WO2016043080A1 - Exhaust heat recovery apparatus - Google Patents

Exhaust heat recovery apparatus Download PDF

Info

Publication number
WO2016043080A1
WO2016043080A1 PCT/JP2015/075339 JP2015075339W WO2016043080A1 WO 2016043080 A1 WO2016043080 A1 WO 2016043080A1 JP 2015075339 W JP2015075339 W JP 2015075339W WO 2016043080 A1 WO2016043080 A1 WO 2016043080A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
heat exchange
exhaust
flow path
outlet
Prior art date
Application number
PCT/JP2015/075339
Other languages
French (fr)
Japanese (ja)
Inventor
裕久 大上
裕美 石川
Original Assignee
フタバ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フタバ産業株式会社 filed Critical フタバ産業株式会社
Publication of WO2016043080A1 publication Critical patent/WO2016043080A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust heat recovery device that performs heat exchange between an exhaust gas discharged from an internal combustion engine and a heat exchange medium.
  • an exhaust heat recovery device that recovers exhaust heat by exchanging heat between an exhaust gas of an internal combustion engine and a heat exchange medium such as cooling water.
  • This exhaust heat recovery device includes a switching valve that can be opened and closed at the outlet of the exhaust pipe.
  • the exhaust heat recovery apparatus includes a heat exchange path from a branch port provided inside the exhaust pipe to a discharge port provided outside the exhaust pipe through a heat exchange unit.
  • the present invention has been made in view of such a problem, and its purpose is to open the switching device and to connect the exhaust port at the end of the heat exchange channel when the exhaust gas does not flow through the heat exchange channel. It is an object of the present invention to provide an exhaust heat recovery device that can more reliably suppress exhaust gas extraction via the.
  • an exhaust heat recovery apparatus is an exhaust heat recovery apparatus that performs heat exchange between an exhaust gas discharged from an internal combustion engine and a heat exchange medium, and flows from an upstream side.
  • An inner member that forms at least a part of a main flow path that connects an inlet that receives the exhaust gas and a main outlet that sends the received exhaust gas downstream; and an inner member that surrounds the inner member;
  • An outer member that forms a heat exchange channel between the heat exchanger, a heat exchanger that surrounds the inner member in the heat exchange channel, and performs heat exchange between the exhaust gas and the heat exchange medium, and a main channel
  • a non-recovery mode in which the received exhaust gas is allowed to pass and flow to the main delivery outlet, and a heat recovery mode in which the exhaust gas received in the main flow path is passed through the heat exchange flow path to a sub-feedout different from the main delivery outlet,
  • a buffer chamber is provided between the heat exchange channel and the sub-feed port, and the buffer chamber is formed so that exhaust gas flowing through the main channel flows from the sub-feed port in the non-recovery mode.
  • the partition member that partitions the heat exchange channel and the buffer chamber is provided with a communication port that connects the heat exchange channel and the buffer chamber. The partition member flows into the buffer chamber in the non-recovery mode and contacts the partition member.
  • An orientation portion is formed to direct the exhaust gas in contact with the communication port so as to continue to flow at a predetermined distance.
  • the exhaust gas that has flowed into the buffer chamber from the sub-feed port in the non-recovery mode and contacted the partition member in the non-recovery mode can continue to flow at a predetermined distance from the communication port. Since the directing portion for directing is formed, it is possible to suppress the exhaust gas from flowing into the buffer chamber from the heat exchange flow path side. Particularly in the case of the present invention, the exhaust gas flowing into the buffer chamber from the sub-outlet continues to flow at a predetermined distance from the communication port, so that whatever the shape of the communication port is adopted, the exhaust gas is substantially discharged from the downstream side by the exhaust gas. Can be covered. Therefore, when the switch is opened and it is intended not to allow the exhaust gas to flow through the heat exchange channel, it is possible to more reliably suppress exhaust gas drawing through the communication port at the end of the heat exchange channel.
  • the directing portion has a first wall portion formed so as to separate the exhaust gas in contact with the partition portion in the downstream direction from the communication port.
  • the first wall portion is formed so as to separate the exhaust gas in contact with the partition portion in the downstream direction from the communication port, the exhaust gas in contact with the partition portion is surely directed and communicated. It can be separated from the mouth and covered with exhaust gas over the entire communication port.
  • the directing portion has a second wall portion formed so that the exhaust gas flowing toward the partition portion forms a curved flow toward the first wall portion. Is also preferable.
  • the second wall portion forms a curved flow in which the exhaust gas flowing toward the partition portion smoothly changes direction along the partition portion, so that the direction of the exhaust gas flow also in the first wall portion. Can be smoothly switched to the desired direction described above.
  • a pair of the first wall portions are provided so as to sandwich the second wall portion, and the second wall portions receive the exhaust gas flowing toward the partition portion as a pair of the first walls. It is also preferable that it is formed so as to be distributed to the wall portion.
  • the wall made of the exhaust gas can be surely formed even when a pair of the first wall portions are provided.
  • an exhaust heat recovery device that can be provided can be provided.
  • FIG. 3 is a cross-sectional view showing a III-III cross section of FIG. 2. It is a fragmentary sectional view for demonstrating the orientation part shown in FIG.
  • FIG. 1 is a perspective view showing a schematic configuration of an exhaust heat recovery device HE according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross section near the central axis of the exhaust heat recovery apparatus shown in FIG.
  • the exhaust heat recovery device HE is mounted on, for example, an automobile and performs heat exchange between exhaust gas discharged from an internal combustion engine of the automobile and a heat exchange medium.
  • the exhaust heat recovery device HE is provided with a receiving port HEa that receives exhaust gas flowing from the upstream side, and a sending port HEb that sends the received exhaust gas to the downstream side.
  • the exhaust heat recovery device HE includes an inner cylinder 10 (inner member), an outer cylinder 20 (outer member), a medium inlet portion 21, a medium outlet portion 22, a switching valve unit 30 (switcher), and a shell 40. It is equipped with.
  • the inner cylinder 10 forms a part of the main channel ZA that connects the receiving port HEa and the sending port HEb.
  • the outer cylinder 20 is disposed so as to surround the inner cylinder 10 on the same axis, and forms a heat exchange channel with the inner cylinder 10.
  • the medium inlet portion 21 is a portion serving as an inlet for supplying a heat exchange medium to the heat exchanger 50 in the heat exchange flow path.
  • the medium outlet portion 22 is a portion serving as an outlet for discharging the heat exchange medium supplied from the medium inlet portion 21 and exchanging heat with the exhaust gas.
