WO2016043353A1 - 태양전지모듈 - Google Patents

태양전지모듈 Download PDF

Info

Publication number
WO2016043353A1
WO2016043353A1 PCT/KR2014/008557 KR2014008557W WO2016043353A1 WO 2016043353 A1 WO2016043353 A1 WO 2016043353A1 KR 2014008557 W KR2014008557 W KR 2014008557W WO 2016043353 A1 WO2016043353 A1 WO 2016043353A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
transparent conductive
conductive film
film layer
cell module
Prior art date
Application number
PCT/KR2014/008557
Other languages
English (en)
French (fr)
Inventor
이홍재
Original Assignee
주식회사 테스
이홍재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 테스, 이홍재 filed Critical 주식회사 테스
Priority to PCT/KR2014/008557 priority Critical patent/WO2016043353A1/ko
Publication of WO2016043353A1 publication Critical patent/WO2016043353A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module, and more particularly, to effectively collect current generated from the solar cell module to improve a fill factor, and further to prevent a decrease in efficiency due to disconnection of an electrode. It is about.
  • the solar cell system includes a cell in which sunlight is incident, and generates electricity by using characteristics of a cell that generates electricity by photoelectric effect when sunlight is received.
  • a lot of researches for improving the electricity production efficiency of the solar cell system has been actively conducted. For example, studies are being actively conducted to lower the reflectance of sunlight incident on a cell or to increase the incident rate of sunlight incident on a cell even when the cell has the same size.
  • a light collecting means such as a light collecting lens to increase the light collecting rate of sunlight.
  • the condensing means increases the condensing ratio of sunlight and makes it possible to condense a larger amount of sunlight even with cells of the same size.
  • a problem arises in that the operating temperature of the cell rises relatively, so that the fill factor and the electricity production efficiency decrease.
  • An object of the present invention is to provide a solar cell module that can improve the fill factor (fill factor) without reducing the incident rate of sunlight in the solar cell module constituting the solar cell system to solve the above problems.
  • An object of the present invention as described above is a crystalline silicon wafer, at least one amorphous silicon layer provided on at least one of the upper and lower portions of the crystalline silicon wafer, the transparent conductive film layer formed on the amorphous silicon layer, the transparent conductive film layer It is achieved by a solar cell module is formed on the top, and having a plurality of grid electrodes formed on top of the transparent conductive film layer and the bus electrode for collecting the generated current connected to the bus electrode.
  • At least two bus electrodes may be formed to face the transparent conductive film layer.
  • the grid electrode may be electrically connected to at least one of the bus electrodes.
  • the bus electrode may be formed spaced apart from the edge of the transparent conductive film layer by a predetermined distance.
  • it may further include an additional electrode for connecting at least two grid electrodes of the plurality of grid electrodes.
  • the grid electrode may have a line width of 30 to 300 ⁇ m.
  • the area of the transparent conductive film layer may be determined to be relatively small compared to the areas of the crystalline silicon wafer and the amorphous silicon layer.
  • a bus electrode with a grid electrode on the surface of the solar cell module is provided with a bus electrode with a grid electrode on the surface of the solar cell module, furthermore, the bus electrode is arranged so as not to drop the incident rate of sunlight, while preventing the efficiency decrease, the fill factor (fill factor) Can improve.
  • an additional electrode that connects the plurality of grid electrodes to each other may be further provided to prevent a decrease in efficiency even when any one of the grid electrodes is disconnected.
  • FIG. 1 is a schematic diagram showing the operation principle of a solar cell system
  • FIGS. 2 and 3 are cross-sectional views of a solar cell module having an amorphous silicon layer
  • FIG. 4 is a schematic view of a solar cell system having a light collecting means for collecting light into a solar cell module
  • FIG. 5 is a plan view of a wafer in which cells of a solar cell module are collected
  • FIG. 6 is a plan view showing a state where a mask is provided on an upper portion of the wafer
  • FIG. 7 is a side cross-sectional view of a solar cell module according to an embodiment
  • FIG. 1 is a schematic diagram schematically illustrating a solar cell module provided in a solar cell system to generate electricity by receiving sunlight. 1 is a side cross-sectional view of a solar cell.
  • a solar cell system may be defined as a battery that generates electricity by photoelectric effect when subjected to sunlight.
  • the N layer 3 and the P layer 5 are bonded to each other and sunlight is incident on the cell 32 formed of the PN junction, hole pairs are formed. At this time, electrons move to the N layer 3 and holes move to the P layer 5 by the electric field generated at the PN junction. Therefore, an electromotive force is generated between the P layer 5 and the N layer 3, and a current flows when a load is connected to the electrodes 34 and 44 at both ends.
  • Reference numeral '1' which is not described in the drawings, corresponds to an antireflection film that prevents sunlight from being reflected.
  • the heterojunction solar cell system divides the N and P layers according to their properties, and specifically refers to a case where the N and P layers are formed of different crystal structures or different materials. .
  • a solar cell module 100A that generates electricity in a heterojunction solar cell system includes a crystalline silicon wafer 110 and at least one amorphous silicon layer 120 formed on the crystalline silicon wafer 110. , 130, a transparent conductive layer 140 formed on the amorphous silicon layer 130, and an electrode 150 formed on the transparent conductive layer 140.
  • the crystalline silicon wafer 110, the amorphous silicon layers 120 and 130, and the transparent conductive film layer 140 may be defined as solar cells.
  • the crystalline silicon wafer 110 may be composed of n-type silicon, and an intrinsic amorphous silicon layer 120 is formed on the crystalline silicon wafer 110, and a P-type amorphous silicon layer is formed on the upper portion of the crystalline silicon wafer 110 through a deposition apparatus. 130 is deposited. A transparent conductive film layer 140 is formed on an upper surface of which sunlight is incident, an upper electrode 150 spaced in parallel therebetween, and a lower electrode 160 is provided on a lower surface of the silicon wafer 110.
  • the solar cell module according to FIG. 2 has a structure of a so-called 'HIT (Heterojunction with Intrinsic Thin layer) solar cell' developed and marketed by Sanyo in Japan, and includes an N-type silicon wafer 110 and a P-type amorphous silicon.
  • An intrinsic amorphous silicon layer 120 is interposed between the layers 130 in a thickness of several nm, indicating a light conversion efficiency of 20% or more, which is significantly higher than that of the solar cell module according to the related art.
  • FIG. 3 illustrates a solar cell module 100B having a texturing structure and a field forming layer 125 on a lower surface of the silicon wafer 110 in a structure similar to that of FIG. 2 described above. 2 and 3, the amorphous silicon layer may be provided on at least one of upper and lower portions of the crystalline silicon wafer 110.
  • the transparent conductive film layer 140 to which the sunlight is incident serves as an antireflection film to allow the sunlight to be incident without being reflected.
  • the solar cell system has no mechanical and chemical action in the process of converting solar energy into electrical energy, so the structure of the system is simple and requires little maintenance, and once the solar system is installed, its life is long and safe, Furthermore, it has the advantage of being environmentally friendly.
  • the solar cell system is accompanied with a problem that the initial installation cost is high, in particular, in order to increase the incident area of solar light, large size of the silicon wafer acts as a major factor to increase the initial cost of the solar cell system.
  • a solar cell system having a light collecting means for collecting sunlight into a solar cell module has been developed.
  • the solar cell module 100 ′ of the solar cell system 200 is mounted on the base 180, and the light collecting means, for example, the condenser lens, has a predetermined distance from the solar cell module 100 ′. 210.
  • the condenser lens 210 collects the light of the sunlight and makes it incident on the solar cell module 100 '.
  • the distance between the solar cell module 100' and the condenser lens 210 is condensed.
  • most of the sunlight passing through the condenser lens 210 may be appropriately determined to be incident on the solar cell module 100'.After all, conventionally, a large-area silicon wafer is required.
  • the lens 210 it is possible to significantly reduce the size of the wafer to lower the initial cost of the solar cell system.
  • the wafer to be described below may be defined as an aggregate before cutting to a shape suitable for each solar cell module as the aggregate in which the transparent conductive film layer is omitted in the aforementioned cell.
