WO2016042197A1 - Procedimiento para la detección de células tumorales circulantes, tanto células tumorales circulantes de fenotipo epitelial y células tumorales circulantes que tienen marcadores de la transición epitelial-mesenquimal (emt), usando el miarn-21 como biomarcador. - Google Patents

Procedimiento para la detección de células tumorales circulantes, tanto células tumorales circulantes de fenotipo epitelial y células tumorales circulantes que tienen marcadores de la transición epitelial-mesenquimal (emt), usando el miarn-21 como biomarcador. Download PDF

Info

Publication number
WO2016042197A1
WO2016042197A1 PCT/ES2015/070681 ES2015070681W WO2016042197A1 WO 2016042197 A1 WO2016042197 A1 WO 2016042197A1 ES 2015070681 W ES2015070681 W ES 2015070681W WO 2016042197 A1 WO2016042197 A1 WO 2016042197A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
mirna
biological sample
expression
epithelial
Prior art date
Application number
PCT/ES2015/070681
Other languages
English (en)
French (fr)
Inventor
María José SERRANO FERNÁNDEZ
Juan José DÍAZ MOCHÓN
Francisco GABRIEL ORTEGA
José Antonio LORENTE ACOSTA
José Luis GARCÍA PUCHE
María Paz RUIZ BLAS
Rosario María SÁNCHEZ MARTÍN
Original Assignee
Universidad De Granada
Servicio Andaluz De Salud
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Granada, Servicio Andaluz De Salud filed Critical Universidad De Granada
Priority to US15/512,449 priority Critical patent/US20170321261A1/en
Priority to EP15841804.6A priority patent/EP3196299A4/en
Publication of WO2016042197A1 publication Critical patent/WO2016042197A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6841In situ hybridisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6804Nucleic acid analysis using immunogens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/16Assays for determining copy number or wherein the copy number is of special importance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • the present invention relates to the medical field, in particular a method for detecting circulating tumor cells, both circulating tumor cells of epithelial phenotype and circulating tumor cells that have markers of epithelial-mesenchymal transition (EMT), using miRNA-21 as a biomarker
  • CTCs circulating tumor cells
  • EpCam and / or cytokeratins are the two main epithelial biomarkers included in most of the devices used to date.
  • CelISearch and GILUPI which have been approved by the FDA and the EU, respectively, as medical devices, which are based on the detection of only EpCAM in cells that circulate in the blood.
  • CTCs may lack EpCAM and cytokeratin expression and instead exhibit epithelial-mesenchymal transition characteristics (EMT).
  • EMT epithelial-mesenchymal transition characteristics
  • epithelial biomarkers it is possible to identify epithelial cells within cell populations hematopoietic that do not come from tumor but from other epithelial tissues. According to the previous one, the development of new detection platforms must be accompanied by new and specific biomarkers of CTCs that improve their detection and molecular characterization.
  • MicroRNAs are small non-coding RNAs that play a key role in post-transcriptional mRNA regulation.
  • miRNAs are small non-coding RNAs that play a key role in post-transcriptional mRNA regulation.
  • the miRNAs also circulate within body fluids, including peripheral blood and urine, and there are many studies that correlate the levels of specific circulating miRNAs and different pathologies, especially cancer. Therefore, they have been proposed as ideal biomarkers to develop diagnostic and prognostic tests of liquid biopsy.
  • the present invention faces the problem of providing an efficient and sensitive method for detecting CTCs, both circulating tumor cells of epithelial phenotype and circulating tumor cells that have markers of epithelial-rnesenchymal transition (EMT), in a biological sample.
  • EMT epithelial-rnesenchymal transition
  • the present report provides a solution to this problem by using a methodology based on the level of expression of miRNA-21 as a biomarker for the detection of circulating tumor cells, both types mentioned above, preferably combined with immunomagnetic and / or immunocytochemical selection.
  • the present invention provides an in vitro method of detecting circulating tumor cells, circulating tumor cells of epithelial phenotype and circulating tumor cells of epithelial to mesenchymal transition (EMT), in a biological sample using, as an indicator, the levels of expression of miRNA-21, and obtain a result of the method by comparing the expression levels of said miRNA-21 with a negative control or with a positive control, where if the expression levels in the cells of the biological sample are over-expressed in comparison with a negative control it is indicative of the presence of circulating tumor cells in said biological sample or where if the levels of expression in the cells of the biological sample are expressed in an amount greater than 2/3 of the maximum expression reached in a positive control is indicative of the presence of circulating tumor cells in said biological sample, B REVE DESCRIPTION OF THE FIGURES
  • FIG. 1 Schematic illustration of the MishCTCs method for simultaneous immunocytochemical detection of miRNA and CK.
  • A Recovery of peripheral blood in an EDTA tube;
  • B transfer of blood to a density gradient centrifuge tube;
  • C centrifugation at 700 g for 30 min;
  • D recovery of the interface containing mononuclear and tumor cells, and immunomagenetic labeling with magnetic microbeads of anti-CK antibodies;
  • E magnetic cell separation assisted by a MiniMACS separator using a preloaded separation column;
  • F elution of retained cells;
  • G cytospine preparations on glass slides with polylysine and
  • H MishCTC detection of miRNA and CK.
  • FIG. 1 Image galleries obtained with the method of MishCTC
  • A expression of CK and miRNA-21 in a CTCs isolated from a patient with metastatic lung cancer following MishCTC methods. All CTCs are within this group of CK and miRNA positive patients.
  • B Expression of CK in a circulating epithelial cell that is in a cancer-free patient undergoing a nephrectomy operation. CK protein expression (green) was detected by immunofluorescence but miRNA-21 could not be detected by in situ hybridization.
  • Figure 3. Summary of fluorescent images showing miRNA and cytokeratin sequences expressed in MDA-MB468 tumor cell lines using closed nucleic acid (LNA) probes labeled with digoxigenin and anti-CK FITC antibodies.
  • LNA closed nucleic acid
  • cytokeratin So much miRNA and cytokeratin were detected by in situ hybridization techniques of miRNA and immunofluorescence.
  • the rows show cytokeratin, miRNAs, nuclei (DAPI) and fused images.
  • Each row corresponds to the detection of miRNA-21, miRNA-200, snRNA U6 and control genes (no LNA 3 probe was added) from top to bottom, LNA TM microRNA probe scrambled, with double DIG labeling.
  • LNA TM (5'-gtgtaacacgtctatacgccca-3 ') was used as a negative control.
  • FIG. 4 Image galleries obtained with the MishCTC method. Expression of CK and miRNA-21 in an MDA-MB468 cell that was taken in a blood sample of healthy volunteers. The detection of positive cytokeratin cells (CK +) (green channel), miRNA-21 (red channel) and nuclei (blue channel). Epithelial cells were identified in a population of leukocytes that did not express miRNA-21.
  • FIG. 5 Average fluorescence intensities of miRNA21 in MDA-MB468, MCF10A, and leukocytes generated by amplification of the ELF signal using LNA probes. The quantification was performed using the Image J software. The miRNA-21 was overexpressed in tumor line of MDAMB468 cells if compared to the epithelial line of non-MCF10A tumor cells. No fluorescence signal was observed in leukocytes.
  • miRNA-21 is understood as hsa-miRNA-21 having the following nucleotide sequence 5'-uagcuuaucagacugauguuga-3 '.
  • Synthetic probes that are preferably used to detect hsa-miRNA-21 contain all or part of the following sequence 5'-TCAACATCAGTCTGATAAGCTA-3 '.
  • Synthetic probes can be based on LNA, DNA, RNA, BNA or PNA.
  • the following steps are preferably performed: measure the expression of miRNAs by rtPCR using SYBR Green and a normalizer, for example, U6 RNA or miRNA 16. The measurement of miRNA expression by fluorescence microscopy overlabeled with the signal fluorescence enzyme (ELF).
  • Amplification stage the following nucleotide sequence 5'-uagcuuaucagacugauguuga-3 '.
  • Synthetic probes that are preferably used to detect hsa-miRNA-21, contain all or part of the following sequence 5'-
  • the labeled LNA probes used to detect miRNA-21 have the sequence 5'-TCAACATCAGTCTGATAAGCTA-3 'labeled on both ends with digoxin.
  • digoxin is recognized by the alkaline phosphatase-labeled anti-digoxin antibody which, after reaction with Fastred substrate, produces an insoluble fluorescence product.
  • MishCTC is understood herein as the detection of miRNA by in situ hybridization in circulating tumor cells (CTC).
  • ISH in situ hybridization
  • circulating tumor cells are understood as cells that are in the bloodstream from a primary and circulating epithelial tumor.
  • circulating tumor cells of epithelial phenotype are understood as cells found in the bloodstream from a primary epithelial tumor that maintain their epithelial markers, such as EpCAM and cytokeratin.
  • circulating tumor cells that have epithelial-mesenchymal transition (EMT) markers are understood as cells found in the bloodstream from a primary epithelial tumor that have changed their epithelial phenotype, losing some of the epithelial phenotype.
  • epithelial markers such as EpCAM and cytokeratin while expressing mesenchymal markers such as SNAIL and vimentin.
  • malignant progression is understood as an indication of any lack of response to chemotherapy and / or biological treatments or even the worsening health status of the cancer patient. Description of the invention
  • the present invention provides new in vitro methods for detecting circulating tumor cells, both circulating tumor cells of epithelial phenotype and circulating tumor cells that have epithelial-mesenchymal transition markers (EMT), in a biological sample using, as an indicator, levels of expression of miRNA-21.
  • EMT epithelial-mesenchymal transition markers
  • CTCs circulating tumor cells
  • MishCTC specific miRNAs
  • ISH in situ hybridization
  • This technology uses labeled LNA probes that hybridize its completely complementary miRNA gene sequences with high affinity. These tags can accordingly be revealed through enzymes labeled with antibodies that convert fluorogenic enzyme substrates into fluorescent products.
  • the digoxin (DIG) and anti-DIG sheep antibody labeled with alkaline phosphatase were used as partners and Fastred TR as a fluorogenic substrate.
  • the Fastred TR substrate produced an insoluble product that can be detected by fluorescence microscopy (Fig. 1).
  • the breast epithelial tumor cell line (MDA-MB468) (ATCC® HTB-132 TM) was used as a model to detect in situ miRNA 200, miRNA21 and U6 by fluorescence microscopy. Apart from RNAs, nuclei and cytokeratins were also stained by DAPI and FITC-labeled anti-cytokeratin antibodies, respectively (Fig. 3 shows fluorescence images obtained by this methodology). Cells with rounded morphologies and miRNA distributions are concordant with cytospine treatments and with ELF-based LNA detection, respectively. Next, this protocol, which successfully detects RNA through amplification of the ELF signal in cells placed on cytospine slides, was applied for the rest of the experiments.
  • the low number of CTCs in the blood is one of the most challenging aspects for any technology focused on molecular characterization.
  • the authors of the present invention took fifteen blood samples from healthy volunteers with 100 MDA-MB468 epithelial cells each.
  • the isolation of cytokeratin-positive cells and their subsequent phenotypic characterization was based on the protocol established in the examples (see Methods, Figure 1). After placing cytokeratin-positive cell fractions on cytospine slides, the authors followed the same protocol described above to identify miRNA-21.
  • miRNA-21 for our experiments in situ, since it has been described as one of the most important miRNAs related to cancer development.
  • the miRNA chosen has an important characteristic, the fact that it is expressed in tumor cells but not in hematopoietic cells so that CTCs and leukocytes can be easily differentiated.
  • miRNA-21 may also be able to differentiate CTCs from normal epithelial cells since their level of expression may be different.
  • the authors isolated 79% of the total number of cells taken and, in all samples, each cell, which was cytokeratin positive, also expressed miRNA-21 without exception (see Table 1).