  • As the heat exchange medium a liquid used for cooling the internal combustion engine is used.
  • the switching valve unit 30 is provided on the downstream side of the inner cylinder 10.
  • the downstream end of the switching valve unit 30 forms a main outlet 30a.
  • the switching valve unit 30 includes a cylindrical portion 30b and a rotary valve body 30c. By rotating the rotary valve body 30c, the main delivery port 30a can be closed or opened.
  • the outer cylinder 20 is arranged so as to share the central axis with the inner cylinder 10, and the inner diameter of the outer cylinder 20 is configured to be larger than the outer diameter of the inner cylinder 10. Therefore, a space is formed between the inner cylinder 10 and the outer cylinder 20, and a heat exchange flow path ZB is formed.
  • the upstream end of the outer cylinder 20 is squeezed and joined to the inner cylinder 10 so as to connect the inner cylinder 10 and the outer cylinder 20. Therefore, the upstream end of the outer cylinder 20 closes the upstream end side of the heat exchange flow path ZB.
  • the upstream end of the outer cylinder 20 is squeezed and joined to the inner cylinder 10, but the manner of joining the outer cylinder 20 and the inner cylinder 10 is not limited to this. For example, another part is interposed. May be joined.
  • a heat exchanger 50 is disposed in the heat exchange flow path ZB.
  • the heat exchanger 50 is disposed so as to surround the inner cylinder 10 in the heat exchange flow path ZB, has an outer shape that is cylindrical, and performs heat exchange between the exhaust gas and the heat exchange medium. .
  • the heat exchanger 50 is arranged so as to be separated from the inner cylinder 10 by a predetermined distance, and is arranged so as to be separated from the outer cylinder 20 by a predetermined distance.
  • a first heat exchange flow path ZB1 is formed between the heat exchanger 50 and the inner cylinder 10, and between the heat exchanger 50 and the outer cylinder 20. Is formed with a second heat exchange flow path ZB2.
  • a side outlet 101 for allowing the exhaust gas to flow from the main channel ZA to the first heat exchange channel ZB1.
  • the side outlet 101 is formed so that the side surface of the inner cylinder 10 is open near the downstream end of the heat exchange flow path ZB.
  • the side part outlet 101 it is not necessarily restricted to the aspect in which the side surface of the inner cylinder 10 is opened, but let exhaust gas flow out into the 1st heat exchange flow path ZB1 from the main flow path ZA. If possible, it can be of various modes.
  • a downstream side between the inner cylinder 10 and the outer cylinder 20 closes the downstream end of the first heat exchange flow path ZB1 so that the exhaust gas flowing out from the side outlet 101 is guided to the first heat exchange flow path ZB1.
  • An end plate 25 (partition member) is disposed. The downstream end plate 25 is disposed so as to connect the inner cylinder 10 and the outer cylinder 20 on the downstream side of the side outlet 101.
  • the downstream end of the outer cylinder 20 is covered with a shell 40.
  • a gap is provided between the downstream end of the switching valve unit 30 and the shell 40, and this gap functions as a sub delivery port 401.
  • the space between the shell 40 and the inner cylinder 10 and the switching valve unit 30 is configured as a buffer chamber ZC.
  • the downstream end plate 25 is provided with a communication port 251 so that exhaust gas flows from the heat exchange flow path ZB to the buffer chamber ZC.
  • the switching valve unit 30 is opened and closed to allow the exhaust gas received in the main flow path ZA to pass and flow from the main outlet 30a to the outlet HEb, and the exhaust gas received in the main path ZA is heated.
  • a heat recovery mode for flowing to the sub-outlet 401 via the exchange channel ZB is selectively possible.
  • the first heat exchange flow path ZB1 is formed between the heat exchanger 50 and the inner cylinder 10, and the second heat exchanger 50 and the outer cylinder 20 are second.
  • a heat exchange channel ZB2 is formed.
  • the side outlet 101 from which the exhaust gas flows from the main channel ZA to the first heat exchange channel ZB1 is formed on the upstream side, and the main outlet 30a of the first heat exchange channel ZB1 is formed on the downstream side. Has been.
  • the exhaust gas flows out from the side outlet 101 to the heat exchange flow path ZB in the heat recovery mode.
  • the exhaust gas that has flowed out to the heat exchange flow path ZB flows in the radial direction from the first heat exchange flow path ZB1 toward the outside of the heat exchanger 50 to reach the second heat exchange flow path ZB2, and during that flow Heat exchange is performed in the heat exchanger 50.
  • a side outlet 101 can be formed in the vicinity of the switching valve unit 30.
  • the side outlet 101 passes through the heat exchange flow path ZB.
  • the pressure difference between the path leading to the sub delivery port 401 and the main flow path ZA can be reduced. Therefore, in the non-recovery mode, the exhaust gas does not enter the heat exchange flow path ZB side, and can flow as it is from the main outlet 30a toward the outlet HEb via the main path ZA.
  • the exhaust gas is prevented from entering the heat exchange flow path ZB side in the non-recovery mode.
  • the downstream end plate 25 that partitions the heat exchange flow path ZB and the buffer chamber ZC is provided with the communication port 251 that connects the heat exchange flow path ZB and the buffer chamber ZC.
  • the exhaust gas that has flowed into the buffer chamber ZC from the sub delivery port 401 comes into contact with the downstream end plate 25.
  • the exhaust gas in contact with the downstream end plate 25 is configured to continue to flow at a predetermined distance from the communication port 251.
  • a directing portion 252 is provided at a portion of the downstream end plate 25 that contacts the exhaust gas.
  • the directing portion 252 can continue the exhaust gas flowing into the buffer chamber ZC from the sub-outlet 401 and contacting the downstream end plate 25 at a predetermined distance from the communication port 251. It is a part to direct.
  • the orientation unit 252 will be further described with reference to FIG. As shown in FIG. 4, the directing portion 252 has a first wall portion 252a and a second wall portion 252b.
  • the first wall portion 252a is provided in the vicinity of the pair of communication ports 251.
  • the first wall portion 252a is a curved wall that is formed so as to separate the exhaust gas in contact with the downstream end plate 25 from the communication port 251 in the downstream direction (upward in FIG. 4).
  • the second wall portion 252b is formed at a substantially central portion between the pair of communication ports 251.
  • the second wall portion 252b is formed such that the exhaust gas flowing toward the downstream end plate 25 forms a curved flow toward the first wall portion 252a.
  • the exhaust gas flows out from the side outlet 101 to the heat exchange flow path ZB.
  • the exhaust gas that has flowed out to the heat exchange channel ZB flows in the radial direction from the first heat exchange channel ZB1 toward the outside of the heat exchanger 50 so as to reach the second heat exchange channel ZB2. Therefore, the exhaust gas can be distributed almost uniformly throughout the heat exchanger 50 and heat exchange can be performed with the heat exchange medium. Therefore, the exhaust gas can be spread over the entire heat exchanger 50 during the heat recovery mode, and the heat exchange efficiency can be improved.

