一个CQI做差分。这时,需要基站通知UE哪些上报的CQI分成一组,一个组里哪个CQI用4比特表示,哪些用差分的CQI表示。
实施例二
基站配置UE多个CSI(channel state information,信道状态信息)过程(process),一个CSI过程上报一个CQI。但其中参考信道的组数少于CSI过程的数目。
比如,垂直向16个天线阵子,16个天线阵子形成两个垂直向的端口。每M=8个天线阵子通过驱动网络矩阵形成一个天线端口。将A记为前8个天线阵子的固定8×1加权向量,这8个天线阵子的加权向量将最大的波束方向指向x=-6度。将B记为后8个天线阵子的固定8×1加权向量,这 8个天线阵子的加权向量将最大的波束方向指向x=12度。
基站为UE配置4个CSI测量过程。第一个过程在垂直向配置两个端口,对应的驱动网络矩阵加权为
Figure PCTCN2014087484-appb-000034
第二个过程在垂直向配置两个端口,对应的驱动网络矩阵加权为
Figure PCTCN2014087484-appb-000035
第三个过程在垂直向配置一个端口,其参考信号的端口来自第一个
Figure PCTCN2014087484-appb-000036
Figure PCTCN2014087484-appb-000037
并且基站通知U E两个端口通过加权α得到等效的参考信道端口,即比如UE在端口1测得的信道为h1,在端口2测得的信道为h2,则UE假设得到的一个(虚拟)端口的信道为h1+αh2。其等效的驱动网络矩阵加权相当于
Figure PCTCN2014087484-appb-000038
第四个过程配置两个端口,第一个端口来自第一个过程的
Figure PCTCN2014087484-appb-000039
第二个端口来自第二个过程的
Figure PCTCN2014087484-appb-000040
这样,配置了4个CSI过程,但只给前两个过程配置了参考信号,前两个过程配置的参考信号的组合构成了后两个CSI过程的参考信号。节约了参考信号的资源。
本发明还提供给一种用于确定UE级的反馈CQI的方法,如图3所示,该方法包括:步骤201,接收基站发送的参考信号和信道加权值,所述信道加权值用于确定CQI;步骤202,根据所述参考信号和所述信道加权值来确定CQI,其中至少一个CQI由信道加权值和至少两个信道确定,所述信道由参考信号确定;步骤203,向基站发送CQI。该方法可以由用户设备等执行。
根据一种实施方式,在步骤201中,可以通过以下方式来接收基站发送的信道加权值:接收基站发送的信道加权值消息,所述信道加权值消息用于指示所述信道加权值。
所述信道加权值是至少两个天线端口之间的加权值。
根据一种实施方式,所述方法还包括:
将由信道加权值和至少两个信道确定的至少一个CQI由差分形式表 示,可选地,该步骤可以在步骤203之前执行。
根据一种实施方式,所述方法还包括:接收来自基站的所述UE发送分组消息,可选地,该步骤可以在步骤203之前执行,所述分组消息用于指示所述CQI的表示形式,其中CQI的表示形式为原始形式或差分形式。
例如,在每个组的CQI中,所述原始形式表示的CQI是用4个比特表示的,所述差分形式表示的CQI是用2或3个比特表示的。
根据一种实施方式,所述UE的天线配置为:多个垂直向天线阵子形成多个垂直向的天线端口,多个垂直向的天线阵子及其对应的加权值组成驱动网络矩阵。
根据一种实施方式,所述CQI是在信道状态信息(CSI)测量过程中获得的。
其中,至少一个CQI对应第一CSI测量过程,另外的至少一个CQI是根据对至少一个第一CSI测量过程对应的至少一个参考信号测量而获得的。
根据一种实施方式,步骤202包括:执行至少一个CSI测量过程,并且根据已获得的CSI来计算至少一个其它CSI测量过程的CSI,其中所述CSI测量过程的测量结果包括对应的CQI。例如,UE执行第一CSI测量过程和第二CSI测量过程来得到各自对应的CQI,然后根据所得到的CQI和信道加权值来得到其它CSI测量过程对应的CQI。
本发明还提供一种用于确定UE级的反馈CQI的基站,如图4所示,该基站包括:发送装置1010,用于向所述UE发送参考信号和信道加权值;接收装置1020,用于接收所述UE发送的CQI;其中,至少一个CQI由信道加权值和至少两个信道确定,所述信道由参考信号确定。
根据一种实施方式,基站还包括:
计算装置1030,用于根据至少两个天线端口的关系,确定所述信道加权值,可选地,该过程可以在所述发送装置1010向所述UE发送参考信号和信道加权值之前执行。
根据一种实施方式,基站还包括处理装置1040,该处理装置1040用于:
在CQI中选择最优CQI;根据所述最优CQI对应的天线端口,指示所述发送装置1010向UE发送配置消息,所述配置消息用于指示UE的天线配置;或者:
在CQI中选择最优CQI,并根据所述最优CQI对应的天线端口和所述最优CQI对应的信道加权值,指示所述发送装置1010向UE发送配置消息,所述配置消息用于指示UE的天线配置。
根据一种实施方式,所述信道加权值是至少两个天线端口之间的加权值。
根据一种实施方式,由信道加权值和至少两个信道确定的至少一个CQI由差分形式表示。
根据一种实施方式,所述发送装置1010还用于:
