WO2016039019A1 - Flow rate sensor - Google Patents

Flow rate sensor Download PDF

Info

Publication number
WO2016039019A1
WO2016039019A1 PCT/JP2015/070705 JP2015070705W WO2016039019A1 WO 2016039019 A1 WO2016039019 A1 WO 2016039019A1 JP 2015070705 W JP2015070705 W JP 2015070705W WO 2016039019 A1 WO2016039019 A1 WO 2016039019A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate member
flow sensor
semiconductor chip
flow rate
synthetic resin
Prior art date
Application number
PCT/JP2015/070705
Other languages
French (fr)
Japanese (ja)
Inventor
河野 務
翼 渡辺
裕樹 中土
徳安 昇
忍 田代
努 阪本
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2016039019A1 publication Critical patent/WO2016039019A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow

Definitions

  • the present invention relates to a flow rate sensor, and more particularly to a flow rate sensor including a semiconductor chip having a flow rate detection unit.
  • An internal combustion engine such as an automobile includes an electronically controlled fuel injection device for appropriately operating the internal combustion engine by appropriately adjusting the amount of air and fuel flowing into the internal combustion engine.
  • the electronically controlled fuel injection device is provided with a flow sensor for measuring the flow rate of air flowing into the internal combustion engine.
  • the flow rate sensor has, for example, a thermal flow rate detection unit including a heating resistor and a resistance temperature detector.
  • the flow rate detection unit is provided on the semiconductor chip and has a structure in which the periphery of the semiconductor chip is sealed with resin in a state where the flow rate detection unit is exposed.
  • the semiconductor chip is usually mounted on a lead frame in order to connect to an external device.
  • stress is generated in the semiconductor chip due to the difference in coefficient of linear expansion between the lead frame and the semiconductor chip.
  • a flow sensor is known in which an intermediate member formed of glass is interposed between a lead frame and a semiconductor chip to reduce stress based on a difference in linear expansion coefficient (see Patent Document 1).
  • glass is used as the intermediate member, the price is high. Moreover, since glass has a large thermal conductivity, it adversely affects the detection of the flow rate.
  • the flow sensor is interposed between a semiconductor chip having a thermal flow rate detection unit on the main surface, a support member that supports the semiconductor chip, and the support member and the semiconductor chip.
  • the intermediate member and a sealing resin that exposes the flow rate detection unit and covers the main surface of the semiconductor chip.
  • the intermediate member has a higher elastic modulus and a linear expansion coefficient in the synthetic resin than the synthetic resin. It is formed of a filler-containing synthetic resin containing a low filler.
  • the flow rate sensor is mounted on the semiconductor chip having the thermal flow rate detection part on the main surface, the support member that supports the semiconductor chip, and the semiconductor chip is the main part.
  • An intermediate member that is bonded with an adhesive on the back surface facing the surface and formed of a material including a synthetic resin, and a sealing resin that exposes the flow rate detection unit and covers the main surface of the semiconductor chip. Is a member formed by dividing one raw resin molded body on which a plurality of intermediate members are formed.
  • the intermediate member is inexpensive and the flow rate sensor can be made inexpensive.
  • the thermal conductivity is reduced, the accuracy of flow rate detection can be improved.
  • FIG. 1 shows an embodiment of a flow sensor according to the present invention
  • FIG. 1 (a) is a plan view thereof
  • FIG. 1 (b) is a sectional view taken along line Ib-Ib of FIG. 1 (a)
  • FIG. ) Is a cross-sectional view taken along line Ic-Ic in FIG.
  • FIG. 2 is an enlarged view showing details of FIG. 3 shows an intermediate member according to an embodiment of the present invention
  • FIG. 3 (a) is a plan view thereof
  • FIG. 3 (b) is a sectional view taken along line IIIb-IIIb of FIG. 3 (a)
  • FIG. ) Is a plan view of an unprocessed resin molding for explaining a method for producing an intermediate member.
  • 4 is a view in which the sealing resin in FIG.
  • FIG. 4 (a) is a plan view thereof
  • FIG. 4 (b) is a sectional view taken along line IVb-IVb of FIG. 4 (a).
  • FIG. 5 is a cross-sectional view showing a method for molding a sealing resin.
  • FIG. 6 is a cross-sectional view showing a second embodiment of the flow sensor according to the present invention.
  • FIG. 7 is a cross-sectional view showing a third embodiment of the flow sensor according to the present invention.
  • FIG. 8 is a sectional view showing a flow sensor according to a fourth embodiment of the present invention.
  • FIG. 9 is a sectional view showing a flow sensor according to a fifth embodiment of the present invention.
  • FIG. 10 shows a flow sensor according to a sixth embodiment of the present invention, FIG.
  • FIG. 10 (a) is a plan view thereof
  • FIG. 10 (b) is a cross-sectional view taken along line Xb-Xb of FIG. 10 (a)
  • FIG. ) Is a cross-sectional view taken along line Xc-Xc in FIG.
  • FIG. 1 shows an embodiment of a flow sensor according to the present invention
  • FIG. 1 (a) is a plan view thereof
  • FIG. 1 (b) is a sectional view taken along line Ib-Ib of FIG. 1 (a).
  • FIG. 1C is a cross-sectional view taken along the line Ic-Ic in FIG. 4 is a view in which the sealing resin in FIG. 1 is removed
  • FIG. 4 (a) is a plan view thereof
  • FIG. 4 (b) is a sectional view taken along line IVb-IVb of FIG. 4 (a).
  • the flow sensor 100 is installed, for example, in an intake duct of an internal combustion engine of a vehicle.
  • the flow sensor 100 is a thermal air flow sensor.
  • the X direction, the Y direction, and the Z direction are as illustrated.
  • the flow sensor 100 includes a lead frame 20 having a plurality of leads 21, an intermediate member 50 mounted on the lead frame 20, a first semiconductor chip 30 and a second semiconductor mounted on a chip mounting portion 50 c of the intermediate member 50.
  • a chip 40 and a sealing resin 60 that seals the first semiconductor chip 30 and the second semiconductor chip 40 together with the lead frame 20 by exposing the leads 21 of the lead frame 20 and a part of the first semiconductor chip 30 are provided. Yes.
  • the intermediate member 50 is bonded to the lead frame 20 with an adhesive 71.
  • the first semiconductor chip 30 is bonded to the intermediate member 50 with an adhesive 72 provided annularly at the peripheral edge.
  • the second semiconductor chip 40 is bonded to the intermediate member 50 with an adhesive 73.
  • the lead frame 20 is formed of, for example, a metal member such as copper, and is provided inside the dam bar 22 and a dam bar 22 formed in a rectangular frame shape as illustrated in FIG.
  • the intermediate member mounting portion 23 on which the intermediate member 50 on which the first semiconductor chip 30 and the second semiconductor chip 40 are mounted is disposed, and a plurality of leads 21.
  • Each lead 21 and the intermediate member mounting portion 23 are connected to the dam bar 22 by a connecting portion 24.
  • the first semiconductor chip 30 has an upper surface (main surface), a back surface, and a peripheral side surface, and is disposed on the chip mounting portion 50c of the intermediate member 50 with the back surface side facing the lead frame 20 side.
  • a flow rate detection unit 31 is formed on the upper surface of the first semiconductor chip 30.
  • a recess 33 is formed on the back surface side of the first semiconductor chip 30, and a thin diaphragm 32 is formed on the main surface side of the first semiconductor chip 30.
  • the recess 33 of the first semiconductor chip 30 is formed by etching using KOH, and the peripheral wall is formed in a V groove shape with an inclination angle of 54, 7 °.
  • the flow rate detection unit 31 includes a heating resistor, a heater control bridge, a temperature sensor bridge, and the like. By generating heat from the heating resistor, a temperature difference occurs in the resistors constituting the temperature sensor bridge and the heater control bridge according to the gas flow direction. Since the temperature difference changes corresponding to the magnitude of the flow rate, the flow rate is measured by detecting the change in resistance value associated with this temperature change.
  • the diaphragm 32 has a function of reducing the heat capacity of the lower part of the flow rate detection unit 31 and improving the reaction rate with respect to the temperature change of each resistor. Details of such a thermal flow sensor are disclosed in, for example, Japanese Patent Application Laid-Open No. 2012-141316.
  • a surface insulating film such as a polyimide film may be formed on the surface of the first semiconductor chip 30 for the purpose of stress buffering with the adhesive 72 to be bonded, surface protection, insulation, and the like. Good.
  • the second semiconductor chip 40 has an upper surface (main surface), a back surface, and a peripheral side surface.
  • the second semiconductor chip 40 is on the chip mounting portion 50c of the intermediate member 50 together with the first semiconductor chip 30 with the back surface side facing the lead frame 20 side. Is arranged.
  • the second semiconductor chip 40 has a CPU, an input circuit, an output circuit, a memory, and the like, and also has a control circuit unit for controlling the flow rate detection unit 31 to measure the flow rate.
  • a plurality of wirings 11 having one end connected to the flow rate detection unit 31 and the other end connected to the electrode pad 13 are formed on the upper surface of the first semiconductor chip 30. Yes.
  • a plurality of electrode pads 14 and a plurality of electrode pads 15 are provided on the upper surface of the second semiconductor chip 40.
  • the electrode pad 13 and the electrode pad 14 of the second semiconductor chip 40 are connected by a wire 16.
  • the electrode pad 15 and the lead 21 of the second semiconductor chip 40 are connected by a wire 17.
  • the wires 16 and 17 are made of gold, aluminum, copper or the like, and the connection between the electrode pads 13 and 14 and the connection between the electrode pad 15 and the lead 21 are made by a wire bonding method.
  • each lead 21 becomes a terminal for external connection connected only to the corresponding electrode pad 15.
  • the second semiconductor chip 40 is bonded by an adhesive 73 to the upper surface of the chip mounting portion 50 c whose back surface is bonded to the lead frame 20.
  • the adhesive 73 is formed in a solid shape with a uniform thickness as a whole.
  • the back surface of the first semiconductor chip 30 is bonded to the lead frame 20 by the adhesive 72 except for the recess 33 formed on the back surface of the diaphragm 32 and the region corresponding to the peripheral edge thereof. It is adhered to the upper surface of
  • an adhesive including a thermosetting resin such as an epoxy resin or a polyurethane resin, or an adhesive including a thermoplastic resin such as a polyimide resin, an acrylic resin, or a fluororesin is used. can do.
  • a thermosetting resin or a thermoplastic resin as a main component metal fine particles such as gold, silver, copper, tin, or inorganic fine particles containing silica, glass, carbon, mica, talc, etc. as components may be dispersed. Good. By dispersing metal fine particles and inorganic fine particles in appropriate amounts, the adhesive can be made conductive or the linear expansion coefficient of the adhesive can be adjusted.
  • a material including a silver paste or a solder material can be used as the adhesives 72 and 73.
  • the adhesives 72 and 73 may be adhesive sheets, but may be formed by application.
  • the first semiconductor chip 30, the second semiconductor chip 40, the wire 16, the wire 17, and the lead frame 20 expose the leading end portion of the lead 21 of the lead frame 20. Then, it is sealed with a sealing resin 60.
  • the sealing resin 60 is provided on the outer surface of the second semiconductor chip 40 in the longitudinal direction (Y direction) of the flow rate sensor 100 and the detection opening 61 that exposes the flow rate detection unit 31 formed on the main surface of the first semiconductor chip 30.
  • the ventilation opening 62 is formed in the.
  • the ventilation opening 62 communicates with a ventilation passage 51 of the lead frame 20 formed in the intermediate member 50 as described later.
  • the sealing resin 60 also covers the back side of the lead frame 20, and the portion of the sealing resin 60 that covers the back side of the lead frame 20 communicates with a recess 33 provided on the back side of the first semiconductor chip 30.
  • a lower opening 63 is formed.
  • a thermosetting resin such as an epoxy resin or a phenol resin
  • a thermoplastic resin such as polycarbonate, polyethylene terephthalate, polyphenylene sulfide, or polybutylene terephthalate
  • metal fine particles such as gold, silver, copper and tin, or inorganic fine particles containing silica, glass, carbon, mica, talc and the like as components may be dispersed. By dispersing metal fine particles and inorganic fine particles in appropriate amounts, the sealing resin 60 can be made conductive or the linear expansion coefficient of the sealing resin 60 can be adjusted.
  • the intermediate member 50 is formed with a first opening 52 communicating with a recess 33 provided on the back side of the first semiconductor chip 30.
  • the intermediate member 50 is formed with a second opening 53 that communicates with a ventilation opening 62 provided in the sealing resin 60. That is, the first opening 52 and the second opening 53 are formed near both ends in the longitudinal direction (Y direction) of the intermediate member 50.
  • the intermediate member 50 communicates with the first opening 52 on one end side and communicates with the second opening 53 on the other end side and extends in the longitudinal direction (Y direction) of the flow sensor 100. Is formed.
  • the ventilation passage 51 is formed in a groove shape having an opening on the lower surface facing the lead frame 20, and the opening is covered with the lead frame 20.
  • An adhesive 71 is provided on the back surface of the intermediate member 50 and the top surface of the lead frame 20. Therefore, the ventilation passage 51 is sealed by the lead frame 20 and the adhesive 71, and the internal space of the recess 33 provided on the back surface side of the first semiconductor chip 30 is the first opening 52 of the intermediate member 50, ventilation. It is communicated with the external space of the flow sensor 100 through the passage 51, the second opening 53, and the ventilation opening 62 of the sealing resin 60.
  • the material of the adhesive 71 the same material as the adhesive 72 and the adhesive 73 can be used.
  • the adhesive 71 can be an adhesive sheet, or can be formed by coating or resin molding.
  • the sealing resin 60 has a lower opening 63 communicating with the concave portion 33 below the diaphragm 32. Is formed.
  • the pressure in the external space around the flow rate detection unit 31 and the external pressure in the vicinity of the lower opening 63 of the sealing resin 60 have different fluctuation widths and timings. This is a factor that reduces the accuracy of flow rate detection.
  • the recess 33 provided in the lower part of the diaphragm 32 of the first semiconductor chip 30 is separated from the position of the diaphragm 32 in the longitudinal direction (Y direction) by the ventilation passage 51 formed in the intermediate member 50. It communicates with a ventilation opening 62 provided at the position. Therefore, the opening 62 for ventilation can be arrange
  • a lead frame 20 in which a plurality of leads 21 and an intermediate member mounting portion 23 are connected to a dam bar 22 by a connecting portion 24 is formed.
  • the intermediate member 50 is fixed to the upper surface of the intermediate member mounting portion 23 of the lead frame 20 with an adhesive 71.
  • Adhesives 72 and 73 are provided on the intermediate member 50 to fix the first semiconductor chip 30 and the second semiconductor chip 40, respectively.
  • a flow rate detection unit 31 On the upper surface of the first semiconductor chip 30, a flow rate detection unit 31, a wiring 11 and an electrode pad 13 are formed in advance.
  • the concave portion 33 on the back surface side of the diaphragm 32 is aligned with the first opening 52 of the intermediate member 50 and fixed with an adhesive 72.
  • the electrode pads 13 of the first semiconductor chip 30 and the electrode pads 14 of the second semiconductor chip 40 are connected by wires 16. Further, the electrode pads 15 of the second semiconductor chip 40 and the leads 21 of the lead frame 20 are connected by wires 17. Thereby, the unsealed flow rate sensor 100p illustrated in FIGS. 4A and 4B is manufactured. At this stage, the lead 21 is not separated from the lead frame 20.
  • FIG. 5 is a cross-sectional view showing a method of molding the unsealed flow rate sensor 100p.
  • the unsealed flow rate sensor 100 p is accommodated in the cavity 103 of the upper mold 101 and the lower mold 102.
  • An elastic film 110 is installed on the inner surface of the upper mold 101.
  • the elastic film 110 protects the first semiconductor chip 30 sandwiched between the upper mold 101 and the lower mold 102.
  • the upper mold 101 and the lower mold 102 are provided with protrusions for forming a detection opening 61, a ventilation opening 62, and a lower opening 63.
  • the sealing resin material is introduced from the resin inflow portion 104 and filled in the cavity 103.
  • the dam bar 22 of the lead frame 20 prevents the sealing resin material from leaking.
  • the sealing resin material filled in the cavity 103 of the upper mold 101 and the lower mold 102 is cured.
