WO2016043519A1 - 무선 통신 시스템에서 스케줄링 방법 및 장치 - Google Patents

무선 통신 시스템에서 스케줄링 방법 및 장치 Download PDF

Info

Publication number
WO2016043519A1
WO2016043519A1 PCT/KR2015/009720 KR2015009720W WO2016043519A1 WO 2016043519 A1 WO2016043519 A1 WO 2016043519A1 KR 2015009720 W KR2015009720 W KR 2015009720W WO 2016043519 A1 WO2016043519 A1 WO 2016043519A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
sinr
mcs
user
gaussian
Prior art date
Application number
PCT/KR2015/009720
Other languages
English (en)
French (fr)
Inventor
사공민
설지윤
박우명
안석기
임치우
홍성남
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US15/512,020 priority Critical patent/US10014891B2/en
Publication of WO2016043519A1 publication Critical patent/WO2016043519A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/106M-ary FSK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3416Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power in which the information is carried by both the individual signal points and the subset to which the individual points belong, e.g. using coset coding, lattice coding, or related schemes
    • H04L27/3427Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power in which the information is carried by both the individual signal points and the subset to which the individual points belong, e.g. using coset coding, lattice coding, or related schemes in which the constellation is the n - fold Cartesian product of a single underlying two-dimensional constellation
    • H04L27/3433Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power in which the information is carried by both the individual signal points and the subset to which the individual points belong, e.g. using coset coding, lattice coding, or related schemes in which the constellation is the n - fold Cartesian product of a single underlying two-dimensional constellation using an underlying square constellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3488Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo

Definitions

  • the present invention relates to a scheduling method and apparatus in a wireless communication system.
  • a 5G communication system or a pre-5G communication system is called a system after a 4G network (Beyond 4G Network) or a system after an LTE system (Post LTE).
  • 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (e.g., 60 gigabyte (60 GHz) band).
  • mmWave ultra-high frequency
  • MIMI massive multi-input multi-output
  • FD-MIMO Full Dimensional MIMO
  • array antenna analog beam-forming, and large scale antenna techniques are discussed.
  • 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation
  • cloud RAN cloud radio access network
  • ultra-dense network ultra-dense network
  • D2D Device to Device communication
  • wireless backhaul moving network
  • cooperative communication Coordinated Multi-Points (CoMP), and interference cancellation
  • Hybrid FSK and QAM Modulation FQAM and QAM Modulation
  • SWSC Slide Window Superposition Coding
  • ACM Advanced Coding Modulation
  • FBMC Fan Bank Multi Carrier
  • NOMA NOMA
  • SAP Non orthogonal multiple access
  • SCMA sparse code multiple access
  • wireless communication systems have evolved in order to support higher data rates in order to meet ever-increasing demand for wireless data traffic.
  • OFDMA orthogonal frequency division multiple access
  • MIMO multiple input multiple output
  • the present invention provides a multi-access method and apparatus in a wireless communication system.
  • the present invention provides a method and apparatus for increasing cell edge throughput in a wireless communication system.
  • the present invention provides a method and apparatus for FQAM based on NOMA system, rather than QAM based NOMA in wireless communication system.
  • a method of scheduling in a wireless communication system includes: receiving a signal-to-interference-noise ratio (SINR) value and an alpha value from a terminal; Determining a Gaussian SINR value based on the SINR value and the alpha value; Pairing a user based on the Gaussian SINR value; And recalculating the MCS based on the recalculated alpha value.
  • SINR signal-to-interference-noise ratio
  • a scheduling apparatus in a wireless communication system, comprising: a receiver configured to receive a signal-to-interference-noise ratio (SINR) value and an alpha value from a terminal; And a control unit for determining a Gaussian SINR value based on the SINR value and the alpha value, user pairing based on the Gaussian SINR value, and recalculating the MCS based on the recalculated alpha value.
  • SINR signal-to-interference-noise ratio
  • a method including receiving an indicator from a base station; Removing interference of the received signal based on the indicator; And performing non-Gaussian decoding, wherein the indicator is transmitted from the base station to the terminal when the MCS value of the MCS-resourced remote user corresponds to the FQAM.
  • the base station determines a Gaussian SINR value based on the SINR value and the alpha value, pairs the user based on the Gaussian SINR value, and based on the recalculated alpha value for the paired user. will be.
  • an apparatus for removing interference in a terminal in a wireless communication system includes: a receiver configured to receive an indicator from a base station; A control unit for removing interference of the received signal based on the indicator and performing non-Gaussian decoding, wherein the indicator includes: when the MCS value of the MCS redefined far-field user corresponds to FQAM Is transmitted from the base station to the terminal, the MCS property is determined by the base station based on the SINR value and the alpha value Gaussian SINR value, based on the Gaussian SINR value paired with the user, paired to the user The MCS is recalculated based on the recalculated alpha value for.
  • the present invention can increase cell edge throughput through fusion of FQAM and NOMA in a wireless communication system.
  • 1 is a diagram illustrating an example of operating FQAM
  • FIG. 2 is a diagram illustrating a modulation scheme used by a user of each cell
  • 3A and 3B are structural diagrams of a NOMA system
  • 4A and 4B are graphs showing throughput for bandwidth ratio or power ratio of a near user in a NOMA system
  • 5A and 5B are structural diagrams of a NOMA system based on FQAM according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a scheduling method in a mobile communication system according to an embodiment of the present invention
  • 9A, 9B, 10A, and 10B are graphs showing channel capacity
  • FIG. 11 is a flowchart illustrating a scheduling method in a terminal in a mobile communication system according to an embodiment of the present invention
  • FIG. 12 is a block diagram of a base station apparatus according to an embodiment of the present invention.
  • FIG. 13 is a block diagram of a terminal device according to an embodiment of the present invention.
  • a user described herein refers to a mobile terminal or a terminal, but will be expressed as a user in the following.
  • the quadrature amplitude modulation (QAM) series modulation method is mainly used.
  • the channel capacity of the non-Gaussian channel is larger than that of the Gaussian channel, if the decoding is properly performed, a higher decoding performance can be obtained in the non-Gaussian channel. Therefore, it is necessary to develop a modulation scheme that makes the interference signal non-Gaussian. For this reason, the proposed modulation scheme is Hybrid FSK and QAM Modulation (FQAM).
  • 1 is a diagram illustrating an example of operating FQAM.
  • FQAM is a hybrid modulation method in which QAM and frequency shift keying (FSK) are combined, as shown in FIG. 1, and has both high spectral efficiency of QAM and non-Gaussian interference signal of FSK. That is, FQAM is a communication technique for arbitrarily transmitting an interference signal of neighboring base stations in a non-Gaussian form by utilizing the characteristic that the transmission gain of the signal increases when the interference signal is non-Gaussian.
  • NOMA a technique called NOMA has been proposed to increase the throughput of cell edge users without a significant loss of average throughput.
  • FIGS. 4A and 4B are graphs illustrating throughput of a bandwidth ratio or a power ratio of a short distance user in a NOMA system.
  • the NOMA system is a system that transmits each QAM using the same resources to several different users in a cell as shown in FIG. 3A.
  • the NOMA of the conventional method is referred to as "QAM based NOMA".
  • SIC processing may be performed at a receiver at a short distance and Gaussian noise at a receiver at a long distance.
  • FIG. 4A shows throughput for the bandwidth ratio or power ratio of the near user in the absence of ICI
  • FIG. 4B shows the throughput for the bandwidth ratio or power ratio of the near user in the presence of ICI.
  • 5A and 5B are diagrams illustrating a structure of a NOMA system based on FQAM according to an embodiment of the present invention.
  • At least one of the paired users transmits using FQAM.
  • User pairing indicates how to select users to transmit by using the same resource at the same time.
  • the performance of a remote user can be further improved than a conventional QAM based NOMA system. This is because FQAM has higher throughput than QAM in the low SNR region.
  • the near field user of NOMA can develop and use high performance SIC method using FQAM constellation feature or develop low complexity SIC method.
  • the above detailed SIC method is beyond the scope of the present invention, so a detailed description thereof will be omitted.
  • FIG. 6 is a flowchart illustrating a scheduling method in a mobile communication system according to an exemplary embodiment of the present invention.
  • step 601 the base station receives channel state information from the terminal.
  • Channel status information includes SINR, carrier-to-interference and noise ratio (CINR), mean CINR, variance or standard deviation for CINR, Received Signal Strength Indicator (RSSI), mean RSSI, variance or standard deviation for RSSI, and CGG ( ⁇ ( ⁇ ICI ) and ⁇ values representing the interference characteristics of the Complex Generalized Gaussian (CRS) interference model, and a preferred Modulation and Coding Scheme (MCS) level.
  • SINR carrier-to-interference and noise ratio
  • CINR carrier-to-interference and noise ratio
  • mean CINR variance or standard deviation for CINR
  • RSSI Received Signal Strength Indicator
  • mean RSSI mean RSSI
  • variance or standard deviation for RSSI and CGG ( ⁇ ( ⁇ ICI ) and ⁇ values representing the interference characteristics of the Complex Generalized Gaussian (CRS) interference model
  • MCS Modulation and Coding Scheme
  • step 603 the base station calculates a Gaussian SINR.
  • Gaussian SINR can be determined or calculated according to alpha value and SINR as shown in Table 1 below.
  • the following Gaussian SINR value may be predetermined between the terminal and the base station, and may be stored in advance.
  • FIG. 7 is a diagram illustrating an example of calculating a Gaussian SINR according to an embodiment of the present invention.
  • 0.833333, 0.666667, 0.625, 0.5, 0.416667, and 0.333333 represent spectral efficiency values according to alpha values.
  • step 605 the base station performs user pairing based on the Gaussian SINR.
  • the user pairing is performed in consideration of at least one of a channel state of each user and a packet size to be sent to each user.
  • the modulation method and modulation order for each user not only the channel state of the paired users, but also the method of determining whether to use FQAM, including proximity to neighbor cells, and the number of tones per modulation symbol of the FQAM are systematically determined. Use a method that uses a predetermined value (in appointment with a neighboring cell).
  • the base station determines a value (P1, P2) so that the remote user can transmit the FQAM after the overlap based on the SINR and ⁇ ICI values.
  • ⁇ reported from the terminal 1 to the base station is 0.5
  • SINR is 2 dB
