WO2016041490A1 - 一种具有高温烘烤硬化性的搪瓷用钢及其制造方法 - Google Patents

一种具有高温烘烤硬化性的搪瓷用钢及其制造方法 Download PDF

Info

Publication number
WO2016041490A1
WO2016041490A1 PCT/CN2015/089695 CN2015089695W WO2016041490A1 WO 2016041490 A1 WO2016041490 A1 WO 2016041490A1 CN 2015089695 W CN2015089695 W CN 2015089695W WO 2016041490 A1 WO2016041490 A1 WO 2016041490A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
enamel
temperature
bake hardenability
temperature bake
Prior art date
Application number
PCT/CN2015/089695
Other languages
English (en)
French (fr)
Inventor
孙全社
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP15841538.0A priority Critical patent/EP3196328B1/en
Publication of WO2016041490A1 publication Critical patent/WO2016041490A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0442Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to an alloy steel material and a method of manufacturing the same, and more particularly to an enamel steel and a method of manufacturing the same.
  • the liner is a key component that determines the safety and service life of the water heater.
  • the enamel inner liner with steel plate as the bottom blank has many characteristics such as good corrosion resistance, high surface hardness, smooth and easy to clean, and the like, such enamel inner liner greatly improves the service life and comprehensive performance of the water heater liner.
  • the steel plate When the steel plate is used as the base material to make the enamel inner tank of the water heater, the steel plate needs to be subjected to blanking, forming, welding, and then coating, and finally fired at a high temperature of about 830 °C.
  • steel sheets must meet various performance requirements such as formability, strength, weldability, scale resistance, pinhole resistance, and high temperature firing.
  • the enamel liner was usually welded from three parts, namely two end caps and one barrel body, so an enamel liner generally has three weld seams, including two loop seams and one straight seam, two end caps
  • the requirements for formability are relatively low.
  • a new type of inner liner is formed, which is formed by welding two parts of the upper barrel and the lower barrel, and reduces the original three welds to the middle one, so that the new type of liner
  • the winding process, the reaming and the two welds are omitted during the machining process, and the manufacturing process is greatly simplified.
  • the reduction of the weld seam can greatly improve the pressure resistance of the liner.
  • due to the deeper stamping of the new liner the reaming and other processes are performed after the stamping, so that the punching performance and the hole expanding performance of the steel sheet are significantly improved.
  • the steel sheet generally used for the inner liner can meet the stamping requirements, but its hole expanding performance is low, that is, it is easy to crack after reaming after deep drawing.
  • the grains in the weld and heat affected zone are seriously grown after welding, and the grains are easy to grow after high temperature coating.
  • the yield strength of the steel base metal, welds and heat-affected zones is reduced, which eventually causes the inner liner to crack and leak water around the weld when it is pressed.
  • scale explosion often occurs.
  • the publication number is CN1966753A, and the publication date is February 23, 2007.
  • the Chinese patent document entitled "A hot-rolled double-sided enamel steel sheet and a manufacturing method thereof" relates to a steel sheet for enamel, and its elemental composition (wt. %): C: 0.02% to 0.06%, Si: ⁇ 0.50%, Mn: 0.15% to 0.40%, P: ⁇ 0.15%, S: ⁇ 0.006%, N ⁇ 0.003%, Ti: 0.08% to 0.20% , Al S : 0.005% to 0.055%, Ti/C: 2.2 to 5, the balance being Fe and unavoidable impurities.
  • the microstructure is ferrite having a crystal grain diameter of 2 ⁇ m to 20 ⁇ m, and TiC particles having a diameter of 20 nm or less are uniformly distributed in the structure.
  • the steel sheet for enamel has a high content of Ti element and a low content of S element.
  • the publication number is CN101684532A, and the publication date is March 31, 2010.
  • the Chinese patent document entitled "A enamel steel for cold-rolled water heaters and a production method" discloses an enamel steel whose chemical element mass percentage is ( Composition of wt.%): C: 0.01% to 0.08%, Si ⁇ 0.03%, Mn: 0.10% to 0.60%, P ⁇ 0.02%, S: 0.003% to 0.02%, N: 0.001% to 0.006%, Al S ⁇ 0.04%, Ti: 0.02% ⁇ 0.12%, the rest is iron and unavoidable impurities, and the excess titanium content in the steel satisfies the relationship: Ti-(4*C+3.43*N+1.5S) ⁇ 0.
  • the yield strength of the enamel steel disclosed in the Chinese patent document after the simulated smoldering is lower than the yield strength before the simulated smoldering.
  • the publication number is CN101586210A, and the publication date is November 25, 2009.
  • the Chinese patent document entitled "High-strength enamel steel and its production and firing process" discloses a steel for enamel, and its chemical elements.
  • the mass percentage is: C: 0.01 to 0.12, Si ⁇ 0.03, Mn: 0.50 to 1.00, P ⁇ 0.070, S ⁇ 0.015, Nb: 0.020 to 0.050, Mo: 0.05 to 0.30, Al S : 0.005 to 0.070,
  • the amount is Fe and unavoidable impurities.
  • the enamel steel also satisfies 10 Nb ⁇ Mo and 0.30 ⁇ 10 Nb + Mo ⁇ 0.50.
  • An object of the present invention is to provide a steel for enamel having high-temperature bake hardenability, which has excellent formability, good weldability, and excellent coating properties. Further, the enamel steel according to the present invention also has excellent calcining properties, and the yield strength after high-temperature calcination is remarkably improved, that is, it has high-temperature bake hardenability. Further, the alloy for enamel according to the present invention has a low alloy addition cost.
  • the present invention provides a steel for enamel having high-temperature bake hardenability, and the chemical element mass distribution ratio is:
  • Mn 0.05 to 0.50%
  • Ti element and the mass percentage of Ti element satisfies N ⁇ Ti ⁇ 3 ⁇ 10 -4 , S ⁇ Ti ⁇ 2 ⁇ 10 -3 , Ti ⁇ 3.43N+1.5S+0.02; the balance is Fe and inevitably Impurity element.
  • the inevitable impurities in the technical solution mainly refer to the P element and the Si element.
  • the P content is high, it is easy to be segregated at the grain boundaries in the steel, and thus, bubbles and black spots are easily generated during the calcination, thereby affecting the surface quality of the enamel.
  • the Si content is high, not only the enamel properties of the steel are impaired, but also the oxide inclusions which are poor in ductility are formed, thereby impairing the plasticity of the steel.
  • the P element and the Si element are harmful elements, and the content thereof in the steel needs to be as low as possible. Therefore, the content of the Si element can be controlled to be ⁇ 0.10 wt.%, and the P element is The content is controlled to be ⁇ 0.035 wt.%.
  • the carbon content of the steel has a great influence on the formability and strength of the steel sheet. The higher the carbon content, the lower the plasticity and the higher the strength, and vice versa.
  • carbon forms a microstructure such as cementite or pearlite.
  • the carbon may also form a titanium carbide compound with titanium.
  • the carbon does not form a pearlite microstructure, but is a dispersed carbide (for example, , titanium carbide, cementite, etc.) or a small amount of solid solution. Due to the large accumulation of cementite in the pearlite microstructure, on the one hand, a large number of bubbles are formed in the enamel process, and on the other hand, it is not conducive to increasing the strength of the steel during the simmering process.
  • a dispersed carbide for example, titanium carbide, cementite, etc.
  • carbon content is higher than 0.020 wt.%, carbon is likely to form relatively coarse cementite, and even pearlite microstructure is formed, and conversely, when the carbon content is less than 0.008 wt.%, and not only carburizing in steel