  • Table 1 Number of MDA-MB468 cells recovered from taking 10 ml of blood sample from healthy volunteers with 100 MDA-MB468 cells.
  • Fig. 4 shows images of an experiment where a single MDA-MB468 is detected among the leukocyte population.
  • the miRNA-21 is clearly identified in epithelial cells, while it is not detected in leukocytes and therefore meets one of the most important requirements for this assay.
  • a blood sample taken from a non-cancer patient was used who only underwent a nephrectomy operation such as source of circulating non-tumor epithelial cells.
  • Fig. 2b shows microscopy images obtained from that sample following our MishCTC protocol. In this case the epithelial cells showed no expression of miRNA-21, maintaining their epithelial cytokeratin phenotype.
  • a first aspect of the invention relates to an in vitro method of detecting circulating tumor cells, both circulating tumor cells of epithelial phenotype and circulating tumor cells that have markers of epithelial-mesenchymal transition (EMT), in a biological sample using, as an indicator, the expression levels of the miRNA-21, and obtaining a result of the method by comparing the expression levels of said miRNA-21 with a negative control or with a positive control, in which if the expression levels in the cells of the biological sample are over-expressed in comparison with a negative control it is indicative of the presence of circulating tumor cells in said biological sample or in which if the expression levels in the cells of the biological sample are expressed in an amount greater than 2/3 of the maximum expression achieved in a positive control is indicative of the presence of cell circulating tumor cells in said biological sample.
  • EMT epithelial-mesenchymal transition
  • a biological sample include different types of tissue samples, as well as from biological fluids, such as blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, feces and urine.
  • said samples are tissue samples and more preferably, said tissue samples originate from tumor tissue of the individual where the response is to be predicted, and can originate from biopsies.
  • miRNA-21 expression levels are determined by in situ hybridization.
  • the negative control is a non-tumor epithelial cell or a hematopoietic cell and in which overexpression as used herein, means a miRNA-21 expression level of at least twice in the sample cells biological compared to the expression level of miRNA-21 in a non-tumor epithelial cell as determined by in situ hybridization or at least 10 times expression level of miRNA-21 in the cells of the biological sample compared to the level of miRNA-21 expression in one of the hematopoietic cells, preferably lymphocytes or mononuclear cells or leukocytes, as determined by in situ hybridization.
  • the positive control is the breast tumor epithelial cell line (MDA-MB468).
  • the biological sample is first treated to isolate positive cytokeratin cells and / or EpCAM positive cells and / or positive SNAIL cells and / or vimentin positive cells, in which preferably cytokeratin positive cells and / or cells.
  • EpCAM positive cells and / or SNAIL positive cells and / or vimentin positive cells are isolated by immunomagnetic and / or immunocytochemical selection.
  • the methods of the present invention can be applied with samples of human individuals of both sexes, that is, men or women, and at any age.
  • the profile determined by the present invention could be diagnostic, prognostic and predictive.
  • a second aspect of the invention relates to a method for predicting or predicting the progression of cancer in a biological sample of a subject, where the subject suffers from a cancer disease, and in which the method comprises the use, as an indicator.
  • miRNA-21 expression levels and obtaining a method result by comparing the expression levels of said miRNA-21 with a negative control or with a positive control, in which if the expression levels in The cells of the biological sample are overexpressed compared to a negative control is indicative of a malignant progression of cancer or in which if the expression levels in the cells of the biological sample are expressed in an amount greater than 2/3
  • the maximum expression achieved in a positive control is indicative of a malignant progression of cancer.
  • a third aspect of the invention relates to a method for the diagnosis of cancer in a subject, where the method comprises the use, as an indicator, of expression levels of miRNA-21 genes, and obtaining a result of method by comparing the expression levels of said miRNA-21 genes with a negative control or with a positive control, in which if the expression levels in the biological sample cells are over-expressed compared to a negative control it is indicative of the presence of circulating tumor cells in said biological sample or in which if the levels of expression in the cells of the biological sample are expressed in an amount greater than 2/3 of the maximum expression achieved in a positive control it is indicative of the presence of circulating tumor cells in said biological sample.
  • the subject is a human subject.
  • the biological sample is any biological fluid.
  • a biological sample include different types of tissue samples, as well as from biological fluids, such as blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, feces and urine.
  • said samples are tissue samples and more preferably, said tissue samples originate from tumor tissue of the individual for whom the response is to be predicted, and can originate from biopsies.
  • miRNA-21 expression levels are determined by in situ hybridization.
  • the negative control is a non-tumor epithelial cell or a hematopoietic cell and in which overexpression as used herein, means a miRNA-21 expression level of at at least twice in the cells of the biological sample compared to the level of expression of miRNA-21 in a non-tumor epithelial cell as determined by in situ hybridization or an expression level at least 10 times of miRNA-21 in the Biological sample cells compared to the level of miRNA-21 expression in one of the hematopoietic cells, preferably lymphocytes or mononuclear cells or leukocytes, as determined by in situ hybridization.
  • the positive control is the breast tumor epithelial cell line (MDA-MB468).
  • the biological sample is first treated to isolate positive cytokeratin cells and / or EpCAM positive cells and / or positive SNAIL cells and / or vimentin positive cells, in which preferably cytokeratin positive cells and / or EpCAM positive cells and / or SNAIL positive cells and / or vimentin positive cells are isolated by immunomagnetic and / or immunocytochemical selection.
  • the cancer is a solid tumor of epithelial origin.
  • the solid tumor of epithelial origin is Select from the list consisting of ovarian, head and neck cancer, larynx, colon, stomach, prostate, cervix, gastric, urothelial, adrenal, thyroid gland, lung, uterus, rectum, breast or kidney cancer or carcinoma or a sarcoma, melanoma
  • the method for determining the level of miRNA-21 expression need not be particularly limited, and can be selected from the method comprising PCR, such as real-time PCR; and / or an in situ hybridization assay.
  • Quantitative real-time PCR is a sensitive and reproducible technique of quantification of gene expression that in particular can be used for the expression profile of miRNA genes in cells and tissues. Without prejudice to the method used to determine the response (RQ-PCR, in situ hybridization, etc.), in the context of the present invention a "significantly increased expression” or “over-expression” can be defined in comparison to a sample negative and / or with a positive control.
  • a "negative sample” or a “reference sample” is defined as a sample that does not express or has a basal level of miRNA-21 expression, that is, a non-tumor epithelial cell sample originating from the same tissue. of the origin biopsy (in the case of lung cancer the control sample would be non-tumor lung tissue).
  • Another example would be any type of non-tumor hematopoietic cell, such as leukocytes, lymphocytes or mononuclear cells.
  • a positive control sample is a breast tumor epithelial cell line (MDA-MB468).
  • a further aspect of the invention relates to a method for the assignment of a human subject suffering from cancer in one of the two groups, where group 1 comprises the subjects identifiable by the method according to any of the previous aspects; and where group 2 represents the rest of the subjects.
  • a further aspect of the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a chemotherapeutic drug such as cisplatin and / or hycamtin for the treatment of a human subject of group 1 as identifiable by the method of the previous aspect of the invention.
  • the treatment of choice of a human subject suffering from group 1 cancer includes but is not limited to the following types: radiotherapy, complexes of coordination of platinum, doxorubicin and other antracycins, bortezomib, campothecin, procarbazine, cyclophosp amide, adriamycin or alkylating agents, photodynamic therapy and biological products such as rituximab.
  • a further aspect of the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising the coordination complexes of platinum, doxorubicin and other antracycins, bortezomib, campothecin, pro-carbazine, cyclophosphamide, adriamycin or alkylating agents, photodynamic and biological therapy.
  • CALs such as rituximab, for the treatment of a human subject of group 1 identifiable by the method of the above aspects of the invention.
  • the present invention also provides a kit or device suitable for practicing the method of the invention, comprising at least one oligonucleotide (s) capable of hybridizing with miRNA-21 and, optionally, means for the detection of cytokeratin positive cells. by immunomagnetic and / or immunocytochemical selection.
  • the kit further comprises a positive control sample, optionally a non-tumor epithelial cell.
  • the kit is based on the prognostic, predictive and diagnostic power of the method of the present invention. It is preferred that said oligonucleotide (s) hybridize with two mismatches or less, and preferably without mismatch, with respect to the determined miRNA. As regards the hybridization of the oligonucleotide (s), it is preferred that said oligonucleotide (s) be able to do so under stringent conditions.
  • Rigor is a term used in hybridization experiments. The rigor reflects the degree of complementarity between the oligonucleotide and the nucleic acid (which is in this case the mRNA to be detected); The higher the stringency, the higher the percentage of homology between the probe and the attached nucleic acid filter.
  • Another aspect of the invention relates to a computer readable data storage medium medium comprising the program according to the third aspect of the invention, the computer program develops the steps of any of the methods of the invention.
  • the medium in which the computer program is encoded may also comprise transmission signals propagated through space or through a transmission medium, such as an optical fiber, copper cable, etc.
  • the transmission signal in which the computer program is encoded may further comprise a wireless signal, transmission, radio waves, infrared signals, Bluetooth, etc.
  • the transmission signal in which the computer program is encoded is capable of being transmitted by a transmitting station and received by a receiving station, where the computer program encoded in the transmission signal can be decoded by satellite and stored in the hardware or a computer-readable medium at reception and stations or transmission devices.
  • Another aspect of the invention relates to a transmission signal comprising program instructions capable of having a computer perform the steps of any of the methods of the invention.
  • a final aspect of the present invention relates to the use of miRNA-21 for the detection of circulating tumor cells, both circulating tumor cells with epithelial phenotype and circulating tumor cells that have epithelial-mesenchymal transition (EMT) markers, preferably in a biological sample
  • EMT epithelial-mesenchymal transition
  • Example 1 Integration of m ⁇ RNA-ISH-based LNA techniques in and CTC protocols.
  • ISH protocols for the detection of miRNAs in individual cells with methodological steps necessary to isolate and identify CTCs from the patient's blood.
  • the initial experiments were carried out using a breast tumor epithelial cell line as a model. The cell obtained from well plates, the cells were placed on slides by cytospine. The cells were treated with EDC in order to covalently immobilize the miRNAs to the cytoplasm. Detection is performed by amplification of the signal by fluorescent enzyme labeling (ELF) using miRCURY technology based on LNA probes. This technology uses labeled LNA probes that hybridize their miRNA complementary sequences with high affinity.