Abstract

In the present invention, a direction orienting part 252 is formed on a downstream-side endplate 25 of an exhaust heat recovery apparatus HE such that, in a non-recovery mode, exhaust gas flowing from a subordinate delivery port 401 into a buffer chamber ZC and coming into contact with the downstream-side endplate 25 can continue to flow while keeping a predetermined distance from a communication port 251.

Description

排気熱回収装置Exhaust heat recovery device
 本発明は、内燃機関から排出される排気ガスと熱交換媒体との間で熱交換を行う排気熱回収装置に関する。 The present invention relates to an exhaust heat recovery device that performs heat exchange between an exhaust gas discharged from an internal combustion engine and a heat exchange medium.
 従来、内燃機関の排気ガスと冷却水等の熱交換媒体との間で熱交換を行い、排気熱を回収する排気熱回収装置が知られている。この排気熱回収装置は、排気管の出口に開閉可能な切替弁を備えている。また、この排気熱回収装置は、排気管の内部に設けられた分岐口から熱交換部を経て、排気管の外部に設けられた排出口に至る熱交換経路を備えている。 Conventionally, there has been known an exhaust heat recovery device that recovers exhaust heat by exchanging heat between an exhaust gas of an internal combustion engine and a heat exchange medium such as cooling water. This exhaust heat recovery device includes a switching valve that can be opened and closed at the outlet of the exhaust pipe. In addition, the exhaust heat recovery apparatus includes a heat exchange path from a branch port provided inside the exhaust pipe to a discharge port provided outside the exhaust pipe through a heat exchange unit.
 このような排気熱回収装置において、排気管の切替弁を閉としたとき、排気ガスは主として熱交換経路を通り熱交換が行われる。一方、熱交換の必要がない場合は、排気管の切替弁を開とする。このとき、排気ガスは主として上記の熱交換経路よりも抵抗が低い排気管を流れるため、熱交換経路を流れる排気の量が減少し熱交換を抑制することができる。 In such an exhaust heat recovery device, when the switch valve of the exhaust pipe is closed, the exhaust gas is mainly subjected to heat exchange through the heat exchange path. On the other hand, when there is no need for heat exchange, the exhaust pipe switching valve is opened. At this time, since the exhaust gas mainly flows through the exhaust pipe having a resistance lower than that of the heat exchange path, the amount of exhaust gas flowing through the heat exchange path is reduced, and heat exchange can be suppressed.
 しかしながら、このような排気熱回収装置では、排気管の切替弁を開としたときでも、一部の排気ガスは熱交換経路に流れ熱交換を行ってしまう。これは、排気管を流れる排気ガスによりベンチュリー効果が生じ、排出口から排気が引き出され、その結果、熱交換経路における排気の流れが生じるためである。このことにより、不必要な場合にまで熱交換を行ってしまうおそれがあった。 However, in such an exhaust heat recovery apparatus, even when the switching valve of the exhaust pipe is opened, some exhaust gas flows through the heat exchange path and performs heat exchange. This is because the venturi effect is generated by the exhaust gas flowing through the exhaust pipe, and the exhaust gas is drawn out from the exhaust port. As a result, the exhaust gas flows in the heat exchange path. As a result, there is a risk of heat exchange even when unnecessary.
 そこで下記特許文献1に記載の排気熱回収装置では、開閉弁が開かれている場合に、一部の排気ガスを還流させ、熱交換部からの排気ガス出口である排出口近傍で渦流を生じさせている。この渦流の効果によって、排気管における排気ガスの流れによって排出口から排気ガスが引き出されてしまう減少を抑制することができる。 Therefore, in the exhaust heat recovery device described in Patent Document 1 below, when the on-off valve is open, a part of the exhaust gas is recirculated, and a vortex is generated in the vicinity of the exhaust port that is the exhaust gas outlet from the heat exchange unit. I am letting. Due to the effect of this vortex flow, it is possible to suppress a reduction in exhaust gas being drawn from the exhaust port due to the flow of exhaust gas in the exhaust pipe.
特開2014-34963号公報JP 2014-34963 A
 しかしながら、上記特許文献1のような構成を採用した場合であっても、排出口から排気ガスが引き出されてしまう現象を完全には防ぐことができず、より一層効果的な排気ガス引き出し抑制手段が求められている。 However, even when the configuration as described in Patent Document 1 is adopted, the phenomenon in which exhaust gas is drawn out from the exhaust port cannot be completely prevented, and a more effective exhaust gas drawing suppression means. Is required.
 本発明はこのような課題に鑑みてなされたものであり、その目的は、切替器を開いて熱交換流路に排気ガスを流さないように意図した場合に、熱交換流路末端の連通口を経由した排気ガス引き出しをより確実に抑制することができる排気熱回収装置を提供することを目的とする。 The present invention has been made in view of such a problem, and its purpose is to open the switching device and to connect the exhaust port at the end of the heat exchange channel when the exhaust gas does not flow through the heat exchange channel. It is an object of the present invention to provide an exhaust heat recovery device that can more reliably suppress exhaust gas extraction via the.
 上記課題を解決するために、本発明に係る排気熱回収装置は、内燃機関から排出される排気ガスと熱交換媒体との間で熱交換を行う排気熱回収装置であって、上流側から流れ込む排気ガスを受け入れる受入口と、その受け入れた排気ガスを下流側に送り出す主送出口と、を繋ぐ主流路の少なくとも一部を形成する内側部材と、内側部材を囲むように配置され、内側部材との間で熱交換流路を形成する外側部材と、熱交換流路において内側部材を囲むように配置され、排気ガスと熱交換媒体との間で熱交換を行う熱交換器と、主流路に受け入れた排気ガスを通過させて主送出口に流す非回収モードと、主流路に受け入れた排気ガスを熱交換流路を経由させて主送出口とは異なる副送出口に流す熱回収モードと、を切り替える切替器と、を備える。熱交換流路と副送出口との間にバッファ室が設けられ、バッファ室は非回収モードにおいて主流路を流れる排気ガスが副送出口から流れ込むように形成されている。熱交換流路とバッファ室とを仕切る仕切部材に、熱交換流路とバッファ室とを繋ぐ連通口が設けられており、仕切部材には、非回収モードにおいてバッファ室に流れ込んで仕切部材に当接した排気ガスが、連通口とは所定距離をおいて流れ続けることが可能なように方向付ける方向付け部が形成されている。 In order to solve the above problems, an exhaust heat recovery apparatus according to the present invention is an exhaust heat recovery apparatus that performs heat exchange between an exhaust gas discharged from an internal combustion engine and a heat exchange medium, and flows from an upstream side. An inner member that forms at least a part of a main flow path that connects an inlet that receives the exhaust gas and a main outlet that sends the received exhaust gas downstream; and an inner member that surrounds the inner member; An outer member that forms a heat exchange channel between the heat exchanger, a heat exchanger that surrounds the inner member in the heat exchange channel, and performs heat exchange between the exhaust gas and the heat exchange medium, and a main channel A non-recovery mode in which the received exhaust gas is allowed to pass and flow to the main delivery outlet, and a heat recovery mode in which the exhaust gas received in the main flow path is passed through the heat exchange flow path to a sub-feedout different from the main delivery outlet, A switching device for switching between . A buffer chamber is provided between the heat exchange channel and the sub-feed port, and the buffer chamber is formed so that exhaust gas flowing through the main channel flows from the sub-feed port in the non-recovery mode. The partition member that partitions the heat exchange channel and the buffer chamber is provided with a communication port that connects the heat exchange channel and the buffer chamber. The partition member flows into the buffer chamber in the non-recovery mode and contacts the partition member. An orientation portion is formed to direct the exhaust gas in contact with the communication port so as to continue to flow at a predetermined distance.