向所述UE发送分组消息,所述分组消息用于指示所述CQI的表示形式,可选地,该过程可以在所述接收装置1020接收所述UE发送的CQI之前执行,其中CQI的表示形式为原始形式或差分形式。
根据一种实施方式,在每个组的CQI中,所述原始形式表示的CQI是用4个比特表示的,所述差分形式表示的CQI是用2或3个比特表示的。
根据一种实施方式,所述UE的天线配置为:多个垂直向天线阵子形成多个垂直向的天线端口,多个垂直向的天线阵子及其对应的加权值组成驱动网络矩阵。
根据一种实施方式,所述CQI是在信道状态信息(CSI)测量过程中获得的。
根据一种实施方式,至少一个CQI对应第一CSI测量过程,另外的至少一个CQI是根据对至少一个第一CSI测量过程对应的至少一个参考信号测量而获得的。
本发明还提供一种用于确定UE级的反馈CQI的UE,如图5所示,该UE包括:接收装置2010,用于接收基站发送的参考信号和信道加权值, 所述信道加权值用于确定CQI;处理装置2020,用于根据所述参考信号和所述信道加权值来确定CQI,其中至少一个CQI由信道加权值和至少两个信道确定,所述信道由参考信号确定;发送装置2030,用于向基站发送CQI。
根据一种实施方式,所述发送装置2030用于:接收基站发送的信道加权值消息,所述信道加权值消息用于指示所述信道加权值。
其中所述信道加权值是至少两个天线端口之间的加权值。
根据一种实施方式,所述处理装置2020还用于:将由信道加权值和至少两个信道确定的至少一个CQI由差分形式表示,可选地,该过程可以在所述发送装置2030向基站发送CQI之前执行。
根据一种实施方式,所述接收装置2010还用于:接收来自基站的所述UE的分组消息,可选地,该过程可以在所述发送装置2030向基站发送CQI之前执行,所述分组消息用于指示所述CQI的表示形式,其中CQI的表示形式为原始形式或差分形式。
举例来说,在每个组的CQI中,所述原始形式表示的CQI是用4个比特表示的,所述差分形式表示的CQI是用2或3个比特表示的。
所述UE的天线配置为:多个垂直向天线阵子形成多个垂直向的天线端口,多个垂直向的天线阵子及其对应的加权值组成驱动网络矩阵。
其中所述CQI是在信道状态信息(CSI)测量过程中获得的。
根据一种实施方式,至少一个CQI对应第一CSI测量过程,另外的至少一个CQI是根据对至少一个第一CSI测量过程对应的至少一个参考信号测量而获得的。
根据一种实施方式,所述处理装置2020用于:执行至少一个CSI测量过程,并且根据已获得的CSI来计算至少一个其它CSI测量过程的CSI,其中所述CSI测量过程的测量结果包括对应的CQI。
根据本发明提供的用于确定UE级的反馈CQI的方法和基站、UE,通过利用各个天线端口的CQI及其加权值形成驱动网络矩阵,根据矩阵中每列的向量及其组合对应的CQI,使得基站在UE报告的CQI中选择最优 CQI,并根据该最优CQI对应的驱动网络矩阵中的向量和/或其组合向UE提供合适的天线配置,从而实现了对UE的灵活配置,同时减少了参考信号的开销。
图6示出了根据本发明的计算机系统的一个实施例,该计算机系统可以为基站或者用户设备。
该计算机系统具体可以是基于处理器的计算机,如通用个人计算机(PC),便携式设备如平板计算机,或智能手机。
更具体的,上述计算机系统可包括总线、处理器3010、输入设备3020、输出设备3030、通信接口3040和存储器3050。处理器3010、输入设备3020、输出设备3030、通信接口3040和存储器3050通过总线相互连接。其中:
总线可包括一通路,在计算机系统的各个部件之间传送信息。
处理器3010可以是通用处理器,例如通用中央处理器(CPU)、网络处理器(Network Processor,简称NP)、微处理器等,也可以是特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
存储器3050中保存有执行本发明技术方案的程序,还可以保存有操作系统和其他应用程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。更具体的,存储器3050可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)、可存储信息和指令的其他类型的动态存储设备、磁盘存储器等等。
输入设备3020可包括接收用户输入的指令、数据和信息的装置,例如键盘、鼠标、摄像头、扫描仪、光笔、语音输入装置、触摸屏等。
输出设备3030可包括允许输出信息给用户的装置,例如显示屏、打印机、扬声器等。
通信接口3040可包括使用任何发送装置、接收装置、或收发器一类的装置,以便与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(WLAN)等。
处理器3010执行存储器3050中所存放的程序,用于实现本发明任一实施例提供的用于确定UE级的反馈CQI的方法和本发明实施例中任意一种装置。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
以上虽然通过一些示例性的实施例对本发明提供的用于防止篡改车辆 里程的方法和系统进行了详细的描述,但是以上这些实施例并不是穷举的,本领域技术人员可以在本发明的精神和范围内实现各种变化和修改。因此,本发明并不限于这些实施例,本发明的范围仅由所附权利要求为准。

