WO2016041426A1 - 一种智能节奏互动式肌电信号肌肉康复治疗系统 - Google Patents

一种智能节奏互动式肌电信号肌肉康复治疗系统 Download PDF

Info

Publication number
WO2016041426A1
WO2016041426A1 PCT/CN2015/087362 CN2015087362W WO2016041426A1 WO 2016041426 A1 WO2016041426 A1 WO 2016041426A1 CN 2015087362 W CN2015087362 W CN 2015087362W WO 2016041426 A1 WO2016041426 A1 WO 2016041426A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
rhythm
interactive
muscle
treatment system
Prior art date
Application number
PCT/CN2015/087362
Other languages
English (en)
French (fr)
Inventor
程石
葛力
苗辰
任翼飞
Original Assignee
曦丽科技(北京)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 曦丽科技(北京)股份有限公司 filed Critical 曦丽科技(北京)股份有限公司
Priority to US15/026,590 priority Critical patent/US20160235358A1/en
Publication of WO2016041426A1 publication Critical patent/WO2016041426A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/486Bio-feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/09Rehabilitation or training
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7405Details of notification to user or communication with user or patient ; user input means using sound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7455Details of notification to user or communication with user or patient ; user input means characterised by tactile indication, e.g. vibration or electrical stimulation

Definitions

  • the invention relates to the field of medical device devices, in particular to an intelligent rhythm interactive electromyography signal muscle rehabilitation treatment system.
  • Biofeedback uses various instruments to reflect the physiological activity of the human body, so that the user can obtain a transient and intuitive feeling. After the behavioral stimulation supplemented by positive feedback and negative feedback, the therapeutic concept of the physiological activity that could not be manipulated can be controlled as desired. How to design a treatment method that allows users to focus more on the treatment process and adhere to long-term feedback therapy to achieve the best therapeutic effect based on the concept of biofeedback has always been a frontier topic in applied research in this field.
  • the existing muscle rehabilitation treatment system is generally treated and recovered in a clinic or a hospital. It requires the patient to make an appointment to go to the clinic or hospital in person, waste a lot of time and manpower, and the treatment process is boring, and the patient insists on long-term treatment. The willingness is not strong, making the possibility of patient self-treatment very small; the existing muscle rehabilitation system is relatively cumbersome, and the connection between the devices is heavily dependent on wired transmission such as USB, which is not convenient to carry. In the actual treatment process, due to the above defects, the vast majority of patients could not persist, and eventually had to give up treatment, which greatly affected the effect of muscle recovery.
  • the present invention proposes a new muscle rehabilitation treatment system that can solve at least a portion of the above problems.
  • the invention provides an intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment system, comprising: a surface electromyography sensor configured to collect a user's myoelectric signal; and a signal transmitter configured to receive and transmit the myoelectric signal a rhythm interaction device configured to generate and provide a specific tempo to the user, to receive the myoelectric signal, to give positive feedback when the myoelectric signal matches the particular tempo, or to give negative feedback .
  • a signal processor configured to receive the myoelectric signal from the surface myoelectric sensor and smooth the electromyogram signal.
  • the electromyogram signal is smoothed by the following manner to obtain an output y:
  • x is the sampling of the input signal
  • n is the number of samples
  • dt is the sampling time interval
  • tn is the total sampling duration
  • the tempo interaction device is calibrated by calculating a steady state value field ranging from (1-b%) a to (1 + b%) a Between b% is the ambient noise domain value, a is the mean value when the muscle is relaxed; for the myoelectric signal with the value greater than (1+b%) a, set to 1, for the value less than (1+b%)a The EMG signal is set to 0.
  • the tempo interaction device is calibrated by calculating a steady state value field ranging from (1-b%) a to (1 + b%) a Between, where b% is the ambient noise domain value, a is the mean value of the muscle relaxation; calculating the absolute value of the myoelectric signal; calculating the absolute value of the myoelectric signal and the upper limit of the steady state numerical threshold (1) The difference between +b%)a, the ratio of the upper limit of the steady-state numerical threshold (1+b%)a; and the logarithm of the ratio.
  • a remote monitoring device is further provided that is configured to receive at least the positive feedback and/or negative feedback from a cadence interaction device to facilitate remote monitoring of a user's muscle response.
  • the tempo includes a plurality of interactive elements, and a time interval between each of the interactive elements is adjustable.
  • the tempo includes at least one of a primary phase mode, an intermediate phase mode, and an advanced phase mode, wherein the primary phase mode must be completed after an interactive element is completed
  • the next interactive element is given; in the intermediate stage mode, each interactive element has a long interval and regularity; in the advanced stage mode, each interactive element has a short interval and irregularity.
  • the form of the tempo includes at least one of audio, video, and tactile sensing.
  • the signal transmitter is a wireless transmitter.
  • the present invention also provides an intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment apparatus, comprising: means for generating and providing a specific rhythm to a user; means for receiving an electromyogram signal; and when the electromyogram signal is A device that gives positive feedback when the particular tempo matches, otherwise gives negative feedback.
  • the intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment system of the invention enables the user to continuously strengthen and exercise the target muscle or muscle group through the rhythm interaction device, and the skilled motor nerve controls the target muscle and inhibits the wrong contraction of the muscle to reach the balance against the muscle group.
  • the effect is highly interactive, intelligent and fun, which enhances the user's willingness to adhere to long-term treatment and makes the user's self-treatment possible.
  • FIG. 1 is a schematic structural view of an intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment system according to the present invention
  • FIG. 2 is a schematic structural view of a surface myoelectric sensor
  • Figure 3-1 shows the waveform of the unprocessed EMG signal
  • Figure 3-2 is a waveform diagram of the myoelectric signal after smoothing
  • FIG. 4 is a binary value waveform diagram in which the waveform of the processed myoelectric signal in FIG. 3-1 is converted into;
  • Figure 5 is a waveform diagram of the myoelectric signal after logarithmization
  • FIG. 6 is a block diagram of an intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment apparatus according to another embodiment of the present invention.
  • Means 100 for generating and providing a user with a specific tempo Means 100 for generating and providing a user with a specific tempo, means 200 for receiving an electromyogram signal, and means for giving positive feedback when the electromyogram signal matches the particular tempo, otherwise giving negative feedback 300.
  • the intelligent rhythm interactive electromyography signal muscle rehabilitation treatment system includes a surface myoelectric sensor 10, a signal processor 15, a signal transmitter 20, and a rhythm interaction device 30, wherein the surface myoelectric sensor 10
  • the electromyographic signal for collecting the user is configured, and the surface myoelectric sensor signal collector 10 includes an electrode sensor 11, a signal amplifying circuit 12, a signal full-wave rectifying circuit 13, and a signal smoothing circuit 14.
  • the signal transmitter 20 can be a wired transmitter or a wireless transmitter.
  • the wireless transmitter can be, for example, a Bluetooth, an infrared transmitter or a WiFi.
  • the most important feature of Bluetooth is power saving, and the extremely low running and standby power consumption can make A button cell has been in continuous operation for several years, and its main advantages are: ultra-low peak, average and standby mode power consumption; low cost; wireless coverage enhancement; full backward compatibility and low latency (APT-X),
  • the signal transmitter 20 is preferably Bluetooth.
  • the signal processor 15 is processed by the signal processor 15 and transmitted to the signal transmitter 20, so the smart rhythm interactive electromyography signal muscle rehabilitation treatment system preferably includes the signal processor 15.
  • the surface myoelectric sensor signal collector 10 includes an electrode sensor 11, a signal amplifying circuit 12, a signal full-wave rectifying circuit 13, and a signal smoothing circuit 14, and the electrode sensor 11 and the signal are amplified.
  • the circuit 12 is connected, the electrode sensor 11 includes a reference electrode, a muscle middle end electrode and a muscle end electrode, and the electrode sensor 11 transmits the first electrical signal acquired from the body surface to the signal amplifying circuit 12,
  • the signal amplifying circuit 12 amplifies the first electrical signal and transmits it to the signal full-wave rectifying circuit 13, the signal
  • the wave rectifying circuit 13 is connected to the signal smoothing circuit 14, which converts the alternating current into direct current, and transmits the direct current signal to the signal smoothing circuit 14, which smoothes the direct current signal
  • the second electrical signal is transmitted to the signal processor 15 after being squared and squared.
  • the signal transmitter 20 is coupled to the signal processor 15, the signal transmitter 20 is configured to receive and transmit the myoelectric signal; the cadence interaction device 30 is configured to generate a particular cadence, the cadence interaction Apparatus 30 receives the myoelectric signal from the signal transmitter 20 and compares the myoelectric signal to the particular cadence to determine if the two match, when the myoelectric signal matches the particular tempo Positive feedback is given, and negative feedback is given when the myoelectric signal does not match the particular tempo.
  • the intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment system is directed to a target disease which is divided into muscle imbalance, upper and lower cross syndrome, cervical instability (brain dysplasia around the cervical spine); muscle weakness, such as Tibial joint pain syndrome, lumbar instability, cervical instability; motor nerve control muscle disorder, such as pelvic muscle disorder, postpartum pelvic muscle relaxation, incontinence, foot gait; intelligent rhythm interactive electromyography signal muscle of the present invention
  • the rehabilitation system enables the user to continuously strengthen and exercise the target muscles or muscle groups through the rhythm interaction device.
  • the skilled motor nerves control the target muscles and inhibit the wrong contraction of the muscles to balance the effects against the muscle groups, and have high interactivity and intelligence. Sex and fun, increasing the user's willingness to adhere to long-term treatment.