  • the content of the body is small, and the titanium carbide formed with titanium is also small, which cannot strengthen the steel, and the strength of the steel is lowered, and the effect of high-temperature bake hardening is not obtained.
  • the amount of titanium alloy added is very important. According to the combination of titanium
  • the calculation of the solubility product of the formation shows that titanium reacts with nitrogen first, then with sulfur, and finally with carbon. Therefore, in such a precipitation order, it is necessary to ensure that a part of titanium and carbon react to form carbonization.
  • titanium When the mass percentage of the added titanium element satisfies the relationship: Ti ⁇ 3.43N + 1.5S + 0.02, it is ensured that a part of titanium reacts with carbon, and by controlling the hot rolling process, the cementite particles are compared with the present Some cementite particles are small, and titanium carbide and titanium carbonitride are present in a state of fine particles to achieve the purpose of matrix strengthening.
  • the cementite and titanium carbide and titanium carbonitride particles which were originally present in a fine dispersion state will partially dissolve in the subsequent heating process, and will be re-precipitated during the subsequent cooling process.
  • the re-precipitated particles will be more fine and dispersed, so as to achieve the purpose of bake hardening after a high temperature process.
  • the mass percentage of titanium element is too low, if it is lower than the content defined by the relationship, that is, Ti ⁇ 3.43N+1.5S+0.02, it is difficult to ensure a certain amount of titanium carbide in the steel. Titanium carbonitride particles, in this way, can not play the role of precipitation strengthening.
  • the content of the C element in the steel for enamel having high-temperature bake hardenability according to the present invention should be controlled to be 0.008 to 0.020 wt.%, and the content of Ti should satisfy: Ti ⁇ 3.43 N + 1.5 S + 0.02.
  • control the content of the C element is in the range of 0.015 to 0.020 wt.%.
  • Mn Manganese is a deoxidizing element in steel, which can be added to control the oxygen content in the steel. Manganese can react with sulfur to form manganese sulfide. After the titanium element is added to the steel, the manganese also forms a composite inclusion with it, such as manganese manganese sulfide. These inclusions are spherical and can significantly reduce the effect of manganese sulfide on processability. However, when the manganese content is too high, the reaction between the steel and the enamel interface is affected during the enamel process, the adhesion of the enamel is impaired, and defects such as bubbles are easily generated. In view of the above, the Mn content in the enamel steel having high-temperature bake hardenability according to the present invention is set to 0.05 to 0.50 wt.%.
  • the Mn content in the above-described steel for enamel having high-temperature bake hardenability is further set to 0.1 to 0.3 wt.%.
  • S In general, sulfur in steel is a harmful element, because sulfur and manganese form manganese sulfide inclusions, and manganese sulfide inclusions can damage the transverse plasticity of the steel sheet.
  • the S element is not a harmful element, and it is necessary to control the S content in the steel for enamel to be in the range of 0.021 to 0.035 wt.%, and to ensure that S ⁇ Ti ⁇ 2 ⁇ 10 -3 .
  • the reason why the sulfur content is controlled in the range of 0.021 to 0.035 wt.% is because sulfur and titanium form titanium sulfide on the basis of adding titanium, and a large amount of hydrogen storage traps are formed around the titanium sulfide particles in the enamel process. It is not easy to produce scale defects. At the same time, the addition of titanium to steel can also reduce the adverse effects of manganese sulfide formed in steel on the plasticity of steel. However, if the sulfur content is higher than 0.035 wt.%, the sulfur needs to consume more titanium and manganese to form sulfides, and the sulfide particles formed may be large, thus damaging the plasticity of the steel.
  • the larger particle sulphide has a very limited effect on improving the anti-scale performance.
  • sulfur may form titanium sulfide with titanium or manganese manganese titanium which may form a composite with titanium and manganese.
  • titanium sulfide can be formed prior to manganese sulfide. The reason is that the larger the product of S ⁇ Ti, the higher the formation temperature of titanium sulfide, and the shape of the titanium sulfide particles is spherical, so that the vulcanization can be further improved by controlling the heating and rolling steps in the subsequent hot rolling process.
  • the shape and size of titanium is
  • manganese can also form composite manganese sulfide titanium inclusions with sulfur and titanium, and its particle shape also appears spherical, so that the formation of pure plastic manganese sulfide inclusions in steel is avoided. Thereby improving the processing properties of the steel.
  • Alt or Al S Aluminum is also a strong deoxidizing element. When the aluminum content is high, the oxygen content in the steel is lowered. Conversely, when the aluminum content is too low, the oxygen content in the steel is increased. The oxygen remaining in the steel is mainly present in the form of oxide inclusions, which can seriously impair the plasticity of the steel. The right amount of aluminum can reduce the oxygen content in the steel, and thus aluminum is one of the inevitable additions in steel.
  • the solution temperature, in K, Ti and N are the mass percentages of the elements. The higher the nitrogen and/or titanium content, the higher the amount of titanium nitride formed and the larger the particles.
  • titanium nitride particles form tiny cavities around the particles during processing deformation to facilitate the hydrogen storage of the steel sheet during the enamel process.
  • the titanium nitride particles may seriously impair the plasticity and hole expansion properties of the steel sheet and other mechanical properties.
  • the titanium nitride particles also fail to increase the strength of the steel and the strength of the steel after calcination.
  • the nitrogen in the steel should be as low as possible, and the nitrogen content should be controlled to 0 ⁇ N ⁇ 0.003 wt.%, and the N ⁇ is satisfied. Ti ⁇ 3 ⁇ 10 -4 .
  • the steel for enamel having high-temperature bake hardenability according to the present invention must have O controlled to be 0 ⁇ O ⁇ 0.010 wt.%.
  • the definition of the mass percentage of titanium is defined by the following three constraint formulas: 1) N ⁇ Ti ⁇ 3 ⁇ 10 -4 , 2) S ⁇ Ti ⁇ 2 ⁇ 10 -3 and 3) Ti ⁇ 3.43N + 1.5S + 0.02. That is to say, the addition of the Ti element is limited by the mass percentage of the N and S elements.
  • the carbon content of the enamel steel of the present invention is low, most of the carbon is fixed after the addition of titanium in the steel to form a titanium carbide compound, which makes the carbon or cementite content in a free state extremely small. This greatly suppresses the occurrence of pinhole defects during the coating process, thereby greatly increasing the service life of the enamel liner.
  • the C element in the steel for enamel having high-temperature bake hardenability according to the present invention exists in the form of dispersed carbide.
  • the carbide is cementite and fine titanium carbide, titanium carbonitride.
  • titanium carbide or titanium carbonitride particles have a particle diameter of 10 to 30 ⁇ m.
  • 0 ⁇ Cu ⁇ 0.10%, 0 ⁇ Cr ⁇ 0.10%, 0 ⁇ Ni ⁇ 0.10%, 0 ⁇ Mo ⁇ 0.10 are further contained. At least one of %, 0 ⁇ Nb ⁇ 0.010%, 0 ⁇ V ⁇ 0.020%, 0 ⁇ B ⁇ 0.0005%, and 0.05% ⁇ 5 ⁇ Nb + Cu + V + Ni + Cr + Mo + 10 ⁇ B ⁇ 0.20%.
  • niobium, vanadium and boron increases the recrystallization temperature of the steel.
  • the hot rolling temperature of the steel sheet also needs to be correspondingly increased.
  • the thickness of the finished product is For steel plates below 2.5 mm, too high a final rolling temperature is difficult to achieve, and it may cause temperature unevenness in different parts of the steel strip, eventually leading to mixed crystal and abnormal defects of the steel sheet.