  • the cured semi-finished product is taken out from the mold, the connecting portion 24 of the lead frame 20 is cut, the dam bar 22 is separated, and the respective flow rate sensors 100 shown in FIG.
  • the positional deviation of the flow rate detection unit 31 fixed to the first semiconductor chip 30 can be adjusted before the sealing resin material is filled. That is, it is possible to set the flow rate detection unit 31 with respect to the sealing resin 60 at an accurate position and to reduce the variation in the position of the flow rate detection unit 31. Therefore, the detection accuracy of the gas flow rate can be improved, and the detection accuracy of all the flow rate sensors to be manufactured can be made uniform with little variation.
  • FIG. 2 is an enlarged view showing details of FIG. 3A to 3C show an intermediate member according to an embodiment of the present invention
  • FIG. 3A is a plan view thereof
  • FIG. 3B is a plan view of FIG.
  • FIG. 3C is a cross-sectional view taken along the line IIIb-IIIb
  • FIG. 3C is a plan view of the raw resin molded body for illustrating the method for manufacturing the intermediate member.
  • the intermediate member 50 is a rectangular thin plate member. As described above, the intermediate member 50 has the first opening 52 formed near one end in the longitudinal direction (Y direction) and the second opening 53 formed near the other end. The first opening 52 and the second opening 53 are connected by a ventilation passage 51.
  • the intermediate member 50 is formed of a material in which a synthetic resin 50a is filled with a filler 50b having a higher linear expansion coefficient and a higher elastic modulus than the synthetic resin 50a.
  • a thermosetting resin or a thermoplastic resin can be used as the synthetic resin 50a.
  • the thermosetting resin for example, a material containing an epoxy resin or a phenol resin can be used.
  • the thermoplastic resin for example, a material containing polycarbonate, polyethylene terephthalate, polyphenylene sulfide, polybutylene terephthalate, acrylonitrile butadiene styrene, or the like can be used.
  • a metal material containing gold, silver, copper, tin, aluminum, iron, or the like, or an inorganic material containing silica, glass, carbon, mica, talc, or the like as a component can be used as the filler 50b contained in the synthetic resin 50a.
  • a colorant By adding a colorant to the synthetic resin 50a, conductivity may be imparted, or the linear expansion coefficient and color may be controlled.
  • the intermediate member 50 is manufactured by a molding method such as injection molding or transfer molding.
  • the intermediate member 50 having the first opening 52, the second opening 53, the ventilation passage 51 and the like can be formed without secondary processing, so that the productivity is good and the production cost is reduced. can do.
  • the thermal flow rate detection unit 31 is formed on the upper surface of the first semiconductor chip 30.
  • the thermal conductivity of the intermediate member 50 is high, the heat of the flow rate detection unit 31 is transmitted to the lead frame 20 via the intermediate member 50. That is, the heat of the flow rate detection unit 31 is radiated to the outside, and the temperature decreases, so the flow rate detection accuracy decreases.
  • the thermal conductivity of the intermediate member 50 is about 1/10 or less of silicon constituting the first semiconductor chip 30. If the intermediate member 50 is formed of only synthetic resin, the thermal conductivity can be sufficiently reduced.
  • the linear expansion coefficient of the synthetic resin is larger than that of silicon, the stress due to the difference in the linear expansion coefficient between the intermediate member 50 and the first semiconductor chip 30 is generated in the first semiconductor chip 30 only with the synthetic resin. For this reason, the detection accuracy of the flow rate decreases.
  • the intermediate member 50 is formed of a material in which the filler 50b having a smaller linear expansion coefficient than the synthetic resin 50a is filled in the synthetic resin 50a. For this reason, the linear expansion coefficient of the intermediate member 50 can be brought closer to the linear expansion coefficient of the first semiconductor chip 30 than when the intermediate member 50 is formed of only synthetic resin, and the flow rate detection accuracy can be improved.
  • the linear expansion coefficient of the intermediate member 50 is preferably about 1.5 to 5.0 times that of the first semiconductor chip 30.
  • the plate thickness of the lead frame 20 is about 1 mm or less, but since the intermediate member 50 is interposed between the lead frame 20 and the first semiconductor chip 30, the secondary moment of section of the flow sensor 100 is reduced. Can be bigger. That is, the intermediate member 50 can have a function of reinforcing the rigidity of the lead frame 20. Furthermore, since the intermediate member 50 formed of the synthetic resin 50a filled with the filler 50b is used, the rigidity of the flow sensor 100 can be further increased.
  • the synthetic resin 50a It is preferable to fill the synthetic resin 50a with a filler 50b having a higher elastic modulus than the synthetic resin 50a by about 30% by weight or more. By increasing the elastic modulus of the intermediate member 50, the rigidity of the flow sensor 100 can be further improved.
  • the intermediate member 50 When producing the intermediate member 50 by a mold method, it is preferable to employ a method in which a plurality of intermediate members 50 are collectively formed as shown in FIG.
  • one intermediate member forming substrate 50m in which the intermediate members 50 having the first opening 52, the ventilation passage 51, and the second opening 53 are two-dimensionally arranged is formed by a molding method. After the intermediate member forming substrate 50m is taken out of the mold, it is cut vertically and horizontally to form individual intermediate members 50 as indicated by a two-dot chain line.
  • An intermediate member 50 formed of synthetic resin is interposed between the first semiconductor chip 30 on which the flow rate detection unit 31 is formed and the lead frame 20 as a support member. Since the synthetic resin intermediate member 50 can be formed by a molding method, the productivity is good and the production cost can be reduced. In particular, if a method is adopted in which a plurality of intermediate members 50 are collectively molded on one intermediate member forming substrate 50m and then divided into individual intermediate members 50 after forming, productivity is further improved. be able to.
  • the intermediate member 50 is formed of a material in which a synthetic resin 50a is filled with a filler 50b having a smaller linear expansion coefficient than the synthetic resin 50a. For this reason, the linear expansion coefficient of the intermediate member 50 can be brought close to the linear expansion coefficient of the first semiconductor chip 30 on which the thermal flow rate detection unit 31 is formed. Thereby, the stress which arises in the 1st semiconductor chip 30 resulting from the difference in a linear expansion coefficient can be reduced, and the precision of flow volume detection can be improved.
  • the intermediate member 50 is formed of a synthetic resin 50a filled with a filler 50b having a larger elastic modulus than that of the synthetic resin 50a. For this reason, the elasticity modulus of the intermediate member 50 can be made higher than the case where it forms only with a synthetic resin. Thereby, even in the structure using the lead frame 20 with a small plate thickness, the rigidity of the flow sensor 100 can be increased.
  • the intermediate member 50 is provided with the first opening 52, the ventilation passage 51, and the second opening 53, and the recess 33 and the sealing resin 60 provided on the back surface side of the diaphragm 32 of the first semiconductor chip 30.
  • the ventilation opening 62 was connected. For this reason, the pressure in the external space of the flow rate detector 31 provided on the upper side of the diaphragm 32 and the internal pressure of the recess 33 on the back surface side of the diaphragm 32 can be made substantially the same, improving the accuracy of flow rate measurement. be able to.
  • the intermediate member 50 can employ various forms different from the above-described one embodiment. An example of another form is shown below.
  • FIG. 6 is a sectional view showing Embodiment 2 of the flow sensor according to the present invention.
  • the flow sensor 100 of the second embodiment is different from the first embodiment only in the intermediate member 50A. In the following, the differences will be described, and the others will be denoted by the same reference numerals and the description thereof will be omitted.
  • the intermediate member 50A of the second embodiment has a structure in which the uppermost filler 50b out of the filler 50b filled in the synthetic resin 50a protrudes from the surface of the synthetic resin 50a.
  • the release agent applied to the inner surface of the mold may remain on the surface of the intermediate member 50. If the release agent adheres to the intermediate member 50, the adhesive strength between the adhesive 72 and the sealing resin 60 may be reduced and peel off. When peeling occurs, it causes a decrease in strength and corrosion due to intrusion of moisture and the like. Therefore, in the flow sensor 100 of the second embodiment, the synthetic resin 50a on the upper surface side (Z direction side) of the intermediate member 50 is removed, and the uppermost filler 50b is protruded from the surface of the synthetic resin 50a.
  • a single intermediate member forming substrate 50m in which the intermediate members 50 having the first opening 52, the ventilation passage 51, and the second opening 53 are two-dimensionally arranged is molded by a molding method.
  • Form. The surface layer of the synthetic resin 50a on the surface to be bonded to the adhesive 72 and the sealing resin 60 on either one of the front and back surfaces of the intermediate member forming substrate 50m is removed, and the filler 50b is protruded from the surface of the synthetic resin 50a.
  • the removal of the surface layer of the synthetic resin 50a of the intermediate member forming substrate 50m can be performed by wet etching, dry etching, blasting or polishing.
  • each intermediate member 50A is formed by cutting the intermediate member forming substrate 50m from which the filler 50b protrudes on one side in the vertical and horizontal directions.
  • the same effects as the effects (1) to (4) of the first embodiment can be obtained.
  • the filler 50b protrudes from the surface of the synthetic resin 50a and the surface area that becomes the bonding surface is increased, the adhesive strength between the adhesive 72 and the sealing resin 60 can be improved.
  • a material having good adhesiveness with the sealing resin 60 or the adhesive 72 such as silica, talc, mica, carbon, aluminum, iron or the like can be used.
  • the adhesive strength of can be further increased. As the adhesive strength increases, the rigidity of the flow sensor 100 increases and the reliability against corrosion and the like improves.
  • FIG. 7 is a cross-sectional view showing a third embodiment of the flow sensor according to the present invention.
  • the fillers 50b on the peripheral side surface (the surfaces on both sides in the X direction and the surfaces on both sides in the Y direction) protrude from the peripheral side surface of the synthetic resin 50a. It has the structure to do.
  • the filler 50b does not protrude from the synthetic resin 50a on the upper and lower surfaces (surfaces on both sides in the Z direction).
  • one intermediate member forming substrate 50m in which the intermediate members 50 are two-dimensionally arranged is formed by a molding method, and the intermediate member forming substrate 50m is vertically and horizontally formed. Cut and separate into individual intermediate members 50. Thereafter, the surface of the synthetic resin 50a on the peripheral side surface of each intermediate member 50 is removed, and the filler 50b is protruded.
  • the same effects as the effects (1) to (4) of the first embodiment described above can be obtained.
  • the filler 50b protrudes from the peripheral side surface of the synthetic resin 50a and the surface area that becomes the bonding surface is increased, the adhesive strength with the sealing resin 60 can be improved. As the adhesive strength increases, the rigidity of the flow sensor 100 increases and the reliability against corrosion and the like improves.
  • FIG. 8 is a sectional view showing Embodiment 4 of the flow sensor according to the present invention.
  • the flow sensor 100 according to the fourth embodiment is different from the other embodiments in the structure in which the first semiconductor chip 30 and the intermediate member 50 are bonded with an adhesive 72A.
  • the adhesive 72 ⁇ / b> A is provided on the entire upper surface of the intermediate member 50 except for the first opening 52 and the second opening 53 (not shown in this drawing).
  • the width of the intermediate member 50 (the length in the X direction) is larger than the width of the first semiconductor chip 30, and the first semiconductor chip 30 is disposed inside the adhesive 72A.
  • the upper surface of the adhesive 72A (the surface facing the first semiconductor chip 30) is bonded to the sealing resin 60 at both side edges in the width direction (X direction).
  • the adhesive area between the adhesive 72A and the sealing resin 60 increases, and the adhesive strength between the adhesive 72A and the sealing resin 60 increases.
  • the rigidity of the flow sensor 100 increases and the reliability against corrosion and the like improves.
  • the fourth embodiment also has the same effects as the effects (1) to (4) of the first embodiment described above.
  • FIG. 9 is a sectional view showing Embodiment 5 of the flow sensor according to the present invention.
  • the intermediate member 50A of the second embodiment illustrated in FIG. 6 has a structure in which the uppermost filler 50b protrudes from the surface of the synthetic resin 50a.
  • the outer surface of the uppermost filler 50b is formed substantially flush with the upper surface of the synthetic resin 50a. That is, also in Embodiment 5, the uppermost filler 50b is exposed from the upper surface of the synthetic resin 50a, but the upper surface is substantially flat with the synthetic resin 50a.
  • the same effects as the effects (1) to (4) of the first embodiment described above are obtained.
  • FIG. 10 shows a flow sensor according to a sixth embodiment of the present invention
  • FIG. 10 (a) is a plan view thereof
  • FIG. 10 (b) is a cross-sectional view taken along the line Xb-Xb of FIG. 10
  • FIG. 10 (c) is a cross-sectional view taken along line Xc-Xc of FIG. 10 (a).
  • the difference between the flow sensor 100 of the sixth embodiment and the other embodiments is the structure of the intermediate member 50D and the sealing resin 60A.
  • the first opening 52, the ventilation passage 51, and the second opening 53 are not formed in the intermediate member 50D. Further, the opening 62 for ventilation is not formed in the sealing resin 60A.
  • the intermediate member 50D can be a flat thin plate member that is not processed except for cutting the outer periphery.
  • the intermediate member forming substrate 50m can be formed by extrusion molding, which can reduce the mold cost and increase the efficiency of the productivity, thereby further reducing the production cost. be able to.
  • the flow sensor 100 of the sixth embodiment also has the same effects as the effects (1) to (3) of the first embodiment described above. Moreover, since intermediate member 50D of Embodiment 6 is not subjected to groove processing or the like, the rigidity can be increased. Therefore, even when the thin lead frame 20 is used, sufficient rigidity of the flow sensor 100 can be ensured.
  • the first semiconductor chip 30 in which the flow rate detection unit 31 is formed and the second semiconductor chip 40 having a control unit that controls the flow rate detection unit 31 may be a single semiconductor chip.
  • the lead frame 20 in each of the above embodiments may be a resin substrate.
  • a connection terminal connected to the flow rate detection unit 31 may be integrally formed on the substrate, or a connection lead connected to the flow rate detection unit 31 may be embedded in the sealing resin 60 as a separate member.
  • the intermediate member 50D that does not have the first opening 52, the ventilation passage 51, and the second opening 53 shown in the sixth embodiment can be applied to the flow sensor 100 of the first to fifth embodiments. .
  • it can be set as the structure which combined intermediate member 50A, 50B, 50C suitably.
  • the filler 50b may be exposed from the synthetic resin 50a also on the surface bonded to the adhesive 71.
  • the sealing resin 60 covering the first and second semiconductor chips 30 and 40 is exemplified as a structure in which the upper surface is higher than the upper surface of the flow rate detection unit 31 in the Z direction.
  • the upper surface of the sealing resin 60 may be lower than the upper surface of the flow rate detection unit 31 in the Z direction.
  • the sealing resin 60 may be configured to partially expose the second semiconductor chip 40 and the lead frame 20.
  • an intermediate member is interposed between a semiconductor chip having a thermal flow rate detection unit and a support member,
  • the semiconductor chip is covered with a sealing resin by exposing the flow rate detection unit, and the intermediate member is made of a filler-containing resin in which a filler having a higher elastic modulus and a lower linear expansion coefficient than the synthetic resin is dispersed in the synthetic resin. Any formed material may be used.

