WO2016041196A1 - 一种多用户的复用方法和基站以及用户终端 - Google Patents

一种多用户的复用方法和基站以及用户终端 Download PDF

Info

Publication number
WO2016041196A1
WO2016041196A1 PCT/CN2014/086940 CN2014086940W WO2016041196A1 WO 2016041196 A1 WO2016041196 A1 WO 2016041196A1 CN 2014086940 W CN2014086940 W CN 2014086940W WO 2016041196 A1 WO2016041196 A1 WO 2016041196A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
transmitted
user terminals
mapped
data stream
Prior art date
Application number
PCT/CN2014/086940
Other languages
English (en)
French (fr)
Inventor
尚政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/086940 priority Critical patent/WO2016041196A1/zh
Priority to EP14901957.2A priority patent/EP3188393B1/en
Priority to CN201480008358.7A priority patent/CN105612707B/zh
Publication of WO2016041196A1 publication Critical patent/WO2016041196A1/zh
Priority to US15/461,686 priority patent/US20170195019A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a multi-user multiplexing method, a base station, and a user terminal.
  • Wireless communication has increasingly become the basic needs of people. People are asking for higher, faster and farther demands for the future network. At present, they still face a series of challenges such as the need to double the capacity, massive connections, and zero transmission delay.
  • Large-scale antenna technology is an effective technology to cope with future capacity growth.
  • the spatial resolution of the signal can be significantly improved, and the transmission of the target signal has a strong directivity, combined with multi-user multiple-input multiple-output (MU-MIMO) technology.
  • MU-MIMO multi-user multiple-input multiple-output
  • the spatial multiplexing rate of the user terminal can be greatly improved, thereby improving the frequency utilization efficiency.
  • the existing Long Term Evolution (LTE) system is limited by the Cell Reference Signal (CRS) as a pilot, because it is impossible to distinguish more air points by CRS.
  • CRS Cell Reference Signal
  • the number of layers is multiplexed, so the current system supports only a small number of user terminals for space division multiplexing. For spatial multiplexing between more user terminals, the current technology has no way to achieve this.
  • the CRS is a common reference signal at the cell level, and is the same for all user terminals in the cell.
  • the Rel-8 protocol defines that the maximum number of CRS antenna ports is four, and thus only It can support 4 layers of data streams that require space division multiplexing, which limits the inability to reuse more user terminals.
  • the embodiments of the present invention provide a multi-user multiplexing method, a base station, and a user terminal, which can implement space division multiplexing on multiple user terminals, and improve utilization of time and frequency resources.
  • an embodiment of the present invention provides a multiplexing method for multiple users, including:
  • the base station uses a precoding matrix to weight a plurality of data streams that need to be transmitted to the N user terminals to obtain a data stream to be transmitted mapped on the K physical transmitting antennas;
  • the base station uses the precoding matrix to weight the pilot signals that need to be transmitted to the N user terminals, to obtain pilot signals to be transmitted mapped on the K physical transmit antennas;
  • the base station sends the to-be-transmitted data stream and the to-be-transmitted pilot signal to the N user terminals by using the K physical transmit antennas, where the to-be-transmitted data stream and the to-be-transmitted pilot signal are Mapping on different time frequency resources;
  • the N is a positive integer greater than or equal to 2
  • the K is a positive integer
  • the precoding matrix is calculated according to channel characteristics of the K physical transmit antennas to the N user terminals.
  • the base station uses a precoding matrix pair to transmit to the N user terminals.
  • the data streams are weighted to obtain a data stream to be transmitted mapped on the K physical transmit antennas, including:
  • N data streams are weighted as follows:
  • [X 1 , X 2 ,...X K ] [V 1 , V 2 , . . . V N ] ⁇ [s 1 ;s 2 ;...;s N ];
  • the [X 1 , X 2 , . . . X K ] is the data stream to be transmitted, and the [V 1 , V 2 , . . . V N ] is a K ⁇ N-dimensional precoding matrix, the [V] Any one of 1 , V 2 , . . .
  • V N ] is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and the V i is allocated to the N user terminals by the base station a precoding value vector of the i-th user terminal, the V i is a column vector of K ⁇ 1 dimension, and the [s 1 ;s 2 ;...;s N ] is represented by a column vector of N ⁇ 1 dimensions
  • the N data streams, any one of the [s 1 ; s 2 ;...; s N ] is represented as s i , where the s i is required to be transmitted by the base station to the N user terminals
  • the data stream of i user terminals is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and the V i is allocated to the N user terminals by the base station a precoding value vector of the i-th user terminal, the V i is a column vector of K ⁇ 1 dimension, and the [s
  • the base station uses The precoding matrix weights the pilot signals to be transmitted to the N user terminals, and obtains pilot signals to be transmitted mapped on the K physical transmit antennas, including:
  • the pilot signal is weighted as follows:
  • Y 0 sum([V 1 ,V 2 ,...V N ]) ⁇ p 0 ;
  • Y 0 is the pilot signal to be transmitted
  • [V 1 , V 2 , . . . V N ] is a K ⁇ N-dimensional precoding matrix
  • the sum ([V 1 , V 2 ,... V N]) is the result obtained by the summation [V 1, V 2, ... V N] column vectors in each column, the [V 1, V 2, ... V N] in any one of The column is represented as V i , i is a positive integer greater than 0 and less than or equal to N
  • the V i is a precoding value vector assigned by the base station to the i th user terminal of the N user terminals
  • V i is a K x 1 dimensional column vector
  • p 0 is the pilot signal.
  • the base station uses pre The coding matrix weights a plurality of data streams that need to be transmitted to the N user terminals to obtain a data stream to be transmitted mapped on the K physical transmit antennas, including:
  • M data streams are weighted as follows:
  • [X 1 , X 2 ,...X K ] [V 1 , V 2 , . . . V N ] ⁇ [s 1 ;s 2 ;...;s N ];
  • the [X 1 , X 2 , . . . X K ] is the data stream to be transmitted, and the [V 1 , V 2 , . . . V N ] is a K ⁇ M dimension precoding matrix, the [V] 1 , V 2 , . . .
  • V N is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is a matrix of K ⁇ I i dimensions, and the V i is a precoding value vector assigned by the base station to the i th user terminal of the N user terminals, where I i is a positive integer greater than or equal to 1, and the [s 1 ; s 2 ;...; s N ] is used M data streams represented by column vectors of M ⁇ 1 dimensions, any one of the [s 1 ;s 2 ;...;s N ] is represented as s i , and the s i is a column of I i ⁇ 1 dimension a vector, where the s i is a data stream that the base station needs to transmit to a common I i layer of the i th user terminal of the N user terminals, where the M is greater than or equal to the N.
  • the base station uses the precoding matrix to weight the pilot signals that need to be transmitted to the N user terminals, to obtain pilot signals to be transmitted mapped on the K physical transmit antennas, including :
  • the base station maps the pilot signals to t antenna ports respectively, wherein the pilot signals on the (m-1)th antenna port are mapped to the K physical transmit antennas by:
  • Y (m-1) sum([V 1 (:,m), V 2 (:,m),...V N (:,m)]) ⁇ p (m-1) ;
  • Y (m-1) is a pilot signal to be transmitted mapped on the (m-1)th antenna port
  • [V 1 , V 2 , . . . V N ] is a precoding matrix of K ⁇ M dimensions. , any one of the [V 1 , V 2 , . . .
  • V N is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is a matrix of K ⁇ I i dimensions, Said V i is a precoding value vector assigned by the base station to an i th user terminal of the N user terminals, and when m ⁇ I i , V i (:, m) represents an mth column vector of V i When m>I i , V i (:, m) is an all-zero vector of K ⁇ 1 dimension, and m is a positive integer greater than or equal to 1 and less than or equal to t, the sum ([V 1 ( :, m), V 2 (:, m), ...
  • V N (:, m)]) is for the [V 1 (:, m), V 2 (:, m), ... V N (:, The result of the summation operation of the column vector of each column in m)], the p (m-1) being the pilot signal corresponding to the (m-1)th port.
  • the base station Before the data stream to be transmitted and the pilot signal to be transmitted are sent to the N user terminals by using the K physical transmit antennas, the method further includes:
  • the base station uses the precoding matrix to weight the scheduling information that needs to be transmitted to the N user terminals, and obtains scheduling information to be transmitted mapped on the K physical transmitting antennas, where the data stream to be transmitted is The transmission pilot signal and the scheduling information to be transmitted are mapped on different time frequency resources.
  • the base station uses the precoding matrix
  • the scheduling information to be transmitted to the N user terminals is weighted, and the scheduling information to be transmitted mapped on the K physical transmitting antennas is obtained, including:
  • the N scheduling information is weighted as follows:
  • [Z 1 , Z 2 ,...Z K ] [V 1 , V 2 , . . . V N ] ⁇ [g 1 ;g 2 ;...;g N ];
  • the [Z 1 , Z 2 , . . . , K K ] is the scheduling information to be transmitted, and the [V 1 , V 2 , . . . V N ] is a K ⁇ N-dimensional precoding matrix, and the [V] Any one of 1 , V 2 , . . .
  • V N ] is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is the i-th allocated by the base station to the N user terminals
  • Precoding value vector of the user terminal the V i is a column vector of K ⁇ 1 dimension
  • the [g 1 ; g 2 ;...; g N ] is N represented by column vectors of N ⁇ 1 dimensions
  • Scheduling information any one of the [g 1 ; g 2 ;...; g N ] is represented as g i
  • the g i is the i- th user terminal that the base station needs to transmit to the N user terminals Scheduling information.
  • the base station uses the precoding matrix to weight the scheduling information that needs to be transmitted to the N user terminals, and obtains scheduling information to be transmitted that is mapped on the K physical transmitting antennas, including:
  • the base station performs space-frequency block coding on the scheduling information that needs to be transmitted to the N user terminals, to obtain N coding blocks respectively corresponding to the N user terminals, where the coding block corresponding to the ith user terminal Is [g i (1),...,g i (m)...,g i (t)], the i being a positive integer greater than 0 and less than or equal to N, the m being greater than 0 and less than or equal to a positive integer of t, the g i (m) represents an information symbol that needs to be mapped to the (m-1)th antenna port after being coded by the space frequency block;
  • the base station maps the coding blocks corresponding to each user terminal to t antenna ports respectively, wherein the mth coding blocks of the N user terminals are mapped to the (m-1)th antenna port by:
  • [Z i,1 ,Z i,2 ,...Z i,K ] [V 1 (:,m),V 2 (:,m),...V N (:,m)] ⁇ [g 1 (m );...;g N (m)];
  • the [Z i,1 ,Z i,2 ,...Z i,K ] is the scheduling information to be transmitted allocated by the base station to the ith user of the N user terminals, [V 1 , V 2 , ... V N ] is a precoding matrix of K ⁇ M dimensions, and any one of the columns [V 1 , V 2 , ...
  • V N is represented as V i , i is a positive value greater than 0 and less than or equal to N
  • V i is a matrix of K ⁇ I i -dimension, where the V i is a total of i i pre-valued value vectors allocated by the base station to the i-th user terminal of the N user terminals, the m For a positive integer greater than 0 and less than or equal to t, when m ⁇ I i , V i (:,m) represents the m- th column vector of V i , and when m>I i , V i (:,m) is K ⁇ 1 dimension of all 0 vectors.
  • the method before the base station sends the to-be-transmitted data stream and the to-be-transmitted pilot signal to the N user terminals by using the K physical transmit antennas, the method also includes:
  • the base station uses the precoding matrix to weight the common signal to obtain a first common signal to be transmitted mapped on the K physical transmit antennas, the to-be-transmitted data stream, the to-be-transmitted pilot signal, and the The first common signal to be transmitted is mapped on different time frequency resources.
  • the method before the base station sends the to-be-transmitted data stream and the to-be-transmitted pilot signal to the N user terminals by using the K physical transmit antennas, the method also includes:
  • the base station uses the precoding matrix or the mapping matrix to weight the common signal in a time-sharing manner.
  • a second common signal to be transmitted mapped to the K root physical transmit antenna, the mapping matrix remaining unchanged when the channel characteristics change, or the scheduled user terminal changes, the data stream to be transmitted, the The to-be-transmitted pilot signal and the second to-be-transmitted common signal are mapped on different time-frequency resources.
  • the K is greater than the N.
  • the base station uses the precoding The matrix weights the common signal to obtain a first common signal to be transmitted mapped on the K physical transmitting antennas, including:
  • the common signal is weighted as follows:
  • P is a first common signal to be transmitted
  • [V 1 , V 2 , . . . V N ] is a precoding matrix of K ⁇ N dimensions, in [V 1 , V 2 , . . . V N ]
  • Any one of the columns is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is a precoding value vector assigned by the base station to the i th user terminal of the N user terminals,
  • the V i is a column vector of K ⁇ 1 dimension, and the sum ([V 1 , V 2 , ... V N ]) is a column vector for each column of the [V 1 , V 2 , ... V N ]
  • the result of the summation operation which is a common signal.
  • the base station uses the precoding matrix to weight the common signal, and obtains a first common signal to be transmitted mapped on the K physical transmit antennas, including:
  • the base station performs space-frequency block coding on the common signal to obtain t coded information symbols corresponding to the t antenna ports, where the coded information symbol corresponding to the (m-1)th antenna port is represented as c m ,
  • the m is a positive integer greater than 0 and less than or equal to t;
  • the base station maps the coding blocks corresponding to each user terminal to t antenna ports respectively, wherein the mth coding block is mapped to the (m-1)th antenna port by:
  • the P m is a first common signal to be transmitted mapped on the (m-1)th antenna port, and [V 1 , V 2 , . . . V N ] is a precoding matrix of K ⁇ M dimensions, Any one of [V 1 , V 2 , ...
  • V N is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is a matrix of K ⁇ I i dimensions, the V i And assigning, to the base station, a total of i i precoding value vectors of the i th user terminal of the N user terminals, when m ⁇ I i , V i (:,m) represents the mth of V i Column vector, when m>I i , V i (:,m) is an all-zero vector of K ⁇ 1 dimension, the m is a positive integer greater than 0 and less than or equal to t, the sum([V 1 ( :, m), V 2 (:, m), ...
  • V N (:, m)]) is for the [V 1 (:, m), V 2 (:, m), ... V N (:, column vector m)] of each column sum operation result obtained by the common signal c m corresponding in the first (m-1) th port.
  • the mapping matrix is all ones.
  • the method include:
  • the weights of the precoding matrix used to weight the data stream and the pilot signal are recalculated.
  • an embodiment of the present invention further provides a base station, including: a processing module and a transmitting module, where
  • the processing module is configured to use a precoding matrix to weight a plurality of data streams that need to be transmitted to the N user terminals to obtain a data stream to be transmitted mapped on the K physical transmitting antennas;
  • the processing module is further configured to use the precoding matrix to weight a pilot signal that needs to be transmitted to the N user terminals, to obtain a pilot signal to be transmitted that is mapped on the K physical transmit antennas;
  • the transmitting module is configured to send the to-be-transmitted data stream and the to-be-transmitted pilot signal to the N user terminals by using the K physical transmit antennas, the to-be-transmitted data stream and the to-be-transmitted
  • the pilot signals are mapped on different time frequency resources
  • the N is a positive integer greater than or equal to 2
  • the K is a positive integer
  • the precoding matrix is calculated according to channel characteristics of the K physical transmit antennas to the N user terminals.
  • the processing module is specifically configured to: Weighted by stream:
  • [X 1 , X 2 ,...X K ] [V 1 , V 2 , . . . V N ] ⁇ [s 1 ;s 2 ;...;s N ];
  • the [X 1 , X 2 , . . . X K ] is the data stream to be transmitted, and the [V 1 , V 2 , . . . V N ] is a K ⁇ N-dimensional precoding matrix, the [V] Any one of 1 , V 2 , . . .
  • V N ] is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is the i-th allocated by the base station to the N user terminals a precoding value vector of the user terminals, the V i is a K ⁇ 1 dimensional column vector, and the [s 1 ;s 2 ;...;s N ] is the representation represented by the N ⁇ 1 dimensional column vector N data streams, any one of the [s 1 ;s 2 ;...;s N ] is denoted as s i , the s i is the ith of the N user terminals that the base station needs to transmit The data stream of the user terminal.
  • the processing module Specifically, the pilot signal is weighted by:
  • Y 0 sum([V 1 ,V 2 ,...V N ]) ⁇ p 0 ;
  • Y 0 is the pilot signal to be transmitted
  • [V 1 , V 2 , . . . V N ] is a K ⁇ N-dimensional precoding matrix
  • the sum ([V 1 , V 2 ,... V N]) is the result obtained by the summation [V 1, V 2, ... V N] column vectors in each column, the [V 1, V 2, ... V N] in any one of The column is represented as V i , i is a positive integer greater than 0 and less than or equal to N
  • the V i is a precoding value vector assigned by the base station to the ith user terminal of the N user terminals
  • V i is a K x 1 dimensional column vector
  • p 0 is the pilot signal.
  • the processing The module is specifically configured to weight the M data streams by:
  • [X 1 , X 2 ,...X K ] [V 1 , V 2 , . . . V N ] ⁇ [s 1 ;s 2 ;...;s N ];
  • the [X 1 , X 2 , . . . X K ] is the data stream to be transmitted, and the [V 1 , V 2 , . . . V N ] is a K ⁇ M dimension precoding matrix
  • the [V] 1 , V 2 , . . . V N ] is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is a matrix of K ⁇ I i dimensions
  • the V i is said base station allocates user terminals to the N i th user terminal I i of the total value of a precoding vector, a [s 1; s 2; ...
  • a fourth possible implementation manner of the second aspect if the number of antenna ports configured by the base station is t, where the t Is a positive integer greater than 1,
  • the processing module is specifically configured to map the pilot signals to t antenna ports respectively, where the pilot signals on the (m-1)th antenna port are mapped to the K physical transmit antennas by: :
  • Y (m-1) sum([V 1 (:,m), V 2 (:,m),...V N (:,m)]) ⁇ p (m-1) ;
  • Y (m-1) is a pilot signal to be transmitted mapped on the (m-1)th antenna port
  • [V 1 , V 2 , . . . V N ] is a precoding matrix of K ⁇ M dimensions. , any one of the [V 1 , V 2 , . . .
  • V N is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is a matrix of K ⁇ I i dimensions, Said V i is a total of i i precoding value vectors allocated by the base station to the i th user terminal of the N user terminals, and when m ⁇ I i , V i (:, m) represents V i The mth column vector, when m>I i , V i (:, m) is an all-zero vector of K ⁇ 1 dimension, and m is a positive integer greater than or equal to 1 and less than or equal to t, the sum ([V 1 (:, m), V 2 (:, m), ...
  • V N (:, m)] is for the [V 1 (:, m), V 2 (:, m),... V N (:, m) column vectors] of each column sum operation result obtained, the p (m-1) at the corresponding (m-1) th pilot signal pilot port.
  • the processing module And using the precoding matrix pair to transmit before the transmitting module sends the to-be-transmitted data stream and the to-be-transmitted pilot signal to the N user terminals by using the K physical transmit antennas. Weighting the scheduling information of the N user terminals to obtain scheduling information to be transmitted mapped on the K physical transmitting antennas, where the to-be-transmitted data stream, the to-be-transmitted pilot signal, and the to-be-transmitted scheduling information are mapped Different time frequency resources.
  • the processing module is specifically configured to pass The N scheduling information as follows:
  • [Z 1 , Z 2 ,...Z K ] [V 1 , V 2 , . . . V N ] ⁇ [g 1 ;g 2 ;...;g N ];
  • the [Z 1 , Z 2 , ... Z K ] is the scheduling information to be transmitted, and the [V 1 , V 2 , . . . V N ] is a K ⁇ N-dimensional precoding matrix, the [V] Any one of 1 , V 2 , . . .
  • V N ] is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is the i-th allocated by the base station to the N user terminals
  • Precoding value vector of the user terminal the V i is a column vector of K ⁇ 1 dimension
  • the [g 1 ; g 2 ;...; g N ] is N represented by column vectors of N ⁇ 1 dimensions
  • Scheduling information any one of the [g 1 ; g 2 ;...; g N ] is represented as g i
  • the g i is the i- th user terminal that the base station needs to transmit to the N user terminals Scheduling information.
  • a seventh possible implementation manner of the second aspect if the number of antenna ports configured by the base station is t, where t is greater than 1. a positive integer, the processing module, configured to perform space-frequency block coding on scheduling information that needs to be transmitted to the N user terminals, to obtain N coding blocks respectively corresponding to the N user terminals, where
  • the coding blocks of the i user terminals are [g i (1), ..., g i (m)..., g i (t)], and the i is a positive integer greater than 0 and less than or equal to N, the m a positive integer greater than 0 and less than or equal to t, the g i (m) represents an information symbol that needs to be mapped to the (m-1)th antenna port after being encoded by the space frequency block; the processing module is configured to The coding blocks corresponding to each user terminal are respectively mapped to t antenna ports, wherein the mth coding blocks of the N user terminal
  • [Z i,1 ,Z i,2 ,...Z i,K ] [V 1 (:,m),V 2 (:,m),...V N (:,m)] ⁇ [g 1 (m ),...,g N (m)];
  • the [Z i,1 ,Z i,2 ,...Z i,K ] is the scheduling information to be transmitted allocated by the base station to the ith user of the N user terminals, [V 1 , V 2 , ... V N ] is a precoding matrix of K ⁇ M dimensions, and any one of the columns [V 1 , V 2 , ...
  • V N is represented as V i , i is a positive value greater than 0 and less than or equal to N
  • V i is a matrix of K ⁇ I i -dimension, where the V i is a total of i i pre-valued value vectors allocated by the base station to the i-th user terminal of the N user terminals, the m For a positive integer greater than 0 and less than or equal to t, when m ⁇ I i , V i (:,m) represents the m- th column vector of V i , and when m>I i , V i (:,m) is K ⁇ 1 dimension of all 0 vectors.
  • the processing module is further configured to: the transmitting module, the to-be-transmitted data stream, the to-be-transmitted pilot signal, to the N by using the K physical transmit antennas Before the user terminal transmits, the common signal is weighted by using the precoding matrix to obtain a first public signal to be transmitted mapped on the K physical transmitting antennas, the to-be-transmitted data stream, and the to-be-transmitted pilot signal. The number and the first common signal to be transmitted are mapped on different time frequency resources.
  • the processing module is further configured to: the transmitting module, the to-be-transmitted data stream, the to-be-transmitted pilot signal, to the N through the K physical transmit antennas Before the user terminals transmit, the common signal is weighted by using the precoding matrix or the mapping matrix, and the second common signal to be transmitted mapped on the K physical transmitting antennas is obtained, and the mapping matrix is in the channel characteristics. The change occurs, or the scheduled user terminal remains unchanged, and the to-be-transmitted data stream, the to-be-transmitted pilot signal, and the second to-be-transmitted common signal are mapped on different time-frequency resources.
  • the K is greater than the N.
  • the processing module is specifically used to The common signal is weighted as follows:
  • P is a first common signal to be transmitted
  • [V 1 , V 2 , . . . V N ] is a precoding matrix of K ⁇ N dimensions, in [V 1 , V 2 , . . . V N ]
  • Any one of the columns is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is a precoding value vector assigned by the base station to the i th user terminal of the N user terminals,
  • the V i is a column vector of K ⁇ 1 dimension, and the sum ([V 1 , V 2 , ... V N ]) is a column vector for each column of the [V 1 , V 2 , ... V N ]
  • the result of the summation operation which is a common signal.
  • the processing module configured to perform space frequency block coding on the common signal to obtain t coded information symbols corresponding to t antenna ports, where the code corresponding to the (m-1)th antenna port
  • the post information symbol is denoted as c m , and m is a positive integer greater than 0 and less than or equal to t;
  • the processing module is configured to map coding blocks corresponding to each user terminal to t antenna ports, where the mth coding block is mapped to the (m-1)th antenna port by:
  • the P m is a first common signal to be transmitted mapped on the (m-1)th antenna port, and [V 1 , V 2 , . . . V N ] is a precoding matrix of K ⁇ M dimensions, Any one of [V 1 , V 2 , ...
  • V N is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is a matrix of K ⁇ I i dimensions, the V i And assigning, to the base station, a total of i i precoding value vectors of the i th user terminal of the N user terminals, when m ⁇ I i , V i (:,m) represents the mth of V i Column vector, when m>I i , V i (:,m) is an all-zero vector of K ⁇ 1 dimension, and m is a positive integer greater than or equal to 1 and less than or equal to t, the sum ([V 1 (:, m), V 2 (:, m), ...
  • V N (:, m)] is for the [V 1 (:, m), V 2 (:, m), ... V N ( :, m)]
  • the mapping matrix is all ones.
  • the base station further include:
  • a calculating module configured to recalculate a weight of the precoding matrix used to weight the data stream and the pilot signal when the channel feature changes or the scheduled user terminal changes.
  • an embodiment of the present invention provides a multiplexing method for multiple users, including:
  • the user terminal receives the transport data stream and the transmission pilot signal sent by the base station through the K physical transmit antennas, and the transport data stream uses the precoding matrix to weight the plurality of data streams that need to be transmitted to the N user terminals.
  • the transport data stream is mapped on the K physical transmit antennas;
  • the transmit pilot signal is used by the base station to use the precoding matrix to weight pilot signals that need to be transmitted to the N user terminals.
  • the transmission pilot signal is mapped on the K physical transmit antennas, wherein the transport data stream and the transmit pilot signal are mapped on different time frequency resources, and the precoding matrix is Calculating according to channel characteristics of the K physical transmit antennas to the N user terminals;
  • the user terminal performs channel estimation on a channel corresponding to the antenna port according to the transmission pilot signal
  • the user terminal demodulates the transport data stream based on a result of channel estimation.
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the embodiment of the present invention further provides a user terminal, including: a receiving module and a processing module, where
  • a receiving module configured to receive a transport data stream and a transmit pilot signal sent by the base station by using the K physical transmit antenna, where the transport data stream is used by the base station to use a precoding matrix pair to transmit multiple data streams to the N user terminals Obtaining, the transmission data stream is mapped on the K physical transmitting antennas; the transmitting pilot signal is used by the base station to transmit to the N user terminals by using the precoding matrix pair The signal is obtained by weighting, and the transmission pilot signal is mapped at The K physical transmitting antenna, wherein the transport data stream and the transmission pilot signal are mapped on different time frequency resources, and the precoding matrix is according to the K physical transmitting antennas to the The channel characteristics of the N user terminals are calculated;
  • a processing module configured to perform channel estimation on a channel corresponding to the antenna port according to the transmission pilot signal, and further configured to demodulate the transmission data stream according to a result of the channel estimation.
  • the receiving module is further configured to receive transmission scheduling information that is sent by the base station by using the K physical transmit antennas, where the transmission scheduling information is Obtaining, by the base station, the scheduling information that needs to be transmitted to the N user terminals by using the precoding matrix, where the transmission scheduling information is mapped on the K physical transmitting antennas, where the transmitting The data stream, the transmission pilot signal, and the transmission scheduling information are mapped on different time frequency resources.
  • the receiving module is further configured to receive, by the base station, the physical transmission by using the K root a first transmission common signal sent by the antenna, wherein the first transmission common signal is obtained by the base station using a precoding matrix to weight a common signal that needs to be transmitted to the N user terminals, where the first transmission A common signal is mapped on the K physical transmit antennas, wherein the transport data stream, the transmit pilot signal, and the first transmit common signal are mapped on different time frequency resources.
  • the receiving module is further configured to receive, by the base station, the physical transmission by using the K root a second transmission common signal sent by the antenna, wherein the second transmission common signal is obtained by using the precoding matrix or the mapping matrix by the base station to weight a common signal that needs to be transmitted to the N user terminals.
  • the second transmission common signal is mapped on the K physical transmit antennas, and the mapping matrix remains unchanged when the channel characteristics change, or the scheduled user terminal changes, wherein the transport data stream
  • the transmission pilot signal and the second transmission common signal are mapped on different time frequency resources.
  • the base station uses a precoding matrix to weight multiple data streams that need to be transmitted to the N user terminals, and obtains a data stream to be transmitted mapped on the K physical transmitting antennas, and the base station uses the precoding matrix pair to transmit.
  • the frequency signals are mapped on different time frequency resources, wherein the precoding matrix is calculated according to the channel characteristics of the K physical transmitting antennas to the N user terminals.
  • the base station performs weighting on the data stream and the pilot signal that need to be transmitted to the N user terminals through the precoding matrix.
  • the data stream to be transmitted and the pilot signal to be transmitted are transmitted through the K physical transmitting antennas of the base station.
  • spatial division multiplexing between N user terminals is achieved. Since the plurality of data streams can be weighted and multiplexed to the N user terminals by the precoding matrix, and the pilot signals are spatially multiplexed by the weighting of the precoding matrix, the weighted pilot signals to be transmitted are no longer dependent on the CRS.
  • the number of user terminals performing space division multiplexing can be increased, and the utilization of time and frequency resources can be improved.
  • FIG. 1 is a schematic block diagram of a multi-user multiplexing method according to an embodiment of the present invention
  • FIG. 2 is a schematic block diagram of another multi-user multiplexing method according to an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of another multi-user multiplexing method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of results of measuring RSRP corresponding to the number of various user terminals according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a TDD frame according to an embodiment of the present disclosure.
  • 6-a is a schematic diagram of a mapping process of a base station multiplexing a common signal, a data stream, scheduling information, and a pilot signal;
  • 6-b is a schematic diagram of a process of receiving a common signal, a data stream, scheduling information, and a pilot signal by each user terminal;
  • 7-a is a schematic diagram of an application scenario in which a base station transmits data streams, pilot signals, scheduling information, and common signals;
  • FIG. 7-b is a schematic diagram of another application scenario in which a base station transmits a data stream, a pilot signal, scheduling information, and a common signal;
  • FIG. 8 is a schematic block diagram of another multi-user multiplexing method according to an embodiment of the present disclosure.
  • 9-a is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • 9-b is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the embodiments of the present invention provide a multi-user multiplexing method, a base station, and a user terminal, which can implement space division multiplexing on multiple user terminals, and improve utilization of time and frequency resources.
  • An embodiment of the multi-user multiplexing method of the present invention is applicable to a space division multiplexing scenario of a base station to a plurality of user terminals.
  • a multi-user multiplexing method provided by an embodiment of the present invention is provided. Can include the following steps:
  • the base station uses a precoding matrix to weight multiple data streams that need to be transmitted to the N user terminals, and obtains a data stream to be transmitted mapped on the K physical transmit antennas.
  • N and K are both natural numbers, and the precoding matrix is calculated based on the channel characteristics of the K physical transmitting antennas to the N user terminals.
  • the base station uses N to indicate the number of user terminals that perform space division multiplexing, and the base station needs to transmit multiple numbers to the N user terminals.
  • the data is weighted using a precoding matrix to obtain a data stream to be transmitted mapped on the K physical transmitting antennas.
  • the data stream refers to the data information sent by the base station to the user terminal, and one data stream generated by the base station needs to be sent to one user terminal, and the number of all data streams generated by the base station may be equal to the number of user terminals that need to be space-multiplexed.
  • the number of all data streams generated by the base station may also be larger than the number of user terminals that need to perform space division multiplexing. In this case, there may be two data streams sent to the same user terminal, or even three More data streams are sent to the same user terminal.
  • the base station may weight all generated data streams using a precoding matrix, where the base station deploys multiple physical transmit antennas, and K represents the number of physical transmit antennas, and the base station generates All data streams are weighted by the precoding matrix to be the data stream to be transmitted mapped on the K root physical transmit antennas.
  • the multi-user multiplexing method provided by the embodiment of the present invention may further include the following steps:
  • the base station broadcasts the configuration information of the antenna port to the user terminal, where the number of the antenna ports configured by the base station may be one or more.
  • the number of the antenna ports configured by the base station is multiple, the letter t is used in the embodiment of the present invention.
  • t is a positive integer greater than 1.
  • the antenna port configured by the base station may be a Cell-specific Reference Signals (CRS) antenna port, where the CRS antenna port may also be referred to as a cell-level antenna port.
  • CRS Cell-specific Reference Signals
  • the base station is used. The more CRS antenna ports are configured, the more data streams can be transmitted by the base station at the same time.
  • the base station uses a precoding matrix to weight the pilot signals that need to be transmitted to the N user terminals, and obtains pilot signals to be transmitted that are mapped on the K physical transmit antennas.
  • the base station uses precoding for pilot signals that need to be transmitted to N user terminals.
  • the matrix is weighted to obtain a pilot signal to be transmitted mapped on the K physical transmit antennas.
  • the pilot signal refers to a reference signal that is sent by the base station to the user terminal for signal estimation.
  • the pilot signal may be a CRS.
  • the base station needs to generate a pilot signal.
  • the base station may need to generate two or more pilot signals to send to the user terminal.
  • the base station may use all preamble matrices for all generated pilot signals. Weighted, wherein the base station is deployed with multiple physical transmit antennas, and the number of physical transmit antennas is represented by K. The pilot signals generated by the base station are weighted by the precoding matrix to become pilot signals to be transmitted mapped on the K physical transmit antennas.
  • the precoding matrix is calculated according to the channel from the K physical transmitting antenna to the N user terminals, that is, the weight of the precoding matrix is specifically required from the K physical transmitting antenna to the N requiring space division multiplexing.
  • the channel of each user terminal is calculated. Through the weighting of the precoding matrix, space division multiplexing transmission of pilot signals to N user terminals can be realized.
  • the number of antenna ports configured by the base station may be one or more.
  • the number of antenna ports configured by the base station is represented by the letter t in the embodiment of the present invention.
  • t is a positive integer greater than 1.
  • the weighting implementation manner of the pilot signal using the precoding matrix is different for the difference in the number of antenna ports configured by the base station. The specific implementation manner is described in the following embodiments.
  • step 101 may be performed before step 102, or step 102 may be performed before step 101, and steps may be performed simultaneously.
  • FIG. 1 is performed by first performing step 101 and then performing step 102, and is not intended to limit the present invention.
  • the base station sends the to-be-transmitted data stream and the to-be-transmitted pilot signal to the N user terminals through the K physical transmit antennas.
  • the data stream to be transmitted and the pilot signal to be transmitted are mapped on different time and frequency resources.
  • the base station after the base station obtains the data stream to be transmitted and the pilot signal to be transmitted by using the steps 101 and 102, the base station weights the data stream and the pilot signal, and does not change the data stream and the pilot signal at time.
  • the mapping relationship between the frequency resources, so the to-be-transmitted data stream and the to-be-transmitted pilot signals are still mapped on different time-frequency resources respectively, and the base station can transmit the to-be-transmitted data stream and the pilot signal to be transmitted through the K physical transmitting antennas.
  • the data stream to be transmitted and the pilot signal to be transmitted are transmitted through the K physical transmit antennas, which means that the data stream to be transmitted is to be transmitted, and the pilot signal to be transmitted is shared by the K physical transmit antennas.
  • the data stream to be transmitted needs to be transmitted through K physical transmit antennas, and the pilot signal to be transmitted also needs to be transmitted through K physical transmit antennas, except that the data stream to be transmitted and the pilot signal to be transmitted are mapped on different time and frequency resources. . Since the data stream to be transmitted and the pilot signal to be transmitted occupy different time and frequency resources, the user terminal as the receiving end can determine that the corresponding data stream and the pilot signal are acquired from different time and frequency resources.
  • the base station uses a precoding matrix to weight multiple data streams that need to be transmitted to N user terminals to obtain a data stream to be transmitted mapped on the K physical transmit antennas, and the base station uses precoding.
  • the matrix weights the pilot signals that need to be transmitted to the N user terminals to obtain the pilot signals to be transmitted mapped on the K physical transmit antennas.
  • the base station transmits the data streams to be transmitted and the pilot signals to be transmitted through the K physical transmitters.
  • the antenna is sent to the N user terminals, and the to-be-transmitted data stream and the to-be-transmitted pilot signal are mapped on different time-frequency resources, wherein the pre-coding matrix is based on channel characteristics of the K physical transmit antennas to the N user terminals. Calculated.
  • the base station performs weighting on the data stream and the pilot signal that need to be transmitted to the N user terminals through the precoding matrix. After the weighting is completed, the data stream to be transmitted and the pilot signal to be transmitted are transmitted through the K physical transmitting antennas of the base station. Thereby spatial division multiplexing between N user terminals is achieved.
  • the weighted pilot signals to be transmitted are no longer dependent on the CRS.
  • the number of air interface user terminals the number of user terminals performing space division multiplexing can be increased, and the utilization of time and frequency resources can be improved.
  • a multi-user multiplexing method provided by another embodiment of the present invention may include the following steps:
  • the base station uses a precoding matrix to weight multiple data streams that need to be transmitted to the N user terminals, and obtains a data stream to be transmitted mapped on the K physical transmit antennas.
  • N and K are both natural numbers, and the precoding matrix is calculated based on the channel characteristics of the K physical transmitting antennas to the N user terminals.
  • the base station may weight multiple data streams that need to be transmitted to N user terminals through a precoding matrix to obtain data to be transmitted.
  • the data stream to be transmitted is obtained by weighting the original plurality of data streams according to the precoding matrix.
  • the precoding matrix is calculated by the base station according to the channel characteristics of the K physical transmitting antennas to the N user terminals, and the data stream to be transmitted is It is mapped to the K root physical transmit antenna by weighting calculation.
  • the number of receiving antennas of the user terminal may be one or more, which may be determined by the user terminal in a specific application scenario.
  • the precoding matrix used by the base station needs to be able to match K physical transmissions.