  • EDF fluorescent enzyme labeling
  • tags can accordingly be revealed through enzymes labeled with antibodies that convert fluorogenic enzyme substrates into fluorescent products.
  • digoxin (DIG) and the anti-DIG sheep antibody labeled with alkaline phosphatase were used as partners and Fastred TR as a fluorogenic substrate.
  • the Fastred TR substrate produces an insoluble product that can be detected by fluorescence microscopy (Fig. 1).
  • the breast epithelial tumor cell line (MDA-MB468) was used as a model to detect in situ miRNA 200, miRNA21 and U6 by fluorescence microscopy. Apart from RNA, nuclei and cytokeratins were also stained by DAPI and FITC-labeled anti-cytokeratin antibodies, respectively (SI Fig 1 shows fluorescence images obtained by this methodology). Cells with rounded morphologies and miRNA distributions are concordant with cytospin treatments and with ELF detection based on LNA respectively. Next, this protocol, which successfully detects RNA through amplification of the ELF signal in cells placed on cytospine slides, was applied for the rest of the experiments.
  • Example 2 Detection of m ⁇ RNA-21 in MDA-MB468 cell lines taken in blood samples from healthy volunteers.
  • the authors took fifteen blood samples from healthy volunteers with 100 MDA epithelial cells -MB468 each.
  • the isolation of cytokeratin-positive cells and their subsequent phenotypic characterization was based on the protocol set forth in the Materials and Methods of the present invention and in Fig. 1.
  • Fig. 2a shows images of an experiment where a single MDA-MB468 is detected among the leukocyte population.
  • the miRNA-21 is clearly identified in epithelial cells, while it is not detected in leukocytes and therefore meets one of the most important requirements for this assay.
  • Example 3 Quantification of m ⁇ RNA-21 in MDA-MB468 and MCF-10 cell lines by qRT-PCR.
  • a blood sample taken from a patient without cancer was used who only underwent a nephrectomy operation as a source of circulating non-tumor epithelial cells.
  • Fig. 2b shows microscopy images obtained from that sample following our MishCTC protocol. In this case the cells Epithelial showed no miRNA-21 expression, maintaining its cytokeratin epithelial phenotype.
  • MCF-7 cell lines induced by EMT a tumor epithelial cell line
  • the authors tried to see if the method described herein could detect heterogeneous epithelial cell lines that were losing epithelial biomarkers such as cytokeratin and miRNA-21 expression is maintained.
  • MCF7 cells were seeded in 96-well plates and induced by TGF- ⁇ .
  • Fig. 6 shows the expression of miRNA-21 and CK in both MCF-7 and TGF- ⁇ induced MCF-7 cell lines labeled using the MishCTC protocol.
  • MCF-7 modified cell lines express miRNA-21 in a heterogeneous manner within the same cell culture, a heterogeneity that was not previously observed in MDA-MBA468.
  • TGF- ⁇ -induced MCF-7 cell lines and as expected, there was a population of cells that have lost CK expression but maintained miRNA-21 genes, resulting in cells that were CK negative and miRNA -21 positive.
  • MDA-MB468 tumor cells were maintained in DMEN culture medium (Gibco, UK) supplemented with 10% fetal bovine serum (Gibco, UK) and 100 U mi "1 penicillin and 100 ng mi " 1 streptomycin at 37 ° C in 5% humidified CO 2 incubator.
  • Non-tumor MCF10-A cells were maintained in serum-free mammalian epithelial growth medium (MEGM) (Clonetics® Lonza, New Jersey, USA) with 100 ng mi "1 of the cholera toxin (Sigma Aldrich, USA).
  • MEGM mammalian epithelial growth medium
  • cytospines from breast cancer cell lines for the simultaneous detection of cytokeratins and miRNAs.
  • 1 million cells were seeded in a 75cm 2 treated flask (NUNC TM, Roskilde, Denmark) using their corresponding cell culture medium. After they were incubated for 72 hours, each well was washed with PBS and the cells were then trypsinized with 0.05% trypsin in 1X PBS for 15 min, neutralized with soy trypsin inhibitor (0.1% trypsin inhibitor in 1X PBS) and were resuspended in PBS pH 7.4.
  • the cell suspensions were subsequently permeabilized with 10% MACS CellPerm Solution (Miltenyi Biotec, Germany) for 5 min and fixed with 10% MACS CellFix Solution (Miltenyi Biotec, Germany) for 30 min followed by washing three times with 1X PBS for 5 min each.
  • the cell pellets were resuspended in 1X PBS and centrifuged on glass slides coated with polylysine (Sigma-Aldrich, United Kingdom) by a cytocentrifuge (Hettich, Germany) at 1500 rpm for 10 min.
  • the slides were air dried overnight at room temperature and stored at 4 ° C.
  • Dry sheets containing cytospine immobilized cells were rehydrated with 1X TBS buffer for 5 min and treated twice for 5 min with 100 ⁇ of a 130 mM aqueous solution of 1-methylimidazole (AppliChem, Germany) before areas of interest that surrounds with a hydrophobic pen (Dako, Denmark). Then, 100 ⁇ of a 160 mM aqueous solution of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC) (Sigma-Aldrich, United Kingdom) was added and slides placed in a moisture chamber (Thermobrite system, Abbot molecular, USA) for 1 hour.
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide
  • the slides were washed twice for 5 min with 1X PBS before incubating in a hybridization chamber for 30 minutes with 100 ⁇ of QS proteinase solution (1: 8000 dilution in 1X PBS) (Affymetrix, USA. UU.).
  • QS proteinase solution (1: 8000 dilution in 1X PBS) (Affymetrix, USA. UU.).
  • the slides were washed twice for 5 min with 1X PBS before being dehydrated with increasing concentrations of ethanol (70%, 96% and 99.5%) (Sigma Aldrich) for 1 min at each concentration. Detection based on LNA probes.
  • LNA locked nucleic acid
  • miRNA-21, miRNA-200a and U6 snRNA purchased from Exiqon (Denmark) as miRCURY LNA TM miRNA kits. They are 20-mer oligonucleotides labeled at both 5 'and 3' with digoxin (DIG). Simultaneous detection of cytokeratins and miRNAs using immunocytochemical and ISH fluorescent techniques. (MishCTC)
  • miRNA-21, miRNA-200a and U6 snRNA was determined with miRCURY LNA TM miRNA kits (see above). Each probe was analyzed independently. After the dehydration process, the slides were air dried and incubated with 40 ⁇ of a diluted solution (1: 600) of the corresponding miRNA LNA probe, which were pre-denatured by heating at 90 ° C for 4 min, in 1x ISH buffer (Exiqon, Denmark) and hybridized at 58 ° C in a humidified chamber for 1 h then sealed the samples with Fixogum. After hybridization period and removal of Fixogum, slides were washed at 56 ° C with 5X, 1X and 0.2X SSC for 5 minutes each.
  • the samples were then incubated for 15 min with a blocking solution (0.1% Tween, 2% sheep serum and 1% BSA in 1x PBS) followed by incubation for 15 min with both FITC-anti- antibody cytokeratin (clone: CK3-6H5 Miltenyi Biotec, Germany) and anti-DIG alkaline phosphatase antibodies (Roche Diagnostics, Germany) simultaneously. After incubation with both antibodies, the slides were washed with 1X PBS for 5 min.
  • a blocking solution 0.1% Tween, 2% sheep serum and 1% BSA in 1x PBS
  • both FITC-anti- antibody cytokeratin clone: CK3-6H5 Miltenyi Biotec, Germany
  • anti-DIG alkaline phosphatase antibodies Roche Diagnostics, Germany
  • Fluorescence enzyme labeling for signal amplification was carried out by applying SIGMAFAST TM Fast Red TR / naphthol (Sigma-Aldrich, United Kingdom) as a substrate of alkaline phosphatase activity, diluted in buffer Tris-hydrochloric according to the recommendations of the commercial provider. Finally, Vectashield mounting media with DAPI (Vector Labs. USA) were used to mount the sheets.
  • the spiking experiments were performed in triplicate using 100 MDA-MB 468 cells in 10 ml of twenty blood samples from healthy venous volunteers that were collected in 10 ml EDTA tubes (BD, USA). The samples were processed by density gradient centrifugation for 45 min at 400 rpm and assisted by Histopaque®-11 19 (Sigma-Aldrich, United Kingdom) in order to isolate fractions of hematopoietic cells, which also contain epithelial cells. Hematopoietic fractions were incubated for 30 minutes with magnetic microbeads labeled with a specific multi-cytokeratin antibody (CK3-1 1 D5) (Miltenyi Biotec, Germany) that recognize cytoplasmic cytokeratin 7, 8, 18 and 19.
  • CK3-1 1 D5 specific multi-cytokeratin antibody
  • Magnetically enriched cell fractions They were then passed through MACS magnetic columns (Miltenyi Biotec cell separation, Germany) supported in MiniMACS separator (Miltenyi Biotec, Germany) and washed three times with dilution buffer (Miltenyi Biotec, Germany). The magnetic columns were then joined from the MiniMACS separator support and cytokeratin positive cells then eluted from the column after the addition of dilution buffer and the application of pressure. The cytokeratin-positive enriched cell fractions were centrifuged on glass slides coated with polylysine. Since the point protocols described above were followed for the simultaneous detection of cytokeratins and miRNAs. Recovery rates of tumor cells with taken in normal blood at low level control numbers were in the range of 60 to 75%
  • RNA extraction and reverse transcription and qRT-PCR Breast cancer cell lines were used to analyze the expression of miRNA-21 and miRNA-200a.
  • the cells were placed in (1x10 3 cells) in 75 cm 2 treated flasks (NUNC TM, Roskilde, Denmark) grown in their culture medium for 72 h, the cells were then treated for 3 min with trypsin solution (Sigma Aldrich (USA) and then 5 ml of medium was added to inhibit the tryptic activity that can damage the cells and then the cells were centrifuged at 200 g for 5 min.
  • trypsin solution Sigma Aldrich (USA)
  • the cells were then collected in 15 ml tubes, washed once with 1X PBS and then 0.5 ml of miRNA lysis mixture Extraction Kit (OmegaBio-tek, USA) was added per tube and incubated 5 min at room temperature. Next, 250 ⁇ XD binding buffer was added and incubated on ice for 10 min, then the solution was put on HiBind® X-press column and centrifuged for 1 min at 13,000 g. To continue, 1.2 volumes of ethanol were added to the filtrate, and then transferred to the HiBind® Micro RNA column and centrifuged again, at 13,000 g for 1 min, the filtrate was discarded and the miRNAs were then recovered. of the columns by adding 500 ⁇ 500 RNA wash buffer.
  • the reaction mixture was prepared by adding 25 ⁇ Perfect SYBR Green Supermix, ROX, 200 nm and template primers for 50 ⁇ final volume.
  • RT-PCR in triplicate wells. The reaction was carried out in 96-well plates in a real-time PCR system (Applied Biosystems® 7500 the Real-Time PCR System. USA) for 2 min and 40 cycles of denaturation at 95 ° C and 60 ° C for 1 minute for annealing and extending at 70 ° C for 1 min. Confocal microscopy
  • the confocal images were obtained using a ZeissLSM 710 confocal / multifotonic laser scanning microscope equipped with Argon laser 2 / (458 nm, 477 nm, 488 nm, 514 nm) and a titanium sapphire laser (750 nm).
  • the cells were seen with an apochromatic (NA1 ⁇ 2) 63X water target and images from different fields were taken.
  • the microscope was installed to take pictures of multiple channels and the excitation and emission filter sets individually configured so that there is no fluorescence bleeding through between the channels.
  • Argon (488 nm) laser with appropriate emission filter was used for FITC visualization.
  • Argon (543nm) laser with appropriate emission filter was used for Fastred visualization.
  • FITC was used to visualize CK and Fastred / naftol was used to visualize each of the miRNA genes analyzed.
  • Zen 2009 light editing programs (CarIZeiss Microlmaging GmbH) is used to control the microscope, scanning, laser module, and image processing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La presente invención proporciona un método in vitro de detección de células tumorales circulantes, células tumorales circulantes de fenotipo epitelial y las células tumorales circulantes de transición epitelial a mesenquimal (EMT), en una muestra biológica usando, como un indicador, los niveles de expresión de los genes miARN-21, y la obtención de un resultado del método mediante la comparación de los niveles de expresión de dichos miARN-21 con un control negativo o con un control positivo, donde si los niveles de expresión en las células de la muestra biológica están sobre-expresados en comparación con un control negativo es indicativo de la presencia de células tumorales circulantes en dicha muestra biológica o donde si los niveles de expresión en las células de la muestra biológica se expresan en una cantidad mayor que 2/3 de la expresión máxima alcanzada en un control positivo es indicativo de la presencia de células tumorales circulantes en dicha muestra biológica.