  • ⁇ reported from the terminal 2 to the base station is 1.8
  • the SINR is 16 dB.
  • Terminal pairing is performed.
  • the terminal in the short distance is terminal 2 and the terminal in the far distance is terminal 1.
  • P F represents the power of the remote terminal
  • P N represents the power of the near terminal.
  • SINR N is the SINR of the near terminal
  • SINR F is the SINR of the remote terminal
  • Equations 1 and 2 h denotes a channel gain, N 0 denotes a one-sided power spectrum density (PSD) of background noise, and W denotes a bandwidth used.
  • PSD power spectrum density
  • SINR SINR N is the SINR of the short-range terminal
  • SINR F is the SINR of the far-field terminal
  • the SINR range in which FQAM is used compared to QAM for each alpha value is as follows.
  • the base station calculates ⁇ NOMA based on the reported SINR and ⁇ ICI values and P1 and P2 values.
  • step 611 the base station reassigns the MCS of the near user and the remote user based on the ⁇ NOMA value.
  • the MCS After superposition, the MCS must be reassigned because the alpha value is different from before superposition due to the interference caused by the overlapping signals.
  • 8A and 8B are diagrams showing that the alpha values before and after the overlap change.
  • the overlapping signal is known at the base station and its modulation method, it is possible to predict the magnitude of the alpha value changed due to the overlap at the base station.
  • step 613 the base station determines whether the MCS value of the redefined far-field user corresponds to the FQAM. If the reassigned remote user's MCS value corresponds to FQAM, the base station transmits an indicator in step 615.
  • the indicator may include at least one of FQAM based NOMA mode transmission, the number of overlapping users, the MCS of the overlapping symbols, and the power level of the overlapping symbols.
  • the process returns to step 607 to perform the power allocation process.
  • 9A, 9B, 10A, and 10B are graphs showing channel capacity.
  • FIGS. 10A and 10B assume a case of Single Cell, 2-Pair, Fixed Position, and Perfect SIC, and FIGS. 10A and 10B assume a case of 7-Cell Structure, 2-Pair, Fixed Position, and Perfect SIC.
  • the optimal sum rate is higher than that of the OFDMA system.
  • the NOMA system can improve large cell-edge performance even with very small sum rate losses.
  • the maximum sum rate is the same as that of the OFDMA system and the NOMA system. (The sum rate when driving resources to Near users in the OFDMA system is equal to the maximum sum rate of the NOMA system.)
  • the sum rate loss that is sacrificed to improve cell-edge performance is increased. Even in this case, the maximum sum rate is the same between the OFDMA system and the NOMA system.
  • FIG. 11 is a flowchart illustrating a scheduling method in a terminal in a mobile communication system according to an exemplary embodiment of the present invention.
  • the terminal receives the indicator through the received signal from the base station.
  • the indicator may include at least one of FQAM based NOMA mode transmission, the number of overlapping users, the MCS of the overlapping symbols, and the power level of the overlapping symbols.
  • the received signal received as the l th subcarrier of the k th FQAM symbol may be expressed as Equation 5 below.
  • I long-term fading
  • delta delta function
  • H short-term fading
  • u AWGN
  • s QAM symbol
  • N BS the number of adjacent cells
  • m FSK symbol index
  • step 1103 the UE estimates an alpha value from the received signal and removes interference.
  • the method of estimating the alpha value is described using Equation 7 below.
  • Equation 6 Parameters alpha and beta, which are required in CGG PDF and pdf, are calculated or estimated using Equation 6 below.
  • Equation 6 M F represents an FSK modulation order, Represents the hard decision result of the received signal.
  • step 1105 the UE performs non-Gaussian decoding.
  • an indicator of ⁇ NOMA is required at a base station, and a terminal must remove a far-field user signal by performing a non-Gaussian SIC.
  • the ⁇ ICI value is calculated again using the remaining signals.
  • the calculated ⁇ ICI value is used to recover the required signal.
  • Equation 7 An example of a method of estimating ⁇ is shown in Equation 7 below.
  • Z [k] represents a signal from which a channel-compensated internal signal is removed from the received signal.
  • Alpha_CQI indicates that the pilot signal of the channel compensated channel is removed from the received pilot.
  • Alpha_DATA represents the removal of channel compensated data from the received data (where my data is the result of hard decision of the received signal).
  • Equation 8 The equation for estimating ⁇ is shown in Equation 8 below.
  • Equation 8 ⁇ means a gamma function.
  • the LLR calculation method in the terminal is as follows.
  • Equation 9 The LLR calculation method using the binary code is shown in Equation 9 below.
  • Equation 10 The LLR calculation method using the M-ary code is shown in Equation 10 below.
  • Remote users perform conventional CGGD based non-Gaussian decoding.
  • CGGD is determined as in Equation 11 below.
  • FIG. 12 illustrates a base station apparatus according to an embodiment of the present invention.
  • the base station includes a transmitter 1210, a receiver 1220, a controller 1230, and a storage 1240.
  • the controller 1230 determines a Gaussian SINR value based on the SINR value and the alpha value received from the terminal according to an embodiment of the present invention, pairs the user based on the Gaussian SINR value, and recalculates the alpha value. Based on the MCS reassignment.
  • the controller 1230 is further configured to determine power values P1 and P2 for remote terminals based on the SINR value and the alpha value, and to re-determine the alpha value based on the P1 and P2.
  • the controller 1230 if the MCS value of the reclaimed remote user corresponds to the FQAM, the base station transmits an indicator, the indicator transmits the FMAM-based NOMA mode to each user, the number of overlapping users, Information of at least one of the MCS of the superimposed symbols and the power level of the superimposed symbols.
  • the transmitter 1210 and the receiver 1220 perform various operations for transmitting and receiving a signal according to an embodiment of the present invention with a terminal under the control of the controller 1230.
  • FIG. 13 illustrates a terminal device according to an embodiment of the present invention.
  • the terminal includes a transmitter 1310, a receiver 1320, a controller 1330, and a storage 1340.
  • the control unit 1330 removes the interference of the received signal based on the indicator received from the base station according to an embodiment of the present invention, and performs non-Gaussian decoding.
  • the indicator is transmitted from the base station to the terminal when the MCS value of the MCS-resourced remote user corresponds to the FQAM, and the MCS property is determined by the base station based on the SINR value and the alpha value. Determine, pair the user based on the Gaussian SINR value, and recalculate the MCS based on the alpha value recalculated for the paired user.
  • the transmitter 1310 and the receiver 1320 receive an indicator according to an exemplary embodiment of the present invention, and transmit channel state information reflecting interference characteristics to a base station under the control of the controller 1330.
  • the scheduling method and apparatus in the wireless communication system may be realized in the form of hardware, software, or a combination of hardware and software.
  • Any such software may be, for example, volatile or nonvolatile storage, such as a storage device such as a ROM, whether or not removable or rewritable, or a memory such as, for example, a RAM, a memory chip, a device or an integrated circuit.
  • a storage medium such as a ROM, whether or not removable or rewritable
  • a memory such as, for example, a RAM, a memory chip, a device or an integrated circuit.
  • CD or DVD, magnetic disk or magnetic tape and the like can be stored in a storage medium that is optically or magnetically recordable and simultaneously readable by a machine (eg computer).
  • the scheduling method may be implemented by a computer or a portable terminal including a controller and a memory, and the memory includes a program or a program including instructions for implementing the embodiments of the present invention. It will be appreciated that this is an example of a machine-readable storage medium suitable for storing the data.
  • the present invention includes a program comprising code for implementing the apparatus or method described in any claim herein and a storage medium readable by a machine (such as a computer) storing such a program.
  • a program may be transferred electronically through any medium, such as a communication signal transmitted via a wired or wireless connection, and the present invention includes equivalents thereof as appropriate.
  • the scheduling apparatus may receive and store the program from a program providing apparatus connected by wire or wirelessly.
  • the program providing apparatus may include a program including instructions for causing the program processing apparatus to perform a scheduling method in a preset wireless communication system, a memory for storing information necessary for a scheduling method in a wireless communication system, and the graphic processing apparatus; And a controller for performing wired or wireless communication with the controller, and a controller for automatically transmitting a request or a corresponding program to the transceiver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 LTE와 같은 4G 통신 시스템 이후 보다 높은 데이터 전송률을 지원하기 제공될 5G 또는 pre-5G 통신 시스템에 관련된 것이다. 본 발명은 NOMA 시스템 기반의 FQAM 접속 방법 및 장치에 관한 것이다. 본 발명은 셀 경계 사용자의 전송률을 증대 시킬 수 있다. 본 발명의 실시 예에 따른 방법은, 무선 통신 시스템에서 스케줄링 방법에 있어서, 단말로부터 SINR(signal-to-interference-noise ratio)값과 알파값을 수신하는 과정; 상기 SINR값과 알파값을 기반으로 하여 가우시안 SINR 값을 결정하는 과정; 상기 가우시안 SINR 값을 기반으로 하여 사용자 페어링하는 과정; 및 재산정된 알파값을 기반으로 하여 MCS 재산정하는 과정을 포함한다.