  • the channel characteristics of the antenna to the user terminal, the weight of the precoding matrix is calculated by the base station according to the channel characteristics of the K physical transmit antennas to the N user terminals.
  • the multiuser multiplexing method is further It can include the following steps:
  • the weights of the precoding matrix used to weight the data stream and the pilot signal are recalculated.
  • the base station when the precoding matrix used by the base station weights the data stream and the pilot signal, the precoding matrix is not fixed, but the channel characteristics of the K physical transmitting antennas to the N user terminals are changed or When the scheduled user terminal changes, the base station recalculates the weight of the precoding matrix. For example, the number of user terminals that need to perform space division multiplexing is 16. When the number of user terminals increases to 20 or decreases to 10, the base station will Recalculate the value of the precoding matrix, and calculate the weight of the precoding matrix.
  • ZF Zero Forcing
  • BD Block Diagonalization
  • DPC Density-Paper Coding
  • THP Tomlinson-Harashima precoding
  • the channel of the i-th user terminal is a row vector of 1 ⁇ K dimensions
  • the base station uses a precoding matrix to weight the pilot signals that need to be transmitted to the N user terminals, and obtains a pilot signal to be transmitted that is mapped on the K physical transmit antennas.
  • Steps 201 and 202 are the same as steps 101 and 102 in the previous embodiment, and are not described here.
  • the base station uses the precoding matrix to weight the scheduling information that needs to be transmitted to the N user terminals, and obtains scheduling information to be transmitted mapped on the K physical transmitting antennas.
  • the data stream to be transmitted, the pilot signal to be transmitted, and the scheduling information to be transmitted are mapped on different time and frequency resources.
  • the base station in order to enable space division multiplexing for a plurality of user terminals, and to represent the number of user terminals that perform space division multiplexing by N, uses a precoding matrix for scheduling information that needs to be transmitted to the N user terminals. Weighting is performed to obtain scheduling information to be transmitted mapped on the K physical transmitting antennas.
  • the scheduling information refers to a resource scheduling instruction sent by the base station to the user terminal, and the base station generates one scheduling information for each user terminal. For N users that need space division multiplexing, the base station generates N scheduling information, which needs to be specified. If a user terminal has multiple data streams, the base station generates only one scheduling information for the user terminal, but in one scheduling information, includes scheduling indications for multiple data streams.
  • the scheduling information may be carried on a Physical Downlink Control Channel (PDCCH).
  • the base station may use the precoding matrix to weight all generated scheduling information, where the base station deploys multiple physical transmit antennas, and K represents the number of physical transmit antennas, and the base station generates All the scheduling information is weighted by the precoding matrix to be the scheduling information to be transmitted mapped on the K physical transmitting antennas.
  • the number of antenna ports configured by the base station may be one or more.
  • the number of antenna ports configured by the base station is represented by the letter t in the embodiment of the present invention.
  • t is a positive integer greater than 1.
  • the weighting implementation manner of the base station using the precoding matrix for the scheduling information is different for the difference in the number of antenna ports configured by the base station. The specific implementation manner is described in the following embodiments.
  • the base station sends the to-be-transmitted data stream, the to-be-transmitted pilot signal, and the to-be-transmitted scheduling information to the N user terminals through the K physical transmit antennas.
  • the base station after the base station obtains the data stream to be transmitted, the pilot signal to be transmitted, and the scheduling information to be transmitted, respectively, the base station weights the data stream, the pilot signal, and the scheduling information by using the step 201, the step 202, and the step 203.
  • the mapping relationship between the data stream, the pilot signal, and the scheduling information on the time-frequency resource is not changed. Therefore, the data stream to be transmitted, the pilot signal to be transmitted, and the scheduling information to be transmitted are still mapped on different time and frequency resources, respectively.
  • the data stream to be transmitted, the pilot signal to be transmitted, and the scheduling information to be transmitted may be sent to the N user terminals through the K physical transmit antennas, where the data stream to be transmitted, the pilot signal to be transmitted, and the scheduling information to be transmitted are described.
  • the transmission by the K physical transmitting antenna refers to the data stream to be transmitted, the pilot signal to be transmitted, and the scheduling information to be transmitted are transmitted by the common K physical transmitting antenna, that is, the data stream to be transmitted needs to be transmitted through the K physical transmitting antenna,
  • the transmission pilot signal also needs to be transmitted through the K physical transmit antenna, and the transmission scheduling signal is to be transmitted.
  • the information also needs to be transmitted through the K physical transmit antenna, except that the data stream to be transmitted, the pilot signal to be transmitted, and the scheduling information to be transmitted are mapped on different time and frequency resources.
  • the user terminal acting as the receiving end can determine that the corresponding data stream and the pilot signal are obtained from different time and frequency resources, because the data stream to be transmitted, the pilot signal to be transmitted, and the scheduling information to be transmitted occupy different time and frequency resources.
  • step 201 may be performed before step 202 is performed, step 203 may be performed, or step 202 may be performed first.
  • step 203 is performed, and step 203 may be performed first, then step 202 may be performed, and then step 201 may be performed.
  • Step 201, step 202, and step 203 may be performed at the same time.
  • Step 2 is performed in FIG. 203 is schematically illustrated and is not intended to limit the invention.
  • the data stream, the pilot signal, and the scheduling information that are required to be transmitted to the N user terminals are respectively weighted by the precoding matrix, and the data stream to be transmitted is to be transmitted after the weighting is completed.
  • the pilot signal and the scheduling information to be transmitted are transmitted through the K physical transmitting antennas of the base station, thereby implementing space division multiplexing between the N user terminals. Since the plurality of data streams can be weighted and multiplexed to the N user terminals by the precoding matrix, and the pilot signals are spatially multiplexed by the weighting of the precoding matrix, the weighted pilot signals to be transmitted are no longer dependent on the CRS. To distinguish the number of air interface user terminals, the number of user terminals performing space division multiplexing can be increased, and the utilization of time and frequency resources can be improved.
  • a multi-user multiplexing method provided by another embodiment of the present invention may include the following steps:
  • the base station uses a precoding matrix to weight multiple data streams that need to be transmitted to the N user terminals, and obtains a data stream to be transmitted mapped on the K physical transmit antennas.
  • N and K are both natural numbers, and the precoding matrix is calculated based on the channel characteristics of the K physical transmitting antennas to the N user terminals.
  • the base station uses a precoding matrix to weight the pilot signals that need to be transmitted to the N user terminals, and obtains a pilot signal to be transmitted that is mapped on the K physical transmit antennas.
  • the steps 301 and 302 are the same as the steps 101 and 102 in the previous embodiment, and are not described here.
  • the base station weights the common signal by using a precoding matrix to obtain a first common signal to be transmitted mapped on the K physical transmit antennas.
  • the data stream to be transmitted, the pilot signal to be transmitted, and the first common signal to be transmitted are mapped on different time and frequency resources.
  • the base station in order to enable space division multiplexing for multiple user terminals, denotes the number of user terminals that perform space division multiplexing by N, and when the base station transmits a common signal to the user terminal, the base station uses the public signal.
  • the coding matrix is weighted to obtain a common signal to be transmitted mapped on the K physical transmit antennas.
  • the public signal refers to a signal or channel that needs to be omnidirectionally covered to all user terminals, and the public signal generated by the base station can be sent to N user terminals that need to perform space division multiplexing, in order to realize spatial multiplexing between N user terminals.
  • the base station can use the precoding matrix to weight the common signal.
  • the base station deploys multiple physical transmit antennas, and the number of physical transmit antennas is represented by K.
  • the common signal is weighted by the precoding matrix to be mapped to the K physical transmit.
  • the common signal may specifically refer to a signal transmitted on a common channel, and may also refer to a signal determined by the base station that requires omnidirectional coverage.
  • the public signal may be a Primary Synchronization Signal (PSS) or a Secondary Synchronization Signal (SSS), and the public signal may be carried on a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the Master Information Block (MIB) may also refer to a System Information Block (SIB) carried on a Physical Downlink Shared Channel (PDSCH).
  • SIB System Information Block
  • the public signal may also be carried in the physical
  • the Paging message on the Physical Downlink Shared Channel (PDSCH) may further include SIB scheduling information and paging scheduling information carried on the PDCCH (Physical Downlink Control Channel), and the public signal may also refer to
  • the signals carried on the Physical Hybrid-ARQ Indicator Channel (PHICH) and the Physical Control Format Indicator Channel (PCFICH) are not listed here.
  • the number of antenna ports configured by the base station may be one or more.
  • the number of antenna ports configured by the base station is represented by the letter t in the embodiment of the present invention.
  • t is a positive integer greater than 1.
  • the weighting implementation manner of the base station using the mapping matrix for the pilot signal is different for the number of antenna ports configured by the base station, and the specific implementation manner is in the following embodiments. Described in the middle.
  • the base station sends the to-be-transmitted data stream, the to-be-transmitted pilot signal, and the first to-be-transmitted common signal to the N user terminals through the K physical transmit antennas.
  • the base station after the base station obtains the data stream to be transmitted, the pilot signal to be transmitted, and the first common signal to be transmitted, the base station performs the data stream, the pilot signal, and the common signal by using the steps 301, 302, and 303, respectively.
  • the weighting does not change the mapping relationship between the data stream, the pilot signal, and the common signal on the time-frequency resource. Therefore, the data stream to be transmitted, the pilot signal to be transmitted, and the first common signal to be transmitted are still mapped at different time frequencies.
  • the base station may send the data stream to be transmitted, the pilot signal to be transmitted, and the first public signal to be transmitted to the N user terminals through the K physical transmit antennas, where the data stream to be transmitted and the pilot to be transmitted are described herein.
  • the signal and the first public signal to be transmitted are transmitted through the K physical transmitting antennas, which means that the data stream to be transmitted, the pilot signal to be transmitted, and the first common signal to be transmitted are transmitted by the common K physical transmitting antenna, that is, the data stream to be transmitted needs to be transmitted.
  • the transmission is performed by the K physical transmitting antenna, and the pilot signal to be transmitted also needs to be transmitted through the K physical transmitting antenna, the first waiting
  • a common input signal is also needed by the K physical transmit antennas, except the data stream to be transmitted, a pilot signal to be transmitted, a first common signal to be transmitted is mapped on different time-frequency resources.
  • the user terminal as the receiving end can determine that the corresponding data stream and the pilot signal are obtained from different time and frequency resources, because the data stream to be transmitted, the pilot signal to be transmitted, and the first common signal to be transmitted occupy different time and frequency resources. And public signals.
  • step 301 may be performed first, then step 302 may be performed after step 302, or step 302 may be performed first.
  • step 303 is performed, and step 303 is performed first, and step 302 is performed after step 302 is performed.
  • Step 301, step 302, and step 303 may be performed at the same time.
  • Step 2 is performed in FIG. 303 is schematically illustrated and is not intended to limit the invention.
  • mapping is performed using the same precoding matrix, which can be made public by reducing the number of user terminals for space division multiplexing.
  • the signal is radiated more uniformly, so as to ensure the omnidirectional coverage of the common signal, then the number K of physical transmit antennas set by the base station needs to satisfy the following condition: K is greater than N.
  • FIG. 4 is the number of various user terminals provided by the embodiment of the present invention.
  • FIG. 4 is the number of various user terminals provided by the embodiment of the present invention.
  • RSRP reference signal receiving power
  • CDF Cumulative Distribution Function
  • the user terminal channel is designed.
  • the antenna of the base station transmits the common signal to the 16 user terminals that need to perform space division multiplexing by beamforming, thereby ensuring that the user terminals can normally receive the common signal, as shown in the curve a1 in FIG.
  • the curve a1 represents the relationship between the number of various user terminals of the non-space division multiplexing receiving the common signal and the corresponding RSRP
  • the base station can implement directional coverage of the common signal to ensure that N user terminals that need to perform space division multiplexing can receive the common signal.
  • the weight formed by the precoding matrix may form a zero point for these non-space-multiplexed user terminals, an extremely low received signal may be generated.
  • the method used in the embodiment of the present invention can reduce the number of user terminals for space division multiplexing, that is, the physical transmitting antenna, in order to ensure that the user terminal and the non-space-division multiplexed user terminal can receive the common signal.
  • the number is greater than the number of user terminals for space division multiplexing. For example, 16 physical transmit antennas perform space division multiplexing on only 8 user terminals.
  • the physical transmitting antenna of the base station transmits the public signal to the eight user terminals that need to perform space division multiplexing by beamforming, which can ensure that the user terminals can Normally receiving a common signal, but for other user terminals that are not multiplexed, it is also necessary to receive a common signal. Since the number of physical transmitting antennas is greater than the number of spatially multiplexed user terminals at this time, for these non-space-division multiplexed user terminals, It is also possible to normally receive a common signal, such as curve a2 and curve b2 in FIG.
  • curve a2 represents the relationship between the number of various user terminals of non-space division multiplexing receiving the common signal and the corresponding RSRP
  • curve b2 indicates that the curve is received.
  • the base station performs weighting on the data stream, the pilot signal, and the scheduling information that need to be transmitted to the N user terminals through the precoding matrix.
  • the data stream to be transmitted, the pilot signal to be transmitted, and the first common signal to be transmitted are transmitted through the K physical transmitting antennas of the base station, thereby implementing space division multiplexing between the N user terminals. Since the plurality of data streams can be weighted and multiplexed to the N user terminals by the precoding matrix, and the pilot signals are spatially multiplexed by the weighting of the precoding matrix, the weighted pilot signals to be transmitted are no longer dependent on the CRS. To distinguish the number of air interface user terminals, the number of user terminals performing space division multiplexing can be increased, and the utilization of time and frequency resources can be improved.
  • step 303 may also be replaced by the following steps:
  • the base station time-division uses a precoding matrix or a mapping matrix to weight the common signal, and obtains a second common signal to be transmitted mapped on the K physical transmitting antennas.
  • the mapping matrix changes in channel characteristics, or the scheduled user terminal occurs.
  • the data stream to be transmitted, the pilot signal to be transmitted, and the second signal to be transmitted are mapped on different time-frequency resources.
  • the mapping matrix remains unchanged when the channel characteristics change, or the scheduled user terminal changes.
  • the to-be-transmitted data stream, the to-be-transmitted pilot signal, and the second to-be-transmitted common signal are mapped on different time-frequency resources.
  • the above step 303a is different from the foregoing step 303 in that the weighting of the common signal in step 303a is performed by using a mapping matrix or a precoding matrix, in order to distinguish the weighting of the common signal by the precoding matrix in step 303.
  • the first to-be-transmitted common signal defines a signal generated by weighting the common signal by using a time-sharing using a mapping matrix or a precoding matrix in step 303a as a second common signal to be transmitted.
  • the weight of the mapping matrix used to weight the common signal remains unchanged when the channel characteristics change, or when the scheduled user terminal changes.
  • the mapping matrix used by the base station is fixed, that is, when the channel characteristics of the K physical transmitting antennas to the N user terminals change or the scheduled user terminal changes.
  • the base station still uses the original mapping matrix for the weighting of the common signal.
  • the base station uses the same pre-weight for the data stream, the pilot signal, and the common signal.
  • the coding matrix, the precoding matrix used by the base station is not fixed, that is, when the channel characteristics of the K physical transmitting antennas to the N user terminals change or the scheduled user terminal changes, the base station recalculates the data stream for the data stream.
  • the weight of the precoding matrix that is weighted by the pilot signal and the common signal.
  • the base station is not fixed using the mapping matrix to the public The signal is weighted, but the common signal is weighted for the common signal using the mapping matrix over a period of time, and the common signal is weighted using the precoding matrix for other time periods.
  • the precoding matrix used to weight the data stream, the pilot signal, and the common signal is the matrix 1.
  • the base station uses the matrix 1 to weight the common signal in one time period, and The mapping matrix used by the base station in a time period is matrix 2, and the base station weights the common signal through the matrix 2, which is a matrix that remains unchanged as the channel characteristics or the scheduled user terminals change.
  • the base station can use the matrix 1 and the matrix 2 to weight the common signal in a time-sharing manner, that is, use the matrix 1 in a preset time period, and use the matrix 2 outside the preset time period.
  • a time-sharing manner that is, use the matrix 1 in a preset time period, and use the matrix 2 outside the preset time period.
  • FIG. 5 is a schematic diagram of a time division duplex (TDD) frame structure according to an embodiment of the present invention, in which a base station transmits a common signal to each subframe in a frame, so that the Rel-8 LTE TDD terminal can be normally connected.
  • TDD time division duplex
  • 1 frame (also known as radio frame) for 10 milliseconds, 1 frame includes 2 time slots (time slot), a total of 10 sub-
  • the frame configuration is subframe #0, subframe #1, subframe #2, subframe #3, subframe #4, subframe #5, subframe #6, subframe #7, subframe #8, Subframe #9, each subframe occupying 1 millisecond, can be configured for downlink transmission or uplink transmission.
  • the common signal is concentrated on the subframe #0 and/or the subframe #5 by scheduling and parameter configuration, and the common signal is performed on the subframe #0 and/or the subframe #5 using the matrix 2. Weighting, the common signal is weighted using matrix 1 on subframes other than subframe #0 and subframe #5.
  • the mapping matrix is a K ⁇ 1 dimensional column vector of all ones. Since the primary synchronization signal or the secondary synchronization signal needs omnidirectional coverage to ensure that all user terminals in the cell can receive, the mapping matrix can be designed as a K1 ⁇ 1 dimensional column vector of all 1s, and the configuration can be performed not only in the cell. N users who need space division multiplexing can receive public signals, and other users in the cell can also receive public signals.
  • the base station may map the common signal, the data stream, the scheduling information, and the pilot signal to different time frequencies.
  • the resources refer to the mapping process of the base station for multiplexing the common signal, the data stream, the scheduling information, and the pilot signal as shown in FIG. 6-a, and the base station performs the common signal.
  • the weighting is illustrated using a precoding matrix, and of course the common signal can be weighted using a mapping matrix.
  • Figure 6-b is a schematic diagram of a process of receiving a common signal, a data stream, a scheduling information, and a pilot signal by each user terminal.
  • the N user terminals that need to perform space division multiplexing are: Ue1, Ue2, ..., UeN,
  • the base station uses the precoding matrix to weight the common signal, the data stream, the scheduling information, and the pilot signal, respectively, to obtain a common signal to be transmitted, a data stream to be transmitted, scheduling information to be transmitted, and a first pilot signal to be transmitted, and then mapped in different
  • the K-th physical transmit antenna of the base station is sent to the N user terminals.
  • Ue1, Ue2, ..., UeN serve as receiving ends, respectively receiving common signals and data streams, scheduling information, and pilot signals belonging to the own terminals from the time frequency resources.
  • the number of the antenna ports is set to one for the base station, and then the data stream, the pilot signal, the scheduling information, and the transmission mode of the common signal are respectively exemplified, which is provided by the embodiment of the present invention.
  • the multiplexing method of the user may specifically include the following steps:
  • Step S01 If the number of antenna ports configured by the base station is one, the base station weights the N data streams by:
  • [X 1 , X 2 ,...X K ] [V 1 , V 2 , . . . V N ] ⁇ [s 1 ;s 2 ;...;s N ];
  • [X 1 , X 2 , ... X K ] is the data stream to be transmitted
  • [V 1 , V 2 , ... V N ] is a K ⁇ N-dimensional precoding matrix, the [V 1 , V 2 ,...
  • V N is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is a precoding value vector assigned by the base station to the ith user terminal of the N user terminals, V i is a K ⁇ 1 dimensional column vector, [s 1 ; s 2 ;...; s N ] is N data streams represented by N ⁇ 1 dimensional column vectors, and s i is a base station to be transmitted to N user terminals The data stream of the i-th user terminal.
  • step 101 in the foregoing embodiment may be specifically step S01, and if the number of user terminals that need to perform space division multiplexing is N, The data stream generated by the base station is also N.
  • the N data streams and the N user terminals are in one-to-one correspondence, that is, one data stream is sent to one user terminal, and the precoding matrix uses [V 1 , V 2 , ...V N ] to indicate that each precoding value vector in V 1 , V 2 , ...
  • V N represents a precoding value vector assigned by the base station to a user terminal, wherein the value of i changes dynamically to represent N
  • i is a positive integer greater than 0 and less than or equal to N
  • the value of i is any positive integer of 1, 2, 3, ..., N, then for the ith user
  • the terminal, the precoding value vector allocated by the base station to the user terminal is V i
  • V i is a column vector of K ⁇ 1 dimension
  • the N data streams generated by the base station are represented by [s 1 ; s 2 ;...; s N ] , [s 1 ; s 2 ;...; s N ] is an N ⁇ 1 dimension vector, s 1 , s 2 , ...
  • s N indicates that the base station is N user terminals a data stream, wherein the value of i is dynamically changed to represent each user terminal in each of the N user terminals, i is a positive integer greater than 0 and less than or equal to N, and the value of i is 1. 2, 3, ..., N any positive integer, then for the i-th user terminal, the data flow generated by the base station for the user terminal is s i . Multiplying [V 1 , V 2 , ... V N ] and [s 1 ; s 2 ;...; s N ] to obtain [X 1 , X 2 , ...
  • Each column in K ] represents a data stream transmitted on a physical transmit antenna, which is equivalent to multiplying each precoded value vector and a data stream represented by a column vector, thereby realizing the use of a precoding matrix for N data.
  • the weighting of the stream obtains the data stream to be transmitted mapped on the K physical transmitting antenna. Since the precoding matrix is K ⁇ N dimension, multiplying the precoding matrix with the N data streams, each data stream can be realized. Mapping to the K-root physical transmit antenna, then for N user terminals requiring space division multiplexing, the N data streams that need to be transmitted to the N user terminals can be mapped to K according to the physical transmit antenna.
  • Step S02 If the number of antenna ports configured by the base station is one, the pilot signal is weighted as follows:
  • Y 0 sum([V 1 ,V 2 ,...V N ]) ⁇ p 0 ;
  • [V 1 , V 2 , . . . V N ] is a K ⁇ N-dimensional precoding matrix, and sum([V 1 , V 2 , . . . V N ]) is for [V 1 , V 2 , ... V N ]
  • the column vector of each column is subjected to a summation operation, and any one of the [V 1 , V 2 , ... V N ] is represented as V i , and i is greater than 0.
  • V i is a precoding value vector allocated by the base station to the ith user terminal of the N user terminals
  • V i is a K ⁇ 1 dimensional column vector
  • p 0 is a pilot signal.
  • the step 102 in the foregoing embodiment may be specifically step S02, and if the number of user terminals that need to perform space division multiplexing is N,
  • the base station performs weighting processing by using each precoding value vector of the precoding matrix to generate different pilot signals to be transmitted weighted by N precoding value vectors.
  • the precoding matrix is represented by [V 1 , V 2 , ... V N ], and each precoding value vector in V 1 , V 2 , ...
  • V N represents a precoding value vector assigned by the base station to a user terminal, wherein Each user terminal of the N user terminals is dynamically changed by the value of i, where i is a positive integer greater than 0 and less than or equal to N, and the values of i are 1, 2, 3, ..., N
  • the precoding value vector assigned by the base station to the user terminal is V i
  • V i is a K ⁇ 1 dimensional column vector
  • the pilot signal generated by the base station is represented by p 0
  • multiplying sum([V 1 , V 2 ,...V N ]) and p 0 is equivalent to multiplying each precoding value vector and the pilot signal, thereby realizing the use of the precoding matrix for N pilots.
  • the weighting of the signal obtains the pilot signal to be transmitted mapped on the K physical transmitting antenna.
  • the precoding matrix is K ⁇ N dimension, and the precoding matrix is multiplied by the pilot signal to map the pilot signal to K.
  • Step S03 If the number of antenna ports configured by the base station is one, the N scheduling information is weighted as follows:
  • [Z 1 , Z 2 ,...Z K ] [V 1 , V 2 , . . . V N ] ⁇ [g 1 ;g 2 ;...;g N ];
  • [V 1 , V 2 , ... V N ] ⁇ [g 1 ; g 2 ;...; g N ] V 1 ⁇ g 1 +V 2 ⁇ g 2 +...+V N ⁇ g N ;
  • [Z 1 , Z 2 , ... Z K ] is the scheduling information to be transmitted
  • Z i is the scheduling information to be transmitted allocated by the base station to the ith user terminal of the N user terminals
  • [V 1 , V 2 , ... V N ] is a K ⁇ N-dimensional precoding matrix, and any one of the [V 1 , V 2 , . . .
  • V N is represented as V i , i is a positive integer greater than 0 and less than or equal to N, V i is a precoding value vector assigned by the base station to the i th user terminal of the N user terminals, and V i is a column vector of K ⁇ 1 dimension, [g 1 ; g 2 ;...; g N ] is N ⁇ 1
  • the N scheduling information represented by the trellis column vector, g i is the scheduling information that the base station needs to transmit to the i th user terminal of the N user terminals.
  • step 203 in the foregoing embodiment may be specifically step S03, and if the number of user terminals that need to perform space division multiplexing is N,
  • the scheduling information generated by the base station is also N, wherein the N scheduling information corresponds to N user terminals, that is, one scheduling information is sent to one user terminal, and the precoding matrix uses [V 1 , V 2 , ... V N ]
  • each of the precoding value vectors in V 1 , V 2 , ... V N represents a precoding value vector assigned by the base station to a user terminal, wherein the value of i is dynamically changed to represent the N user terminals.
  • i is a positive integer greater than 0 and less than or equal to N, and the value of i is any positive integer of 1, 2, 3, ..., N, then the base station allocates for the ith user terminal.
  • the precoding value vector for the user terminal is V i
  • V i is a K ⁇ 1 dimensional column vector
  • the N scheduling information generated by the base station is represented by [g 1 ; g 2 ;...; g N ], g 1 , g 2, ...
  • g N represents a column vector of each user terminal of a base station generates scheduling information, wherein, The value of i is dynamically changed to indicate that each of the N user terminals corresponds to a user terminal, and i is a positive integer greater than 0 and less than or equal to N.
  • the values of i are 1, 2, 3, ..., N.
  • the scheduling information generated by the base station for the user terminal is g i for the i-th user terminal. Multiplying [V 1 , V 2 , ...
  • V N ] and [g 1 ; g 2 ;...; g N ] is equivalent to multiplying each precoding value vector by the scheduling information represented by the column vector, thereby realizing Using the precoding matrix to weight the N scheduling information, and obtaining the scheduling information to be transmitted mapped on the K physical transmitting antennas, then for the N user terminals that need space division multiplexing, the N needs to be sent to the N user terminals.
  • the scheduling information is mapped to K based on the physical transmit antenna.
  • Step S04 If the number of antenna ports configured by the base station is one, the common signal is weighted as follows:
  • [V 1 , V 2 , . . . V N ] is a K ⁇ N-dimensional precoding matrix, and any one of the [V 1 , V 2 , . . . V N ]
  • V i is a positive integer greater than 0 and less than or equal to N
  • V i is a precoding value vector assigned by the base station to the ith user terminal of the N user terminals
  • V i is K ⁇ 1 dimension.
  • the column vector, sum([V 1 , V 2 , ... V N ]) is the result of summing the column vectors of each of [V 1 , V 2 , ... V N ], and c is a common signal.
  • the step 303 in the foregoing embodiment may be specifically step S04, and if the number of user terminals that need to perform space division multiplexing is N,
  • the coding matrix is represented by [V 1 , V 2 , ... V N ], and each precoding value vector in V 1 , V 2 , ...
  • V N represents a precoding value vector assigned by the base station to a user terminal, wherein Each user terminal of the N user terminals is dynamically changed by the value of i, where i is a positive integer greater than 0 and less than or equal to N, and the value of i is any one of 1, 2, 3, ..., N
  • the pre-coding value vector assigned by the base station to the user terminal is V i
  • V i is a K ⁇ 1-dimensional column vector
  • the base station generates N data streams
  • uses c to Representing a common signal, multiplying sum([V 1 , V 2 ,...V N ]) by c is equivalent to multiplying each precoding value vector by a common signal, thereby implementing weighting of the common signal using the precoding matrix.
  • the first common signal to be transmitted mapped on the K root physical transmit antenna is obtained.
  • the base station sends the to-be-transmitted data stream, the to-be-transmitted pilot signal, the to-be-transmitted scheduling information, and the first to-be-transmitted common signal to the N user terminals through the K physical transmit antennas.
  • the base station obtains the data stream to be transmitted, the pilot signal to be transmitted, the scheduling information to be transmitted, and the first common signal to be transmitted after the base station performs the data stream, the pilot signal, and the public through steps S01 to S04, respectively.
  • Signal weighting does not change data stream, pilot signal, scheduling information, public
  • the mapping relationship between the signal and the time-frequency resource, so the data stream to be transmitted, the pilot signal to be transmitted, the scheduling information to be transmitted, and the first common signal to be transmitted are still mapped on different time-frequency resources, and the base station can transmit the signal to be transmitted.
  • the data stream, the pilot signal to be transmitted, the scheduling information to be transmitted, and the first public signal to be transmitted are transmitted to the N user terminals through the K physical transmitting antennas.
  • the user terminal as the receiving end can determine that the corresponding data is obtained from different time and frequency resources, because the data stream to be transmitted, the pilot signal to be transmitted, the scheduling information to be transmitted, and the first common signal to be transmitted occupy different time and frequency resources.
  • t is a positive integer greater than 1, and then the transmission manners of the data stream, the pilot signal, the scheduling information, and the common signal are respectively illustrated.
  • the method for multiplexing multiple users provided by the embodiment of the present invention may specifically include the following steps:
  • Step S11 If the number of antenna ports configured by the base station is t, the base station weights the M data streams by:
  • [X 1 , X 2 ,...X K ] [V 1 , V 2 , . . . V N ] ⁇ [s 1 ;s 2 ;...;s N ];
  • [X 1 , X 2 , ... X K ] is the data stream to be transmitted
  • [V 1 , V 2 , ... V N ] is a precoding matrix of K ⁇ M dimensions, the [V 1 , V 2 ,...
  • V N is represented as V i , i is a positive integer greater than 0 and less than or equal to N, V i is a matrix of K ⁇ I i dimensions, and V i is assigned to the N user terminals by the base station Precoding value vector of i user terminals, I i is greater than or equal to 1, [s 1 ; s 2 ;...; s N ] is M data streams represented by M ⁇ 1 dimensional column vectors, the [s Any one of 1 ;s 2 ;...;s N ] is denoted as s i , s i is a column vector of I i ⁇ 1 dimension, and s i is a base station that needs to be transmitted to the ith user terminal of the N user terminals The data stream of the I i layer, M is greater than or equal to N.
  • the step 101 in the foregoing embodiment may specifically be the step S11, and the number of N user terminals and the space division multiplexed data stream.
  • M the number of the antenna ports in the antenna port configuration information broadcasted by the base station
  • the obtained value is M.
  • M is greater than or equal to N
  • the obtained value is M.
  • M is equal to N
  • a data stream generated by the base station needs to be transmitted to a terminal.
  • M is greater than N, at least two data streams need to be transmitted to the same user terminal, and the base station sends at least one data stream to each user terminal, wherein the M data streams respectively correspond to one of the N user terminals.
  • the user terminal, the precoding matrix is also represented by [V 1 , V 2 , ... V N ], and each precoding value vector in V 1 , V 2 , ... V N represents a precoding acquisition assigned by the base station to a user terminal.
  • a value vector wherein each user terminal of the N user terminals is dynamically changed by the value of i, i is a positive integer greater than 0 and less than or equal to N, and the value of i is 1, 2, 3, ...
  • a base station assigned to the user terminal is V i
  • V i is allocated to K ⁇ I i-dimensional matrix
  • V i is the base station to the user terminal
  • the precoding N i-th user terminal is taken Value vector, that is, for the i-th user terminal, if the base station needs to transmit to the user terminal 1 data stream, the value of I i is 1, and if the base station needs to transmit 2 data streams to the user terminal, then I i The value is 2.
  • the M data streams generated by the base station are represented by [s 1 ; s 2 ;...; s N ], and s 1 , s 2 , ...
  • s N respectively represent data streams generated by the base station for n user terminals, where The value is dynamically changed to indicate that each of the N user terminals respectively corresponds to a positive integer greater than 0 and less than or equal to N, and the value of i is any one of 1, 2, 3, ..., N
  • the value of I i is 2, indicating that the base station needs to transmit to the user terminal for a total of 2 layers.
  • the data stream. Multiplying [V 1 , V 2 , ... V N ] and [s 1 ; s 2 ;...; s N ] is equivalent to multiplying each precoding value vector by the data stream represented by the column vector, thereby realizing Using the precoding matrix to weight the M data streams, the data stream to be transmitted mapped on the K physical transmit antennas is obtained. Since the precoding matrix is K ⁇ M dimension, the precoding matrix is multiplied by M data streams. It is possible to map each data stream to the K physical transmit antennas. Then, for N user terminals that require space division multiplexing, the M data streams that need to be transmitted to the N user terminals are mapped to K according to the physical transmit antenna. .
  • Step S12 If the number of antenna ports configured by the base station is t, the base station maps the pilot signals to the t antenna ports, where the pilot signals on the (m-1)th antenna port are mapped to the following manner.
  • K root physical transmit antenna K root physical transmit antenna
  • Y (m-1) sum([V 1 (:,m), V 2 (:,m),...V N (:,m)]) ⁇ p (m-1) ;
  • Y (m-1) is a pilot signal to be transmitted mapped on the (m-1)th antenna port
  • [V 1 , V 2 , . . . V N ] is a precoding matrix of K ⁇ M dimensions. Any one of the columns [V 1 , V 2 , ... V N ] is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is a matrix of K ⁇ I i dimensions, and V i is The base station allocates a precoding value vector to the i th user terminal of the N user terminals.
  • V i (:,m) represents the mth column vector of V i
  • V i (:,m) is an all-zero vector of K ⁇ 1 dimension
  • m is a positive integer greater than or equal to 1 and less than or equal to t
  • sum([V 1 (:, m), V 2 (:, m) ,...V N (:,m)]) is a summation operation for the column vectors of each column in [V 1 (:,m), V 2 (:,m),...V N (:,m)]
  • p (m-1) is a pilot signal corresponding to the (m-1)th port.
  • step 102 in the foregoing embodiment may be specifically step S12, and if the number of user terminals that need to perform space division multiplexing is N,
  • the base station sends one pilot signal or multiple to each user terminal, and the precoding matrix is also represented by [V 1 , V 2 , ... V N ], and each precoding value in V 1 , V 2 , ... V N
  • the vector represents a precoding value vector assigned by the base station to a user terminal, wherein each user terminal of the N user terminals is dynamically changed by the value of i, and i is a positive integer greater than 0 and less than or equal to N.
  • the pre-coding value vector assigned by the base station to the user terminal is V i
  • V i is K ⁇ A matrix of I i -dimension
  • V i is a total of i i pre-valued vector values assigned to the i-th user terminal of the N user terminals by the base station
  • the number of antenna ports configured by the base station is t
  • the value of m is From each integer between 1 t, the value of m can be smaller than the antenna port configured by the base station.
  • V i (:, m) denotes the m-th column vector of V i, if m> I i
  • m is any positive integer of 1, 2, 3, ..., t, and p (m-1) is the pilot signal corresponding to the (m-1)th port, then p 0 is corresponding to The pilot signal of 0 ports, p 1 is the pilot signal corresponding to the first port.
  • p (m-1) is the pilot signal corresponding to the (m-1)th antenna port, then p 0 is corresponding to The pilot signal of 0 ports, p 1 is the pilot signal corresponding to the first port.
  • Multiplication is achieved by multiplying each precoding value vector and the pilot signal of the corresponding antenna port, thereby implementing weighting of the pilot signal using the precoding matrix, and obtaining mapping on the K physical transmitting antenna.
  • Step S13 If the number of the antenna ports configured by the base station is t, the base station performs space-frequency block coding on the scheduling information that needs to be transmitted to the N user terminals, and obtains N coding blocks corresponding to the N user terminals respectively, where corresponding
  • the coding block of the i-th user terminal is [g i (1), ... g i (m), ..., g i (t)], i is a positive integer greater than 0 and less than or equal to N, and m is greater than 0 and a positive integer less than or equal to t, g i (m) represents an information symbol that needs to be mapped to the (m-1)th antenna port after being coded by the space frequency block;
  • Step S14 The base station maps the coding blocks corresponding to each user terminal to t antenna ports, where the mth coding blocks of the N user terminals are mapped to the (m-1)th antenna port by: :
  • [Z i,1 ,Z i,2 ,...Z i,K ] [V 1 (:,m),V 2 (:,m),...V N (:,m)] ⁇ [g 1 (m );...;g N (m)];
  • [Z i,1 ,Z i,2 ,...Z i,K ] is the scheduling information to be transmitted allocated by the base station to the i-th user of the N user terminals
  • [V 1 , V 2 , ... V N ] is a K ⁇ M-dimensional precoding matrix, any one of the [V 1 , V 2 , . . .