  • the increase in the recrystallization temperature has a certain effect on the strength before the enamel is sintered, it does not have much effect on the strength after the enamel is sintered.
  • the present invention also provides a method for producing the above-described steel for enamel having high-temperature bake hardenability, which comprises the steps of: hot metal pretreatment ⁇ converter smelting ⁇ refining ⁇ continuous casting ⁇ hot rolling .
  • the steps include: pickling ⁇ cold rolling ⁇ annealing ⁇ leveling.
  • the total reduction ratio is controlled to be greater than 70%. Further preferably, the total reduction ratio of cold rolling is controlled to be ⁇ 75%. Further, in the cold rolling step, the surface roughness of the steel sheet can be controlled to be in the range of 0.4 to 2.0 ⁇ m by changing the roughness of the roll surface.
  • the annealing temperature is 650-800 °C.
  • the heating temperature is 1100 to 1250 ° C
  • the heating time is ⁇ plate thickness ⁇ 1 min/mm, wherein the plate thickness unit is mm, wherein the plate thickness refers to the thickness of the continuous casting blank.
  • the heating temperature of the continuous casting slab was set to 1100 to 1250 °C.
  • the specific heating time in this range can be adjusted according to the thickness of the steel slab. Generally, the thinner the steel slab, the shorter the heating time, and the heating time needs to satisfy t ⁇ plate thickness ⁇ 1 min / mm.
  • the hot rolling finishing temperature is 850 to 930 ° C
  • the hot rolling coiling temperature is 630 to 780 ° C.
  • the enamel steel for controlling the present invention is subjected to hot rolling finishing in a temperature range of 850 to 930 ° C to ensure that hot rolling is completed above the recrystallization temperature. In order to avoid rolling in the austenite + ferrite two-phase region, to prevent the defects caused by the mixed crystal and microstructure of the steel plate.
  • the method for manufacturing enamel steel having high-temperature bake hardenability allows the cementite and the titanium carbide to exist in a fine particle state by controlling the process parameters in the hot rolling step to achieve the purpose of matrix strengthening. Further, the shape and size of the titanium sulfide in the steel are further improved by controlling the heating temperature in the continuous casting step and the finish rolling temperature and the coiling temperature in the hot rolling step.
  • the enamel steel having high-temperature bake hardenability according to the present invention has a marked increase in yield strength after high-temperature calcination, thereby improving the pressure resistance of the enamel steel product and prolonging the pressure. Its service life.
  • the enamel steel with high temperature bake hardenability according to the invention has good forming property, and has an elongation of ⁇ 39% and a hole expansion ratio of ⁇ 60%, and is particularly suitable for forming water heater liners of various complicated shapes.
  • the enamel steel having high-temperature bake hardenability according to the present invention has good weldability.
  • the steel for enamel having high-temperature bake hardenability according to the present invention has excellent coating performance, and has a long hydrogen permeation time ( ⁇ 10 min), which is higher than the hydrogen penetration time of the double-sided enamel steel in the prior art ( ⁇ 8min).
  • the alloy of the enamel steel having high-temperature bake hardenability according to the present invention has a low cost and is relatively economical in production and production cost because of the use of a lower-cost alloy addition element.
  • the production process of the method for producing enamel steel having high-temperature bake hardenability according to the present invention is simple and easy.
  • Fig. 1 is a graph showing the tendency of the yield strength of the enamel steel having the high-temperature bake hardenability of Example A1 with the holding time at 830 °C.
  • Fig. 2 is a view showing the microstructure of the enamel steel having high-temperature bake hardenability of Example A1.
  • Fig. 3 is a view showing the appearance of a precipitate phase in the steel for enamel having high-temperature bake hardenability in Example A1.
  • Example A6 The enamel steels of Example A6 were produced according to the following steps (1) to (5) for the enamel steels of Examples A1 to A5 and Comparative Example B1 according to the following steps (1) to (9):
  • Converter smelting decarburization, dephosphorization, removal of residual elements and harmful gases by top-bottom combined blowing converter
  • Hot rolling the continuous casting billet is heated before hot rolling, the heating temperature is 1100 ⁇ 1250 ° C, the heating time t ⁇ sheet thickness ⁇ 1 min / mm, wherein the thickness of the sheet is mm; for the 200 mm thick continuous casting billet, Heating time is controlled at 200-240min or longer. For 230mm thick continuous casting billet, the heating time is controlled at 230-260min or longer; if necessary, the thickness of hot-rolling is 1.5 ⁇ 18mm, and the hot rolling finishing temperature is 850. ⁇ 930 ° C, after laminar cooling to coiling temperature, coiling, hot rolling coiling temperature of 630 ⁇ 780 ° C;
  • pickling mainly using diluted hydrochloric acid for pickling, or other methods of pickling, the purpose of pickling is to remove the surface of the scale;
  • Annealing at 650-800 °C, the purpose is to achieve recrystallization and grain growth of the steel sheet after cold rolling to obtain good plasticity;
  • Table 1 lists the mass distribution ratios of the respective chemical elements in the enamel steels of Examples A1 to A6 and Comparative Example B1.
  • Table 2 lists the process parameters of the manufacturing method of the enamel steels of Examples A1 to A6 and Comparative Example B1.
  • Table 3 lists the mechanical property parameters of the enamel steels in the examples A1-A6 and Comparative Example B1 at room temperature and at 830 ° C, respectively.
  • the yield strengths of Examples A1-A6 are all ⁇ 197 MPa, the tensile strength is ⁇ 315 MPa, the elongation A 80 ⁇ 39%, the hole expansion ratio ⁇ 70%, and the hydrogen breakthrough time. ⁇ 12min, and at 830 °C, the yield strength of Examples A1-A6 is increased to ⁇ 315MPa, the tensile strength is ⁇ 412MPa, and the elongation A 80 ⁇ 40%, which can be used to illustrate the enamel steel of the present invention.
  • the enamel steel of the present invention has a hydrogen permeation time of ⁇ 12 min.
  • the hydrogen permeation time is ⁇ 8min
  • the steel plate can meet the anti-scale explosion requirements of double-sided enamel, that is, regardless of the type of glaze used in actual production, such steel plate can meet the anti-scale Explosion requirements. Since the double-sided enamel is more demanding than the one-side enamel against the scale explosion performance, the enamel steel of the present invention can fully Enough to meet the requirements of single-sided enamel.
  • Fig. 1 shows the tendency of the enamel steel of the high temperature bake hardenability of Example A1 to have a yield strength with time at a temperature of 830 °C.
  • the enamel steel of Example A1 has a yield strength of the enamel steel of Example A1 as the holding time has elapsed when the tempering steel of Example A1 has not reached the specified holding time (about 10 minutes). Increased, however, after the specified holding time, the yield strength decreases with the holding time. However, even if the holding time is longer at 830 ° C, the yield strength is still greatly improved compared with the yield strength at room temperature.
  • Fig. 2 shows the microstructure of the enamel steel of Example A1
  • Fig. 3 shows the topography of the precipitated phase in the enamel steel.
  • the microstructure of the enamel steel of Example A1 is a uniform ferrite structure, and no pearlite structure and large-sized cementite particles are observed, and the precipitated phase is fine and dispersed. Distribution, mainly titanium carbide or titanium carbonitride.