Description

무선 통신 시스템에서 스케줄링 방법 및 장치
본 발명은 무선 통신 시스템에서 스케줄링 방법 및 장치에 관한 것이다.
4G (4th-Generation) 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G (5th-Generation) 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파 (mmWave) 대역 (예를 들어, 60기가 (60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로 손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍 (beamforming), 거대 배열 다중 입출력 (massive multi-input multi-output: massive MIMO), 전차원 다중입출력 (Full Dimensional MIMO: FD-MIMO), 어레이 안테나 (array antenna), 아날로그 빔형성 (analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다.
또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조 (Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC (Filter Bank Multi Carrier), NOMA (non orthogonal multiple access), 및 SCMA (sparse code multiple access) 등이 개발되고 있다.
최근, 무선 통신 시스템은 지속적으로 증가하는 무선 데이터 트래픽 수요를 충족시키기 위해, 보다 높은 데이터 전송률을 지원하기 위한 방향으로 발전하고 있다. 예를 들어, 무선통신 시스템에서 데이터 전송률을 증가시키기 위해 OFDMA (orthogonal frequency division multiple access), MIMO(multiple input multiple output) 송수신 등과 같은 통신기술을 바탕으로 주파수 효율성을 개선하고 채널용량을 증대시키기 위한 연구가 활발히 진행되고 있다.
또한 셀 중심에서 원거리(far) 셀 경계의 낮은 SNR(Signal-to-Noise Ratio)의 상황이나, 인접 셀의 기지국으로부터 큰 간섭을 받는 낮은 CINR(Carrier-to-Interference and Noise Ratio)의 상황 등에 있는 셀 경계 사용자(cell-edge user)들에 의해 전체 시스템 성능이 제한되는 것을 개선할 필요가 있다. 셀 경계 사용자들에 대한 전송효율을 증대시키기 위해, 셀간 간섭 조정(ICIC: Inter-Cell Interference-Coordination), CoMP(Coordinated Multi-Points), 수신단 간섭제거(interference cancellation)와 같은 기술들이 개발되고 있다.
본 발명은 무선 통신 시스템에서 멀티 억세스 방법 및 장치를 제공한다.
본 발명은 무선 통신 시스템에서 셀 에지 throughput 증대를 위한 방법 및 장치를 제공한다.
본 발명은 무선 통신 시스템에서 QAM 기반의 NOMA이 아니라, NOMA 시스템 기반의 FQAM 방법 및 장치를 제공한다.
본 발명의 실시 예에 따른 방법은, 무선 통신 시스템에서 스케줄링 방법에 있어서, 단말로부터 SINR(signal-to-interference-noise ratio)값과 알파값을 수신하는 과정; 상기 SINR값과 알파값을 기반으로 하여 가우시안 SINR 값을 결정하는 과정; 상기 가우시안 SINR 값을 기반으로 하여 사용자 페어링하는 과정; 및 재산정된 알파값을 기반으로 하여 MCS 재산정하는 과정을 포함한다.
본 발명의 실시 예에 따른 장치는, 무선 통신 시스템에서 스케줄링 장치에 있어서, 단말로부터 SINR(signal-to-interference-noise ratio)값과 알파값을 수신하는 수신부; 및 상기 SINR값과 알파값을 기반으로 하여 가우시안 SINR 값을 결정하고, 상기 가우시안 SINR 값을 기반으로 하여 사용자 페어링하고, 및 재산정된 알파값을 기반으로 하여 MCS 재산정하는 제어부를 포함한다.
본 발명의 실시 예에 따른 방법은, 기지국으로부터 지시자를 수신하는 과정; 상기 지시자를 기반으로 하여 수신된 신호의 간섭을 제거하는 과정; 및 넌 가우시안(non-Gaussian) 디코딩을 수행하는 과정을 포함하고, 상기 지시자는, MCS 재산정된 원거리 사용자의 MCS 값이 FQAM에 해당할 경우에 기지국에서 단말로 전송된 것이고, 상기 MCS 재산정은 상기 기지국에 의해, SINR값과 알파값을 기반으로 하여 가우시안 SINR 값을 결정하고, 상기 가우시안 SINR 값을 기반으로 하여 사용자 페어링하고, 페어링된 사용자에 대해 재산정된 알파값을 기반으로 하여 MCS 재산정된 것이다.
본 발명의 실시 예에 따른 장치는, 무선 통신 시스템에서 단말에서의 간섭 제거 장치에 있어서, 기지국으로부터 지시자를 수신하는 수신부; 상기 지시자를 기반으로 하여 수신된 신호의 간섭을 제거하고, 넌 가우시안(non-Gaussian) 디코딩을 수행하는 제어부를 포함하고, 상기 지시자는, MCS 재산정된 원거리 사용자의 MCS 값이 FQAM에 해당할 경우에 기지국에서 단말로 전송된 것이고, 상기 MCS 재산정은 상기 기지국에 의해, SINR값과 알파값을 기반으로 하여 가우시안 SINR 값을 결정하고, 상기 가우시안 SINR 값을 기반으로 하여 사용자 페어링하고, 페어링된 사용자에 대해 재산정된 알파값을 기반으로 하여 MCS 재산정된 것이다.
본 발명은 무선 통신 시스템에서 FQAM과 NOMA의 융합을 통해 셀 에지 throughput을 증대시킬 수 있다.
도 1은 FQAM을 운용하는 예를 나타내는 도면;
도 2는 셀별 사용자가 사용하는 변조 방식을 나타내는 도면;
도 3a 및 도 3b는 NOMA 시스템 구조도;
도 4a 및 도 4b는 NOMA 시스템에서 근거리 사용자의 대역폭 비율 또는 전력 비율에 대한 throughput을 나타낸 그래프;
도 5a 및 도 5b는 본 발명의 실시 예에 따른 FQAM에 기반을 한 NOMA 시스템 구조도;
도 6은 본 발명의 실시 예에 따른 이동 통신 시스템에서 스케줄링 방법을 도시한 흐름도;
도 7은 본 발명의 실시 예에 따른 가우시안 SINR을 계산하는 예를 나타낸 도면;
도 8a 및 도 8b는 중첩 전과 중첩 후의 알파값이 변하는 것을 나타내는 도면;
도 9a, 도 9b, 도 10a, 도 10b는 채널 용량을 나타내는 그래프;
도 11은 본 발명의 실시 예에 따른 이동 통신 시스템에서 단말에서 스케줄링 방법을 도시한 흐름도;
도 12는 본 발명의 실시예에 따른 기지국 장치 블록 구성도; 및
도 13은 본 발명의 실시예에 따른 단말 장치 블록 구성도.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예들을 상세히 설명한다. 이때 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의하여야 한다. 또한 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다.
또한 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 기재하는 user는 이동 단말 또는 단말을 의미하나 이하에서 user로 표현하기로 한다.
또한, 무선통신 시스템에서는 낮은 복잡도로 복호를 수행하기 위하여 간섭신호에 대하여 가우시안 가정을 한다. 그렇기 때문에, 간섭신호의 특성을 최대한 가우시안에 가깝게 만들기 위하여 QAM(quadrature amplitude modulation) 계열의 변조 방식을 주로 사용한다. 그러나 가우시안 채널보다 넌 가우시안 채널의 채널 용량이 크므로, 적절히 복호를 수행한다면 가우시안 채널보다 넌 가우시안 채널에서 더 높은 복호 성능을 얻을 수 있다. 그러므로 간섭 신호를 넌 가우시안 특성을 가지게 만드는 변조 방식의 개발이 필요하고, 이러한 연유로 제안된 변조 방식이 FQAM(Hybrid FSK and QAM Modulation)이다.
도 1은 FQAM을 운용하는 예를 나타내는 도면을 나타낸다.
FQAM은 도 1과 같이 QAM과 FSK(frequency shift keying)가 결합된 하이브리드(hybrid) 변조 방식으로써, QAM의 높은 spectral efficiency와 FSK의 간섭신호를 넌 가우시안하게 만드는 특성을 모두 가진다. 즉, FQAM은 간섭 신호가 넌 가우시안인 경우 신호의 전송 이득이 높아지는 특성을 활용하여 임의로 인접 기지국들의 간섭 신호를 넌 가우시안 형태로 구성하도록 전송하는 통신 기법이다.
또한 FSK의 power efficient한 특징을 가지므로, low SNR에서는 QAM보다 좋은 성능을 가진다.
다만, 실제 상황에서는 QAM 대비 FQAM이 충분한 이득을 보일 만큼 낮은 수신 SINR을 가지는 사용자의 수는 많지 않다. 또한 cell 간 FQAM 사용자의 로드 밸랜싱(load balance)를 유지하는 것은 현실적으로 불가능하기 때문에 모든 FQAM user에게 의도한 non-Gaussianity를 제공하기 어렵다. 참고로, 일반적으로는 FQAM에 적합한 user의 수는 도 2처럼 시간 별, cell 별로 서로 다르다.