  • FIG. 5 illustrates a wafer W for forming an aggregate in which the transparent conductive film layer is omitted in the above-described cell.
  • the wafer W may have a circular shape and may be cut along a hidden line as shown in the drawing according to the cross-sectional area of the solar cell module.
  • a transparent conductive layer may be formed on the upper and / or lower surfaces thereof.
  • FIG. 6 illustrates a state in which the mask 300 is seated to form a transparent conductive film layer on one surface of the wafer W, that is, the upper surface.
  • the transparent conductive film layer is made of indium tin oxide, it is formed by being deposited on the wafer W by sputtering or the like.
  • the mask 300 is disposed on the wafer W in order to deposit in the form of a solar cell module.
  • the mask 300 may include a plurality of openings 310 to deposit a transparent conductive layer. That is, in the case of deposition, a deposition film is formed on the wafer W through the opening 310, and the deposition film forms a transparent conductive film layer.
  • the transparent conductive film layer is deposited on the lower cut surface
  • the transparent conductive film layer is cut when the wafer W is cut using a laser or the like according to the shape of the solar cell module. Thermal damage by the laser is generated, which leads to a decrease in the fill factor.
  • FIG. 7 is a side cross-sectional view showing the structure of a solar cell module 100B according to an embodiment for solving the above-described problems.
  • the rest of the structure except for the transparent conductive film layer 140 ′ is the same as that of FIG. 3, and thus a repeated description thereof will be omitted.
  • the deposition area of the transparent conductive film layer 140 ′ is relatively smaller than the cutting area of the wafer W disposed below. It can be formed to be smaller.
  • an area of the transparent conductive film layer 140 ′ may be formed to be relatively smaller than areas of the crystalline silicon wafer 110 and the amorphous silicon layers 120 and 130.
  • the deposition area of the transparent conductive film layer 140 ′ on the wafer W is smaller than the cutting area of the wafer W, even when the wafer W is cut according to the shape of the solar cell module, the laser It is possible to prevent the thermal damage by the cutting means such as the transfer to the transparent conductive film layer, it is possible to prevent the fall of the filling rate.
  • the present inventors have a case where the area of the transparent conductive film layer is the same as the cutting area of the lower wafer (A) and the case where the area of the transparent conductive film layer is smaller than the cutting area of the lower wafer as shown in FIG. 7 (B).
  • the experiment was performed by comparison. Table 1 below shows the results of the experiment.
  • the short-circuit current density and filling rate are all improved.
  • the light conversion efficiency is improved by about 40% or more from 13.35% to 18.85%.
  • the heterojunction solar cell module according to FIGS. 2 and 3 includes the condenser lens as shown in FIG. 4, it is desirable to construct a solar cell system having high temperature conversion characteristics and excellent temperature coefficient characteristics. It becomes possible. However, in this case, since the incident rate of sunlight is increased by the condenser lens, the amount of current generated in the solar cell module is also increased. Therefore, there is a need for an electrode structure for efficiently collecting the increased current and increasing the filling rate.
  • FIG. 8 is a plan view illustrating an electrode structure according to an exemplary embodiment.
  • a transparent conductive film layer 140 is formed on the amorphous silicon layer 130, and an electrode is disposed on the transparent conductive film layer 140.
  • the electrode is formed on the transparent conductive film layer 140
  • the bus electrodes (400A, 400B) for collecting the generated current and the surface of the transparent conductive film layer 140 is formed on the bus electrode (400A)
  • a plurality of grid electrodes 410 connected to 400B that is, the grid electrode 410 having a relatively thin line width is formed across the surface of the transparent conductive film layer 140, and the bus electrodes 400A and 400B collecting current from the grid electrode 410 are the transparent conduction. It is formed in the film layer 140.
  • the surface of the transparent conductive film layer 140 is formed to be larger than that of the conventional to form bus electrodes 400A and 400B on both sides of the transparent conductive film layer 140.
  • a grid electrode 410 having a thin line width is formed across the transparent conductive film layer 140. In this case, the width of the transparent conductive film layer 140 exposed between the bus electrodes 400A and 400B is greater than the width of the transparent conductive film layer according to the conventional structure to prevent the shadow effect.
  • two or more bus electrodes 400A and 400B may be formed to face both sides of an upper portion of the transparent conductive film layer 140.
  • the bus electrodes 400A and 400B may be formed adjacent to the edge of the transparent conductive film layer 140.
  • a plurality of grid electrodes 410 may be formed, and the plurality of grid electrodes 410 may be electrically connected to at least one of the bus electrodes 400A and 400B.
  • the grid electrode 410 may have a line width of approximately 30 to 300 ⁇ m.
  • the line width of the grid electrode 410 is determined to be 30 ⁇ m or more.
  • the line width of the grid electrode 410 is greater than 300 ⁇ m can collect the current generated in the solar cell module more effectively, the area that the grid electrode 410 covers the transparent conductive film layer is increased The incident rate of light falls. Therefore, in the present embodiment, the grid electrode 410 has a line width of approximately 30 to 300 ⁇ m.
  • the grid electrodes 410 are not limited thereto and may be appropriately modified according to the size or area of the solar cell module.
  • the grid electrode 410 may be made of 4 to 8, in this case, the spacing between the plurality of grid electrodes 410 may be made of approximately 0.5 to 2.0 mm.
  • the grid electrode 410 and the bus electrodes 400A and 400B may be formed using a screen printing process using silver paste. This is because when the thin film deposition process using an evaporator and a sputter is used, the electrode thickness becomes relatively thin, thereby decreasing the fill facor. In order to prevent the fall of the filling rate, a thickness of 10 ⁇ m or more is required as much as possible, and according to the present invention, the electrode is formed by a screen printing process.
  • the shadow effect of the bus electrodes 400A and 400B covering the transparent conductive film layer 140 can be prevented, but the bus electrodes 400A and 400B are formed at the edges of the transparent conductive film layer 140. Since the bus electrodes are disposed adjacent to each other, the bus electrodes may contact the lower portion of the amorphous silicon layer 130, which causes a short. 9 shows an electrode structure that can solve the above problems.
  • the bus electrodes 500A and 500B are provided to face each other on both sides of the surface of the transparent conductive film layer 140, and a plurality of grid electrodes 410 are disposed between the bus electrodes 500A and 500B. Is placed.
  • the bus electrodes 500A and 500B are formed to have a smaller width than the embodiment of FIG. 8, so that the bus electrodes 500A and 500B have a predetermined distance from the edge of the transparent conductive film layer 140. Spaced apart by. That is, the bus electrodes 500A and 500B are formed on the transparent conductive film layer 140, and are particularly spaced apart from the edge of the transparent conductive film layer 140. Therefore, it is possible to prevent a short due to contact with the amorphous silicon layer 130 due to misalignment of the bus electrodes 500A and 500B.
  • Figure 10 shows an electrode structure according to another embodiment.
  • an additional electrode 430 may be further provided to connect at least two grid electrodes to each other among the plurality of grid electrodes 410.
  • the grid electrode 410 has a line width of 30 to 300 ⁇ m and is relatively thin. In this case, any one of the plurality of grid electrodes 410 may be disconnected, and the grid electrode in which the disconnection occurs may not collect and transfer current to the bus electrode, thereby decreasing efficiency of collecting current. Accordingly, in the present exemplary embodiment, additional electrodes 430 vertically arranged as shown in FIG. 10 are further provided to connect at least two grid electrodes to each other among the plurality of grid electrodes 410. Since the additional electrode 430 connects the grid electrodes 410 with each other, even if any one of the grid electrodes 410 is disconnected, a bus electrode (via the adjacent grid electrode 410 through the additional electrode 430) may be used. 500A, 500B) can deliver current.
  • FIG 11 shows an electrode structure according to another embodiment.
  • the additional electrodes 430 are arranged in a staggered manner rather than being aligned in a straight line compared to FIG. 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 태양전지모듈에 관한 것으로서, 본 발명에 따른 태양전지모듈은 결정질 실리콘 웨이퍼, 상기 결정질 실리콘 웨이퍼의 상부 및 하부 중에 적어도 하나에 형성되는 하나 이상의 비정질 실리콘층, 상기 비정질 실리콘층의 상부에 형성되는 투명전도막층, 상기 투명전도막층의 상부에 형성되며, 생성되는 전류를 수집하는 버스 전극 및 상기 투명전도막층의 상부에 형성되어 상기 버스전극과 연결되는 복수의 그리드 전극을 구비하는 것을 특징으로 한다.