  • the signal processor 15 is located between the surface myoelectric sensor 10 and the signal transmitter 20, and the signal processor 15 includes A. a /D converter and a digital signal processor, the signal processor 15 configured to receive the myoelectric signal from the surface myoelectric sensor 10, amplifying, transforming, smoothing, and squareing the myoelectric signal Processing the second electrical signal, and then transmitting the second electrical signal to the signal processor 15; the signal processor 15 is coupled to the signal transmitter 20, and the signal processor 15 is coupled to the second The signal is converted into a first digital signal, and the first digital signal is subjected to a numerical integration re-averaging algorithm to obtain a second digital signal.
  • the specific processing method is as follows:
  • x is the sampling of the input signal
  • n is the number of samples
  • dt is the sampling time interval
  • t n is the total sampling duration.
  • the myoelectric signal is smoothed by the above method to obtain an output y.
  • Figure 3-1 shows the waveform of the unprocessed EMG signal
  • Figure 3-2 shows the waveform of the EMG signal after smoothing, which effectively avoids a sudden burst of noise and avoids the inability to accurately judge the user. Muscle control behavior.
  • the rhythm interaction device 30 is calibrated by calculating a steady state numerical domain, and the range of the steady state numerical domain is in (1-b%) a to (1+b%)a, where b% is the ambient noise threshold, a is the mean when the muscle is relaxed; for the myoelectric signal with a value greater than (1+b%)a, set to 1, for the value The myoelectric signal smaller than (1+b%)a is set to zero.
  • the steady-state numerical domain that is, the numerical interval in which the user's muscle is completely relaxed, cannot determine whether the muscle is contracted without the steady-state numerical domain.
  • the data is analyzed and finally obtained the average value a of the muscle relaxation and the environmental noise domain value b%.
  • the received data will be in the interval (1-b%)a to (1+b%)a.
  • Inter-vibration that is, vibration in the steady-state numerical domain.
  • the EMG signal is generated, and the continuous value of the received EMG signal is converted into a binary value.
  • 1 means correct
  • 0 means incorrect
  • the value is greater than (1+b%)a
  • the myoelectric signal is set to 1, for the myoelectric signal with a value less than (1+b%)a, set to 0, and
  • Figure 4 is the untreated muscle in Figure 3-1.
  • the binary waveform diagram into which the electrical signal waveform is converted.
  • the rhythm interaction device 30 is calibrated by calculating a steady state numerical domain, and the range of the steady state numerical domain is in (1-b%) a to (1+b%)a, where b% is the ambient noise domain value, a is the mean value of muscle relaxation; calculate the absolute value of the myoelectric signal; calculate the absolute value of the myoelectric signal The difference between the upper limit (1+b%) a of the steady-state numerical threshold, the ratio of the upper limit (1+b%) a of the steady-state numerical threshold, and the logarithm of the ratio.
  • FIG. 5 is a waveform diagram of the myoelectric signal after the logarithm of the unprocessed myoelectric signal waveform diagram of FIG. 3-1.
  • the intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment system of the present invention further includes a remote monitoring device 40.
  • the remote monitoring device 40 is coupled to the cadence interaction device 30, and the remote monitoring device 40 is configured to receive at least the positive feedback and/or negative feedback from the tempo interaction device 30 to facilitate Remote monitoring of the user's muscle response.
  • the doctor or therapist can learn the muscle recovery status of the user through the feedback results on the remote monitoring device 40, thereby developing different treatment stages.
  • the rhythm includes a plurality of interactive elements, and the time interval between each interactive element is adjustable.
  • the intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment system includes a surface myoelectric sensor 10, a signal processor 15, a signal transmitter 20, and a rhythm interaction device 30, and the surface electromyography sensor 10 is configured.
  • the signal processor 15 is configured to receive the myoelectric signal from the surface myoelectric sensor 10, and process the myoelectric signal to obtain a smoothed myoelectric signal,
  • the smoothed EMG signal is then transmitted to the signal transmitter 20, the tempo interaction device 30 receiving the EMG signal from the signal transmitter 20, the tempo interaction device 30 for generating a particular cadence, And comparing the EMG signal to the particular tempo to determine if the two match, giving positive feedback when the EMG signal matches the particular tempo, and when the EMG signal is Negative feedback is given when the specific rhythm does not match.
  • the tempo includes a plurality of interactive elements, and the time interval between each interactive element is adjustable, whereby a reasonable interval can be set according to the difference in the muscle recovery phase of the patient.
  • the tempo is a primary stage mode, the tempo is in the form of audio, video or tactile sensation, the audio is all audio that can hear the sound, the video is everything that can be seen Video, and tactile sensing can be everything that can alert the body to a stimulus, such as vibration.
  • the form of the rhythm in this embodiment is audio.
  • the primary stage mode is a stage in which the user cannot correctly control the muscle behavior.
  • the form of the rhythm is the audio of the music, and a certain syllable of the music is an interactive element, such as “ In the syllable of ticking, when the syllable of "tick" is heard, the user controls the muscles, and the rhythm is non-instant.
  • the next interactive element can be practiced.
  • the EMG signal is compared with the specific tempo to determine whether the two match, and when the EMG signal matches the specific tempo, positive feedback is given, otherwise negative feedback is given, the positive feedback is given There are various forms of negative feedback and/or negative feedback. For example, when it is positive feedback, the rhythm interaction device 30 will add points.
  • the rhythm interaction device 30 When it is negative feedback, the rhythm interaction device 30 will reduce the score, adding interest, and Patients can be encouraged to continue to score higher.
  • the positive feedback and/or negative feedback is communicated to the remote monitoring device 40 to facilitate remote monitoring of the user's muscle response.
  • the audio may also be a beeping sound, and the audio may be expressed in many forms, and is not limited to the music and buzzer sounds mentioned in the embodiment.
  • the form of the rhythm may also be tactile sensing, which responds when the user feels the change.
  • the intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment system includes a surface myoelectric sensor 10, a signal processor 15, a signal transmitter 20, and a rhythm interaction device 30, and the surface electromyography sensor 10 is configured.
  • the signal processor 15 is configured to receive the myoelectric signal from the surface myoelectric sensor 10, and process the myoelectric signal to obtain a smoothed myoelectric signal,
  • the smoothed EMG signal is then transmitted to the signal transmitter 20, the tempo interaction device 30 receiving the EMG signal from the signal transmitter 20, the tempo interaction device 30 for generating a particular cadence, And comparing the EMG signal to the particular tempo to determine if the two match, giving positive feedback when the EMG signal matches the particular tempo, and when the EMG signal is Negative feedback is given when the specific rhythm does not match.
  • the rhythm includes a plurality of interactive elements, and the time interval between each interactive element can be Adjust, so that a reasonable interval can be set according to the different stages of the patient's muscle recovery.
  • the tempo is an intermediate stage mode, the form of which is audio, video or tactile sensation, the audio is all audio that can hear the sound, and the video is all visible video.
  • the form of the rhythm in this embodiment is audio
  • the intermediate stage mode is a stage in which the user is not skilled in controlling muscle behavior.
  • the form of the rhythm is audio of music, and a certain syllable of music is an interactive element, such as “ The syllable of the tick, the rhythm is a slow regular rhythm, such as a ticking ticking every 5 seconds, when the ticking of the ticking is heard, the user needs immediate response to control the muscles, every 5 The user needs to interact once in seconds.
  • the EMG signal is compared with the specific tempo to determine whether the two match, and when the EMG signal matches the specific tempo, positive feedback is given, otherwise negative feedback is given, the positive feedback is given
  • the positive feedback and/or negative feedback is communicated to the remote monitoring device 40 to facilitate remote monitoring of the user's muscle response.
  • the audio may also be a beeping sound, and the audio may be expressed in many forms, and is not limited to the music and buzzer sounds mentioned in the embodiment.
  • the form of the rhythm may also be tactile sensing, which responds when the user feels the change.
  • the intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment system includes a surface myoelectric sensor 10, a signal processor 15, a signal transmitter 20, and a rhythm interaction device 30, and the surface electromyography sensor 10 is configured.
  • the signal processor 15 is configured to receive the myoelectric signal from the surface myoelectric sensor 10, and process the myoelectric signal to obtain a smoothed myoelectric signal,
  • the smoothed EMG signal is then transmitted to the signal transmitter 20, the tempo interaction device 30 receiving the EMG signal from the signal transmitter 20, the tempo interaction device 30 for generating a particular cadence, And comparing the EMG signal to the particular tempo to determine if the two match, giving positive feedback when the EMG signal matches the particular tempo, and when the EMG signal is Specific rhythm Negative feedback is given when there is no match.
  • the tempo includes a plurality of interactive elements, and the time interval between each interactive element is adjustable, whereby a reasonable interval can be set according to the difference in the muscle recovery phase of the patient.
  • the tempo is an advanced stage mode, the tempo is in the form of audio, video or tactile sensation, the audio is all audio that can hear the sound, the video is all visible video, the rhythm of the embodiment
  • the form is audio.
  • the advanced stage mode is a stage in which the user can more skillfully control the muscle behavior.
  • the form of the rhythm is the audio of the music, and a certain syllable of the music is an interactive element, such as a "ticking" syllable.
  • the rhythm is a fast irregular rhythm. For example, the ticking of “ticking” appears randomly.
  • the EMG signal is compared with the specific tempo to determine whether the two match, and when the EMG signal matches the specific tempo, positive feedback is given, otherwise negative feedback is given, the positive feedback is given.
  • negative feedback and/or negative feedback There are various forms of negative feedback and/or negative feedback.
  • the rhythm interaction device 30 automatically adds points.
  • the rhythm interaction device 30 automatically reduces points, which increases the interest. .