Abstract

This flow rate sensor is provided with: a semiconductor chip which has a thermal flow rate sensing part on a main surface; a supporting member which supports the semiconductor chip; an intermediate member which is interposed between the supporting member and the semiconductor chip; and a sealing resin which covers the main surface of the semiconductor chip so that the flow rate sensing part is exposed therefrom. The intermediate member is formed from a filler-containing synthetic resin wherein a filler is contained in a synthetic resin, said filler having a higher elastic modulus and a lower linear expansion coefficient than the synthetic resin.

Description

流量センサFlow sensor
 この発明は流量センサに関し、より詳細には、流量検出部を有する半導体チップを備える流量センサに関する。 The present invention relates to a flow rate sensor, and more particularly to a flow rate sensor including a semiconductor chip having a flow rate detection unit.
 自動車などの内燃機関は、内燃機関に流入する空気と燃料の量を適切に調整して、内燃機関を効率よく稼動させるための電子制御燃料噴射装置を備えている。電子制御燃料噴射装置には、内燃機関に流入する空気の流量を測定するための流量センサが設けられている。
 流量センサは、例えば、発熱抵抗体と測温抵抗体とを備えた熱式の流量検出部を有する。流量検出部は、半導体チップに設けられ、流量検出部を露出した状態で半導体チップの周囲を樹脂で封止する構造を有している。
An internal combustion engine such as an automobile includes an electronically controlled fuel injection device for appropriately operating the internal combustion engine by appropriately adjusting the amount of air and fuel flowing into the internal combustion engine. The electronically controlled fuel injection device is provided with a flow sensor for measuring the flow rate of air flowing into the internal combustion engine.
The flow rate sensor has, for example, a thermal flow rate detection unit including a heating resistor and a resistance temperature detector. The flow rate detection unit is provided on the semiconductor chip and has a structure in which the periphery of the semiconductor chip is sealed with resin in a state where the flow rate detection unit is exposed.
 半導体チップは、外部機器との接続を図るため、通常、リードフレーム上に搭載される。しかし、リードフレームと半導体チップとの線膨張係数の相違により半導体チップに応力が生じる。このため、リードフレームと半導体チップとの間に、ガラスにより形成された中間部材を介装して、線膨張係数差に基づく応力を低減した流量センサが知られている(特許文献1参照)。 The semiconductor chip is usually mounted on a lead frame in order to connect to an external device. However, stress is generated in the semiconductor chip due to the difference in coefficient of linear expansion between the lead frame and the semiconductor chip. For this reason, a flow sensor is known in which an intermediate member formed of glass is interposed between a lead frame and a semiconductor chip to reduce stress based on a difference in linear expansion coefficient (see Patent Document 1).
日本国特開2009-36639号公報Japanese Unexamined Patent Publication No. 2009-36639
 中間部材としてガラスを用いると、高価格となる。また、ガラスは、熱伝導率が大きいので、流量の検出に悪影響を生じる。 If glass is used as the intermediate member, the price is high. Moreover, since glass has a large thermal conductivity, it adversely affects the detection of the flow rate.
 本発明の第1の態様によると、流量センサは、主面に熱式の流量検出部を有する半導体チップと、半導体チップを支持する支持部材と、支持部材と半導体チップとの間に介装された中間部材と、流量検出部を露出して、半導体チップの主面を覆う封止樹脂と、を備え、中間部材は、合成樹脂中に、合成樹脂よりも弾性率が高く、線膨張係数が低いフィラーが含有されたフィラー含有合成樹脂により形成されている。
 本発明の第2の態様によると、流量センサは、主面に熱式の流量検出部を有する半導体チップと、半導体チップを支持する支持部材と、支持部材上に搭載され、半導体チップがその主面に対向する裏面で接着剤により接着され、合成樹脂を含む材料により形成された中間部材と、流量検出部を露出して、半導体チップの主面を覆う封止樹脂と、を備え、中間部材は、複数の中間部材が形成された1つの未加工樹脂成形体を分割して形成された部材である。
According to the first aspect of the present invention, the flow sensor is interposed between a semiconductor chip having a thermal flow rate detection unit on the main surface, a support member that supports the semiconductor chip, and the support member and the semiconductor chip. The intermediate member, and a sealing resin that exposes the flow rate detection unit and covers the main surface of the semiconductor chip. The intermediate member has a higher elastic modulus and a linear expansion coefficient in the synthetic resin than the synthetic resin. It is formed of a filler-containing synthetic resin containing a low filler.
According to the second aspect of the present invention, the flow rate sensor is mounted on the semiconductor chip having the thermal flow rate detection part on the main surface, the support member that supports the semiconductor chip, and the semiconductor chip is the main part. An intermediate member that is bonded with an adhesive on the back surface facing the surface and formed of a material including a synthetic resin, and a sealing resin that exposes the flow rate detection unit and covers the main surface of the semiconductor chip. Is a member formed by dividing one raw resin molded body on which a plurality of intermediate members are formed.
 本発明によれば、中間部材が安価となり、流量センサを低価格とすることができる。また、熱伝導率が小さくなるので、流量検出の精度を向上することができる。 According to the present invention, the intermediate member is inexpensive and the flow rate sensor can be made inexpensive. In addition, since the thermal conductivity is reduced, the accuracy of flow rate detection can be improved.
図1は本発明による流量センサの一実施の形態を示し、図1(a)はその平面図、図1(b)は、図1(a)のIb-Ib線断面図、図1(c)は、図1(a)のIc-Ic線断面図。FIG. 1 shows an embodiment of a flow sensor according to the present invention, FIG. 1 (a) is a plan view thereof, FIG. 1 (b) is a sectional view taken along line Ib-Ib of FIG. 1 (a), and FIG. ) Is a cross-sectional view taken along line Ic-Ic in FIG. 図2は、図1(c)の詳細を示す拡大図。FIG. 2 is an enlarged view showing details of FIG. 図3は本発明の一実施の形態による中間部材を示し、図3(a)はその平面図、図3(b)は、図3(a)のIIIb-IIIb線断面図、図3(c)は、中間部材の製造方法を説明するための未加工樹脂成形体の平面図。3 shows an intermediate member according to an embodiment of the present invention, FIG. 3 (a) is a plan view thereof, FIG. 3 (b) is a sectional view taken along line IIIb-IIIb of FIG. 3 (a), and FIG. ) Is a plan view of an unprocessed resin molding for explaining a method for producing an intermediate member. 図4は図1における封止樹脂を取り除いた図であり、図4(a)はその平面図、図4(b)は、図4(a)のIVb-IVb線断面図。4 is a view in which the sealing resin in FIG. 1 is removed, FIG. 4 (a) is a plan view thereof, and FIG. 4 (b) is a sectional view taken along line IVb-IVb of FIG. 4 (a). 図5は、封止樹脂をモールド成形する方法を示す断面図。FIG. 5 is a cross-sectional view showing a method for molding a sealing resin. 図6は、本発明による流量センサの実施形態2を示す断面図。FIG. 6 is a cross-sectional view showing a second embodiment of the flow sensor according to the present invention. 図7は、本発明による流量センサの実施形態3を示す断面図。FIG. 7 is a cross-sectional view showing a third embodiment of the flow sensor according to the present invention. 図8は、本発明による流量センサの実施形態4を示す断面図。FIG. 8 is a sectional view showing a flow sensor according to a fourth embodiment of the present invention. 図9は、本発明による流量センサの実施形態5を示す断面図。FIG. 9 is a sectional view showing a flow sensor according to a fifth embodiment of the present invention. 図10は、本発明による流量センサの実施形態6を示し、図10(a)はその平面図、図10(b)は、図10(a)のXb-Xb線断面図、図10(c)は、図10(a)のXc-Xc線断面図。FIG. 10 shows a flow sensor according to a sixth embodiment of the present invention, FIG. 10 (a) is a plan view thereof, FIG. 10 (b) is a cross-sectional view taken along line Xb-Xb of FIG. 10 (a), and FIG. ) Is a cross-sectional view taken along line Xc-Xc in FIG.
-実施形態1-
<流量センサの全体構造>
 図1は、本発明による流量センサの一実施の形態を示し、図1(a)はその平面図であり、図1(b)は、図1(a)のIb-Ib線断面図であり、図1(c)は、図1(a)のIc-Ic線断面図である。また、図4は、図1における封止樹脂を取り除いた図であり、図4(a)はその平面図、図4(b)は、図4(a)のIVb-IVb線断面図である。
 流量センサ100は、例えば、車両の内燃機関の吸気ダクトなどに設置される。流量センサ100は、熱式の空気流量センサである。
 なお、以下の説明において、X方向、Y方向、Z方向は図示の通りとする。
Embodiment 1
<Overall structure of flow sensor>
FIG. 1 shows an embodiment of a flow sensor according to the present invention, FIG. 1 (a) is a plan view thereof, and FIG. 1 (b) is a sectional view taken along line Ib-Ib of FIG. 1 (a). FIG. 1C is a cross-sectional view taken along the line Ic-Ic in FIG. 4 is a view in which the sealing resin in FIG. 1 is removed, FIG. 4 (a) is a plan view thereof, and FIG. 4 (b) is a sectional view taken along line IVb-IVb of FIG. 4 (a). .
The flow sensor 100 is installed, for example, in an intake duct of an internal combustion engine of a vehicle. The flow sensor 100 is a thermal air flow sensor.
In the following description, the X direction, the Y direction, and the Z direction are as illustrated.
 流量センサ100は、複数のリード21を有するリードフレーム20と、リードフレーム20上に搭載された中間部材50と、中間部材50のチップ搭載部50cに搭載された第一半導体チップ30および第二半導体チップ40と、リードフレーム20のリード21および第一半導体チップ30の一部を露出してリードフレーム20と共に第一半導体チップ30および第二半導体チップ40を封止する封止樹脂60とを備えている。中間部材50は、接着剤71によりリードフレーム20に接着されている。第一半導体チップ30は、周縁部に環状に設けられた接着剤72により中間部材50に接着されている。また、第二半導体チップ40は、接着剤73により中間部材50に接着されている。 The flow sensor 100 includes a lead frame 20 having a plurality of leads 21, an intermediate member 50 mounted on the lead frame 20, a first semiconductor chip 30 and a second semiconductor mounted on a chip mounting portion 50 c of the intermediate member 50. A chip 40 and a sealing resin 60 that seals the first semiconductor chip 30 and the second semiconductor chip 40 together with the lead frame 20 by exposing the leads 21 of the lead frame 20 and a part of the first semiconductor chip 30 are provided. Yes. The intermediate member 50 is bonded to the lead frame 20 with an adhesive 71. The first semiconductor chip 30 is bonded to the intermediate member 50 with an adhesive 72 provided annularly at the peripheral edge. The second semiconductor chip 40 is bonded to the intermediate member 50 with an adhesive 73.
 リードフレーム20は、例えば、銅などの金属部材により形成されており、図4(a)に図示されるように、矩形の枠状に形成されたダムバー22と、ダムバー22の内部に設けられ、第一半導体チップ30および第二半導体チップ40を搭載する中間部材50が配置される中間部材搭載部23と、複数のリード21とを有する。各リード21および中間部材搭載部23は、連結部24によりダムバー22に接続されている。 The lead frame 20 is formed of, for example, a metal member such as copper, and is provided inside the dam bar 22 and a dam bar 22 formed in a rectangular frame shape as illustrated in FIG. The intermediate member mounting portion 23 on which the intermediate member 50 on which the first semiconductor chip 30 and the second semiconductor chip 40 are mounted is disposed, and a plurality of leads 21. Each lead 21 and the intermediate member mounting portion 23 are connected to the dam bar 22 by a connecting portion 24.
 第一半導体チップ30は、上面(主面)と、裏面と、周側面とを有し、裏面側をリードフレーム20側に向けて中間部材50のチップ搭載部50c上に配置されている。第一半導体チップ30の上面には、流量検出部31が形成されている。第一半導体チップ30の裏面側には、凹部33が形成され、第一半導体チップ30の主面側に、薄肉のダイヤフラム32が形成されている。第一半導体チップ30の凹部33は、KOHを用いたエッチングにより形成され、周壁が傾斜角54、7°のV溝状に形成されている。流量検出部31には、図示はしないが、発熱抵抗体、ヒータ制御ブリッジおよび温度センサブリッジなどが形成されている。発熱抵抗体を発熱することにより、温度センサブリッジおよびヒータ制御ブリッジを構成する抵抗体に、気体の流れ方向に応じて温度差が生じる。温度差は、流量の大小に対応して変化するため、この温度変化に伴う抵抗値の変化分を検出して流量を計測する。ダイヤフラム32は、流量検出部31の下部の熱容量を小さくして、各抵抗体の温度変化に対する反応速度を向上する機能を有する。このような、熱式の流量センサの詳細は、例えば、日本国特開2012-141316号公報に開示されている。
 なお、図示はしていないが、第一半導体チップ30の表面には、接着する接着剤72との応力緩衝、表面保護、絶縁などを目的として、ポリイミド膜などの表面絶縁膜を形成してもよい。