Description

태양전지모듈
본 발명은 태양전지모듈에 대한 것으로서, 보다 상세하게는 태양전지모듈에서 생성되는 전류를 효과적으로 수집하여 충진율(fill factor)을 향상시키며, 나아가 전극의 단선으로 인한 효율 감소를 방지할 수 있는 태양전지모듈에 관한 것이다.
최근 전기에 대한 수요가 급증하면서 석탄, 석유 등과 같은 기존의 화석연료에 의해 전기를 생산하는 방식 이외에 태양광, 바이오, 풍력, 지열, 해양, 폐기물 에너지와 같은 재생에너지를 활용한 전기 생산 방식이 각광받고 있다. 이 중에서도 태양광 에너지를 전기에너지로 변환시키는 태양전지시스템에 대한 개발이 활발하다. 태양전지시스템을 이용한 태양광 발전시스템은 태양 에너지를 전기에너지로 전환시키는 과정에서 기계적, 화학적 작용이 없으므로 시스템의 구조가 단순하여 유지보수가 거의 필요치 않다. 또한, 태양광 시스템을 한번 설치하게 되면 그 수명이 길고 안전하며, 나아가 환경 친화적이라는 장점을 가지고 있다.
태양전지시스템은 태양광이 입사되는 셀(cell)을 구비하고, 태양광을 받으면 광전효과에 의해 전기를 발생시키는 셀의 특성을 이용하여 전기를 생산하게 된다. 한편, 최근에는 태양전지시스템의 전기생산효율을 향상시키기 위한 많은 연구가 활발하게 진행되고 있다. 예를 들어, 셀에 입사되는 태양광의 반사율을 낮추거나, 또는 같은 크기의 셀을 구비한 경우에도 셀로 입사되는 태양광의 입사율을 높이고자 하는 연구가 활발하다. 특히, 최근에는 동일한 크기의 셀을 구비하는 경우에도 태양광의 집광율을 높이기 위하여 집광렌즈와 같은 집광수단을 구비하고 있다. 집광수단에 의해 태양광의 집광율을 높이게 되어 동일한 크기의 셀을 구비하여도 더 많은 양의 태양광을 집광하는 것이 가능해진다. 하지만, 이와 같은 집광수단을 구비한 경우에 셀의 작동온도가 상대적으로 상승하여 충진율(fill factor) 및 전기생산효율이 떨어진다는 문제점이 야기된다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 태양전지시스템을 구성하는 태양전지모듈에서 태양광의 입사율을 떨어뜨리지 않으면서 충진율(fill factor)을 향상시킬 수 있는 태양전지모듈을 제공하는데 목적이 있다.
상기와 같은 본 발명의 목적은 결정질 실리콘 웨이퍼, 상기 결정질 실리콘 웨이퍼의 상부 및 하부 중에 적어도 하나에 구비되는 하나 이상의 비정질 실리콘층, 상기 비정질 실리콘층의 상부에 형성되는 투명전도막층, 상기 투명전도막층의 상부에 형성되며, 생성되는 전류를 수집하는 버스 전극 및 상기 투명전도막층의 상부에 형성되어 상기 버스전극과 연결되는 복수의 그리드 전극을 구비하는 것을 특징으로 하는 태양전지모듈에 의해 달성된다.
여기서, 상기 버스 전극은 상기 투명전도막층에 마주보도록 둘 이상 형성될 수 있다.
또한, 상기 그리드 전극은 상기 버스 전극의 적어도 하나에 전기적으로 연결될 수 있다.
이때, 상기 버스 전극은 상기 투명전도막층의 가장자리에서 미리 결정된 거리만큼 이격되어 형성될 수 있다.
한편, 상기 복수의 그리드 전극 중에 적어도 두 개의 그리드 전극을 서로 연결시키는 추가전극을 더 구비할 수 있다.
한편, 상기 그리드 전극은 30 내지 300 ㎛의 선폭을 가질 수 있다.
나아가, 상기 투명전도막층의 면적은 상기 결정질 실리콘 웨이퍼 및 상기 비정질 실리콘층의 면적에 비해 상대적으로 작도록 결정될 수 있다.
전술한 구성을 가지는 본 발명에 따르면 태양전지모듈의 표면에 그리드 전극과 함께 버스 전극을 구비하고, 나아가 버스 전극은 태양광의 입사율을 떨어드리지 않도록 배치되어 효율 저하를 방지하면서, 충진율(fill factor)을 향상시킬 수 있다. 또한, 복수의 그리드 전극을 서로 연결시키는 추가 전극을 추가적으로 구비하여 어느 하나의 그리드 전극이 단선되는 경우에도 효율 감소를 방지할 수 있다.
도 1은 태양전지시스템의 동작원리를 도시한 개략도,
도 2 및 도 3은 비정질 실리콘층을 구비한 태양전지모듈의 단면도,
도 4는 태양전지모듈로 광을 모으는 집광수단을 구비한 태양전지시스템의 개략도,
도 5는 태양전지모듈의 셀이 집합된 웨이퍼의 평면도,
도 6은 상기 웨이퍼의 상부에 마스크를 구비한 상태를 도시한 평면도,
도 7은 일 실시예에 따른 태양전지모듈의 측단면도,
도 8 내지 도 11은 다른 실시예들에 따른 태양전지모듈의 평면도이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 태양전지시스템에 구비되어 태양빛을 받아 전기를 생성하는 태양전지모듈(solar cell module)을 개략적으로 도시한 개략도이다. 도 1은 태양전지 셀(cell)의 측단면도이다.
도 1을 참조하면, 태양전지시스템이란 태양빛을 받으면 광전효과에 의해 전기를 발생하는 전지로 정의될 수 있다. 도 1에 도시된 바와 같이 N층(3)과 P층(5)이 접합하여 PN접합으로 이루어진 셀(32)에 태양광이 입사되면, 정공쌍이 형성된다. 이 때, PN 접합부에서 생기는 전계에 의해 전자는 N층(3)으로 이동하고, 정공은 P층(5)으로 이동하게 된다. 따라서, P층(5)과 N층(3) 사이에 기전력이 발생하게 되고, 상기 양단의 전극(34, 44)에 부하를 연결하면 전류가 흐르게 된다. 도면에서 설명되지 않은 도면번호 '1'은 태양광이 반사되는 것을 방지하는 반사방지막에 해당한다.