  • V N is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is K a matrix of ⁇ i i -dimension, V i is a pre-coding value vector assigned by the base station to the i-th user terminal of the N user terminals, and m is a positive integer greater than 0 and less than or equal to t, when m ⁇ I i , V i (:, m) represents the mth column vector of V i , and when m > I i , V i (:, m) is a K ⁇ 1 dimensional all 0 vector.
  • the step 203 in the foregoing embodiment may be specifically step S13 and step S14, and the number of user terminals that need to perform space division multiplexing is N.
  • the base station generates N scheduling information, and the base station sends a scheduling information to each user terminal, where the base station performs space-frequency block coding on the scheduling information that needs to be transmitted to the N user terminals, and obtains the N-user terminal separately.
  • the coding block corresponding to the i-th user terminal is [g i (1), ..., g i (m)..., g i (t)], wherein the value of i changes dynamically Representing each of the N user terminals, i is a positive integer greater than 0 and less than or equal to N, and the value of i is any positive integer of 1, 2, 3, ..., N, Then, for the i-th user terminal, the scheduling information generated by the base station for the user terminal is encoded by the space-frequency block and expressed as [g i (1), . . .
  • V 1, V 2, ... V N the precoding matrix [V 1, V 2, ... V N] are represented, to be noted that, when the base station to the i th user terminal configuration of the I data flow i, when m ⁇ I i, V i (: , m) represents the mth column vector of V i , and when m > I i , V i (:, m) is a 0 ⁇ 1 dimensional 0 vector.
  • V i (:, m) is a 0 ⁇ 1 dimensional 0 vector.
  • V N represents a precoding value vector assigned by the base station to a user terminal, wherein each user in the N user terminals is dynamically changed by the value of i.
  • the terminal, i is a positive integer greater than 0 and less than or equal to N, and the value of i is any positive integer of 1, 2, 3, ..., N, and the base station allocates the user to the i-th user terminal.
  • the precoding value vector of the terminal is V i , V i is a matrix of K ⁇ I i dimension, and V i is a total of i i precoding value vectors allocated by the base station to the i th user terminal of the N user terminals.
  • Multiplying [V 1 (:,m), V 2 (:,m),...V N (:,m)] and [g 1 (m);...;g N (m)] is equivalent to
  • the precoding value vector is multiplied by the scheduling information represented by the column vector, thereby realizing the weighting of the N scheduling information by using the precoding matrix, and obtaining the scheduling information to be transmitted mapped on the K physical transmitting antenna, and the precoding matrix is obtained.
  • Multiplying the N scheduling information it is possible to map each scheduling information to the K physical transmitting antennas, and then the N scheduling information corresponding to the N user terminals are mapped to K according to the physical transmitting antenna.
  • the mth coding block needs to be mapped to port (m-1) by:
  • the number of coding blocks is the same as the number of antenna ports.
  • the base station is configured with four antenna ports, and the serial number of the antenna port starts from 0, respectively, p 0 , p 1 , p. 2 , p 3 , user terminal, data stream, coding block number are all started from 1, for example, the coding block can be expressed as g 1 , g 2 , g 3 , g 4 .
  • Step S15 If the number of antenna ports configured by the base station is t, the base station performs space frequency block coding on the common signal to obtain t coded information symbols corresponding to t antenna ports, where corresponding to the (m-1)th
  • the coded information symbols of the antenna ports are denoted as c m , and m is a positive integer greater than 0 and less than or equal to t;
  • Step S16 The base station maps the coding blocks corresponding to each user terminal to t antenna ports, where the mth coding block is mapped to the (m-1)th antenna port by:
  • P m is a first common signal to be transmitted mapped on the (m-1)th antenna port
  • [V 1 , V 2 , . . . V N ] is a precoding matrix of K ⁇ M dimensions, the [V] 1 , V 2 , ...
  • V N is represented as V i , i is a positive integer greater than 0 and less than or equal to N, V i is a matrix of K ⁇ I i dimensions, and V i is assigned to the base station a total of i i precoding value vectors of the i-th user terminal of the N user terminals, when m ⁇ I i , V i (:,m) represents the m- th column vector of V i , when m>I i
  • V i (:, m) is an all-zero vector of K ⁇ 1 dimension
  • m is a positive integer greater than or equal to 1 and less than or equal to t
  • sum([V 1 (:, m), V 2 (:, m),...V N (:,m)]) is a summation of the column vectors of each column in [V 1 (:,m), V 2 (:,m),...V N (:,m)]
  • the operation, c m is a common signal corresponding
  • step 303 in the foregoing embodiment may be specifically step S15 and step S16, and the number of user terminals that need to perform space division multiplexing is N.
  • the base station performs space-frequency block coding on the common signal to obtain N coding blocks respectively corresponding to the N user terminals, and the coding block corresponding to the i-th user terminal is c i , wherein the value of i dynamically changes.
  • i is a positive integer greater than 0 and less than or equal to N, and the value of i is any positive integer of 1, 2, 3, ..., N, and the base station
  • the mth code block after the common signal generated by the user terminal is encoded by the space frequency block is represented as c m , and the value of m is 1, 2, ..., t. For example, when t is 4, the value of m may be 1, 2, 3, 4.
  • V i (:, m) denotes the m-th column vector of V i, if m> I i, V i is (:, m) is a 0 ⁇ 1 dimensional 0 vector.
  • the precoding matrix is also represented by [V 1 , V 2 , ... V N ], and V i (:, m) represents the mth column vector of V i , and each precoding in V 1 , V 2 , ...
  • V N The value vector represents a precoding value vector assigned by the base station to a user terminal, wherein each user terminal in the N user terminals is dynamically changed by the value of i, i is a positive integer greater than 0 and less than or equal to N If the value of i is any positive integer of 1, 2, 3, ..., N, then for the i-th user terminal, the pre-coding value vector assigned by the base station to the user terminal is V i , and V i is K ⁇ I i -dimensional matrix, V i is a total of i i pre-coded value vectors assigned to the i-th user terminal of the N user terminals by the base station, and sum([V 1 (:, m), V 2 Multiplying (:,m),...V N (:,m)]) and c m is equivalent to multiplying each precoding value vector and the common signal, thereby realizing the weighting of the common signal using the precoding matrix.
  • the mth coding block needs to be mapped to port (m-1) by:
  • step S16 may also be replaced by the following steps:
  • Step S16a The base station maps the coding blocks corresponding to each user terminal to t antenna ports, where the mth coding block is mapped to the (m-1)th antenna port by:
  • P m ' is the second common signal to be transmitted mapped on the (m-1)th antenna port
  • P m ' is a time-division signal obtained by using the precoding matrix and the mapping matrix
  • [U 1 , U 2 , U N ] is a mapping matrix of K ⁇ M dimensions
  • U i is a matrix of K ⁇ I i dimensions
  • U i is a pre-coding of a total of i i allocated to the i-th user terminal of the N user terminals by the base station.
  • a value vector, i is a positive integer greater than 0 and less than or equal to N.
  • U i (:,m) represents the m- th column vector of U i
  • U i (:,m) is an all-zero vector of K ⁇ 1 dimension
  • m is a positive integer greater than or equal to 1 and less than or equal to t
  • sum([U 1 (:, m), U 2 (:, m), ... U N (:, m)]) is a summation operation for the column vectors of each column in [U 1 (:, m), U 2 (:, m), ... U N (:, m)]
  • c m is Corresponds to the common signal on the (m-1)th port.
  • step S16a is different from step S16 in that the precoding matrix and the mapping matrix pair common signal are used in step S16a. Weighting.
  • the precoding matrix and the mapping matrix for weighting the common signal in step S16a are used in a time-sharing manner.
  • the generated public signal to be transmitted is defined as the second public to be transmitted. signal.
  • FIG. 7-a a schematic diagram of an application scenario for a base station to transmit data streams, pilot signals, scheduling information, and public signals.
  • Each user (English abbreviated as Ue) is a single stream transmission.
  • the multiplexed N users share the N layer (English full name layer) to be transmitted.
  • Each user has only one layer of data, and N is used as an example.
  • the precoding matrix is matrix 1, and the matrix 1 has 2 columns.
  • the base station weights the Ue1 data stream, the Ue1 scheduling information, and the pilot signal by using the column 1 of the matrix 1, respectively, to complete the resource block mapping, and the base station obtains the mapping to the K physical transmitting antennas.
  • the Ue1 to be transmitted data stream, the Ue1 to be transmitted scheduling information, and the to-be-transmitted pilot signal are represented by a 0 , ..., a (k-1) ), and the Ue2 data stream, Ue2 scheduling information,
  • the pilot signals are weighted by column 2 of matrix 1, respectively, to complete resource block mapping, and the base station obtains Ue2 mapping on K physical transmitting antennas (shown as a 0 , ..., a (k-1 ) in the figure).
  • the transmission data stream, the Ue2 to be transmitted scheduling information, and the pilot signal to be transmitted is transmitted.
  • an example is given to illustrate the weighting of the common signal by the base station.
  • each user (referred to as Ue in English) is a single stream transmission.
  • the user has only one layer of data, the precoding matrix is matrix 1, and the matrix 1 has 2 columns.
  • the base station uses the column 1 and column 2 of the matrix 1 to weight the common signal to complete the resource block mapping, and the base station is mapped to the K root physics.
  • a common signal to be transmitted on a transmitting antenna shown as a 0 , ..., a (k-1) in the figure
  • the Ue1 to be transmitted data stream generated by the base station Ue1 to be transmitted scheduling information
  • a pilot signal to be transmitted The common signal to be transmitted is represented by Orthogonal Frequency-division multiplexing (OFDM) signal 1, the Ue2 to be transmitted data stream generated by the base station, the Ue2 to be transmitted scheduling information, and the pilot to be transmitted.
  • the signal, the common signal to be transmitted is represented by the OFDM signal 2, and the base station transmits the OFDM signal 1 and the OFDM signal 2 through the radio remote unit (English full name Radio Remote Unit, RRU for short).
  • OFDM Orthogonal Frequency-division multiplexing
  • the transmission manners of the data stream, the pilot signal, the scheduling information, and the common signal are exemplified.
  • the base station transmits the data stream, the pilot signal, the scheduling information, and the common signal.
  • the number N of the sub-multiplexed user terminals is specifically 2, where UE1 uses 2 data streams and UE2 uses single stream transmission.
  • the base station weights the Ue1, L1 data stream (ie, Layer 1 data stream of Ue1) using V1(:, 1) of matrix 1, completes resource block mapping, and the base station is mapped to K physical transmit antennas (in the figure) It is represented as Ue1 on a 0 , ..., a (k-1) ), L1 is to be transmitted data stream, and the base station performs UE1 scheduling information (ie, scheduling information of Ue1) for space frequency block coding (English full name: Space Frequency Block Coding, abbreviated as SFBC), obtains g 1 (1) and g 1 (2), and weights g 1 (1) using V1 (:, 1) of matrix 1, using V1 of matrix 1 (:, 2 ) to g 1 (2) separately weighted, resource block mapping is completed, the base station maps obtained represented by a 0 in the K physical transmit antenna (, ..., a (k-1 ) Ue1 on) scheduled to be transmitted Information, the base station weights the pilot signal p 0
  • the base station will Ue1, L2 data stream (ie, Layer 2 data stream of Ue1) Weighting using V1(:, 2) of matrix 1, Mapped to resource blocks, the base station obtain a mapping (represented by a 0 in FIG, ..., a () k- 1) in the K physical transmit antennas on Ue1, L2 data flow to be transmitted.
  • the base station weights the Ue2, L1 data stream (ie, Ue2 has only one layer of data stream) using V2 (:, 1) of matrix 1, and completes resource block mapping.
  • the base station is mapped to K physical transmit antennas (represented in the figure)
  • L1 is to transmit data stream
  • the base station performs SFBC on Ue2 scheduling information (ie, scheduling information of Ue2) to obtain g 2 (1) and g 2 ( 2)
  • Ue2 scheduling information ie, scheduling information of Ue2
  • g 2 (2) will be discarded, and the equivalent implementation of discarding g 2 (2) has Multiple: For example, set g 2 (2) to 0, or multiply g 2 (2) with a vector of all 0s, or discard g 2 (2) and no longer use it, only for g 2 (1)
  • V1 (:, 1) of matrix 1 to perform weighting resource block mapping is completed, and the base station obtains Ue2 mapping on K physical transmitting antennas (shown as a 0 , ..., a (k-1 ) in the figure).
  • the scheduling information is transmitted, and the base station weights the pilot signal p 0 using V1 (:, 1) of the matrix 1 to complete resource block mapping, and the base station obtains mapping to the K physical transmitting antennas (shown as a 0 , ..., in the figure).
  • a pilot to be transmitted on the (k-1)) frequency signals The base station performs space-frequency block coding on the common signal to obtain c(1) and c(2), and the base station uses V1(:,1)+V2(:,1) of matrix 1 and V1(:,2)+ of matrix 1.
  • V2(:, 2) weights c(1) and c(2) respectively to complete resource block mapping, and the base station is mapped to K physical transmit antennas (shown as a 0 , ..., a (k- in the figure).
  • the generated UE1 to be transmitted data stream, the Ue1 to be transmitted pilot signal, the Ue1 to be transmitted scheduling information, the Ue1 to be transmitted common signal are represented by the OFDM signal 3, the Ue2 to be transmitted data stream, the Ue2 to be transmitted scheduling information, and the Ue2 to be transmitted.
  • the pilot signal and the common signal to be transmitted by Ue2 are represented by OFDM signal 4, and the base station transmits OFDM signal 3 and OFDM signal 4 through the RRU.
  • the base station uses a precoding matrix to weight multiple data streams that need to be transmitted to N user terminals to obtain a data stream to be transmitted mapped on the K physical transmit antennas, and the base station uses precoding.
  • the matrix weights the pilot signals that need to be transmitted to the N user terminals to obtain the pilot signals to be transmitted mapped on the K physical transmit antennas, and the base station uses the precoding matrix to weight the scheduling information that needs to be transmitted to the N user terminals.
  • the base station Obtaining scheduling information to be transmitted mapped on the K physical transmitting antennas, the base station weights the common signal by using the precoding matrix, and obtains a common signal to be transmitted mapped on the K physical transmitting antennas, and finally the base station transmits the data stream to be transmitted,
  • the pilot signal to be transmitted, the scheduling information to be transmitted, and the public signal to be transmitted are transmitted to the N user terminals through the K physical transmitting antennas, the data stream to be transmitted, the pilot signal to be transmitted, the scheduling information to be transmitted, and the public signal to be transmitted. Is mapped on different time frequency resources, where the precoding matrix is based on K root physical emissions The channel characteristics of the antenna to the N user terminals are calculated.
  • the base station performs weighting on the data stream, the pilot signal, the scheduling information, and the common signal that need to be transmitted to the N user terminals through the precoding matrix, the space division multiplexing between the N user terminals is implemented. Since the plurality of data streams can be weighted and multiplexed to the N user terminals by the precoding matrix, and the pilot signals are spatially multiplexed by the weighting of the precoding matrix, the weighted pilot signals to be transmitted are no longer dependent on the CRS. To distinguish the number of air interface user terminals, the number of user terminals performing space division multiplexing can be increased, and the utilization of time and frequency resources can be improved.
  • the multi-user multiplexing method provided by the embodiment of the present invention from the base station side, and then the multi-user multiplexing method provided by the embodiment of the present invention is described from the user terminal side, as shown in FIG.
  • the method may include the following steps:
  • the user terminal receives a transport data stream and a transmission pilot signal that are sent by the base station through the K physical transmit antennas.
  • the transport data stream is obtained by the base station using a precoding matrix to weight a plurality of data streams that need to be transmitted to the N user terminals, where the transport data stream is mapped on the K physical transmit antennas;
  • the transmission pilot signal is obtained by the base station using the precoding matrix to weight a pilot signal that needs to be transmitted to the N user terminals, and the transmission pilot signal is mapped on the K physical transmission antenna.
  • the transmission data stream and the transmission pilot signal are mapped on different time frequency resources, and the precoding matrix is based on the K physical transmission antennas
  • the channel characteristics of the N user terminals are calculated.
  • the user terminal performs channel estimation on a channel corresponding to the antenna port according to the transmission pilot signal
  • the user equipment demodulates the transport data stream according to a result of channel estimation.
  • a multi-user multiplexing method performed by one of the N user terminals that need to perform space division multiplexing is described.
  • the user terminal first receives the transmission data stream sent by the base station through the K physical transmitting antennas. And transmitting the pilot signal, the transmission data stream for the user terminal is the data stream to be transmitted to the base station in the foregoing embodiment, and similarly, the transmission pilot signal for the user terminal is the user in the foregoing embodiment.
  • the pilot signal to be transmitted in the terminal, and the transmission scheduling information for the user terminal is the scheduling information to be transmitted to the user terminal in the foregoing embodiment, and similarly, the first transmission to the user terminal
  • the common signal and the second transmission common signal are the first to-be-transmitted common signal and the second to-be-transmitted common signal for the user terminal in the foregoing embodiment.
  • the user terminal after receiving the transmission pilot signal through the K physical transmit antennas, the user terminal performs channel estimation on the channel corresponding to the antenna port by using the transmission pilot signal, and obtains a channel estimation result, and the result of the channel estimation is obtained. It can be used to demodulate the transport data stream, thereby restoring the data stream sent by the base station to the user terminal, wherein each of the N user terminals that need to perform space division multiplexing can perform the method described in the foregoing embodiment, but For each user terminal, the data stream sent by the base station to itself can be received, and mutual interference does not occur between the user terminals.
  • the multi-user multiplexing method provided by the embodiment of the present invention further includes the following steps:
  • the transmission scheduling information is sent by the base station to the user terminal through the K physical transmitting antenna, and the user terminal receives the transmission scheduling information through the K physical transmitting antenna, and the user terminal uses the transmission scheduling.
  • the information can acquire the scheduling instruction sent by the base station.
  • the multi-user multiplexing method provided by the embodiment of the present invention further includes the following steps:
  • the N user terminals that need to perform space division multiplexing can receive the first transmission common signal through the K physical transmit antennas.
  • common signals For a detailed description of the common signals, refer to the description in the foregoing embodiment.
  • the multi-user multiplexing method provided by the embodiment of the present invention further includes the following steps:
  • the base station sends the to-be-transmitted data stream, the pilot signal to be transmitted, and the scheduling information to be transmitted to the N user terminals through the K physical transmit antennas, and each user terminal passes the K-root physics.
  • the transmitting antenna receives the transmission data stream and the transmission pilot signal, and does not cause mutual interference between the user terminals, thereby realizing space division multiplexing between the N user terminals. Since the plurality of data streams can be weighted and multiplexed to the N user terminals by the precoding matrix, and the pilot signals are spatially multiplexed by the weighting of the precoding matrix, the weighted pilot signals to be transmitted are no longer dependent on the CRS. To distinguish the number of air interface user terminals, the number of user terminals performing space division multiplexing can be increased, and the utilization of time and frequency resources can be improved.
  • a base station 900 may include: a processing module 901, a transmitting module 902, where
  • the processing module 901 is configured to use a precoding matrix to weight multiple data streams that need to be transmitted to the N user terminals, to obtain a data stream to be transmitted mapped on the K physical transmit antennas;
  • the processing module 901 is further configured to use the precoding matrix to weight the pilot signals that need to be transmitted to the N user terminals, to obtain the pilot signals to be transmitted that are mapped on the K physical transmit antennas;
  • a transmitting module 902 configured to send the to-be-transmitted data stream and the to-be-transmitted pilot signal to the N user terminals by using the K physical transmit antennas, where the to-be-transmitted data stream and the to-be-transmitted guide
  • the frequency signal is mapped on different time and frequency resources
  • the N and the K are both natural numbers, and the precoding matrix is calculated according to channel characteristics of the K physical transmit antennas to the N user terminals.
  • the processing module 901 is specifically configured to weight the N data streams by:
  • [X 1 , X 2 ,...X K ] [V 1 , V 2 , . . . V N ] ⁇ [s 1 ;s 2 ;...;s N ];
  • the [X 1 , X 2 , . . . X K ] is the data stream to be transmitted, and the [V 1 , V 2 , . . . V N ] is a K ⁇ N-dimensional precoding matrix, the [V] Any one of 1 , V 2 , . . .
  • V N ] is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is the i-th allocated by the base station to the N user terminals
  • Precoding value vectors of user terminals the V i is a column vector of K ⁇ 1 dimensions, and the [s 1 ;s 2 ;...;s N ] are N numbers represented by column vectors of N ⁇ 1 dimensions a data stream, any one of the [s 1 ;s 2 ;...;s N ] is represented as s i , and the s i is the ith user terminal that the base station needs to transmit to the N user terminals The data stream.
  • the processing module 901 is specifically configured to weight the pilot signals by:
  • Y 0 sum([V 1 ,V 2 ,...V N ]) ⁇ p 0 ;
  • Y 0 is the pilot signal to be transmitted
  • [V 1 , V 2 , . . . V N ] is a K ⁇ N-dimensional precoding matrix
  • [V 1 , V 2 , . . . V N ] Any one of the columns is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and the sum ([V 1 , V 2 , . . . V N ]) is for the [V 1 , V a result obtained by a summation operation of a column vector of each column of 2 , ...
  • V N the V i being a column vector of K ⁇ 1 dimension
  • V i the ith of the N user terminals allocated by the base station
  • the precoding value vector of the user terminals, V i is a column vector of K ⁇ 1 dimension
  • the p 0 is the pilot signal.
  • the processing module 901 is specifically configured to: M data streams are weighted:
  • [X 1 , X 2 ,...X K ] [V 1 , V 2 , . . . V N ] ⁇ [s 1 ;s 2 ;...;s N ];
  • the [X 1 , X 2 , . . . X K ] is the data stream to be transmitted, and the [V 1 , V 2 , . . . V N ] is a K ⁇ M dimension precoding matrix
  • the [V] 1 , V 2 , . . . V N ] is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is a matrix of K ⁇ I i dimensions
  • the V i is said base station allocates user terminals to the N i th user terminal precoding a total value of the vector I i, I i is a positive integer equal to or greater than 1, the [s 1; s 2; ...
  • s N is M data streams represented by M ⁇ 1 dimensional column vectors, and any one of the [s 1 ; s 2 ;...; s N ] is represented as s i , and the s i is I i a 1-dimensional column vector, wherein the s i is a data stream that the base station needs to transmit to a common I i layer of the ith user terminal of the N user terminals, and the M is greater than or equal to the N.
  • the processing module 901 is specifically configured to use the pilot signal. Mapping to t antenna ports respectively, wherein the pilot signals on the (m-1)th antenna port are mapped to the K physical transmit antennas as follows:
  • Y (m-1) sum([V 1 (:,m), V 2 (:,m),...V N (:,m)]) ⁇ p (m-1) ;
  • Y (m-1) is a pilot signal to be transmitted mapped on the (m-1)th antenna port
  • [V 1 , V 2 , . . . V N ] is a precoding matrix of K ⁇ M dimensions. , any one of the [V 1 , V 2 , . . .
  • V N is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is a matrix of K ⁇ I i dimensions, Said V i is a total of i i precoding value vectors allocated by the base station to the i th user terminal of the N user terminals, where i is a positive integer greater than 0 and less than or equal to N, when m ⁇
  • V i (:, m) represents the mth column vector of V i .
  • V i (:, m) is an all-zero vector of K ⁇ 1 dimension, and m is greater than or a positive integer equal to 1 and less than or equal to t
  • the sum ([V 1 (:, m), V 2 (:, m), ... V N (:, m)]) is for the [V 1 ( :, m), V 2 (:, m), ... V N (:, m)]
  • the result of the summation operation of the column vector of each column, the p (m-1) is corresponding to the (m) -1) Pilot signals for each port.
  • the processing module 901 is further configured to: the transmitting module, the to-be-transmitted data stream, the to-be-transmitted pilot signal, to the N user terminals by using the K physical transmit antennas Before the sending, the scheduling information that needs to be transmitted to the N user terminals is weighted by using the precoding matrix, and the scheduling information to be transmitted mapped on the K physical transmitting antennas is obtained, and the to-be-transmitted data stream and the to-be-transmitted transmission are to be transmitted.
  • the frequency signal and the scheduling information to be transmitted are mapped on different time frequency resources.
  • the processing module 901 is specifically configured to weight the N scheduling information by:
  • [Z 1 , Z 2 ,...Z K ] [V 1 , V 2 , . . . V N ] ⁇ [g 1 ;g 2 ;...;g N ];
  • the [Z 1 , Z 2 , . . . , K K ] is the scheduling information to be transmitted, and the [V 1 , V 2 , . . . V N ] is a K ⁇ N-dimensional precoding matrix, and the [V] Any one of 1 , V 2 , . . .
  • V N ] is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is the i-th allocated by the base station to the N user terminals
  • Precoding value vector of the user terminal the V i is a column vector of K ⁇ 1 dimension
  • the [g 1 ; g 2 ;...; g N ] is N represented by column vectors of N ⁇ 1 dimensions
  • Scheduling information any one of the [g 1 ; g 2 ;...; g N ] is represented as g i
  • the g i is the i- th user terminal that the base station needs to transmit to the N user terminals Scheduling information.
  • the processing module 901 is configured to empty the scheduling information that needs to be transmitted to the N user terminals.
  • Frequency block coding to obtain N coding blocks respectively corresponding to the N user terminals, wherein the coding block corresponding to the ith user terminal is [g i (1),...,g i (m)...,g i (t)], the i is a positive integer greater than 0 and less than or equal to N, the m is a positive integer greater than 0 and less than or equal to t, and the g i (m) represents a space frequency block coding Then need to map to the information symbol on the (m-1)th antenna port;
  • the processing module 901 is configured to map coding blocks corresponding to each user terminal to t antenna ports, where the mth coding blocks of the N user terminals are mapped to (m-1) by: On the antenna port:
  • [Z i,1 ,Z i,2 ,...Z i,K ] [V 1 (:,m),V 2 (:,m),...V N (:,m)] ⁇ [g 1 (m ),...,g N (m)];
  • the [Z i,1 ,Z i,2 ,...Z i,K ] is the scheduling information to be transmitted allocated by the base station to the ith user of the N user terminals, [V 1 , V 2 , ... V N ] is a precoding matrix of K ⁇ M dimensions, and any one of the columns [V 1 , V 2 , ...
  • V N is represented as V i , i is a positive value greater than 0 and less than or equal to N
  • V i is a matrix of K ⁇ I i -dimension, where the V i is a total of i i pre-valued value vectors allocated by the base station to the i-th user terminal of the N user terminals, the m For a positive integer greater than 0 and less than or equal to t, when m ⁇ I i , V i (:,m) represents the m- th column vector of V i , and when m>I i , V i (:,m) is K ⁇ 1 dimension of all 0 vectors.
  • the processing module 901 is further configured to: the transmitting module, the to-be-transmitted data stream, the to-be-transmitted pilot signal, to the N user terminals by using the K physical transmit antennas Before transmitting, the common signal is weighted by using the precoding matrix to obtain a first common signal to be transmitted mapped on the K physical transmitting antennas, the to-be-transmitted data stream, the to-be-transmitted pilot signal, and the first A common signal to be transmitted is mapped on different time and frequency resources.
  • the processing module 901 is configured to send, by the transmitting module, the to-be-transmitted data stream and the to-be-transmitted pilot signal to the N user terminals by using the K physical transmit antennas.
  • the common signal is weighted by using the precoding matrix or the mapping matrix, and a second common signal to be transmitted mapped on the K physical transmitting antennas is obtained, and the mapping matrix changes in the channel characteristics, or
  • the data stream to be transmitted, the to-be-transmitted pilot signal, and the second common signal to be transmitted are mapped on different time-frequency resources.
  • the precoding matrix and the mapping matrix that weight the common signal are used in a time division manner.
  • the K is greater than the N.
  • the processing module 901 is specifically configured to weight the common signal by:
  • P is a first common signal to be transmitted
  • [V 1 , V 2 , . . . V N ] is a precoding matrix of K ⁇ N dimensions, in [V 1 , V 2 , . . . V N ]
  • Any one of the columns is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is a precoding value vector assigned by the base station to the i th user terminal of the N user terminals,
  • the V i is a column vector of K ⁇ 1 dimension, and the sum ([V 1 , V 2 , ... V N ]) is a column vector for each column of the [V 1 , V 2 , ... V N ]
  • the result of the summation operation which is a common signal.
  • the processing module 901 is configured to perform a space frequency block on the common signal. Encoding, obtains t coded information symbols corresponding to t antenna ports, wherein the coded information symbols corresponding to the (m-1)th antenna port are represented as c m , and the m is greater than 0 and less than or equal to a positive integer of t;
  • the processing module 901 is configured to map the coding blocks corresponding to each user terminal to t antenna ports, where the mth coding block is mapped to the (m-1)th antenna port by:
  • the P m is a first common signal to be transmitted mapped on the (m-1)th antenna port, and [V 1 , V 2 , . . . V N ] is a precoding matrix of K ⁇ M dimensions, Any one of [V 1 , V 2 , ...
  • V N is represented as V i , i is a positive integer greater than 0 and less than or equal to N, and V i is a matrix of K ⁇ I i dimensions, the V i And assigning, to the base station, a total of i i precoding value vectors of the i th user terminal of the N user terminals, when m ⁇ I i , V i (:,m) represents the mth of V i Column vector, when m>I i , V i (:,m) is an all-zero vector of K ⁇ 1 dimension, and m is a positive integer greater than or equal to 1 and less than or equal to t, the sum ([V 1 (:, m), V 2 (:, m), ...
  • V N (:, m)] is for the [V 1 (:, m), V 2 (:, m), ... V N ( :, m)]
  • the mapping matrix is a K ⁇ 1 dimensional column vector of all ones.
  • the base station 900 further includes: a calculation module 903, when the channel characteristics change, or When the scheduled user terminal changes, the weights of the precoding matrix used to weight the data stream and the pilot signal are recalculated.
  • the base station uses a precoding matrix to weight multiple data streams that need to be transmitted to N user terminals to obtain a data stream to be transmitted mapped on the K physical transmit antennas, and the base station uses precoding.
  • the matrix weights the pilot signals that need to be transmitted to the N user terminals to obtain the pilot signals to be transmitted mapped on the K physical transmit antennas.
  • the base station transmits the data streams to be transmitted and the pilot signals to be transmitted through the K physical transmitters.
  • the antenna is sent to the N user terminals, and the to-be-transmitted data stream and the to-be-transmitted pilot signal are mapped on different time-frequency resources, wherein the pre-coding matrix is based on channel characteristics of the K physical transmit antennas to the N user terminals. Calculated. Since the base station passes the precoding for the data stream and the pilot signal that need to be transmitted to the N user terminals. The matrix is separately weighted. After the weighting is completed, the data stream to be transmitted and the pilot signal to be transmitted are transmitted through the K physical transmitting antennas of the base station, thereby realizing space division multiplexing between N user terminals.
  • the weighted pilot signals to be transmitted are no longer dependent on the CRS.
  • the number of air interface user terminals the number of user terminals performing space division multiplexing can be increased, and the utilization of time and frequency resources can be improved.
  • a user terminal 1000 may include: a receiving module 1001 and a processing module 1002, where
  • the receiving module 1001 is configured to receive, by the base station, a transport data stream and a transmit pilot signal that are sent by the K physical transmit antenna, where the transport data stream is used by the base station to use the precoding matrix to transmit multiple data that needs to be transmitted to the N user terminals.
  • the stream is weighted, and the transport data stream is mapped on the K physical transmit antennas;
  • the transmit pilot signal is used by the base station to transmit to the N user terminals by using the precoding matrix pair
  • the frequency signal is obtained by weighting, and the transmission pilot signal is mapped on the K physical transmitting antennas, wherein the transmission data stream and the transmission pilot signal are mapped on different time and frequency resources,
  • the precoding matrix is calculated according to channel characteristics of the K physical transmit antennas to the N user terminals;
  • the processing module 1002 is configured to perform channel estimation on a channel corresponding to the antenna port according to the transmission pilot signal, and to demodulate the transmission data stream according to a result of the channel estimation.
  • the receiving module 1001 is further configured to receive transmission scheduling information that is sent by the base station by using the K physical transmit antenna, where the transmission scheduling information is used by the base station Obtaining, by the coding matrix, the scheduling information that needs to be transmitted to the N user terminals, where the transmission scheduling information is mapped on the K physical transmitting antennas, where the transmission data stream and the transmission pilot signal are And the transmission scheduling information is mapped on different time frequency resources.
  • the receiving module 1001 is further configured to receive a first transmission common signal sent by the base station by using the K physical transmit antenna, where the first transmission common signal is performed by the base station Obtaining, by using the precoding matrix, a common signal that needs to be transmitted to the N user terminals, where the first transmission common signal is mapped on the K physical transmit antennas, where the transport data stream, The transmission pilot signal and the first transmission common signal are mapped Different time frequency resources.
  • the receiving module 1001 is further configured to receive a second transmission common signal sent by the base station by using the K physical transmit antenna, where the second transmission common signal is used by the base station Time-divisionally using the precoding matrix or mapping matrix to obtain a weighted common signal to be transmitted to the N user terminals, the second transmission common signal being mapped on the K physical transmitting antennas,
  • the mapping matrix remains unchanged when the channel characteristics change, or the scheduled user terminal changes, wherein the transport data stream, the transmission pilot signal, and the second transmission common signal are mapped at different times On the frequency resource.
  • the base station sends the to-be-transmitted data stream, the pilot signal to be transmitted, and the scheduling information to be transmitted to the N user terminals through the K physical transmit antennas, and each user terminal passes the K-root physics.
  • the transmitting antenna receives the transmission data stream and the transmission pilot signal, and does not cause mutual interference between the user terminals, thereby realizing space division multiplexing between the N user terminals. Since the plurality of data streams can be weighted and multiplexed to the N user terminals by the precoding matrix, and the pilot signals are spatially multiplexed by the weighting of the precoding matrix, the weighted pilot signals to be transmitted are no longer dependent on the CRS. To distinguish the number of air interface user terminals, the number of user terminals performing space division multiplexing can be increased, and the utilization of time and frequency resources can be improved.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes some or all of the steps described in the foregoing method embodiments.
  • the base station 1100 includes:
  • the processor 1101, the memory 1102, and the physical transmit antenna 1103 (wherein the number of the processors 1101 in the base station 1100 may be one or more, and one processor in FIG. 11 is taken as an example).
  • the processor 1101, the memory 1102, and the transmit antenna 1103 may be connected by a bus or other means, wherein the number of physical transmit antennas 1103 is K in the example of the bus connection in FIG.
  • the memory 1101 is configured to store data, program instructions, and generated data that are required by the processor during execution.
  • the processor 1101 is configured to perform a multi-user multiplexing side provided by the base station side in the foregoing method embodiment. law.
  • the base station uses a precoding matrix to weight multiple data streams that need to be transmitted to N user terminals to obtain a data stream to be transmitted mapped on the K physical transmit antennas, and the base station uses precoding.
  • the matrix weights the pilot signals that need to be transmitted to the N user terminals to obtain the pilot signals to be transmitted mapped on the K physical transmit antennas.
  • the base station transmits the data streams to be transmitted and the pilot signals to be transmitted through the K physical transmitters.
  • the antenna is sent to the N user terminals, and the to-be-transmitted data stream and the to-be-transmitted pilot signal are mapped on different time-frequency resources, wherein the pre-coding matrix is based on channel characteristics of the K physical transmit antennas to the N user terminals. Calculated.
  • the base station performs weighting on the data stream and the pilot signal that need to be transmitted to the N user terminals through the precoding matrix. After the weighting is completed, the data stream to be transmitted and the pilot signal to be transmitted are transmitted through the K physical transmitting antennas of the base station. Thereby spatial division multiplexing between N user terminals is achieved.
  • the weighted pilot signals to be transmitted are no longer dependent on the CRS.
  • the number of air interface user terminals the number of user terminals performing space division multiplexing can be increased, and the utilization of time and frequency resources can be improved.
  • the user terminal 1200 includes:
  • the processor 1201, the memory 1202, and the physical transmit antenna 1203 (wherein the number of the processors 1201 in the user terminal 1200 may be one or more, and one processor in FIG. 12 is taken as an example).
  • the processor 1201, the memory 1202, and the transmit antenna 1203 may be connected by a bus or other manner. In FIG. 12, by way of a bus connection, the number of physical transmit antennas 1203 is K.
  • the memory 1201 is configured to store data, program instructions, and generated data that are required by the processor during execution.
  • the processor 1201 is configured to perform a multi-user multiplexing method provided by the user terminal side in the foregoing method embodiment.
  • the base station sends the to-be-transmitted data stream, the pilot signal to be transmitted, and the scheduling information to be transmitted to the N user terminals through the K physical transmit antennas, and each user terminal passes the K-root physics.
  • the transmitting antenna receives the transmission data stream and transmits the pilot signal, and each uses The mutual interference between the user terminals does not occur, and space division multiplexing between the N user terminals is realized. Since the plurality of data streams can be weighted and multiplexed to the N user terminals by the precoding matrix, and the pilot signals are spatially multiplexed by the weighting of the precoding matrix, the weighted pilot signals to be transmitted are no longer dependent on the CRS. To distinguish the number of air interface user terminals, the number of user terminals performing space division multiplexing can be increased, and the utilization of time and frequency resources can be improved.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically, one or more communication buses or signal lines can be realized.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, dedicated hardware, dedicated CPU, dedicated memory, dedicated memory, Special components and so on.
  • functions performed by computer programs can be easily implemented with the corresponding hardware, and the specific hardware structure used to implement the same function can be various, such as analog circuits, digital circuits, or dedicated circuits. Circuits, etc.
  • software program implementation is a better implementation in more cases.
  • the technical solution of the present invention which is essential or contributes to the prior art, can be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, etc., including a number of instructions to make a computer device (may be A personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.
  • a computer device may be A personal computer, server, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