 本発明によれば、仕切部材に、非回収モードにおいて副送出口からバッファ室に流れ込んで仕切部材に当接した排気ガスが、連通口とは所定距離をおいて流れ続けることが可能なように方向付ける方向付け部を形成しているので、熱交換流路側から排気ガスがバッファ室に流れこむことを抑制することができる。特に本発明の場合は、副送出口からバッファ室に流れ込んだ排気ガスが連通口と所定距離をおいて流れ続けるので、連通口がどのような形を採用したとしても下流側から排気ガスによって実質的な蓋をすることができる。従って、切替器を開いて熱交換流路に排気ガスを流さないように意図した場合に、熱交換流路末端の連通口を経由した排気ガス引き出しをより確実に抑制することができる。 According to the present invention, the exhaust gas that has flowed into the buffer chamber from the sub-feed port in the non-recovery mode and contacted the partition member in the non-recovery mode can continue to flow at a predetermined distance from the communication port. Since the directing portion for directing is formed, it is possible to suppress the exhaust gas from flowing into the buffer chamber from the heat exchange flow path side. Particularly in the case of the present invention, the exhaust gas flowing into the buffer chamber from the sub-outlet continues to flow at a predetermined distance from the communication port, so that whatever the shape of the communication port is adopted, the exhaust gas is substantially discharged from the downstream side by the exhaust gas. Can be covered. Therefore, when the switch is opened and it is intended not to allow the exhaust gas to flow through the heat exchange channel, it is possible to more reliably suppress exhaust gas drawing through the communication port at the end of the heat exchange channel.
 また本発明に係る排気熱回収装置では、方向付け部は、前記仕切部に当接した排気ガスを前記連通口から下流側方向に引き離すように形成された第1壁部を有することも好ましい。 In the exhaust heat recovery apparatus according to the present invention, it is also preferable that the directing portion has a first wall portion formed so as to separate the exhaust gas in contact with the partition portion in the downstream direction from the communication port.
 この好ましい態様では、仕切部に当接した排気ガスを連通口から下流側方向に引き離すように形成された第1壁部を有するので、仕切部に当接した排気ガスを確実に方向付けて連通口から引き離し、連通口の全域に渡って排気ガスによる蓋をすることができる。 In this preferred embodiment, since the first wall portion is formed so as to separate the exhaust gas in contact with the partition portion in the downstream direction from the communication port, the exhaust gas in contact with the partition portion is surely directed and communicated. It can be separated from the mouth and covered with exhaust gas over the entire communication port.
 また本発明に係る排気熱回収装置では、方向付け部は、仕切部に向かって流れる排気ガスが湾曲流を形成して第1壁部方向に向かうように形成された第2壁部を有することも好ましい。 Further, in the exhaust heat recovery apparatus according to the present invention, the directing portion has a second wall portion formed so that the exhaust gas flowing toward the partition portion forms a curved flow toward the first wall portion. Is also preferable.
 この好ましい態様では、第2壁部によって、仕切部に向かって流れる排気ガスが仕切部に沿って滑らかに方向転換するような湾曲流を形成するので、第1壁部においても排気ガス流の方向を上述した所望の方向に滑らかに転換することができる。 In this preferred embodiment, the second wall portion forms a curved flow in which the exhaust gas flowing toward the partition portion smoothly changes direction along the partition portion, so that the direction of the exhaust gas flow also in the first wall portion. Can be smoothly switched to the desired direction described above.
 また本発明に係る排気熱回収装置では、第1壁部は、第2壁部を挟むように一対設けられており、第2壁部は、仕切部に向かって流れる排気ガスを一対の第1壁部に振り分けるように形成されていることも好ましい。 In the exhaust heat recovery apparatus according to the present invention, a pair of the first wall portions are provided so as to sandwich the second wall portion, and the second wall portions receive the exhaust gas flowing toward the partition portion as a pair of the first walls. It is also preferable that it is formed so as to be distributed to the wall portion.
 この好ましい態様では、第2壁部によって排気ガスを振り分けるので、第1壁部を一対設けた場合であっても確実に排気ガスによる壁を形成することができる。 In this preferred embodiment, since the exhaust gas is distributed by the second wall portion, the wall made of the exhaust gas can be surely formed even when a pair of the first wall portions are provided.
 本発明によれば、切替器を開いて熱交換流路に排気ガスを流さないように意図した場合に、熱交換流路末端の連通口を経由した排気ガス引き出しをより確実に抑制することができる排気熱回収装置を提供することができる。 According to the present invention, when the switch is opened so that the exhaust gas does not flow through the heat exchange channel, the exhaust gas drawing through the communication port at the end of the heat exchange channel can be more reliably suppressed. An exhaust heat recovery device that can be provided can be provided.
本発明の実施形態である排気熱回収装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the exhaust heat recovery apparatus which is embodiment of this invention. 図1に示す排気熱回収装置の中心軸付近における断面を示す断面図である。It is sectional drawing which shows the cross section in the central-axis vicinity of the exhaust heat recovery apparatus shown in FIG. 図2のIII-III断面を示す断面図である。FIG. 3 is a cross-sectional view showing a III-III cross section of FIG. 2. 図3に示す方向付け部を説明するための部分断面図である。It is a fragmentary sectional view for demonstrating the orientation part shown in FIG.
 以下、添付図面を参照しながら本発明の実施の形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 図1及び図2を参照しながら、本発明の実施形態である排気熱回収装置について説明する。図1は、本発明の実施形態である排気熱回収装置HEの概略構成を示す斜視図である。図2は、図1に示す排気熱回収装置の中心軸付近における断面を示す断面図である。 An exhaust heat recovery apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view showing a schematic configuration of an exhaust heat recovery device HE according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing a cross section near the central axis of the exhaust heat recovery apparatus shown in FIG.
 排気熱回収装置HEは、例えば自動車に搭載され、自動車の内燃機関から排出される排気ガスと熱交換媒体との間で熱交換を行うものである。排気熱回収装置HEには、上流側から流れ込む排気ガスを受け入れる受入口HEaと、その受け入れた排気ガスを下流側に送り出す送出口HEbとが設けられている。 The exhaust heat recovery device HE is mounted on, for example, an automobile and performs heat exchange between exhaust gas discharged from an internal combustion engine of the automobile and a heat exchange medium. The exhaust heat recovery device HE is provided with a receiving port HEa that receives exhaust gas flowing from the upstream side, and a sending port HEb that sends the received exhaust gas to the downstream side.
 排気熱回収装置HEは、内筒10(内側部材)と、外筒20(外側部材)と、媒体入口部21と、媒体出口部22と、切替バルブユニット30(切替器)と、シェル40と、を備えている。内筒10は、受入口HEaと送出口HEbとを繋ぐ主流路ZAの一部を形成している。 The exhaust heat recovery device HE includes an inner cylinder 10 (inner member), an outer cylinder 20 (outer member), a medium inlet portion 21, a medium outlet portion 22, a switching valve unit 30 (switcher), and a shell 40. It is equipped with. The inner cylinder 10 forms a part of the main channel ZA that connects the receiving port HEa and the sending port HEb.