Claims (36)

  1. 一种用于确定用户设备(UE)级的反馈信道质量信息(CQI)的方法,其特征在于,该方法包括:
    向所述UE发送参考信号和信道加权值;
    接收所述UE发送的CQI;其中,至少一个CQI由信道加权值和至少两个信道确定,所述信道由参考信号确定。
  2. 根据权利要求1所述的方法,其特征在于,该方法还包括:
    根据至少两个天线端口的关系,确定所述信道加权值。
  3. 根据权利要求1所述的方法,其特征在于,该方法还包括:
    在CQI中选择最优CQI,根据所述最优CQI对应的天线端口,向UE发送配置消息,所述配置消息用于指示UE的天线配置;或者:
    在CQI中选择最优CQI,并根据所述最优CQI对应的天线端口和所述最优CQI对应的信道加权值,向UE发送配置消息,所述配置消息用于指示UE的天线配置。
  4. 根据权利要求1所述的方法,其特征在于,所述信道加权值是至少两个天线端口之间的加权值。
  5. 根据权利要求1所述的方法,其特征在于,由信道加权值和至少两个信道确定的至少一个CQI由差分形式表示。
  6. 根据权利要求1所述的方法,其特征在于,该方法还包括:
    向所述UE发送分组消息,所述分组消息用于指示CQI的表示形式,其中CQI的表示形式为原始形式或差分形式。
  7. 根据权利要求5-6中任意一项所述的方法,其特征在于,在每个组的CQI中,所述原始形式表示的CQI是用4个比特表示的,所述差分形式表示的CQI是用2或3个比特表示的。
  8. 根据权利要求1-7中任意一项所述的方法,其特征在于,所述CQI是在信道状态信息(CSI)测量过程中获得的。
  9. 根据权利要求8所述的方法,其特征在于,至少一个CQI对应第 一CSI测量过程,另外的至少一个CQI是根据对至少一个第一CSI测量过程对应的至少一个参考信号测量而获得的。
  10. 一种用于确定UE级的反馈信道质量信息(CQI)的方法,其特征在于,该方法包括:
    接收基站发送的参考信号和信道加权值,所述信道加权值用于确定CQI;
    根据所述参考信号和所述信道加权值来确定CQI,其中至少一个CQI由信道加权值和至少两个信道确定,所述信道由参考信号确定;
    向基站发送CQI。
  11. 根据权利要求10所述的方法,其特征在于,接收基站发送的信道加权值的步骤包括:
    接收基站发送的信道加权值消息,所述信道加权值消息用于指示所述信道加权值。
  12. 根据权利要求10所述的方法,其特征在于,所述信道加权值是至少两个天线端口之间的加权值。
  13. 根据权利要求10所述的方法,其特征在于,该方法还包括:
    将由信道加权值和至少两个信道确定的至少一个CQI由差分形式表示。
  14. 根据权利要求10所述的方法,其特征在于,该方法还包括:
    接收来自基站的所述UE发送分组消息,所述分组消息用于指示所述CQI的表示形式,其中CQI的表示形式为原始形式或差分形式。
  15. 根据权利要求14所述的方法,其特征在于,在每个组的CQI中,所述原始形式表示的CQI是用4个比特表示的,所述差分形式表示的CQI是用2或3个比特表示的。
  16. 根据权利要求10-15中任意一项所述的方法,其特征在于,所述CQI是在信道状态信息(CSI)测量过程中获得的。
  17. 根据权利要求16所述的方法,其特征在于,至少一个CQI对应第一CSI测量过程,另外的至少一个CQI是根据对至少一个第一CSI测 量过程对应的至少一个参考信号测量而获得的。
  18. 根据权利要求16所述的方法,其特征在于,所述根据所述参考信号和所述信道加权值来确定CQI的步骤包括:
    执行至少一个CSI测量过程,并且根据已获得的CSI来计算至少一个其它CSI测量过程的CSI,其中所述CSI测量过程的测量结果包括对应的CQI。
  19. 一种用于确定用户设备(UE)级的反馈信道质量信息(CQI)的基站,其特征在于,该基站包括:
    发送装置,用于向所述UE发送参考信号和信道加权值;
    接收装置,用于接收所述UE发送的CQI;其中,至少一个CQI由信道加权值和至少两个信道确定,所述信道由参考信号确定。
  20. 根据权利要求19所述的基站,其特征在于,该基站还包括:
    计算装置,用于根据至少两个天线端口的关系,确定所述信道加权值。