그런데, 상기와 같은 태양전지시스템은 태양전지시스템의 작동 온도가 상승하는 경우에 상기 셀(32)에서 전기를 생산하는 효율이 떨어지는 문제점을 수반한다. 이를 해결하기 위하여 도 2 및 도 3과 같은 이종접합 태양전지시스템이 개시된다.
도 2 및 도 3을 참조하면, 이종접합 태양전지시스템은 N층과 P층을 성질에 따라 구분한 것으로서, 구체적으로 N층과 P층이 서로 다른 결정구조 또는 서로 다른 물질로 구성된 경우를 의미한다.
도 2를 참조하면, 이종접합 태양전지시스템에서 전기를 생산하는 태양전지모듈(100A)은 결정질 실리콘 웨이퍼(110)와, 상기 결정질 실리콘 웨이퍼(110)의 상부에 형성되는 하나 이상의 비정질 실리콘층(120, 130)과, 상기 비정질 실리콘층(130)의 상부에 형성되는 투명전도막층(140)과, 상기 투명전도막층(140)의 상부에 형성되는 전극(150)을 구비할 수 있다. 여기서, 결정질 실리콘 웨이퍼(110)와, 비정질 실리콘층(120, 130) 및 투명전도막층(140)을 태양전지 셀(cell)로 정의할 수 있다.
상기 결정질 실리콘 웨이퍼(110)는 n형 실리콘으로 구성될 수 있으며, 상기 결정질 실리콘 웨이퍼(110)의 상부에 진성 비정질 실리콘층(120)을 형성하고, 그 상부에 증착장치를 통하여 P형 비정질 실리콘층(130)을 증착한다. 태양광이 입사되는 상면에는 투명전도막층(140)을 형성하고, 그 상부에 평행하게 이격된 상부전극(150)을 구비하고, 실리콘 웨이퍼(110) 하면에 하부전극(160)을 구비한다.
상기 도 2에 따른 태양전지모듈은 일본의 'Sanyo'에서 개발하여 시판하는 소위 'HIT(Heterojunction with Intrinsic Thin layer) 셀 태양전지'의 구조로서, N형의 실리콘 웨이퍼(110)와 P형 비정질 실리콘층(130) 사이에 진성 비정질 실리콘층(120)을 수 nm의 두께로 삽입하여 기존의 도 1에 따른 태양전지모듈에 비해 현저히 높은 20% 이상의 광전환 효율을 나타낸다.
한편, 도 3은 전술한 도 2와 유사한 구조에서 실리콘 웨이퍼(110)의 하면에 텍스쳐링(texturing) 구조와 전계 형성층(125)를 구비한 태양전지모듈(100B)을 도시한다. 도 2 및 도 3을 참조할 때, 상기 비정질 실리콘층은 상기 결정질 실리콘 웨이퍼(110)의 상부 및 하부 중에 적어도 하나에 구비될 수 있다.
상기와 같은 이종접합 태양전지시스템에서 태양광이 입사되는 투명전도막층(140)은 태양광이 반사되지 않고 입사되도록 하는 반사방지막의 역할을 한다.
한편, 태양전지시스템은 태양 에너지를 전기에너지로 전환시키는 과정에서 기계적, 화학적 작용이 없으므로 시스템의 구조가 단순하여 유지보수가 거의 필요치 않으며, 태양광 시스템을 한번 설치하게 되면 그 수명이 길고 안전하며, 나아가 환경 친화적이라는 장점을 가지고 있다. 하지만, 태양전지시스템은 초기 설치비용이 많이 소요되는 문제점을 수반하며, 특히 태양광의 입사면적을 넓히기 위하여 실리콘 웨이퍼의 대형화는 태양전지시스템의 초기 비용을 높이는 주된 요인으로 작용한다. 이러한 문제점을 해결하기 위하여 도 4와 같이 태양전지모듈로 태양광을 모으는 집광수단을 구비한 태양전지시스템이 개발되었다.
도 4를 참조하면, 태양전지시스템(200)의 태양전지모듈(100'은 베이스(180)에 안착되며, 상기 태양전지모듈(100')에서 소정거리를 두고 집광수단, 예를 들어 집광렌즈(210)가 구비된다. 집광렌즈(210)는 태양광의 빛을 모아서 하부의 태양전지모듈(100')로 입사시키게 된다. 상기 태양전지모듈(100')과 집광렌즈(210) 사이의 거리는 상기 집광렌즈(210)의 초점거리에 따라 집광렌즈(210)를 지난 태양광의 대부분이 태양전지모듈(100')로 입사되도록 적절히 결정될 수 있다. 결국, 종래에서는 대면적의 실리콘 웨이퍼를 필요로 하였으나, 집광렌즈(210)를 구비함으로써 웨이퍼의 크기를 현저히 줄이어 태양전지시스템의 초기 비용을 낮출 수 있게 된다.
특히, 도 2 및 도 3에 따른 이종접합 태양전지모듈에 집광렌즈를 구비하는 경우에 높은 에너지 변환 효율과 함께 우수한 온도 계수 특성을 가지는 태양전지 시스템을 구축하는 것이 가능해진다.
이하, 웨이퍼를 가공하여 태양전지모듈을 제작하는 방법을 살펴보기로 한다. 이하에서 설명하는 웨이퍼는 전술한 셀(cell)에서 투명전도막층이 생략된 형태의 집합체로서 각 태양전지모듈에 적합한 형태로 절삭되기 전의 집합체로 정의될 수 있다.
도 5는 전술한 바와 같이, 전술한 셀(cell)에서 투명전도막층이 생략된 형태의 집합체를 형성하는 웨이퍼(W)를 도시한다.