The first semiconductor chip 30 has an upper surface (main surface), a back surface, and a peripheral side surface, and is disposed on the chip mounting portion 50c of the intermediate member 50 with the back surface side facing the lead frame 20 side. A flow rate detection unit 31 is formed on the upper surface of the first semiconductor chip 30. A recess 33 is formed on the back surface side of the first semiconductor chip 30, and a thin diaphragm 32 is formed on the main surface side of the first semiconductor chip 30. The recess 33 of the first semiconductor chip 30 is formed by etching using KOH, and the peripheral wall is formed in a V groove shape with an inclination angle of 54, 7 °. Although not shown, the flow rate detection unit 31 includes a heating resistor, a heater control bridge, a temperature sensor bridge, and the like. By generating heat from the heating resistor, a temperature difference occurs in the resistors constituting the temperature sensor bridge and the heater control bridge according to the gas flow direction. Since the temperature difference changes corresponding to the magnitude of the flow rate, the flow rate is measured by detecting the change in resistance value associated with this temperature change. The diaphragm 32 has a function of reducing the heat capacity of the lower part of the flow rate detection unit 31 and improving the reaction rate with respect to the temperature change of each resistor. Details of such a thermal flow sensor are disclosed in, for example, Japanese Patent Application Laid-Open No. 2012-141316.
Although not shown, a surface insulating film such as a polyimide film may be formed on the surface of the first semiconductor chip 30 for the purpose of stress buffering with the adhesive 72 to be bonded, surface protection, insulation, and the like. Good.
 第二半導体チップ40は、上面(主面)と、裏面と、周側面とを有し、裏面側をリードフレーム20側に向けて、第一半導体チップ30と共に中間部材50のチップ搭載部50c上に配置されている。第二半導体チップ40は、CPU、入力回路、出力回路およびメモリなどを有し、また、流量検出部31を制御して流量を計測するための制御回路部を有している。 The second semiconductor chip 40 has an upper surface (main surface), a back surface, and a peripheral side surface. The second semiconductor chip 40 is on the chip mounting portion 50c of the intermediate member 50 together with the first semiconductor chip 30 with the back surface side facing the lead frame 20 side. Is arranged. The second semiconductor chip 40 has a CPU, an input circuit, an output circuit, a memory, and the like, and also has a control circuit unit for controlling the flow rate detection unit 31 to measure the flow rate.
 図4(a)に図示されるように、第一半導体チップ30の上面には、一端が流量検出部31に接続され、他端が電極パッド13に接続される複数の配線11が形成されている。第二半導体チップ40の上面には複数の電極パッド14と、複数の電極パッド15が設けられている。電極パッド13と第二半導体チップ40の電極パッド14とはワイヤ16で接続されている。第二半導体チップ40の電極パッド15とリード21とはワイヤ17により接続されている。ワイヤ16、17は金、アルミニウム、銅などにより形成され、電極パッド13、14間の接続および電極パッド15とリード21との接続はワイヤボンディング法による。後述するように、封止樹脂60を形成後、リードフレーム20は連結部24で切断され、各リード21が相互に分離されると共に、ダムバー22が切り落とされる。これにより、各リード21は、それぞれ、対応する電極パッド15のみに接続された外部接続用の端子となる。 As shown in FIG. 4A, a plurality of wirings 11 having one end connected to the flow rate detection unit 31 and the other end connected to the electrode pad 13 are formed on the upper surface of the first semiconductor chip 30. Yes. A plurality of electrode pads 14 and a plurality of electrode pads 15 are provided on the upper surface of the second semiconductor chip 40. The electrode pad 13 and the electrode pad 14 of the second semiconductor chip 40 are connected by a wire 16. The electrode pad 15 and the lead 21 of the second semiconductor chip 40 are connected by a wire 17. The wires 16 and 17 are made of gold, aluminum, copper or the like, and the connection between the electrode pads 13 and 14 and the connection between the electrode pad 15 and the lead 21 are made by a wire bonding method. As will be described later, after forming the sealing resin 60, the lead frame 20 is cut by the connecting portion 24, the leads 21 are separated from each other, and the dam bar 22 is cut off. Thus, each lead 21 becomes a terminal for external connection connected only to the corresponding electrode pad 15.
 第二半導体チップ40は、その裏面がリードフレーム20に接着されているチップ搭載部50cの上面に接着剤73により接着されている。接着剤73は、全体が一様な厚さのべた状に形成されている。
 第一半導体チップ30の裏面は接着剤72により、ダイヤフラム32の裏面に形成された凹部33およびその周縁部に対応する領域を除き、リードフレーム20に接着されている中間部材50のチップ搭載部50cの上面に接着されている。
The second semiconductor chip 40 is bonded by an adhesive 73 to the upper surface of the chip mounting portion 50 c whose back surface is bonded to the lead frame 20. The adhesive 73 is formed in a solid shape with a uniform thickness as a whole.
The back surface of the first semiconductor chip 30 is bonded to the lead frame 20 by the adhesive 72 except for the recess 33 formed on the back surface of the diaphragm 32 and the region corresponding to the peripheral edge thereof. It is adhered to the upper surface of
 接着剤72および接着剤73として、例えば、エポキシ樹脂やポリウレタン樹脂などの熱硬化性樹脂を成分とした接着剤、ポリイミド樹脂やアクリル樹脂やフッ素樹脂などの熱可塑性樹脂を成分とした接着剤を使用することができる。また、熱硬化性樹脂または熱可塑性樹脂を主成分として、金、銀、銅、すずなどの金属微粒子、あるいは、シリカ、ガラス、カーボン、マイカ、タルクなどを成分として含む無機微粒子を分散してもよい。金属微粒子や無機微粒子を適量分散することにより、接着剤に導電性を持たせたり、接着剤の線膨張係数の調整を行ったりすることができる。また、接着剤72、73として、銀ペーストや半田材料などを含む材料を用いることもできる。
 接着剤72、73は、接着シートであってもよいが、塗布により形成してもよい。
As the adhesive 72 and the adhesive 73, for example, an adhesive including a thermosetting resin such as an epoxy resin or a polyurethane resin, or an adhesive including a thermoplastic resin such as a polyimide resin, an acrylic resin, or a fluororesin is used. can do. In addition, a thermosetting resin or a thermoplastic resin as a main component, metal fine particles such as gold, silver, copper, tin, or inorganic fine particles containing silica, glass, carbon, mica, talc, etc. as components may be dispersed. Good. By dispersing metal fine particles and inorganic fine particles in appropriate amounts, the adhesive can be made conductive or the linear expansion coefficient of the adhesive can be adjusted. Further, as the adhesives 72 and 73, a material including a silver paste or a solder material can be used.
The adhesives 72 and 73 may be adhesive sheets, but may be formed by application.
 図1(a)~(c)に図示されるように、第一半導体チップ30、第二半導体チップ40、ワイヤ16、ワイヤ17およびリードフレーム20は、リードフレーム20のリード21の先端部を露出して封止樹脂60により封止されている。封止樹脂60は、第一半導体チップ30の主面に形成された流量検出部31を露出する検出用開口部61、および流量センサ100の長手方向(Y方向)における第二半導体チップ40の外側に形成された換気用開口部62を有する。換気用開口部62は、後述する如く、中間部材50に形成されたリードフレーム20の換気用通路51に連通している。 As shown in FIGS. 1A to 1C, the first semiconductor chip 30, the second semiconductor chip 40, the wire 16, the wire 17, and the lead frame 20 expose the leading end portion of the lead 21 of the lead frame 20. Then, it is sealed with a sealing resin 60. The sealing resin 60 is provided on the outer surface of the second semiconductor chip 40 in the longitudinal direction (Y direction) of the flow rate sensor 100 and the detection opening 61 that exposes the flow rate detection unit 31 formed on the main surface of the first semiconductor chip 30. The ventilation opening 62 is formed in the. The ventilation opening 62 communicates with a ventilation passage 51 of the lead frame 20 formed in the intermediate member 50 as described later.
 封止樹脂60は、リードフレーム20の裏面側も覆っており、リードフレーム20の裏面側を覆う封止樹脂60の部分には、第一半導体チップ30の裏面側に設けられた凹部33に連通する下部開口部63が形成されている。
 封止樹脂60としては、例えば、エポキシ樹脂やフェノール樹脂などの熱硬化性樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ポリブチレンテレフタレートなどの熱可塑性樹脂を使用することができる。また、金、銀、銅、すずなどの金属微粒子、あるいは、シリカ、ガラス、カーボン、マイカ、タルクなどを成分として含む無機微粒子を分散してもよい。金属微粒子や無機微粒子を適量分散することにより、封止樹脂60に導電性を持たせたり、封止樹脂60の線膨張係数の調整を行ったりすることができる。
The sealing resin 60 also covers the back side of the lead frame 20, and the portion of the sealing resin 60 that covers the back side of the lead frame 20 communicates with a recess 33 provided on the back side of the first semiconductor chip 30. A lower opening 63 is formed.
As the sealing resin 60, for example, a thermosetting resin such as an epoxy resin or a phenol resin, or a thermoplastic resin such as polycarbonate, polyethylene terephthalate, polyphenylene sulfide, or polybutylene terephthalate can be used. Further, metal fine particles such as gold, silver, copper and tin, or inorganic fine particles containing silica, glass, carbon, mica, talc and the like as components may be dispersed. By dispersing metal fine particles and inorganic fine particles in appropriate amounts, the sealing resin 60 can be made conductive or the linear expansion coefficient of the sealing resin 60 can be adjusted.
 中間部材50には、第一半導体チップ30の裏面側に設けられた凹部33に連通する第1開口部52が形成されている。また、中間部材50には、封止樹脂60に設けられた換気用開口部62に連通する第2開口部53が形成されている。つまり、第1開口部52と第2開口部53とは、中間部材50の長手方向(Y方向)の両端近傍に形成されている。中間部材50には、一端側で第1開口部52に連通し、他端側で第2開口部53に連通する、流量センサ100の長手方向(Y方向)に延出された換気用通路51が形成されている。換気用通路51は、リードフレーム20に対面する下面側が開口された溝状に形成されており、この開口は、リードフレーム20により覆われている。 The intermediate member 50 is formed with a first opening 52 communicating with a recess 33 provided on the back side of the first semiconductor chip 30. The intermediate member 50 is formed with a second opening 53 that communicates with a ventilation opening 62 provided in the sealing resin 60. That is, the first opening 52 and the second opening 53 are formed near both ends in the longitudinal direction (Y direction) of the intermediate member 50. The intermediate member 50 communicates with the first opening 52 on one end side and communicates with the second opening 53 on the other end side and extends in the longitudinal direction (Y direction) of the flow sensor 100. Is formed. The ventilation passage 51 is formed in a groove shape having an opening on the lower surface facing the lead frame 20, and the opening is covered with the lead frame 20.
 中間部材50の裏面とリードフレーム20の上面には接着剤71が設けられている。従って、換気用通路51はリードフレーム20と接着剤71により封口されており、第一半導体チップ30の裏面側に設けられた凹部33の内部空間は、中間部材50の第1開口部52、換気用通路51、第2開口部53、封止樹脂60の換気用開口部62を介して流量センサ100の外部空間に連通されている。
 接着剤71の材料としては、接着剤72および接着剤73と同様なものを用いることができる。接着剤71は、接着シートとしたものを用いたり、塗布または樹脂成形により形成したりすることができる。
An adhesive 71 is provided on the back surface of the intermediate member 50 and the top surface of the lead frame 20. Therefore, the ventilation passage 51 is sealed by the lead frame 20 and the adhesive 71, and the internal space of the recess 33 provided on the back surface side of the first semiconductor chip 30 is the first opening 52 of the intermediate member 50, ventilation. It is communicated with the external space of the flow sensor 100 through the passage 51, the second opening 53, and the ventilation opening 62 of the sealing resin 60.
As the material of the adhesive 71, the same material as the adhesive 72 and the adhesive 73 can be used. The adhesive 71 can be an adhesive sheet, or can be formed by coating or resin molding.
 流量検出部31周囲における外部空間の圧力とダイヤフラム32の下部の凹部33の内部圧力とをほぼ均一にするため、封止樹脂60には、ダイヤフラム32の下部の凹部33に連通する下部開口部63が形成されている。しかし、気体の流量の変化が大きい場合には、流量検出部31周囲における外部空間の圧力と封止樹脂60の下部開口部63付近の外部圧力とは、変動幅およびタイミングが異なるものとなる。このことは、流量検出の精度を低下する要因となる。
 上記一実施の形態では、第一半導体チップ30のダイヤフラム32の下部に設けられた凹部33は、中間部材50に形成された換気用通路51によりダイヤフラム32の位置から長手方向(Y方向に)離間した位置に設けられた換気用開口部62に連通されている。従って、換気用開口部62を、気体の流量の変動が小さい位置に配置することができる。このため、流量検出部31周囲における外部空間の圧力とダイヤフラム32の裏面側の凹部33の内部圧力とをほぼ同一にすることができ、流量測定の精度を向上することができる。