Description

Procedimiento para la detección de células tumorales circulantes, tanto células tumorales circulantes de fenotipo epitelial y células tumorales circulantes que tienen marcadores de la transición epitelial-mesenquimal (EMT), usando el m¡ARN-21 como biomarcador.
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se refiere al campo médico, en particular a un procedimiento para detectar células tumorales circulantes, tanto las células tumorales circulantes de fenotipo epitelial y células tumorales circulantes que tienen marcadores de la transición epitelial- mesenquimal (EMT), usando el miARN-21 como biomarcador.
ESTADO DEL ARTE/ANTECEDENTES DE LA INVENCIÓN Células tumorales circulantes
La metástasis es responsable de la gran mayoría de las muertes relacionadas con el cáncer. Durante este proceso, se generan las células tumorales circulantes (CTCs), se extienden desde el tumor primario, coionizan los órganos distantes y conducen a la enfermedad metastásica manifiesta. Durante la última década, el interés creciente en las CTCs se ha extendido por todo ei campo de la oncología, especialmente buscando la capacidad de sus elementos para el pronóstico de cáncer.
Detección de CTCs
A pesar de los importantes avances en la comprensión y la detección de las CTCs, la mayoría de ios ensayos todavía tienen baja sensibilidad; principalmente debido a la utilización de pocos biomarcadores epiteliales para identificarlas y aislarlas de la sangre entera. EpCam y/o las citoqueratinas (CK) son ¡os dos principales biomarcadores epiteliales incluidos en la mayoría de ios dispositivos utilizados hasta la fecha. Entre esos dispositivos están CelISearch y GILUPI, que han sido aprobados por la FDA y la UE, respectivamente, como dispositivos médicos, que se basan en la detección sólo de las EpCAM en células que circulan en la sangre.
Sin embargo, recientes evidencias han demostrado que un subconjunto de CTCs puede carecer de EpCAM y de la expresión de citoqueratinas y en su lugar exhibir características de transición (EMT) epitelial-mesenquimal. Además, mediante el uso de biomarcadores epiteliales, es posible identificar las células epiteliales dentro de las poblaciones de células hematopoyéticas que no vienen de tumor sino de otros tejidos epiteliales. De acuerdo con ¡o anterior, el desarrollo de plataformas de detección novedosas debe ir acompañada de nuevos y específicos biomarcadores de CTCs que mejoren su detección y caracterización molecular.
MicroARNs
Los microARNs (míARNs) son pequeños ARNs no codificantes que desempeñan un papel clave en la regulación post-transcripcional del ARNm. Ya se ha descrito en varios informes, las variaciones en las expresiones de los miARN relacionados con diferentes patologías, incluyendo diferentes tipos de cáncer. Los miARNs también circulan dentro de los fluidos corporales, incluyendo la sangre periférica y la orina, y existen muchos estudios que correlacionan los niveles de miARNs específicos circulantes y diferentes patologías, especialmente cáncer. Por lo tanto, se han propuesto como biomarcadores ideales para desarrollar ensayos de diagnóstico y pronóstico de biopsia líquida. Sin embargo, hay dificultades técnicas para hacer perfiles con solidez y comparables de miARNs circulantes , usando las actuales plataformas de análisis, así como la variabilidad inter-personal, la falta de normalizadores internos comunes y sus roles funcionales poco claros han tenido un impacto negativo en el desarrollo de un ensayo de diagnóstico clínico aprobado en base a ellos.
Hasta la fecha, también se han hecho diferentes esfuerzos para correlacionar ios miARNs circulantes y el número de CTCs. Por otra parte, en 201 1 , Sieuwerts perfiló miARNs de Usados de fracciones de la sangre que contienen CTCs. Sin embargo, ese enfoque podría ser difícil de implementar de manera amplia, debido al bajo número de CTCs presentes en la sangre y el problema inherente de la contaminación por leucocitos.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se enfrenta ai problema de proporcionar un método eficiente y sensible para detectar CTCs, tanto las células tumoraies circulantes de fenotipo epitelial y células tumoraies circulantes que tienen marcadores de la transición epiteiial-rnesenquimal (EMT), en una muestra biológica. En este sentido, la presente memoria proporcionan una solución a este problema mediante el uso de una metodología basada en el nivel de expresión del miARN-21 como biomarcador para la detección de células tumoraies circulantes, ambos tipos anteriormente mencionados, combinado preferiblemente con selección inmunomagnéíica y/o inmunocitoquímica.
En particular la presente invención proporciona un método in vitro de detección de células tumorales circulantes, células tumorales circulantes de fenotipo epitelial y células tumorales circulantes de transición epitelial a mesenquimal (EMT), en una muestra biológica usando, como indicador, los niveles de expresión de miARN-21 , y obtener un resultado del método mediante la comparación de los niveles de expresión de dicho miARN-21 con un control negativo o con un control positivo, donde si los niveles de expresión en las células de la muestra biológica son sobre-expresadas en comparación con un control negativo es indicativo de la presencia de células tumorales circulantes en dicha muestra biológica o donde si ¡os niveles de expresión en las células de la muestra biológica se expresan en una cantidad mayor que 2/3 de la expresión máxima alcanzada en un control positivo es indicativo de la presencia de células tumorales circulantes en dicha muestra biológica, BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Ilustración esquemática del método MishCTCs para la detección inmunocitoquímica simultánea de miARN y de CK. (A) Recuperación de la sangre periférica en un tubo de EDTA; (B) transferencia de la sangre a un tubo de centrífuga de gradiente de densidad; (C) centrifugación a 700 g durante 30 min; (D) recuperación de la interfase que contiene células mononucleares y tumorales, y etiquetado immunomagenetico con microperlas magnéticas de anticuerpos anti-CK; (E) separación celular magnética asistida por un separador MiniMACS utilizando una columna precargada de separación; (F) elución de células retenidas; (G) preparaciones de citospina en portaobjetos de vidrio con polilisina y (H) detección MishCTC de miARN y CK.
Figura 2. Galerías de imágenes obtenidas con el método de MishCTC (A) expresión de CK y miARN-21 en una CTCs aisladas de un paciente con cáncer de pulmón metastásico siguiendo métodos MishCTC. Todas las CTCs se encuentran dentro de este grupo de pacientes CK y miARN positivos. (B) Expresión de CK en una célula epitelial de circulación que se encuentra en un paciente libre de cáncer sometidos a una operación de nefrectomía. La expresión de la proteína CK (verde) se detectó por inmunofluorescencia pero miARN-21 no se pudo detectar por hibridación in situ. Figura 3. Resumen de las imágenes fluorescentes mostrando secuencias de miARN y citoqueratinas expresadas en línea celulares tumorales MDA-MB468 usando sondas de ácido nucleico cerrado (LNA) marcadas con digoxigenina y anticuerpos anti-CK FITC. Tanto el miARN y la citoqueratina se detectaron mediante técnicas de hibridación in situ de miARN y de inmunofluorescencia. Las filas muestran citoqueratina, miARNs, núcleos (DAPI) y las imágenes fusionadas. Cada fila corresponde a la detección de los genes miARN-21 , miARN- 200, snARN U6 y control (No se añadió ninguna sonda LNA 3) de arriba a abajo, sonda microARN LNA™ revuelta, con etiquetado doble DIG. LNA™ (5'-gtgtaacacgtctatacgccca-3 ') se utilizó como control negativo.
Figura 4. Galerías de imágenes obtenidas con el método MishCTC. Expresión de CK y de los miARN-21 en una célula MDA-MB468 que se tomó en una muestra de sangre de voluntarios sanos. La detección de células citoqueratina positivos (CK +) (canal verde), miARN-21 (canal rojo) y núcleos (canal azul). Las células epiteliales se identificaron en una población de leucocitos que no expresaron miARN-21.
Figura 5. Media de intensidades de fluorescencia de miRNA21 en MDA-MB468, MCF10A, y leucocitos generados por amplificación de la señal ELF utilizando sondas LNA. La cuantificación se realizó utilizando el software Image J. El miARN-21 se sobre-expresó en línea tumoral de células MDAMB468 si se compara con la línea epitelial de las células tumorales no MCF10A. No se observó ninguna señal de fluorescencia en leucocitos. Figura 6. Expresión de miARN-21 por RT-PCR. Estos experimentos mostraron una expresión relativa de miRNA21 en MDA-MB468 mayor que en MCF10A. El análisis molecular por RT-PCR corrobora el valor potencial de miARN21 para diferenciar las células tumorales circulantes epiteliales a partir de células no tumorales epiteliales.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Definiciones En el contexto de la presente invención, los siguientes términos tienen los siguientes significados:
En la presente memoria, el miARN-21 se entiende como hsa-miARN-21 que tiene la siguiente secuencia de nucleótidos 5'-uagcuuaucagacugauguuga-3'. Las sondas sintéticas que se utilizan preferiblemente para detectar hsa-miARN-21 , contienen toda o parte de la siguiente secuencia 5'-TCAACATCAGTCTGATAAGCTA-3' . Las sondas sintéticas pueden basarse en LNA, ADN, ARN, BNA o PNA. Como se usa en este documento, para comparar los niveles de expresión de miARN-21 entre las células de una muestra biológica con un control negativo o con un control positivo se realizan preferentemente los pasos siguientes: medir la expresión de los miARN por rtPCR utilizando SYBR Green y un normalizador, por ejemplo, U6 ARN o miARN 16. La medida de la expresión de miARN por microscopía de fluorescencia sobre marcado con la enzima de fluorescencia de la señal (ELF). Etapa de amplificación.
En la presente memoria, las sondas LNA etiquetados utilizadas para detectar miARN-21 tienen la secuencia 5'-TCAACATCAGTCTGATAAGCTA-3 'marcada en ambos extremos con digoxina. Siguiendo los protocolos de hibridación in situ, la digoxina se reconoce por el anticuerpo anti-digoxina marcado con fosfatasa alcalina que tras la reacción con sustrato Fastred produce un producto insoluble de fluorescencia. En la presente memoria MishCTC se entiende como la detección de miARN por hibridación in situ en células tumorales circulantes (CTC).
En la presente memoria la hibridación in situ (ISH) se entiende como una técnica para identificar una sola hebra de miARN dentro de las células individuales.
En la presente memoria las células tumorales circulantes se entienden como células que se encuentran en el torrente sanguíneo procedentes de un tumor epitelial primario y circulante.
En la presente memoria las células tumorales circulantes de fenotipo epitelial se entienden como células que se encuentran en el torrente sanguíneo procedentes de un tumor epitelial primario que mantienen sus marcadores epiteliales, tales como EpCAM y citoqueratina.
Tal como se usa en el presente documento las células tumorales circulantes que tienen marcadores de la transición epitelial-mesenquimal (EMT) se entienden como células que se encuentran en el torrente sanguíneo procedentes de un tumor epitelial primario que han cambiado su fenotipo epitelial perdiendo algunos de los marcadores epiteliales tales EpCAM y citoqueratina mientras que expresan marcadores mesenquimales tales como SNAIL y vimentina. Tal como se usa en el presente documento la progresión maligna se entiende como indicación de cualquier de falta de respuesta a la quimioterapia y/o tratamientos biológicos o incluso la agravación del estado de salud del paciente con cáncer. Descripción de la invención
La presente invención proporciona nuevos métodos in vitro para detectar células tumorales circulantes, tanto las células tumorales circulantes de fenotipo epitelial y las células tumorales circulantes que tienen marcadores de transición epitelial-mesenquimal (EMT), en una muestra biológica utilizando, como indicador, los niveles de expresión de miARN- 21.
En este sentido, los autores de la presente invención han descubierto un nuevo procedimiento o protocolo para detectar células tumorales circulantes (CTCs) en una muestra de sangre del paciente por hibridación in situ de miARNs específicos (MishCTC) que es compatible con los protocolos de inmunocitoquímica simultáneos para fenotipificación celular. A nuestro entender esta es la primera vez que se describe un procedimiento para identificar miARNs en CTCs mediante técnicas de hibridación in situ.
Para detectar miARNs en las CTCs los autores integran protocolos de ISH (hibridación in situ) para la detección de miARNs en células individuales con pasos metodológicos necesarios para aislar e identificar las CTCs procedentes de una muestra de sangre del paciente. Los experimentos iniciales se llevaron a cabo utilizando una línea celular epitelial tumoral de mama como línea celular modelo. En pocas palabras, después de la obtención de célula de placas de pocilios, las células se colocaron en portaobjetos por citospina. Las células se trataron con 1 -etil-3- (3-dimetilaminopropil) carbodiimida (EDC) con el fin de inmovilizar covalentemente los microARNs al citoplasma. La detección se realizó mediante marcado de enzima por fluorescencia (ELF) enfoque de amplificación de la señal usando la tecnología miRCURY que se basa en sondas de LNA. Esta tecnología utiliza sondas LNA marcadas que hibridan sus secuencias de genes miARN totalmente complementarias con alta afinidad. Estas etiquetas pueden ser en consecuencia reveladas a través de anticuerpos marcados con enzimas que convierten sustratos enzimáticos fluorogénicos en productos fluorescentes. En este proceso, la digoxina (DIG) y anticuerpo de oveja anti-DIG marcado con fosfatasa alcalina se utilizaron como socios y Fastred TR como sustrato fluorogénico. Tras la actividad enzimática de la fosfatasa alcalina, el sustrato Fastred TR produjo un producto insoluble que puede ser detectado por microscopía de fluorescencia (Fig. 1).