 外筒20は、内筒10を同軸上において囲むように配置され、内筒10との間に熱交換流路を形成するものである。媒体入口部21は、熱交換流路内の熱交換器50に熱交換媒体を供給する入口となる部分である。媒体出口部22は、媒体入口部21から供給され、排気ガスとの間で熱交換を行った熱交換媒体を排出する出口となる部分である。熱交換媒体としては、内燃機関の冷却に用いる液体が用いられる。 The outer cylinder 20 is disposed so as to surround the inner cylinder 10 on the same axis, and forms a heat exchange channel with the inner cylinder 10. The medium inlet portion 21 is a portion serving as an inlet for supplying a heat exchange medium to the heat exchanger 50 in the heat exchange flow path. The medium outlet portion 22 is a portion serving as an outlet for discharging the heat exchange medium supplied from the medium inlet portion 21 and exchanging heat with the exhaust gas. As the heat exchange medium, a liquid used for cooling the internal combustion engine is used.
 切替バルブユニット30は、内筒10の下流側に設けられている。切替バルブユニット30の下流端は、主送出口30aを形成している。切替バルブユニット30は、筒状部30bと、回転弁体30cとを有している。回転弁体30cが回転することで、主送出口30aを閉塞したり、開放したりすることができる。 The switching valve unit 30 is provided on the downstream side of the inner cylinder 10. The downstream end of the switching valve unit 30 forms a main outlet 30a. The switching valve unit 30 includes a cylindrical portion 30b and a rotary valve body 30c. By rotating the rotary valve body 30c, the main delivery port 30a can be closed or opened.
 外筒20は内筒10と中心軸を共有するように配置され、外筒20の内径は内筒10の外径よりも大きくなるように構成されている。従って、内筒10と外筒20との間には空間が形成され、熱交換流路ZBを形成している。 The outer cylinder 20 is arranged so as to share the central axis with the inner cylinder 10, and the inner diameter of the outer cylinder 20 is configured to be larger than the outer diameter of the inner cylinder 10. Therefore, a space is formed between the inner cylinder 10 and the outer cylinder 20, and a heat exchange flow path ZB is formed.
 内筒10と外筒20とを繋ぐように、外筒20の上流端は絞られて内筒10と接合されている。従って、外筒20の上流端は、熱交換流路ZBの上流端側を閉塞している。尚、本実施形態では、外筒20の上流端を絞って内筒10と接合したが、外筒20と内筒10との接合態様はこれに限られるものではなく、例えば別部品を介在させて接合してもよい。 The upstream end of the outer cylinder 20 is squeezed and joined to the inner cylinder 10 so as to connect the inner cylinder 10 and the outer cylinder 20. Therefore, the upstream end of the outer cylinder 20 closes the upstream end side of the heat exchange flow path ZB. In the present embodiment, the upstream end of the outer cylinder 20 is squeezed and joined to the inner cylinder 10, but the manner of joining the outer cylinder 20 and the inner cylinder 10 is not limited to this. For example, another part is interposed. May be joined.
 熱交換流路ZBには、熱交換器50が配置されている。熱交換器50は、熱交換流路ZBにおいて内筒10を囲むように配置され、外形が円筒形状をなすものであって、排気ガスと熱交換媒体との間で熱交換を行うものである。 A heat exchanger 50 is disposed in the heat exchange flow path ZB. The heat exchanger 50 is disposed so as to surround the inner cylinder 10 in the heat exchange flow path ZB, has an outer shape that is cylindrical, and performs heat exchange between the exhaust gas and the heat exchange medium. .
 熱交換器50は、内筒10から所定の距離をおいて離隔するように配置されていると共に、外筒20からも所定の距離をおいて離隔するように配置されている。このように熱交換器50を配置することで、熱交換器50と内筒10との間には第1熱交換流路ZB1が形成されると共に、熱交換器50と外筒20との間には第2熱交換流路ZB2が形成される。 The heat exchanger 50 is arranged so as to be separated from the inner cylinder 10 by a predetermined distance, and is arranged so as to be separated from the outer cylinder 20 by a predetermined distance. By arranging the heat exchanger 50 in this way, a first heat exchange flow path ZB1 is formed between the heat exchanger 50 and the inner cylinder 10, and between the heat exchanger 50 and the outer cylinder 20. Is formed with a second heat exchange flow path ZB2.
 内筒10の下流端には、主流路ZAから第1熱交換流路ZB1に排気ガスを流出させるための側部流出口101が形成されている。側部流出口101は、熱交換流路ZBの下流端近傍において、内筒10の側面が開口するように形成されている。尚、側部流出口101の形成態様としては、必ずしも内筒10の側面が開口している態様に限られるものではなく、主流路ZAから第1熱交換流路ZB1に排気ガスを流出させることが可能であれば様々な態様のものとすることができる。 At the downstream end of the inner cylinder 10, there is formed a side outlet 101 for allowing the exhaust gas to flow from the main channel ZA to the first heat exchange channel ZB1. The side outlet 101 is formed so that the side surface of the inner cylinder 10 is open near the downstream end of the heat exchange flow path ZB. In addition, as a formation aspect of the side part outlet 101, it is not necessarily restricted to the aspect in which the side surface of the inner cylinder 10 is opened, but let exhaust gas flow out into the 1st heat exchange flow path ZB1 from the main flow path ZA. If possible, it can be of various modes.
 内筒10と外筒20との間には、側部流出口101から流れ出す排気ガスを第1熱交換流路ZB1に導くように、第1熱交換流路ZB1の下流端を閉塞する下流側エンドプレート25(仕切部材)が配置されている。下流側エンドプレート25は、側部流出口101よりも下流側の内筒10と外筒20とを繋ぐように配置されている。 A downstream side between the inner cylinder 10 and the outer cylinder 20 closes the downstream end of the first heat exchange flow path ZB1 so that the exhaust gas flowing out from the side outlet 101 is guided to the first heat exchange flow path ZB1. An end plate 25 (partition member) is disposed. The downstream end plate 25 is disposed so as to connect the inner cylinder 10 and the outer cylinder 20 on the downstream side of the side outlet 101.
 外筒20の下流端はシェル40によって覆われている。切替バルブユニット30の下流端とシェル40との間には隙間が設けられており、この隙間が副送出口401として機能している。 The downstream end of the outer cylinder 20 is covered with a shell 40. A gap is provided between the downstream end of the switching valve unit 30 and the shell 40, and this gap functions as a sub delivery port 401.
 シェル40と、内筒10及び切替バルブユニット30との間の空間は、バッファ室ZCとして構成されている。下流側エンドプレート25には、熱交換流路ZBからバッファ室ZCに排気ガスが流れるように、連通口251が設けられている。 The space between the shell 40 and the inner cylinder 10 and the switching valve unit 30 is configured as a buffer chamber ZC. The downstream end plate 25 is provided with a communication port 251 so that exhaust gas flows from the heat exchange flow path ZB to the buffer chamber ZC.
 上述した構成によって、切替バルブユニット30の開閉により、主流路ZAに受け入れた排気ガスを通過させて主送出口30aから送出口HEbに流す非回収モードと、主流路ZAに受け入れた排気ガスを熱交換流路ZBを経由して副送出口401に流す熱回収モードとが選択的に可能となる。 With the above-described configuration, the switching valve unit 30 is opened and closed to allow the exhaust gas received in the main flow path ZA to pass and flow from the main outlet 30a to the outlet HEb, and the exhaust gas received in the main path ZA is heated. A heat recovery mode for flowing to the sub-outlet 401 via the exchange channel ZB is selectively possible.
 排気熱回収装置HEにおいては、上述したように、熱交換器50と内筒10との間に第1熱交換流路ZB1が形成され、熱交換器50と外筒20との間に第2熱交換流路ZB2が形成されている。排気熱回収装置HEにおいては、主流路ZAから第1熱交換流路ZB1に排気ガスが流れ出す側部流出口101が上流側、第1熱交換流路ZB1の主送出口30aが下流側に形成されている。 In the exhaust heat recovery device HE, as described above, the first heat exchange flow path ZB1 is formed between the heat exchanger 50 and the inner cylinder 10, and the second heat exchanger 50 and the outer cylinder 20 are second. A heat exchange channel ZB2 is formed. In the exhaust heat recovery device HE, the side outlet 101 from which the exhaust gas flows from the main channel ZA to the first heat exchange channel ZB1 is formed on the upstream side, and the main outlet 30a of the first heat exchange channel ZB1 is formed on the downstream side. Has been.