In order to make the pressure in the external space around the flow rate detection unit 31 and the internal pressure in the concave portion 33 below the diaphragm 32 substantially uniform, the sealing resin 60 has a lower opening 63 communicating with the concave portion 33 below the diaphragm 32. Is formed. However, when the change in the gas flow rate is large, the pressure in the external space around the flow rate detection unit 31 and the external pressure in the vicinity of the lower opening 63 of the sealing resin 60 have different fluctuation widths and timings. This is a factor that reduces the accuracy of flow rate detection.
In the above embodiment, the recess 33 provided in the lower part of the diaphragm 32 of the first semiconductor chip 30 is separated from the position of the diaphragm 32 in the longitudinal direction (Y direction) by the ventilation passage 51 formed in the intermediate member 50. It communicates with a ventilation opening 62 provided at the position. Therefore, the opening 62 for ventilation can be arrange | positioned in the position where the fluctuation | variation of the flow volume of gas is small. For this reason, the pressure of the external space around the flow rate detection unit 31 and the internal pressure of the recess 33 on the back surface side of the diaphragm 32 can be made substantially the same, and the accuracy of flow rate measurement can be improved.
<流量センサの製造方法>
 流量センサの製造方法について、その大略を説明する。
 先ず、図4(a)、(b)に図示されるように、複数のリード21、中間部材搭載部23が連結部24によりダムバー22に連結されたリードフレーム20を形成する。
 リードフレーム20の中間部材搭載部23の上面に接着剤71により中間部材50を固着する。
 中間部材50上に、接着剤72、73を設け、それぞれ、第一半導体チップ30および第二半導体チップ40を固着する。第一半導体チップ30の上面には、予め、流量検出部31、配線11および電極パッド13が形成されている。第一半導体チップ30は、ダイヤフラム32の裏面側の凹部33を、中間部材50の第1開口部52に位置合わせして接着剤72で固着する。
 第一半導体チップ30の電極パッド13と第二半導体チップ40の電極パッド14とをワイヤ16により接続する。また、第二半導体チップ40の電極パッド15とリードフレーム20のリード21とをワイヤ17により接続する。これにより図4(a)、(b)に図示された未封止流量センサ100pが作製される。この段階では、リード21は、リードフレーム20から分離されていない。
<Manufacturing method of flow sensor>
The outline of the manufacturing method of the flow sensor will be described.
First, as shown in FIGS. 4A and 4B, a lead frame 20 in which a plurality of leads 21 and an intermediate member mounting portion 23 are connected to a dam bar 22 by a connecting portion 24 is formed.
The intermediate member 50 is fixed to the upper surface of the intermediate member mounting portion 23 of the lead frame 20 with an adhesive 71.
Adhesives 72 and 73 are provided on the intermediate member 50 to fix the first semiconductor chip 30 and the second semiconductor chip 40, respectively. On the upper surface of the first semiconductor chip 30, a flow rate detection unit 31, a wiring 11 and an electrode pad 13 are formed in advance. In the first semiconductor chip 30, the concave portion 33 on the back surface side of the diaphragm 32 is aligned with the first opening 52 of the intermediate member 50 and fixed with an adhesive 72.
The electrode pads 13 of the first semiconductor chip 30 and the electrode pads 14 of the second semiconductor chip 40 are connected by wires 16. Further, the electrode pads 15 of the second semiconductor chip 40 and the leads 21 of the lead frame 20 are connected by wires 17. Thereby, the unsealed flow rate sensor 100p illustrated in FIGS. 4A and 4B is manufactured. At this stage, the lead 21 is not separated from the lead frame 20.
 図5は、未封止流量センサ100pをモールド成形する方法を示す断面図である。
 図5に図示されるように、未封止流量センサ100pを、上金型101と下金型102のキャビティ103内に収容する。上金型101の内面には弾性フィルム110が設置されている。弾性フィルム110は、上金型101と下金型102によって挟圧される第一半導体チップ30を保護する。図示はしないが、上金型101および下金型102には、検出用開口部61、換気用開口部62および下部開口部63を形成するための突出部が設けられている。
FIG. 5 is a cross-sectional view showing a method of molding the unsealed flow rate sensor 100p.
As illustrated in FIG. 5, the unsealed flow rate sensor 100 p is accommodated in the cavity 103 of the upper mold 101 and the lower mold 102. An elastic film 110 is installed on the inner surface of the upper mold 101. The elastic film 110 protects the first semiconductor chip 30 sandwiched between the upper mold 101 and the lower mold 102. Although not shown, the upper mold 101 and the lower mold 102 are provided with protrusions for forming a detection opening 61, a ventilation opening 62, and a lower opening 63.
 この状態で、樹脂流入部104より封止樹脂材を流入し、キャビティ103内に充填する。このとき、リードフレーム20のダムバー22は、封止樹脂材の漏れを防止する。上金型101および下金型102のキャビティ103内に充填された封止樹脂材を硬化させる。硬化した半製品を金型から取出し、リードフレーム20の連結部24を切断して、ダムバー22を分離すると共に各リード21が相互に分離された図1に示す流量センサ100が作製される。 In this state, the sealing resin material is introduced from the resin inflow portion 104 and filled in the cavity 103. At this time, the dam bar 22 of the lead frame 20 prevents the sealing resin material from leaking. The sealing resin material filled in the cavity 103 of the upper mold 101 and the lower mold 102 is cured. The cured semi-finished product is taken out from the mold, the connecting portion 24 of the lead frame 20 is cut, the dam bar 22 is separated, and the respective flow rate sensors 100 shown in FIG.
 上記流量センサ100の製造方法では、封止樹脂材を充填する前に、第一半導体チップ30に固定された流量検出部31の位置ずれを調整することができる。つまり、封止樹脂60に対する流量検出部31を正確な位置に設定し、かつ、流量検出部31の位置のばらつきを小さくすることができる。
 従って、気体流量の検出精度を向上し、かつ、作製されるすべての流量センサの検出精度を、ばらつきが小さい一様なものとすることができる。
In the manufacturing method of the flow rate sensor 100, the positional deviation of the flow rate detection unit 31 fixed to the first semiconductor chip 30 can be adjusted before the sealing resin material is filled. That is, it is possible to set the flow rate detection unit 31 with respect to the sealing resin 60 at an accurate position and to reduce the variation in the position of the flow rate detection unit 31.
Therefore, the detection accuracy of the gas flow rate can be improved, and the detection accuracy of all the flow rate sensors to be manufactured can be made uniform with little variation.
<中間部材>
 中間部材50の詳細を説明する。
 図2は、図1(c)の詳細を示す拡大図である。また、図3(a)~(c)は本発明の一実施の形態による中間部材を示し、図3(a)はその平面図であり、図3(b)は、図3(a)のIIIb-IIIb線断面図であり、図3(c)は、中間部材の製造方法を説明するための未加工樹脂成形体の平面図である。
 中間部材50は、矩形の薄板状部材である。上述したように、中間部材50には、長手方向(Y方向)の一端側近傍に第1開口部52が形成され、他端側近傍に第2開口部53が形成されている。第1開口部52と第2開口部53とは換気用通路51により接続されている。
<Intermediate member>
Details of the intermediate member 50 will be described.
FIG. 2 is an enlarged view showing details of FIG. 3A to 3C show an intermediate member according to an embodiment of the present invention, FIG. 3A is a plan view thereof, and FIG. 3B is a plan view of FIG. FIG. 3C is a cross-sectional view taken along the line IIIb-IIIb, and FIG. 3C is a plan view of the raw resin molded body for illustrating the method for manufacturing the intermediate member.
The intermediate member 50 is a rectangular thin plate member. As described above, the intermediate member 50 has the first opening 52 formed near one end in the longitudinal direction (Y direction) and the second opening 53 formed near the other end. The first opening 52 and the second opening 53 are connected by a ventilation passage 51.
 図2に図示されるように、中間部材50は、合成樹脂50a中に、合成樹脂50aよりも線膨張係数が大きく、かつ、弾性率が高いフィラー50bを充填した材料により形成されている。合成樹脂50aには、熱硬化性樹脂、熱可塑性樹脂を用いることができる。熱硬化性樹脂として、例えば、エポキシ樹脂やフェノール樹脂などを含む材料を用いることができる。熱可塑性樹脂として、例えば、ポリカーボネート、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ポリブチレンテレフタレート、アクリルニトリルブタジエンスチレンなどを含む材料を用いることができる。 As shown in FIG. 2, the intermediate member 50 is formed of a material in which a synthetic resin 50a is filled with a filler 50b having a higher linear expansion coefficient and a higher elastic modulus than the synthetic resin 50a. As the synthetic resin 50a, a thermosetting resin or a thermoplastic resin can be used. As the thermosetting resin, for example, a material containing an epoxy resin or a phenol resin can be used. As the thermoplastic resin, for example, a material containing polycarbonate, polyethylene terephthalate, polyphenylene sulfide, polybutylene terephthalate, acrylonitrile butadiene styrene, or the like can be used.
 合成樹脂50a中に含まれるフィラー50bは、金、銀、銅、すず、アルミニウム、鉄などを含む金属材料、シリカ、ガラス、カーボン、マイカ、タルクなどを成分として含む無機材料を用いることができる。合成樹脂50a中に、着色剤を添加することによって、導電性を持たせたり、線膨張係数、色を制御したりするようにしてもよい。 As the filler 50b contained in the synthetic resin 50a, a metal material containing gold, silver, copper, tin, aluminum, iron, or the like, or an inorganic material containing silica, glass, carbon, mica, talc, or the like as a component can be used. By adding a colorant to the synthetic resin 50a, conductivity may be imparted, or the linear expansion coefficient and color may be controlled.
 中間部材50は、射出成形やトランスファーモールドなどのモールド工法により作製される。モールド工法による場合、第1開口部52、第2開口部53、換気用通路51などを有する中間部材50を2次加工することなく形成することができるので、生産性がよく、生産コストを低減することができる。 The intermediate member 50 is manufactured by a molding method such as injection molding or transfer molding. In the case of the molding method, the intermediate member 50 having the first opening 52, the second opening 53, the ventilation passage 51 and the like can be formed without secondary processing, so that the productivity is good and the production cost is reduced. can do.
 上述したように、熱式の流量検出部31は、第一半導体チップ30の上面に形成されている。中間部材50の熱伝導率が高いと、流量検出部31の熱が、中間部材50を介してリードフレーム20に伝達される。つまり、流量検出部31の熱が外部に放熱され、温度が低下するため、流量の検出精度が低下する。
 このため、中間部材50の熱伝導率は、第一半導体チップ30を構成するシリコンの1/10程度以下とすることが好ましい。中間部材50を合成樹脂のみで形成すれば、熱伝導率を十分に低減することができる。しかし、合成樹脂は、その線膨張係数がシリコンより大きいので、合成樹脂のみでは、第一半導体チップ30に、中間部材50と第一半導体チップ30との線膨張係数差に起因する応力が生じる。このため、流量の検出精度が低下する。
As described above, the thermal flow rate detection unit 31 is formed on the upper surface of the first semiconductor chip 30. When the thermal conductivity of the intermediate member 50 is high, the heat of the flow rate detection unit 31 is transmitted to the lead frame 20 via the intermediate member 50. That is, the heat of the flow rate detection unit 31 is radiated to the outside, and the temperature decreases, so the flow rate detection accuracy decreases.
For this reason, it is preferable that the thermal conductivity of the intermediate member 50 is about 1/10 or less of silicon constituting the first semiconductor chip 30. If the intermediate member 50 is formed of only synthetic resin, the thermal conductivity can be sufficiently reduced. However, since the linear expansion coefficient of the synthetic resin is larger than that of silicon, the stress due to the difference in the linear expansion coefficient between the intermediate member 50 and the first semiconductor chip 30 is generated in the first semiconductor chip 30 only with the synthetic resin. For this reason, the detection accuracy of the flow rate decreases.