  • the positive feedback and/or negative feedback is communicated to the remote monitoring device 40 to facilitate remote monitoring of the user's muscle response.
  • the audio may also be a beeping sound, and the audio may be expressed in many forms, and is not limited to the music and buzzer sounds mentioned in the embodiment.
  • the form of the rhythm may also be tactile sensing, which responds when the user feels the change.
  • the intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment system includes a surface myoelectric sensor 10, a signal processor 15, a signal transmitter 20, and a rhythm interaction device 30, and the surface electromyography sensor 10 is configured.
  • the signal processor 15 is configured to receive the myoelectric signal from the surface myoelectric sensor 10, and process the myoelectric signal to obtain a smoothed myoelectric signal,
  • the smoothed EMG signal is then transmitted to the signal transmitter 20, the tempo interaction device 30 receiving the EMG signal from the signal transmitter 20, the tempo interaction device 30 for generating a particular cadence,
  • the electromyographic signal and the special The rhythm is compared to determine if the two match, giving positive feedback when the EMG signal matches the particular tempo, and giving a negative when the EMG signal does not match the particular tempo Feedback.
  • the tempo includes a plurality of interactive elements, and the time interval between each interactive element is adjustable, whereby a reasonable interval can be set according to the difference in the muscle recovery phase of the patient.
  • the tempo is a primary phase mode, the tempo is in the form of audio, video or tactile sensation, the audio is all audio that can hear the sound, the video is all visible video, the rhythm of the embodiment
  • the form is video.
  • the primary stage mode is a stage in which the user can not correctly control the muscle behavior.
  • the form of the rhythm is selected as the video of the jumping obstacle in the parkour game application, and each obstacle is an interactive element, and the user sees When the obstacle is displayed by the rhythm interaction device 30, the user needs to respond to control the muscle.
  • the rhythm interaction device 30 automatically adds points.
  • the rhythm interaction device 30 will automatically reduce points, adding interest.
  • the positive feedback and/or negative feedback is communicated to the remote monitoring device 40 to facilitate remote monitoring of the user's muscle response.
  • the form of the rhythm may also be tactile sensing, which responds when the user feels the change.
  • the intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment system includes a surface myoelectric sensor 10, a signal processor 15, a signal transmitter 20, and a rhythm interaction device 30, and the surface electromyography sensor 10 is configured.
  • the signal processor 15 is configured to receive the myoelectric signal from the surface myoelectric sensor 10, and process the myoelectric signal to obtain a smoothed myoelectric signal, The smoothed EMG signal is then transmitted to the signal transmitter 20,
  • the tempo interaction device 30 receives the myoelectric signal from the signal transmitter 20, the tempo interaction device 30 is configured to generate a particular tempo, and compare the myoelectric signal to the particular tempo to determine both Whether or not a match is given, positive feedback is given when the myoelectric signal matches the particular tempo, and negative feedback is given when the myoelectric signal does not match the particular tempo.
  • the tempo includes a plurality of interactive elements, and the time interval between each interactive element is adjustable, whereby a reasonable interval can be set according to the difference in the muscle recovery phase of the patient.
  • the tempo is an intermediate stage mode, the tempo is in the form of audio, video or tactile sensation, the audio is all audio that can hear the sound, the video is all visible video, the rhythm of the embodiment
  • the intermediate stage mode is a stage in which the user is not yet proficient in controlling muscle behavior
  • the tempo is a regular slower tempo
  • the form of the tempo is selected as a video of a jumping obstacle in a parkour game application.
  • Each obstacle is an interactive element, and each obstacle appears regularly in the video, and the interval is long.
  • the rhythm interaction device 30 When the user sees the obstacle displayed by the rhythm interaction device 30, the user needs to respond to control the muscle. When the next obstacle is regularly displayed, the user responds immediately, and the EMG signal of the user-controlled muscle is collected by the surface myoelectric sensor 10, and the EMG signal is compared with the specific tempo to determine whether the two match. Positive feedback is given when the EMG signal matches the specific tempo, otherwise it is negative feedback, giving the shape of the positive feedback and/or negative feedback.
  • the automatic rhythm sub-device 30 will interact, when the feedback is negative, the interactive device 30 automatically rhythm Save points, increasing the fun.
  • the positive feedback and/or negative feedback is communicated to the remote monitoring device 40 to facilitate remote monitoring of the user's muscle response.
  • the form of the rhythm may also be tactile sensing, which responds when the user feels the change.
  • the intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment system includes a surface myoelectric sensor 10 , a signal processor 15 , and a signal transmitter 20 .
  • a rhythm interaction device 30 configured to acquire a myoelectric signal of a user
  • the signal processor 15 configured to receive the myoelectric signal from the surface myoelectric sensor 10
  • the electromyographic signal is processed to obtain a smoothed myoelectric signal, and then the smoothed myoelectric signal is transmitted to the signal transmitter 20, and the tempo interaction device 30 receives the muscle from the signal transmitter 20.
  • An electrical signal, the tempo interaction device 30 is operative to generate a particular tempo and compare the EMG signal to the particular tempo to determine if the two match, when the EMG signal matches the particular tempo Give positive feedback and give negative feedback when the EMG signal does not match the specific tempo.
  • the tempo includes a plurality of interactive elements, and the time interval between each interactive element is adjustable, whereby a reasonable interval can be set according to the difference in the muscle recovery phase of the patient.
  • the tempo is an advanced stage mode, the tempo is in the form of audio, video or tactile sensation, the audio is all audio that can hear the sound, the video is all visible video, the rhythm of the embodiment
  • the form is video
  • the advanced stage mode is a stage in which the user can more skillfully control the muscle behavior
  • the tempo is a non-regular faster tempo
  • the tempo is selected as a video of jumping obstacles in the parkour game application.
  • Each obstacle is an interactive element, each obstacle appears irregularly in the video, and the interval time is short.
  • the rhythm interaction device 30 When the user sees the obstacle displayed by the rhythm interaction device 30, the user needs to respond and control Muscle, irregularly showing the next obstacle, the user responds instantly, the EMG signal of the user-controlled muscle is collected by the surface myoelectric sensor 10, and the EMG signal is compared with the specific rhythm to determine the two Whether it matches, when the EMG signal matches the specific rhythm, gives positive feedback, otherwise it is negative feedback, giving the positive feedback and/or negative reaction
  • the automatic rhythm sub-device 30 will interact, when the feedback is negative, the interactive device 30 automatically rhythm Save points, increasing the fun.
  • the positive feedback and/or negative feedback is communicated to the remote monitoring device 40 to facilitate remote monitoring of the user's muscle response.
  • the form of the rhythm may also be tactile sensing, which responds when the user feels the change.
  • the meat rehabilitation treatment system enables the user to continuously strengthen and exercise the target muscle or muscle group, and the skilled motor nerve can control the target muscle and inhibit the wrong contraction of the muscle to balance the effect against the muscle group, and has a very high Interactivity, intelligence and fun enhance the user's willingness to adhere to long-term treatment.
  • the intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment system of the invention enables the user to continuously strengthen and exercise the target muscle or muscle group through the rhythm interaction device, and the skilled motor nerve controls the target muscle and inhibits the wrong contraction of the muscle to reach the balance against the muscle group.
  • the effect is highly interactive, intelligent and interesting, which enhances the user's willingness to adhere to long-term treatment; and the remote monitoring device detects the user's treatment process, so that the user does not need to go to the clinic or hospital for treatment, saving The user has a lot of time and labor.
  • the present invention also provides an intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment apparatus, comprising: a device 100 for generating and providing a specific rhythm to a user; a device 200 for receiving an electromyogram signal; and for the electromyogram A positive feedback is given when the signal matches the particular cadence, otherwise a negative feedback device 300 is provided.
  • 6 is a block diagram of an intelligent rhythm interactive electromyographic signal muscle rehabilitation treatment apparatus according to another embodiment of the present invention.
  • each block of the block diagrams and the flowcharts, and combinations of blocks of the block diagrams and flowcharts can be implemented by a circuit, a processor, a software, and various combinations of the above, and the like, and can also be The device is implemented.
  • These computer program instructions can be loaded onto a general purpose computer, special purpose computer or other programmable data processing device to produce a machine such that instructions executed on a computer or other programmable data processing device are created for implementing one or more flowchart blocks The device specified in the function.
  • the computer program instructions can also be stored in a computer readable memory that can be booted by a computer or other programmable data processing device to function in a particular manner, such that the instructions are stored in a computer readable memory, including one or more flowchart blocks.
  • the computer program instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on a computer or other programmable data processing device to produce a computer-implemented process, which in the computer or other programmable data.
  • the instructions executed on the processing device provide steps for implementing the functions specified in one or more of the flowchart blocks.
  • blocks of the block diagrams and flowcharts support combinations of means for performing the specified functions, combinations of steps for performing the specified functions, and combinations of program instruction means for performing the specified functions. It will also be understood that each block of the block diagrams and flowcharts, and combinations of blocks of the block diagrams and flowcharts can be implemented by a hardware-based, special-purpose computer system that performs the specified functions or steps, or a combination of special purpose hardware and computer.