一种多用户的复用方法和基站以及用户终端。其中,一种多用户的复用方法可包括:基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流;所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的导频信号进行加权,得到映射在所述K根物理发射天线上的待传输导频信号;所述基站将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送,所述待传输数据流和所述待传输导频信号是映射在不同的时间频率资源上;其中,所述N为大于或等于2的正整数,所述K为正整数,所述预编码矩阵是根据所述K根物理发射天线到所述N个用户终端的信道特征计算得到。

Description

一种多用户的复用方法和基站以及用户终端 技术领域
本发明实施例涉及通信领域,尤其涉及一种多用户的复用方法和基站以及用户终端。
背景技术
无线通信日益成为人们的基本生活需求,人们对未来网络正提出着更高更快更远的诉求,目前仍然面临需要容量成倍增长,海量连接数,零传输时延等一系列挑战。
大规模天线技术,是应对未来容量增长的一个有效技术。通过部署大量天线阵列,可以显著提高信号的空间分辨率,使得目标信号的传输具有很强的方向性,结合多用户多输入多输出(Multi-User Multiple-Input Multiple-Output,MU-MIMO)技术,可以大幅度提升用户终端的空间复用率,从而提升频率的使用效率。
在利用大规模天线定向传输信号时,现有的长期演进(Long Term Evolution,LTE)系统受到小区参考信号(Cell Reference Signal,CRS)作为导频的限制,由于无法通过CRS区分更多的空分复用层数,所以目前的系统最多只支持少数的用户终端进行空分复用,对于更多用户终端之间实现空间复用,目前的技术还没有办法实现。例如在LTE Rel-8系统中,CRS是小区级别的公共参考信号,对小区内所有用户终端而言都是相同的,Rel-8协议定义了CRS天线端口的最大数目为4个,因而最多只能支持4层需要空分复用的数据流,这也就限制了无法复用更多的用户终端。
发明内容
本发明实施例提供了一种多用户的复用方法和基站以及用户终端,能够实现对多个用户终端的空分复用,提高时间频率资源的利用率。
第一方面,本发明实施例提供一种多用户的复用方法,包括:
基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流;
所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的导频信号进行加权,得到映射在所述K根物理发射天线上的待传输导频信号;
所述基站将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送,所述待传输数据流和所述待传输导频信号是映射在不同的时间频率资源上;
其中,所述N为大于或等于2的正整数,所述K为正整数,所述预编码矩阵是根据所述K根物理发射天线到所述N个用户终端的信道特征计算得到。
结合第一方面,在第一方面的第一种可能的实现方式中,若所述基站配置的天线端口的数目为1个,所述基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流,包括:
通过如下方式对N个数据流进行加权:
[X1,X2,…XK]=[V1,V2,…VN]×[s1;s2;…;sN];
其中,所述[X1,X2,…XK]为所述待传输数据流,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,所述Vi为K×1维的列向量,所述[s1;s2;…;sN]为用N×1维的列向量表示的所述N个数据流,所述[s1;s2;…;sN]中的任意一个列表示为si,所述si为所述基站需要传输给所述N个用户终端中第i个用户终端的数据流。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,若所述基站配置的天线端口的数目为1个,所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的导频信号进行加权,得到映射在所述K根物理发射天线上的待传输导频信号,包括:
通过如下方式对所述导频信号进行加权:
Y0=sum([V1,V2,…VN])×p0
其中,所述Y0为所述待传输导频信号,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述sum([V1,V2,…VN])为对所述[V1,V2,…VN]中每一列的列向量进行求和运算得到的结果,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大 于0且小于或等于N的一个正整数,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,Vi为K×1维的列向量,所述p0为所述导频信号。
结合第一方面,在第一方面的第三种可能的实现方式中,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流,包括:
通过如下方式对M个数据流进行加权:
[X1,X2,…XK]=[V1,V2,…VN]×[s1;s2;…;sN];
其中,所述[X1,X2,…XK]为所述待传输数据流,所述[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,Ii为大于或等于1的正整数,所述[s1;s2;…;sN]为用M×1维的列向量表示的M个数据流,所述[s1;s2;…;sN]中的任意一个列表示为si,所述si为Ii×1维的列向量,所述si为所述基站需要传输给所述N个用户终端中第i个用户终端的共Ii层的数据流,所述M大于或等于所述N。
结合第一方面或第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的导频信号进行加权,得到映射在K根物理发射天线上的待传输导频信号,包括:
所述基站将所述导频信号分别映射到t个天线端口上,其中,第(m-1)个天线端口上的导频信号通过如下方式映射到K根物理发射天线上:
Y(m-1)=sum([V1(:,m),V2(:,m),…VN(:,m)])×p(m-1)
其中,所述Y(m-1)为映射在第(m-1)个天线端口上的待传输导频信号,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0 向量,所述m为大于或等于1且小于或等于t的正整数,所述sum([V1(:,m),V2(:,m),…VN(:,m)])为对所述[V1(:,m),V2(:,m),…VN(:,m)]中每一列的列向量进行求和运算得到的结果,所述p(m-1)为对应第(m-1)个端口的导频信号。
结合第一方面或第一方面的第一种可能或第二种可能或第三种可能或第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述基站将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送之前,所述方法还包括:
所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的调度信息进行加权,得到映射在所述K根物理发射天线上的待传输调度信息,所述待传输数据流、所述待传输导频信号和所述待传输调度信息是映射在不同的时间频率资源上。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,若所述基站配置的天线端口的数目为1个,所述基站使用所述预编码矩阵对需要传输给N个用户终端的调度信息进行加权,得到映射在K根物理发射天线上的待传输调度信息,包括:
通过如下方式对N个调度信息进行加权:
[Z1,Z2,…ZK]=[V1,V2,…VN]×[g1;g2;…;gN];
其中,所述[Z1,Z2,…ZK]为所述待传输调度信息,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,所述Vi为K×1维的列向量,所述[g1;g2;…;gN]为用N×1维的列向量表示的N个调度信息,所述[g1;g2;…;gN]中的任意一个列表示为gi,所述gi为所述基站需要传输给所述N个用户终端中第i个用户终端的调度信息。
结合第一方面的第五种可能的实现方式,在第一方面的第七种可能的实现方式中,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的调度信息进行加权,得到映射在所述K根物理发射天线上的待传输调度信息,包括:
所述基站对需要传输给所述N个用户终端的调度信息进行空频块编码,得到与所述N个用户终端分别对应的N个编码块,其中,对应于第i个用户终端的编码块为[gi(1),…,gi(m)…,gi(t)],所述i为大于0且小于或等于N的一个正整数,所述m为大于0且小于或等于t的正整数,所述gi(m)表示经过空频块编码后需要映射到第(m-1)个天线端口上的信息符号;
所述基站将对应于每个用户终端的编码块分别映射到t个天线端口上,其中,N个用户终端的第m个编码块通过如下方式映射到第(m-1)个天线端口上:
[Zi,1,Zi,2,…Zi,K]=[V1(:,m),V2(:,m),…VN(:,m)]×[g1(m);…;gN(m)];
其中,所述[Zi,1,Zi,2,…Zi,K]为所述基站分配给所述N个用户终端中第i个用户的待传输调度信息,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,所述m为大于0且小于或等于t的正整数,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量。
结合第一方面或第一方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能或第六种可能或第七种可能的实现方式,在第一方面的第八种可能的实现方式中,所述基站将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送之前,所述方法还包括:
所述基站使用所述预编码矩阵对公共信号进行加权,得到映射在所述K根物理发射天线上的第一待传输公共信号,所述待传输数据流、所述待传输导频信号和所述第一待传输公共信号是映射在不同的时间频率资源上。
结合第一方面或第一方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能或第六种可能或第七种可能的实现方式,在第一方面的第九种可能的实现方式中,所述基站将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送之前,所述方法还包括:
所述基站分时的使用所述预编码矩阵或映射矩阵对公共信号进行加权,得 到映射在K根物理发射天线上的第二待传输公共信号,所述映射矩阵在所述信道特征发生变化,或者调度的用户终端发生改变时保持不变,所述待传输数据流、所述待传输导频信号和所述第二待传输公共信号是映射在不同的时间频率资源上。
结合第一方面的第八种可能或第九种可能的实现方式,在第一方面的第十种可能的实现方式中,所述K大于所述N。
结合第一方面的第八种可能的实现方式,在第一方面的第十一种可能的实现方式中,若所述基站配置的天线端口的数目为1个,所述基站使用所述预编码矩阵对公共信号进行加权,得到映射在K根物理发射天线上的第一待传输公共信号,包括:
通过如下方式对公共信号进行加权:
P=sum([V1,V2,…VN])×c;
其中,所述P为第一待传输公共信号,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,所述Vi为K×1维的列向量,所述sum([V1,V2,…VN])为对所述[V1,V2,…VN]中每一列的列向量进行求和运算得到的结果,所述c为公共信号。
结合第一方面的第八种可能的实现方式,在第一方面的第十二种可能的实现方式中,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述基站使用所述预编码矩阵对公共信号进行加权,得到映射在所述K根物理发射天线上的第一待传输公共信号,包括:
所述基站对公共信号进行空频块编码,得到对应t个天线端口的t个编码后的信息符号,其中,对应于第(m-1)个天线端口的编码后信息符号表示为cm,所述m为大于0且小于或等于t的一个正整数;
所述基站将对应于每个用户终端的编码块分别映射到t个天线端口上,其中,第m个编码块通过如下方式映射到第(m-1)个天线端口上:
Pm=sum([V1(:,m),V2(:,m),…VN(:,m)])×cm
其中,所述Pm为映射在第(m-1)个天线端口上的第一待传输公共信号,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示 为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量,所述m为大于0且小于或等于t的正整数,所述sum([V1(:,m),V2(:,m),…VN(:,m)])为对所述[V1(:,m),V2(:,m),…VN(:,m)]中每一列的列向量进行求和运算得到的结果,所述cm为对应在第(m-1)个端口上的公共信号。
结合第一方面的第九种可能的实现方式,在第一方面的第十三种可能的实现方式中,当所述公共信号为主同步信号或辅同步信号时,所述映射矩阵为全1的K×1维的列向量。
结合第一方面或第一方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能或第六种可能或第七种可能或第八种可能或第九种可能或第十种可能或第十一种可能或第十二种可能或第十三种可能的实现方式,在第一方面的第十四种可能的实现方式中,所述方法,还包括:
当所述信道特征发生变化,或者调度的用户终端发生改变时,重新计算用于对所述数据流、所述导频信号进行加权的预编码矩阵的权值。
第二方面,本发明实施例还提供一种基站,包括:处理模块和发射模块,其中,
所述处理模块,用于使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流;
所述处理模块,还用于使用所述预编码矩阵对需要传输给所述N个用户终端的导频信号进行加权,得到映射在所述K根物理发射天线上的待传输导频信号;
所述发射模块,用于将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送,所述待传输数据流和所述待传输导频信号是映射在不同的时间频率资源上;
其中,所述N为大于或等于2的正整数,所述K为正整数,所述预编码矩阵是根据所述K根物理发射天线到所述N个用户终端的信道特征计算得到。
结合第二方面,在第二方面的第一种可能的实现方式中,若所述基站配置的天线端口的数目为1个,所述处理模块,具体用于通过如下方式对N个数 据流进行加权:
[X1,X2,…XK]=[V1,V2,…VN]×[s1;s2;…;sN];
其中,所述[X1,X2,…XK]为所述待传输数据流,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,所述Vi为K×1维的列向量,所述[s1;s2;…;sN]为用N×1维的列向量表示的所述N个数据流,所述[s1;s2;…;sN]中的任意一个列表示为si,所述si为所述基站需要传输给所述N个用户终端中第i个用户终端的数据流。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,若所述基站配置的天线端口的数目为1个,所述处理模块,具体用于通过如下方式对所述导频信号进行加权:
Y0=sum([V1,V2,…VN])×p0
其中,所述Y0为所述待传输导频信号,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述sum([V1,V2,…VN])为对所述[V1,V2,…VN]中每一列的列向量进行求和运算得到的结果,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,Vi为K×1维的列向量,所述p0为所述导频信号。
结合第二方面,在第二方面的第三种可能的实现方式中,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述所述处理模块,具体用于通过如下方式对M个数据流进行加权:
[X1,X2,…XK]=[V1,V2,…VN]×[s1;s2;…;sN];
其中,所述[X1,X2,…XK]为所述待传输数据流,所述[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,所述[s1;s2;…;sN]为用M×1维的列向量表示的M个数据流,所述[s1;s2;…;sN]中的任意一个列表示为si,所述si为Ii×1维的列向量,所述si为所述基站需要传输给 所述N个用户终端中第i个用户终端的共Ii层的数据流,所述M大于或等于所述N。
结合第二方面或第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,
所述处理模块,具体用于将所述导频信号分别映射到t个天线端口上,其中,第(m-1)个天线端口上的导频信号通过如下方式映射到K根物理发射天线上:
Y(m-1)=sum([V1(:,m),V2(:,m),…VN(:,m)])×p(m-1)
其中,所述Y(m-1)为映射在第(m-1)个天线端口上的待传输导频信号,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量,所述m为大于或等于1且小于或等于t的正整数,所述sum([V1(:,m),V2(:,m),…VN(:,m)])为对所述[V1(:,m),V2(:,m),…VN(:,m)]中每一列的列向量进行求和运算得到的结果,所述p(m-1)为对应在第(m-1)个端口的导频信号。
结合第二方面或第二方面的第一种可能或第二种可能或第三种可能或第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述处理模块,还用于所述发射模块将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送之前,使用所述预编码矩阵对需要传输给N个用户终端的调度信息进行加权,得到映射在K根物理发射天线上的待传输调度信息,所述待传输数据流、所述待传输导频信号和所述待传输调度信息是映射在不同的时间频率资源上。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,若所述基站配置的天线端口的数目为1个,所述处理模块,具体用于通过如下方式对N个调度信息进行加权:
[Z1,Z2,…ZK]=[V1,V2,…VN]×[g1;g2;…;gN];
其中,所述[Z1,Z2,…ZK]为所述待传输调度信息,所述[V1,V2,…VN]为K×N 维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,所述Vi为K×1维的列向量,所述[g1;g2;…;gN]为用N×1维的列向量表示的N个调度信息,所述[g1;g2;…;gN]中的任意一个列表示为gi,所述gi为所述基站需要传输给所述N个用户终端中第i个用户终端的调度信息。
结合第二方面的第五种可能的实现方式,在第二方面的第七种可能的实现方式中,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述处理模块,用于对需要传输给所述N个用户终端的调度信息进行空频块编码,得到与所述N个用户终端分别对应的N个编码块,其中,对应于第i个用户终端的编码块为[gi(1),…,gi(m)…,gi(t)],所述i为大于0且小于或等于N的一个正整数,所述m为大于0且小于或等于t的正整数,所述gi(m)表示经过空频块编码后需要映射到第(m-1)个天线端口上的信息符号;所述处理模块用于将对应于每个用户终端的编码块分别映射到t个天线端口上,其中,N个用户终端的第m个编码块通过如下方式映射到第(m-1)个天线端口上:
[Zi,1,Zi,2,…Zi,K]=[V1(:,m),V2(:,m),…VN(:,m)]×[g1(m),…,gN(m)];
其中,所述[Zi,1,Zi,2,…Zi,K]为所述基站分配给所述N个用户终端中第i个用户的待传输调度信息,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,所述m为大于0且小于或等于t的正整数,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量。
结合第二方面或第二方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能或第六种可能或第七种可能的实现方式,在第二方面的第八种可能的实现方式中,所述处理模块,还用于所述发射模块将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送之前,使用所述预编码矩阵对公共信号进行加权,得到映射在K根物理发射天线上的第一待传输公共信号,所述待传输数据流、所述待传输导频信 号和所述第一待传输公共信号是映射在不同的时间频率资源上。
结合第二方面或第二方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能或第六种可能或第七种可能的实现方式,在第二方面的第九种可能的实现方式中,所述处理模块,还用于所述发射模块将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送之前,分时的使用所述预编码矩阵或映射矩阵对公共信号进行加权,得到映射在K根物理发射天线上的第二待传输公共信号,所述映射矩阵在所述信道特征发生变化,或者调度的用户终端发生改变时保持不变,所述待传输数据流、所述待传输导频信号和所述第二待传输公共信号是映射在不同的时间频率资源上。
结合第二方面的第八种可能或第九种可能的实现方式,在第二方面的第十种可能的实现方式中,所述K大于所述N。
结合第二方面的第八种可能的实现方式,在第二方面的第十一种可能的实现方式中,若所述基站配置的天线端口的数目为1个,所述处理模块,具体用于通过如下方式对公共信号进行加权:
P=sum([V1,V2,…VN])]×c;
其中,所述P为第一待传输公共信号,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,所述Vi为K×1维的列向量,所述sum([V1,V2,…VN])为对所述[V1,V2,…VN]中每一列的列向量进行求和运算得到的结果,所述c为公共信号。
结合第二方面的第八种可能的实现方式,在第二方面的第十二种可能的实现方式中,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述处理模块,用于对公共信号进行空频块编码,得到对应t个天线端口的t个编码后的信息符号,其中,对应于第(m-1)个天线端口的编码后信息符号表示为cm,所述m为大于0且小于或等于t的一个正整数;
所述处理模块,用于将对应于每个用户终端的编码块分别映射到t个天线端口上,其中,第m个编码块通过如下方式映射到第(m-1)个天线端口上:
Pm=sum([V1(:,m),V2(:,m),…VN(:,m)])×cm
其中,所述Pm为映射在第(m-1)个天线端口上的第一待传输公共信号,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量,所述m为大于或等于1且小于或等于t的正整数,所述sum([V1(:,m),V2(:,m),…VN(:,m)])为对所述[V1(:,m),V2(:,m),…VN(:,m)]中每一列的列向量进行求和运算得到的结果,所述cm为对应在第(m-1)个端口上的公共信号。
结合第二方面的第九种可能的实现方式,在第二方面的第十三种可能的实现方式中,当所述公共信号为主同步信号或辅同步信号时,所述映射矩阵为全1的K×1维的列向量。
结合第二方面或第二方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能或第六种可能或第七种可能或第八种可能或第九种可能或第十种可能或第十一种可能或第十二种可能或第十三种可能的实现方式,在第二方面的第十四种可能的实现方式中,所述基站,还包括:
计算模块,用于当所述信道特征发生变化,或者调度的用户终端发生改变时,重新计算用于对所述数据流、所述导频信号进行加权的预编码矩阵的权值。
第三方面,本发明实施例提供一种多用户的复用方法,包括:
用户终端接收基站通过K根物理发射天线发送的传输数据流和传输导频信号,所述传输数据流为所述基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权后得到,所述传输数据流映射在所述K根物理发射天线上;所述传输导频信号为所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的导频信号进行加权后得到,所述传输导频信号映射在所述K根物理发射天线上,其中,所述传输数据流和所述传输导频信号是映射在不同的时间频率资源上,所述预编码矩阵是根据所述K根物理发射天线到所述N个用户终端的信道特征计算得到;
所述用户终端根据所述传输导频信号,对与天线端口相对应的信道进行信道估计;及
所述用户终端根据信道估计的结果解调所述传输数据流。
结合第三方面,在第三方面的第一种可能的实现方式中,所述方法,还包括:
所述用户终端接收所述基站通过所述K根物理发射天线发送的传输调度信息,所述传输调度信息是由所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的调度信息进行加权后得到,所述传输调度信息映射在所述K根物理发射天线上,其中,所述传输数据流、所述传输导频信号和所述传输调度信息是映射在不同的时间频率资源上。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述方法,还包括:
所述用户终端接收所述基站通过所述K根物理发射天线发送的第一传输公共信号,所述第一传输公共信号是由所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的公共信号进行加权后得到,所述第一传输公共信号映射在所述K根物理发射天线上,其中,所述传输数据流、所述传输导频信号和所述第一传输公共信号是映射在不同的时间频率资源上。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第三种可能的实现方式中,所述方法,还包括:
所述用户终端接收所述基站通过所述K根物理发射天线发送的第二传输公共信号,所述第二传输公共信号是由所述基站分时的使用所述预编码矩阵或映射矩阵对需要传输给所述N个用户终端的公共信号进行加权后得到,所述第二传输公共信号映射在所述K根物理发射天线上,所述映射矩阵在所述信道特征发生变化,或者调度的用户终端发生改变时保持不变,其中,所述传输数据流、所述传输导频信号和所述第二传输公共信号是映射在不同的时间频率资源上。
第四方面,本发明实施例还提供一种用户终端,包括:接收模块、处理模块,其中,
接收模块,用于接收基站通过K根物理发射天线发送的传输数据流和传输导频信号,所述传输数据流为所述基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权后得到,所述传输数据流映射在所述K根物理发射天线上;所述传输导频信号为所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的导频信号进行加权后得到,所述传输导频信号映射在 所述K根物理发射天线上,其中,所述传输数据流和所述传输导频信号是映射在不同的时间频率资源上,所述预编码矩阵是根据所述K根物理发射天线到所述N个用户终端的信道特征计算得到;
处理模块,用于根据所述传输导频信号,对与天线端口相对应的信道进行信道估计,还用于根据信道估计的结果解调所述传输数据流。
结合第四方面,在第四方面的第一种可能的实现方式中,所述接收模块,还用于接收所述基站通过所述K根物理发射天线发送的传输调度信息,所述传输调度信息是由所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的调度信息进行加权后得到,所述传输调度信息映射在所述K根物理发射天线上,其中,所述传输数据流、所述传输导频信号和所述传输调度信息是映射在不同的时间频率资源上。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述接收模块,还用于接收所述基站通过所述K根物理发射天线发送的第一传输公共信号,所述第一传输公共信号是由所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的公共信号进行加权后得到,所述第一传输公共信号映射在所述K根物理发射天线上,其中,所述传输数据流、所述传输导频信号和所述第一传输公共信号是映射在不同的时间频率资源上。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第三种可能的实现方式中,所述接收模块,还用于接收所述基站通过所述K根物理发射天线发送的第二传输公共信号,所述第二传输公共信号是由所述基站分时的使用所述预编码矩阵或映射矩阵对需要传输给所述N个用户终端的公共信号进行加权后得到,所述第二传输公共信号映射在所述K根物理发射天线上,所述映射矩阵在所述信道特征发生变化,或者调度的用户终端发生改变时保持不变,其中,所述传输数据流、所述传输导频信号和所述第二传输公共信号是映射在不同的时间频率资源上。
从以上技术方案可以看出,本发明实施例具有以下优点:
本发明实施例中,基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流,基站使用预编码矩阵对需要传输给N个用户终端的导频信号进行加权,得到映射 在K根物理发射天线上的待传输导频信号,最后基站将待传输数据流、待传输导频信号通过K根物理发射天线向所述N个用户终端发送,待传输数据流和待传输导频信号是映射在不同的时间频率资源上,其中,预编码矩阵是根据K根物理发射天线到N个用户终端的信道特征计算得到。由于基站对于需要传输给N个用户终端的数据流、导频信号都会通过预编码矩阵分别进行加权,完成加权后将待传输数据流、待传输导频信号通过基站的K根物理发射天线发射,从而实现N个用户终端之间的空分复用。由于多个数据流可以通过预编码矩阵的加权复用给N个用户终端,并且导频信号通过预编码矩阵的加权也实现了空分复用,加权得到的待传输导频信号不再依赖CRS来区分空分用户终端层数,故进行空分复用的用户终端数可以达到更多,能够提高对时间频率资源的利用率。
附图说明
图1为本发明实施例提供的一种多用户的复用方法的流程方框示意图;
图2为本发明实施例提供的另一种多用户的复用方法的流程方框示意图;
图3为本发明实施例提供的另一种多用户的复用方法的流程方框示意图;
图4为本发明实施例提供的对各种用户终端数目对应的RSRP进行测量的结果示意图;
图5为本发明实施例提供的TDD帧结构示意图;
图6-a为基站对公共信号、数据流、调度信息、导频信号进行复用的映射过程示意图;
图6-b为各个用户终端接收公共信号、数据流、调度信息、导频信号的处理过程示意图;
图7-a为基站对数据流、导频信号、调度信息、公共信号进行传输的一种应用场景示意图;
图7-b为基站对数据流、导频信号、调度信息、公共信号进行传输的另一种应用场景示意图;
图8为本发明实施例提供的另一种多用户的复用方法的流程方框示意图;
图9-a为本发明实施例提供的一种基站的组成结构示意图;
图9-b为本发明实施例提供的另一种基站的组成结构示意图;
图10为本发明实施例提供的一种用户设备的组成结构示意图;
图11为本发明实施例提供的另一种基站的组成结构示意图;
图12为本发明实施例提供的一种用户设备的组成结构示意图。
具体实施方式
本发明实施例提供了一种多用户的复用方法和基站以及用户终端,能够实现对多个用户终端的空分复用,提高时间频率资源的利用率。
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域的技术人员所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本发明的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
以下分别进行详细说明。
实施例一
本发明多用户的复用方法的一个实施例,可应用于基站对多个用户终端的空分复用场景中,请参阅图1所示,本发明一个实施例提供的多用户的复用方法,可以包括如下步骤:
101、基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流。
其中,N和K均为自然数,预编码矩阵是根据K根物理发射天线到N个用户终端的信道特征计算得到。
在本发明实施例中,基站为了能够对多个用户终端实现空分复用,以N来表示做空分复用的用户终端数,基站将需要传输给N个用户终端的多个数 据流使用预编码矩阵进行加权,得到映射在K根物理发射天线上的待传输数据流。其中,数据流指的是基站发送给用户终端的数据信息,基站生成的一个数据流需要发送给一个用户终端,基站生成的所有数据流的个数可以和需要做空分复用的用户终端数相等,基站生成的所有数据流的个数也可以比需要做空分复用的用户终端数多,在这种情况下,就可能存在两个数据流发送给同一个用户终端的情形,或者三个甚至更多的数据流发送给同一个用户终端的情形。为了实现多个用户终端之间的空间复用,基站可以将生成的所有数据流使用预编码矩阵进行加权,其中基站部署有多根物理发射天线,以K来表示物理发射天线的数目,基站生成的所有数据流经过预编码矩阵的加权,成为映射在K根物理发射天线上的待传输数据流。
需要说明的是,在本发明实施例中,步骤101执行之前,本发明实施例提供的多用户的复用方法还可以包括如下步骤:
基站向用户终端广播天线端口的配置信息,其中,基站配置的天线端口可以是1个,也可以是多个,当基站配置的天线端口的数目为多个时,本发明实施例中用字母t来表示天线端口的个数,t为大于1的正整数,对于基站配置的天线端口数目的不同,基站使用预编码矩阵对数据流的加权实现方式也是不同的,具体实现方式在后续实施例中进行描述。进一步的,基站配置的天线端口具体可以为小区专用参考信号(Cell-specific Reference Signals,英文简称CRS)天线端口,其中,CRS天线端口也可以称之为小区级天线端口,在LTE系统中,基站配置的CRS天线端口越多,基站可以同时传输更多的数据流。
102、基站使用预编码矩阵对需要传输给N个用户终端的导频信号进行加权,得到映射在K根物理发射天线上的待传输导频信号。
在本发明实施例中,基站为了能够对多个用户终端实现空分复用,以N来表示做空分复用的用户终端数,基站将需要传输给N个用户终端的导频信号使用预编码矩阵进行加权,得到映射在K根物理发射天线上的待传输导频信号。其中,导频信号指的是基站发送给用户终端用于信号估计的参考信号,具体的,导频信号可以为CRS,当基站配置的天线端口数目为1时,基站需要生成一个导频信号发送给用户终端,当基站配置的天线端口数目为t个时,基站可能需要生成两个或者更多的导频信号发送给用户终端。为了实现多个用户终端之间的空间复用,基站可以将生成的所有导频信号使用预编码矩阵进行 加权,其中基站部署有多根物理发射天线,以K来表示物理发射天线的数目,基站生成的导频信号经过预编码矩阵的加权,成为映射在K根物理发射天线上的待传输导频信号,预编码矩阵是根据K根物理发射天线到N个用户终端的信道计算得到,也就是说,该预编码矩阵的权值具体为多少需要由K根物理发射天线到需要空分复用的N个用户终端的信道计算得到。通过该预编码矩阵的加权,可以实现导频信号到N个用户终端的空分复用传输。
需要说明的是,基站配置的天线端口可以是1个,也可以是多个,当基站配置的天线端口的数目为多个时,本发明实施例中用字母t来表示天线端口的个数,t为大于1的正整数,对于基站配置的天线端口数目的不同,基站使用预编码矩阵对导频信号的加权实现方式也是不同的,具体实现方式在后续实施例中进行描述。
可以理解的是,在本发明实施例中,步骤101和步骤102之间没有先后时序关系,可以先执行步骤101再执行步骤102,也可以先执行步骤102再执行步骤101,还可以同时执行步骤101、102,其中图1中以先执行步骤101再执行步骤102进行示意说明,此处不作为对本发明的限定。
103、基站将待传输数据流、待传输导频信号通过K根物理发射天线向N个用户终端发送。
其中,待传输数据流和待传输导频信号是映射在不同的时间频率资源上。
在本发明实施例中,基站通过步骤101、步骤102分别得到待传输数据流、待传输导频信号之后,基站对数据流和导频信号进行加权,并不改变数据流和导频信号在时间频率资源上的映射关系,所以待传输数据流、待传输导频信号仍然是分别映射在不同的时间频率资源上,基站可以将待传输数据流、待传输导频信号通过K根物理发射天线向N个用户终端发送,这里所述的将待传输数据流、待传输导频信号通过K根物理发射天线发射是指待传输数据流、待传输导频信号是共用K根物理发射天线进行发射,待传输数据流需要通过K根物理发射天线进行发射,待传输导频信号也需要通过K根物理发射天线进行发射,只是待传输数据流和待传输导频信号是映射在不同的时间频率资源上。由于待传输数据流、待传输导频信号占用的是不同时间频率资源,作为接收端的用户终端可以确定从不同的时间频率资源上获取到相应的数据流和导频信号。