도 5를 참조하면, 웨이퍼(W)는 원형의 형상을 가질 수 있으며 태양전지모듈의 단면적에 따라 도면에 도시된 바와 같이 은선을 따라 절삭될 수 있다. 상기 웨이퍼(W)가 태양전지모듈의 단면적에 따라 절삭되기 전에 그 상부 및/또는 하면에 투명전도막층을 형성할 수 있다.
도 6은 웨이퍼(W)의 일면, 즉 상면에 투명전도막층을 형성하기 위하여 마스크(300)를 안착한 상태를 도시한다.
상기 투명전도막층은 인듐주석산화물계로 이루어지므로, 스퍼터링 등의 방식에 의해 상기 웨이퍼(W) 상부에 증착되어 형성된다. 이 경우, 태양전지모듈의 형태로 증착하기 위하여 마스크(300)를 웨이퍼(W)의 상부에 배치한다. 상기 마스크(300)는 투명전도막층이 증착되도록 복수개의 개구부(310)를 구비할 수 있다. 즉, 증착을 하는 경우에 상기 개구부(310)를 통하여 상기 웨이퍼(W)의 상부에 증착막이 형성되며, 상기 증착막이 투명전도막층을 형성하게 된다.
그런데, 도 2 또는 도 3에 도시된 바와 같이 투명전도막층을 하부의 절단면에 딱 맞추어 증착하게 되면 상기 웨이퍼(W)를 태양전지모듈의 형태에 따라 레이져 등을 사용하여 절삭하는 경우에 투명전도막층에 레이져에 의한 열적 손상이 발생하게 되며 이는 충진율(fill factor)의 저하를 가져오게 된다.
도 7은 전술한 문제점을 해결하기 위한 일 실시예에 따른 태양전지모듈(100B)의 구조를 도시한 측단면도이다. 도 7에서 투명전도막층(140')을 제외한 나머지 구조는 도 3의 구조와 동일하므로 반복적인 설명은 생략한다.
도 7을 참조하면, 웨이퍼(W) 상에 투명전도막층(140')을 증착하는 경우에 상기 투명전도막층(140')의 증착면적이 하부에 위치한 웨이퍼(W)의 절단면적에 비해 상대적으로 더 작도록 형성될 수 있다.
구체적으로 상기 투명전도막층(140')의 면적은 상기 결정질 실리콘 웨이퍼(110) 및 상기 비정질 실리콘층(120, 130)의 면적에 비해 상대적으로 작도록 형성될 수 있다. 이 경우, 웨이퍼(W) 상부의 투명전도막층(140')의 증착면적이 웨이퍼(W)의 절단면적에 비해 더 작게 되므로, 웨이퍼(W)를 태양전지모듈의 형태에 따라 절단하는 경우에도 레이져 등의 절단수단에 의한 열적 손상이 투명전도막층에 전달되는 것을 방지할 수 있게 되어, 충진율의 저하를 방지할 수 있게 된다.
본 발명자는 도 3과 같이 투명전도막층의 면적이 하부의 웨이퍼의 절단면적과 동일한 경우(A)와 도 7과 같이 투명전도막층의 면적이 하부의 웨이퍼의 절단면적에 비해 작은 경우(B)를 비교하여 실험을 수행하였다. 하기 [표 1]은 상기 실험에 따른 결과를 도시한다.
표 1
개방전압(Voc,V) 단락전류밀도(Jsc,mA/㎠) Fill factor 광변환 효율(%)
A 0.669 35.79 0.558 13.35
B 0.703 39.12 0.686 18.85
상기 표에 도시된 바와 같이, 투명전도막층의 면적이 하부의 웨이퍼의 절단면적과 동일한 경우(A)에 비해 투명전도막층의 면적이 하부의 웨이퍼의 절단면적에 비해 작은 경우(B)에 개방전압, 단락전류밀도, 충진율이 모두 향상되었음을 알 수 있으며, 이로 인해 광변환 효율이 13.35%에서 18.85%로 대략 40% 이상 효율이 향상되었음을 알 수 있다.
한편, 전술한 바와 같이, 도 2 및 도 3에 따른 이종접합 태양전지모듈에 도 4와 같은 집광렌즈를 구비하는 경우에 높은 에너지 변환 효율과 함께 우수한 온도 계수 특성을 가지는 태양전지시스템을 구축하는 것이 가능해진다. 그런데, 이 경우 집광렌즈에 의해 태양광의 입사율이 높아지므로 태양전지모듈에서 발생하는 전류의 양도 증가하게 된다. 따라서, 상기 증가된 전류를 효율적으로 수집함과 동시에 충진율을 증가시키기 위한 전극 구조가 필요하게 된다.
도 8은 일 실시예에 따른 전극구조를 도시하는 평면도이다.
도 8을 참조하면, 비정질 실리콘층(130)의 상부에 투명전도막층(140)이 형성되고, 상기 투명전도막층(140)의 상부에 전극이 배치된다. 이 경우, 상기 전극은 상기 투명전도막층(140)의 상부에 형성되며, 생성되는 전류를 수집하는 버스 전극(400A, 400B) 및 상기 투명전도막층(140)의 표면에 형성되어 상기 버스 전극(400A, 400B)과 연결되는 복수의 그리드 전극(410)을 포함할 수 있다. 즉, 투명전도막층(140)의 표면을 가로질러 상대적으로 얇은 선폭을 가지는 그리드 전극(410)이 형성되며, 상기 그리드 전극(410)으로부터 전류를 수집하는 버스 전극(400A, 400B)이 상기 투명전도막층(140)에 형성된다. 이 경우, 종래와 동일한 크기의 투명전도막층(140)을 형성하고, 그 표면에 버스 전극을 배치하게 되면, 상기 버스 전극이 투명전도막층을 가리는 쉐도우 효과(shadow effect)로 인해 태양광의 입사율을 떨어뜨리게 된다. 따라서, 본 실시예에서는 상기 쉐도우 효과를 방지하기 위하여 투명전도막층(140)의 표면을 종래에 비해 크게 형성하여 상기 투명전도막층(140)의 양측에 버스 전극(400A, 400B)을 형성하고, 상기 투명전도막층(140)을 가로 질러 얇은 선폭을 가지는 그리드 전극(410)을 형성하게 된다. 이때, 상기 버스 전극(400A, 400B) 사이에 노출되는 투명전도막층(140)의 넓이는 종래 구조에 따른 투명전도막층의 넓이 이상으로 하여 쉐도우 효과를 방지하게 된다.