La línea celular tumoral epitelial de mama (MDA-MB468) (ATCC® HTB-132 ™) se utilizó como modelo para detectar in situ miARN 200, miRNA21 y U6 por microscopía de fluorescencia. Aparte de los ARNs, los núcleos y citoqueratinas también se tiñeron por DAPI y los anticuerpos anti-citoqueratina marcado con FITC, respectivamente (Fig. 3 muestra imágenes de fluorescencia obtenidos por esta metodología). Las células con morfologías redondeadas y las distribuciones de miARN son concordantes con los tratamientos citospina y con la detección LNA basada en ELF, respectivamente. A continuación, este protocolo, que detecta con éxito ARN a través de amplificación de la señal ELF en células colocadas en portaobjetos de citospina se aplicó para el resto de experimentos.
El bajo número de CTCs en la sangre, en comparación con el número de las células hematopoyéticas, es uno de los aspectos más desafiantes para cualquier tecnología centrada en la caracterización molecular. Con el fin de optimizar los pasos metodológicos necesarios para aislar las CTCs de la sangre a través de la selección positiva de las CTCs con fenotipo epitelial y detección de miARN, los autores de la presente invención se tomaron quince muestras de sangre de voluntarios sanos con 100 células epiteliales MDA-MB468 cada una. El aislamiento de células citoqueratina-positivas y su posterior caracterización fenotípica se basó en el protocolo establecido en los ejemplos (ver Métodos, Figura 1). Después de colocar fracciones de células citoqueratina-positivas en portaobjetos por citospina, los autores siguieron el mismo protocolo descrito anteriormente para identificar el miARN-21. Los autores eligieron miARN-21 para nuestros experimentos in situ, ya que ha sido descrito como uno de los miARNs más importantes relacionados con el desarrollo del cáncer. Por otra parte, el miARN elegido tiene una característica importante, el hecho de que se expresa en las células tumorales pero no en células hematopoyéticas de modo que las CTCs y los leucocitos se pueden diferenciar fácilmente. Además, el miARN-21 también podría ser capaz de diferenciar los CTCs a partir de células epiteliales normales ya que su nivel de expresión puede ser diferente. En promedio, los autores aislaron un 79% del número total de células tomadas y, en todas las muestras, cada célula, que eran citoqueratina positiva, también expresó miARN-21 sin excepción (véase la Tabla 1).
Tabla 1. Número de células MDA-MB468 recuperadas de tomar 10 mi de muestra de sangre de voluntarios sanos con 100 células MDA-MB468.
Figure imgf000009_0001
Figure imgf000010_0001
* Todas las células identificadas resultaron ser positivas en la tinción tanto para citoqueratina y como para miARN-21. La Fig. 4 muestra imágenes de un experimento donde se detecta una sola MDA-MB468 entre la población de leucocitos. El miARN-21 está claramente identificado en las células epiteliales, mientras que no se detecta en los leucocitos y por lo tanto cumple con uno de los requisitos más importantes para este ensayo. Estos datos demuestran que la expresión de miARN-21 puede ser considerada como un biomarcador específico para las células tumorales epiteliales que no aparecen en el linaje hematopoyético.
Antes de continuar con el análisis de muestras de sangre de pacientes con cáncer, los autores decidieron investigar si los genes miARN-21 se expresaron sólo en células epiteliales tumorales. De este modo, realizan tanto la hibridación in situ de miARN-21 de acuerdo con los protocolos establecidos previamente y miRNA-21 análisis de expresión por QRT-PCR en línea celular de cáncer de mama (MDAMB468) y la línea de células de mama normal (MCF10A). Las Intensidades de fluorescencia por célula y valores DDCT de ambas líneas celulares confirmaron que miARN-21 se sobreexpresa en las células tumorales epiteliales si se compara con las células no tumorales (véanse los ejemplos y la Fig. 5 y Fig. 6). Estos resultados confirman que al miARN-21 como un biomarcador perfecto para diferenciar CTC de leucocitos, de epiteliales normales y tumorales respecto a células epiteliales no tumorales. Para evaluar el potencial de la aplicación de este método como herramienta de diagnóstico en muestras de sangre de pacientes, los autores utilizaron muestras de sangre periférica de 25 pacientes con metástasis oncológicas, con consentimiento informado (ver Tabla 2).
Código CK+
TIPO DE TEJIDO CK+ de HISTOLOGÍA miRNA- TUMOR METASTÁSICO miRNA-21 - paciente 21 +
1 COLON HIGADO ADENOCARCINOMA 0 3
2 MAMA HUESO ADENOCARCINOMA 0 0
3 MELANOMA PIEL 0 0
SQUAMOUS CELL
4 PULMÓN HUESO 0 0
CARCINOMA
TORAX E
5 COLON ADENOCARCINOMA 0 0
HIGADO
NODULOS CARCINOMA CELULAR
6 LARINGE 0 1
LINFÁTICOS ESCAMOSO
PARED
7 MAMA CDI Gil 0 0
TORÁCICA
8 COLON PULMON ADENOCARCINOMA Gil 0 0
9 OVARIO ABDOMEN CARCINOMA SEROSO 0 0
CRESTA ADENOCARCINOMA
10 COLON 0 0
ILÍACA MUCOSECRETOR
OVARIO Y
11 COLON ADENOCARCINOMA Gil 0 2
UTERO
12 COLON HIGADO ADENOCARCINOMA 0 1
CAVIDAD
13 PULMON ADENOCARCINOMA 0 0
PLEURAL
CARCINOMA
14 OVARIO ABDOMEN 0 1
INDIFERENCIADO
HUESO Y
15 PROSTATA ADENOCARCINOMA 0 7
MEDIASTINO
16 GASTRICO HIGADO ADENOCARCINOMA Gil 0 0
17 MAMA HUESO CLI 0 0
HIGADO Y
18 COLON ADENOCARCINOMA Glll 0 0
PULMÓN
19 PULMON MEDIASTINO CELULAR ESCAMOSO 0 6
PULMON Y ADENOCARCINOMA
20 OVARIO 0 2
NODULOS EPITELIAL MIXTO LINFOIDES
21 COLON HIGADO ADENOCARCINOMA 0 2
CARCINOMA DE
NODULOS
22 PULMÓN CÉLULAS PEQUEÑAS 0 0
LINFOIDES DE PULMÓN
PULMON E ADENOCARCINOMA
23 COLON 0 1
HÍGADO MUCOSECRETOR
ABDOMEN Y
CARCINOMA PAPILAR
24 UROTELIAL NODULOS 0 1
UROTELIAL LINFOIDES
HIGADO Y CARCINOMA
25 ADRENAL 0 0
PULMÓN ADRENOCORTICAL
Tabla 2. Características anatómicas patológicas de los pacientes con cáncer y el número de células epiteliales circulantes que expresan CK y miARN-21. Todas las muestras, incluyendo muestras de donantes sanos, se trataron y analizaron como se describió anteriormente. Dentro de este grupo de pacientes, se detectaron CTCs en 10 pacientes y en todos los casos se identificaron CTCs concomitantemente por expresión CK y miARN-21 (Fig. 2a). Todas las muestras de donantes sanos fueron negativas tanto para la expresión de CK y de miARN-21. Con este método podemos así determinar el número de CTCs en pacientes oncológicos, utilizando el miARN-21 como marcador biológico. Finalmente, y con el fin de confirmar que el miARN-21 se expresa de forma diferente en células epiteliales tumorales circulantes y células no tumorales, se utilizó una muestra de sangre tomada de un paciente sin cáncer que sólo se sometió a una operación de nefrectomía como fuente de células epiteliales no tumorales circulantes. La Fig. 2b muestra imágenes de microscopía obtenidas a partir de esa muestra siguiendo nuestro protocolo MishCTC. En este caso las células epiteliales no mostraron expresión de miARN-21 , manteniendo su fenotipo epitelial de citoqueratina.
En resumen, en este documento presentamos la primera metodología de hibridación in situ de miARN en CTCs con fenotipo epitelial que es compatible con la detección inmunocitoquímica. En este sentido, el presente documento reporta que la expresión de miARN-21 está restringida a las células epiteliales del tumor detectado en la sangre periférica, mientras que miARN-21 es o bajo-expresó en las células epiteliales circulantes no tumorales y líneas célulares epiteliales no tumorales o ausentes en leucocitos. Los resultados MishCTC también revelaron que el miARN-21 es constantemente sobreexpresado en CTCs procedentes de metástasis de tumores sólidos. Este descubrimiento es la primera prueba de concepto para MishCTC la posibilidad de aplicar para analizar múltiples miARNs en las CTCs como potencial herramienta para controlar a los pacientes con cáncer y su eficiencia del tratamiento. Estos protocolos también son útiles para obtener una mejor comprensión de los mecanismos moleculares asociados con la difusión y los procesos metastásicos.
Así, un primer aspecto de la invención se refiere a un método in vitro de detección de células tumorales circulantes, tanto las células tumorales circulantes de fenotipo epitelial y las células tumorales circulantes que tienen marcadores de la transición epitelial-mesenquimal (EMT), en una muestra biológica usando, como indicador, los niveles de expresión del miARN-21 , y la obtención de un resultado del método mediante la comparación de los niveles de expresión de dichos miARN-21 con un control negativo o con un control positivo, en el que si los niveles de expresión en las células de la muestra biológica se sobréexpresan en comparación con un control negativo es indicativo de la presencia de células tumorales circulantes en dicha muestra biológica o en el que si los niveles de expresión en las células de la muestra biológica se expresan en una cantidad mayor que 2/3 de la expresión máxima alcanzada en un control positivo es indicativo de la presencia de células tumorales circulantes en dicha muestra biológica.
En el contexto de la presente invención ejemplos ilustrativos no limitativos de una muestra biológica incluyen diferentes tipos de muestras de tejidos, así como a partir de fluidos biológicos, tales como sangre, suero, plasma, líquido cefalorraquídeo, líquido peritoneal, las heces y la orina. Preferiblemente, dichas muestras son muestras de tejidos y más preferiblemente, dichas muestras de tejidos se originan a partir de tejido tumoral del individuo donde la respuesta quiere predecirse, y pueden originarse a partir de biopsias.
En otra realización preferida, los niveles de expresión de miARN-21 son determinados por hibridación in situ.
En otra realización preferida, el control negativo es una célula epitelial no tumoral o una célula hematopoyética y en el que la sobreexpresión como se utiliza aquí, quiere decir un nivel de expresión de miARN-21 de al menos dos veces en las células de la muestra biológica en comparación con el nivel de expresión de miARN-21 en una célula epitelial no tumoral tal como se determina mediante hibridación in situ o un nivel de expresión al menos 10 veces de miARN-21 en las células de la muestra biológica en comparación con el nivel de expresión de miARN-21 en una de las células hematopoyéticas, preferiblemente linfocitos o células mononucleares o leucocitos, como se determinó por hibridación in situ.
En otra realización preferida, el control positivo es la línea celular epitelial tumoral de mama (MDA-MB468).
En otra realización preferida, la muestra biológica se trata primero para aislar las células citoqueratina positivas y/o las células EpCAM positivas y/o células SNAIL positivas y/o células positivas vimentina, en el que preferiblemente las células positivas de citoqueratina y/o las células positivas EpCAM y/o las y/o células SNAIL positivas y/o las células positivas vimentina están aisladas por la selección inmunomagnética y/o inmunocitoquímica.
Los métodos de la presente invención se pueden aplicar con muestras de individuos humanos de ambos sexos, es decir, hombres o mujeres, y a cualquier edad. El perfil determinado por la presente invención podría ser de diagnóstico, pronóstico y predictivo.
Así, un segundo aspecto de la invención se refiere a un método para predecir o pronosticar la progresión del cáncer en una muestra biológica de un sujeto, donde el sujeto sufre de una enfermedad cáncer, y en el que el método comprende la utilización, como indicador, los niveles de expresión de miARN-21 , y la obtención de un resultado del método mediante la comparación de los niveles de expresión de dicho miARN-21 con un control negativo o con un control positivo, en el que si los niveles de expresión en las células de la muestra biológica son sobre-expresado en comparación con un control negativo es indicativo de una progresión maligna del cáncer o en el que si los niveles de expresión en las células de la muestra biológica se expresan en una cantidad mayor que 2/3 de la expresión máxima alcanzada en un control positivo es indicativo de una la progresión maligna del cáncer.
Además, un tercer aspecto de la invención se refiere a un método para el diagnostico del cáncer en un sujeto, donde el método comprende la utilización, como indicador, los niveles de expresión de los genes miARN-21 , y la obtención de un resultado del método mediante la comparación de los niveles de expresión de dijo genes miARN-21 con un control negativo o con un control positivo, en el que si los niveles de expresión en las células de la muestra biológica son sobre-expresado en comparación con un control negativo es indicativo de la presencia de células tumorales circulantes en dicha muestra biológica o en el que si los niveles de expresión en las células de la muestra biológica se expresan en una cantidad mayor que 2/3 de la expresión máxima alcanzada en un control positivo es indicativo de la presencia de células tumorales circulantes en dicha muestra biológica. En una realización preferida del segundo o del tercer aspecto de la invención, el sujeto es un sujeto humano.
En otra realización preferida preferida del segundo o del tercer aspecto de la invención, la muestra biológica es cualquier fluido biológico. En el contexto de la presente invención ejemplos ilustrativos no limitativos de una muestra biológica incluyen diferentes tipos de muestras de tejidos, así como a partir de fluidos biológicos, tales como sangre, suero, plasma, líquido cefalorraquídeo, líquido peritoneal, las heces y la orina. Preferiblemente, dichas muestras son muestras de tejidos y más preferiblemente, dichas muestras de tejidos se originan a partir de tejido tumoral del individuo del que se quiere predecir la respuesta, y pueden originarse a partir de biopsias.