도 2는 셀별 사용자가 사용하는 변조 방식을 나타낸다.
상기 FQAM과는 별도로, average throughput의 큰 loss 없이 cell edge user의 throughput을 높이기 위하여 NOMA라는 기술이 제안되었다.
도 3a 및 도 3b는 NOMA 시스템 구조도를 나타내고, 도 4a 및 도 4b는 NOMA 시스템에서 근거리 사용자의 대역폭 비율 또는 전력 비율에 대한 throughput을 나타낸 그래프이다.
NOMA 시스템은 도 3a 처럼 cell 내에 여러 명의 서로 다른 user에게 동일한 자원을 사용하여 각각 QAM을 사용하여 송신하는 시스템이다. 본 명세서에서는 기존 방법의 NOMA를 "QAM based NOMA"이라고 명명한다.
도 3b를 참조하면, cell 내에 여러 명의 서로 다른 user에게 동일한 자원을 사용함으로써, 근거리에서는 수신기에서 SIC 처리하고, 원거리에서는 수신기에서 가우시안 잡음으로써 처리될 수 있다.
도 4a는 ICI가 없는 경우 근거리 사용자의 대역폭 비율 또는 전력 비율에 대한 throughput을 나타내고, 도 4b는 ICI가 존재하는 경우 근거리 사용자의 대역폭 비율 또는 전력 비율에 대한 throughput을 나타낸다.
NOMA는 성능이 스케줄링 결과에 dependency가 크고, 도 4b와 같이 의도하지 않은 간섭에 대한 성능 열화량이 OFDMA(orthogonal frequency-division multiple access) 보다 더 심하다.
본 발명에서는 FQAM과 NOMA이 사용되었을 때 성능 이득을 크게 기대하기가 어려운 문제점들을 해결하여 FQAM과 NOMA의 본연의 성능 이득을 확보하고, 이에 더하여 두 기술 간 시너지(synergy) 효과를 통한 추가적인 이득을 얻을 수 있는 획기적인 다중 접속 기술을 제안한다.
도 5a 및 도 5b는 본 발명의 실시 예에 따른 FQAM에 기반을 한 NOMA 시스템 구조도이다.
FQAM에 기반을 한 NOMA 시스템은 도 5a와 같이, user 페어링(pairing)을 수행한 후, 페어링된 user 중 적어도 한 명은 FQAM을 사용하여 전송하는 방식을 사용한다. user pairing은 동시에 동일 자원을 사용하여 중첩하여 송신할 user 선택 방법을 나타낸다.
이를 통하여 다음과 같은 장점을 기대할 수 있다.
첫째, 본 발명의 실시 예에 따른 방법을 사용하여 FQAM에 기반을 한 NOMA 시스템을 운용하게 되면, cell-edge user만이 아닌 모든 user가 non-Gaussian ICI(Inter-Cell Interference) benefit을 얻을 수 있다.
이는 일반적인 FQAM이 cell-edge user만을 타겟(target)으로 non-Gaussian ICI를 생성했던 것과는 다른 혁신적 결과이다.
둘째, 도 5b를 참조하면, 기존 QAM 기반으로 한 NOMA 시스템 보다 원거리 user의 성능을 더 개선 시킬 수 있다. 이는 FQAM이 low SNR 영역에서는 QAM 보다 더 높은 throughput을 가지기 때문이다.
마지막으로, NOMA의 근거리 user에서는 FQAM constellation의 특징을 이용하여 성능 높은 SIC 기법을 개발하여 사용하거나 복잡도가 낮은 SIC 방법을 개발하여 사용할 수 있다. 단, 상기의 자세한 SIC 방법은 본 발명의 범위를 벗어나므로 상세한 설명은 생략하기로 한다.
도 6은 본 발명의 실시 예에 따른 이동 통신 시스템에서 스케줄링 방법을 도시한 흐름도이다.
601 단계에서 기지국은 단말로부터 채널 상태 정보를 수신한다.
채널 상태 정보는 SINR, CINR(Carrier-to-Interference and Noise Ratio), 평균 CINR, CINR에 대한 분산 혹은 표준 편차, RSSI(Received Signal Strength Indicator), 평균 RSSI, RSSI에 대한 분산 혹은 표준 편차, CGG(Complex Generalized Gaussian) 간섭 모델의 간섭 특성을 나타내는 α(αICI) 및 β값, 및 선호 MCS(Modulation and Coding Scheme) 레벨 등을 포함할 수 있다.
603 단계에서 기지국은 가우시안 SINR을 계산한다.
가우시안 SINR은 하기의 <표 1>와 같이 알파값과 SINR에 따라서 결정 또는 계산될 수 있다. 하기의 가우시안 SINR 값은 단말과 기지국간에 미리 결정되고, 미리 저장 될 수 있다.
표 1
Alpha SINR Gaussian SINR
0.5 -8dB -4dB
-6dB -3dB
-4dB -2dB
-2dB -1dB
0.7 -7dB -5dB
-5dB -3.3dB
-3dB -2dB
1.0 -6dB -5dB
-4dB -3.5dB
-2dB -1.7dB
도 7은 본 발명의 실시 예에 따른 가우시안 SINR을 계산하는 예를 나타낸 도면이다.
도 7에서 0.833333, 0.666667, 0.625, 0.5, 0.416667, 0.333333은 알파값에 따른 스펙트럼 효율값을 나타낸다.
한편, 605 단계에서 기지국은 가우시안 SINR을 기반으로 하여 사용자 페어링을 수행한다.
상기 사용자 페어링은 각 user들의 채널 상태 및 각 user들에게 보낼 패킷 사이즈 중 적어도 하나를 고려하여 수행된다.
각 user들을 위한 변조 방법 및 변조 차수를 선택함에 있어서 페어링된 user들의 채널 상태 뿐만 아니라, 인접 셀과의 근접도를 포함하여 FQAM 사용 여부를 결정하는 방법과 FQAM의 변조 심볼 당 톤 수는 시스템적으로(인접 셀과 약속하여) 미리 정한 값을 사용하는 방법을 사용한다.
607 단계에서 기지국은 SINR, αICI 값을 토대로 원거리의 user가 중첩 후에 FQAM을 송신할 수 있도록 (P1, P2) 값을 결정한다.
각 user들을 위한 전력 할당을 수행할 때, QAM 뿐만 아니라 FQAM의 hull curve도 함께 사용할 수 있다.
단말 1에서 기지국으로 보고되는 α가 0.5, SINR이 2dB이고, 단말 2에서 기지국으로 보고되는 α가 1.8이고, SINR이 16dB임을 가정한다.
단말 페어링을 수행한다. 이때 근거리의 단말을 단말 2라 가정하고, 원거리의 단말은 단말 1로 가정한다. 원거리의 단말이 FQAM을 할당받을 수 있도록 PF(PN= 1-PF)를 결정한다. 여기서 PF는 원거리의 단말의 전력을 나타내고, PN는 근거리 단말의 전력을 나타낸다.
이 경우에는 중첩 후 SINR이 0 dB 보다 작도록 PF를 할당한다.
중첩 전 SINR(SINRN은 근거리의 단말의 SINR, SINRF은 원거리의 단말의 SINR)은 하기 <수학식 1>와 <수학식 2>와 같다.
수학식 1
Figure PCTKR2015009720-appb-M000001
수학식 2
Figure PCTKR2015009720-appb-M000002
상기 <수학식 1>와 <수학식 2>에서 h는 채널 이득을 나타내고, N0는 배경 잡음의 one-sided power spectrum density (PSD)를 나타내고, W는 사용하는 bandwidth를 나타낸다.
중첩 후 SINR(SINRN은 근거리의 단말의 SINR, SINRF은 원거리의 단말의 SINR)은 하기 <수학식 3>와 <수학식 4>와 같다.
수학식 3
Figure PCTKR2015009720-appb-M000003
수학식 4
Figure PCTKR2015009720-appb-M000004
중첩 후 알파값을 고려하여 PN, PF를 재산정한다.
만약 PF 결정 과정에서 중첩 후의 SINRF를 -0.5가 되도록 PF를 결정한 상황에서 중첩 후 원거리 user의 알파값이 0.5에서 0.7로 상승한 경우 알파값이 0.7인 상황에서는 SINR이 -1.5dB보다 작아야 FQAM 할당에 대한 이득이 존재하므로 PF를 재산정하여 SINR을 -1.5dB보다 작게 만들어 준다.
알파값별 QAM대비 FQAM 사용이 이득인 SINR 범위는 다음과 같다.
- Alpha=0.5: SINR<0dB
- Alpha=0.7: SINR<-1.5dB
- Alpha=1.0: SINR<-2.3dB
609 단계에서 기지국은 Report 받은 SINR, αICI 값들과 P1, P2 값을 토대로 αNOMA 값을 계산한다.
611 단계에서 기지국은 αNOMA 값을 기반으로 하여 근거리 user와 원거리 user의 MCS를 재산정한다.
중첩 후에는 중첩되는 신호로부터 야기되는 간섭에 의하여 중첩 전과 알파값이 다르게 되므로 MCS를 재산정해야 한다.
도 8a 및 도 8b는 중첩 전과 중첩 후의 알파값이 변하는 것을 나타내는 도면이다.
중첩되는 신호는 기지국에서 그 크기 및 변조 방법을 알고 있기 때문에 기지국에서 중첩으로 인하여 변화되는 알파값의 크기를 예측할 수 있다.
한편, 613 단계에서 기지국은 재산정된 원거리 사용자의 MCS 값이 FQAM에 해당하는가를 판단한다. 만약 재산정된 원거리 사용자의 MCS 값이 FQAM에 해당할 경우 615 단계에서 기지국은 지시자를 전송한다.
상기 지시자는 FQAM 기반으로 한 NOMA 모드 송신 여부, 중첩된 사용자의 개수, 중첩된 심볼들의 MCS, 및 중첩된 심볼들의 전력 레벨 중 적어도 하나를 포함할 수 있다.
만약 재산정된 원거리 사용자의 MCS 값이 FQAM에 해당하지 않는 경우, 전력 할당 과정을 수행하는 607 단계로 되돌아 간다.
도 9a, 도 9b, 도 10a, 도 10b는 채널 용량을 나타내는 그래프이다.