 排気熱回収装置HEにおいては、熱回収モードにおいて排気ガスは側部流出口101から熱交換流路ZBに流れ出す。その熱交換流路ZBに流れ出した排気ガスが、第1熱交換流路ZB1から熱交換器50の内側から外側に向かう径方向に流れて第2熱交換流路ZB2に至り、その流れる間に熱交換器50において熱交換を行う。 In the exhaust heat recovery device HE, the exhaust gas flows out from the side outlet 101 to the heat exchange flow path ZB in the heat recovery mode. The exhaust gas that has flowed out to the heat exchange flow path ZB flows in the radial direction from the first heat exchange flow path ZB1 toward the outside of the heat exchanger 50 to reach the second heat exchange flow path ZB2, and during that flow Heat exchange is performed in the heat exchanger 50.
 本実施形態では、主流路ZAから第1熱交換流路ZB1に排気ガスが流れ出す側部流出口101が、第1熱交換流路ZB1の主送出口30a側端部に形成されているので、切替バルブユニット30の近傍に側部流出口101を形成することができる。このように側部流出口101の配置を工夫することで、切替バルブユニット30を操作して非回収モードの排気ガス流れを形成した場合に、側部流出口101から熱交換流路ZBを経由して副送出口401に至る経路と、主流路ZAとの間の圧力差を小さくすることができる。従って、非回収モードの際に排気ガスを熱交換流路ZB側に入り込ませず、そのまま主流路ZAを経由して主送出口30aから送出口HEbに向けて流すことができる。 In this embodiment, since the side portion outlet 101 from which the exhaust gas flows from the main passage ZA to the first heat exchange passage ZB1 is formed at the end of the first heat exchange passage ZB1 on the main outlet 30a side, A side outlet 101 can be formed in the vicinity of the switching valve unit 30. By devising the arrangement of the side outlet 101 in this way, when the switching valve unit 30 is operated to form the exhaust gas flow in the non-recovery mode, the side outlet 101 passes through the heat exchange flow path ZB. Thus, the pressure difference between the path leading to the sub delivery port 401 and the main flow path ZA can be reduced. Therefore, in the non-recovery mode, the exhaust gas does not enter the heat exchange flow path ZB side, and can flow as it is from the main outlet 30a toward the outlet HEb via the main path ZA.
 本実施形態では、非回収モードの際に排気ガスを熱交換流路ZB側に入り込ませない工夫をしている。上述したように、熱交換流路ZBとバッファ室ZCとを仕切る下流側エンドプレート25に、熱交換流路ZBとバッファ室ZCとを繋ぐ連通口251が設けられている。 In the present embodiment, the exhaust gas is prevented from entering the heat exchange flow path ZB side in the non-recovery mode. As described above, the downstream end plate 25 that partitions the heat exchange flow path ZB and the buffer chamber ZC is provided with the communication port 251 that connects the heat exchange flow path ZB and the buffer chamber ZC.
 非回収モードにおいて副送出口401からバッファ室ZCに流れ込んだ排気ガスは、下流側エンドプレート25に当接する。下流側エンドプレート25に当接した排気ガスは、連通口251と所定距離をおいて流れ続けることが可能なように構成されている。 In the non-recovery mode, the exhaust gas that has flowed into the buffer chamber ZC from the sub delivery port 401 comes into contact with the downstream end plate 25. The exhaust gas in contact with the downstream end plate 25 is configured to continue to flow at a predetermined distance from the communication port 251.
 この構成について、図3を参照しながら説明する。図3に示されるように、下流側エンドプレート25の排気ガスが当接する部分に、方向付け部252が設けられている。方向付け部252は、非回収モードにおいて副送出口401からバッファ室ZCに流れ込んで下流側エンドプレート25に当接した排気ガスが、連通口251とは所定距離をおいて流れ続けることが可能なように方向付ける部分である。 This configuration will be described with reference to FIG. As shown in FIG. 3, a directing portion 252 is provided at a portion of the downstream end plate 25 that contacts the exhaust gas. In the non-recovery mode, the directing portion 252 can continue the exhaust gas flowing into the buffer chamber ZC from the sub-outlet 401 and contacting the downstream end plate 25 at a predetermined distance from the communication port 251. It is a part to direct.
 方向付け部252について、図4を参照しながら更に説明する。図4に示されるように、方向付け部252は、第1壁部252a及び第2壁部252bを有している。 The orientation unit 252 will be further described with reference to FIG. As shown in FIG. 4, the directing portion 252 has a first wall portion 252a and a second wall portion 252b.
 第1壁部252aは、一対の連通口251の近傍にそれぞれ設けられている。第1壁部252aは、下流側エンドプレート25に当接した排気ガスを連通口251から下流側方向(図4の上方向)に引き離すように形成された湾曲壁である。 The first wall portion 252a is provided in the vicinity of the pair of communication ports 251. The first wall portion 252a is a curved wall that is formed so as to separate the exhaust gas in contact with the downstream end plate 25 from the communication port 251 in the downstream direction (upward in FIG. 4).
 第2壁部252bは、一対の連通口251の間の略中央部分に形成されている。第2壁部252bは、下流側エンドプレート25に向かって流れる排気ガスが湾曲流を形成して第1壁部252a方向に向かうように形成されている。 The second wall portion 252b is formed at a substantially central portion between the pair of communication ports 251. The second wall portion 252b is formed such that the exhaust gas flowing toward the downstream end plate 25 forms a curved flow toward the first wall portion 252a.
 熱回収モードにおいて切替バルブユニット30を操作し、主流路ZAの下流端を閉塞すると、排気ガスは側部流出口101から熱交換流路ZBに流れ出る。本実施形態では、熱交換流路ZBに流れ出した排気ガスが、第1熱交換流路ZB1から熱交換器50の内側から外側に向かう径方向に流れて第2熱交換流路ZB2に至るように構成されているので、熱交換器50全体にくまなく、ほぼ均一に排気ガスを行き渡らせて熱交換媒体との間で熱交換を行うことができる。従って、熱回収モードの際に熱交換器50全体に排気ガスを行き渡らせることができ、熱交換効率を高めることができる。 When the switching valve unit 30 is operated in the heat recovery mode and the downstream end of the main flow path ZA is closed, the exhaust gas flows out from the side outlet 101 to the heat exchange flow path ZB. In the present embodiment, the exhaust gas that has flowed out to the heat exchange channel ZB flows in the radial direction from the first heat exchange channel ZB1 toward the outside of the heat exchanger 50 so as to reach the second heat exchange channel ZB2. Therefore, the exhaust gas can be distributed almost uniformly throughout the heat exchanger 50 and heat exchange can be performed with the heat exchange medium. Therefore, the exhaust gas can be spread over the entire heat exchanger 50 during the heat recovery mode, and the heat exchange efficiency can be improved.
 上記実施形態は、一例に過ぎず、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。 The above embodiment is merely an example, and various omissions, replacements, and changes can be made without departing from the scope of the invention.
10:内筒
20:外筒
21:媒体入口部
22:媒体出口部
25:下流側エンドプレート
30:切替バルブユニット
30a:主送出口
30b:筒状部
30c:回転弁体
40:シェル
50:熱交換器
101:側部流出口
251:連通口
252:方向付け部
252a:第1壁部
252b:第2壁部
401:副送出口
HE:排気熱回収装置
HEa:受入口
HEb:送出口
ZA:主流路
ZB:熱交換流路
ZB1:第1熱交換流路
ZB2:第2熱交換流路
ZC:バッファ室
10: inner cylinder 20: outer cylinder 21: medium inlet portion 22: medium outlet portion 25: downstream end plate 30: switching valve unit 30a: main outlet 30b: cylindrical portion 30c: rotary valve body 40: shell 50: heat Exchanger 101: Side outlet 251: Communication port 252: Orientation part 252a: First wall part 252b: Second wall part 401: Sub-outlet HE: Exhaust heat recovery device HEa: Inlet HEb: Outlet ZA: Main flow path ZB: heat exchange flow path ZB1: first heat exchange flow path ZB2: second heat exchange flow path ZC: buffer chamber