구체적으로, 상기 버스 전극(400A, 400B)은 상기 투명전도막층(140)의 상부의 양측에 마주보도록 둘 이상 형성될 수 있다. 이 경우, 상기 버스 전극(400A, 400B)은 상기 투명전도막층(140)의 가장자리에 인접하여 형성될 수 있다. 한편, 상기 그리드 전극(410)은 복수개가 형성되며, 상기 복수개의 그리드 전극(410)은 상기 버스 전극(400A, 400B)의 적어도 하나에 전기적으로 연결될 수 있다.
여기서, 상기 그리드 전극(410)은 대략 30 내지 300 ㎛의 선폭을 가질 수 있다. 상기 그리드 전극(410)의 선폭이 30 ㎛보다 작게 되면 집광수단을 구비한 태양전지모듈에서 생성되는 전류를 효율적으로 수집하기 어려워진다. 따라서, 본 실시예에서 상기 그리드 전극(410)의 선폭은 30 ㎛ 이상으로 결정된다. 한편, 상기 그리드 전극(410)의 선폭이 300 ㎛보다 커지게 되면 태양전지모듈에서 생성되는 전류를 보다 효과적으로 수집할 수 있지만, 상기 그리드 전극(410)이 투명전도막층을 가리는 면적이 증가하게 되어 태양광의 입사율이 떨어지게 된다. 따라서, 본 실시예에서 상기 그리드 전극(410)은 대략 30 내지 300 ㎛의 선폭을 가지게 된다.
한편, 도 8에서 상기 그리드 전극(410)은 5개로 도시되지만, 이에 한정되지 않으며 태양전지모듈의 크기 또는 면적에 따라 적절히 변형될 수 있다. 예를 들어, 상기 그리드 전극(410)은 4 내지 8개로 이루어질 수 있으며, 이 경우 상기 복수의 그리드 전극(410) 사이의 간격은 대략 0.5 내지 2.0 mm로 이루어질 수 있다.
본 발명에서 상기 그리드 전극(410) 및 버스 전극(400A, 400B)은 은 페이스트(Ag paste)를 이용한 스크린 인쇄 공정을 이용하여 형성될 수 있다. 이는 증발기 및 스퍼터를 이용한 박막증착공정을 이용할 경우 전극 두께가 상대적으로 얇아져서 충진율(fill facor)을 떨어뜨리기 때문이다. 상기 충진율의 저하를 방지하기 위하여 가급적 10㎛ 이상의 두께가 요구되므로, 본 발명에서는 스크린 인쇄 공정으로 전극을 형성한다.
한편, 도 8과 같은 배치에서는 버스 전극(400A, 400B)이 투명전도막층(140)을 가리는 쉐도우 효과 를 방지할 수 있지만, 상기 버스 전극(400A, 400B)이 투명전도막층(140)의 가장자리에 인접하여 배치되므로 상기 버스 전극이 하부의 비정질 실리콘층(130)과 접촉할 수 있으며, 이는 쇼트의 원인이 된다. 도 9는 상기와 같은 문제점을 해결할 수 있는 전극 구조를 도시한다.
도 9를 참조하면, 버스 전극(500A, 500B)은 투명전도막층(140)의 표면의 양측에 서로 마주보도록 구비되며, 상기 버스 전극(500A, 500B)의 사이에 복수의 그리드 전극(410)이 배치된다.
이 경우, 상기 버스 전극(500A, 500B)은 도 8의 실시예에 비해 상대적으로 그 폭이 작도록 형성되어, 버스 전극(500A, 500B)은 상기 투명전도막층(140)의 가장자리에서 미리 결정된 거리만큼 이격되어 배치된다. 즉, 버스 전극(500A, 500B)은 투명전도막층(140)의 상부에 형성되며, 특히 투명전도막층(140)의 가장자리에서 이격되어 형성된다. 따라서, 버스 전극(500A, 500B)의 오정렬(mis-alignment)에 의해 비정질 실리콘층(130)과의 접촉에 의한 쇼트를 방지할 수 있다.
한편, 도 10은 또 다른 실시예에 따른 전극구조를 도시한다.
도 10을 참조하면, 상기 복수의 그리드 전극(410) 중에 적어도 두 개의 그리드 전극을 서로 연결시키는 추가전극(430)을 더 구비하게 된다.
전술한 바와 같이, 상기 그리드 전극(410)은 그 선폭이 30 내지 300 ㎛로 구성되어, 상대적으로 얇게 구성된다. 이 경우, 상기 복수의 그리드 전극(410) 중에 어느 하나의 그리드 전극이 단선될 수 있으며, 상기 단선이 발생한 그리드 전극은 전류를 수집하여 버스 전극으로 전달하지 못하게 되어 전류를 수집하는 효율이 떨어지게 된다. 따라서, 본 실시예에서는 상기 복수의 그리드 전극(410) 중에 적어도 두 개의 그리드 전극을 서로 연결시키는, 예를 들어 도 10에 도시된 바와 같이 수직하게 배치된 추가 전극(430)을 더 구비하게 된다. 상기 추가 전극(430)은 그리드 전극(410)을 서로 연결시키게 되므로, 어느 하나의 그리드 전극(410)이 단선되더라도, 상기 추가 전극(430)을 통해 이웃한 그리드 전극(410)을 통해 버스 전극(500A, 500B)으로 전류를 전달할 수 있다.
도 11은 또 다른 실시예에 따른 전극구조를 도시한다.
도 11을 참조하면, 도 10과 비교하여 상기 추가전극(430)이 일직선으로 배치되지 않고 지그재그로 엇갈려서 배치된 경우를 도시한다.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.