Abstract

一种具有高温烘烤硬化性的搪瓷用钢,其化学元素质量百分配比为:C:0.008~0.020%、Mn:0.05~0.50%、S:0.021~0.035%、Alt:0.005~0.050%或Al S:0.003~0.045%、0<N<0.003%,0<O≤0.010%以及Ti元素,且Ti元素的质量百分含量满足N×Ti≤3×10 -4,S×Ti≥2×10 -3,Ti≥3.43N+1.5S+0.02,余量为Fe和不可避免的杂质元素。一种上述搪瓷用钢的制造方法,其包括步骤:铁水预处理→转炉冶炼→精炼→连铸→热轧。具有高温烘烤硬化性的搪瓷用钢具有较好的成形性能,良好的焊接性能,优异的搪烧性能以及优良的涂搪性能。

Description

一种具有高温烘烤硬化性的搪瓷用钢及其制造方法 技术领域
本发明涉及一种合金钢材及其制造方法,尤其涉及一种搪瓷用钢及其制造方法。
背景技术
对于容积式热水器而言,内胆是它的关键部件,其决定了热水器的使用安全和使用寿命。以钢板为底坯的搪瓷内胆具有耐蚀性好、表面硬度高、光滑易清洁等诸多特点,这样的搪瓷内胆大幅度地提高了热水器内胆的使用寿命和综合性能。采用钢板为底坯制作热水器的搪瓷内胆时,首先钢板需要经过下料、加工成形、焊接后进,再进行涂搪,最后在830℃左右的高温条件下烧成。但是,为了满足生产出高质量搪瓷内胆的要求,钢板必须满足成形性、强度、焊接性、抗鳞爆性、抗针孔性以及耐高温烧成等多方面的性能要求。
之前,搪瓷内胆通常由三部分焊接而成,即两个端盖和一个桶身,因此一个搪瓷内胆一般具有三道焊缝,其包括两道环缝和一道直缝,两个端盖对成形性的要求相对较低。然而,现有技术中出现一种新型内胆,这种新型内胆由上桶、下桶两部分焊接而成,将原来的三道焊缝减少为中间一道环缝焊接,因此,新型内胆在加工过程中省略了卷圆、扩孔和两道焊缝,制作工艺得到大大地简化。同时,焊缝的减少能够大幅度地提高内胆的耐压能力。同时,由于新型内胆的冲压较深,冲压后再进行扩孔等加工,因而,对钢板的冲压性能和扩孔性能要求明显提高。
为了满足内胆的加工要求,主要采用冷轧钢板,其成形性能优于热轧钢板。现有技术中通常用于内胆的钢板能够满足冲压要求,但其扩孔性能较低,也就是经过深冲后扩孔容易开裂。同时,由于钢中缺乏高温下铁素体晶粒异常长大的抑制机制,在焊接后焊缝和热影响区的晶粒严重异常长大,在高温涂搪烧成后晶粒也容易长大,造成钢板母材、焊缝和热影响区等的屈服强度下降,最终导致内胆在打压时极易在焊缝周围开裂并漏水。另外,由于钢中贮氢陷阱不足,即使在内胆的单面涂搪条件下,也经常会产生鳞爆现象。
公开号为CN1966753A,公开日为2007年2月23日,名称为“一种热轧双面搪瓷用钢板及其制造方法”的中国专利文献涉及一种搪瓷用钢板,其各元素成分(wt.%)为:C:0.02%~0.06%,Si:≤0.50%,Mn:0.15%~0.40%,P:≤0.15%,S:≤0.006%,N≤0.003%,Ti:0.08%~0.20%,AlS:0.005%~0.055%,Ti/C:2.2~5,余量为Fe和不可避免的杂质。热轧状态下组织为晶粒直径在2μm~20μm的铁素体,在组织中均匀分布着直径在20nm以下的TiC粒子。在该专利文献所公开的技术方案中,搪瓷用钢板具有含量较高的Ti元素和含量较低的S元素。
公开号为CN101684532A,公开日为2010年3月31日,名称为“一种冷轧热水器用搪瓷钢及生产方法”的中国专利文献公开了一种搪瓷钢,其化学元素质量百分含量为(wt.%)的成份组成:C:0.01%~0.08%,Si≤0.03%,Mn:0.10%~0.60%,P≤0.02%,S:0.003%~0.02%,N:0.001%~0.006%,AlS≤0.04%,Ti:0.02%~0.12%,其余为铁及不可避免的杂质,钢中的过剩钛含量满足关系式:Ti-(4*C+3.43*N+1.5S)≤0。该中国专利文献所公开的搪瓷钢经过模拟搪烧后的屈服强度低于模拟搪烧前的屈服强度。
公开号为CN101586210A,公开日为2009年11月25日,名称为“高强度搪瓷用钢及其生产和烧搪工艺”的中国专利文献公开了一种用于搪瓷用钢,其各化学元素的质量百分含量为:C:0.01~0.12,Si≤0.03,Mn:0.50~1.00,P≤0.070,S≤0.015,Nb:0.020~0.050,Mo:0.05~0.30,AlS:0.005~0.070,余量为Fe及不可避免的杂质。同时,该搪瓷用钢还满足10Nb≥Mo且0.30≤10Nb+Mo≤0.50。
发明内容
本发明的目的在于提供一种具有高温烘烤硬化性的搪瓷用钢,该搪瓷用钢具有优良的成形性能,良好的焊接性能以及优良的涂搪性能。另外,本发明所述的搪瓷用钢还具备优异的搪烧性能,其经过高温搪烧后的屈服强度会显著提升,即具有高温烘烤硬化性。此外,本发明所述的搪瓷用钢的合金添加成本低。
为了实现上述目的,本发明提供了一种具有高温烘烤硬化性的搪瓷用钢,其化学元素质量百分配比为:
C:0.008~0.020%;
Mn:0.05~0.50%;
S:0.021~0.035%;
Alt 0.005~0.050%或者AlS 0.003~0.045wt.%;
0<N<0.003%;
0<O≤0.010%;
以及Ti元素,且Ti元素的质量百分含量满足N×Ti≤3×10-4,S×Ti≥2×10-3,Ti≥3.43N+1.5S+0.02;余量为Fe和不可避免的杂质元素。
本技术方案中不可避免的杂质主要是指P元素和Si元素。P含量较高时很容易在钢中的晶界上偏聚,由此,在搪烧时容易产生气泡和黑点,从而影响搪瓷的表面质量。Si含量较高时不仅会损害钢材的搪瓷性能,而且还会形成延展性很差的氧化物夹杂,从而损害钢的塑性。对于本发明的技术方案来说,P元素和Si元素是有害元素,它们在钢中的含量需要越低越好,因此,可以将Si元素的含量控制为≤0.10wt.%,且将P元素的含量控制为≤0.035wt.%。
本发明所述的具有高温烘烤硬化性的搪瓷用钢中的各化学元素的设计原理为:
C和Ti:首先,钢中含碳量对钢板的成形性能和强度有很大影响,含碳量越高,塑性越低,强度越高,反之亦然。其次,碳在钢中除了固溶存在之外,还会形成渗碳体或珠光体等微观组织。此外,在添加钛合金后,碳还可以和钛形成碳化钛化合物。
在本发明的技术方案中,通过控制碳含量以及与碳发生反应的钛元素的含量,并结合后续的工艺控制,使得碳不会形成珠光体微观组织,而是以呈弥散的碳化物(例如,碳化钛、渗碳体等)或少量固溶形式存在。由于在珠光体微观组织中渗碳体大量聚集,一方面在搪瓷过程中会形成大量的气泡,另一方面在搪烧过程中不利于提高钢材的强度。当碳含量高于0.020wt.%时,则碳很容易形成较为粗大的渗碳体,甚至会产生珠光体微观组织,反之,当碳含量低于0.008wt.%时,并且不仅钢中渗碳体含量小,与钛形成的碳化钛也很少,无法起到强化作用,钢的强度降低,也达不到高温烘烤硬化的效果。
对于本发明的技术方案来说,加入钛合金的量十分重要。根据钛的化合 物形成的溶度积计算可知:钛先和氮发生反应,其次和硫发生反应,最后和碳发生反应,由此,以这样的析出顺序,必定要保证有一部分钛和碳发生反应后形成碳化钛。当加入的钛元素的质量百分含量满足关系式:Ti≥3.43N+1.5S+0.02时,就可以保证有一部分钛和碳反应,并且通过控制热轧工艺来使得渗碳体颗粒较之现有的渗碳体颗粒小,且碳化钛、碳氮化钛以细小颗粒状态存在,以实现基体强化的目的。同时,在搪瓷高温烧成过程中,原本以细小弥散状态存在的渗碳体和碳化钛、碳氮化钛颗粒,在后续加热过程中会有一部分溶解,而在随后的冷却过程中又重新析出,重新析出的颗粒会更加地细小、弥散,从而实现经过高温过程达到烘烤硬化的目的。相反地,如果钛元素的质量百分含量过低,若低于关系式所限定的含量,即Ti<3.43N+1.5S+0.02时,那么钢中就很难保证存在一定数量的碳化钛、碳氮化钛粒子,这样,也就不能起到析出强化的目的。为此,在经过高温烧成后,无法进一步地提高钢的强度。因而,在本发明所述的具有高温烘烤硬化性的搪瓷用钢中的C元素的含量应该控制为0.008~0.020wt.%,且Ti元素的含量应满足:Ti≥3.43N+1.5S+0.02。