Claims (4)

  1.  内燃機関から排出される排気ガスと熱交換媒体との間で熱交換を行う排気熱回収装置であって、
     上流側から流れ込む排気ガスを受け入れる受入口と、その受け入れた排気ガスを下流側に送り出す主送出口と、を繋ぐ主流路の少なくとも一部を形成する内側部材と、
     前記内側部材を囲むように配置され、前記内側部材との間で熱交換流路を形成する外側部材と、
     前記熱交換流路において前記内側部材を囲むように配置され、排気ガスと熱交換媒体との間で熱交換を行う熱交換器と、
     前記主流路に受け入れた排気ガスを通過させて前記主送出口に流す非回収モードと、前記主流路に受け入れた排気ガスを前記熱交換流路を経由させて前記主送出口とは異なる副送出口に流す熱回収モードと、を切り替える切替器と、を備え、
     前記熱交換流路と前記副送出口との間にバッファ室が設けられ、前記バッファ室は前記非回収モードにおいて前記主流路を流れる排気ガスが前記副送出口から流れ込むように形成されており、
     前記熱交換流路と前記バッファ室とを仕切る仕切部材に、前記熱交換流路と前記バッファ室とを繋ぐ連通口が設けられており、
     前記仕切部材には、前記非回収モードにおいて前記副送出口から前記バッファ室に流れ込んで前記仕切部材に当接した排気ガスが、前記連通口とは所定距離をおいて流れ続けることが可能なように方向付ける方向付け部が形成されていることを特徴とする排気熱回収装置。
    An exhaust heat recovery device that performs heat exchange between an exhaust gas discharged from an internal combustion engine and a heat exchange medium,
    An inner member that forms at least a part of the main flow path connecting the receiving port that receives the exhaust gas flowing from the upstream side and the main sending port that sends the received exhaust gas to the downstream side;
    An outer member arranged to surround the inner member and forming a heat exchange channel with the inner member;
    A heat exchanger disposed so as to surround the inner member in the heat exchange flow path, and performing heat exchange between the exhaust gas and the heat exchange medium;
    A non-recovery mode in which the exhaust gas received in the main flow path passes through the main delivery outlet and a sub-feed different from the main delivery outlet through which the exhaust gas received in the main flow path passes through the heat exchange flow path A heat recovery mode for flowing to the outlet, and a switching device for switching,
    A buffer chamber is provided between the heat exchange channel and the sub-outlet, and the buffer chamber is formed so that exhaust gas flowing through the main channel flows from the sub-outlet in the non-recovery mode,
    The partition member that partitions the heat exchange flow path and the buffer chamber is provided with a communication port that connects the heat exchange flow path and the buffer chamber,
    In the partition member, the exhaust gas flowing into the buffer chamber from the sub-outlet and contacting the partition member in the non-recovery mode can continue to flow at a predetermined distance from the communication port. An exhaust heat recovery apparatus, characterized in that a directing portion for directing is formed.
  2.  前記方向付け部は、前記仕切部に当接した排気ガスを前記連通口から下流側方向に引き離すように形成された第1壁部を有することを特徴とする請求項1に記載の排気熱回収装置。 2. The exhaust heat recovery according to claim 1, wherein the directing portion has a first wall portion formed so as to separate the exhaust gas in contact with the partition portion in the downstream direction from the communication port. apparatus.
  3.  前記方向付け部は、前記仕切部に向かって流れる排気ガスが湾曲流を形成して前記第1壁部方向に向かうように形成された第2壁部を有することを特徴とする請求項2に記載の排気熱回収装置。 The said directing part has the 2nd wall part formed so that the exhaust gas which flows toward the said partition part may form a curved flow, and it may go to the said 1st wall part direction, The Claim 2 characterized by the above-mentioned. The exhaust heat recovery apparatus as described.
  4.  前記第1壁部は、前記第2壁部を挟むように一対設けられており、
     前記第2壁部は、前記仕切部に向かって流れる排気ガスを一対の前記第1壁部に振り分けるように形成されていることを特徴とする請求項3に記載の排気熱回収装置。
    A pair of the first wall portions are provided so as to sandwich the second wall portion,
    The exhaust heat recovery apparatus according to claim 3, wherein the second wall portion is formed so as to distribute the exhaust gas flowing toward the partition portion to the pair of first wall portions.
PCT/JP2015/075339 2014-09-17 2015-09-07 Exhaust heat recovery apparatus WO2016043080A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-188988 2014-09-17
JP2014188988A JP6425478B2 (en) 2014-09-17 2014-09-17 Exhaust heat recovery system