 上記一実施の形態では、中間部材50は、合成樹脂50a中に、合成樹脂50aよりも線膨張係数が小さいフィラー50bを充填した材料により形成されている。このため、中間部材50の線膨張係数を、合成樹脂だけで形成する場合に比し、第一半導体チップ30の線膨張係数に近づけることができ、流量の検出精度を向上することができる。中間部材50の線膨張係数は、第一半導体チップ30の1.5~5.0倍程度とすることが好ましい。 In the above embodiment, the intermediate member 50 is formed of a material in which the filler 50b having a smaller linear expansion coefficient than the synthetic resin 50a is filled in the synthetic resin 50a. For this reason, the linear expansion coefficient of the intermediate member 50 can be brought closer to the linear expansion coefficient of the first semiconductor chip 30 than when the intermediate member 50 is formed of only synthetic resin, and the flow rate detection accuracy can be improved. The linear expansion coefficient of the intermediate member 50 is preferably about 1.5 to 5.0 times that of the first semiconductor chip 30.
 通常、リードフレーム20の板厚は1mm程度以下であるが、中間部材50を、リードフレーム20と第一半導体チップ30との間に介装しているので、流量センサ100の断面二次モーメントを大きくすることができる。すなわち、中間部材50にリードフレーム20の剛性を補強する機能を持たせることができる。さらに、フィラー50bが充填された合成樹脂50aにより形成された中間部材50を用いているので、より一層、流量センサ100の剛性を高くすることができる。 Usually, the plate thickness of the lead frame 20 is about 1 mm or less, but since the intermediate member 50 is interposed between the lead frame 20 and the first semiconductor chip 30, the secondary moment of section of the flow sensor 100 is reduced. Can be bigger. That is, the intermediate member 50 can have a function of reinforcing the rigidity of the lead frame 20. Furthermore, since the intermediate member 50 formed of the synthetic resin 50a filled with the filler 50b is used, the rigidity of the flow sensor 100 can be further increased.
 合成樹脂50a中には、合成樹脂50aよりも弾性率が高いフィラー50bを、30重量%程度以上充填することが好ましい。中間部材50の弾性率を高くすることにより、流量センサ100の剛性をより向上することができる。 It is preferable to fill the synthetic resin 50a with a filler 50b having a higher elastic modulus than the synthetic resin 50a by about 30% by weight or more. By increasing the elastic modulus of the intermediate member 50, the rigidity of the flow sensor 100 can be further improved.
 中間部材50をモールド工法により作製する場合、図3(c)に図示されるように、複数個の中間部材50を一括して形成する方法を採用することが好ましい。この方法では、モールド工法により、第1開口部52、換気用通路51および第2開口部53を有する中間部材50が二次元的に配列された1枚の中間部材形成用基板50mを形成する。中間部材形成用基板50mを金型から取り出した後、二点鎖線で示すように、縦横に切断して、個々の中間部材50を形成する。このような製造方法を用いることにより、中間部材50の生産性が向上し、生産コストを低減することができる。 When producing the intermediate member 50 by a mold method, it is preferable to employ a method in which a plurality of intermediate members 50 are collectively formed as shown in FIG. In this method, one intermediate member forming substrate 50m in which the intermediate members 50 having the first opening 52, the ventilation passage 51, and the second opening 53 are two-dimensionally arranged is formed by a molding method. After the intermediate member forming substrate 50m is taken out of the mold, it is cut vertically and horizontally to form individual intermediate members 50 as indicated by a two-dot chain line. By using such a manufacturing method, the productivity of the intermediate member 50 can be improved and the production cost can be reduced.
 上記一実施の形態によれば、以下の効果を奏する。
(1)流量検出部31が形成された第一半導体チップ30と、支持部材としてのリードフレーム20との間に合成樹脂により形成された中間部材50を介装した。合成樹脂製の中間部材50は、モールド工法により形成することができるので、生産性がよく、生産コストを低減することができる。特に、1枚の中間部材形成用基板50mに、複数個の中間部材50を一括してモールド成形し、成形後に個々の中間部材50に分割する方法とすれば、一層、生産性の向上を図ることができる。
According to the one embodiment, the following effects are obtained.
(1) An intermediate member 50 formed of synthetic resin is interposed between the first semiconductor chip 30 on which the flow rate detection unit 31 is formed and the lead frame 20 as a support member. Since the synthetic resin intermediate member 50 can be formed by a molding method, the productivity is good and the production cost can be reduced. In particular, if a method is adopted in which a plurality of intermediate members 50 are collectively molded on one intermediate member forming substrate 50m and then divided into individual intermediate members 50 after forming, productivity is further improved. be able to.
(2)中間部材50を、合成樹脂50a中に、合成樹脂50aよりも線膨張係数が小さいフィラー50bが充填された材料により形成した。このため、中間部材50の線膨張係数を、熱式の流量検出部31が形成された第一半導体チップ30の線膨張係数に近づけることができる。これにより、線膨張係数の相違に起因して第一半導体チップ30に生じる応力を低減し、流量検出の精度を向上することができる。 (2) The intermediate member 50 is formed of a material in which a synthetic resin 50a is filled with a filler 50b having a smaller linear expansion coefficient than the synthetic resin 50a. For this reason, the linear expansion coefficient of the intermediate member 50 can be brought close to the linear expansion coefficient of the first semiconductor chip 30 on which the thermal flow rate detection unit 31 is formed. Thereby, the stress which arises in the 1st semiconductor chip 30 resulting from the difference in a linear expansion coefficient can be reduced, and the precision of flow volume detection can be improved.
(3)中間部材50を、合成樹脂50aよりも弾性率が大きいフィラー50bが充填された合成樹脂50aにより形成した。このため、中間部材50の弾性率を、合成樹脂のみで形成した場合より高いものとすることができる。これにより、板厚が小さいリードフレーム20を用いた構造においても、流量センサ100の剛性を高くすることができる。 (3) The intermediate member 50 is formed of a synthetic resin 50a filled with a filler 50b having a larger elastic modulus than that of the synthetic resin 50a. For this reason, the elasticity modulus of the intermediate member 50 can be made higher than the case where it forms only with a synthetic resin. Thereby, even in the structure using the lead frame 20 with a small plate thickness, the rigidity of the flow sensor 100 can be increased.
(4)中間部材50に、第1開口部52、換気用通路51、第2開口部53を設けて、第一半導体チップ30のダイヤフラム32の裏面側に設けられた凹部33と封止樹脂60の換気用開口部62とを連結した。このため、ダイヤフラム32の上部側に設けられた流量検出部31の外部空間の圧力とダイヤフラム32の裏面側の凹部33の内部圧力とをほぼ同一にすることができ、流量測定の精度を向上することができる。
 なお、中間部材50は、上記一実施の形態とは異なる種々の形態を採用することができる。以下に、他の形態の一例を示す。
(4) The intermediate member 50 is provided with the first opening 52, the ventilation passage 51, and the second opening 53, and the recess 33 and the sealing resin 60 provided on the back surface side of the diaphragm 32 of the first semiconductor chip 30. The ventilation opening 62 was connected. For this reason, the pressure in the external space of the flow rate detector 31 provided on the upper side of the diaphragm 32 and the internal pressure of the recess 33 on the back surface side of the diaphragm 32 can be made substantially the same, improving the accuracy of flow rate measurement. be able to.
The intermediate member 50 can employ various forms different from the above-described one embodiment. An example of another form is shown below.
-実施形態2-
 図6は、本発明による流量センサの実施形態2を示す断面図である。
 実施形態2の流量センサ100は、実施形態1とは中間部材50Aのみが相違する。以下は、相違点について説明し、他は、同一の部材に同一の符号を付して説明を省略する。
 実施形態2の中間部材50Aは、合成樹脂50a中に充填されたフィラー50bのうち、最上層のフィラー50bが合成樹脂50aの表面から突出する構造を有する。
Embodiment 2
FIG. 6 is a sectional view showing Embodiment 2 of the flow sensor according to the present invention.
The flow sensor 100 of the second embodiment is different from the first embodiment only in the intermediate member 50A. In the following, the differences will be described, and the others will be denoted by the same reference numerals and the description thereof will be omitted.
The intermediate member 50A of the second embodiment has a structure in which the uppermost filler 50b out of the filler 50b filled in the synthetic resin 50a protrudes from the surface of the synthetic resin 50a.
 中間部材50をモールド工法により作製する場合、金型内面に塗布された離型剤が、中間部材50の表面に残留することがある。離型剤が中間部材50に付着していると、接着剤72および封止樹脂60との接着強度が低下し、剥離することがある。剥離が発生すると、強度の低下および水分などの浸入に起因する腐食の原因となる。
 そこで、実施形態2の流量センサ100は、中間部材50の上面側(Z方向側)の合成樹脂50aを除去し、最上部のフィラー50bを合成樹脂50aの表面から突出させたものである。
When the intermediate member 50 is manufactured by a molding method, the release agent applied to the inner surface of the mold may remain on the surface of the intermediate member 50. If the release agent adheres to the intermediate member 50, the adhesive strength between the adhesive 72 and the sealing resin 60 may be reduced and peel off. When peeling occurs, it causes a decrease in strength and corrosion due to intrusion of moisture and the like.
Therefore, in the flow sensor 100 of the second embodiment, the synthetic resin 50a on the upper surface side (Z direction side) of the intermediate member 50 is removed, and the uppermost filler 50b is protruded from the surface of the synthetic resin 50a.
 生産効率の良い流量センサ100の製造方法の一例を以下に示す。
 実施形態1と同様に、モールド工法により、第1開口部52、換気用通路51および第2開口部53を有する中間部材50が二次元的に配列された1枚の中間部材形成用基板50mを形成する。
 中間部材形成用基板50mの表裏面のいずれか一方の、接着剤72および封止樹脂60と接着する面の合成樹脂50aの表面層を除去し、フィラー50bを合成樹脂50aの表面から突出させる。中間部材形成用基板50mの合成樹脂50aの表面層の除去は、ウエットエッチング、ドライエッチング、ブラストまたは研磨などにより行うことができる。
 そして、一面側にフィラー50bが突出された中間部材形成用基板50mを縦横に切断して、個々の中間部材50Aを形成する。
An example of a method for manufacturing the flow sensor 100 with good production efficiency will be described below.
Similarly to the first embodiment, a single intermediate member forming substrate 50m in which the intermediate members 50 having the first opening 52, the ventilation passage 51, and the second opening 53 are two-dimensionally arranged is molded by a molding method. Form.
The surface layer of the synthetic resin 50a on the surface to be bonded to the adhesive 72 and the sealing resin 60 on either one of the front and back surfaces of the intermediate member forming substrate 50m is removed, and the filler 50b is protruded from the surface of the synthetic resin 50a. The removal of the surface layer of the synthetic resin 50a of the intermediate member forming substrate 50m can be performed by wet etching, dry etching, blasting or polishing.
Then, each intermediate member 50A is formed by cutting the intermediate member forming substrate 50m from which the filler 50b protrudes on one side in the vertical and horizontal directions.
 実施形態2においても、上述した実施形態1の効果(1)~(4)と同様な効果を得ることができる。
 特に、実施形態2では、フィラー50bが合成樹脂50aの表面から突出しており、接着面となる表面積が増大しているので、接着剤72および封止樹脂60との接着強度を向上することができる。また、フィラー50bとして、シリカ、タルク、マイカ、カーボン、アルミニウム、鉄などの、封止樹脂60または接着剤72との接着性がよい材料を用いることによっても、接着剤72または封止樹脂60との接着強度を、一層、増大することができる。接着強度の増大に伴い、流量センサ100の剛性が高くなり、腐食などに対する信頼性が向上する。
In the second embodiment, the same effects as the effects (1) to (4) of the first embodiment can be obtained.
In particular, in Embodiment 2, since the filler 50b protrudes from the surface of the synthetic resin 50a and the surface area that becomes the bonding surface is increased, the adhesive strength between the adhesive 72 and the sealing resin 60 can be improved. . Further, as the filler 50b, a material having good adhesiveness with the sealing resin 60 or the adhesive 72 such as silica, talc, mica, carbon, aluminum, iron or the like can be used. The adhesive strength of can be further increased. As the adhesive strength increases, the rigidity of the flow sensor 100 increases and the reliability against corrosion and the like improves.
-実施形態3-
 図7は、本発明による流量センサの実施形態3を示す断面図である。
 実施形態3の中間部材50Bは、合成樹脂50a中に充填されたフィラー50bのうち、周側面側(X方向両側の面およびY方向両側の面)のフィラー50bが合成樹脂50aの周側面から突出する構造を有する。フィラー50bは、上下面(Z方向両側の面)では、合成樹脂50aから突出していない。
Embodiment 3
FIG. 7 is a cross-sectional view showing a third embodiment of the flow sensor according to the present invention.