도 9a, 도 9b는 Single Cell, 2-Pair, Fixed Position, Perfect SIC일 경우를 가정하고, 도 10a, 도 10b는 7-Cell Structure, 2-Pair, Fixed Position, Perfect SIC일 경우를 가정한다.
도 9a, 도 9b에서의 근거리는 약 0.15km이고, 원거리는 약 0.45km인 것을 가정하고, 도 10a, 도 10b에서의 근거리는 약 0.15km이고, 원거리는 약 0.35km인 것을 가정한다.
도 9a, 도 9b 를 참고하면, NOMA 시스템은 전력 할당에 대한 자유도가 높기 때문에 optimal sum rate가 OFDMA 시스템 보다 높다. NOMA 시스템은 극히 작은 sum rate loss에도 큰 cell-edge performance를 개선할 수 있다. 단, maximum sum rate은 OFDMA 시스템과 NOMA 시스템과 서로 같다.(OFDMA 시스템에서 Near user에게 자원을 몰아주는 경우의 sum rate이 NOMA 시스템의 maximum sum rate과 같아짐)
도 10a, 도 10b를 참고하면, ICI와 같은 의도치 않은 간섭이 존재하는 경우 cell-edge performance를 개선하는 데에 희생되는 sum rate loss는 커진다. 이 경우에도, maximum sum rate은 OFDMA 시스템과 NOMA 시스템이 서로 같다.
도 11은 본 발명의 실시 예에 따른 이동 통신 시스템에서 단말에서 스케줄링 방법을 도시한 흐름도이다.
1101 단계에서 단말은 기지국으로부터 수신 신호를 통해 지시자를 수신한다. 상기 지시자는 FQAM 기반으로 한 NOMA 모드 송신 여부, 중첩된 사용자의 개수, 중첩된 심볼들의 MCS, 및 중첩된 심볼들의 전력 레벨 중 적어도 하나를 포함할 수 있다.
k번째 FQAM symbol의 l번째 부반송파로 수신된 수신 신호는 하기 <수학식 5>과 같이 표현할 수 있다.
수학식 5
Figure PCTKR2015009720-appb-M000005
여기서 I는 long-term fading을 나타내고, delta는 delta function을 나타내고, H는 short-term fading을 나타내고, u는 AWGN을 나타내고, s는 QAM 심볼을 나타내고, NBS는 인접셀 개수를 나타내고, m은 FSK symbol index을 나타낸다.
1103 단계에서 단말은 수신된 신호에서 알파값을 추정하고, 간섭을 제거한다. 알파값을 추정하는 방법은 하기 <수학식 7>를 이용하여 설명된다.
CGG PDF와 pdf에서 필요한 파라미터인 alpha와 beta는 하기 <수학식 6>를 이용하여 계산 또는 추정된다.
수학식 6
Figure PCTKR2015009720-appb-M000006
상기 <수학식 6>에서 MF는 FSK 변조 차수를 나타내고,
Figure PCTKR2015009720-appb-I000001
는 수신된 신호의 하드 디시젼 결과를 나타낸다.
1105 단계에서 단말은 넌 가우시안(non-Gaussian) 복호를 수행한다.
근거리 사용자와 같은 경우에는 기지국에서 αNOMA의 지시자가 필요하고, 단말에서는 그것을 사용하여 non-Gaussian SIC를 수행하여 원거리 사용자 신호를 제거해야 한다.
근거리 사용자에서 원거리 사용자 신호를 제거한 후, 나머지 신호를 이용하여 다시 αICI 값을 계산한다. 계산된 αICI 값을 사용하여 요구된 신호를 복원한다.
α를 추정하는 방법의 예시는 하기 <수학식 7>와 같다.
수학식 7
Figure PCTKR2015009720-appb-M000007
여기서 Z[k]는 수신신호에서 채널 보상한 내 신호를 제거한 신호를 나타낸다.
Alpha_CQI은 수신 파일럿에서 채널 보상한 내 파일럿 신호를 제거한 것을 나타낸다.
Alpha_DATA는 수신 데이터에서 채널 보상한 내 데이터를 제거한 것을 나타낸다.(여기서 내 데이터는 수신 신호를 하드 디시젼(hard decision)한 결과임)
β를 추정하는 식은 하기 <수학식 8>과 같다.
수학식 8
Figure PCTKR2015009720-appb-M000008
상기 <수학식 8>에서 Γ는 감마 함수를 의미한다.
단말에서 LLR 계산 방법은 다음과 같다.
Binary code를 사용한 LLR 계산 방법은 하기 <수학식 9>과 같다.
수학식 9
Figure PCTKR2015009720-appb-M000009
M-ary code를 사용한 LLR 계산 방법은 하기 <수학식 10>과 같다.
수학식 10
Figure PCTKR2015009720-appb-M000010
반면에 원거리 사용자에서는 기존의 CGGD based non-Gaussian 복호 동작을 수행한다.
CGGD는 하기 <수학식 11>와 같이 결정된다.
수학식 11
Figure PCTKR2015009720-appb-M000011
도 12는 본 발명의 실시예에 따른 기지국 장치를 도시한 것이다.
도 12를 참조하면, 기지국은 송신부(1210), 수신부(1220), 제어부(1230), 저장부(1240)를 포함한다.
제어부(1230)는 본 발명의 실시 예에 따라 단말로부터 수신된 상기 SINR값과 알파값을 기반으로 하여 가우시안 SINR 값을 결정하고, 상기 가우시안 SINR 값을 기반으로 하여 사용자 페어링하고, 재산정된 알파값을 기반으로 하여 MCS 재산정한다.
상기 제어부(1230)는 상기 SINR값과 알파값을 기반으로 하여 원거리의 단말들에 대해 전력값 P1, P2를 결정하고, 상기 P1, P2를 기반으로 하여 알파값을 재산정하도록 더 구비된다.
상기 제어부(1230)는 재산정된 원거리 사용자의 MCS 값이 FQAM에 해당할 경우, 기지국은 지시자를 전송하고, 상기 지시자는 각 사용자들에게 FQAM 기반으로 한 NOMA 모드 송신 여부, 중첩된 사용자의 개수, 중첩된 심볼들의 MCS, 및 중첩된 심볼들의 전력 레벨 중 적어도 하나의 정보를 포함한다.
송신부(1210) 및 수신부(1220)는 제어부(1230)의 제어에 따라 본 발명의 실시예에 따른 신호를 단말과 송수신하기 위한 제반 동작을 수행한다.
도 13은 본 발명의 실시 예에 따른 단말 장치를 도시한 것이다.
도 13을 참조하면, 단말은 송신부(1310), 수신부(1320), 제어부(1330), 저장부(1340)를 포함한다.
제어부(1330)는 본 발명의 실시예에 따라 기지국으로부터 수신된 지시자를 기반으로 하여 수신된 신호의 간섭을 제거하고, 넌 가우시안(non-Gaussian) 디코딩을 수행한다.
상기 지시자는, MCS 재산정된 원거리 사용자의 MCS 값이 FQAM에 해당할 경우에 기지국에서 단말로 전송된 것이고, 상기 MCS 재산정은 상기 기지국에 의해, SINR값과 알파값을 기반으로 하여 가우시안 SINR 값을 결정하고, 상기 가우시안 SINR 값을 기반으로 하여 사용자 페어링하고, 페어링된 사용자에 대해 재산정된 알파값을 기반으로 하여 MCS 재산정된 것이다.
송신부(1310) 및 수신부(1320)는 본 발명의 실시 예에 따른 지시자를 수신하고, 제어부(1330)의 제어에 따라 간섭 특성이 반영된 채널 상태 정보를 기지국으로 전송하는 동작을 수행한다.
또한 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 스케줄링 방법 및 장치는 하드웨어, 소프트웨어 또는 하드웨어 및 소프트웨어의 조합의 형태로 실현 가능하다는 것을 알 수 있을 것이다. 이러한 임의의 소프트웨어는 예를 들어, 삭제 가능 또는 재기록 가능 여부와 상관없이, ROM 등의 저장 장치와 같은 휘발성 또는 비휘발성 저장 장치, 또는 예를 들어, RAM, 메모리 칩, 장치 또는 집적 회로와 같은 메모리, 또는 예를 들어 CD, DVD, 자기 디스크 또는 자기 테이프 등과 같은 광학 또는 자기적으로 기록 가능함과 동시에 기계(예를 들어, 컴퓨터)로 읽을 수 있는 저장 매체에 저장될 수 있다. 본 발명의 일 실시 예에 따른 무선 통신 시스템에서 스케줄링 방법은 제어부 및 메모리를 포함하는 컴퓨터 또는 휴대 단말에 의해 구현될 수 있고, 상기 메모리는 본 발명의 실시 예들을 구현하는 지시들을 포함하는 프로그램 또는 프로그램들을 저장하기에 적합한 기계로 읽을 수 있는 저장 매체의 한 예임을 알 수 있을 것이다.
따라서, 본 발명은 본 명세서의 임의의 청구항에 기재된 장치 또는 방법을 구현하기 위한 코드를 포함하는 프로그램 및 이러한 프로그램을 저장하는 기계(컴퓨터 등)로 읽을 수 있는 저장 매체를 포함한다. 또한, 이러한 프로그램은 유선 또는 무선 연결을 통해 전달되는 통신 신호와 같은 임의의 매체를 통해 전자적으로 이송될 수 있고, 본 발명은 이와 균등한 것을 적절하게 포함한다.
또한 본 발명의 실시 예에 따른 무선 통신 시스템에서 스케줄링 장치는 유선 또는 무선으로 연결되는 프로그램 제공 장치로부터 상기 프로그램을 수신하여 저장할 수 있다. 상기 프로그램 제공 장치는 상기 프로그램 처리 장치가 기 설정된 무선 통신 시스템에서 스케줄링 방법을 수행하도록 하는 지시들을 포함하는 프로그램, 무선 통신 시스템에서 스케줄링 방법에 필요한 정보 등을 저장하기 위한 메모리와, 상기 그래픽 처리 장치와의 유선 또는 무선 통신을 수행하기 위한 통신부와, 상기 그래픽 처리 장치의 요청 또는 자동으로 해당 프로그램을 상기 송수신 장치로 전송하는 제어부를 포함할 수 있다.
한편 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.