Abstract

一种智能节奏互动式肌电信号肌肉康复治疗系统,包括:表面肌电传感器(10),配置用于采集用户的肌电信号;信号发射器(20),配置用于接收并发射所述肌电信号;节奏互动装置(30),配置用于产生并向所述用户提供特定节奏,接收所述肌电信号,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,否则给出负反馈。所述肌肉康复治疗系统通过节奏互动装置使得用户不断强化、锻炼目标肌肉或肌群,熟练运动神经对于目标肌肉的操控和抑制肌肉的错误收缩达到平衡对抗肌群的效果,又具有极高的互动性、智能性和趣味性,提升了用户坚持长期治疗的意愿,并使得用户自主治疗成为可能。

Description

一种智能节奏互动式肌电信号肌肉康复治疗系统 技术领域
本发明涉及医疗器械装置领域,尤其涉及一种智能节奏互动式肌电信号肌肉康复治疗系统。
背景技术
生物反馈是用各种仪器反映人体生理活动状况,从而让该用户获得瞬时直观感受,经过辅以正反馈负反馈的行为激励,最终达到随心所欲控制本来无法操控的生理活动的治疗概念。如何基于生物反馈概念,设计出使用户更加专注于治疗过程,能够坚持长期的反馈治疗以达到最佳的治疗效果的治疗方法,一直是该领域应用研究的前沿课题。
现有的肌肉康复治疗系统一般都是在诊所或医院中进行治疗和康复,需要患者预约时间亲自到诊所或医院中,浪费了大量的时间和人力,并且治疗过程中比较乏味,患者坚持长期治疗的意愿不强烈,使得患者自主治疗的可能性很小;现有的肌肉康复治疗系统比较笨重,各个设备之间连接严重依赖USB等有线传输,从而不便于携带。在实际的治疗过程中,由于上述缺陷,导致了绝大多数患者无法坚持下去,最终不得不放弃治疗,从而极大地影响了肌肉恢复的效果。
此外,由于一般是一个医生或治疗师面对一位患者,因此治疗效率也较低。
发明内容
为此,本发明提出了一种可以解决上述问题的至少一部分的新肌肉康复治疗系统。
本发明提供了一种智能节奏互动式肌电信号肌肉康复治疗系统,包括:表面肌电传感器,配置用于采集用户的肌电信号;信号发射器,配置用于接收并发射所述肌电信号;节奏互动装置,配置用于产生并向所述用户提供特定节奏,接收所述肌电信号,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,否则给出负反馈。
根据本发明的一个实施方式,进一步包括:信号处理器,其配置用于从所述表面肌电传感器接收所述肌电信号,并对所述肌电信号进行平滑处理。
根据本发明的一个实施方式,其中,通过如下方式对所述肌电信号进行平滑处理,得到输出y:
Figure PCTCN2015087362-appb-000001
其中,x为输入信号的采样,n为采样数量,dt为采样时间间隔,tn为采样总时长。
根据本发明的一个实施方式,其中,所述节奏互动装置经过如下方式校准:计算稳态数值域,所述稳态数值域的范围在(1-b%)a至(1+b%)a之间,其中b%是环境噪声域值,a是肌肉放松时的均值;对于数值大于(1+b%)a的肌电信号,设定为1,对于数值小于(1+b%)a的肌电信号,设定为0。
根据本发明的一个实施方式,其中,所述节奏互动装置经过如下方式校准:计算稳态数值域,所述稳态数值域的范围在(1-b%)a至(1+b%)a之间,其中b%是环境噪声域值,a是肌肉放松时的均值;计算所述肌电信号的绝对值;计算所述肌电信号的绝对值与所述稳态数值阈的上限(1+b%)a之差,同所述稳态数值阈的上限(1+b%)a的比值;以及计算所述比值的对数。
根据本发明的一个实施方式,进一步包括远程监视设备,其配置用于从节奏互动装置至少接收所述正反馈和/或负反馈,以便于对用户的肌肉反应进行远程监视。
根据本发明的一个实施方式,其中,所述节奏包括多个互动元素,每个互动元素之间的时间间隔可调。
根据本发明的一个实施方式,其中,所述节奏包括初级阶段模式、中级阶段模式和高级阶段模式中的至少一种,其中,在所述初级阶段模式,必须在一个互动元素被完成之后,才给出下一个互动元素;在所述中级阶段模式,每个互动元素间隔较长且规律性出现;在所述高级阶段模式,每个互动元素间隔较短且非规律性出现。
根据本发明的一个实施方式,其中,所述节奏的形式包括音频、视频和触觉感应中的至少一种。
根据本发明的一个实施方式,其中,所述信号发射器为无线发射器。
本发明还提供一种智能节奏互动式肌电信号肌肉康复治疗设备,包括:用于产生并向用户提供特定节奏的装置;用于接收肌电信号的装置;用于当所述肌电信号与所述特定节奏相匹配时,给出正反馈,否则给出负反馈的装置。
本发明所述智能节奏互动式肌电信号肌肉康复治疗系统通过节奏互动装置使得用户不断强化、锻炼目标肌肉或肌群,熟练运动神经对于目标肌肉的操控和抑制肌肉的错误收缩达到平衡对抗肌群的效果,又具有极高的互动性、智能性和趣味性,提升了用户坚持长期治疗的意愿,并使得用户自主治疗成为可能。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。其中在附图中,参考数字之后的字母标记指示多个相同的部件,当泛指这些部件时,将省略其最后的字母标记。在附图中:
图1为本发明所述智能节奏互动式肌电信号肌肉康复治疗系统的结构示意图;
图2为表面肌电传感器的结构示意图;
图3-1为未经处理的肌电信号波形图;
图3-2为经过平滑处理后的肌电信号波形图;
图4为图3-1中经处理的肌电信号波形图转化为的二元值波形图;
图5为经过对数化之后的肌电信号波形图;以及
图6为根据本发明另一实施方式的智能节奏互动式肌电信号肌肉康复治疗设备的框图。
其中,附图中各标记的含义为:
表面肌电传感器10、电极感应器11、信号放大电路12、信号全波整流电路13、信号平滑电路14、信号处理器15、信号发射器20、节奏互动装置30、远程监视设备40、用于产生并向用户提供特定节奏的装置100、用于接收肌电信号的装置200和用于当所述肌电信号与所述特定节奏相匹配时,给出正反馈,否则给出负反馈的装置300。
具体实施方式
下面结合附图和具体的实施方式对本发明作进一步的描述。
图1为本发明所述智能节奏互动式肌电信号肌肉康复治疗系统的结构示意图。如图1所示,所述智能节奏互动式肌电信号肌肉康复治疗系统包括表面肌电传感器10、信号处理器15、信号发射器20以及节奏互动装置30,其中,所述表面肌电传感器10配置用于采集用户的肌电信号,所述表面肌电传感器信号采集器10包括电极感应器11、信号放大电路12、信号全波整流电路13和信号平滑电路14。
信号发射器20可以是有线发射器,也可以为无线发射器,无线发射器例如可以为蓝牙、红外发射器或WiFi,蓝牙最重要的特性是省电,极低的运行和待机功耗可以使一粒纽扣电池连续工作数年之久,其主要的优点为:超低的峰值、平均和待机模式功耗;低成本;无线覆盖范围增强;完全向下兼容和低延迟(APT-X),所述信号发射器20优选为蓝牙。所述智能节奏互动式肌电信号肌肉康复治疗系统中所述表面肌电传感器10采集到的肌电信号优良的情况下可以直接传送给所述信号发射器20,在肌电信号不好的情况下通过所述信号处理器15处理后传送给所述信号发射器20,所以所述智能节奏互动式肌电信号肌肉康复治疗系统优选的包括所述信号处理器15。