另外,更为优选的是,将C元素的含量控制在0.015~0.020wt.%的范围之间。
Mn:锰是钢中的脱氧元素,加入其可以控制钢中氧的含量。锰可以与硫反应生成硫化锰。在钢中加入钛元素后,锰还会与之形成复合的夹杂物,例如硫化锰钛等。这类夹杂物呈球状,能够显著地降低硫化锰对加工性能的影响。然而,当锰含量过高时,在搪瓷过程中会影响钢和瓷釉界面的反应,损害搪瓷的密着性,并且容易产生气泡等缺陷。鉴于此,本发明所述的具有高温烘烤硬化性的搪瓷用钢中的Mn含量设定为0.05~0.50wt.%。
优选地,将上述具有高温烘烤硬化性的搪瓷用钢中的Mn含量进一步地设定为0.1~0.3wt.%。
S:一般来说,钢中的硫是有害元素,这是因为硫与锰会形成硫化锰夹杂物,硫化锰夹杂物会损害钢板的横向塑性。然而,在本发明的技术方案中S元素并非有害元素,需要控制搪瓷用钢中S含量在0.021~0.035wt.%范围之间,并且还要保证S×Ti≥2×10-3。之所以将硫含量控制在0.021~0.035wt.%范围之间,是因为在加入钛的基础上,硫和钛会形成硫化钛,在硫 化钛颗粒周围会形成大量的贮氢陷阱,在搪瓷过程中不易产生鳞爆缺陷。同时,在钢中加入钛元素后,还可以降低钢中所形成的硫化锰对钢材塑性的不利影响。但是,若硫含量高于0.035wt.%,则硫需要消耗更多的钛和锰来形成硫化物,而且所形成的硫化物颗粒会很大,这样,会损害钢材的塑性。另外,较大颗粒的硫化物对提高抗鳞爆性能的作用也十分有限。此外,硫可以与钛形成硫化钛或可以与钛和锰形成复合的硫化锰钛。通过硫含量的控制并保证S×Ti≥2×10-3,可以使得硫化钛先于硫化锰形成。其原因在于S×Ti的乘积越大,则硫化钛的形成温度越高,而硫化钛颗粒形状是呈现球状的,这样,在后续热轧过程中通过控制加热和轧制步骤可以进一步地改善硫化钛的形状和尺寸。同样地,对于锰元素来说,锰也可以和硫、钛形成复合的硫化锰钛夹杂物,其颗粒形状也呈现为球状,为此,就避免了在钢中形成单纯的塑性硫化锰夹杂,从而提高钢材的加工性能。
此外,将搪瓷用钢中S含量控制为0.021~0.03wt.%是一种更为优选的技术方案。
Alt或AlS:铝也是强脱氧元素。当铝含量较高时钢中的氧含量就会降低,反之,当铝含量过低时,则钢中的氧含量就会提升。残留在钢中的氧主要以氧化物夹杂形式存在的,其会严重地损害钢材的塑性。适量的铝可以降低钢中的含氧量,由此,铝是钢中必然添加的元素之一。为此,对于本发明所述的具有高温烘烤硬化性的搪瓷用钢来说,若Al以Alt(总铝)的形式限定,则需要将Alt含量控制为0.005~0.050wt.%,若Al以AlS(酸溶铝)的形式限定,则需要控制AlS为0.003~0.045wt.%。
N:氮是钢中不可避免的残留元素之一。通常氮是固溶元素,在钢中加入钛后,由于氮极易和钛形成金属化合物,因此,在加钛后的钢中,氮会更加优先于硫和碳,与钛形成氮化钛。氮化钛的形成先后与钛、氮的含量有关,这可以根据氮化钛形成的溶度积计算,即lg[Ti]*[N]=5.4-15790/T,其中,T为氮化钛的固溶温度,单位为K,Ti和N均为元素的质量百分含量。氮和/或钛含量越高,形成的氮化钛的量也越高,颗粒也越大。同时,若需要固定0.001wt.%的氮,则需要消耗0.00343wt.%的钛,钛所消耗的质量约为氮的质量的3.43倍。氮化钛颗粒在加工变形中会在颗粒周围形成微小空穴,以有利于钢板在搪瓷过程中的贮氢,然而,氮化钛颗粒还会严重损害钢板的塑性和 扩孔性能等其他力学性能。此外,氮化钛颗粒也不能提高钢材的强度和钢材经搪烧后的强度。为此,为了避免形成钢中粗大的氮化钛夹杂物,并减少氮对钛的消耗,钢中氮要尽量地低,将氮含量控制为0<N<0.003wt.%,且满足N×Ti≤3×10-4
O:由于钢水在冶炼过程中主要是依靠碳氧反应,因此,氧在钢中是不可避免的。然而,钢中氧含量过高时会形成氧化物夹杂而影响钢材的加工性能。基于此,本发明所述的具有高温烘烤硬化性的搪瓷用钢必须将O控制为:0<O≤0.010wt.%。
在本发明的技术方案中,对于钛的质量百分含量的限定是通过下述三个约束公式进行限定的:1)N×Ti≤3×10-4,2)S×Ti≥2×10-3,以及3)Ti≥3.43N+1.5S+0.02。也就是说,Ti元素的添加受到了N和S元素的质量百分含量的约束限制。
由于本发明的搪瓷用钢中的含碳量低,在钢中加钛后会固定大部分碳以形成碳化钛化合物,这使得自由状态下的碳或是渗碳体含量都是极少的,这在涂搪过程中会大大抑制针孔缺陷的产生,从而大幅度地提高搪瓷内胆的使用寿命。
进一步地,本发明所述的具有高温烘烤硬化性的搪瓷用钢中的C元素以弥散的碳化物形式存在。
更进一步地,所述碳化物为渗碳体和颗粒细小的碳化钛、碳氮化钛。
更进一步地,所述碳化钛、碳氮化钛颗粒的粒径为10~30μm。
更进一步地,在本发明所述的具有高温烘烤硬化性的搪瓷用钢中,还含有0<Cu≤0.10%、0<Cr≤0.10%、0<Ni≤0.10%、0<Mo≤0.10%、0<Nb≤0.010%、0<V≤0.020%、0<B≤0.0005%的至少其中之一,且0.05%≤5×Nb+Cu+V+Ni+Cr+Mo+10×B≤0.20%。
钢中的铜、铬、镍和钼的含量波动都会影响钢板的搪瓷性能,特别是会影响钢材的密着性,并且会产生表面缺陷,也会影响钢板的强度和塑性。为了进一步保证钢材的涂搪性能等的稳定可靠,将这些添加元素控制为:0<Cu≤0.10wt.%,0<Cr≤0.10wt.%,0<Ni≤0.10wt.%,0<Mo≤0.10wt.%
添加铌、钒和硼都可以提高钢材的再结晶温度。一旦再结晶温度提高,则钢板的热轧温度也需要相应地提高。对于薄规格钢板,例如,成品厚度在 2.5mm以下的钢板,过高的终轧温度是很难实现的,并且会引发钢带不同部位的温度不均的问题,最终导致钢板的混晶和组织异常缺陷。另外,虽然再结晶温度的提高对于提高搪瓷烧结前的强度有一定的作用,但是对于提高搪瓷烧结后的强度并没有太大的作用。为了降低这些添加元素对热轧后显微组织的不利影响,需要将它们控制在一定范围之内,即0<Nb≤0.010wt.%、0<V≤0.020wt.%、0<B≤0.0005wt.%。
与此同时,上述元素添加时还需要满足:0.05wt.%≤5×Nb+Cu+V+Ni+Cr+Mo+10×B≤0.20wt.%。
相应地,本发明还提供了一种生产上文所述的具有高温烘烤硬化性的搪瓷用钢的制造方法,该制造方法包括步骤:铁水预处理→转炉冶炼→精炼→连铸→热轧。
进一步地,在本发明所述的具有高温烘烤硬化性的搪瓷用钢的制造方法的热轧步骤后还依次包括:酸洗→冷轧→退火→平整。
进一步地,在所述冷轧步骤中,控制总压下率大于70%。进一步优选地,控制冷轧总压下率≥75%。另外,在冷轧步骤还可以通过改变轧辊辊面的粗糙度来控制钢板表面粗糙度在0.4~2.0μm范围内。
进一步地,在所述退火步骤中,退火温度为650-800℃。
更进一步地,在上述热轧步骤中,加热温度为1100~1250℃,加热时间≥板厚×1min/mm,其中板厚单位为mm,其中该板厚指的是连铸坯板厚。
为了保证钢中的微观组织形成均匀的奥氏体,即充分奥氏体化,并且使得钢坯中聚集的渗碳体或珠光体溶解,即使得一些高温形成的质点如氮化钛等溶解或部分溶解,将连铸坯的加热温度设定为1100~1250℃。当然,在该范围内的具体加热时间可以根据钢坯厚度进行调整,一般钢坯越薄,其加热时间就越短,其加热时间需要满足t≥板厚×1min/mm。
更进一步地,在上述热轧步骤中,热轧终轧温度为850~930℃,热轧卷取温度为630~780℃。
由于在热轧步骤中,之前在连铸过程中溶解的碳化物等会以化合物的形式重新析出,因此,需要合理地控制热轧步骤中的终轧温度,以使得碳化物呈现细小弥散状态分布在铁素体的基体中。鉴于此,控制本发明的搪瓷用钢在850~930℃温度范围内完成热轧终轧,以确保热轧在再结晶温度以上完 成,避免在奥氏体+铁素体两相区轧制,防止引起钢板混晶和组织异常的缺陷。
本发明所述的具有高温烘烤硬化性的搪瓷用钢的制造方法通过控制热轧步骤中工艺参数来使得渗碳体和碳化钛以细小颗粒状态存在,以达到基体强化的目的。此外,通过控制连铸步骤中加热温度以及热轧步骤中的终轧温度和卷取温度进一步地改善钢中硫化钛的形状和尺寸。