En otra realización preferida del segundo o del tercer aspecto de la invención, los niveles de expresión de miARN-21 son determinados por hibridación in situ.
En otra realización preferida del segundo o del tercer aspecto de la invención, el control negativo es una célula epitelial no tumoral o una célula hematopoyética y en el que la sobreexpresión como se utiliza aquí, quiere decir un nivel de expresión de miARN-21 de al menos dos veces en las células de la muestra biológica en comparación con el nivel de expresión de miARN-21 en una célula epitelial no tumoral tal como se determina mediante hibridación in situ o un nivel de expresión al menos 10 veces de miARN-21 en las células de la muestra biológica en comparación con el nivel de expresión de miARN-21 en una de las células hematopoyéticas, preferiblemente linfocitos o células mononucleares o leucocitos, como se determinó por hibridación in situ.
En otra realización preferida del segundo o del tercer aspecto de la invención, el control positivo es la línea celular epitelial tumoral de mama (MDA-MB468).
En otra realización preferida del segundo o del tercer aspecto de la invención, la muestra biológica se trata primero para aislar las células citoqueratina positivas y/o las células EpCAM positivas y/o células SNAIL positivas y/o células positivas vimentina, en el que preferiblemente las células positivas de citoqueratina y/o las células positivas EpCAM y/o las y/o células SNAIL positivas y/o las células positivas vimentina están aisladas por la selección inmunomagnética y/o inmunocitoquímica.
En otra realización preferida del segundo o del tercer aspecto de la invención, el cáncer es un tumor sólido de origen epitelial. Preferiblemente, el tumor sólido de origen epitelial se selecciona de la lista que consiste en cáncer de ovario, cabeza y cuello, laringe, colon, estómago, próstata, cuello uterino, gástrico, urotelial, adrenal, la glándula tiroides, pulmón, útero, recto, cáncer de mama o renal o carcinoma o un sarcoma, melanoma. En el contexto de la presente invención, el método para determinar el nivel de expresión de miARN-21 no necesita ser particularmente limitado, y puede ser seleccionado del método que comprende PCR, tales como PCR en tiempo real; y/o un ensayo de hibridación in situ.
PCR cuantitativa en tiempo real (RQ-PCR) es una técnica sensible y reproducible de cuantificación de la expresión génica que en particular se puede utilizar para el perfil de expresión de los genes miARN en las células y tejidos. Sin perjuicio del método utilizado para determinar la respuesta (RQ-PCR, hibridación in situ, etc.), en el contexto de la presente invención un "aumentado significativamente la expresión" o "sobre-expresión" se puede definir en comparación con una muestra negativa y/o con un control positivo.
En este sentido, una "muestra negativa" o una "muestra de referencia" se define como una muestra de que no expresa o tiene un nivel basal de expresión de miARN-21 , es decir, una muestra células epiteliales no tumoral originada del mismo tejido de la biopsia de origen (en el caso de cáncer de pulmón la muestra de control sería el tejido pulmonar no tumoral). Otro ejemplo sería cualquier tipo de célula hematopoyética no tumoral, tales como leucocitos, linfocitos o células mononucleares.
En el contexto de la presente invención una muestra de control positivo es una línea celular epitelial tumoral de mama (MDA-MB468).
Además, los presentes inventores han identificado un nuevo subgrupo de pacientes que se beneficiarán de la quimioterapia y/o radioterapia. Por lo tanto, un aspecto adicional de la invención se refiere a un método para la asignación de un sujeto humano que sufre de cáncer en uno de los dos grupos, donde el grupo 1 comprende los sujetos identificables por el método de acuerdo con cualquiera de los aspectos anteriores; y en donde el grupo 2 representa el resto de sujetos.
Un aspecto adicional de la invención se refiere a una composición farmacéutica que comprende un fármaco quimioterapéutico tal como el cisplatino y/o hycamtin para el tratamiento de un sujeto humano del grupo 1 como identificable por el método del aspecto anterior de la invención. En una realización particular de la invención, el tratamiento de elección de un sujeto humano que sufre de cáncer de grupo 1 , identificable por el método de los aspecto anteriores de la invención, incluye pero no se limita a los siguientes tipos: radioterapia, complejos de coordinación de platino, doxorrubicina y otros antracycins, bortezomib, campothecin, procarbazina, ciclofosf amida, adriamicina o agentes alquilantes, terapia fotodinámica y productos biológicos como el rituximab.
Sin embargo, un aspecto adicional de la invención se refiere a una composición farmacéutica que comprende los complejos de coordinación de platino, doxorrubicina y otros antracycins, bortezomib, campothecin, pro-carbazine, ciclofosfamida, adriamicina o agentes alquilantes, la terapia fotodinámica y biológicament-CAL tales como rituximab, para el tratamiento de una sujeto humano del grupo 1 identificable por el método del anterior aspectos de la invención. La presente invención también proporciona un kit o un dispositivo adecuado para poner en práctica el método de la invención, que comprende al menos un oligonucleótido (s) capaces de hibridar con miARN-21 y, opcionalmente, medios para la detección de células positivas de citoqueratina por selección inmunomagnética y / o inmunocitoquímica. Preferiblemente, el kit comprende además una muestra de control positivo, opcionalmente una célula epitelial no tumoral.
El kit se basa en el poder pronóstico, predictivo y de diagnóstico del método de la presente invención. Se prefiere que dicho oligonucleótido (s) se hibride con dos desajustes o menos, y preferiblemente sin falta de coincidencia, con respecto al miARN determinado. En lo que se refiere a la hibridación del oligonucleótido (s), se prefiere que dicho oligonucleótido (s) sea capaz de hacerlo en condiciones rigurosas. El rigor es un término usado en experimentos de hibridación. La rigurosidad refleja el grado de complementariedad entre el oligonucleótido y el ácido nucleico (que es en este caso el ARNm a ser detectado); cuanto mayor es la rigurosidad, mayor porcentaje de homología entre la sonda y el filtro de ácido nucleico unido. Es bien conocido por la persona experta que las concentraciones de temperatura y sal tienen un efecto directo sobre los resultados que se obtienen. Se reconoce que los resultados de la hibridación están relacionados con el número de grados por debajo de la Tm (temperatura de fusión) de ADN a la que se realiza el experimento. A menudo, las condiciones rigurosas se definen como un lavado con tampón 0, 1X SSC (citrato salino- sódico (SSC) a 65 °C. (SSC se proporciona típicamente como 20X de solución madre, que consiste en cloruro de sodio 3 M y 300 mM de citrato trisódico (ajustado a pH 7,0 con HCI)). El kit o dispositivo puede ser utilizado y el uso no está particularmente limitada, aunque se prefiere su uso en el método de la invención en cualquiera de sus formas de realización.
Otro aspecto de la invención se refiere a un soporte de medio de almacenamiento de datos legible por ordenador que comprende el programa de acuerdo con el tercer aspecto de la invención, el programa de ordenador desarrolla los pasos de cualquiera de los métodos de la invención.
El medio en el que se codifica el programa de ordenador puede comprender también señales de transmisión se propagan a través del espacio o de un medio de transmisión, tales como una fibra óptica, cable de cobre, etc. La señal de transmisión en el que el programa de ordenador está codificado puede comprender además una señal inalámbrica, transmisión, ondas de radio, señales de infrarrojos, Bluetooth, etc. la señal de transmisión en el que el programa de ordenador está codificado es capaz de ser transmitido por una estación transmisora y recibida por una estación receptora, donde el programa de ordenador codificado en la señal de transmisión puede ser decodificado por satélite y se almacena en el hardware o un medio legible por ordenador en la recepción y estaciones o dispositivos de transmisión. Otro aspecto de la invención se refiere a una señal de transmisión que comprende instrucciones de programa capaz de hacer que un ordenador realice los pasos de cualquiera de los métodos de la invención.
Un último aspecto de la presente invención se refiere al uso de miARN-21 para la detección de células tumorales circulantes, tanto células tumorales circulantes con fenotipo epitelial y células tumorales circulante que tienen marcadores de la transición epitelial-mesenquimal (EMT), preferiblemente en una muestra biológica.
Los siguientes ejemplos sirven para ilustrar la presente invención; estos ejemplos no pretenden de ninguna manera limitar el alcance de la invención.
EJEMPLOS
Ejemplo 1. Integración de técnicas basadas en LNA de m¡ARN-ISH en y protocolos de CTC.
Para detectar miARNs en CTCs los autores integraron protocolos ISH para la detección de miARNs en células individuales con pasos metodológicos necesarios para aislar e identificar CTCs procedentes de la sangre del paciente. Los experimentos iniciales se llevaron a cabo utilizando una línea celular epitelial tumoral de mama como modelo. La célula obtenida de placas de pocilios, las células se colocaron en portaobjetos por citospina. Las células se trataron con EDC con el fin de inmovilizar covalentemente los miARNs al citoplasma. La detección se realiza por amplificación de la señal por marcado de enzima con fluorescencia (ELF) usando la tecnología miRCURY que se basa en sondas de LNA. Esta tecnología utiliza sondas LNA marcadas que hibridan sus secuencias complementarias miARN con alta afinidad. Estas etiquetas pueden ser en consecuencia reveladas a través de anticuerpos marcados con enzimas que convierten sustratos enzimáticos fluorogénicos en productos fluorescentes. En este documento, la digoxina (DIG) y el anticuerpo de oveja anti-DIG marcado con fosfatasa alcalina fueron utilizados como socios y Fastred TR como sustrato fluorogénico. Tras la actividad enzimática de la fosfatasa alcalina, el sustrato Fastred TR produce un producto insoluble que puede ser detectado por microscopía de fluorescencia (Fig. 1).
La línea celular tumoral epitelial de mama (MDA-MB468) se utilizó como modelo para detectar in situ el miARN 200, miARN21 y U6 por microscopía de fluorescencia. Aparte de ARN, los núcleos y citoqueratinas también se tiñeron por DAPI y los anticuerpos anti- citoqueratina marcado con FITC, respectivamente (SI Fig 1 muestra imágenes de fluorescencia obtenidos por esta metodología). Las células con morfologías redondeadas y distribuciones miARN son concordantes con los tratamientos citospina y con detección ELF basados en LNA respectivamente. A continuación, este protocolo, que detecta con éxito ARN a través de amplificación de la señal ELF en células colocadas en portaobjetos de citospina se aplicó para el resto de experimentos.
Ejemplo 2. Detección de m¡ARN-21 en líneas de células MDA-MB468 tomadas en muestras de sangre de voluntarios sanos. El número bajo de CTCs en la sangre, en comparación con el número de las células hematopoyéticas, es uno de los aspectos más desafiantes para cualquier tecnología centrado en la caracterización molecular. Con el fin de optimizar los pasos metodológicos requeridos para aislar CTCs de la sangre, a través de la selección positiva de las CTCs con fenotipo epitelial, y luego detectar miARNs, los autores se tomaron quince muestras de sangre de voluntarios sanos con 100 células epiteliales MDA-MB468 cada uno. El aislamiento de células citoqueratina-positivas y su posterior caracterización fenotípica se basó en el protocolo establecen en los Materiales y Métodos de la presente invención y en la Fig. 1. Después de colocar fracciones de células citoqueratina-positivas en portaobjetos por citospina, los autores siguieron el mismo protocolo descrito anteriormente para identificar miARN-21. En promedio, los autores aislaron un 79% del número total de células tomadas y, en todas las muestras, cada célula, que era la citoqueratina positivo, también expresó miARN-21 sin excepción (véase la Tabla 1). La Fig. 2a muestra imágenes de un experimento donde se detecta una sola MDA-MB468 entre la población de leucocitos. El miARN-21 está claramente identificado en las células epiteliales, mientras que no se detecta en los leucocitos y por lo tanto cumple uno de los requisitos más importantes para este ensayo. Estos datos demuestran que la expresión de miARN-21 puede ser considerado como un biomarcador específico para las células epiteliales que no aparecen en el linaje hematopoyético.
Example 3. Quantification of m¡RNA-21 in MDA-MB468 and MCF-10 cell lines by qRT- PCR.
Before proceeding with the analysis of cáncer patient blood samples the authors decided to investígate if miRNA-21 was expressed equally in tumor and non-tumor epithelial cells. The authors thus performed both in-situ hybridization of miRNA-21 according to the protocols established before and miRNA-21 expression analysis by qRT-PCR in breast cáncer cell line (MDA-MB468) and normal breast cell line (MCF10A). Fluorescence intensities per cell and ddCT valúes from both cell lines confirmed that miRNA-21 is over-expressed in epithelial tumor cells if compared to non-tumor cells (see Methods and Fig. 4 and Fig. 5). These results thus confirm miRNA-21 as a valid biomarker to differentiate CTCs from leukocytes and tumor from non-tumor epithelial cells. Ejemplo 4. Detección de m¡ARN-21 en las CTCs a partir de muestras de sangre de pacientes con cáncer.