通过以上实施例对本发明的描述可知,基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流,基站使用预编码矩阵对需要传输给N个用户终端的导频信号进行加权,得到映射在K根物理发射天线上的待传输导频信号,最后基站将待传输数据流、待传输导频信号通过K根物理发射天线向所述N个用户终端发送,待传输数据流和待传输导频信号是映射在不同的时间频率资源上,其中,预编码矩阵是根据K根物理发射天线到N个用户终端的信道特征计算得到。由于基站对于需要传输给N个用户终端的数据流、导频信号都会通过预编码矩阵分别进行加权,完成加权后将待传输数据流、待传输导频信号通过基站的K根物理发射天线发射,从而实现N个用户终端之间的空分复用。由于多个数据流可以通过预编码矩阵的加权复用给N个用户终端,并且导频信号通过预编码矩阵的加权也实现了空分复用,加权得到的待传输导频信号不再依赖CRS来区分空分用户终端层数,故进行空分复用的用户终端数可以达到更多,能够提高对时间频率资源的利用率。
实施例二
请参阅图2所示,本发明另一个实施例提供的多用户的复用方法,可以包括如下步骤:
201、基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流。
其中,N和K均为自然数,预编码矩阵是根据K根物理发射天线到N个用户终端的信道特征计算得到。
需要说明的是,在本发明实施例中,为了实现N个用户终端的空间复用,基站可以将需要传输给N个用户终端的多个数据流通过预编码矩阵进行加权,得到了待传输数据流,这些待传输数据流是按照预编码矩阵对原来的多个数据流进行加权得到,预编码矩阵是基站根据K根物理发射天线到N个用户终端的信道特征计算得到,待传输数据流是通过加权计算映射到了K根物理发射天线上。另外,用户终端的接收天线的数目可以是一根或者多根,在具体的应用场景中可以由用户终端来决定。
在本发明的实施例中,基站使用的预编码矩阵需要能匹配K根物理发射 天线到用户终端的信道特征,预编码矩阵的权值是基站根据K根物理发射天线到N个用户终端的信道特征计算得到,在本发明的一些实施例中,多用户的复用方法,还可以包括如下步骤:
当信道发生变化,或者调度的用户终端发生改变时,重新计算用于对数据流、导频信号进行加权的预编码矩阵的权值。
也就是说,基站使用的预编码矩阵对数据流、导频信号进行加权时,该预编码矩阵不是固定不变的,而是当K根物理发射天线到N个用户终端的信道特征发生变化或者调度的用户终端发生改变时,基站都会重新计算预编码矩阵的权值,例如需要做空分复用的用户终端数为16个,当用户终端数增加到20个或者减少为10个时,基站都会重新计算预编码矩阵的取值,具体计算预编码矩阵的权值接下来进行举例说明。
预编码矩阵的计算,可以使用现有的线性预编码或非线性预编码计算方法,包括迫零(Zero Forcing,ZF),块对角化(Block Diagonalization,BD),DPC(Dirty-Paper Coding),THP(Tomlinson-Harashima precoding)等。以ZF为例,假定K根物理发射天线,N个用户终端,每个用户终端配置的都是单天线。K根物理发射天线到N个用户终端间的信道可以表示为H=[h1;h2;…;hN],这是个N×K维的矩阵,其中hi表示K根物理发射天线到第i个用户终端的信道,为1×K维的行向量,则预编码矩阵的ZF计算方法为:W=HH(H×HH)-1,其中,HH表示H的共轭转置;(H×HH)-1表示对H×HH矩阵求逆运算;×表示矩阵乘法,V即为通过ZF算法得到的预编码矩阵,V=[V1,V2,…,VN],为K×N维矩阵,其中Vi表示用于第i个用户终端的数据流/导频信号加权的矢量,为K×1维的列向量。
202、基站使用预编码矩阵对需要传输给N个用户终端的导频信号进行加权,得到映射在K根物理发射天线上的待传输导频信号。
步骤201、步骤202与前述实施例中步骤101、步骤102相同,此处不再赘述。
203、基站使用预编码矩阵对需要传输给N个用户终端的调度信息进行加权,得到映射在K根物理发射天线上的待传输调度信息。
其中,待传输数据流、待传输导频信号和待传输调度信息是映射在不同的时间频率资源上。
在本发明实施例中,基站为了能够对多个用户终端实现空分复用,以N来表示做空分复用的用户终端数,基站将需要传输给N个用户终端的调度信息使用预编码矩阵进行加权,得到映射在K根物理发射天线上的待传输调度信息。其中,调度信息指的是基站发送给用户终端的资源调度指令,基站为每一个用户终端生成一个调度信息,对于需要空分复用的N个用户,基站生成N个调度信息,需要指明的是,如果一个用户终端有多个数据流,基站为该用户终端生成的调度信息也只有一个,但是在一个调度信息里,包括对多个数据流的调度指示。具体的,调度信息可以承载在物理下行控制信道(Physical Downlink Control Channel,PDCCH)上。为了实现多个用户终端之间的空间复用,基站可以将生成的所有调度信息使用预编码矩阵进行加权,其中基站部署有多根物理发射天线,以K来表示物理发射天线的数目,基站生成的所有调度信息经过预编码矩阵的加权,成为映射在K根物理发射天线上的待传输调度信息。
需要说明的是,基站配置的天线端口可以是1个,也可以是多个,当基站配置的天线端口的数目为多个时,本发明实施例中用字母t来表示天线端口的个数,t为大于1的正整数,对于基站配置的天线端口数目的不同,基站使用预编码矩阵对调度信息的加权实现方式也是不同的,具体实现方式在后续实施例中进行描述。
204、基站将待传输数据流、待传输导频信号、待传输调度信息通过K根物理发射天线向N个用户终端发送。
在本发明实施例中,基站通过步骤201、步骤202、步骤203分别得到待传输数据流、待传输导频信号、待传输调度信息之后,基站对数据流、导频信号、调度信息进行加权,并不改变数据流、导频信号、调度信息在时间频率资源上的映射关系,所以待传输数据流、待传输导频信号、待传输调度信息仍然是分别映射在不同的时间频率资源上,基站可以将待传输数据流、待传输导频信号、待传输调度信息通过K根物理发射天线向N个用户终端发送,这里所述的将待传输数据流、待传输导频信号、待传输调度信息通过K根物理发射天线发射是指待传输数据流、待传输导频信号、待传输调度信息是共用K根物理发射天线进行发射,即待传输数据流需要通过K根物理发射天线进行发射,待传输导频信号也需要通过K根物理发射天线进行发射,待传输调度信 息也需要通过K根物理发射天线进行发射,只是待传输数据流、待传输导频信号、待传输调度信息是映射在不同的时间频率资源上。由于待传输数据流、待传输导频信号、待传输调度信息占用的是不同时间频率资源,作为接收端的用户终端可以确定从不同的时间频率资源上获取到相应的数据流和导频信号。
需要说明的是,在本发明实施例中,步骤201、步骤202、步骤203之间没有先后时序关系,可以先执行步骤201再执行步骤202后执行步骤203,也可以先执行步骤202再执行步骤201后执行步骤203,也可以先执行步骤203再执行步骤202后执行步骤201,还可以同时执行步骤201、步骤202、步骤203,其中图2中以先执行步骤201再执行步骤202后执行步骤203进行示意说明,此处不作为对本发明的限定。
通过以上实施例对本发明的描述可知,由于基站对于需要传输给N个用户终端的数据流、导频信号、调度信息都会通过预编码矩阵分别进行加权,完成加权后将待传输数据流、待传输导频信号、待传输调度信息通过基站的K根物理发射天线发射,从而实现N个用户终端之间的空分复用。由于多个数据流可以通过预编码矩阵的加权复用给N个用户终端,并且导频信号通过预编码矩阵的加权也实现了空分复用,加权得到的待传输导频信号不再依赖CRS来区分空分用户终端层数,故进行空分复用的用户终端数可以达到更多,能够提高对时间频率资源的利用率。
实施例三
请参阅图3所示,本发明另一个实施例提供的多用户的复用方法,可以包括如下步骤:
301、基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流。
其中,N和K均为自然数,预编码矩阵是根据K根物理发射天线到N个用户终端的信道特征计算得到。
302、基站使用预编码矩阵对需要传输给N个用户终端的导频信号进行加权,得到映射在K根物理发射天线上的待传输导频信号。
步骤301、步骤302与前述实施例中步骤101、步骤102相同,此处不再赘述。
303、基站使用预编码矩阵对公共信号进行加权,得到映射在K根物理发射天线上的第一待传输公共信号。
其中,待传输数据流、待传输导频信号、第一待传输公共信号是映射在不同的时间频率资源上。
在本发明实施例中,基站为了能够对多个用户终端实现空分复用,以N来表示做空分复用的用户终端数,在基站向用户终端传输公共信号时,基站将公共信号使用预编码矩阵进行加权,得到映射在K根物理发射天线上的待传输公共信号。其中,公共信号指的是需要全向覆盖到所有用户终端的信号或者信道,基站生成的公共信号可以发送给需要做空分复用的N个用户终端,为了实现N个用户终端之间的空间复用,基站可以将公共信号使用预编码矩阵进行加权,其中基站部署有多根物理发射天线,以K来表示物理发射天线的数目,公共信号经过预编码矩阵的加权,成为映射在K根物理发射天线上的待传输公共信号。
需要说明的是,在本发明实施例中,公共信号具体可以指在公共信道上传输的信号,还可以指基站确定的需要全向覆盖的信号。具体的,公共信号具体可以为主同步信号(Primary Synchronization Signal,PSS),也可以为辅同步信号(Secondary Synchronization Signal,SSS),公共信号可以指承载在物理广播信道(Physical Broadcast Channel,PBCH)上的主信息块(Master Information Block,MIB),也可以指承载在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上的系统信息块(System Information Block,SIB),公共信号也可以指承载在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上的寻呼(Paging)消息,还可以包括承载在PDCCH(Physical Downlink Control Channel)上的SIB调度信息和寻呼调度信息,公共信号也可以指的是承载在物理混合重传指示信道(Physical Hybrid-ARQ Indicator Channel,PHICH)和物理控制格式指示信道(Physical Control Format Indicator Channel,PCFICH)上的信号,此处不再逐一列举。
需要说明的是,基站配置的天线端口可以是1个,也可以是多个,当基站配置的天线端口的数目为多个时,本发明实施例中用字母t来表示天线端口的个数,t为大于1的正整数,对于基站配置的天线端口数目的不同,基站使用映射矩阵对导频信号的加权实现方式也是不同的,具体实现方式在后续实施例 中进行描述。
304、基站将待传输数据流、待传输导频信号、第一待传输公共信号通过K根物理发射天线向N个用户终端发送。
在本发明实施例中,基站通过步骤301、步骤302、步骤303分别得到待传输数据流、待传输导频信号、第一待传输公共信号之后,基站对数据流、导频信号、公共信号进行加权,并不改变数据流、导频信号、公共信号在时间频率资源上的映射关系,所以待传输数据流、待传输导频信号、第一待传输公共信号仍然是分别映射在不同的时间频率资源上,基站可以将待传输数据流、待传输导频信号、第一待传输公共信号通过K根物理发射天线向N个用户终端发送,这里所述的将待传输数据流、待传输导频信号、第一待传输公共信号通过K根物理发射天线发射是指待传输数据流、待传输导频信号、第一待传输公共信号是共用K根物理发射天线进行发射,即待传输数据流需要通过K根物理发射天线进行发射,待传输导频信号也需要通过K根物理发射天线进行发射,第一待传输公共信号也需要通过K根物理发射天线进行发射,只是待传输数据流、待传输导频信号、第一待传输公共信号是映射在不同的时间频率资源上。由于待传输数据流、待传输导频信号、第一待传输公共信号占用的是不同时间频率资源,作为接收端的用户终端可以确定从不同的时间频率资源上获取到相应的数据流、导频信号和公共信号。
需要说明的是,在本发明实施例中,步骤301、步骤302、步骤303之间没有先后时序关系,可以先执行步骤301再执行步骤302后执行步骤303,也可以先执行步骤302再执行步骤301后执行步骤303,也可以先执行步骤303再执行步骤302后执行步骤301,还可以同时执行步骤301、步骤302、步骤303,其中图2中以先执行步骤301再执行步骤302后执行步骤303进行示意说明,此处不作为对本发明的限定。
在本发明的一些实施例中,复用数据流、调度信息、导频信号和公共信号时,采用了相同的预编码矩阵进行映射,可以通过降低空分复用的用户终端数目的方式使得公共信号较为均匀的辐射出去,从而保证公共信号的全向覆盖,那么基站设置的物理发射天线数K需要满足如下条件:K大于N。
举例说明如下:若物理发射天线数目K=16,需要做空分复用的用户终端数N=16,请参阅如图4所示,为本发明实施例提供的对各种用户终端数目对 应的参考信号接收功率(Reference Signal Receiving Power,RSRP)进行测量的结果示意图,其中,用户终端数目以累计分布函数(Cumulative Distribution Function,CDF)来统计,由于预编码矩阵是根据空分复用的用户终端信道进行设计的。此时,基站的天线通过波束赋形(beamforming)将公共信号发送给需要进行空分复用的16个用户终端,从而可以保证这些用户终端能正常接收到公共信号,如图4中的曲线a1和曲线b1,曲线a1表示接收到公共信号的非空分复用的各种用户终端数目与对应的RSRP的关系曲线,曲线b1表示接收到公共信号的空分复用的各种用户终端数与对应的RSRP的关系曲线,也就是说,当K=N时,基站可以实现对公共信号的定向覆盖,以保证需要进行空分复用的N个用户终端都可以接收到公共信号。但对于非复用的其它用户终端,通常也需要接收公共信号,由于此时预编码矩阵形成的权值对这些非空分复用的用户终端可能会形成零点,可能会造成极低的接收信号强度,进而导致覆盖空洞。为了保证空分复用的用户终端和非空分复用的用户终端都能正常接收公共信号,本发明实施例中采用的方法可以使降低空分复用的用户终端数,即物理发射天线的数目大于空分复用的用户终端数,例如,16根物理发射天线只对8个用户终端进行空分复用。由于预编码矩阵是根据空分复用的用户终端信道进行设计的,基站的物理发射天线通过波束赋形将公共信号发送给需要进行空分复用的8个用户终端,可以保证这些用户终端能正常接收到公共信号,但对非复用的其它用户终端,也需要接收公共信号,由于此时物理发射天线数目大于空分复用的用户终端数目,对这些非空分复用的用户终端,也可以正常接收公共信号,如图4中的曲线a2和曲线b2,曲线a2表示接收到公共信号的非空分复用的各种用户终端数目与对应的RSRP的关系曲线,曲线b2表示接收到公共信号的空分复用的各种用户终端数目与对应的RSRP的关系曲线,此时,由于空分复用的用户终端数低于物理发射天线数目,形成的波束赋形指向较少,可以保证公共信号更均匀的在各个方向上辐射出去,有效的降低覆盖空洞的概率,通过曲线a2可知,即使对非空分复用的用户终端,接收信号强度也足够高,可以实现非空分复用的用户终端对公共信号的正常接收。
通过以上实施例对本发明的描述可知,由于基站对于需要传输给N个用户终端的数据流、导频信号、调度信息都会通过预编码矩阵分别进行加权,完 成加权后将待传输数据流、待传输导频信号、第一待传输公共信号通过基站的K根物理发射天线发射,从而实现N个用户终端之间的空分复用。由于多个数据流可以通过预编码矩阵的加权复用给N个用户终端,并且导频信号通过预编码矩阵的加权也实现了空分复用,加权得到的待传输导频信号不再依赖CRS来区分空分用户终端层数,故进行空分复用的用户终端数可以达到更多,能够提高对时间频率资源的利用率。
需要说明的是,在本发明的另一个实施例中,还可以将步骤303替换为如下步骤:
303a、基站分时的使用预编码矩阵或映射矩阵对公共信号进行加权,得到映射在K根物理发射天线上的第二待传输公共信号,映射矩阵在信道特征发生变化,或者调度的用户终端发生改变时保持不变,待传输数据流、待传输导频信号和第二待传输公共信号是映射在不同的时间频率资源上。
其中,映射矩阵在信道特征发生变化,或者调度的用户终端发生改变时保持不变,待传输数据流、待传输导频信号和第二待传输公共信号是映射在不同的时间频率资源上。
也就是说,上述步骤303a与前述步骤303不同的是,步骤303a中对公共信号的加权是通过映射矩阵或预编码矩阵来完成的,为了区分步骤303中通过预编码矩阵对公共信号加权生成的第一待传输公共信号,将步骤303a中通过分时的使用映射矩阵或者预编码矩阵对公共信号加权生成的信号定义为第二待传输公共信号。其中,用于对公共信号进行加权的映射矩阵的权值在信道特征发生变化,或者调度的用户终端发生改变时保持不变。
当上述映射矩阵用于公共信号加权的实现场景下,基站使用的映射矩阵是固定不变的,即当K根物理发射天线到N个用户终端的信道特征发生变化或者调度的用户终端发生改变时,基站仍会使用原有的映射矩阵用于公共信号的加权,对于前述步骤301至步骤303的实施例中,基站用于对数据流、导频信号、公共信号的加权使用的是相同的预编码矩阵,基站使用的预编码矩阵不是固定不变的,即当K根物理发射天线到N个用户终端的信道特征发生变化或者调度的用户终端发生改变时,基站会重新计算用于对数据流、导频信号、公共信号进行加权的预编码矩阵的权值。
在前述的步骤303a的实施例中,基站并不是固定的使用映射矩阵对公共 信号进行加权,而是在有的时间段内使用映射矩阵对公共信号对公共信号进行加权,在其它时间段内使用预编码矩阵对公共信号进行加权。举例说明,用于对数据流、导频信号、公共信号进行加权的预编码矩阵为矩阵1,执行步骤303的实施例中,基站在一个时间段内使用矩阵1对公共信号进行加权,在另一个时间段内基站使用的映射矩阵为矩阵2,基站通过矩阵2对公共信号进行加权,矩阵2是随着信道特征或者调度的用户终端改变而保持不变的矩阵。其中,基站可以分时的使用矩阵1和矩阵2对公共信号进行加权,即在预置的时间段内使用矩阵1,在预置的时间段以外使用矩阵2。通过分时使用不同的预编码矩阵,基站可以实现公共信号的定向传输和全向传输。
举例说明如下,以LTE系统中应用本发明实施例提供的多用户的复用方法为例,基站可以在同一个帧的不同子帧上分别使用矩阵1和矩阵2对公共信号进行加权,请参阅如图5所示,为本发明实施例提供的时分双工(Time Division Duplexing,TDD)帧结构示意图,其中,基站对一个帧中各个子帧传输公共信号,使得Rel-8LTE TDD终端可以正常接入系统进行通信,并且获得大规模的多用户复用系统增益,1个帧(也可以称之为无线帧)占10毫秒,1个帧包括2个时隙(time slot),共由10个子帧构成,分别为子帧#0、子帧#1、子帧#2、子帧#3、子帧#4、子帧#5、子帧#6、子帧#7、子帧#8、子帧#9,每个子帧占1毫秒,可以被配置用作下行传输或上行传输。在本发明实施例中,通过调度和参数配置,将公共信号集中在子帧#0和/或子帧#5上,使用矩阵2对子帧#0和/或子帧#5对公共信号进行加权,在除子帧#0和子帧#5以外的其它子帧上使用矩阵1对公共信号进行加权。
在本发明的一些实施例中,当公共信号具体为主同步信号或辅同步信号时,映射矩阵为全1的K×1维的列向量。由于主同步信号或辅同步信号需要全向覆盖,以保证小区内的所有用户终端都能接收到,故映射矩阵可以设计为全1的K×1维的列向量,这样的配置可以不仅小区内需要空分复用的N个用户可以收到公共信号,小区内的其它用户也可以收到公共信号。
需要说明的是,前述实施例中,基站对数据流、导频信号、调度信息、公共信号在各个进行加权之后,可以将公共信号、数据流、调度信息、导频信号映射到不同的时间频率资源上,请参阅如图6-a所示的基站对公共信号、数据流、调度信息、导频信号进行复用的映射过程示意图,以基站对公共信号进行 加权使用预编码矩阵进行图例说明,当然也可以对公共信号使用映射矩阵进行加权。图6-b为各个用户终端接收公共信号、数据流、调度信息、导频信号的处理过程示意图,需要进行空分复用的N个用户终端分别为:Ue1、Ue2、...、UeN,基站使用预编码矩阵对公共信号、数据流、调度信息、导频信号分别进行加权,得到待传输公共信号、待传输数据流、待传输调度信息、第一待传输导频信号,然后映射在不同的时间频率资源上,通过基站的K根物理发射天线向所述N个用户终端发送。Ue1、Ue2、...、UeN作为接收端,分别从时间频率资源上接收到公共信号以及属于自个终端的数据流、调度信息、导频信号。
实施例四
首先,本发明实施例中针对于基站配置天线端口数为1个的情况,接下来分别对数据流、导频信号、调度信息以及公共信号的传输方式进行举例说明,本发明实施例提供的多用户的复用方法,具体可以包括如下步骤:
步骤S01、若基站配置的天线端口的数目为1个,基站通过如下方式对N个数据流进行加权:
[X1,X2,…XK]=[V1,V2,…VN]×[s1;s2;…;sN];
进一步的,[V1,V2,…VN]×[s1;s2;…;sN]=V1×s1+V2×s2+…+VN×sN
其中,[X1,X2,…XK]为待传输数据流,[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为基站分配给N个用户终端中第i个用户终端的预编码取值向量,Vi为K×1维的列向量,[s1;s2;…;sN]为用N×1维的列向量表示的N个数据流,si为基站需要传输给N个用户终端中第i个用户终端的数据流。
也就是说,当基站广播的天线端口配置信息中指示天线端口数为1个时,前述实施例中的步骤101具体可以为步骤S01,若需要做空分复用的用户终端数为N个,则基站生成的数据流也为N个,其中,N个数据流和N个用户终端是一一对应的,即1个数据流发给1个用户终端,预编码矩阵用[V1,V2,…VN]来表示,V1,V2,…VN中每个预编码取值向量表示基站分配给一个用户终端的预编码取值向量,其中,以i的取值动态变化来表示N个用户终端中的各个用户终端,i为大于0且小于或等于N的一个正整数,i的取值为1、2、3、…、N中的任何一个正整数,则对于第i个用户终端,基站分配给该用户终端的预编 码取值向量为Vi,Vi为K×1维的列向量,基站生成的N个数据流用[s1;s2;…;sN]来表示,[s1;s2;…;sN]为N×1的维列矢量,s1,s2,…sN表示基站为N个用户终端生成的数据流,其中,以i的取值动态变化来表示分别对应于N个用户终端中的各个用户终端,i为大于0且小于或等于N的一个正整数,i的取值为1、2、3、…、N中的任何一个正整数,则对于第i个用户终端,基站为该用户终端生成的数据流为si。将[V1,V2,…VN]和[s1;s2;…;sN]相乘,得到[X1,X2,…XK],[X1,X2,…XK]中的每个列表示在一根物理发射天线上传输的数据流,就等于将各个预编码取值向量和用列向量表示的数据流相乘,从而实现使用预编码矩阵对N个数据流的加权,得到了映射在K根物理发射天线上的待传输数据流,由于预编码矩阵为K×N维,将预编码矩阵与N个数据流相乘,就可以实现将每个数据流映射到K根物理发射天线上,那么对于需要空分复用的N个用户终端,需要传输给N个用户终端的N个数据流就可以映射到K根据物理发射天线上。
步骤S02、若基站配置的天线端口的数目为1个,通过如下方式对所述导频信号进行加权:
Y0=sum([V1,V2,…VN])×p0
进一步的,sum([V1,V2,…VN])×p0=V1×p0+V2×p0+…+VN×p0
其中,Y0为待传输导频信号,[V1,V2,…VN]为K×N维的预编码矩阵,sum([V1,V2,…VN])为对[V1,V2,…VN]中每一列的列向量进行求和运算得到的结果,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为基站分配给N个用户终端中第i个用户终端的预编码取值向量,Vi为K×1维的列向量,p0为导频信号。
也就是说,当基站广播的天线端口配置信息中指示天线端口数为1个时,前述实施例中的步骤102具体可以为步骤S02,若需要做空分复用的用户终端数为N个,对于导频信号,基站采用预编码矩阵的各个预编码取值向量进行加权处理,生成N个预编码取值向量加权后的不同待传输导频信号。预编码矩阵用[V1,V2,…VN]来表示,V1,V2,…VN中每个预编码取值向量表示基站分配给一个用户终端的预编码取值向量,其中,以i的取值动态变化来表示N个用户终端中的各个用户终端,i为大于0且小于或等于N的一个正整数,i的取 值为1、2、3、…、N中的任何一个正整数,则对于第i个用户终端,基站分配给该用户终端的预编码取值向量为Vi,Vi为K×1维的列向量,基站生成的导频信号用p0来表示,将sum([V1,V2,…VN])和p0相乘,就等于将各个预编码取值向量和导频信号相乘,从而实现使用预编码矩阵对N个导频信号的加权,得到了映射在K根物理发射天线上的待传输导频信号,预编码矩阵为K×N维,将预编码矩阵与导频信号相乘,实现将导频信号映射到K根据物理发射天线上。
步骤S03、若基站配置的天线端口的数目为1个,通过如下方式对N个调度信息进行加权:
[Z1,Z2,…ZK]=[V1,V2,…VN]×[g1;g2;…;gN];
进一步的,[V1,V2,…VN]×[g1;g2;…;gN]=V1×g1+V2×g2+…+VN×gN
其中,[Z1,Z2,…ZK]为待传输调度信息,Zi为基站分配给N个用户终端中第i个用户终端的待传输调度信息,[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为基站分配给N个用户终端中第i个用户终端的预编码取值向量,Vi为K×1维的列向量,[g1;g2;…;gN]为用N×1维的列向量表示的N个调度信息,gi为基站需要传输给N个用户终端中第i个用户终端的调度信息。
也就是说,当基站广播的天线端口配置信息中指示天线端口数为1个时,前述实施例中的步骤203具体可以为步骤S03,若需要做空分复用的用户终端数为N个,则基站生成的调度信息也为N个,其中,N个调度信息对应于N个用户终端,即1个调度信息发给1个用户终端,预编码矩阵用[V1,V2,…VN]来表示,V1,V2,…VN中每个预编码取值向量表示基站分配给一个用户终端的预编码取值向量,其中,以i的取值动态变化来表示N个用户终端中的各个用户终端,i为大于0且小于或等于N的一个正整数,i的取值为1、2、3、…、N中的任何一个正整数,则对于第i个用户终端,基站分配给该用户终端的预编码取值向量为Vi,Vi为K×1维的列向量,基站生成的N个调度信息用[g1;g2;…;gN]来表示,g1,g2,…gN中每个列向量表示基站为一个用户终端生成的调度信息,其中,以i的取值动态变化来表示分别对应于N个用户终端中的各个用户终端,i为大于0且小于或等于N的一个正整数,i的取值为1、2、3、…、N中的任何一个正整数,则对于第i个用户终端,基站为该用户终端生成的调 度信息为gi。将[V1,V2,…VN]和[g1;g2;…;gN]相乘,就等于将各个预编码取值向量和用列向量表示的调度信息相乘,从而实现使用预编码矩阵对N个调度信息的加权,得到了映射在K根物理发射天线上的待传输调度信息,那么对于需要空分复用的N个用户终端,需要发送给N个用户终端的N个调度信息就映射到了K根据物理发射天线上。
步骤S04、若基站配置的天线端口的数目为1个,过如下方式对公共信号进行加权:
P=sum([V1,V2,…VN])×c;
进一步的,sum([V1,V2,…VN])×c=V1×c+V2×c+…+VN×c;
其中,P为第一待传输公共信号,[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为基站分配给N个用户终端中第i个用户终端的预编码取值向量,Vi为K×1维的列向量,sum([V1,V2,…VN])为对[V1,V2,…VN]中每一列的列向量进行求和运算得到的结果,c为公共信号。
也就是说,当基站广播的天线端口配置信息中指示天线端口数为1个时,前述实施例中的步骤303具体可以为步骤S04,若需要做空分复用的用户终端数为N个,预编码矩阵用[V1,V2,…VN]来表示,V1,V2,…VN中每个预编码取值向量表示基站分配给一个用户终端的预编码取值向量,其中,以i的取值动态变化来表示N个用户终端中的各个用户终端,i为大于0且小于或等于N的一个正整数,i的取值为1、2、3、…、N中的任何一个正整数,则对于第i个用户终端,基站分配给该用户终端的预编码取值向量为Vi,Vi为K×1维的列向量,基站生成了N个数据流,用c来表示公共信号,将sum([V1,V2,…VN])与c相乘,就等于将各个预编码取值向量和公共信号相乘,从而实现使用预编码矩阵对公共信号的加权,得到了映射在K根物理发射天线上的第一待传输公共信号。
S05、基站将待传输数据流、待传输导频信号、待传输调度信息、第一待传输公共信号通过K根物理发射天线向N个用户终端发送。
在本发明实施例中,基站通过步骤S01至步骤S04分别得到待传输数据流、待传输导频信号、待传输调度信息、第一待传输公共信号之后,基站对数据流、导频信号、公共信号进行加权,并不改变数据流、导频信号、调度信息、公共 信号在时间频率资源上的映射关系,所以待传输数据流、待传输导频信号、待传输调度信息、第一待传输公共信号仍然是分别映射在不同的时间频率资源上,基站可以将待传输数据流、待传输导频信号、待传输调度信息、第一待传输公共信号通过K根物理发射天线向N个用户终端发送。由于待传输数据流、待传输导频信号、待传输调度信息、第一待传输公共信号占用的是不同时间频率资源,作为接收端的用户终端可以确定从不同的时间频率资源上获取到相应的数据流、导频信号、调度信息和公共信号。
实施例五
首先,本发明实施例中针对于基站配置天线端口数为t个的情况,t为大于1的正整数,接下来分别对数据流、导频信号、调度信息以及公共信号的传输方式进行举例说明,本发明实施例提供的多用户的复用方法,具体可以包括如下步骤:
步骤S11、若基站配置的天线端口的数目为t个,基站通过如下方式对M个数据流进行加权:
[X1,X2,…XK]=[V1,V2,…VN]×[s1;s2;…;sN];
进一步的,[V1,V2,…VN]×[s1;s2;…;sN]=V1×s1+V2×s2+…+VN×sN
其中,[X1,X2,…XK]为待传输数据流,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,Vi为基站分配给N个用户终端中第i个用户终端的预编码取值向量,Ii大于或等于1,[s1;s2;…;sN]为用M×1维的列向量表示的M个数据流,所述[s1;s2;…;sN]中的任意一个列表示为si,si为Ii×1维的列向量,si为基站需要传输给N个用户终端中第i个用户终端的共Ii层的数据流,M大于或等于N。
也就是说,当基站广播的天线端口配置信息中指示天线端口数大于1个时,前述实施例中的步骤101具体可以为步骤S11,对N个用户终端数,同时空分复用的数据流为M个,且M大于或等于N,且满足对于i的不同取值时对Ii进行求和,得到的值就是M,当M等于N时,基站产生的一个数据流需要传输给一个终端,当M大于N时,至少有两个数据流是需要传输给同一个用户终端,基站向每个用户终端至少发送一个数据流,其中,M个数据流分 别对应于N个用户终端中的一个用户终端,预编码矩阵还用[V1,V2,…VN]来表示,V1,V2,…VN中每个预编码取值向量表示基站分配给一个用户终端的预编码取值向量,其中,以i的取值动态变化来表示N个用户终端中的各个用户终端,i为大于0且小于或等于N的一个正整数,i的取值为1、2、3、…、N中的任何一个正整数,则对于第i个用户终端,基站分配给该用户终端的预编码取值向量为Vi,Vi为K×Ii维的矩阵,Vi为为基站分配给N个用户终端中第i个用户终端的预编码取值向量,即对于第i个用户终端,若基站需要传给该用户终端1个数据流,则Ii的取值就为1,若基站需要传给该用户终端2个数据流,则Ii的取值就为2。基站生成的M个数据流用[s1;s2;…;sN]来表示,s1,s2,…sN分别表示基站为n个用户终端生成的数据流,其中,以i的取值动态变化来表示分别对应于N个用户终端中的各个用户终端,i为大于0且小于或等于N的一个正整数,i的取值为1、2、3、…、N中的任何一个正整数,则对于第i个用户终端,基站为该用户终端生成的数据流为si,si为Ii×1维的列向量,对于第i个用户终端,若基站需要传给该用户终端1个数据流,则Ii的取值就为1,若基站需要传给该用户终端2个数据流,则Ii的取值就为2,表示基站需要传输给该用户终端共2层的数据流。将[V1,V2,…VN]和[s1;s2;…;sN]相乘,就等于将各个预编码取值向量与用列向量表示的数据流相乘,从而实现使用预编码矩阵对M个数据流的加权,得到了映射在K根物理发射天线上的待传输数据流,由于预编码矩阵为K×M维,将预编码矩阵与M个数据流相乘,可以实现将每个数据流映射到K根物理发射天线上,那么对于需要空分复用的N个用户终端,需要传输给N个用户终端的M个数据流就映射到了K根据物理发射天线上。
步骤S12、若基站配置的天线端口的数目为t个,基站将导频信号分别映射到t个天线端口上,其中,第(m-1)个天线端口上的导频信号通过如下方式映射到K根物理发射天线上:
Y(m-1)=sum([V1(:,m),V2(:,m),…VN(:,m)])×p(m-1)
进一步的,sum([V1(:,m),V2(:,m),…VN(:,m)])×p(m-1)
=V1(:,m)×p(m-1)+V2(:,m)×p(m-1)+…+VN(:,m)×p(m-1)
其中,Y(m-1)为映射在第(m-1)个天线端口上的待传输导频信号,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示 为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,Vi为基站分配给N个用户终端中第i个用户终端的预编码取值向量,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量,m为大于或等于1且小于或等于t的正整数,sum([V1(:,m),V2(:,m),…VN(:,m)])为对[V1(:,m),V2(:,m),…VN(:,m)]中每一列的列向量进行求和运算得到的结果,p(m-1)为对应第(m-1)个端口的导频信号。
也就是说,当基站广播的天线端口配置信息中指示天线端口数大于1个时,前述实施例中的步骤102具体可以为步骤S12,若需要做空分复用的用户终端数为N个,则基站向每个用户终端发送一个导频信号或者多个,预编码矩阵还用[V1,V2,…VN]来表示,V1,V2,…VN中每个预编码取值向量表示基站分配给一个用户终端的预编码取值向量,其中,以i的取值动态变化来表示N个用户终端中的各个用户终端,i为大于0且小于或等于N的一个正整数,i的取值为1、2、3、…、N中的任何一个正整数,则对于第i个用户终端,基站分配给该用户终端的预编码取值向量为Vi,Vi为K×Ii维的矩阵,Vi为为基站分配给N个用户终端中第i个用户终端的共Ii个的预编码取值向量,基站配置的天线端口数为t个,m的取值为从1只t之间的每一个整数,m的取值可以小于基站配置的天线端口数,例如,当基站给第i个用户终端配置的导频信号个数为Ii,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii,则Vi(:,m)为K×1维的0矢量,即如果基站在某个频率资源块上没有该用户终端的导频信号,则p(m-1)=0。m的取值为1、2、3、…、t中的任何一个正整数,p(m-1)为对应在第(m-1)个端口的导频信号,则p0为对应在第0个端口的导频信号,p1为对应在第1个端口的导频信号。对于映射到第(m-1)个天线端口上可以通过将sum([V1(:,m),V2(:,m),…VN(:,m)])和p(m-1)相乘实现,就等于将各个预编码取值向量和对应天线端口的导频信号相乘,从而实现使用预编码矩阵对导频信号的加权,得到了映射在K根物理发射天线上的t个待传输导频信号。
步骤S13、若基站配置的天线端口的数目为t个,基站对需要传输给N个用户终端的调度信息进行空频块编码,得到与N个用户终端分别对应的N个编码块,其中,对应于第i个用户终端的编码块为[gi(1),…gi(m),…,gi(t)],i为大于0且小于或等于N的一个正整数,m为大于0且小于或等于t的正整数,gi(m)表示经过空频块编码后需要映射到第(m-1)个天线端口上的信息符号;
步骤S14、基站将对应于每个用户终端的编码块分别映射到t个天线端口上,其中,N个用户终端的第m个编码块通过如下方式映射到第(m-1)个天线端口上:
[Zi,1,Zi,2,…Zi,K]=[V1(:,m),V2(:,m),…VN(:,m)]×[g1(m);…;gN(m)];
进一步的,[V1(:,m),V2(:,m),…VN(:,m)]×[g1(m);…;gN(m)]
=V1(:,m)×g1(m)+V2(:,m)×g2(m)+…+VN(:,m)×gN(m);
其中,[Zi,1,Zi,2,…Zi,K]为基站分配给N个用户终端中第i个用户的待传输调度信息,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,Vi为基站分配给N个用户终端中第i个用户终端的预编码取值向量,m为大于0且小于或等于t的正整数,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维全0向量。