  21. 根据权利要求19所述的基站,其特征在于,该基站还包括处理装置,该处理装置用于:
    在CQI中选择最优CQI;根据所述最优CQI对应的天线端口,指示发送装置向UE发送配置消息,所述配置消息用于指示UE的天线配置;或者:
    在CQI中选择最优CQI,并根据所述最优CQI对应的天线端口和所述最优CQI对应的信道加权值,指示发送装置向UE发送配置消息,所述配置消息用于指示UE的天线配置。
  22. 根据权利要求19所述的基站,其特征在于,所述信道加权值是至少两个天线端口之间的加权值。
  23. 根据权利要求19所述的基站,其特征在于,由信道加权值和至少两个信道确定的至少一个CQI由差分形式表示。
  24. 根据权利要求19所述的基站,其特征在于,所述发送装置还用于:
    向所述UE发送分组消息,所述分组消息用于指示所述CQI的表示形式,其中CQI的表示形式为原始形式或差分形式。
  25. 根据权利要求23-24中任意一项所述的基站,其特征在于,在每个组的CQI中,所述原始形式表示的CQI是用4个比特表示的,所述差分形式表示的CQI是用2或3个比特表示的。
  26. 根据权利要求19-25中任意一项所述的基站,其特征在于,所述CQI是在信道状态信息(CSI)测量过程中获得的。
  27. 根据权利要求26所述的基站,其特征在于,另外的至少一个CQI对应第一CSI测量过程,至少一个CQI是根据对至少一个第一CSI测量过程对应的至少一个参考信号测量而获得的。
  28. 一种用于确定反馈信道质量信息(CQI)的用户设备(UE),其特征在于,该UE包括:
    接收装置,用于接收基站发送的参考信号和信道加权值,所述信道加权值用于确定CQI;
    处理装置,用于根据所述参考信号和所述信道加权值来确定CQI,其中至少一个CQI由信道加权值和至少两个信道确定,所述信道由参考信号确定;
    发送装置,用于向基站发送CQI。
  29. 根据权利要求28所述的UE,其特征在于,所述发送装置用于:
    接收基站发送的信道加权值消息,所述信道加权值消息用于指示所述信道加权值。
  30. 根据权利要求28所述的UE,其特征在于,所述信道加权值是至少两个天线端口之间的加权值。
  31. 根据权利要求28所述的UE,其特征在于,所述处理装置还用于:
    将由信道加权值和至少两个信道确定的至少一个CQI由差分形式表示。
  32. 根据权利要求28所述的UE,其特征在于,所述接收装置还用于:
    接收来自基站的所述UE发送分组消息,所述分组消息用于指示所述CQI的表示形式,其中CQI的表示形式为原始形式或差分形式。
  33. 根据权利要求28所述的UE,其特征在于,在每个组的CQI中, 所述原始形式表示的CQI是用4个比特表示的,所述差分形式表示的CQI是用2或3个比特表示的。
  34. 根据权利要求28-33中任意一项所述的UE,其特征在于,所述CQI是在信道状态信息(CSI)测量过程中获得的。
  35. 根据权利要求34所述的UE,其特征在于,至少一个CQI对应第一CSI测量过程,另外的至少一个CQI是根据对至少一个第一CSI测量过程对应的至少一个参考信号测量而获得的。
  36. 根据权利要求34所述的UE,其特征在于,所述处理装置用于:
    执行至少一个CSI测量过程,并且根据已获得的CSI来计算至少一个其它CSI测量过程的CSI,其中所述CSI测量过程的测量结果包括对应的CQI。
PCT/CN2014/087484 2014-09-26 2014-09-26 用于确定ue级的反馈cqi的方法、基站、以及ue WO2016045067A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/087484 WO2016045067A1 (zh) 2014-09-26 2014-09-26 用于确定ue级的反馈cqi的方法、基站、以及ue
CN201480082244.7A CN107005579A (zh) 2014-09-26 2014-09-26 用于确定ue级的反馈cqi的方法、基站、以及ue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087484 WO2016045067A1 (zh) 2014-09-26 2014-09-26 用于确定ue级的反馈cqi的方法、基站、以及ue