In the intermediate member 50B of the third embodiment, among the fillers 50b filled in the synthetic resin 50a, the fillers 50b on the peripheral side surface (the surfaces on both sides in the X direction and the surfaces on both sides in the Y direction) protrude from the peripheral side surface of the synthetic resin 50a. It has the structure to do. The filler 50b does not protrude from the synthetic resin 50a on the upper and lower surfaces (surfaces on both sides in the Z direction).
 実施形態3の中間部材50Bを作製するには、モールド工法により、中間部材50が二次元的に配列された1枚の中間部材形成用基板50mを形成し、中間部材形成用基板50mを縦横に切断して、個々の中間部材50に分離する。この後、各中間部材50の周側面の合成樹脂50aの表面を除去し、フィラー50bを突出させる。 In order to produce the intermediate member 50B of Embodiment 3, one intermediate member forming substrate 50m in which the intermediate members 50 are two-dimensionally arranged is formed by a molding method, and the intermediate member forming substrate 50m is vertically and horizontally formed. Cut and separate into individual intermediate members 50. Thereafter, the surface of the synthetic resin 50a on the peripheral side surface of each intermediate member 50 is removed, and the filler 50b is protruded.
 実施形態3においても、上述した実施形態1の効果(1)~(4)と同様な効果を得ることができる。
 実施形態3では、フィラー50bが合成樹脂50aの周側面から突出しており、接着面となる表面積が増大しているので、封止樹脂60との接着強度を向上することができる。接着強度の増大に伴い、流量センサ100の剛性が高くなり、腐食などに対する信頼性が向上する。
Also in the third embodiment, the same effects as the effects (1) to (4) of the first embodiment described above can be obtained.
In Embodiment 3, since the filler 50b protrudes from the peripheral side surface of the synthetic resin 50a and the surface area that becomes the bonding surface is increased, the adhesive strength with the sealing resin 60 can be improved. As the adhesive strength increases, the rigidity of the flow sensor 100 increases and the reliability against corrosion and the like improves.
-実施形態4-
 図8は、本発明による流量センサの実施形態4を示す断面図である。
 実施形態4の流量センサ100は、第一半導体チップ30と中間部材50とを接着剤72Aで接着する構造が他の実施形態とは相違する。
 実施形態4では、接着剤72Aは、第1開口部52および第2開口部53(この図に図示はされない)を除いて、中間部材50の上面全体に設けられている。中間部材50の幅(X方向の長さ)は、第一半導体チップ30の幅よりも大きく、第一半導体チップ30は接着剤72Aの内側に配置されている。従って、接着剤72Aの上面(第一半導体チップ30に対面する面)は、幅方向(X方向)の両側縁で封止樹脂60に接着される。これにより、接着剤72Aと封止樹脂60との接着面積が増大し、接着剤72Aと封止樹脂60との接着強度が増大する。接着強度の増大に伴い、流量センサ100の剛性が高くなり、腐食などに対する信頼性が向上する。
 実施形態4においても、上述した実施形態1の効果(1)~(4)と同様な効果を奏する。
Embodiment 4
FIG. 8 is a sectional view showing Embodiment 4 of the flow sensor according to the present invention.
The flow sensor 100 according to the fourth embodiment is different from the other embodiments in the structure in which the first semiconductor chip 30 and the intermediate member 50 are bonded with an adhesive 72A.
In the fourth embodiment, the adhesive 72 </ b> A is provided on the entire upper surface of the intermediate member 50 except for the first opening 52 and the second opening 53 (not shown in this drawing). The width of the intermediate member 50 (the length in the X direction) is larger than the width of the first semiconductor chip 30, and the first semiconductor chip 30 is disposed inside the adhesive 72A. Therefore, the upper surface of the adhesive 72A (the surface facing the first semiconductor chip 30) is bonded to the sealing resin 60 at both side edges in the width direction (X direction). Thereby, the adhesive area between the adhesive 72A and the sealing resin 60 increases, and the adhesive strength between the adhesive 72A and the sealing resin 60 increases. As the adhesive strength increases, the rigidity of the flow sensor 100 increases and the reliability against corrosion and the like improves.
The fourth embodiment also has the same effects as the effects (1) to (4) of the first embodiment described above.
-実施形態5-
 図9は、本発明による流量センサの実施形態5を示す断面図である。
 図6に図示された実施形態2の中間部材50Aは、最上層のフィラー50bが合成樹脂50aの表面から突出する構造を有していた。実施形態5の中間部材50Cでは、最上層のフィラー50bの外表面は、合成樹脂50aの上面とほぼ同一面に形成されている。つまり、実施形態5においても、最上部のフィラー50bは合成樹脂50aの上面から露出しているが、その上面は合成樹脂50aとほぼ平坦となっている。
 実施形態5においても、上述した実施形態1の効果(1)~(4)と同様な効果を奏する。
-Embodiment 5
FIG. 9 is a sectional view showing Embodiment 5 of the flow sensor according to the present invention.
The intermediate member 50A of the second embodiment illustrated in FIG. 6 has a structure in which the uppermost filler 50b protrudes from the surface of the synthetic resin 50a. In the intermediate member 50C of the fifth embodiment, the outer surface of the uppermost filler 50b is formed substantially flush with the upper surface of the synthetic resin 50a. That is, also in Embodiment 5, the uppermost filler 50b is exposed from the upper surface of the synthetic resin 50a, but the upper surface is substantially flat with the synthetic resin 50a.
Also in the fifth embodiment, the same effects as the effects (1) to (4) of the first embodiment described above are obtained.
-実施形態6-
 図10は、本発明による流量センサの実施形態6を示し、図10(a)はその平面図であり、図10(b)は、図10(a)のXb-Xb線断面図あり、図10(c)は、図10(a)のXc-Xc線断面図である。
 実施形態6の流量センサ100が、他の実施形態と相違する点は、中間部材50Dおよび封止樹脂60Aの構造である。
 中間部材50Dには、第1開口部52、換気用通路51および第2開口部53は形成されていない。また、封止樹脂60Aには、換気用開口部62は形成されていない。
-Sixth Embodiment-
FIG. 10 shows a flow sensor according to a sixth embodiment of the present invention, FIG. 10 (a) is a plan view thereof, FIG. 10 (b) is a cross-sectional view taken along the line Xb-Xb of FIG. 10 (c) is a cross-sectional view taken along line Xc-Xc of FIG. 10 (a).
The difference between the flow sensor 100 of the sixth embodiment and the other embodiments is the structure of the intermediate member 50D and the sealing resin 60A.
The first opening 52, the ventilation passage 51, and the second opening 53 are not formed in the intermediate member 50D. Further, the opening 62 for ventilation is not formed in the sealing resin 60A.
 流量センサ100が、気体の流量変動が小さい環境下に設置される場合には、ダイヤフラム32の裏面側の凹部33は、封止樹脂60Aに形成された下部開口部63を介して流量検出部31と反対側の外部に連通していればよく、換気用開口部62は必要とされない。従って、中間部材50Dは、外周を切断する以外には加工が施されていない平坦状の薄板部材とすることができる。中間部材50Dを形成するには、中間部材形成用基板50mを押出成形によって形成することもでき、金型費の削減および生産性の効率化を図ることができるので、一層、生産コストを低減することができる。 When the flow sensor 100 is installed in an environment where the gas flow rate fluctuation is small, the recess 33 on the back surface side of the diaphragm 32 is connected to the flow rate detector 31 via the lower opening 63 formed in the sealing resin 60A. The ventilation opening 62 is not required as long as it communicates with the outside on the opposite side. Therefore, the intermediate member 50D can be a flat thin plate member that is not processed except for cutting the outer periphery. In order to form the intermediate member 50D, the intermediate member forming substrate 50m can be formed by extrusion molding, which can reduce the mold cost and increase the efficiency of the productivity, thereby further reducing the production cost. be able to.
 実施形態6の流量センサ100においても、上述した実施形態1の効果(1)~(3)と同様な効果を奏する。また、実施形態6の中間部材50Dは、溝加工などが施されていないので、剛性を高くすることができる。従って、薄いリードフレーム20を用いた場合でも、流量センサ100の剛性を十分に確保することができる。 The flow sensor 100 of the sixth embodiment also has the same effects as the effects (1) to (3) of the first embodiment described above. Moreover, since intermediate member 50D of Embodiment 6 is not subjected to groove processing or the like, the rigidity can be increased. Therefore, even when the thin lead frame 20 is used, sufficient rigidity of the flow sensor 100 can be ensured.
 なお、上記各実施形態において、流量検出部31が形成された第一半導体チップ30と流量検出部31を制御する制御部を有する第二半導体チップ40とを、1つの半導体チップとしてもよい。 In each of the above embodiments, the first semiconductor chip 30 in which the flow rate detection unit 31 is formed and the second semiconductor chip 40 having a control unit that controls the flow rate detection unit 31 may be a single semiconductor chip.
 上記各実施形態におけるリードフレーム20を、樹脂製の基板としてもよい。基板には、流量検出部31に接続される接続端子を一体に形成してもよいし、流量検出部31に接続される接続リードを別部材として封止樹脂60に埋設する構造としてもよい。 The lead frame 20 in each of the above embodiments may be a resin substrate. A connection terminal connected to the flow rate detection unit 31 may be integrally formed on the substrate, or a connection lead connected to the flow rate detection unit 31 may be embedded in the sealing resin 60 as a separate member.
 上記各実施形態の構造を組み合わせることもできる。特に、実施形態6に示した、第1開口部52、換気用通路51および第2開口部53を有していない中間部材50Dは、実施形態1~5の流量センサ100に適用することができる。また、中間部材50A、50B、50Cを適宜組み合わせた構造とすることができる。中間部材50A~50Cにおいて、接着剤71に接着する面においても、フィラー50bを合成樹脂50aから露出するようにしてもよい。 It is also possible to combine the structures of the above embodiments. In particular, the intermediate member 50D that does not have the first opening 52, the ventilation passage 51, and the second opening 53 shown in the sixth embodiment can be applied to the flow sensor 100 of the first to fifth embodiments. . Moreover, it can be set as the structure which combined intermediate member 50A, 50B, 50C suitably. In the intermediate members 50A to 50C, the filler 50b may be exposed from the synthetic resin 50a also on the surface bonded to the adhesive 71.
 上記各実施形態においては、第一、第二半導体チップ30、40を被覆する封止樹脂60は、その上面が、Z方向において流量検出部31の上面より高い構造として例示した。しかし、封止樹脂60の上面を、Z方向において流量検出部31の上面より低い構造としてもよい。また、封止樹脂60が、第二半導体チップ40やリードフレーム20を部分的に露出する構造とすることもできる。 In the above embodiments, the sealing resin 60 covering the first and second semiconductor chips 30 and 40 is exemplified as a structure in which the upper surface is higher than the upper surface of the flow rate detection unit 31 in the Z direction. However, the upper surface of the sealing resin 60 may be lower than the upper surface of the flow rate detection unit 31 in the Z direction. Further, the sealing resin 60 may be configured to partially expose the second semiconductor chip 40 and the lead frame 20.
 その他、本発明は、発明の趣旨の範囲において、種々、変形することが可能であり、要は、熱式の流量検出部を有する半導体チップと支持部材との間に中間部材が介装され、流量検出部を露出して半導体チップが封止樹脂で覆われ、中間部材は、合成樹脂中に、該合成樹脂よりも弾性率が高く、線膨張係数が低いフィラーが分散されたフィラー含有樹脂により形成されたものであればよい。 In addition, the present invention can be variously modified within the scope of the invention. In short, an intermediate member is interposed between a semiconductor chip having a thermal flow rate detection unit and a support member, The semiconductor chip is covered with a sealing resin by exposing the flow rate detection unit, and the intermediate member is made of a filler-containing resin in which a filler having a higher elastic modulus and a lower linear expansion coefficient than the synthetic resin is dispersed in the synthetic resin. Any formed material may be used.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2014年第183436号(2014年9月9日出願)
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Patent Application No. 2014-183436 (filed on September 9, 2014)
  20    リードフレーム
  21    リード
  23    中間部材搭載部
  30    第一半導体チップ
  31    流量検出部
  32    ダイヤフラム
  33    凹部
  40    第二半導体チップ
  50    中間部材
  50a   合成樹脂
  50b   フィラー
  50c   チップ搭載部
  50A~50D   中間部材
  51    換気用通路
  52    第1開口部
  53    第2開口部
  60、60A    封止樹脂
  61    検出用開口部
  62    換気用開口部
  63    下部開口部
  71、72、73   接着剤
  72A   接着剤
  100   流量センサ
 