Claims (15)

  1. 무선 통신 시스템에서 기지국에서의 스케줄링 방법에 있어서,
    단말로부터 SINR(signal-to-interference-noise ratio)값과 알파값을 수신하는 과정;
    상기 SINR값과 알파값을 기반으로 하여 가우시안 SINR 값을 결정하는 과정;
    상기 가우시안 SINR 값을 기반으로 하여 사용자 페어링하는 과정; 및
    재산정된 알파값을 기반으로 하여 MCS(modulation and coding scheme) 재산정하는 과정을 포함함을 특징으로 하는 방법.
  2. 무선 통신 시스템에서 단말에서의 간섭 제거 방법에 있어서,
    기지국으로부터 지시자를 수신하는 과정;
    상기 지시자를 기반으로 하여 수신된 신호의 간섭을 제거하는 과정; 및
    넌 가우시안(non-Gaussian) 디코딩을 수행하는 과정을 포함하고,
    상기 지시자는, MCS(modulation and coding scheme) 재산정된 원거리 사용자의 MCS 값이 FQAM(hybrid FSK and QAM modulation)에 해당할 경우에 기지국에서 단말로 전송된 것이고,
    상기 MCS 재산정은 상기 기지국에 의해, SINR값과 알파값을 기반으로 하여 가우시안 SINR 값을 결정하고, 상기 가우시안 SINR 값을 기반으로 하여 사용자 페어링하고, 페어링된 사용자에 대해 재산정된 알파값을 기반으로 하여 MCS 재산정된 것임을 특징으로 하는 방법.
  3. 제1항에 있어서,
    상기 SINR값과 알파값을 기반으로 하여 원거리의 단말들에 대해 전력값 P1, P2를 결정하는 과정; 및
    상기 P1, P2를 기반으로 하여 알파값을 재산정하는 과정을 더 포함함을 특징으로 하는 방법.
  4. 제2항에 있어서,
    상기 알파값을 재산정하는 것은, 상기 SINR값과 알파값을 기반으로 하여 원거리의 단말들에 대해 전력값 P1, P2를 결정하고, 상기 P1, P2를 기반으로 하여 수행된 것임을 특징으로 하는 방법.
  5. 제1항 또는 제2항에 있어서,
    상기 사용자 페어링은 각 user들의 채널 상황 및 각 user들에게 보낼 패킷 사이즈 중 적어도 하나를 고려하여 수행됨을 특징으로 하는 방법.
  6. 제1항 또는 제2항에 있어서,
    상기 사용자 페어링은 동시에 동일 자원을 사용하여 중첩하여 송신할 사용자를 선택함에 의해 수행됨을 특징으로 하는 방법.
  7. 제1항에 있어서,
    재산정된 원거리 사용자의 MCS 값이 FQAM에 해당할 경우, 기지국은 지시자를 전송하고,
    상기 지시자는 각 사용자들에게 FQAM 기반으로 한 NOMA 모드 송신 여부, 중첩된 사용자의 개수, 중첩된 심볼들의 MCS, 및 중첩된 심볼들의 전력 레벨 중 적어도 하나의 정보를 포함함을 특징으로 하는 방법.
  8. 제2항에 있어서,
    상기 지시자는 각 사용자들에게 FQAM 기반으로 한 NOMA 모드 송신 여부, 중첩된 사용자의 개수, 중첩된 심볼들의 MCS, 및 중첩된 심볼들의 전력 레벨 중 적어도 하나의 정보를 포함함을 특징으로 하는 방법.
  9. 무선 통신 시스템에서 스케줄링 장치에 있어서,
    단말로부터 SINR(signal-to-interference-noise ratio)값과 알파값을 수신하는 수신부; 및
    상기 SINR값과 알파값을 기반으로 하여 가우시안 SINR 값을 결정하고, 상기 가우시안 SINR 값을 기반으로 하여 사용자 페어링하고, 및 재산정된 알파값을 기반으로 하여 MCS(modulation and coding scheme) 재산정하는 제어부를 포함함을 특징으로 하는 장치.
  10. 무선 통신 시스템에서 단말에서의 간섭 제거 장치에 있어서,
    기지국으로부터 지시자를 수신하는 수신부;
    상기 지시자를 기반으로 하여 수신된 신호의 간섭을 제거하고, 넌 가우시안(non-Gaussian) 디코딩을 수행하는 제어부를 포함하고,
    상기 지시자는, MCS(modulation and coding scheme) 재산정된 원거리 사용자의 MCS 값이 FQAM(hybrid FSK and QAM modulation)에 해당할 경우에 기지국에서 단말로 전송된 것이고,
    상기 MCS 재산정은 상기 기지국에 의해, SINR값과 알파값을 기반으로 하여 가우시안 SINR 값을 결정하고, 상기 가우시안 SINR 값을 기반으로 하여 사용자 페어링하고, 페어링된 사용자에 대해 재산정된 알파값을 기반으로 하여 MCS 재산정된 것임을 특징으로 하는 장치.
  11. 제9항 또는 제10항에 있어서,
    상기 제어부는,
    상기 SINR값과 알파값을 기반으로 하여 원거리의 단말들에 대해 전력값 P1, P2를 결정하고, 상기 P1, P2를 기반으로 하여 알파값을 재산정하도록 구비됨을 특징으로 하는 장치.
  12. 제9항 또는 제10항에 있어서,
    상기 사용자 페어링은 각 user들의 채널 상황 및 각 user들에게 보낼 패킷 사이즈 중 적어도 하나를 고려하여 수행됨을 특징으로 하는 장치.
  13. 제9항 또는 제10항에 있어서,
    상기 사용자 페어링은 동시에 동일 자원을 사용하여 중첩하여 송신할 사용자를 선택함에 의해 수행됨을 특징으로 하는 장치.
  14. 제9항에 있어서,
    재산정된 원거리 사용자의 MCS 값이 FQAM에 해당할 경우, 기지국은 지시자를 전송하고,
    상기 지시자는 각 사용자들에게 FQAM 기반으로 한 NOMA 모드 송신 여부, 중첩된 사용자의 개수, 중첩된 심볼들의 MCS, 및 중첩된 심볼들의 전력 레벨 중 적어도 하나의 정보를 포함함을 특징으로 하는 장치.
  15. 제10항에 있어서,
    상기 지시자는 각 사용자들에게 FQAM 기반으로 한 NOMA 모드 송신 여부, 중첩된 사용자의 개수, 중첩된 심볼들의 MCS, 및 중첩된 심볼들의 전력 레벨 중 적어도 하나의 정보를 포함함을 특징으로 하는 장치.
PCT/KR2015/009720 2014-09-16 2015-09-16 무선 통신 시스템에서 스케줄링 방법 및 장치 WO2016043519A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/512,020 US10014891B2 (en) 2014-09-16 2015-09-16 Scheduling method and apparatus in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0122469 2014-09-16
KR1020140122469A KR102194490B1 (ko) 2014-09-16 2014-09-16 무선 통신 시스템에서 스케줄링 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2016043519A1 true WO2016043519A1 (ko) 2016-03-24

Family

ID=55533491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009720 WO2016043519A1 (ko) 2014-09-16 2015-09-16 무선 통신 시스템에서 스케줄링 방법 및 장치

Country Status (3)