较之于现有的搪瓷用钢,本发明所述的具有高温烘烤硬化性的搪瓷用钢经过高温搪烧后的屈服强度显著提升,从而提高了搪瓷用钢制品的耐压能力,延长了其使用寿命。
本发明所述的具有高温烘烤硬化性的搪瓷用钢具备较好的成型性能,其延伸率≥39%,扩孔率≥60%,尤其适合于制成各种复杂形状的热水器内胆。
本发明所述的具有高温烘烤硬化性的搪瓷用钢具备良好的焊接性能。
本发明所述的具有高温烘烤硬化性的搪瓷用钢具备优良的涂搪性能,其氢穿透时间长(≥10min),高于现有技术中双面搪瓷用钢的氢穿透时间(≥8min)。
由于采用了价格较低的合金添加元素,本发明所述的具有高温烘烤硬化性的搪瓷用钢的合金成本低,生产制造成本也相对经济。
本发明所述的具有高温烘烤硬化性的搪瓷用钢的制造方法的生产工艺简单易行。
附图说明
图1为实施例A1的具有高温烘烤硬化性的搪瓷用钢在830℃保温状态下随着保温时间推移的屈服强度的趋势图。
图2为实施例A1的具有高温烘烤硬化性的搪瓷用钢的微观组织图。
图3为实施例A1的具有高温烘烤硬化性的搪瓷用钢中的析出相的形貌图。
具体实施方式
下面将根据具体实施例对本发明所述的具有高温烘烤硬化性的搪瓷用钢及其制造方法做出进一步说明,但是具体实施例和相关说明并不构成对于本 发明的技术方案的不当限定。
实施例A1-A6和对比例B1
按照下述步骤(1)-(5)制造实施例A1-A5以及对比例B1中的搪瓷用钢,按照下述步骤(1)-(9)制造实施例A6中的搪瓷用钢:
1)铁水预处理;
2)转炉冶炼:通过顶底复吹转炉实现脱碳、脱磷,去除残余元素和有害气体等;
3)精炼:进一步地脱去有害气体和残余元素,添加钛等合金元素,中入铝等脱氧,实现化学成分的精准控制。控制实施例A1-A6和对比例B1的各化学元素的质量百分配比如表1所示;
4)连铸:钢水浇铸成200、230mm厚的连铸坯,待连铸坯冷却后对表面质量进行人工检查,对表面缺陷进行人工清理;
5)热轧:热轧前将连铸坯进行加热,加热温度为1100~1250℃,加热时间t≥板厚×1min/mm,其中板厚单位为mm;对200mm厚的连铸坯,其加热时间控制在200~240min或更长,对230mm厚的连铸坯,其加热时间控制在230~260min或更长;根据需要,热轧终了厚度为1.5~18mm,热轧终轧温度为850~930℃,经过层流冷却至卷取温度后进行卷取,热轧卷取温度为630~780℃;
6)酸洗:主要采用稀释的盐酸进行酸洗,也可以采取其它方式进行酸洗,酸洗的目的是除尽表面的氧化铁皮;
7)冷轧:控制总压下率在70%以上;
8)退火:在650~800℃退火,目的是实现冷轧后钢板组织的再结晶和晶粒长大,以获得良好的塑性;
9)平整:平整延伸率在0.8~1.2%。
各步骤中具体工艺参数详细参见表2。
表1列出了本案实施例A1-A6以及对比例B1的搪瓷用钢中的各化学元素的质量百分配比。
表1.(wt.%,余量为Fe和除了P和Si之外的其他不可避免的杂质)
序号 A1 A2 A3 A4 A5 A6 B1
C 0.013 0.018 0.02 0.008 0.01 0.013 0.031
Mn 0.25 0.2 0.1 0.3 0.25 0.15 0.22
S 0.029 0.025 0.035 0.025 0.03 0.021 0.007
Al 0.041 0.035 0.035 0.028 0.005 0.02 0.031
N 0.0018 0.002 0.0025 0.0015 0.002 0.002 0.0026
O 0.005 0.006 0.003 0.005 0.003 0.003 --
P 0.011 0.015 0.009 0.01 0.008 0.011 0.01
Si 0.008 0.02 0.05 0.03 0.1 0.008 0.006
Ti 0.09 0.08 0.09 0.085 0.15 0.12 0.002
Cu 0.01 0.02 0.02 0.05 0.01 0.06 ‐‐
Cr 0.02 0.05 0.02 0.015 0.05 0.06 ‐‐
Ni 0.008 0.025 0.008 0.01 0.02 0.005 ‐‐
Mo 0.005 0.005 0.015 0.008 0.02 0.01 ‐‐
Nb 0.005 0.002 0.002 -- -- 0.002 ‐‐
V 0.015 -- -- -- 0.005 0.01 ‐‐
B -- 0.0002 -- -- 0.0004 -- ‐‐
关系式1) 0.00016 0.00016 0.00023 0.00013 0.0003 0.00024 5.2×10-6
关系式2) 0.0026 0.002 0.0032 0.0021 0.0045 0.0025 1.4×10-5
关系式3) 0.07 0.064 0.081 0.063 0.072 0.058 0.039
关系式4) 0.02 0.016 0.009 0.022 0.078 0.062 -0.037
关系式5) 0.08 0.11 0.07 0.08 0.11 0.16 0
注:关系式1)N×Ti,关系式2)S×Ti,关系式3)3.43N+1.5S+0.02,关系式4)Ti-(3.43×N+1.5×S+0.02),关系式5)5×Nb+Cu+V+Ni+Cr+Mo+10×B。
表2列出了本案实施例A1-A6和对比例B1的搪瓷用钢的制造方法的工艺参数。
表2.
Figure PCTCN2015089695-appb-000001
在室温下,对于实施例A1-A6和对比例B1均采用横向取样,测定ReL、Rm、A80mm和扩孔率。衡量实施例A1-A6和对比例B1的搪瓷用钢的贮氢能力则是根据标准EN10209中的电化学实验方法来测定钢板的氢穿透时间,并均换算成1mm的标准厚度。
在830℃的保温状态下,对于实施例A1-A6和对比例B1均采用横向取样后进行热处理,即放置在830℃的恒温炉内保温10min后取出空冷至室温。经过热处理后的样板,测定ReL、Rm和A80mm
表3列出了本案实施例A1-A6和对比例B1中的搪瓷用钢分别在室温下和在830℃的保温状态下的力学性能参数。
表3.
Figure PCTCN2015089695-appb-000002
从表3中可以看出,在室温下,实施例A1-A6的屈服强度均≥197MPa,抗拉强度均≥315MPa,延伸率A80≥39%,扩孔率≥70%,氢穿透时间≥12min,并且在830℃保温状态下,实施例A1-A6的屈服强度提高到了≥315MPa,抗拉强度均≥412MPa,延伸率A80≥40%,由此可以说明,本发明的搪瓷用钢不仅具有较高的延伸率、较长的氢穿透时间,较高的扩孔率,而且所有实施例经过在830℃保温10min后的屈服强度和抗拉强度均获得了大幅度地提高,这说明本技术方案涉及的搪瓷钢具有优良的高温烘烤硬化性,有这利于大幅度地提高搪瓷用钢制品的耐压能力和使用寿命。
本发明所述的搪瓷用钢的氢穿透时间≥12min。通常来说,当氢穿透时间≥8min时,钢板就可以满足双面搪瓷时的抗鳞爆要求,也就是说,无论实际生产中采用何种类型釉料,此类钢板即可以满足抗鳞爆要求。由于双面搪瓷比单面搪瓷对抗鳞爆性能要求更为苛刻,因此,本发明的搪瓷用钢完全能 够满足单面搪瓷的要求。
图1显示了实施例A1的具有高温烘烤硬化性的搪瓷用钢在830℃保温状态下随着时间推移的屈服强度的趋势。
如图1所示,在830℃保温状态下,实施例A1的搪瓷用钢在尚未达到规定的保温时间(约10min)时,实施例A1的搪瓷用钢的屈服强度随着保温时间的推移而增加,然而在达到规定的保温时间后,其屈服强度随着保温时间的推移而减少。不过,即使在830℃保温状态下的保温时间再长,其屈服强度较之于其在室温状况下的屈服强度仍有较大幅度的提高。
图2显示了实施例A1的搪瓷用钢的微观组织,而图3则显示了该搪瓷用钢中的析出相的形貌图。
如图2和图3所示,实施例A1的搪瓷用钢的微观组织为均匀的铁素体组织,未见有珠光体组织和较大尺寸的渗碳体颗粒,其析出相呈细小、弥散分布,以碳化钛或碳氮化钛为主。
需要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (14)