20 Lead frame 21 Lead 23 Intermediate member mounting portion 30 First semiconductor chip 31 Flow rate detection portion 32 Diaphragm 33 Concave portion 40 Second semiconductor chip 50 Intermediate member 50a Synthetic resin 50b Filler 50c Chip mounting portion 50A to 50D Intermediate member 51 Ventilation passage 52 First opening 53 Second opening 60, 60A Sealing resin 61 Detection opening 62 Ventilation opening 63 Lower opening 71, 72, 73 Adhesive 72A Adhesive 100 Flow rate sensor

Claims (14)

  1.  主面に熱式の流量検出部を有する半導体チップと、
     前記半導体チップを支持する支持部材と、
     前記支持部材と前記半導体チップとの間に介装された中間部材と、
     前記流量検出部を露出して、前記半導体チップの前記主面を覆う封止樹脂と、を備え、
     前記中間部材は、合成樹脂中に、前記合成樹脂よりも弾性率が高く、線膨張係数が低いフィラーが含有されたフィラー含有合成樹脂により形成されている、流量センサ。
    A semiconductor chip having a thermal flow rate detector on the main surface;
    A support member for supporting the semiconductor chip;
    An intermediate member interposed between the support member and the semiconductor chip;
    A sealing resin that exposes the flow rate detection unit and covers the main surface of the semiconductor chip;
    The intermediate member is a flow rate sensor formed of a filler-containing synthetic resin in which a filler having a higher elastic modulus and a lower linear expansion coefficient than the synthetic resin is contained in the synthetic resin.
  2.  請求項1に記載の流量センサにおいて、
     さらに、前記半導体チップと前記中間部材を接着する接着剤を備える、流量センサ。
    The flow sensor according to claim 1,
    Furthermore, the flow sensor provided with the adhesive agent which adhere | attaches the said semiconductor chip and the said intermediate member.
  3.  請求項2に記載の流量センサにおいて、
     前記中間部材は、少なくとも前記接着剤に接触する領域において、前記フィラーが表面に露出されている、流量センサ。
    The flow sensor according to claim 2,
    The intermediate member is a flow sensor in which the filler is exposed on the surface at least in a region in contact with the adhesive.
  4.  請求項2に記載の流量センサにおいて、
     前記中間部材は、少なくとも前記封止樹脂に接触する領域の一部において、前記フィラーが表面に露出されている、流量センサ。
    The flow sensor according to claim 2,
    The intermediate member is a flow sensor in which the filler is exposed on the surface in at least a part of a region in contact with the sealing resin.
  5.  請求項3または4に記載の流量センサにおいて、
     前記中間部材の前記フィラーは、前記合成樹脂から突出している、流量センサ。
    The flow sensor according to claim 3 or 4,
    The flow sensor, wherein the filler of the intermediate member protrudes from the synthetic resin.
  6.  請求項1に記載の流量センサにおいて、
     前記半導体チップの前記主面に、裏面側に凹部が設けられたダイヤフラムが形成され、前記中間部材には前記ダイヤフラムの裏面側の前記凹部に連通する換気用通路が形成されている、流量センサ。
    The flow sensor according to claim 1,
    A flow sensor in which a diaphragm having a recess on the back surface side is formed on the main surface of the semiconductor chip, and a ventilation passage communicating with the recess on the back surface side of the diaphragm is formed in the intermediate member.
  7.  請求項6に記載の流量センサにおいて
     前記支持部材は矩形であり、
     前記中間部材の前記換気用通路は、前記ダイヤフラムの裏面側の前記凹部に対応する第1端部から前記半導体チップの外側の第2端部まで、前記支持部材に沿って延在されている、流量センサ。
    The flow sensor according to claim 6, wherein the support member is rectangular.
    The ventilation passage of the intermediate member extends along the support member from a first end corresponding to the recess on the back surface side of the diaphragm to a second end outside the semiconductor chip. Flow sensor.
  8.  請求項7に記載の流量センサにおいて、
     前記中間部材の前記換気用通路は、前記支持部材に対向する側が開口された溝であり、前記溝は前記支持部材により覆われている、流量センサ。
    The flow sensor according to claim 7,
    The flow passage for ventilation of the intermediate member is a groove whose side facing the support member is opened, and the groove is covered with the support member.
  9.  請求項1に記載の流量センサにおいて、
     前記中間部材の熱伝導率は、前記半導体チップの熱伝導率の1/10以下である、流量センサ。
    The flow sensor according to claim 1,
    The thermal conductivity of the intermediate member is a flow sensor that is 1/10 or less of the thermal conductivity of the semiconductor chip.
  10.  請求項1に記載の流量センサにおいて、
     前記中間部材は、前記フィラーを30重量%以上含有する、流量センサ。
    The flow sensor according to claim 1,
    The said intermediate member is a flow sensor which contains the said filler 30weight% or more.
  11.  請求項1に記載の流量センサにおいて、
     前記支持部材は、厚さが1mm以下である、流量センサ。
    The flow sensor according to claim 1,
    The support member is a flow rate sensor having a thickness of 1 mm or less.
  12.  主面に熱式の流量検出部を有する半導体チップと、
     前記半導体チップを支持する支持部材と、
     前記支持部材上に搭載され、前記半導体チップがその主面に対向する裏面で接着剤により接着され、合成樹脂を含む材料により形成された中間部材と、
     前記流量検出部を露出して、前記半導体チップの前記主面を覆う封止樹脂と、を備え、
     前記中間部材は、複数の前記中間部材が形成された1つの未加工樹脂成形体を分割して形成された部材である、流量センサ。
    A semiconductor chip having a thermal flow rate detector on the main surface;
    A support member for supporting the semiconductor chip;
    An intermediate member mounted on the support member, the semiconductor chip being bonded with an adhesive on the back surface facing the main surface, and formed of a material containing a synthetic resin;
    A sealing resin that exposes the flow rate detection unit and covers the main surface of the semiconductor chip;
    The said intermediate member is a flow sensor which is a member formed by dividing | segmenting one raw resin molding in which the said some intermediate member was formed.
  13.  請求項12に記載の流量センサにおいて、
     前記中間部材の少なくとも前記接着剤に接着される領域は、前記未加工樹脂成形体に付着された離型剤が除去されている、流量センサ。
    The flow sensor according to claim 12,
    A flow sensor in which at least a region of the intermediate member that is bonded to the adhesive has a release agent attached to the raw resin molded body removed.
  14.  請求項12または請求項13に記載の流量センサにおいて、
     前記中間部材は、前記合成樹脂中に、前記合成樹脂よりも線膨張係数が低いフィラーが含有された材料により形成され、前記中間部材は、少なくとも前記接着剤に接着される領域において、前記フィラーが表面に露出している、 流量センサ。
     
     
    The flow sensor according to claim 12 or 13,
    The intermediate member is formed of a material containing a filler having a lower linear expansion coefficient than that of the synthetic resin in the synthetic resin, and the intermediate member has at least a region where the filler is bonded to the adhesive. A flow sensor exposed on the surface.

PCT/JP2015/070705 2014-09-09 2015-07-21 Flow rate sensor WO2016039019A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-183436 2014-09-09
JP2014183436A JP2017198453A (en) 2014-09-09 2014-09-09 Flow sensor

Publications (1)

Publication Number Publication Date
WO2016039019A1 true WO2016039019A1 (en) 2016-03-17

Family

ID=55458780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070705 WO2016039019A1 (en) 2014-09-09 2015-07-21 Flow rate sensor

Country Status (2)

Country Link
JP (1) JP2017198453A (en)
WO (1) WO2016039019A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150160054A1 (en) * 2012-06-15 2015-06-11 Hitachi Automotive Systems, Ltd. Thermal flow meter
US11415445B2 (en) * 2018-09-06 2022-08-16 Denso Corporation Physical quantity measurement device and method for manufacturing physical quantity measurement device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6964559B2 (en) * 2018-07-02 2021-11-10 日立Astemo株式会社 Manufacturing method of physical quantity detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146750A (en) * 2006-12-11 2008-06-26 Matsushita Electric Ind Co Ltd Optical member sticking method for semiconductor device
JP2014134519A (en) * 2013-01-11 2014-07-24 Hitachi Automotive Systems Ltd Flow sensor and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146750A (en) * 2006-12-11 2008-06-26 Matsushita Electric Ind Co Ltd Optical member sticking method for semiconductor device
JP2014134519A (en) * 2013-01-11 2014-07-24 Hitachi Automotive Systems Ltd Flow sensor and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150160054A1 (en) * 2012-06-15 2015-06-11 Hitachi Automotive Systems, Ltd. Thermal flow meter
US9746362B2 (en) * 2012-06-15 2017-08-29 Hitachi Automotive Systems, Ltd. Thermal flow meter
US9933292B2 (en) 2012-06-15 2018-04-03 Hitachi Automotive Systems, Ltd. Thermal flow meter
US11415445B2 (en) * 2018-09-06 2022-08-16 Denso Corporation Physical quantity measurement device and method for manufacturing physical quantity measurement device

Also Published As

Publication number Publication date
JP2017198453A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
EP3176543B1 (en) Circuit board mounting structure and sensor using same
JP4952428B2 (en) Sensor device
US9989390B2 (en) Thermal airflow measuring device
US20090072333A1 (en) Sensor array having a substrate and a housing, and method for manufacturing a sensor array
US7712203B2 (en) Method of manufacturing a sensor apparatus
JP4281630B2 (en) Manufacturing method of sensor device
US9587970B2 (en) Airflow measuring apparatus including a ventilation hole between a connector part and a circuit chamber
JPWO2005019790A1 (en) Sensor device
JP5125978B2 (en) Sensor device
US20150027231A1 (en) Mechanical Quantity Measuring Device
WO2002095339A1 (en) Heating resistor type flow measuring device
WO2014002736A1 (en) Thermal airflow sensor
WO2016039019A1 (en) Flow rate sensor
JP6435420B2 (en) Resin molded body and sensor device
JP5293278B2 (en) Thermal flow meter
JP6336833B2 (en) Thermal air flow meter
JP5820342B2 (en) Flow sensor and manufacturing method thereof
JP5870748B2 (en) Flow sensor
JP6012833B2 (en) Semiconductor device, manufacturing method thereof, flow rate sensor and humidity sensor
JP5768179B2 (en) Thermal air flow sensor
JP5936475B2 (en) Flow measuring device
JP6602744B2 (en) Sensor device and manufacturing method thereof
JP6156523B2 (en) Flow sensor
WO2019021766A1 (en) Semiconductor device and method for producing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15839988

Country of ref document: EP

Kind code of ref document: A1