Country Link
US (1) US10014891B2 (ko)
KR (1) KR102194490B1 (ko)
WO (1) WO2016043519A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107426808A (zh) * 2017-08-21 2017-12-01 北京工业大学 一种非正交多址技术中对下行链路中各用户的功率分配方法
CN107819541A (zh) * 2016-09-10 2018-03-20 北京信威通信技术股份有限公司 一种传输的方法及装置
CN108134641A (zh) * 2017-12-22 2018-06-08 南京邮电大学 一种基于scma多址接入机制的基站频谱带宽分配方法
CN108513314A (zh) * 2017-02-28 2018-09-07 大唐高鸿信息通信研究院(义乌)有限公司 5g网络的非正交多址接入跨层功率分配优化方法
CN110446267A (zh) * 2019-08-09 2019-11-12 南京邮电大学 上行noma系统中基于模块的多用户配对方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769883B (zh) * 2016-08-19 2021-10-29 北京三星通信技术研究有限公司 一种小区间干扰抑制的方法及设备
KR101954682B1 (ko) 2016-12-21 2019-03-06 금오공과대학교 산학협력단 비직교 다중 접속 시스템에서의 사용자 페어링 방법 및 컴퓨터 프로그램
US10277357B2 (en) * 2017-01-19 2019-04-30 Qualcomm Incorporated Selection of modulation and coding scheme
US20180213547A1 (en) 2017-01-26 2018-07-26 Electronics And Telecommunications Research Instit Ute Communication node for scheduling and interference control in wireless communication network, and operation method therefor
CN108495337B (zh) * 2018-01-23 2020-06-19 华南理工大学 基于noma的无线携能通信系统最大安全速率优化方法
CN109152058B (zh) * 2018-09-13 2020-05-29 北京理工大学 一种noma系统中基于功率分割的小区间干扰消除方法
KR102135509B1 (ko) * 2018-10-30 2020-07-17 연세대학교 산학협력단 비직교 다중 접속 시스템에서 다중 접속 제어 장치 및 이의 자원 중첩비 조절 방법
US11290247B2 (en) * 2019-01-31 2022-03-29 Cox Communications, Inc. Systems and methods for non-orthogonal multiple access over networks
CN109905918B (zh) * 2019-02-25 2022-04-01 重庆邮电大学 一种基于能效的noma蜂窝车联网动态资源调度方法
CN114071384B (zh) * 2021-11-29 2022-11-04 国网北京市电力公司 短数据包传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070053471A1 (en) * 1998-08-10 2007-03-08 Kamilo Feher Antenna systems, receivers and demodulators for cross-correlated and other signals
WO2014098541A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Modulation method and apparatus with consideration of adaptive hybrid automatic repeat request in wireless communication system
US20140177756A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving signal in communication system
WO2014098537A1 (ko) * 2012-12-21 2014-06-26 삼성전자주식회사 무선 통신 시스템에서 복수의 변조 기법을 이용한 신호 송수신 방법 및 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101695716B1 (ko) * 2010-08-02 2017-01-13 삼성전자주식회사 다중안테나 시스템에서 평균 전송률을 제어하기 위한 스케줄링 방법 및 장치
US9191256B2 (en) * 2012-12-03 2015-11-17 Digital PowerRadio, LLC Systems and methods for advanced iterative decoding and channel estimation of concatenated coding systems
KR102137438B1 (ko) 2013-11-20 2020-07-24 삼성전자주식회사 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
US9548848B1 (en) * 2015-02-19 2017-01-17 Mbit Wireless, Inc. Method and apparatus for reduced complexity CQI feedback in wireless communication systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070053471A1 (en) * 1998-08-10 2007-03-08 Kamilo Feher Antenna systems, receivers and demodulators for cross-correlated and other signals
WO2014098541A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Modulation method and apparatus with consideration of adaptive hybrid automatic repeat request in wireless communication system
US20140177756A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving signal in communication system
WO2014098537A1 (ko) * 2012-12-21 2014-06-26 삼성전자주식회사 무선 통신 시스템에서 복수의 변조 기법을 이용한 신호 송수신 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEFFREY G. ANDREWS ET AL.: "What Will 5G Be?", SELECTED AREAS IN COMMUNICATIONS, IEEE JOURNAL, vol. 32, 3 June 2014 (2014-06-03), pages 1065 - 1082, XP011554180, Retrieved from the Internet <URL:http://ieeexplore.ieee.org/xpl/articleDelails.jsp?arnumber=6824752&newsearch=true&queryTe=t=what%20will%205G%20be> doi:10.1109/JSAC.2014.2328098 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107819541A (zh) * 2016-09-10 2018-03-20 北京信威通信技术股份有限公司 一种传输的方法及装置
CN107819541B (zh) * 2016-09-10 2019-06-21 北京信威通信技术股份有限公司 一种传输的方法及装置
CN108513314A (zh) * 2017-02-28 2018-09-07 大唐高鸿信息通信研究院(义乌)有限公司 5g网络的非正交多址接入跨层功率分配优化方法
CN107426808A (zh) * 2017-08-21 2017-12-01 北京工业大学 一种非正交多址技术中对下行链路中各用户的功率分配方法
CN108134641A (zh) * 2017-12-22 2018-06-08 南京邮电大学 一种基于scma多址接入机制的基站频谱带宽分配方法
CN108134641B (zh) * 2017-12-22 2021-05-11 南京邮电大学 一种基于scma多址接入机制的基站频谱带宽分配方法
CN110446267A (zh) * 2019-08-09 2019-11-12 南京邮电大学 上行noma系统中基于模块的多用户配对方法
CN110446267B (zh) * 2019-08-09 2022-07-05 南京邮电大学 上行noma系统中基于模块的多用户配对方法

Also Published As

Publication number Publication date
KR102194490B1 (ko) 2020-12-23
US10014891B2 (en) 2018-07-03
KR20160032415A (ko) 2016-03-24
US20170302315A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
WO2016043519A1 (ko) 무선 통신 시스템에서 스케줄링 방법 및 장치
JP6462891B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
US10735060B2 (en) Transmission device and reception device
US20190223030A1 (en) Method and device for handling base sequences in a communications network
US11057173B2 (en) Reception device, transmission device, reception method, transmission method, and program related to allocation of parameters to signals
WO2020190052A1 (en) Resource allocation and timing handling in cellular mesh networks
WO2016099157A1 (ko) 채널 컴바이닝과 스플리팅을 이용하는 메시지 송수신 기법
WO2016159736A1 (ko) 무선 통신 시스템에서 다운링크 정보를 송신하는 방법 및 장치
WO2019190238A1 (en) Apparatus and method for reference signal power boosting in a wireless communication system
US20200220605A1 (en) Electronic device, wireless communication method and computer readable storage medium
WO2016143966A1 (ko) Fdr 방식을 지원하는 무선통신 시스템에서 hd 모드 또는 fd 모드를 선택하는 방법 및 이를 위한 장치
WO2020156503A1 (zh) 电子设备、通信方法和存储介质
WO2020141933A1 (en) Multi-path end-to-end connectivity for cellular mesh networks
WO2016159597A1 (en) Method and apparatus for transmitting signal using sliding-window superposition coding in wireless network
WO2017034106A1 (ko) Fdr 방식으로 동작하는 환경에서 rs 모드를 변경하는 방법 및 이를 위한 장치
WO2016085092A1 (en) Method and system for controlling transmission of code words during handover in a wireless network
WO2016024644A1 (ko) 전송 전력 제어 방법 및 장치
CN109478907A (zh) 无线通信方法和无线通信设备
WO2016060336A1 (ko) 셀 간 간섭 제거를 위한 셀 간 정보를 생성하는 방법 및 장치
WO2018097624A1 (en) Method and apparatus for adjusting transmission power
WO2019050378A1 (ko) 무선 통신 시스템에서 위상 잡음을 제거하기 위한 방법 및 장치
WO2016122012A1 (ko) 셀 간 간섭 제거를 위한 셀 간 정보를 생성하는 방법 및 장치
WO2016028094A1 (ko) 무선 통신 시스템에서 낮은 복잡도로 복호를 수행하기 위한 방법 및 장치
WO2016080571A1 (ko) 셀 간 간섭 제거를 위한 셀 간 정보를 송수신하는 방법 및 장치
WO2018066945A1 (en) Apparatus and method for interference management in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15512020

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15842447

Country of ref document: EP

Kind code of ref document: A1