如图2所示,所述表面肌电传感器信号采集器10包括电极感应器11、信号放大电路12、信号全波整流电路13和信号平滑电路14,所述电极感应器11与所述信号放大电路12相连接,所述电极感应器11包括参考电极、肌肉中端电极和肌肉末端电极,所述电极感应器11把从体表获取的第一电信号传输给所述信号放大电路12,所述信号放大电路12把第一电信号放大后传送给所述信号全波整流电路13,所述信号全 波整流电路13与所述信号平滑电路14相连接,所述信号全波整流电路13把交流电转化为直流电,把直流电信号传送给所述信号平滑电路14,所述信号平滑电路14把直流电信号平滑化和方波化后得到第二电信号传输给所述信号处理器15。
所述信号发射器20与所述信号处理器15相连接,所述信号发射器20配置用于接收并发射所述肌电信号;所述节奏互动装置30用于产生特定节奏,所述节奏互动装置30从所述信号发射器20接收所述肌电信号,并将所述肌电信号与所述特定节奏进行比较以确定二者是否匹配,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,并且当所述肌电信号与所述特定节奏未匹配时,给出负反馈。
本发明所述的智能节奏互动式肌电信号肌肉康复治疗系统针对的目标疾病分为肌力不平衡,如上、下交叉综合征、颈椎不稳(颈椎周围肌群失调);肌力衰弱,如髌骨关节痛综合症、腰椎不稳、颈椎不稳;运动神经控制肌肉障碍,如盆腔肌群失调,产后盆腔肌肉松弛、失禁、垂足步態;本发明所述智能节奏互动式肌电信号肌肉康复治疗系统通过节奏互动装置使得用户不断强化、锻炼目标肌肉或肌群,熟练运动神经对于目标肌肉的操控和抑制肌肉的错误收缩达到平衡对抗肌群的效果,又具有极高的互动性、智能性和趣味性,提升了用户坚持长期治疗的意愿。
本发明所述的智能节奏互动式肌电信号肌肉康复治疗系统中,所述信号处理器15位于所述表面肌电传感器10与所述信号发射器20之间,所述信号处理器15包括A/D转换器和数字信号处理器,所述信号处理器15配置用于从所述表面肌电传感器10接收所述肌电信号,把所述肌电信号经过放大、转化、平滑、方波化处理后得到的第二电信号,然后把第二电信号传送给所述信号处理器15;所述信号处理器15与所述信号发射器20相连接,所述信号处理器15把第二电信号转化为第一数字信号,把所述第一数字信号经过数值积分再平均算法得到第二数字信号,具体处理方法如下式:
Figure PCTCN2015087362-appb-000002
其中,x为输入信号的采样,n为采样数量,dt为采样时间间隔,tn为采样总时长。通过以上方式对所述肌电信号进行平滑处理,以得到输出y。图3-1为未经处理的肌电信号波形图,图3-2为经过平滑处理后的肌电信号波形图,有效避免了某个瞬时产生的突发噪音,避免了无法准确判断用户的肌肉控制行为。
本发明所述的智能节奏互动式肌电信号肌肉康复治疗系统中,所述节奏互动装置30经过如下方式校准:计算稳态数值域,所述稳态数值域的范围在(1-b%)a至(1+b%)a之间,其中b%是环境噪声阈值,a是肌肉放松时的均值;对于数值大于(1+b%)a的肌电信号,设定为1,对于数值小于(1+b%)a的肌电信号,设定为0。稳态数值域,即用户肌肉完全放松状态下的数值区间,没有稳态数值域,就无法判断肌肉是否收缩,在用户未开始治疗时,肌肉处于放松状态下,瞬时节奏互动装置30便开始收集数据并加以分析,最终获得肌肉放松时的均值a和环境噪音域值b%,肌肉在完全放松时,接收到的数据会在区间(1-b%)a到(1+b%)a之间震动,即在稳态数值域中震动。当用户的肌肉收缩和放松的过程中会产生肌电信号,对接收到的肌电信号的连续数值转化为二元值,在二元值中,1表示正确,0表示不正确,对于数值大于(1+b%)a的肌电信号,设定为1,对于数值小于(1+b%)a的肌电信号,设定为0,图4为图3-1中未经处理的肌电信号波形图转化为的二元值波形图。
本发明所述的智能节奏互动式肌电信号肌肉康复治疗系统中,所述节奏互动装置30经过如下方式校准:计算稳态数值域,所述稳态数值域的范围在(1-b%)a至(1+b%)a之间,其中b%是环境噪声域值,a是肌肉放松时的均值;计算所述肌电信号的绝对值;计算所述肌电信号的绝对值与所述稳态数值阈的上限(1+b%)a之差,同所述稳态数值阈的上限(1+b%)a的比值;以及计算所述比值的对数。图5为图3-1中未经处理的肌电信号波形图经对数化之后的肌电信号波形图。
本发明所述的智能节奏互动式肌电信号肌肉康复治疗系统中,进一步包括远程监视设备40。如图1所示,所述远程监视设备40与所述节奏互动装置30相连接,所述远程监视设备40配置用于从节奏互动装置30至少接收所述正反馈和/或负反馈,以便于对用户的肌肉反应进行远程监视。医生或治疗师可以通过远程监视设备40上的反馈结果得知用户的肌肉恢复状况,从而制定出不同的治疗阶段。
本发明所述的智能节奏互动式肌电信号肌肉康复治疗系统中,节奏包括多个互动元素,每个互动元素之间的时间间隔可调。
根据本发明提出的节奏和节奏形式可以设计出多种实施例,因此具体的实施例仅作为本发明的具体实现方式的示例性说明,而不构成对本发明范围的限制。为了具体的描述本发明,选择以下实施例进行示例性说明。
实施例1
图1为本发明所述智能节奏互动式肌电信号肌肉康复治疗系统的结构示意图。如图1所示,所述智能节奏互动式肌电信号肌肉康复治疗系统包括表面肌电传感器10、信号处理器15、信号发射器20以及节奏互动装置30,所述表面肌电传感器10配置用于采集用户的肌电信号,所述信号处理器15配置用于从所述表面肌电传感器10接收所述肌电信号,并对所述肌电信号进行处理得到平滑处理后的肌电信号,然后把平滑处理后的肌电信号传送给所述信号发射器20,所述节奏互动装置30从所述信号发射器20接收所述肌电信号,所述节奏互动装置30用于产生特定节奏,并将所述肌电信号与所述特定节奏进行比较以确定二者是否匹配,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,并且当所述肌电信号与所述特定节奏未匹配时,给出负反馈。
所述节奏包括多个互动元素,每个互动元素之间的时间间隔可调,由此可以根据患者肌肉恢复阶段的不同来设定合理的间隔。所述节奏为初级阶段模式,所述节奏的形式为音频、视频或触觉感应,所述音频为一切可以听到声音的音频,所述视频为一切可以看到的 视频,而触觉感应可以是一切可以通知肢体感知的刺激,例如震动等等。本实施例所述节奏的形式为音频,所述初级阶段模式为用户尚不能正确控制肌肉行为的阶段,所述节奏的形式为音乐的音频,音乐的某个特定的音节为互动元素,如“滴答”的音节,听到“滴答”的音节时,用户控制肌肉,所述节奏为非即时的,当用户完成这个互动元素后才能进行下一个互动元素的练习。所述肌电信号与所述特定节奏进行比较以确定二者是否匹配,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,否则为负反馈,给出所述正反馈和/或负反馈的形式有多种,如当为正反馈时,所述节奏互动装置30会加分,当为负反馈时,所述节奏互动装置30会减分,增加了趣味性,并可以鼓励患者不断取得更高分数。所述正反馈和/或负反馈传送到所述远程监视设备40,以便于对用户的肌肉反应进行远程监视。所述音频还可以为蜂鸣的声音,所述音频的表现形式有很多,不局限于本实施例中提及的音乐和蜂鸣的声音。此外所述节奏的形式还可以为触觉感应,当用户触觉感受到变化时进行响应。