Publications (1)

Publication Number Publication Date
WO2016043080A1 true WO2016043080A1 (en) 2016-03-24

Family

ID=55533119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075339 WO2016043080A1 (en) 2014-09-17 2015-09-07 Exhaust heat recovery apparatus

Country Status (2)

Country Link
JP (1) JP6425478B2 (en)
WO (1) WO2016043080A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3308857A1 (en) 2016-10-11 2018-04-18 LANXESS Deutschland GmbH Strong basic polyacrylate anion exchangers
JP2021085376A (en) * 2019-11-28 2021-06-03 フタバ産業株式会社 Exhaust heat recovery device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016216281A1 (en) 2016-08-30 2018-03-01 HANON SYSTEMS, jusik hoesa bypass valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031671A (en) * 2008-07-25 2010-02-12 Toyota Motor Corp Exhaust heat recovery apparatus
JP2014034963A (en) * 2012-08-10 2014-02-24 Futaba Industrial Co Ltd Exhaust heat recovery device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031671A (en) * 2008-07-25 2010-02-12 Toyota Motor Corp Exhaust heat recovery apparatus
JP2014034963A (en) * 2012-08-10 2014-02-24 Futaba Industrial Co Ltd Exhaust heat recovery device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3308857A1 (en) 2016-10-11 2018-04-18 LANXESS Deutschland GmbH Strong basic polyacrylate anion exchangers
JP2021085376A (en) * 2019-11-28 2021-06-03 フタバ産業株式会社 Exhaust heat recovery device
JP7221853B2 (en) 2019-11-28 2023-02-14 フタバ産業株式会社 Exhaust heat recovery device

Also Published As

Publication number Publication date
JP6425478B2 (en) 2018-11-21
JP2016061206A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
JP6194309B2 (en) Exhaust heat recovery device
WO2016043080A1 (en) Exhaust heat recovery apparatus
US8573287B2 (en) Plate heat exchanger
JP6173932B2 (en) Thermoelectric generator
CA2586994A1 (en) Heat sink and cooling unit using the same
US10648746B2 (en) Exhaust waste heat recovery device
KR20150038552A (en) Exhaust heat recovery device
US10281223B2 (en) Heat exchanger
JP4810511B2 (en) Waste heat recovery device for internal combustion engine
JP2010169386A5 (en)
JP2015510446A5 (en)
US8097055B2 (en) System for treating exhaust gas
US11747097B2 (en) Receiving box for a heat exchanger
WO2016037493A1 (en) Air pump
US8092563B2 (en) System for treating exhaust gas
WO2007073453A3 (en) Heat exchanger with integral shell and tube plates
JP6243158B2 (en) Exhaust heat recovery device
JP3178387U (en) Water-cooled motor and its jacket
JP6501472B2 (en) Exhaust heat recovery system
CN102213555A (en) Heat exchanger
JP4713539B2 (en) Emulsion tank heating system in asphalt emulsion spraying equipment
CN107850342B (en) Heat exchanger
CN108518855B (en) Heat exchanger
JP5280981B2 (en) Manifold block and switching valve manifold
US20170363359A1 (en) Finless-type dual-pipe heat exchange apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841536

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841536

Country of ref document: EP

Kind code of ref document: A1