也就是说,当基站广播的天线端口配置信息中指示天线端口数目为t个时,前述实施例中的步骤203具体可以为步骤S13和步骤S14,若需要做空分复用的用户终端数为N个,则基站生成的调度信息为N个,基站向每个用户终端发送一个调度信息,其中,基站对需要传输给N个用户终端的调度信息进行空频块编码,得到与N个用户终端分别对应的N个编码块,对应于第i个用户终端的编码块为[gi(1),…,gi(m)…,gi(t)],其中,以i的取值动态变化来表示分别对应于N个用户终端中的各个用户终端,i为大于0且小于或等于N的一个正整数,i的取值为1、2、3、…、N中的任何一个正整数,则对于第i个用户终端,基站为该用户终端生成的调度信息被空频块编码后表示为[gi(1),…,gi(m)…,gi(t)],m的取值为1、2、…、t中的各个值,例如当t为4时,m的取值可以为1、2、3、4。预编码矩阵还用[V1,V2,…VN]来表示,需要说明的是,当基站给第i个用户终端配置的数据流Ii,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii,则Vi(:,m)为K×1维的0矢量。V1,V2,…VN中每个预编码取值向量表示基站分配给一个用户终端的预编码取值向量,其中,以i的取值动态变化来表示N个用户终端中的各个用户终端,i为大于0且小于或等于N的一个正整数,i的取值为1、2、3、…、N中的任何一个正整数,则对于第i个用户终端,基站分配给该用户终端的预编码取值向量为Vi,Vi为K×Ii维的矩阵,Vi为基站分配给N个用户终端中第i个用户终端的共Ii个的预编码取值 向量。将[V1(:,m),V2(:,m),…VN(:,m)]和[g1(m);…;gN(m)]相乘,就等于将各个预编码取值向量和用列向量表示的调度信息相乘,从而实现使用预编码矩阵对N个调度信息的加权,得到了映射在K根物理发射天线上的待传输调度信息,将预编码矩阵与N个调度信息相乘,可以实现将每个调度信息映射到K根物理发射天线上,那么对应于N个用户终端的N个调度信息就映射到了K根据物理发射天线上。
举例说明,对于第1个编码块gi(1),需要映射到端口0,通过如下方式:
[V1(:,1),V2(:,1),…VN(:,1)]×[g1(1);…;gN(1)]
=V1(:,1)×g1(1)+V2(:,1)×g2(1)+…+VN(:,1)×gN(1)。
对于第2个编码块gi(2),需要映射到端口1,通过如下方式:
[V1(:,2),V2(:,2),…VN(:,2)]×[g1(2);…;gN(2)]
=V1(:,2)×g1(2)+V2(:,2)×g2(2)+…+VN(:,2)×gN(2)。
第m个编码块,需要映射到端口(m-1),通过如下方式:
[V1(:,m),V2(:,m),…VN(:,m)]×[g1(m);…;gN(m)]
=V1(:,m)×g1(m)+V2(:,m)×g2(m)+…+VN(:,m)×gN(m)。
需要说明的是,在本发明实施例中,编码块的个数与天线端口数目相同,例如基站配置的是4个天线端口,天线端口的序号从0开始,分别为p0,p1,p2,p3,用户终端,数据流,编码块的编号都是从1开始的,例如编码块可以表示为g1,g2,g3,g4
步骤S15、若基站配置的天线端口的数目为t个,基站对公共信号进行空频块编码,得到对应t个天线端口的t个编码后的信息符号,其中,对应于第(m-1)个天线端口的编码后信息符号表示为cm,m为大于0且小于或等于t的一个正整数;
步骤S16、基站将对应于每个用户终端的编码块分别映射到t个天线端口上,其中,第m个编码块通过如下方式映射到第(m-1)个天线端口上:
Pm=sum([V1(:,m),V2(:,m),…VN(:,m)])×cm
进一步的,sum([V1(:,m),V2(:,m),…VN(:,m)])×cm
=V1(:,m)×cm+V2(:,m)×cm+…+VN(:,m)×cm
其中,Pm为映射在第(m-1)个天线端口上的第一待传输公共信号, [V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,Vi为基站分配给N个用户终端中第i个用户终端的共Ii个的预编码取值向量,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量,m为大于或等于1且小于或等于t的正整数,sum([V1(:,m),V2(:,m),…VN(:,m)])为对[V1(:,m),V2(:,m),…VN(:,m)]中每一列的列向量进行求和运算,cm为对应在第(m-1)个端口上的公共信号。
也就是说,当基站广播的天线端口配置信息中指示天线端口数大于1个时,前述实施例中的步骤303具体可以为步骤S15和步骤S16,若需要做空分复用的用户终端数为N个,基站对公共信号进行空频块编码,得到与N个用户终端分别对应的N个编码块,对应于第i个用户终端的编码块为ci,其中,以i的取值动态变化来表示分别对应于N个用户终端中的各个用户终端,i为大于0且小于或等于N的一个正整数,i的取值为1、2、3、…、N中的任何一个正整数,基站为用户终端生成的公共信号被空频块编码后的第m个码块表示为cm,m的取值为1、2、…、t,例如当t为4时,m的取值可以为1、2、3、4。当基站给第i个用户终端配置的公共信号个数为Ii,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii,则Vi(:,m)为K×1维的0矢量。预编码矩阵还用[V1,V2,…VN]来表示,Vi(:,m)表示Vi的第m列向量,V1,V2,…VN中每个预编码取值向量表示基站分配给一个用户终端的预编码取值向量,其中,以i的取值动态变化来表示N个用户终端中的各个用户终端,i为大于0且小于或等于N的一个正整数,i的取值为1、2、3、…、N中的任何一个正整数,则对于第i个用户终端,基站分配给该用户终端的预编码取值向量为Vi,Vi为K×Ii维的矩阵,Vi为为基站分配给N个用户终端中第i个用户终端的共Ii个的预编码取值向量,将sum([V1(:,m),V2(:,m),…VN(:,m)])和cm相乘,就等于将各个预编码取值向量和公共信号相乘,从而实现使用预编码矩阵对公共信号的加权,得到了映射在K根物理发射天线上的待传输公共信号,将预编码矩阵与公共信号相乘,就实现了将公共信号映射到了K根据物理发射天线上。
举例说明,对于第1个编码块c1,需要映射到端口0,通过如下方式:
[V1(:,1),V2(:,1),…VN(:,1)]×c1
=V1(:,1)×c1+V2(:,1)×c1+…+VN(:,1)×c1
对于第2个编码块c2,需要映射到端口1,通过如下方式:
[V1(:,2),V2(:,2),…VN(:,2)]×c2
=V1(:,2)×c2+V2(:,2)×c2+…+VN(:,2)×c2
第m个编码块,需要映射到端口(m-1),通过如下方式:
[V1(:,m),V2(:,m),…VN(:,m)]×cm
=V1(:,m)×cm+V2(:,m)×cm+…+VN(:,m)×cm
需要说说明的是,在本发明如上的实施例中,步骤S16还可以替换为如下步骤:
步骤S16a、基站将对应于每个用户终端的编码块分别映射到t个天线端口上,其中,第m个编码块通过如下方式映射到第(m-1)个天线端口上:
Pm′=sum([U1(:,m),U2(:,m),…UN(:,m)])×cm
或,Pm′=sum([V1(:,m),V2(:,m),…VN(:,m)])×cm
进一步的,sum([U1(:,m),U2(:,m),…UN(:,m)])×cm
=U1(:,m)×cm+U2(:,m)×cm+…+UN(:,m)×cm
或,sum([V1(:,m),V2(:,m),…VN(:,m)])×cm
=V1(:,m)×cm+V2(:,m)×cm+…+VN(:,m)×cm
其中,Pm′为映射在第(m-1)个天线端口上的第二待传输公共信号,Pm′是分时的使用预编码矩阵和映射矩阵得到的信号,[U1,U2,…UN]为K×M维的映射矩阵,Ui为K×Ii维的矩阵,Ui为基站分配给N个用户终端中第i个用户终端的共Ii个的预编码取值向量,i为大于0且小于或等于N的一个正整数,当m≤Ii时,Ui(:,m)表示Ui的第m列向量,当m>Ii时,Ui(:,m)为K×1维的全0向量,m为大于或等于1且小于或等于t的正整数,sum([U1(:,m),U2(:,m),…UN(:,m)])为对[U1(:,m),U2(:,m),…UN(:,m)]中每一列的列向量进行求和运算,cm为对应在第(m-1)个端口上的公共信号。
其中,映射矩阵在信道特征发生变化,或者调度的用户终端发生改变时保持不变,上述步骤S16a与步骤S16的不同之处在于,步骤S16a中分时的使用预编码矩阵和映射矩阵对公共信号进行加权。在本发明的一些实施例中,步骤S16a对公共信号进行加权的预编码矩阵和映射矩阵是分时使用的,在这种实现场景下,将生成的待传输公共信号定义为第二待传输公共信号。
实施例六
当基站配置的天线端口为1个时,接下来对数据流、导频信号、调度信息以及公共信号的传输方式进行举例说明。请参阅如图7-a所示,为基站对数据流、导频信号、调度信息、公共信号进行传输的一种应用场景示意图,每个用户(英文简称为Ue)都是单流传输,需要复用的N个用户共有N层(英文全称为layer)需要传输,每个用户都只有1个层的数据,以N为2进行举例说明,预编码矩阵为矩阵1,矩阵1共有2列,分别为列1和列2,对于Ue1,基站将Ue1数据流、Ue1调度信息、导频信号分别使用矩阵1的列1进行加权,完成资源块映射,基站得到映射在K根物理发射天线(图中表示为a0、...、a(k-1))上的Ue1待传输数据流、Ue1待传输调度信息、待传输导频信号,对于Ue2,基站将Ue2数据流、Ue2调度信息、导频信号分别使用矩阵1的列2进行加权,完成资源块映射,基站得到映射在K根物理发射天线(图中表示为a0、...、a(k-1))上的Ue2待传输数据流、Ue2待传输调度信息、待传输导频信号。接下来举例说明基站对公共信号的加权,首先对基站配置的天线端口为1个时,请参阅如图7-a所示,每个用户(英文简称为Ue)都是单流传输,每个用户都只有1个层的数据,预编码矩阵为矩阵1,矩阵1共有2列,基站使用矩阵1的列1、列2对公共信号进行加权,完成资源块映射,基站得到映射在K根物理发射天线(图中表示为a0、...、a(k-1))上的待传输公共信号,其中,基站生成的Ue1待传输数据流、Ue1待传输调度信息、待传输导频信号、待传输公共信号以正交频分复用(英文全称:Orthogonal frequency-division multiplexing,英文缩写OFDM)信号1来表示,基站生成的Ue2待传输数据流、Ue2待传输调度信息、待传输导频信号、待传输公共信号以OFDM信号2来表示,基站将OFDM信号1、OFDM信号2通过射频拉远单元(英文全称Radio Remote Unit,英文简称RRU)发送出去。
当基站配置的天线端口为t个时,接下来对数据流、导频信号、调度信息以及公共信号的传输方式进行举例说明。请参阅如图7-b所示,为基站对数据流、导频信号、调度信息、公共信号进行传输的另一种应用场景示意图,以基站配置的天线端口数目t为2为例,需要空分复用的用户终端数目N具体为2进行说明,其中UE1采用2个数据流传输,UE2采用单流传输。对于Ue1, 基站将Ue1,L1数据流(即Ue1的第1层数据流)使用矩阵1的V1(:,1)进行加权,完成资源块映射,基站得到映射在K根物理发射天线(图中表示为a0、...、a(k-1))上的Ue1,L1待传输数据流,基站将Ue1调度信息(即Ue1的调度信息)进行空频块编码(英文全称为:Space Frequency Block Coding,英文缩写为SFBC),得到g1(1)和g1(2),使用矩阵1的V1(:,1)对g1(1)进行加权,使用矩阵1的V1(:,2)对g1(2)分别进行加权,完成资源块映射,基站得到映射在K根物理发射天线(图中表示为a0、...、a(k-1))上的Ue1待传输调度信息,基站将导频信号p0使用矩阵1的V1(:,1)进行加权,将导频信号p1使用矩阵1的V1(:,2)进行加权,完成资源块的映射,基站得到映射在K根物理发射天线(图中表示为a0、...、a(k-1))上的待传输导频信号,基站将Ue1,L2数据流(即Ue1的第2层数据流)使用矩阵1的V1(:,2)进行加权,完成资源块的映射,基站得到映射在K根物理发射天线(图中表示为a0、...、a(k-1))上的Ue1,L2待传输数据流。对于Ue2,基站将Ue2,L1数据流(即Ue2只有1层数据流)使用矩阵1的V2(:,1)进行加权,完成资源块映射,基站得到映射在K根物理发射天线(图中表示为a0、...、a(k-1))上的Ue2,L1待传输数据流,基站将Ue2调度信息(即Ue2的调度信息)进行SFBC,得到g2(1)和g2(2),由于Ue2只有1层数据流,为保证Ue2的数据流、导频信号和调度信息映射的一致性,g2(2)会被丢弃,丢弃g2(2)的等效实现操作有多种:例如,将g2(2)置0,或者将g2(2)与全0的矢量进行相乘,或者将g2(2)丢弃掉不再使用,只对g2(1)使用矩阵1的V1(:,1)进行加权,完成资源块映射,基站得到映射在K根物理发射天线(图中表示为a0、...、a(k-1))上的Ue2待传输调度信息,基站将导频信号p0使用矩阵1的V1(:,1)进行加权,完成资源块映射,基站得到映射在K根物理发射天线(图中表示为a0、...、a(k-1))上的待传输导频信号。基站对公共信号进行空频块编码,得到c(1)和c(2),基站使用矩阵1的V1(:,1)+V2(:,1)和矩阵1的V1(:,2)+V2(:,2)对c(1)和c(2)分别进行加权,完成资源块映射,基站得到映射在K根物理发射天线(图中表示为a0、...、a(k-1))上的待传输公共信号。其中,生成的UE1待传输数据流、Ue1待传输导频信号、Ue1待传输调度信息、Ue1待传输公共信号以OFDM信号3来表示,Ue2待传输数据流、Ue2待传输调度信息、Ue2待传输导频信号和Ue2待传输公共信号以OFDM信号4来表示,基站将OFDM信号3和OFDM信号4通过RRU发送出去。
通过以上实施例对本发明的描述可知,基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流,基站使用预编码矩阵对需要传输给N个用户终端的导频信号进行加权,得到映射在K根物理发射天线上的待传输导频信号,基站使用预编码矩阵对需要传输给N个用户终端的调度信息进行加权,得到映射在K根物理发射天线上的待传输调度信息,基站使用预编码矩阵对公共信号进行加权,得到映射在K根物理发射天线上的待传输公共信号,最后基站将待传输数据流、待传输导频信号、待传输调度信息、待传输公共信号通过K根物理发射天线向所述N个用户终端发送,待传输数据流、待传输导频信号、待传输调度信息、待传输公共信号是映射在不同的时间频率资源上,其中,预编码矩阵是根据K根物理发射天线到N个用户终端的信道特征计算得到。由于基站对于需要传输给N个用户终端的数据流、导频信号、调度信息、公共信号都会通过预编码矩阵分别进行加权,从而实现N个用户终端之间的空分复用。由于多个数据流可以通过预编码矩阵的加权复用给N个用户终端,并且导频信号通过预编码矩阵的加权也实现了空分复用,加权得到的待传输导频信号不再依赖CRS来区分空分用户终端层数,故进行空分复用的用户终端数可以达到更多,能够提高对时间频率资源的利用率。
实施例七
前述实施例从基站侧对本发明实施例提供的多用户的复用方法进行了说明,接下来从用户终端侧对本发明实施例提供的多用户的复用方法进行说明,请参阅如图8所示,具体可以包括如下步骤:
801、用户终端接收基站通过K根物理发射天线发送的传输数据流和传输导频信号。
其中,所述传输数据流为所述基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权后得到,所述传输数据流映射在所述K根物理发射天线上;所述传输导频信号为所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的导频信号进行加权后得到,所述传输导频信号映射在所述K根物理发射天线上,其中,所述传输数据流和所述传输导频信号是映射在不同的时间频率资源上,所述预编码矩阵是根据所述K根物理发射天线到 所述N个用户终端的信道特征计算得到。
基站如何使用预编码矩阵对需要传输给N个用户终端的多个数据流及导频信号进行加权可参考前述实施例的描述,在此不再赘述。
802、用户终端根据所述传输导频信号,对与天线端口相对应的信道进行信道估计;及
803、用户终端根据信道估计的结果解调所述传输数据流。
在本发明实施例中,对需要做空分复用的N个用户终端中的一个用户终端执行的多用户的复用方法进行说明,用户终端首先通过K根物理发射天线接收基站发送的传输数据流和传输导频信号,对于用户终端而言的传输数据流就是前述实施例中对基站而言的待传输数据流,同样的,对于用户终端而言的传输导频信号就是前述实施例中对用户终端而言的待传输导频信号,同样的,对于用户终端而言的传输调度信息就是前述实施例中对用户终端而言的待传输调度信息,同样的,对于用户终端而言的第一传输公共信号、第二传输公共信号就是前述实施例中对用户终端而言的第一待传输公共信号、第二待传输公共信号。
在上述步骤802中,用户终端通过K根物理发射天线接收到传输导频信号后,使用传输导频信号对与天线端口相对应的信道进行信道估计,得到信道估计的结果,该信道估计的结果可用于解调传输数据流,从而还原出基站发送给用户终端的数据流,其中,需要做空分复用的N个用户终端中的每个用户终端都可以执行前述实施例中描述的方法,但是对于每个用户终端而言,都可以接收到基站发送给自己的数据流,各个用户终端之间并不会产生相互干扰。
在本发明的一些实施例中,除了前述描述的方法之外,本发明实施例提供的多用户的复用方法还包括如下步骤:
所述用户终端接收所述基站通过所述K根物理发射天线发送的传输调度信息,所述传输调度信息是由所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的调度信息进行加权后得到,所述传输调度信息映射在所述K根物理发射天线上,其中,所述传输数据流、所述传输导频信号和所述传输调度信息是映射在不同的时间频率资源上。
其中,传输调度信息由基站通过K根物理发射天线发送给用户终端,用户终端通过K根物理发射天线接收到传输调度信息,用户终端使用传输调度 信息可以获取到基站发送的调度指令。
在本发明的一些实施例中,除了前述描述的方法之外,本发明实施例提供的多用户的复用方法还包括如下步骤:
所述用户终端接收所述基站通过所述K根物理发射天线发送的第一传输公共信号,所述第一传输公共信号是由所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的公共信号进行加权后得到,所述第一传输公共信号映射在所述K根物理发射天线上,其中,所述传输数据流、所述传输导频信号和所述第一传输公共信号是映射在不同的时间频率资源上。
其中,需要做空分复用的N个用户终端都可以通过K根物理发射天线接收到第一传输公共信号,对公共信号的详细说明请参阅前述实施例中的说明。
在本发明的一些实施例中,除了前述描述的方法之外,本发明实施例提供的多用户的复用方法还包括如下步骤:
所述用户终端接收所述基站通过所述K根物理发射天线发送的第二传输公共信号,所述第二传输公共信号是由所述基站分时的使用所述预编码矩阵或映射矩阵对需要传输给所述N个用户终端的公共信号进行加权后得到,所述第二传输公共信号映射在所述K根物理发射天线上,所述映射矩阵在所述信道特征发生变化,或者调度的用户终端发生改变时保持不变,其中,所述传输数据流、所述传输导频信号和所述第二传输公共信号是映射在不同的时间频率资源上。
通过以上实施例对本发明的描述可知,基站将待传输数据流、待传输导频信号、待传输调度信息通过K根物理发射天线向所述N个用户终端发送,每个用户终端通过K根物理发射天线接收传输数据流和传输导频信号,各个用户终端之间并不产生相互干扰,实现了N个用户终端之间的空分复用。由于多个数据流可以通过预编码矩阵的加权复用给N个用户终端,并且导频信号通过预编码矩阵的加权也实现了空分复用,加权得到的待传输导频信号不再依赖CRS来区分空分用户终端层数,故进行空分复用的用户终端数可以达到更多,能够提高对时间频率资源的利用率。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。 其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
为便于更好的实施本发明实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅图9-a所示,本发明实施例提供的一种基站900,可以包括:处理模块901、发射模块902,其中,
处理模块901,用于使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流;
处理模块901,还用于使用所述预编码矩阵对需要传输给N个用户终端的导频信号进行加权,得到映射在K根物理发射天线上的待传输导频信号;
发射模块902,用于将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送,所述待传输数据流和所述待传输导频信号是映射在不同的时间频率资源上;
其中,所述N和所述K均为自然数,所述预编码矩阵是根据所述K根物理发射天线到所述N个用户终端的信道特征计算得到。
在本发明的一些实施例中,若所述基站配置的天线端口的数目为1个,所述处理模块901,具体用于通过如下方式对N个数据流进行加权:
[X1,X2,…XK]=[V1,V2,…VN]×[s1;s2;…;sN];
其中,所述[X1,X2,…XK]为所述待传输数据流,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,所述Vi为K×1维的列向量,所述[s1;s2;…;sN]为用N×1维的列向量表示的N个数据流,所述[s1;s2;…;sN]中的任意一个列表示为si,所述si为所述基站需要传输给所述N个用户终端中第i个用户终端的数据流。
在本发明的一些实施例中,若所述基站配置的天线端口的数目为1个,所述处理模块901,具体用于通过如下方式对导频信号进行加权:
Y0=sum([V1,V2,…VN])×p0
其中,所述Y0为所述待传输导频信号,所述[V1,V2,…VN]为K×N维的预 编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,所述sum([V1,V2,…VN])为对所述[V1,V2,…VN]中每一列的列向量进行求和运算得到的结果,所述Vi为K×1维的列向量,Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,Vi为K×1维的列向量,所述p0为所述导频信号。
在本发明的一些实施例中,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述所述处理模块901,具体用于通过如下方式对M个数据流进行加权:
[X1,X2,…XK]=[V1,V2,…VN]×[s1;s2;…;sN];
其中,所述[X1,X2,…XK]为所述待传输数据流,所述[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,Ii为大于或等于1的正整数,所述[s1;s2;…;sN]为用M×1维的列向量表示的M个数据流,所述[s1;s2;…;sN]中的任意一个列表示为si,所述si为Ii×1维的列向量,所述si为所述基站需要传输给所述N个用户终端中第i个用户终端的共Ii层的数据流,所述M大于或等于所述N。
在本发明的一些实施例中,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述处理模块901,具体用于将所述导频信号分别映射到t个天线端口上,其中,第(m-1)个天线端口上的导频信号通过如下方式映射到K根物理发射天线上:
Y(m-1)=sum([V1(:,m),V2(:,m),…VN(:,m)])×p(m-1)
其中,所述Y(m-1)为映射在第(m-1)个天线端口上的待传输导频信号,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,i为大于0且小于或等于N的一个正整数,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量,所述m为大于或等于1且小于或等于t的正整数,所述sum([V1(:,m),V2(:,m),…VN(:,m)])为对所述[V1(:,m),V2(:,m),…VN(:,m)]中每一列的列向量进行求和运算得到的结果, 所述p(m-1)为对应在第(m-1)个端口的导频信号。
在本发明的一些实施例中,处理模块901,还用于所述发射模块将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送之前,使用所述预编码矩阵对需要传输给N个用户终端的调度信息进行加权,得到映射在K根物理发射天线上的待传输调度信息,所述待传输数据流、所述待传输导频信号和所述待传输调度信息是映射在不同的时间频率资源上。
在本发明的一些实施例中,若所述基站配置的天线端口的数目为1个,所述处理模块901,具体用于通过如下方式对N个调度信息进行加权:
[Z1,Z2,…ZK]=[V1,V2,…VN]×[g1;g2;…;gN];
其中,所述[Z1,Z2,…ZK]为所述待传输调度信息,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,所述Vi为K×1维的列向量,所述[g1;g2;…;gN]为用N×1维的列向量表示的N个调度信息,所述[g1;g2;…;gN]中的任意一个列表示为gi,所述gi为所述基站需要传输给所述N个用户终端中第i个用户终端的调度信息。
具体的,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述处理模块901,用于对需要传输给N个用户终端的调度信息进行空频块编码,得到与所述N个用户终端分别对应的N个编码块,其中,对应于第i个用户终端的编码块为[gi(1),…,gi(m)…,gi(t)],所述i为大于0且小于或等于N的一个正整数,所述m为大于0且小于或等于t的正整数,所述gi(m)表示经过空频块编码后需要映射到第(m-1)个天线端口上的信息符号;
所述处理模块901,用于将对应于每个用户终端的编码块分别映射到t个天线端口上,其中,N个用户终端的第m个编码块通过如下方式映射到第(m-1)个天线端口上:
[Zi,1,Zi,2,…Zi,K]=[V1(:,m),V2(:,m),…VN(:,m)]×[g1(m),…,gN(m)];
其中,所述[Zi,1,Zi,2,…Zi,K]为所述基站分配给所述N个用户终端中第i个用户的待传输调度信息,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正 整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,所述m为大于0且小于或等于t的正整数,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量。
在本发明的一些实施例中,处理模块901,还用于所述发射模块将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送之前,使用所述预编码矩阵对公共信号进行加权,得到映射在K根物理发射天线上的第一待传输公共信号,所述待传输数据流、所述待传输导频信号和所述第一待传输公共信号是映射在不同的时间频率资源上。
在本发明的一些实施例中,处理模块901,用于所述发射模块将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送之前,分时的使用所述预编码矩阵或映射矩阵对公共信号进行加权,得到映射在K根物理发射天线上的第二待传输公共信号,所述映射矩阵在所述信道特征发生变化,或者调度的用户终端发生改变时保持不变,所述待传输数据流、所述待传输导频信号和所述第二待传输公共信号是映射在不同的时间频率资源上。
在本发明的一些实施例中,对公共信号进行加权的所述预编码矩阵和所述映射矩阵是分时使用的。
在本发明的一些实施例中,所述K大于所述N。
在本发明的一些实施例中,若所述基站配置的天线端口的数目为1个,所述处理模块901,具体用于通过如下方式对公共信号进行加权:
P=sum([V1,V2,…VN])]×c;
其中,所述P为第一待传输公共信号,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,所述Vi为K×1维的列向量,所述sum([V1,V2,…VN])为对所述[V1,V2,…VN]中每一列的列向量进行求和运算得到的结果,所述c为公共信号。
在本发明的一些实施例中,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述处理模块901,用于对公共信号进行空频 块编码,得到对应t个天线端口的t个编码后的信息符号,其中,对应于第(m-1)个天线端口的编码后信息符号表示为cm,所述m为大于0且小于或等于t的一个正整数;
所述处理模块901,用于将对应于每个用户终端的编码块分别映射到t个天线端口上,其中,第m个编码块通过如下方式映射到第(m-1)个天线端口上:
Pm=sum([V1(:,m),V2(:,m),…VN(:,m)])×cm
其中,所述Pm为映射在第(m-1)个天线端口上的第一待传输公共信号,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量,所述m为大于或等于1且小于或等于t的正整数,所述sum([V1(:,m),V2(:,m),…VN(:,m)])为对所述[V1(:,m),V2(:,m),…VN(:,m)]中每一列的列向量进行求和运算得到的结果,所述cm为对应在第(m-1)个端口上的公共信号。
在本发明的一些实施例中,当所述公共信号为主同步信号或辅同步信号时,所述映射矩阵为全1的K×1维的列向量。
在本发明的一些实施例中,请参阅如图9-b所示,相对于如图9-a,所述基站900,还包括:计算模块903,用于当所述信道特征发生变化,或者调度的用户终端发生改变时,重新计算用于对所述数据流、所述导频信号进行加权的预编码矩阵的权值。
通过以上实施例对本发明的描述可知,基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流,基站使用预编码矩阵对需要传输给N个用户终端的导频信号进行加权,得到映射在K根物理发射天线上的待传输导频信号,最后基站将待传输数据流、待传输导频信号通过K根物理发射天线向所述N个用户终端发送,待传输数据流和待传输导频信号是映射在不同的时间频率资源上,其中,预编码矩阵是根据K根物理发射天线到N个用户终端的信道特征计算得到。由于基站对于需要传输给N个用户终端的数据流、导频信号都会通过预编码 矩阵分别进行加权,完成加权后将待传输数据流、待传输导频信号通过基站的K根物理发射天线发射,从而实现N个用户终端之间的空分复用。由于多个数据流可以通过预编码矩阵的加权复用给N个用户终端,并且导频信号通过预编码矩阵的加权也实现了空分复用,加权得到的待传输导频信号不再依赖CRS来区分空分用户终端层数,故进行空分复用的用户终端数可以达到更多,能够提高对时间频率资源的利用率。
请参阅图10所示,本发明实施例提供的一种用户终端1000,可以包括:接收模块1001和处理模块1002,其中,
接收模块1001,用于接收基站通过K根物理发射天线发送的传输数据流和传输导频信号,所述传输数据流为所述基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权后得到,所述传输数据流映射在所述K根物理发射天线上;所述传输导频信号为所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的导频信号进行加权后得到,所述传输导频信号映射在所述K根物理发射天线上,其中,所述传输数据流和所述传输导频信号是映射在不同的时间频率资源上,所述预编码矩阵是根据所述K根物理发射天线到所述N个用户终端的信道特征计算得到;
处理模块1002,用于根据所述传输导频信号,对与天线端口相对应的信道进行信道估计;及用于根据信道估计的结果解调所述传输数据流。
在本发明的一些实施例中,所述接收模块1001,还用于接收所述基站通过所述K根物理发射天线发送的传输调度信息,所述传输调度信息是由所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的调度信息进行加权后得到,所述传输调度信息映射在所述K根物理发射天线上,其中,所述传输数据流、所述传输导频信号和所述传输调度信息是映射在不同的时间频率资源上。
在本发明的一些实施例中,所述接收模块1001,还用于接收所述基站通过所述K根物理发射天线发送的第一传输公共信号,所述第一传输公共信号是由所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的公共信号进行加权后得到,所述第一传输公共信号映射在所述K根物理发射天线上,其中,所述传输数据流、所述传输导频信号和所述第一传输公共信号是映射在 不同的时间频率资源上。
在本发明的一些实施例中,所述接收模块1001,还用于接收所述基站通过所述K根物理发射天线发送的第二传输公共信号,所述第二传输公共信号是由所述基站分时的使用所述预编码矩阵或映射矩阵对需要传输给所述N个用户终端的公共信号进行加权后得到,所述第二传输公共信号映射在所述K根物理发射天线上,所述映射矩阵在所述信道特征发生变化,或者调度的用户终端发生改变时保持不变,其中,所述传输数据流、所述传输导频信号和所述第二传输公共信号是映射在不同的时间频率资源上。
通过以上实施例对本发明的描述可知,基站将待传输数据流、待传输导频信号、待传输调度信息通过K根物理发射天线向所述N个用户终端发送,每个用户终端通过K根物理发射天线接收传输数据流和传输导频信号,各个用户终端之间并不产生相互干扰,实现了N个用户终端之间的空分复用。由于多个数据流可以通过预编码矩阵的加权复用给N个用户终端,并且导频信号通过预编码矩阵的加权也实现了空分复用,加权得到的待传输导频信号不再依赖CRS来区分空分用户终端层数,故进行空分复用的用户终端数可以达到更多,能够提高对时间频率资源的利用率。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
接下来介绍本发明实施例提供的另一种基站,请参阅图11所示,基站1100包括:
处理器1101、存储器1102、物理发射天线1103(其中基站1100中的处理器1101的数量可以一个或多个,图11中以一个处理器为例)。在本发明的一些实施例中,处理器1101、存储器1102、发射天线1103可通过总线或其它方式连接,其中,图11中以通过总线连接为例,物理发射天线1103的数目为K根。
其中,存储器1101用于存储处理器在执行过程中需要的数据、程序指令以及产生的数据。
处理器1101,用于执行前述方法实施例中基站侧提供的多用户的复用方 法。
通过以上实施例对本发明的描述可知,基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流,基站使用预编码矩阵对需要传输给N个用户终端的导频信号进行加权,得到映射在K根物理发射天线上的待传输导频信号,最后基站将待传输数据流、待传输导频信号通过K根物理发射天线向所述N个用户终端发送,待传输数据流和待传输导频信号是映射在不同的时间频率资源上,其中,预编码矩阵是根据K根物理发射天线到N个用户终端的信道特征计算得到。由于基站对于需要传输给N个用户终端的数据流、导频信号都会通过预编码矩阵分别进行加权,完成加权后将待传输数据流、待传输导频信号通过基站的K根物理发射天线发射,从而实现N个用户终端之间的空分复用。由于多个数据流可以通过预编码矩阵的加权复用给N个用户终端,并且导频信号通过预编码矩阵的加权也实现了空分复用,加权得到的待传输导频信号不再依赖CRS来区分空分用户终端层数,故进行空分复用的用户终端数可以达到更多,能够提高对时间频率资源的利用率。
接下来介绍本发明实施例提供的另一种用户终端,请参阅图12所示,用户终端1200包括:
处理器1201、存储器1202、物理发射天线1203(其中用户终端1200中的处理器1201的数量可以一个或多个,图12中以一个处理器为例)。在本发明的一些实施例中,处理器1201、存储器1202、发射天线1203可通过总线或其它方式连接,其中,图12中以通过总线连接为例,物理发射天线1203的数目为K根。
其中,存储器1201用于存储处理器在执行过程中需要的数据、程序指令以及产生的数据。
处理器1201,用于执行前述方法实施例中用户终端侧提供的多用户的复用方法。
通过以上实施例对本发明的描述可知,基站将待传输数据流、待传输导频信号、待传输调度信息通过K根物理发射天线向所述N个用户终端发送,每个用户终端通过K根物理发射天线接收传输数据流和传输导频信号,各个用 户终端之间并不产生相互干扰,实现了N个用户终端之间的空分复用。由于多个数据流可以通过预编码矩阵的加权复用给N个用户终端,并且导频信号通过预编码矩阵的加权也实现了空分复用,加权得到的待传输导频信号不再依赖CRS来区分空分用户终端层数,故进行空分复用的用户终端数可以达到更多,能够提高对时间频率资源的利用率。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本发明而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
综上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照上述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对上述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (38)