实施例2
图1为本发明所述智能节奏互动式肌电信号肌肉康复治疗系统的结构示意图。如图1所示,所述智能节奏互动式肌电信号肌肉康复治疗系统包括表面肌电传感器10、信号处理器15、信号发射器20以及节奏互动装置30,所述表面肌电传感器10配置用于采集用户的肌电信号,所述信号处理器15配置用于从所述表面肌电传感器10接收所述肌电信号,并对所述肌电信号进行处理得到平滑处理后的肌电信号,然后把平滑处理后的肌电信号传送给所述信号发射器20,所述节奏互动装置30从所述信号发射器20接收所述肌电信号,所述节奏互动装置30用于产生特定节奏,并将所述肌电信号与所述特定节奏进行比较以确定二者是否匹配,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,并且当所述肌电信号与所述特定节奏未匹配时,给出负反馈。
所述节奏包括多个互动元素,每个互动元素之间的时间间隔可 调,由此可以根据患者肌肉恢复阶段的不同来设定合理的间隔。所述节奏为中级阶段模式,所述节奏的形式为音频、视频或触觉感应,所述音频为一切可以听到声音的音频,所述视频为一切可以看到的视频。本实施例所述节奏的形式为音频,所述中级阶段模式为用户尚不能熟练控制肌肉行为的阶段,所述节奏的形式为音乐的音频,音乐的某个特定的音节为互动元素,如“滴答”的音节,所述节奏为较慢的规律性节奏,如每隔5秒钟有个“滴答”的音节,听到“滴答”的音节时,用户需要即时响应即控制肌肉,每隔5秒钟用户需要互动一次。所述肌电信号与所述特定节奏进行比较以确定二者是否匹配,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,否则为负反馈,给出所述正反馈和/或负反馈的形式有多种,如当为正反馈时,所述节奏互动装置30会自动加分,当为负反馈时,所述节奏互动装置30会自动减分,增加了趣味性。所述正反馈和/或负反馈传送到所述远程监视设备40,以便于对用户的肌肉反应进行远程监视。所述音频还可以为蜂鸣的声音,所述音频的表现形式有很多,不局限于本实施例中提及的音乐和蜂鸣的声音。此外所述节奏的形式还可以为触觉感应,当用户触觉感受到变化时进行响应。
实施例3
图1为本发明所述智能节奏互动式肌电信号肌肉康复治疗系统的结构示意图。如图1所示,所述智能节奏互动式肌电信号肌肉康复治疗系统包括表面肌电传感器10、信号处理器15、信号发射器20以及节奏互动装置30,所述表面肌电传感器10配置用于采集用户的肌电信号,所述信号处理器15配置用于从所述表面肌电传感器10接收所述肌电信号,并对所述肌电信号进行处理得到平滑处理后的肌电信号,然后把平滑处理后的肌电信号传送给所述信号发射器20,所述节奏互动装置30从所述信号发射器20接收所述肌电信号,所述节奏互动装置30用于产生特定节奏,并将所述肌电信号与所述特定节奏进行比较以确定二者是否匹配,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,并且当所述肌电信号与所述特定节奏 未匹配时,给出负反馈。
所述节奏包括多个互动元素,每个互动元素之间的时间间隔可调,由此可以根据患者肌肉恢复阶段的不同来设定合理的间隔。所述节奏为高级阶段模式,所述节奏的形式为音频、视频或触觉感应,所述音频为一切可以听到声音的音频,所述视频为一切可以看到的视频,本实施例所述节奏的形式为音频,所述高级阶段模式为用户能较为熟练控制肌肉行为的阶段,所述节奏的形式为音乐的音频,音乐的某个特定的音节为互动元素,如“滴答”的音节,所述节奏为较快的非规律性节奏,如“滴答”的音节随机的出现,听到“滴答”的音节时,用户需要即时响应即控制肌肉。所述肌电信号与所述特定节奏进行比较以确定二者是否匹配,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,否则为负反馈,给出所述正反馈和/或负反馈的形式有多种,如当为正反馈时,所述节奏互动装置30会自动加分,当为负反馈时,所述节奏互动装置30会自动减分,增加了趣味性。所述正反馈和/或负反馈传送到所述远程监视设备40,以便于对用户的肌肉反应进行远程监视。所述音频还可以为蜂鸣的声音,所述音频的表现形式有很多,不局限于本实施例中提及的音乐和蜂鸣的声音。此外所述节奏的形式还可以为触觉感应,当用户触觉感受到变化时进行响应。
实施例4
图1为本发明所述智能节奏互动式肌电信号肌肉康复治疗系统的结构示意图。如图1所示,所述智能节奏互动式肌电信号肌肉康复治疗系统包括表面肌电传感器10、信号处理器15、信号发射器20以及节奏互动装置30,所述表面肌电传感器10配置用于采集用户的肌电信号,所述信号处理器15配置用于从所述表面肌电传感器10接收所述肌电信号,并对所述肌电信号进行处理得到平滑处理后的肌电信号,然后把平滑处理后的肌电信号传送给所述信号发射器20,所述节奏互动装置30从所述信号发射器20接收所述肌电信号,所述节奏互动装置30用于产生特定节奏,并将所述肌电信号与所述特 定节奏进行比较以确定二者是否匹配,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,并且当所述肌电信号与所述特定节奏未匹配时,给出负反馈。
所述节奏包括多个互动元素,每个互动元素之间的时间间隔可调,由此可以根据患者肌肉恢复阶段的不同来设定合理的间隔。所述节奏为初级阶段模式,所述节奏的形式为音频、视频或触觉感应,所述音频为一切可以听到声音的音频,所述视频为一切可以看到的视频,本实施例所述节奏的形式为视频,所述初级阶段模式为用户尚不能正确控制肌肉行为的阶段,所述节奏的形式选为跑酷游戏应用中跳跃障碍物的视频,每个障碍物为互动元素,用户看到所述节奏互动装置30的显示障碍物时,用户需要进行响应即控制肌肉,这个动作完成以后再显示下一个障碍物,用户控制肌肉的肌电信号被所述表面肌电传感器10采集,所述肌电信号与所述特定节奏进行比较以确定二者是否匹配,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,否则为负反馈,给出所述正反馈和/或负反馈的形式有多种,如当为正反馈时,所述节奏互动装置30会自动加分,当为负反馈时,所述节奏互动装置30会自动减分,增加了趣味性。所述正反馈和/或负反馈传送到所述远程监视设备40,以便于对用户的肌肉反应进行远程监视。所述视频的表现形式有很多种,不局限于本实施例中提及的跑酷游戏应用中跳跃障碍物的视频。此外所述节奏的形式还可以为触觉感应,当用户触觉感受到变化时进行响应。
实施例5