  1. 一种具有高温烘烤硬化性的搪瓷用钢,其化学元素质量百分配比为:C:0.008~0.020%、Mn:0.05~0.50%、S:0.021~0.035%、Alt:0.005~0.050%或AlS:0.003~0.045%、0<N<0.003%,0<O≤0.010%以及Ti元素,且Ti元素的质量百分含量满足N×Ti≤3×10-4,S×Ti≥2×10-3,Ti≥3.43N+1.5S+0.02,余量为Fe和不可避免的杂质元素。
  2. 如权利要求1所述的具有高温烘烤硬化性的搪瓷用钢,其特征在于,所述C元素以弥散的碳化物形式存在。
  3. 如权利要求2所述的具有高温烘烤硬化性的搪瓷用钢,其特征在于,所述碳化物为渗碳体和颗粒细小的碳化钛、碳氮化钛。
  4. 如权利要求3所述的具有高温烘烤硬化性的搪瓷用钢,其特征在于,所述碳化钛、碳氮化钛颗粒的粒径为10~30μm。
  5. 如权利要求1所述的具有高温烘烤硬化性的搪瓷用钢,其特征在于,还含有0<Cu≤0.10%、0<Cr≤0.10%、0<Ni≤0.10%、0<Mo≤0.10%、0<Nb≤0.010%、0<V≤0.020%、0<B≤0.0005%的至少其中之一,且0.05%≤5×Nb+Cu+V+Ni+Cr+Mo+10×B≤0.20%。
  6. 如权利要求1所述的具有高温烘烤硬化性的搪瓷用钢,其特征在于,所述C元素含量为C:0.015~0.020%。
  7. 如权利要求1所述的具有高温烘烤硬化性的搪瓷用钢,其特征在于,所述S元素含量为0.021~0.030%。
  8. 如权利要求1所述的具有高温烘烤硬化性的搪瓷用钢,其特征在于,所述Mn元素含量为0.1~0.3%。
  9. 如权利要求1~8中任意一项所述的具有高温烘烤硬化性的搪瓷用钢的制造方法,其特征在于,包括步骤:铁水预处理→转炉冶炼→精炼→连铸→热轧。
  10. 如权利要求9所述的具有高温烘烤硬化性的搪瓷用钢的制造方法,其特征在于,在所述热轧步骤后,还依次包括:酸洗→冷轧→退火→平整。
  11. 如权利要求10所述的具有高温烘烤硬化性的搪瓷用钢的制造方法,其特征在于,在所述冷轧步骤中,控制总压下率大于70%。
  12. 如权利要求10所述的具有高温烘烤硬化性的搪瓷用钢的制造方法,其特征在于,在所述退火步骤中,退火温度为650-800℃。
  13. 如权利要求9所述的具有高温烘烤硬化性的搪瓷用钢的制造方法,其特征在于,在所述热轧步骤中,加热温度为1100-1250℃,加热时间≥板厚×1min/mm,其中板厚单位为mm。
  14. 如权利要求9所述的具有高温烘烤硬化性的搪瓷用钢的制造方法,其特征在于,在所述热轧步骤中,热轧终轧温度为850-930℃,热轧卷取温度为630-780℃。
PCT/CN2015/089695 2014-09-19 2015-09-16 一种具有高温烘烤硬化性的搪瓷用钢及其制造方法 WO2016041490A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15841538.0A EP3196328B1 (en) 2014-09-19 2015-09-16 Enamel steel having high-temperature baking hardenability and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410483551.8 2014-09-19
CN201410483551.8A CN104250705B (zh) 2014-09-19 2014-09-19 一种具有高温烘烤硬化性的搪瓷用钢及其制造方法