  1. 一种多用户的复用方法,其特征在于,包括:
    基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流;
    所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的导频信号进行加权,得到映射在所述K根物理发射天线上的待传输导频信号;
    所述基站将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送,所述待传输数据流和所述待传输导频信号是映射在不同的时间频率资源上;
    其中,所述N为大于或等于2的正整数,所述K为正整数,所述预编码矩阵是根据所述K根物理发射天线到所述N个用户终端的信道特征计算得到。
  2. 根据权利要求1所述的方法,其特征在于,若所述基站配置的天线端口的数目为1个,所述基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流,包括:
    通过如下方式对N个数据流进行加权:
    [X1,X2,…XK]=[V1,V2,…VN]×[s1;s2;…;sN];
    其中,所述[X1,X2,…XK]为所述待传输数据流,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,所述Vi为K×1维的列向量,所述[s1;s2;…;sN]为用N×1维的列向量表示的所述N个数据流,所述[s1;s2;…;sN]中的任意一个列表示为si,所述si为所述基站需要传输给所述N个用户终端中第i个用户终端的数据流。
  3. 根据权利要求1或2所述的方法,其特征在于,若所述基站配置的天线端口的数目为1个,所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的导频信号进行加权,得到映射在所述K根物理发射天线上的待传输导频信号,包括:
    通过如下方式对所述导频信号进行加权:
    Y0=sum([V1,V2,…VN])×p0
    其中,所述Y0为所述待传输导频信号,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述sum([V1,V2,…VN])为对所述[V1,V2,…VN]中每一列的列向量进行求和运算得到的结果,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,Vi为K×1维的列向量,所述p0为所述导频信号。
  4. 根据权利要求1所述的方法,其特征在于,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流,包括:
    通过如下方式对M个数据流进行加权:
    [X1,X2,…XK]=[V1,V2,…VN]×[s1;s2;…;sN];
    其中,所述[X1,X2,…XK]为所述待传输数据流,所述[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,Ii为大于或等于1的正整数,所述[s1;s2;…;sN]为用M×1维的列向量表示的M个数据流,所述[s1;s2;…;sN]中的任意一个列表示为si,所述si为Ii×1维的列向量,所述si为所述基站需要传输给所述N个用户终端中第i个用户终端的共Ii层的数据流,所述M大于或等于所述N。
  5. 根据权利要求1或4所述的方法,其特征在于,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的导频信号进行加权,得到映射在K根物理发射天线上的待传输导频信号,包括:
    所述基站将所述导频信号分别映射到t个天线端口上,其中,第(m-1)个天线端口上的导频信号通过如下方式映射到K根物理发射天线上:
    Y(m-1)=sum([V1(:,m),V2(:,m),…VN(:,m)])×p(m-1)
    其中,所述Y(m-1)为映射在第(m-1)个天线端口上的待传输导频信号,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述 Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量,所述m为大于或等于1且小于或等于t的正整数,所述sum([V1(:,m),V2(:,m),…VN(:,m)])为对所述[V1(:,m),V2(:,m),…VN(:,m)]中每一列的列向量进行求和运算得到的结果,所述p(m-1)为对应第(m-1)个端口的导频信号。
  6. 根据权利要求1至5中任一所述的方法,其特征在于,所述基站将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送之前,所述方法还包括:
    所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的调度信息进行加权,得到映射在所述K根物理发射天线上的待传输调度信息,所述待传输数据流、所述待传输导频信号和所述待传输调度信息是映射在不同的时间频率资源上。
  7. 根据权利要求6所述的方法,其特征在于,若所述基站配置的天线端口的数目为1个,所述基站使用所述预编码矩阵对需要传输给N个用户终端的调度信息进行加权,得到映射在K根物理发射天线上的待传输调度信息,包括:
    通过如下方式对N个调度信息进行加权:
    [Z1,Z2,…ZK]=[V1,V2,…VN]×[g1;g2;…;gN];
    其中,所述[Z1,Z2,…ZK]为所述待传输调度信息,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,所述Vi为K×1维的列向量,所述[g1;g2;…;gN]为用N×1维的列向量表示的N个调度信息,所述[g1;g2;…;gN]中的任意一个列表示为gi,所述gi为所述基站需要传输给所述N个用户终端中第i个用户终端的调度信息。
  8. 根据权利要求6所述的方法,其特征在于,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的调度信息进行加权,得到映射在所述K根物理发射天线上的待传输调度信息,包括:
    所述基站对需要传输给所述N个用户终端的调度信息进行空频块编码,得到与所述N个用户终端分别对应的N个编码块,其中,对应于第i个用户终端的编码块为[gi(1),…,gi(m)…,gi(t)],所述i为大于0且小于或等于N的一个正整数,所述m为大于0且小于或等于t的正整数,所述gi(m)表示经过空频块编码后需要映射到第(m-1)个天线端口上的信息符号;
    所述基站将对应于每个用户终端的编码块分别映射到t个天线端口上,其中,N个用户终端的第m个编码块通过如下方式映射到第(m-1)个天线端口上:
    [Zi,1,Zi,2,…Zi,K]=[V1(:,m),V2(:,m),…VN(:,m)]×[g1(m);…;gN(m)];
    其中,所述[Zi,1,Zi,2,…Zi,K]为所述基站分配给所述N个用户终端中第i个用户的待传输调度信息,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,所述m为大于0且小于或等于t的正整数,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述基站将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送之前,所述方法还包括:
    所述基站使用所述预编码矩阵对公共信号进行加权,得到映射在所述K根物理发射天线上的第一待传输公共信号,所述待传输数据流、所述待传输导频信号和所述第一待传输公共信号是映射在不同的时间频率资源上。
  10. 根据权利要求1至8中任一项所述的方法,其特征在于,所述基站将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送之前,所述方法还包括:
    所述基站分时的使用所述预编码矩阵或映射矩阵对公共信号进行加权,得到映射在K根物理发射天线上的第二待传输公共信号,所述映射矩阵在所述信道特征发生变化,或者调度的用户终端发生改变时保持不变,所述待传输数据流、所述待传输导频信号和所述第二待传输公共信号是映射在不同的时间频率资源上。
  11. 根据权利要求9至10中任一项所述的方法,其特征在于,所述K大于所述N。
  12. 根据权利要求9所述的方法,其特征在于,若所述基站配置的天线端口的数目为1个,所述基站使用所述预编码矩阵对公共信号进行加权,得到映射在K根物理发射天线上的第一待传输公共信号,包括:
    通过如下方式对公共信号进行加权:
    P=sum([V1,V2,…VN])×c;
    其中,所述P为第一待传输公共信号,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,所述Vi为K×1维的列向量,所述sum([V1,V2,…VN])为对所述[V1,V2,…VN]中每一列的列向量进行求和运算得到的结果,所述c为公共信号。
  13. 根据权利要求9所述的方法,其特征在于,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述基站使用所述预编码矩阵对公共信号进行加权,得到映射在所述K根物理发射天线上的第一待传输公共信号,包括:
    所述基站对公共信号进行空频块编码,得到对应t个天线端口的t个编码后的信息符号,其中,对应于第(m-1)个天线端口的编码后信息符号表示为cm,所述m为大于0且小于或等于t的一个正整数;
    所述基站将对应于每个用户终端的编码块分别映射到t个天线端口上,其中,第m个编码块通过如下方式映射到第(m-1)个天线端口上:
    Pm=sum([V1(:,m),V2(:,m),…VN(:,m)])×cm
    其中,所述Pm为映射在第(m-1)个天线端口上的第一待传输公共信号,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量,所述m为大于0且小于或等于t的正整数,所述sum([V1(:,m),V2(:,m),…VN(:,m)])为对所述[V1(:,m),V2(:,m),…VN(:,m)]中每一列 的列向量进行求和运算得到的结果,所述cm为对应在第(m-1)个端口上的公共信号。
  14. 根据权利要求10述的方法,其特征在于,当所述公共信号为主同步信号或辅同步信号时,所述映射矩阵为全1的K×1维的列向量。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述方法,还包括:
    当所述信道特征发生变化,或者调度的用户终端发生改变时,重新计算用于对所述数据流、所述导频信号进行加权的预编码矩阵的权值。
  16. 一种基站,其特征在于,包括:处理模块和发射模块,其中,
    所述处理模块,用于使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权,得到映射在K根物理发射天线上的待传输数据流;
    所述处理模块,还用于使用所述预编码矩阵对需要传输给所述N个用户终端的导频信号进行加权,得到映射在所述K根物理发射天线上的待传输导频信号;
    所述发射模块,用于将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送,所述待传输数据流和所述待传输导频信号是映射在不同的时间频率资源上;
    其中,所述N为大于或等于2的正整数,所述K为正整数,所述预编码矩阵是根据所述K根物理发射天线到所述N个用户终端的信道特征计算得到。
  17. 根据权利要求16所述的基站,其特征在于,若所述基站配置的天线端口的数目为1个,所述处理模块,具体用于通过如下方式对N个数据流进行加权:
    [X1,X2,…XK]=[V1,V2,…VN]×[s1;s2;…;sN];
    其中,所述[X1,X2,…XK]为所述待传输数据流,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,所述Vi为K×1维的列向量,所述[s1;s2;…;sN]为用N×1维的列向量表示的所述N个数据流,所述[s1;s2;…;sN]中的任意一个列表示为si,所述si为所述基站需要传输给所述N个用户终端中第i个用户终端的数据流。
  18. 根据权利要求16或17所述的基站,其特征在于,若所述基站配置的天线端口的数目为1个,所述处理模块,具体用于通过如下方式对所述导频信号进行加权:
    Y0=sum([V1,V2,…VN])×p0
    其中,所述Y0为所述待传输导频信号,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述sum([V1,V2,…VN])为对所述[V1,V2,…VN]中每一列的列向量进行求和运算得到的结果,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,Vi为K×1维的列向量,所述p0为所述导频信号。
  19. 根据权利要求16所述的基站,其特征在于,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述所述处理模块,具体用于通过如下方式对M个数据流进行加权:
    [X1,X2,…XK]=[V1,V2,…VN]×[s1;s2;…;sN];
    其中,所述[X1,X2,…XK]为所述待传输数据流,所述[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,所述[s1;s2;…;sN]为用M×1维的列向量表示的M个数据流,所述[s1;s2;…;sN]中的任意一个列表示为si,所述si为Ii×1维的列向量,所述si为所述基站需要传输给所述N个用户终端中第i个用户终端的共Ii层的数据流,所述M大于或等于所述N。
  20. 根据权利要求16或19所述的基站,其特征在于,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,
    所述处理模块,具体用于将所述导频信号分别映射到t个天线端口上,其中,第(m-1)个天线端口上的导频信号通过如下方式映射到K根物理发射天线上:
    Y(m-1)=sum([V1(:,m),V2(:,m),…VN(:,m)])×p(m-1)
    其中,所述Y(m-1)为映射在第(m-1)个天线端口上的待传输导频信号, [V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量,所述m为大于或等于1且小于或等于t的正整数,所述sum([V1(:,m),V2(:,m),…VN(:,m)])为对所述[V1(:,m),V2(:,m),…VN(:,m)]中每一列的列向量进行求和运算得到的结果,所述p(m-1)为对应在第(m-1)个端口的导频信号。
  21. 根据权利要求16至20中任一项所述的基站,其特征在于,所述处理模块,还用于所述发射模块将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送之前,使用所述预编码矩阵对需要传输给N个用户终端的调度信息进行加权,得到映射在K根物理发射天线上的待传输调度信息,所述待传输数据流、所述待传输导频信号和所述待传输调度信息是映射在不同的时间频率资源上。
  22. 根据权利要求21所述的基站,其特征在于,若所述基站配置的天线端口的数目为1个,所述处理模块,具体用于通过如下方式对N个调度信息进行加权:
    [Z1,Z2,…ZK]=[V1,V2,…VN]×[g1;g2;…;gN];
    其中,所述[Z1,Z2,…ZK]为所述待传输调度信息,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,所述Vi为K×1维的列向量,所述[g1;g2;…;gN]为用N×1维的列向量表示的N个调度信息,所述[g1;g2;…;gN]中的任意一个列表示为gi,所述gi为所述基站需要传输给所述N个用户终端中第i个用户终端的调度信息。
  23. 根据权利要求21所述的基站,其特征在于,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述处理模块,用于对需要传输给所述N个用户终端的调度信息进行空频块编码,得到与所述N个用户终端分别对应的N个编码块,其中,对应于第i个用户终端的编码块为[gi(1),…,gi(m)…,gi(t)],所述i为大于0且小于或等于N的一个正整数,所述 m为大于0且小于或等于t的正整数,所述gi(m)表示经过空频块编码后需要映射到第(m-1)个天线端口上的信息符号;所述处理模块用于将对应于每个用户终端的编码块分别映射到t个天线端口上,其中,N个用户终端的第m个编码块通过如下方式映射到第(m-1)个天线端口上:
    [Zi,1,Zi,2,…Zi,K]=[V1(:,m),V2(:,m),…VN(:,m)]×[g1(m),…,gN(m)];
    其中,所述[Zi,1,Zi,2,…Zi,K]为所述基站分配给所述N个用户终端中第i个用户的待传输调度信息,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,所述m为大于0且小于或等于t的正整数,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量。
  24. 根据权利要求16至23中任一项所述的基站,其特征在于,所述处理模块,还用于所述发射模块将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送之前,使用所述预编码矩阵对公共信号进行加权,得到映射在K根物理发射天线上的第一待传输公共信号,所述待传输数据流、所述待传输导频信号和所述第一待传输公共信号是映射在不同的时间频率资源上。
  25. 根据权利要求16至23中任一项所述的基站,其特征在于,所述处理模块,还用于所述发射模块将所述待传输数据流、所述待传输导频信号通过所述K根物理发射天线向所述N个用户终端发送之前,分时的使用所述预编码矩阵或映射矩阵对公共信号进行加权,得到映射在K根物理发射天线上的第二待传输公共信号,所述映射矩阵在所述信道特征发生变化,或者调度的用户终端发生改变时保持不变,所述待传输数据流、所述待传输导频信号和所述第二待传输公共信号是映射在不同的时间频率资源上。
  26. 根据权利要求24至25中任一项所述的基站,其特征在于,所述K大于所述N。
  27. 根据权利要求24所述的基站,其特征在于,若所述基站配置的天线端口的数目为1个,所述处理模块,具体用于通过如下方式对公共信号进行加权:
    P=sum([V1,V2,…VN])]×c;
    其中,所述P为第一待传输公共信号,所述[V1,V2,…VN]为K×N维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为所述基站分配给所述N个用户终端中第i个用户终端的预编码取值向量,所述Vi为K×1维的列向量,所述sum([V1,V2,…VN])为对所述[V1,V2,…VN]中每一列的列向量进行求和运算得到的结果,所述c为公共信号。
  28. 根据权利要求24所述的基站,其特征在于,若所述基站配置的天线端口的数目为t个,其中,所述t为大于1的正整数,所述处理模块,用于对公共信号进行空频块编码,得到对应t个天线端口的t个编码后的信息符号,其中,对应于第(m-1)个天线端口的编码后信息符号表示为cm,所述m为大于0且小于或等于t的一个正整数;
    所述处理模块,用于将对应于每个用户终端的编码块分别映射到t个天线端口上,其中,第m个编码块通过如下方式映射到第(m-1)个天线端口上:
    Pm=sum([V1(:,m),V2(:,m),…VN(:,m)])×cm
    其中,所述Pm为映射在第(m-1)个天线端口上的第一待传输公共信号,[V1,V2,…VN]为K×M维的预编码矩阵,所述[V1,V2,…VN]中的任意一个列表示为Vi,i为大于0且小于或等于N的一个正整数,Vi为K×Ii维的矩阵,所述Vi为所述基站分配给所述N个用户终端中第i个用户终端的共Ii个的预编码取值向量,当m≤Ii时,Vi(:,m)表示Vi的第m列向量,当m>Ii时,Vi(:,m)为K×1维的全0向量,所述m为大于或等于1且小于或等于t的正整数,所述sum([V1(:,m),V2(:,m),…VN(:,m)])为对所述[V1(:,m),V2(:,m),…VN(:,m)]中每一列的列向量进行求和运算得到的结果,所述cm为对应在第(m-1)个端口上的公共信号。
  29. 根据权利要求25所述的基站,其特征在于,当所述公共信号为主同步信号或辅同步信号时,所述映射矩阵为全1的K×1维的列向量。
  30. 根据权利要求16至29中任一项所述的基站,其特征在于,所述基站,还包括:
    计算模块,用于当所述信道特征发生变化,或者调度的用户终端发生改变时,重新计算用于对所述数据流、所述导频信号进行加权的预编码矩阵的权值。
  31. 一种多用户的复用方法,其特征在于,包括:
    用户终端接收基站通过K根物理发射天线发送的传输数据流和传输导频信号,所述传输数据流为所述基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权后得到,所述传输数据流映射在所述K根物理发射天线上;所述传输导频信号为所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的导频信号进行加权后得到,所述传输导频信号映射在所述K根物理发射天线上,其中,所述传输数据流和所述传输导频信号是映射在不同的时间频率资源上,所述预编码矩阵是根据所述K根物理发射天线到所述N个用户终端的信道特征计算得到;
    所述用户终端根据所述传输导频信号,对与天线端口相对应的信道进行信道估计;及
    所述用户终端根据信道估计的结果解调所述传输数据流。
  32. 根据权利要求31所述的方法,其特征在于,所述方法,还包括:
    所述用户终端接收所述基站通过所述K根物理发射天线发送的传输调度信息,所述传输调度信息是由所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的调度信息进行加权后得到,所述传输调度信息映射在所述K根物理发射天线上,其中,所述传输数据流、所述传输导频信号和所述传输调度信息是映射在不同的时间频率资源上。
  33. 根据权利要求31或32所述的方法,其特征在于,所述方法,还包括:
    所述用户终端接收所述基站通过所述K根物理发射天线发送的第一传输公共信号,所述第一传输公共信号是由所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的公共信号进行加权后得到,所述第一传输公共信号映射在所述K根物理发射天线上,其中,所述传输数据流、所述传输导频信号和所述第一传输公共信号是映射在不同的时间频率资源上。
  34. 根据权利要求31或32所述的方法,其特征在于,所述方法,还包括:
    所述用户终端接收所述基站通过所述K根物理发射天线发送的第二传输公共信号,所述第二传输公共信号是由所述基站分时的使用所述预编码矩阵或映射矩阵对需要传输给所述N个用户终端的公共信号进行加权后得到,所述第二传输公共信号映射在所述K根物理发射天线上,所述映射矩阵在所述信道特征发生变化,或者调度的用户终端发生改变时保持不变,其中,所述传输 数据流、所述传输导频信号和所述第二传输公共信号是映射在不同的时间频率资源上。
  35. 一种用户终端,其特征在于,包括:接收模块、处理模块,其中,
    接收模块,用于接收基站通过K根物理发射天线发送的传输数据流和传输导频信号,所述传输数据流为所述基站使用预编码矩阵对需要传输给N个用户终端的多个数据流进行加权后得到,所述传输数据流映射在所述K根物理发射天线上;所述传输导频信号为所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的导频信号进行加权后得到,所述传输导频信号映射在所述K根物理发射天线上,其中,所述传输数据流和所述传输导频信号是映射在不同的时间频率资源上,所述预编码矩阵是根据所述K根物理发射天线到所述N个用户终端的信道特征计算得到;
    处理模块,用于根据所述传输导频信号,对与天线端口相对应的信道进行信道估计,还用于根据信道估计的结果解调所述传输数据流。
  36. 根据权利要求35所述的终端,其特征在于,所述接收模块,还用于接收所述基站通过所述K根物理发射天线发送的传输调度信息,所述传输调度信息是由所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的调度信息进行加权后得到,所述传输调度信息映射在所述K根物理发射天线上,其中,所述传输数据流、所述传输导频信号和所述传输调度信息是映射在不同的时间频率资源上。
  37. 根据权利要求35或36所述的终端,其特征在于,所述接收模块,还用于接收所述基站通过所述K根物理发射天线发送的第一传输公共信号,所述第一传输公共信号是由所述基站使用所述预编码矩阵对需要传输给所述N个用户终端的公共信号进行加权后得到,所述第一传输公共信号映射在所述K根物理发射天线上,其中,所述传输数据流、所述传输导频信号和所述第一传输公共信号是映射在不同的时间频率资源上。
  38. 根据权利要求35或36所述的终端,其特征在于,所述接收模块,还用于接收所述基站通过所述K根物理发射天线发送的第二传输公共信号,所述第二传输公共信号是由所述基站分时的使用所述预编码矩阵或映射矩阵对需要传输给所述N个用户终端的公共信号进行加权后得到,所述第二传输公共信号映射在所述K根物理发射天线上,所述映射矩阵在所述信道特征发生 变化,或者调度的用户终端发生改变时保持不变,其中,所述传输数据流、所述传输导频信号和所述第二传输公共信号是映射在不同的时间频率资源上。
PCT/CN2014/086940 2014-09-19 2014-09-19 一种多用户的复用方法和基站以及用户终端 WO2016041196A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/086940 WO2016041196A1 (zh) 2014-09-19 2014-09-19 一种多用户的复用方法和基站以及用户终端
EP14901957.2A EP3188393B1 (en) 2014-09-19 2014-09-19 Multiplexing method for multiple users, base station, and user terminal
CN201480008358.7A CN105612707B (zh) 2014-09-19 2014-09-19 一种多用户的复用方法和基站
US15/461,686 US20170195019A1 (en) 2014-09-19 2017-03-17 Multi-User Multiplexing Method, Base Station, and User Terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/086940 WO2016041196A1 (zh) 2014-09-19 2014-09-19 一种多用户的复用方法和基站以及用户终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/461,686 Continuation US20170195019A1 (en) 2014-09-19 2017-03-17 Multi-User Multiplexing Method, Base Station, and User Terminal