图1为本发明所述智能节奏互动式肌电信号肌肉康复治疗系统的结构示意图。如图1所示,所述智能节奏互动式肌电信号肌肉康复治疗系统包括表面肌电传感器10、信号处理器15、信号发射器20以及节奏互动装置30,所述表面肌电传感器10配置用于采集用户的肌电信号,所述信号处理器15配置用于从所述表面肌电传感器10接收所述肌电信号,并对所述肌电信号进行处理得到平滑处理后的肌电信号,然后把平滑处理后的肌电信号传送给所述信号发射器20, 所述节奏互动装置30从所述信号发射器20接收所述肌电信号,所述节奏互动装置30用于产生特定节奏,并将所述肌电信号与所述特定节奏进行比较以确定二者是否匹配,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,并且当所述肌电信号与所述特定节奏未匹配时,给出负反馈。
所述节奏包括多个互动元素,每个互动元素之间的时间间隔可调,由此可以根据患者肌肉恢复阶段的不同来设定合理的间隔。所述节奏为中级阶段模式,所述节奏的形式为音频、视频或触觉感应,所述音频为一切可以听到声音的音频,所述视频为一切可以看到的视频,本实施例所述节奏的形式为视频,所述中级阶段模式为用户尚不能熟练控制肌肉行为的阶段,所述节奏为规律性的较慢节奏,所述节奏的形式选为跑酷游戏应用中跳跃障碍物的视频,每个障碍物为互动元素,每个障碍物在视频中规律性的出现,且间隔的时间较长,用户看到所述节奏互动装置30的显示障碍物时,用户需要进行响应即控制肌肉,规律性的显示下一个障碍物时,用户即时响应,用户控制肌肉的肌电信号被所述表面肌电传感器10采集,所述肌电信号与所述特定节奏进行比较以确定二者是否匹配,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,否则为负反馈,给出所述正反馈和/或负反馈的形式有多种,如当为正反馈时,所述节奏互动装置30会自动加分,当为负反馈时,所述节奏互动装置30会自动减分,增加了趣味性。所述正反馈和/或负反馈传送到所述远程监视设备40,以便于对用户的肌肉反应进行远程监视。所述视频的表现形式有很多种,不局限于本实施例中提及的跑酷游戏应用中跳跃障碍物的视频。此外所述节奏的形式还可以为触觉感应,当用户触觉感受到变化时进行响应。
实施例6
图1为本发明所述智能节奏互动式肌电信号肌肉康复治疗系统的结构示意图。如图1所示,所述智能节奏互动式肌电信号肌肉康复治疗系统包括表面肌电传感器10、信号处理器15、信号发射器20 以及节奏互动装置30,所述表面肌电传感器10配置用于采集用户的肌电信号,所述信号处理器15配置用于从所述表面肌电传感器10接收所述肌电信号,并对所述肌电信号进行处理得到平滑处理后的肌电信号,然后把平滑处理后的肌电信号传送给所述信号发射器20,所述节奏互动装置30从所述信号发射器20接收所述肌电信号,所述节奏互动装置30用于产生特定节奏,并将所述肌电信号与所述特定节奏进行比较以确定二者是否匹配,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,并且当所述肌电信号与所述特定节奏未匹配时,给出负反馈。
所述节奏包括多个互动元素,每个互动元素之间的时间间隔可调,由此可以根据患者肌肉恢复阶段的不同来设定合理的间隔。所述节奏为高级阶段模式,所述节奏的形式为音频、视频或触觉感应,所述音频为一切可以听到声音的音频,所述视频为一切可以看到的视频,本实施例所述节奏的形式为视频,所述高级阶段模式为用户能较为熟练控制肌肉行为的阶段,所述节奏为非规律性的较快节奏,所述节奏的形式选为跑酷游戏应用中跳跃障碍物的视频,每个障碍物为互动元素,每个障碍物在视频中非规律性的出现,且间隔的时间较短,用户看到所述节奏互动装置30的显示障碍物时,用户需要进行响应即控制肌肉,非规律性的显示下一个障碍物时,用户即时响应,用户控制肌肉的肌电信号被所述表面肌电传感器10采集,所述肌电信号与所述特定节奏进行比较以确定二者是否匹配,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,否则为负反馈,给出所述正反馈和/或负反馈的形式有多种,如当为正反馈时,所述节奏互动装置30会自动加分,当为负反馈时,所述节奏互动装置30会自动减分,增加了趣味性。所述正反馈和/或负反馈传送到所述远程监视设备40,以便于对用户的肌肉反应进行远程监视。此外所述节奏的形式还可以为触觉感应,当用户触觉感受到变化时进行响应。
所述视频的表现形式有很多种,不局限于本实施例中提及的跑酷游戏应用中跳跃障碍物的视频。所述智能节奏互动式肌电信号肌 肉康复治疗系统通过所述节奏互动装置30使得用户不断强化、锻炼目标肌肉或肌群,熟练运动神经对于目标肌肉的操控和抑制肌肉的错误收缩达到平衡对抗肌群的效果,又具有极高的互动性、智能性和趣味性,提升了用户坚持长期治疗的意愿。
本发明所述智能节奏互动式肌电信号肌肉康复治疗系统通过节奏互动装置使得用户不断强化、锻炼目标肌肉或肌群,熟练运动神经对于目标肌肉的操控和抑制肌肉的错误收缩达到平衡对抗肌群的效果,又具有极高的互动性、智能性和趣味性,提升了用户坚持长期治疗的意愿;又通过远程监视设备检测用户的治疗过程,使得用户不需要到诊所或医院中进行治疗,节省了用户很多时间和劳力。本发明还提供一种智能节奏互动式肌电信号肌肉康复治疗设备,包括:用于产生并向用户提供特定节奏的装置100;用于接收肌电信号的装置200;用于当所述肌电信号与所述特定节奏相匹配时,给出正反馈,否则给出负反馈的装置300。图6为根据本发明另一实施方式的智能节奏互动式肌电信号肌肉康复治疗设备的框图。
应该理解,框图和流程图的每个框以及框图和流程图的框的组合可以分别由电路、处理器、软件以及上述的各种组合等等来实现,也可以由包括计算机程序指令的各种装置来实施。这些计算机程序指令可以加载到通用计算机、专用计算机或其他可编程数据处理设备上以产生机器,从而在计算机或其他可编程数据处理设备上执行的指令创建了用于实现一个或多个流程图框中指定的功能的装置。
这些计算机程序指令还可以存储在可以引导计算机或其他可编程数据处理设备的计算机可读存储器中从而以特定方式起作用,从而存储在计算机可读存储器中的指令制造包括一个或多个流程图框中所指定功能的计算机可读指令的制品。计算机程序指令还可以加载到计算机或其他可编程数据处理设备上以使得在计算机或其他可编程数据处理设备上执行一系列的操作步骤,从而产生计算机实现的过程,进而在计算机或其他可编程数据处理设备上执行的指令提供了用于实现一个或多个流程图框中所指定功能的步骤。
因而,框图和流程图的框支持用于执行指定功能的装置的组合、用于执行指定功能的步骤的组合和用于执行指定功能的程序指令装置的组合。还应该理解,框图和流程图的每个框以及框图和流程图的框的组合可以由执行指定功能或步骤的、基于硬件的专用计算机系统实现,或由专用硬件和计算机指令的组合实现。
这些实施方式所涉及的、从上面描述和相关联的附图中呈现的教导获益的领域中的技术人员将认识到这里记载的本发明的很多修改和其他实施方式。因此,应该理解,本发明不限于公开的具体实施方式,旨在将修改和其他实施方式包括在所附权利要求书的范围内。尽管在这里采用了特定的术语,但是仅在一般意义和描述意义上使用它们并且不是为了限制的目的而使用。
应该注意的是,上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。