Para evaluar el potencial de la aplicación de este método como herramienta de diagnóstico en muestras de sangre de pacientes, los autores utilizaron muestras de sangre periférica de 25 pacientes con metástasis oncológicas, con consentimiento informado (ver Tabla 2). Todas las muestras, incluyendo muestras de donantes sanos, se trataron y analizaron como se describió anteriormente. Dentro de este grupo de pacientes, se detectaron CTCs en 11 pacientes y en todos los casos los CTCs se identificaron de forma concomitante por expresión de CK y miRNA-21 (ver Fig. 2b y Tabla 2). Todas las muestras de donantes sanos fueron negativas tanto para la expresión de CK y miARN21. Finalmente, y con el fin de confirmar que miARN-21 se expresa de forma diferente en células tumorales circulantes y células epiteliales no tumorales, se utilizó una muestra de sangre tomada de un paciente sin cáncer que sólo se sometió a una operación de nefrectomía como fuente de células epiteliales no tumorales circulantes. Fig. 2b muestra imágenes de microscopía obtenidos a partir de esa muestra siguiendo nuestro protocolo MishCTC. En este caso las células epiteliales no mostraron expresión miARN-21 , manteniendo su fenotipo epitelial citoqueratina.
Ejemplo 5. Detección de m¡ARN-21 en EMT inducida por las líneas celulares MCF-7
Los autores utilizaron el protocolo MishCTC para la investigación de la expresión de miARN- 21 en líneas celulares MCF-7 inducidas por EMT, una línea celular epitelial del tumor, como un modelo de heterogeneidad celular que se encuentra dentro de los CTCs. Así pues, los autores trataron de ver si el método descrito en el presente documento podría detectar líneas de células epiteliales heterogéneos que estaban perdiendo biomarcadores epiteliales tales como citoqueratina y se mantienen la expresión de miARN-21. Las células MCF7 se sembraron en placas de 96 pocilios y se indujeron por el TGF-β . La Fig. 6 muestra la expresión de miARN-21 y CK en tanto MCF-7 y líneas celulares MCF-7 inducida TGF-β marcados usando el protocolo MishCTC. Vale la pena señalar que líneas celulares modificadas MCF-7 expresan miARN-21 de una manera heterogénea dentro del mismo cultivo celular, una heterogeneidad que no se observó anteriormente en MDA-MBA468. En el caso de líneas celulares MCF-7 inducida por TGF-β, y como se esperaba, hubo una población de células que han perdido la expresión de CK pero mantuvieron los genes miARN-21 , dando lugar a células que eran CK negativos y miARN-21 positivos.
Ejemplo 6. Material y métodos
Todos los experimentos se realizaron de acuerdo con las directrices y reglamentos pertinentes.
Cultivo celular
Líneas celulares de cáncer de mama se obtuvieron a partir de un cultivo celular de la Colección Americana de Cultivos Celulares Tipo (ATCC, Manassas, EE.UU.). Las células tumorales MDA-MB468 se mantuvieron en medio de cultivo DMEN (Gibco, UK) suplementado con 10% de suero fetal bovino (Gibco, Reino Unido) y 100 U mi"1 de penicilina y 100 ng mi"1 de estreptomicina a 37 °C en 5 % incubador de CO2 humidificado. Las células MCF10-A no tumorales se mantuvieron en medio de crecimiento epitelial de mamífero (MEGM) libre de suero (Clonetics® Lonza, Nueva Jersey, EE.UU.) con 100 ng mi"1 de la toxina colérica (Sigma Aldrich, EE.UU.) Preparación de Citospinas partir de líneas celulares de cáncer de mama para la detección simultánea de citoqueratinas y miARNs. 1 millón de células se sembraron en matraz tratado de 75cm2 (NUNC ™, Roskilde, Dinamarca) usando su medio de cultivo celular correspondiente. Después se incubaron durante 72 horas, cada pocilio se lavó con PBS y las células se tripsinizaron entonces con 0,05% de tripsina en 1X PBS durante 15 min, se neutralizó con inhibidor de tripsina de soja (0, 1 % de inhibidor de tripsina en 1X PBS) y se resuspendieron en PBS pH 7,4. Las suspensiones celulares postetiormente se permeabilizaron con 10% de MACS CellPerm Solution (Miltenyi Biotec, Alemania) durante 5 min y se fijaron con 10% MACS CellFix Solution (Miltenyi Biotec, Alemania) durante 30 min seguido de lavado tres veces con 1X PBS durante 5 min cada uno. Los sedimentos celulares se resuspendieron en PBS 1X y se centrifugaron sobre portaobjetos de vidrio recubiertos con polilisina (Sigma-Aldrich, Reino Unido) mediante una citocentrífuga (Hettich, Alemania) a 1500 rpm durante 10 min. Los portaobjetos se secaron al aire durante la noche a temperatura ambiente y se almacenaron a 4°C. Las láminas secas que contuvieron células inmovilizadas por citospina se rehidrataron con tampón 1X TBS durante 5 min y se trataron dos veces por 5 min con 100 μΙ de una solución acuosa 130 mM de 1-metilimidazol (AppliChem, Alemania) antes de áreas de interés que rodea con una pluma hidrófobo (Dako, Dinamarca). Después, se añadieron 100 μΙ de una solución acuosa 160 mM de 1 -etil-3- (3-dimetilaminopropil) carbodiimida (EDC) (Sigma-Aldrich, Reino Unido) y portaobjetos se coloca en una cámara de humedad (sistema de Thermobrite, Abbot molecular, EE.UU.) durante 1 hora. Después de ese tiempo, los portaobjetos se lavaron dos veces durante 5 min con 1X PBS antes de incubar en una cámara de hibridación durante 30 minutos con 100 μΙ de solución de proteinasa QS (1 : 8000 dilución en 1X PBS) (Affymetrix, EE.UU.). Los portaobjetos se lavaron dos veces durante 5 min con 1X PBS antes de ser deshidratado con concentraciones crecientes de etanol (70%, 96% y 99,5%) (Sigma Aldrich) durante 1 min en cada concentración. Detección basada en sondas LNA.
Ácido nucleico bloqueado (LNA) basado en oligonucleótidos para la detección de miARN-21 , miRNA-200a y U6 snRNA se adquirieron de Exiqon (Dinamarca) como kits miRCURY LNA™ miARN. Ellos son oligonucleótidos 20-mer marcados tanto en 5 'y 3' con digoxina (DIG). Detección simultánea de citoqueratinas y miARNs mediante técnicas de inmunocitoquímica e ISH fluorescencte. (MishCTC)
La expresión de miARN-21 , miARN-200a y U6 snRNA se determinó con kits miRCURY LNA™ miARN (ver arriba). Cada sonda se analizó de forma independiente. Después del proceso de deshidratación, los portaobjetos se secaron al aire y se incubaron con 40 μΙ de una solución diluida (1 : 600) de la sonda de LNA miARN correspondiente, que fueron pre- desnaturalizadas calentándolas a 90°C durante 4 min, en 1x tampón ISH (Exiqon , Dinamarca) y se hibridaron a 58°C en una cámara humidificada durante 1 h después sellaron las muestras con Fixogum. Tras período de hibridación y la eliminación de Fixogum, portaobjetos se lavaron a 56°C con 5X, 1X y 0,2X SSC durante 5 minutos cada uno. Las muestras se incubaron a continuación durante 15 min con una solución de bloqueo (0, 1 % de Tween, 2% suero de oveja y el 1 % de BSA en PBS 1x) seguido de incubación durante 15 min tanto con anticuerpo FITC-anti-citoqueratina (clon:. CK3-6H5 Miltenyi Biotec, Alemania) y anti-DIG anticuerpos fosfatasa alcalina (Roche Diagnostics, Alemania) simultáneamente. Después de la incubación con ambos anticuerpos, los portaobjetos se lavaron con 1X PBS durante 5 min. El marcado con enzima de fluorescencia (ELF) para amplificación de la señal se llevó a cabo mediante la aplicación de SIGMAFAST ™ Fast Red TR / naftol (Sigma- Aldrich, Reino Unido) como sustrato de la actividad de la fosfatasa alcalina, diluido en tampón Tris-clorhídrico de acuerdo a las recomendaciones del proveedor comercial. Por último, se utilizaron medios de montaje Vectashield con DAPI (Vector Labs. USA) para montar las láminas.
Experimentos de spiking
Los experimentos de spiking se realizaron por triplicado utilizando 100 células MDA-MB 468 en 10 mi de veinte muestras de sangre de voluntarios sanos venosas que se recogieron en tubos de 10 mi de EDTA (BD, EE.UU.). Las muestras se procesaron por centrifugación en gradiente de densidad durante 45 min a 400 rpm y asistidos por Histopaque®-11 19 (Sigma- Aldrich, Reino Unido) con el fin de aislar fracciones de células hematopoyéticas, que también contienen las células epiteliales. Las fracciones hematopoyéticas se incubaron durante 30 minutos con microperlas magnéticas marcadas con un anticuerpo específico de multi-citoqueratina (CK3-1 1 D5) (Miltenyi Biotec, Alemania) que reconocen citoqueratina citoplasmática 7, 8, 18 y 19. Las fracciones celulares enriquecidas magnéticamente luego se pasaron a través de columnas magnéticas MACS (separación de células Miltenyi Biotec, Alemania) soportados en MiniMACS separador (Miltenyi Biotec, Alemania) y se lavó tres veces con tampón de dilución (Miltenyi Biotec, Alemania). Las columnas magnéticas se unieron entonces DE Desde el soporte separador MiniMACS y células positivas de citoqueratina a continuación se eluyeron de la columna después de la adición de tampón de dilución y la aplicación de presión. Las fracciones de células enriquecidas citoqueratina- positivas se centrifugaron en portaobjetos de vidrio revestidos de polilisina. Desde que los protocolos de puntos descritos anteriormente fueron seguidos para la detección simultánea de citoqueratinas y miARNs. Las tasas de recuperación de las células tumorales con tomadas en la sangre normal en los números de control de bajo nivel estaban en el rango de 60 a 75%
Análisis de CTCs de muestras de pacientes
25 pacientes con metástasis oncológicas se inscribieron desde la Unidad de Cáncer de Mama del Hospital de la Universidad de Granada desde diciembre de 2013 hasta enero de 2014. Los criterios de inclusión fueron el diagnóstico histológico de cáncer de pulmón (CP), el cáncer de próstata (PC), el cáncer de colon (CC) , cáncer urotelial (UC), el cáncer de mama (CM), cáncer gástrico (CG), el cáncer de ovario (CO) y el melanoma cáncer (MC) y la disponibilidad de tejido para estudios de biomarcadores (Tabla 2). El comité de ética local aprobó este estudio y los pacientes elegibles fueron seleccionados después de la adquisición del consentimiento informado por escrito.
Como controles negativos, se examinaron muestras de sangre de 5 voluntarios sanos sin evidencia de una neoplasia epitelial. La sangre periférica se obtuvo de mediante la punción de la vena y desechar el primero 3 mi de sangre. Esta precaución se llevó a cabo con el fin de evitar la contaminación de la muestra con células epiteliales de la piel durante la recogida de la muestra para evitar la recolección de las células epiteliales no tumorales. Las muestras de sangre se recogieron en tubos de EDTA y transportadas inmediatamente al laboratorio. A continuación, se llevaron a cabo los protocolos descritos en la sección spiking.
La extracción de ARN y la transcripción inversa y qRT-PCR Las líneas celulares de cáncer de mama se utilizaron para analizar la expresión de miARN- 21 y miARN-200a. Las células se colocaron en (1x103 células) en matraces de cm2 tratado 75 (NUNC ™, Roskilde, Dinamarca) crecieron en su medio de cultivo durante 72 h, las células se trataron a continuación durante 3 min con solución de tripsina (Sigma Aldrich. EE.UU.) y luego se añadieron 5 mi de medio para inhibir la actividad tríptica que pueden dañar las células y después las células se centrifugaron a 200 g durante 5 min. Después se recogieron las células en tubos de 15 mi se lavó una vez con 1X PBS y luego se añadieron 0,5 mi de mezcla de lisis miARN Extracción Kit (OmegaBio-tek, EE.UU.) por tubo y se incubaron 5 min a temperatura ambiente. A continuación, se añadieron tampón de unión XD 250 μΙ y se incubó en hielo durante 10 min, después, la solución era poner en HiBind® X- press columna y se centrifugó durante 1 min a 13.000 g. Para continuar, se añadieron 1 ,2 volúmenes de etanol al filtrado, y luego se transfirieron a la columna de la HiBind® Micro RNA y se centrifugaron de nuevo, a 13.000 g durante 1 min, el filtrado se desechó y los miARNs fueron entonces recuperados de las columnas mediante la adición de tampón de lavado ARN 500 μΙ. miARN recuperó de las columnas y 5 μΙ de miARN extrae a continuación se incubaron con 1 μΙ de poli (A) tampón de cola 2 μΙ y 2 μΙ de agua libre de nucleasa (Quanta Biosciences EE.UU.) y entonces la solución molecular se incubó durante 60 min a 37 °C , seguido de una incubación de 5 min a 70 °C. Para la preparación de RT-PCR, la mezcla de reacción se preparó añadiendo 25 μΙ Perfecta SYBR Green Supermix, ROX, 200 nm y cebadores plantilla para 50 μΙ de volumen final. RT-PCR en pocilios por triplicado. La reacción se realizó en placas de 96 pocilios en un sistema de PCR en tiempo real (Applied Biosystems® 7500 el Real-Time PCR System. USA) durante 2 min y 40 ciclos de desnaturalización a 95 °C y 60 °C durante 1 minuto para el recocido y que se extiende a 70 °C durante 1 min. Microscopía confocal
Las imágenes confocales se obtuvieron utilizando un ZeissLSM 710 confocal / multifotónica microscopio de escaneo láser equipado con Argón láser 2 / (458 nm, 477 nm, 488 nm, 514 nm) y un láser de titanio zafiro (750 nm). Las células se vieron con un (NA1 · 2) apocromática objetivo agua 63X e imágenes de diferentes campos fueron tomadas. El microscopio fue instalado para tomar imágenes de múltiples canales y el filtro de excitación y emisión conjuntos configurados individualmente para que no hay fluorescencia sangrar a través de entre los canales. El argón (488 nm) láser con filtro de emisión apropiado se utilizó para la visualización de FITC. El argón (543nm) láser con filtro de emisión apropiado se utilizó para la visualización de Fastred. FITC se utilizó para visualizar CK y Fastred / naftol se utiliza para visualizar cada uno de los genes miARN analizados. Zen 2009 programas de edición de luz (CarIZeiss Microlmaging GmbH) se utiliza para controlar el microscopio, la exploración, el módulo de láser, y procesado de imágenes.