Publications (1)

Publication Number Publication Date
WO2016045067A1 true WO2016045067A1 (zh) 2016-03-31

Family

ID=55580115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087484 WO2016045067A1 (zh) 2014-09-26 2014-09-26 用于确定ue级的反馈cqi的方法、基站、以及ue

Country Status (2)

Country Link
CN (1) CN107005579A (zh)
WO (1) WO2016045067A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12127022B2 (en) 2021-01-21 2024-10-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for reporting measurement quantities, method for determining measurement quantities, and devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159471A (zh) * 2007-11-05 2008-04-09 中兴通讯股份有限公司 一种通信中继网络的中继组的确定方法
CN101159931A (zh) * 2007-11-06 2008-04-09 中兴通讯股份有限公司 一种通信中继网络的中继组的确定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7231183B2 (en) * 2003-04-29 2007-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Quality determination for a wireless communications link
CN101291526B (zh) * 2007-04-18 2012-10-17 松下电器产业株式会社 减少信息反馈量的自适应调度方法和装置
CN101355381A (zh) * 2007-07-24 2009-01-28 株式会社Ntt都科摩 基于信道向量量化的调度和预编码方法及装置
KR101373808B1 (ko) * 2008-02-04 2014-03-12 삼성전자주식회사 다중안테나 시스템에서 빔포밍을 고려한 채널품질 정보를 결정하기 위한 장치 및 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159471A (zh) * 2007-11-05 2008-04-09 中兴通讯股份有限公司 一种通信中继网络的中继组的确定方法
CN101159931A (zh) * 2007-11-06 2008-04-09 中兴通讯股份有限公司 一种通信中继网络的中继组的确定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12127022B2 (en) 2021-01-21 2024-10-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for reporting measurement quantities, method for determining measurement quantities, and devices

Also Published As

Publication number Publication date
CN107005579A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2015161795A1 (zh) 一种信道状态信息测量的方法、系统及设备
WO2021052179A1 (zh) 一种上行数据传输方法及装置
JP6078539B2 (ja) 多次元アンテナ・アレイのチャネル測定およびチャネル・フィードバックのための方法および装置
TWI679871B (zh) 資料傳輸方法、裝置、網路側設備和使用者設備
WO2015124072A1 (zh) 信道状态信息测量方法和装置、以及信号传输方法和装置
WO2021244427A1 (zh) 一种信道测量方法及装置
US20230327732A1 (en) Interference measurement method, user equipment and network side device
WO2017167216A1 (zh) 参考信号发送方法、信道状态信息反馈方法、基站和移动台
TWI635737B (zh) 一種導頻信號的發送、接收處理方法及裝置
WO2022012393A1 (zh) 一种csi测量上报方法、终端及网络侧设备
US11705941B2 (en) Quasi-co-location indication method and apparatus
WO2017152750A1 (zh) 一种反馈信息的传输方法和装置
WO2017193884A1 (zh) 参考信号发送方法、检测方法、基站和移动台
US20230006725A1 (en) Mapping of windowed fd basis to a combinatorial indicator for pmi reporting and usage
WO2016124078A1 (zh) 一种信道测量方法及装置
WO2017193404A1 (zh) 信道状态信息的上报方法、读取方法及相关设备
TW200807957A (en) Method and apparatus of dynamic channel assignment for a wireless network
WO2023208043A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
CN115150025A (zh) Csi反馈方法、相关设备及可读存储介质
US8565333B2 (en) Precoding matrix design method for multiple base station using MIMO technique
WO2016045067A1 (zh) 用于确定ue级的反馈cqi的方法、基站、以及ue
WO2022083412A1 (zh) 一种csi-rs增强传输方法及装置
TWI834162B (zh) 信號傳輸方法、裝置、終端及基地台
WO2022077482A1 (en) Signalling port information
CN105871504B (zh) 用于产生信道的三维信道质量指示的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902331

Country of ref document: EP

Kind code of ref document: A1