Claims (7)

  1. 결정질 실리콘 웨이퍼;
    상기 결정질 실리콘 웨이퍼의 상부 및 하부 중에 적어도 하나에 형성되는 하나 이상의 비정질 실리콘층;
    상기 비정질 실리콘층의 상부에 형성되는 투명전도막층;
    상기 투명전도막층의 상부에 형성되며, 생성되는 전류를 수집하는 버스 전극; 및
    상기 투명전도막층의 상부에 형성되어 상기 버스전극과 연결되는 복수의 그리드 전극;을 구비하는 것을 특징으로 하는 태양전지모듈.
  2. 제1항에 있어서,
    상기 버스 전극은 상기 투명전도막층에 마주보도록 둘 이상 형성되는 것을 특징으로 하는 태양전지모듈.
  3. 제2항에 있어서,
    상기 그리드 전극은 상기 버스 전극의 적어도 하나에 전기적으로 연결되는 것을 특징으로 하는 태양전지모듈.
  4. 제3항에 있어서,
    상기 버스 전극은 상기 투명전도막층의 가장자리에서 미리 결정된 거리만큼 이격되어 형성되는 것을 특징으로 하는 태양전지모듈.
  5. 제3항 또는 제4항에 있어서,
    상기 복수의 그리드 전극 중에 적어도 두 개의 그리드 전극을 서로 연결시키는 추가전극을 더 구비하는 것을 특징으로 하는 태양전지모듈.
  6. 제3항 또는 제4항에 있어서,
    상기 그리드 전극은 30 내지 300 ㎛의 선폭을 가지는 것을 특징으로 하는 태양전지모듈.
  7. 제1항에 있어서,
    상기 투명전도막층의 면적은 상기 결정질 실리콘 웨이퍼 및 상기 비정질 실리콘층의 면적에 비해 상대적으로 작은 것을 특징으로 하는 태양전지모듈.
PCT/KR2014/008557 2014-09-15 2014-09-15 태양전지모듈 WO2016043353A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/008557 WO2016043353A1 (ko) 2014-09-15 2014-09-15 태양전지모듈