Claims

REIVINDICACIONES
1. Un método in vitro para detectar células tumorales circulantes, tanto células tumorales circulantes del fenotipo epitelial y células tumorales que tienen marcadores transición epitelial-mesenquimal (EMT), en una muestra biológica utilizando, como indicador, los niveles de expresión de miARN-21 , y la obtención de un resultado del método mediante la comparación de los niveles de expresión de dicho miARN-21 con un control negativo o con un control positivo, donde si los niveles de expresión en las células de la muestra biológica están sobre- expresados en comparación con un control negativo es indicativo de la presencia de células tumorales circulantes en dicha muestra biológica o donde si los niveles de expresión en las células de la muestra biológica se expresan en una cantidad mayor que 2/3 de la expresión máxima alcanzada en un control positivo es indicativo de la presencia de células tumorales circulantes en dicha muestra biológica.
2. El método según la reivindicación 1 , donde la muestra biológica es cualquier fluido corporal, tal como la sangre o la orina.
3. El método según cualquiera de las reivindicaciones 1 o 2, donde los niveles de expresión de los genes miARN-21 son determinados por hibridación in situ.
4. El método según cualquiera de las reivindicaciones 1-3, donde el control negativo es una célula epitelial no tumoral o una célula hematopoyética y en el que, como se usa en el presente documento, la sobreexpresión se entiende como un nivel de expresión de miARN-21 de al menos dos veces en las células de la muestra biológica en comparación con el nivel de expresión de miARN-21 en una célula epitelial no tumoral tal como se determina mediante hibridación in situ o un nivel de expresión de al menos 10 veces de miARN-21 en las células de la muestra biológica en comparación con el nivel de expresión de miARN-21 en una célula hematopoyética, preferiblemente linfocitos o células mononucleares, tal como se determina mediante hibridación in situ.
5. El método según cualquiera de las reivindicaciones 1-3, donde el control positivo es la línea celular tumoral epitelial de mama (MDA-MB468).
6. El método según cualquiera de las reivindicaciones 1-5, donde la muestra biológica se trata primero para aislar las células citoqueratina positivas y/o las células EpCAM positivas y donde las células aisladas citoqueratina positivas y/o las células EpCAM positivas una vez aisladas se usan para desarrollar el método definido en cualquiera de las reivindicaciones 1-5.
7. El método según la reivindicación 6, donde las células citoqueratina positivas están aisladas por selección inmunomagnética y/o inmunocitoquímica.
8. Un método para predecir o pronosticar la progresión del cáncer en una muestra biológica de un sujeto, donde el sujeto está sufre cáncer, y en el que el método comprende la utilización, como indicador, los niveles de expresión de miARN-21 , y la obtención de un resultado del método mediante la comparación de los niveles de expresión de dicho miARN-21 con un control negativo o con un control positivo, donde si los niveles de expresión en las células de la muestra biológica están sobre-expresados en comparación con un control negativo es indicativo de una progresión maligna del cáncer o si los niveles de expresión en las células de la muestra biológica se expresan en una cantidad mayor que 2/3 de la expresión máxima alcanzada en un control positivo es indicativo de una progresión maligna del cáncer.
9. Un método de diagnóstico de cáncer en un sujeto, donde el método comprende utilizar, como indicador, los niveles de expresión de miARN-21 , y la obtención de un resultado del método mediante la comparación de los niveles de expresión de dicho miARN-21 con un control negativo o con un control positivo, donde si los niveles de expresión en las células de la muestra biológica son sobre-expresado en comparación con un control negativo es indicativo de la presencia de células tumorales circulantes en dicha muestra biológica o donde si los niveles de expresión en las células de la muestra biológica se expresan en una cantidad mayor que 2/3 de la expresión máxima alcanzada en un control positivo es indicativo de la presencia de células tumorales circulantes en dicha muestra biológica.
10. El método según cualquiera de las reivindicaciones 8 o 9, donde el sujeto es un sujeto humano.
1 1. El método según cualquiera de las reivindicaciones 8-10, donde la muestra biológica es cualquier fluido corporal tal como la sangre o la orina.
12. El método según cualquiera de las reivindicaciones 8-11 , donde los niveles de expresión de miARN-21 son determinados por hibridación in situ.
13. El método según cualquiera de las reivindicaciones 8-12, donde el control negativo es una célula epitelial no tumoral o una célula hematopoyética y donde, como se usa en el presente documento la sobreexpresión se entiende como un nivel de expresión de miARN-21 de al menos dos veces en las células de la muestra biológica en comparación con el nivel de expresión de miARN-21 en una célula epitelial no tumoral tal como se determina mediante hibridación in situ o un nivel de expresión de al menos 10 veces de miARN-21 en las células de la muestra biológica en comparación con el nivel de expresión de miARN-21 en una célula hematopoyética, preferiblemente linfocitos o células mononucleares, tal como se determina mediante hibridación in situ.
14. El método según cualquiera de las reivindicaciones 8-12, donde el control positivo es la línea celular tumoral epitelial de mama (MDA-MB468).
15. El método según cualquiera de las reivindicaciones 8-14, donde la muestra biológica se trata primero para aislar las células citoqueratina positivas y/o las células EpCAM positivas y donde las células aisladas citoqueratina positivas y/o las células EpCAM positivas una vez aisladas se usan para desarrollar el método definido en cualquiera de las reivindicaciones 1-7.
16. El método según la reivindicación 15, donde las células citoqueratina positivas están aisladas por selección inmunomagnética y/o inmunocitoquímica.
17. El método según cualquiera de las reivindicaciones 8-16, donde el cáncer es un tumor sólido de origen epitelial.
18. El método según la reivindicación anterior, donde el tumor sólido de origen epitelial se selecciona de la lista que consiste en cáncer de ovario, cabeza y cuello, laringe, colon, estómago, próstata, cuello uterino, gástrico, urotelial, adrenal, la glándula tiroides, pulmón, útero, recto, cáncer de mama o renal o carcinoma o un sarcoma, melanoma.
19. Un método para la asignación de un sujeto humano que sufre de cáncer a uno de dos grupos, donde el grupo 1 comprende los sujetos identificables por el método de acuerdo con las reivindicaciones 8-18; y en donde el grupo 2 representa el resto de sujetos.
20. Una composición farmacéutica que comprende cisplatino y/u otro compuesto que actúa a través de la activación de la vía estrés oxidativo, para el tratamiento de un sujeto humano del grupo 1 identificable por el método según la reivindicación 19.
21. Una composición farmacéutica que comprende los complejos de coordinación de platino, doxorrubicina y otros antracycins, bortezomib, campothecin, pro- carbazine, ciclofosfamida, adriamicina o agentes alquilantes, la terapia fotodinámica y biológicament-CAL tales como rituximab, para el tratamiento de una sujeto humano del grupo 1 identificables por el método según la reivindicación 19.
22. Un kit o un dispositivo adecuado para llevar a cabo el método de cualquiera de las reivindicaciones 1-18, que comprende al menos un oligonucleótido(s) capaces de hibridar con miARN-21 y, opcionalmente, medios para la detección de células citoqueratina positivas de por selección inmunomagnética y/o inmunocitoquímica.
23. El kit o el dispositivo según la reivindicación 22, que comprende además una muestra de control positivo, opcionalmente una célula epitelial no tumoral.
PCT/ES2015/070681 2014-09-18 2015-09-18 Procedimiento para la detección de células tumorales circulantes, tanto células tumorales circulantes de fenotipo epitelial y células tumorales circulantes que tienen marcadores de la transición epitelial-mesenquimal (emt), usando el miarn-21 como biomarcador. WO2016042197A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/512,449 US20170321261A1 (en) 2014-09-18 2015-09-18 Method for the detection of circulating tumour cells, both circulating tumour cells of the epithelial phenotype and circulating tumour cells having epithelial-mesenchymal transition (emt) markers, using the mirna-21 as a biomarker
EP15841804.6A EP3196299A4 (en) 2014-09-18 2015-09-18 Method for the detection of circulating tumour cells, both circulating tumour cells of the epithelial phenotype and circulating tumour cells having epithelial-mesenchymal transition (emt) markers, using the mirna-21 as a biomarker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201431357 2014-09-18
ESP201431357 2014-09-18

Publications (1)

Publication Number Publication Date
WO2016042197A1 true WO2016042197A1 (es) 2016-03-24

Family

ID=55532595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070681 WO2016042197A1 (es) 2014-09-18 2015-09-18 Procedimiento para la detección de células tumorales circulantes, tanto células tumorales circulantes de fenotipo epitelial y células tumorales circulantes que tienen marcadores de la transición epitelial-mesenquimal (emt), usando el miarn-21 como biomarcador.

Country Status (3)

Country Link
US (1) US20170321261A1 (es)
EP (1) EP3196299A4 (es)
WO (1) WO2016042197A1 (es)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050153309A1 (en) 2003-12-22 2005-07-14 David Hoon Method and apparatus for in vivo surveillance of circulating biological components
SG10202012275PA (en) 2016-06-09 2021-01-28 Haimachek Inc Collector for detection and reversible capturing of cells from body fluids in vivo
CN112501259A (zh) * 2020-11-30 2021-03-16 广东医科大学 长链非编码rna显色原位杂交试剂盒和检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133467A1 (en) * 2013-02-28 2014-09-04 Agency For Science, Technology And Research Methods and biomarkers for the detection of circulating tumor cells

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2455492B1 (en) * 2006-07-13 2013-11-20 The Ohio State University Research Foundation Micro-RNA-based methods and compositions for the diagnosis and treatment of colon related diseases
US20140141986A1 (en) * 2011-02-22 2014-05-22 David Spetzler Circulating biomarkers
CN102533976A (zh) * 2011-12-15 2012-07-04 苏州福英基因科技有限公司 各种癌症病理演变前期microrna-21原位杂交检测试剂盒及检测方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133467A1 (en) * 2013-02-28 2014-09-04 Agency For Science, Technology And Research Methods and biomarkers for the detection of circulating tumor cells

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MADHAVAN DHARANIJA ET AL.: "Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer.", CLINICAL CANCER RESEARCH : AN OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH UNITED STATES, vol. 18, no. 21, 1 November 2012 (2012-11-01), pages 5972 - 5982, XP055076386, ISSN: 1078-0432, DOI: doi:10.1158/1078-0432.CCR-12-1407 *
ORTEGA FRANCISCO G ET AL.: "miRNA in situ hybridization in circulating tumor cells--MishCTC.", SCIENTIFIC REPORTS ENGLAND, vol. 5, 17 March 2015 (2015-03-17), pages 9207, XP055418992, ISSN: 2045-2322 *
See also references of EP3196299A4 *
SIEUWERTS ANIETA M ET AL.: "mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients.", CLINICAL CANCER RESEARCH : AN OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH UNITED STATES, vol. 17, no. 11, 1 June 2011 (2011-06-01), pages 3600 - 3618, XP055419002, ISSN: 1078-0432 *
ZHENG YUANYUAN ET AL.: "MicroRNA-21 is a new marker of circulating tumor cells in gastric cancer patients.", CANCER BIOMARKERS : SECTION A OF DISEASE MARKERS NETHERLANDS, vol. 10, no. 2, 2011, pages 71 - 77, XP009501063, ISSN: 1875-8592 *

Also Published As

Publication number Publication date
EP3196299A1 (en) 2017-07-26
US20170321261A1 (en) 2017-11-09
EP3196299A4 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
Zhang et al. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer
Rolfo et al. Liquid biopsies in lung cancer: the new ambrosia of researchers
Warnecke-Eberz et al. Exosomal onco-miRs from serum of patients with adenocarcinoma of the esophagus: comparison of miRNA profiles of exosomes and matching tumor
Wang et al. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma
Ma et al. Clinical application and detection techniques of liquid biopsy in gastric cancer
Ding et al. Perspectives of the application of liquid biopsy in colorectal cancer
Samandari et al. Liquid biopsies for management of pancreatic cancer
Lee et al. Detection of exosome miRNAs using molecular beacons for diagnosing prostate cancer
Kahn et al. RT-PCR amplification of CK19 mRNA in the blood of breast cancer patients: correlation with established prognostic parameters
Zhou et al. Marker expression in circulating cancer cells of pancreatic cancer patients
Sha et al. Decreased expression of HOXB9 is related to poor overall survival in patients with gastric carcinoma
Ortega et al. miRNA in situ hybridization in circulating tumor cells-MishCTC
Clancy et al. Screening of exosomal microRNAs from colorectal cancer cells
US20130137593A1 (en) Early detection and staging of colorectal cancer using a panel of micro rnas
ES2651522T3 (es) Altos niveles de FT de TEM para el diagnóstico del cáncer, en particular de cáncer colorrectal (CCR) y de páncreas (CP)
Jiang et al. Circulating long non-coding RNA PCGEM1 as a novel biomarker for gastric cancer diagnosis
Das et al. Tissue inhibitor of metalloproteinase-3 (TIMP3) expression decreases during melanoma progression and inhibits melanoma cell migration
JPWO2013038737A1 (ja) 膀胱癌細胞の検出方法、膀胱癌細胞の検出方法に用いるプライマー及び膀胱癌マーカ
Bünger et al. Diversity of assessing circulating tumor cells (CTCs) emphasizes need for standardization: a CTC Guide to design and report trials
Katseli et al. Multiplex PCR-based detection of circulating tumor cells in lung cancer patients using CK19, PTHrP, and LUNX specific primers
Nezos et al. Detection of circulating tumor cells in bladder cancer patients
WO2016042197A1 (es) Procedimiento para la detección de células tumorales circulantes, tanto células tumorales circulantes de fenotipo epitelial y células tumorales circulantes que tienen marcadores de la transición epitelial-mesenquimal (emt), usando el miarn-21 como biomarcador.
Wang et al. Detection of circulating tumor cells in patients with breast cancer using the quantitative RT-PCR assay for monitoring of therapy efficacy
Chen et al. Simultaneous detection of multiple mRNA markers CK19, CEA, c-Met, Her2/neu and hMAM with membrane array, an innovative technique with a great potential for breast cancer diagnosis
Bhardwaj et al. Liquid biopsy in ovarian cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015841804

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015841804

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15512449

Country of ref document: US