Publications (1)

Publication Number Publication Date
WO2016041490A1 true WO2016041490A1 (zh) 2016-03-24

Family

ID=52185951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089695 WO2016041490A1 (zh) 2014-09-19 2015-09-16 一种具有高温烘烤硬化性的搪瓷用钢及其制造方法

Country Status (3)

Country Link
EP (1) EP3196328B1 (zh)
CN (1) CN104250705B (zh)
WO (1) WO2016041490A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114395688A (zh) * 2021-12-09 2022-04-26 安阳钢铁集团有限责任公司 一种低碳搪瓷钢的生产工艺

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250705B (zh) * 2014-09-19 2017-01-18 宝山钢铁股份有限公司 一种具有高温烘烤硬化性的搪瓷用钢及其制造方法
CN104928577B (zh) * 2015-06-18 2017-08-25 宝山钢铁股份有限公司 一种具有高扩孔率和优良涂搪性能的钢板及其制造方法
CN107419183A (zh) * 2016-05-23 2017-12-01 上海梅山钢铁股份有限公司 一种二段式热水器搪瓷内胆用热轧钢板及其制造方法
CN106222551B (zh) * 2016-08-16 2018-05-01 武汉钢铁有限公司 一种表面无缺陷的渗氮铁制容器基板及生产方法
CN108796391B (zh) * 2017-04-26 2020-12-22 宝山钢铁股份有限公司 一种具有优良塑韧性和抗鳞爆性的搪玻璃用钢及其制造方法
CN107574375B (zh) * 2017-08-31 2019-06-07 武汉钢铁有限公司 具有优异涂搪性能的双面搪瓷用热轧酸洗钢板及其制造方法
CN109554607A (zh) * 2017-09-25 2019-04-02 上海梅山钢铁股份有限公司 具有优良抗鳞爆性和深冲性的冷轧搪瓷钢板及其制造方法
CN110777301B (zh) * 2018-07-30 2021-05-14 宝山钢铁股份有限公司 一种冷轧搪瓷钢及其制造方法
CN109652739B (zh) * 2019-01-22 2020-08-18 山东钢铁股份有限公司 一种搪瓷用高强度冷轧钢带及其制备方法
CN109943779B (zh) * 2019-04-30 2021-02-05 马鞍山钢铁股份有限公司 一种搪瓷用低碳冷轧钢板及其生产方法
KR102405223B1 (ko) * 2020-11-05 2022-06-02 주식회사 포스코 법랑용 강판 및 그 제조방법
CN112941418B (zh) * 2021-02-07 2022-08-05 首钢集团有限公司 一种冷轧搪瓷用高强钢及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197254A (ja) * 1982-05-11 1983-11-16 Nippon Steel Corp 二次加工性と深絞り性のすぐれたほうろう用鋼板
CN102251192A (zh) * 2010-05-19 2011-11-23 宝山钢铁股份有限公司 一种搪瓷钢及其制造方法
CN102747309A (zh) * 2012-07-27 2012-10-24 宝山钢铁股份有限公司 一种搪瓷用钢及其制造方法
CN104250705A (zh) * 2014-09-19 2014-12-31 宝山钢铁股份有限公司 一种具有高温烘烤硬化性的搪瓷用钢及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970011629B1 (ko) * 1994-12-20 1997-07-12 김만제 법랑밀착성이 우수한 고가공용 냉연강판의 제조방법
KR100347570B1 (ko) * 1997-08-29 2002-09-18 주식회사 포스코 성형성 및 표면품질이 우수한 법랑용 강판의제조방법
KR100360095B1 (ko) * 1998-08-28 2003-10-22 주식회사 포스코 성형성이 우수한 고밀착 법랑강판의 제조방법
JP4102115B2 (ja) * 2002-06-12 2008-06-18 新日本製鐵株式会社 加工性、時効性及びほうろう特性が優れたほうろう用鋼板及びその製造方法
ES2568678T3 (es) * 2005-11-09 2016-05-03 Nippon Steel & Sumitomo Metal Corporation Hoja de acero para esmaltar mediante colada continua con una resistencia a la descamación excelente y método para producirla
CN100453678C (zh) * 2005-11-16 2009-01-21 鞍钢股份有限公司 一种热轧双面搪瓷用钢板及其制造方法
CN100473742C (zh) * 2006-04-29 2009-04-01 宝山钢铁股份有限公司 静电搪瓷用热轧细晶粒钢及其制造方法
CN101684532A (zh) * 2008-09-27 2010-03-31 鞍钢股份有限公司 一种冷轧热水器用搪瓷钢及生产方法
CN102433501B (zh) * 2011-12-02 2013-08-28 山西太钢不锈钢股份有限公司 一种高强韧带钢及其制造方法
CN103540845B (zh) * 2013-11-07 2016-01-20 武汉钢铁(集团)公司 屈服强度为330MPa级的热轧薄板搪瓷钢及制造方法
CN103741026A (zh) * 2013-12-26 2014-04-23 马钢(集团)控股有限公司 240MPa级单面搪瓷用热轧酸洗钢板及其生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197254A (ja) * 1982-05-11 1983-11-16 Nippon Steel Corp 二次加工性と深絞り性のすぐれたほうろう用鋼板
CN102251192A (zh) * 2010-05-19 2011-11-23 宝山钢铁股份有限公司 一种搪瓷钢及其制造方法
CN102747309A (zh) * 2012-07-27 2012-10-24 宝山钢铁股份有限公司 一种搪瓷用钢及其制造方法
CN104250705A (zh) * 2014-09-19 2014-12-31 宝山钢铁股份有限公司 一种具有高温烘烤硬化性的搪瓷用钢及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3196328A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114395688A (zh) * 2021-12-09 2022-04-26 安阳钢铁集团有限责任公司 一种低碳搪瓷钢的生产工艺

Also Published As

Publication number Publication date
EP3196328B1 (en) 2019-08-14
CN104250705B (zh) 2017-01-18
EP3196328A1 (en) 2017-07-26
CN104250705A (zh) 2014-12-31
EP3196328A4 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
WO2016041490A1 (zh) 一种具有高温烘烤硬化性的搪瓷用钢及其制造方法
JP6285462B2 (ja) 780MPa級冷間圧延二相帯鋼及びその製造方法
JP6931396B2 (ja) 衝撃特性に優れた熱間成形用めっき鋼板、熱間成形部材、及びそれらの製造方法
JP5135868B2 (ja) 缶用鋼板およびその製造方法
WO2018179839A1 (ja) ホットプレス部材およびその製造方法
CN102586688B (zh) 一种双相钢板及其制造方法
WO2021233247A1 (zh) 一种深冲内胆用冷轧搪瓷钢及其制造方法
JP4650006B2 (ja) 延性および伸びフランジ性に優れた高炭素熱延鋼板およびその製造方法
TWI510643B (zh) 高碳熱軋鋼板及其製造方法
TWI658145B (zh) 滲碳用鋼板及滲碳用鋼板的製造方法
JP6907320B2 (ja) 高温伸び特性に優れた高強度鋼板、温間プレス成形部材、及びそれらの製造方法
WO2022042733A1 (zh) 一种780MPa级高表面超高扩孔钢及其制造方法
WO2019218135A1 (zh) 屈服强度1000MPa级低屈强比超高强钢及其制备方法
TW201632636A (zh) 兩片式罐用鋼板及其製造方法
JP2010215954A (ja) 熱間プレス用鋼板およびその製造方法ならびに熱間プレス用鋼板部材の製造方法
TWI470094B (zh) 冷軋鋼板用熱軋鋼板、熔融鍍鋅鋼板用熱軋鋼板及其製造方法
WO2022042727A1 (zh) 一种780MPa级高表面高性能稳定性超高扩孔钢及其制造方法
US20220056543A1 (en) Hot rolled steel sheet with high hole expansion ratio and manufacturing process thereof
TWI515309B (zh) 高強度熱軋鋼板及其製造方法
CN113802051A (zh) 一种塑性优异的超高强度钢及其制造方法
CN107747033A (zh) 优良成形的烘烤硬化热镀锌钢板及其制备方法
CN104928577B (zh) 一种具有高扩孔率和优良涂搪性能的钢板及其制造方法
JP2012224884A (ja) 強度、延性及びエネルギー吸収能に優れた高強度鋼材とその製造方法
JP2007197742A (ja) 溶接缶用冷延鋼板およびその製造方法
CN105074037B (zh) 高强度热镀锌钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015841538

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015841538

Country of ref document: EP