Claims (11)

  1. 一种智能节奏互动式肌电信号肌肉康复治疗系统,包括:
    表面肌电传感器(10),配置用于采集用户的肌电信号;
    信号发射器(20),配置用于接收并发射所述肌电信号;
    节奏互动装置(30),配置用于产生并向所述用户提供特定节奏,接收所述肌电信号,当所述肌电信号与所述特定节奏相匹配时,给出正反馈,否则给出负反馈。
  2. 根据权利要求1所述的智能节奏互动式肌电信号肌肉康复治疗系统,进一步包括:
    信号处理器(15),其配置用于从所述表面肌电传感器(10)接收所述肌电信号,并对所述肌电信号进行平滑处理。
  3. 根据权利要求2所述的智能节奏互动式肌电信号肌肉康复治疗系统,其中,通过如下方式对所述肌电信号进行平滑处理,得到输出y:
    Figure PCTCN2015087362-appb-100001
    其中,x为输入信号的采样,n为采样数量,dt为采样时间间隔,tn为采样总时长。
  4. 根据权利要求1所述的智能节奏互动式肌电信号肌肉康复治疗系统,其中,所述节奏互动装置(30)经过如下方式校准:
    计算稳态数值域,所述稳态数值域的范围在(1-b%)a至(1+b%)a之间,其中b%是环境噪声域值,a是肌肉放松时的均值;
    对于数值大于(1+b%)a的肌电信号,设定为1,对于数值小于(1+b%)a的肌电信号,设定为0。
  5. 根据权利要求1所述的智能节奏互动式肌电信号肌肉康复治疗系统,其中,所述节奏互动装置(30)经过如下方式校准:
    计算稳态数值域,所述稳态数值域的范围在(1-b%)a至(1+b%)a之间,其中b%是环境噪声域值,a是肌肉放松时的均值;
    计算所述肌电信号的绝对值;
    计算所述肌电信号的绝对值与所述稳态数值阈的上限(1+b%)a 之差,同所述稳态数值阈的上限(1+b%)a的比值;以及
    计算所述比值的对数。
  6. 根据权利要求1所述的智能节奏互动式肌电信号肌肉康复治疗系统,进一步包括远程监视设备(40),其配置用于从节奏互动装置(30)至少接收所述正反馈和/或负反馈,以便于对用户的肌肉反应进行远程监视。
  7. 根据权利要求1所述的智能节奏互动式肌电信号肌肉康复治疗系统,其中,所述节奏包括多个互动元素,每个互动元素之间的时间间隔可调。
  8. 根据权利要求7所述的智能节奏互动式肌电信号肌肉康复治疗系统,其中,所述节奏包括初级阶段模式、中级阶段模式和高级阶段模式中的至少一种,其中,
    在所述初级阶段模式,必须在一个互动元素被完成之后,才给出下一个互动元素;
    在所述中级阶段模式,每个互动元素间隔较长且规律性出现;
    在所述高级阶段模式,每个互动元素间隔较短且非规律性出现。
  9. 根据权利要求1所述的智能节奏互动式肌电信号肌肉康复治疗系统,其中,所述节奏的形式包括音频、视频和触觉感应中的至少一种。
  10. 根据权利要求1所述的智能节奏互动式肌电信号肌肉康复治疗系统,其中,所述信号发射器为无线发射器。
  11. 一种智能节奏互动式肌电信号肌肉康复治疗设备,包括:
    用于产生并向用户提供特定节奏的装置(100);
    用于接收肌电信号的装置(200);
    用于当所述肌电信号与所述特定节奏相匹配时,给出正反馈,否则给出负反馈的装置(300)。
PCT/CN2015/087362 2014-09-16 2015-08-18 一种智能节奏互动式肌电信号肌肉康复治疗系统 WO2016041426A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/026,590 US20160235358A1 (en) 2014-09-16 2015-08-18 Intelligent interactive-rhythmic neuromuscular rehabilitation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410472127.3 2014-09-16
CN201410472127.3A CN104224168B (zh) 2014-09-16 2014-09-16 一种智能节奏互动式肌电信号肌肉康复治疗系统

Publications (1)

Publication Number Publication Date
WO2016041426A1 true WO2016041426A1 (zh) 2016-03-24

Family

ID=52213720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087362 WO2016041426A1 (zh) 2014-09-16 2015-08-18 一种智能节奏互动式肌电信号肌肉康复治疗系统

Country Status (3)

Country Link
US (1) US20160235358A1 (zh)
CN (1) CN104224168B (zh)
WO (1) WO2016041426A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10814166B1 (en) * 2012-12-19 2020-10-27 Alert Core, Inc. System and method for developing core muscle usage employing music
CN204158391U (zh) * 2014-09-16 2015-02-18 程石 一种便携式肌电信号肌肉康复治疗系统
CN104224168B (zh) * 2014-09-16 2016-03-23 曦丽科技(北京)股份有限公司 一种智能节奏互动式肌电信号肌肉康复治疗系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2253184Y (zh) * 1995-11-24 1997-04-30 西安体育学院 力量训练反馈仪
US5679004A (en) * 1995-12-07 1997-10-21 Movit, Inc. Myoelectric feedback system
US7764990B2 (en) * 2004-07-01 2010-07-27 Suunto Oy Method and device for measuring exercise level during exercise and for measuring fatigue
CN101961529A (zh) * 2010-08-13 2011-02-02 中国科学院深圳先进技术研究院 肌电反馈训练和功能评测遥操作装置及方法
CN102567638A (zh) * 2011-12-29 2012-07-11 无锡微感科技有限公司 一种基于微型传感器的交互式上肢康复系统
CN104224168A (zh) * 2014-09-16 2014-12-24 程石 一种智能节奏互动式肌电信号肌肉康复治疗系统
CN204158392U (zh) * 2014-10-21 2015-02-18 喻可芳 一种固定设备及用于其的集线设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5277197A (en) * 1986-12-08 1994-01-11 Physical Health Device, Inc. Microprocessor controlled system for unsupervised EMG feedback and exercise training
US4964411A (en) * 1989-07-13 1990-10-23 Empi, Inc. Evoked EMG signal processing
US5722420A (en) * 1995-11-28 1998-03-03 National Science Council EMG biofeedback traction modality for rehabilitation
JP5154558B2 (ja) * 2007-08-31 2013-02-27 公益財団法人東京都医学総合研究所 定量的運動機能評価システム及び運動機能評価用プログラム
CA2714857A1 (en) * 2010-09-15 2012-03-15 Evan B. Friedman Electromyographic (emg) device for the diagnosis and treatment of muscle injuries
CN202776300U (zh) * 2012-04-13 2013-03-13 上海诺诚电气有限公司 便携式多媒体反馈训练设备
CN102871658A (zh) * 2012-09-27 2013-01-16 纪华雷 一种通过腹肌表面肌电反馈治疗尿失禁的装置
CN202932913U (zh) * 2012-11-20 2013-05-15 哈尔滨理工大学 便携式表面肌电信号采集装置
CN103479353B (zh) * 2013-09-05 2015-02-25 常州大学 一种卧床失禁病人无线预警系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2253184Y (zh) * 1995-11-24 1997-04-30 西安体育学院 力量训练反馈仪
US5679004A (en) * 1995-12-07 1997-10-21 Movit, Inc. Myoelectric feedback system
US7764990B2 (en) * 2004-07-01 2010-07-27 Suunto Oy Method and device for measuring exercise level during exercise and for measuring fatigue
CN101961529A (zh) * 2010-08-13 2011-02-02 中国科学院深圳先进技术研究院 肌电反馈训练和功能评测遥操作装置及方法
CN102567638A (zh) * 2011-12-29 2012-07-11 无锡微感科技有限公司 一种基于微型传感器的交互式上肢康复系统
CN104224168A (zh) * 2014-09-16 2014-12-24 程石 一种智能节奏互动式肌电信号肌肉康复治疗系统
CN204158392U (zh) * 2014-10-21 2015-02-18 喻可芳 一种固定设备及用于其的集线设备

Also Published As

Publication number Publication date
CN104224168B (zh) 2016-03-23
US20160235358A1 (en) 2016-08-18
CN104224168A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2017133689A1 (zh) 用于智能前列腺理疗系统的前列腺理疗设备
Marquez-Chin et al. EEG-triggered functional electrical stimulation therapy for restoring upper limb function in chronic stroke with severe hemiplegia
CN106413532B (zh) 康复系统和方法
King et al. Brain-computer interface driven functional electrical stimulation system for overground walking in spinal cord injury participant
WO2016041426A1 (zh) 一种智能节奏互动式肌电信号肌肉康复治疗系统
US20190209835A1 (en) System and methods to track and increase muscle efficiency
JP2017516571A (ja) リハビリテーションシステム及び方法
TW201735892A (zh) 智慧型生理反應回饋控制系統及方法
WO2016041427A1 (zh) 一种便携式肌电信号肌肉康复治疗系统
CN104398326A (zh) 用于稳定肌电假肢手力量输出的电刺激诱发肌电反馈控制方法及装置
KR101542543B1 (ko) 시각적 근전도 바이오피드백을 이용한 선택적 근 재교육 시스템
CN104434056A (zh) 基于脉搏波的生物反馈系统
US11491081B2 (en) Systems and methods for treating nausea and vomiting
Wilson et al. Cerebellar stroke occupational therapy and physical therapy management from intensive care unit to outpatient: a case report
Bajd et al. FES Rehabilitative Systems for Re‐Education of Walking in Incomplete Spinal Cord Injured Persons
CN203564223U (zh) 基于脉搏波的生物反馈系统
Overcash et al. Cranial electrotherapy stimulation in patients suffering from acute anxiety disorders
CN202446674U (zh) 一种生物反馈治疗仪
JPWO2019022127A1 (ja) 電流刺激装置
CN109549643B (zh) 智力训练仪
CN204050691U (zh) 一种带监控功能的超声波治疗仪
Wang et al. BCI controlled walking simulator for a BCI driven FES device
KR101643367B1 (ko) 안면 운동 장치
Lombardo et al. A preliminary comparison of myoelectric and cyclic control of an implanted neuroprosthesis to modulate gait speed in incomplete SCI
CN116510181B (zh) 迷走神经刺激系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15026590

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841729

Country of ref document: EP

Kind code of ref document: A1