Publications (1)

Publication Number Publication Date
WO2016041196A1 true WO2016041196A1 (zh) 2016-03-24

Family

ID=55532477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086940 WO2016041196A1 (zh) 2014-09-19 2014-09-19 一种多用户的复用方法和基站以及用户终端

Country Status (4)

Country Link
US (1) US20170195019A1 (zh)
EP (1) EP3188393B1 (zh)
CN (1) CN105612707B (zh)
WO (1) WO2016041196A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769827A (zh) * 2016-08-23 2018-03-06 华为技术有限公司 数据发送方法、数据接收方法、设备及系统
US10735080B2 (en) 2016-08-10 2020-08-04 Huawei Technologies Co., Ltd. Transmission scheme indication method, and data transmission method, apparatus, and system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733603B (zh) * 2016-08-12 2022-03-01 中兴通讯股份有限公司 导频发送方法及装置
EP3508009A1 (en) * 2016-09-02 2019-07-10 Sony Mobile Communications Inc. Downlink synchronization signals
CN108271265B (zh) * 2017-01-03 2023-04-07 华为技术有限公司 通信方法、基站和终端设备
CN111106857B (zh) * 2018-10-27 2022-05-24 华为技术有限公司 指示和确定预编码向量的方法以及通信装置
CN111385002A (zh) * 2018-12-29 2020-07-07 中兴通讯股份有限公司 一种空分复用方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374034A (zh) * 2007-08-20 2009-02-25 中兴通讯股份有限公司 下行与上行多用户多输入多输出的预编码方法及其码本
CN101378282A (zh) * 2007-08-31 2009-03-04 中兴通讯股份有限公司 多输入多输出系统信号处理方法及装置
CN102594486A (zh) * 2011-01-04 2012-07-18 中国移动通信集团公司 抑制多用户间干扰的方法和装置
CN102932043A (zh) * 2011-08-08 2013-02-13 中国电信股份有限公司 下行多用户mimo 信号发射方法以及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208364B2 (en) * 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
WO2009073768A1 (en) * 2007-12-04 2009-06-11 Vovision, Llc Correcting transcribed audio files with an email-client interface
WO2008091981A2 (en) * 2007-01-25 2008-07-31 Cedars-Sinai Medical Center Monoclonal antibody that suppresses thyrotropin receptor constitutive activity
US20090005984A1 (en) * 2007-05-31 2009-01-01 James Roy Bradley Apparatus and method for transit prediction
CN101394213B (zh) * 2007-09-19 2013-05-08 中兴通讯股份有限公司 一种时分双工方式频分复用系统的多天线通信方法
KR20160001721A (ko) * 2008-03-06 2016-01-06 데이진 아라미드 비.브이. 연신 바디들을 포함하는 방탄 물품
KR101635883B1 (ko) * 2009-02-03 2016-07-20 엘지전자 주식회사 하향링크 참조 신호 송수신 기법
KR101753391B1 (ko) * 2009-03-30 2017-07-04 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 방법 및 장치
CN101902305B (zh) * 2009-05-25 2013-10-30 富士通株式会社 通信装置、通信方法和基站
KR101711865B1 (ko) * 2009-05-29 2017-03-03 엘지전자 주식회사 공간 사일런싱을 이용한 신호 전송 방법 및 이를 위한 장치
CN101932096B (zh) * 2009-06-24 2015-03-25 中兴通讯股份有限公司 多用户多输入多输出模式下层映射信息的通知方法和系统
KR101780503B1 (ko) * 2010-10-06 2017-09-21 언와이어드 플래넷 인터내셔널 리미티드 데이터 송수신 방법 및 장치
US9185694B2 (en) * 2010-11-08 2015-11-10 Lg Electronics Inc. Method and device for transmitting and receiving data in wireless communication system
EP2738950B1 (en) * 2011-07-25 2018-09-05 LG Electronics Inc. Method and apparatus for monitoring a wireless link in a wireless communication system
KR101820733B1 (ko) * 2011-08-24 2018-01-22 삼성전자주식회사 무선통신시스템에서 빔 선택 장치 및 방법
JP2013135332A (ja) * 2011-12-26 2013-07-08 Sharp Corp 基地局装置、許容重複数決定方法、許容重複数決定プログラム、移動局装置、許容重複数通知方法及び許容重複数通知プログラム
US20140254715A1 (en) * 2013-03-05 2014-09-11 Nokia Siemens Networks Oy Robust precoding vector switching for multiple transmitter antennas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374034A (zh) * 2007-08-20 2009-02-25 中兴通讯股份有限公司 下行与上行多用户多输入多输出的预编码方法及其码本
CN101378282A (zh) * 2007-08-31 2009-03-04 中兴通讯股份有限公司 多输入多输出系统信号处理方法及装置
CN102594486A (zh) * 2011-01-04 2012-07-18 中国移动通信集团公司 抑制多用户间干扰的方法和装置
CN102932043A (zh) * 2011-08-08 2013-02-13 中国电信股份有限公司 下行多用户mimo 信号发射方法以及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3188393A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10735080B2 (en) 2016-08-10 2020-08-04 Huawei Technologies Co., Ltd. Transmission scheme indication method, and data transmission method, apparatus, and system
CN107769827A (zh) * 2016-08-23 2018-03-06 华为技术有限公司 数据发送方法、数据接收方法、设备及系统
EP3499736A4 (en) * 2016-08-23 2019-08-21 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD AND DATA RECEIVING METHOD, DEVICE AND SYSTEM
CN107769827B (zh) * 2016-08-23 2021-01-12 华为技术有限公司 数据发送方法、数据接收方法、设备及系统

Also Published As

Publication number Publication date
US20170195019A1 (en) 2017-07-06
CN105612707A (zh) 2016-05-25
CN105612707B (zh) 2019-03-01
EP3188393B1 (en) 2019-04-17
EP3188393A1 (en) 2017-07-05
EP3188393A4 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
WO2016041196A1 (zh) 一种多用户的复用方法和基站以及用户终端
CN107408971B (zh) 信道状态信息参考信号
US8908802B2 (en) Transmit diversity method, related device, and system
CN106936479B (zh) 一种广播信息传输方法及装置
JP2022070888A (ja) 通信方法、端末、および基地局
US20140169409A1 (en) Systems and Methods for Open-loop Spatial Multiplexing Schemes for Radio Access Virtualization
CN105794257B (zh) Ofdma资源分配的系统和方法
US20150245380A1 (en) Device and Method for Processing Downlink Control Information
EP3348083B1 (en) Methods of processing signals, apparatus, and base station
JP2022017343A (ja) Mimo用のcdm8ベースのcsi-rs設計
CN109639402A (zh) 发送和接收信道状态信息-参考信号的方法
WO2014113938A1 (en) Radio base station and method for precoding signal
JP2019512920A (ja) 複数のアンテナを有する通信装置に用いられる電気機器と通信方法
JP2022180548A (ja) 第1の通信装置、第2の通信装置、方法、及びシステム
CN109565364B (zh) 空间复用mimo通信中的信号处理
WO2020024891A1 (zh) 参考信号的处理方法和装置
WO2017101586A1 (en) System and method for quantization of angles for beamforming feedback
CN108667490B (zh) 一种信道状态信息反馈方法及装置
JP2017532809A (ja) Mimoチャネルを横切って送信機から受信機に情報を送信するための方法およびシステム
CN107528616B (zh) 一种大尺度mimo的传输方法和装置
WO2015100939A1 (zh) 一种实现空分复用的方法、基站及终端
CN112887068B (zh) 数据传输方法、发送设备和接收设备
JP2017509213A (ja) 情報処理装置、ネットワークノード、および情報処理方法
WO2017028059A1 (zh) 空分复用处理方法、装置及设备
US20220021496A1 (en) CSI-RS Resource Reuse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014901957

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014901957

Country of ref document: EP