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/008557 WO2016043353A1 (ko) 2014-09-15 2014-09-15 태양전지모듈

Publications (1)

Publication Number Publication Date
WO2016043353A1 true WO2016043353A1 (ko) 2016-03-24

Family

ID=55533387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008557 WO2016043353A1 (ko) 2014-09-15 2014-09-15 태양전지모듈

Country Status (1)

Country Link
WO (1) WO2016043353A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807980B1 (en) * 1996-05-17 2006-06-21 Canon Kabushiki Kaisha Photovoltaic device and process for the production thereof
US20100084012A1 (en) * 2008-10-02 2010-04-08 Commissariat A L'energie Atomique Heterojunction photovoltaic cell with dual doping and method of manufacture
US20110237016A1 (en) * 2008-12-02 2011-09-29 Mitsubishi Electric Corporation Method for manufacturing solar battery cell
US20120234369A1 (en) * 2005-06-17 2012-09-20 Transform Solar Pty Ltd Solar cell interconnection process
US20120301999A1 (en) * 2008-05-28 2012-11-29 Stichting Energieonderzoek Centrum Nederland Method of manufacturing an amorphous/crystalline silicon heterojunction solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807980B1 (en) * 1996-05-17 2006-06-21 Canon Kabushiki Kaisha Photovoltaic device and process for the production thereof
US20120234369A1 (en) * 2005-06-17 2012-09-20 Transform Solar Pty Ltd Solar cell interconnection process
US20120301999A1 (en) * 2008-05-28 2012-11-29 Stichting Energieonderzoek Centrum Nederland Method of manufacturing an amorphous/crystalline silicon heterojunction solar cell
US20100084012A1 (en) * 2008-10-02 2010-04-08 Commissariat A L'energie Atomique Heterojunction photovoltaic cell with dual doping and method of manufacture
US20110237016A1 (en) * 2008-12-02 2011-09-29 Mitsubishi Electric Corporation Method for manufacturing solar battery cell

Similar Documents

Publication Publication Date Title
US8158878B2 (en) Thin film solar cell module
WO2010101350A2 (en) Solar cell and method of manufacturing the same
WO2010021477A2 (ko) 태양전지모듈 및 그 제조방법
US9929294B2 (en) Photoelectric conversion device, manufacturing method thereof, and photoelectric conversion module
WO2011071227A1 (en) Solar cell module
WO2010131816A1 (en) Solar cell
KR20120062431A (ko) 태양전지
KR101130196B1 (ko) 태양 전지
WO2016182128A1 (ko) 태양전지모듈의 제조방법
KR20140095658A (ko) 태양 전지
KR101662526B1 (ko) 태양전지모듈 및 그 제조방법
WO2013055008A1 (en) Solar cell and solar cell module
KR20120015838A (ko) 태양 전지 및 그 제조 방법
US8816185B2 (en) Photovoltaic module
KR20180018895A (ko) 양면 수광형 실리콘 태양전지
CN113764535A (zh) 双面受光的机械叠层太阳能电池、电池组件和光伏系统
WO2015046728A1 (ko) 태양전지모듈
KR101192345B1 (ko) 태양전지의 전극 패턴 및 이를 포함하는 태양전지
Söderström et al. Low cost high energy yield solar module lines and its applications
KR20120064495A (ko) 태양 전지 및 그 제조방법
KR20110024947A (ko) 태양 전지
CN109473502B (zh) 一种太阳能电池叠层结构及其制备方法
WO2017093527A1 (en) Interconnection of back-contacted solar cell, a solar panel having such interconnection
KR101909143B1 (ko) 양면 수광형 태양전지
WO2016043353A1 (ko) 태양전지모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902049

Country of ref document: EP

Kind code of ref document: A1